1
|
Huang Z, Zhang Y, Xing T, He A, Luo Y, Wang M, Qiao S, Tong A, Shi Z, Liao X, Pan H, Liang Z, Chen F, Xu W. Advances in regenerated cellulosic aerogel from waste cotton textile for emerging multidimensional applications. Int J Biol Macromol 2024; 270:132462. [PMID: 38772470 DOI: 10.1016/j.ijbiomac.2024.132462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/22/2024] [Accepted: 05/11/2024] [Indexed: 05/23/2024]
Abstract
Rapid development of society and the improvement of people's living standards have stimulated people's keen interest in fashion clothing. This trend has led to the acceleration of new product innovation and the shortening of the lifespan for cotton fabrics, which has resulting in the accumulation of waste cotton textiles. Although cotton fibers can be degraded naturally, direct disposal not only causes a serious resource waste, but also brings serious environmental problems. Hence, it is significant to explore a cleaner and greener waste textile treatment method in the context of green and sustainable development. To realize the high-value utilization of cellulose II aerogel derived from waste cotton products, great efforts have been made and considerable progress has been achieved in the past few decades. However, few reviews systematically summarize the research progress and future challenges of preparing high-value-added regenerated cellulose aerogels via dissolving cotton and other cellulose wastes. Therefore, this article reviews the regenerated cellulose aerogels obtained through solvent methods, summarizes their structure, preparation strategies and application, aimed to promote the development of the waste textile industry and contributed to the realization of carbon neutrality.
Collapse
Affiliation(s)
- Zhiyu Huang
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, PR China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430200, PR China
| | - Yu Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430200, PR China
| | - Tonghe Xing
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430200, PR China
| | - Annan He
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430200, PR China
| | - Yuxin Luo
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430200, PR China
| | - Mengqi Wang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430200, PR China
| | - Sijie Qiao
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430200, PR China
| | - Aixin Tong
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430200, PR China
| | - Zhicheng Shi
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430200, PR China
| | - Xiaohong Liao
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430200, PR China
| | - Heng Pan
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430200, PR China.
| | - Zihui Liang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430200, PR China.
| | - Fengxiang Chen
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430200, PR China.
| | - Weilin Xu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430200, PR China
| |
Collapse
|
2
|
Zhang Y, Guo H, Fu C, Li W, Li B, Zhu L. Cellulose supported TiO 2/Cu 2O for highly asymmetric conjugate addition of α,β-unsaturated compounds in aqueous phase. Int J Biol Macromol 2024; 268:131205. [PMID: 38643922 DOI: 10.1016/j.ijbiomac.2024.131205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/01/2024] [Accepted: 03/26/2024] [Indexed: 04/23/2024]
Abstract
A series of new kind green cellulose-supported bimetallic TiO2/Cu2O (Cell@TiO2/Cu2O) catalytic materials were obtained by in-situ reduction method employing cellulose as the carrier. The effects of metal percentage composition on the morphology and construction of the catalytic materials were systematically investigated. The Cell@TiO2/Cu2O were characterized by FT-IR, TG, XPS, SEM, TEM, EDS, and the element content was obtained by elemental analysis. Then, the achieved catalytic materials were applied to the chiral borylation reaction of α,β-unsaturated compounds, including nitrile compounds, esters, and α,β-unsaturated ketones. Remarkably, this approach provides an efficient strategy to gain an important class of chiral organic boron compounds with target chiral products in high yields as well as enantioselectivities. Besides, the Cell@TiO2/Cu2O could be easily recycled and effectively reused. This work constructed bimetallic TiO2/Cu2O on cellulose as a newly catalyst to obtain chiral boron compounds in aqueous phase.
Collapse
Affiliation(s)
- Yaoyao Zhang
- School of Chemistry and Materials Science, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan 432000, China; School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Haifeng Guo
- School of Chemistry and Materials Science, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan 432000, China; School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Chengpeng Fu
- School of Chemistry and Materials Science, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan 432000, China; School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Weishuang Li
- School of Chemistry and Materials Science, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan 432000, China
| | - Bojie Li
- School of Chemistry and Materials Science, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan 432000, China
| | - Lei Zhu
- School of Chemistry and Materials Science, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan 432000, China; Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
3
|
Zhou S, Peng H, Zhao A, Zhang R, Li T, Yang X, Lin D. Synthesis of bacterial cellulose nanofibers/Ag nanoparticles: Structure, characterization and antibacterial activity. Int J Biol Macromol 2024; 259:129392. [PMID: 38218289 DOI: 10.1016/j.ijbiomac.2024.129392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/26/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
The aim of this study was to compare the characterization of bacterial cellulose nanofibers/Ag nanoparticles (BCNs/Ag nanoparticles) obtained by three different pretreatment methods of BCNs (no pretreatment, sodium hydroxide activation pretreatment and TEMPO-mediated oxidation pretreatment), which were recoded as N-BCNs/Ag nanoparticles, A-BCNs/Ag nanoparticles and O-BCNs/Ag nanoparticles, respectively. The results of scanning electron microscopy and transmission electron microscopy showed the prepared Ag nanoparticles by three different pretreatment methods were spherical and dispersed on the surface of BCNs, while the Ag nanoparticles in O-BCNs/Ag nanoparticles displayed the smallest diameter with a value of 20.25 nm and showed the most uniform dispersion on the surface of BCNs. The ICP-MS result showed O-BCNs/Ag nanoparticles had the highest content of Ag nanoparticles with a value of 2.98 wt%, followed by A-BCNs/Ag nanoparticles (1.53 wt%) and N-BCNs/Ag nanoparticles (0.84 wt%). The cytotoxicity assessment showed that the prepared BCNs/Ag nanoparticles were relatively safe. Furthermore, the O-BCNs/Ag nanoparticles had the best antioxidant and antibacterial activities as compared with the other two types of BCNs/Ag nanoparticles, where O-BCNs/Ag nanoparticles destroyed the structure of bacterial cell membranes to lead the leakage of intracellular components. This study showed that O-BCNs/Ag nanoparticles as antibacterial agents have great potential in food packaging.
Collapse
Affiliation(s)
- Siyu Zhou
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, and Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Haonan Peng
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Aiqing Zhao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, and Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Runguan Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, and Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Ting Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, and Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, and Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Dehui Lin
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, and Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
4
|
Beltrán Pineda ME, Lizarazo Forero LM, Sierra CA. Antibacterial fibers impregnated with mycosynthetized AgNPs for control of Pectobacterium carotovorum. Heliyon 2024; 10:e23108. [PMID: 38169729 PMCID: PMC10758722 DOI: 10.1016/j.heliyon.2023.e23108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
Using biopolymers functionalized with antibacterial agents to manufacture active packaging is a clean alternative to mitigate food losses due to postharvest plant diseases. In this study, two mycosynthetized AgNPs impregnation methodologies on cotton (cationization and in situ biochemical reduction) were used to obtain the antibacterial fibers (A-AgNPs-C and A-AgNPs-IBR), which, in addition to being characterized by SEM-EDX, XRD, were evaluated as antibacterial materials. The cotton fibers showed growth inhibition of Pectobacterium carotovorum at 48 h. The reuse tests of these cotton fibers showed that the two types of fibers could have up to three successive uses without losing their effectiveness, regardless of the impregnation method used. Is important to highlight that the retention tests indicated that the AgNPs remain attached to the A-AgNPs-C and A-AgNPs-IBR fibers after several successive washes. Finally, the mycosynthesized AgNPs were also impregnated on fique fibers (Fique-AgNPs) by cationization to obtain little antibacterial sacks. Nanostructured materials that in in vivo tests on potatoes showed only 7.8 % of affectation, while the tubers stored in the traditional sacks had an affectation of 25 %. This immobilization of AgNPs in natural fibers will allow the development of a nanobiotechnological application in the storage and transport of potatoes, after performing some additional cytotoxicity tests to guarantee its safety.
Collapse
Affiliation(s)
- Mayra Eleonora Beltrán Pineda
- Grupo de investigación en Macromoléculas UN- Grupo de investigación Biología ambiental UPTC- Grupo de investigación Gestión ambiental Universidad de Boyacá - Tunja, Colombia
| | - Luz Marina Lizarazo Forero
- Universidad Pedagógica y Tecnológica de Colombia- Grupo de investigación Biología ambiental, Tunja, Colombia
| | - Cesar A. Sierra
- Universidad Nacional de Colombia, Grupo de investigación en Macromoléculas, Bogotá, Colombia
| |
Collapse
|
5
|
Zhang FW, Trackey PD, Verma V, Mandes GT, Calabro RL, Presot AW, Tsay CK, Lawton TJ, Zammit AS, Tang EM, Nguyen AQ, Munz KV, Nagelli EA, Bartolucci SF, Maurer JA, Burpo FJ. Cellulose Nanofiber-Alginate Biotemplated Cobalt Composite Multifunctional Aerogels for Energy Storage Electrodes. Gels 2023; 9:893. [PMID: 37998983 PMCID: PMC10671317 DOI: 10.3390/gels9110893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Tunable porous composite materials to control metal and metal oxide functionalization, conductivity, pore structure, electrolyte mass transport, mechanical strength, specific surface area, and magneto-responsiveness are critical for a broad range of energy storage, catalysis, and sensing applications. Biotemplated transition metal composite aerogels present a materials approach to address this need. To demonstrate a solution-based synthesis method to develop cobalt and cobalt oxide aerogels for high surface area multifunctional energy storage electrodes, carboxymethyl cellulose nanofibers (CNF) and alginate biopolymers were mixed to form hydrogels to serve as biotemplates for cobalt nanoparticle formation via the chemical reduction of cobalt salt solutions. The CNF-alginate mixture forms a physically entangled, interpenetrating hydrogel, combining the properties of both biopolymers for monolith shape and pore size control and abundant carboxyl groups that bind metal ions to facilitate biotemplating. The CNF-alginate hydrogels were equilibrated in CaCl2 and CoCl2 salt solutions for hydrogel ionic crosslinking and the prepositioning of transition metal ions, respectively. The salt equilibrated hydrogels were chemically reduced with NaBH4, rinsed, solvent exchanged in ethanol, and supercritically dried with CO2 to form aerogels with a specific surface area of 228 m2/g. The resulting aerogels were pyrolyzed in N2 gas and thermally annealed in air to form Co and Co3O4 porous composite electrodes, respectively. The multifunctional composite aerogel's mechanical, magnetic, and electrochemical functionality was characterized. The coercivity and specific magnetic saturation of the pyrolyzed aerogels were 312 Oe and 114 emu/gCo, respectively. The elastic moduli of the supercritically dried, pyrolyzed, and thermally oxidized aerogels were 0.58, 1.1, and 14.3 MPa, respectively. The electrochemical testing of the pyrolyzed and thermally oxidized aerogels in 1 M KOH resulted in specific capacitances of 650 F/g and 349 F/g, respectively. The rapidly synthesized, low-cost, hydrogel-based synthesis for tunable transition metal multifunctional composite aerogels is envisioned for a wide range of porous metal electrodes to address energy storage, catalysis, and sensing applications.
Collapse
Affiliation(s)
- Felita W. Zhang
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
| | - Paul D. Trackey
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
| | - Vani Verma
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
| | - Galen T. Mandes
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
| | - Rosemary L. Calabro
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
- U.S. Army Combat Capabilities Development Command-Armaments Center, Watervliet Arsenal, NY 12189, USA; (S.F.B.); (J.A.M.)
| | - Anthony W. Presot
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
| | - Claire K. Tsay
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
| | - Timothy J. Lawton
- U.S. Army Combat Capabilities Development Command-Soldier Center, Natick, MA 01760, USA;
| | - Alexa S. Zammit
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
| | - Edward M. Tang
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
| | - Andrew Q. Nguyen
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
| | - Kennedy V. Munz
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
| | - Enoch A. Nagelli
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
- Photonics Research Center, United States Military Academy, West Point, NY 10996, USA
| | - Stephen F. Bartolucci
- U.S. Army Combat Capabilities Development Command-Armaments Center, Watervliet Arsenal, NY 12189, USA; (S.F.B.); (J.A.M.)
| | - Joshua A. Maurer
- U.S. Army Combat Capabilities Development Command-Armaments Center, Watervliet Arsenal, NY 12189, USA; (S.F.B.); (J.A.M.)
| | - F. John Burpo
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
- Photonics Research Center, United States Military Academy, West Point, NY 10996, USA
| |
Collapse
|
6
|
Jiang M, Althomali RH, Ansari SA, Saleh EAM, Gupta J, Kambarov KD, Alsaab HO, Alwaily ER, Hussien BM, Mustafa YF, Narmani A, Farhood B. Advances in preparation, biomedical, and pharmaceutical applications of chitosan-based gold, silver, and magnetic nanoparticles: A review. Int J Biol Macromol 2023; 251:126390. [PMID: 37595701 DOI: 10.1016/j.ijbiomac.2023.126390] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/11/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
During the last decades, the ever-increasing incidence of various diseases, like cancer, has led to a high rate of death worldwide. On the other hand, conventional modalities (such as chemotherapy and radiotherapy) have not indicated enough efficiency in the diagnosis and treatment of diseases. Thus, potential novel approaches should be taken into consideration to pave the way for the suppression of diseases. Among novel approaches, biomaterials, like chitosan nanoparticles (CS NPs, N-acetyl-glucosamine and D-glucosamine), have been approved by the FDA for some efficient pharmaceutical applications. These NPs owing to their physicochemical properties, modification with different molecules, biocompatibility, serum stability, less immune response, suitable pharmacokinetics and pharmacodynamics, etc. have received deep attention among researchers and clinicians. More importantly, the impact of CS polysaccharide in the synthesis, preparation, and delivery of metallic NPs (like gold, silver, and magnetic NPs), and combination of CS with these metallic NPs can further facilitate the diagnosis and treatment of diseases. Metallic NPs possess some features, like converting NIR photon energy into thermal energy and anti-microorganism capability, and can be a potential candidate for the diagnosis and treatment of diseases in combination with CS NPs. These combined NPs would be efficient pharmaceuticals in the future.
Collapse
Affiliation(s)
- Mingyang Jiang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China, 530021
| | - Raed H Althomali
- Department of Chemistry, Prince Sattam Bin Abdulaziz University, College of Arts and Science, Wadi Al-Dawasir 11991, Saudi Arabia
| | - Shakeel Ahmed Ansari
- Department of Biochemistry, General Medicine Practice Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Ebraheem Abdu Musad Saleh
- Department of Chemistry, Prince Sattam Bin Abdulaziz University, College of Arts and Science, Wadi Al-Dawasir 11991, Saudi Arabia
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, U. P., India
| | | | - Hashem O Alsaab
- Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| | - Enas R Alwaily
- Microbiology Research Group, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Beneen M Hussien
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Asghar Narmani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
7
|
Huang D, Wu M, Kuga S, Huang Y. Size-Controlled Silver Nanoparticles Supported by Pyrolytic Carbon from Microcrystalline Cellulose. Int J Mol Sci 2023; 24:14431. [PMID: 37833880 PMCID: PMC10572184 DOI: 10.3390/ijms241914431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/09/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
A facile method was developed for preparing size-controlled silver nanoparticles supported by pyrolytic carbon from microcrystalline cellulose (MCC). The pyrolysis of cellulose-AgNO3 mixture caused the oxidation of cellulose, resulting in carboxyl groups to which silver ions can bind firmly and act as nuclei for the deposition of silver nanoparticles. The structure and properties of the obtained nanocomposite were characterized by using a scanning electron microscope (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR) and X-ray diffraction (XRD). The results suggest that silver nanoparticles were integrated successfully and dispersed uniformly in the pyrolytic carbon matrix. The average particle size varied between 20 nm and 100 nm in correlation to the dose of silver nitrate and temperature of pyrolysis. The products showed high electric conductivity and strong antimicrobial activity against Escherichia coli (E. coli).
Collapse
Affiliation(s)
- Dayong Huang
- National Engineering Research Center of Engineering Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Xiong'an Institute of Innovation, Xiong'an 071899, China
- Center of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Wu
- National Engineering Research Center of Engineering Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Xiong'an Institute of Innovation, Xiong'an 071899, China
- Center of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shigenori Kuga
- National Engineering Research Center of Engineering Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yong Huang
- National Engineering Research Center of Engineering Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
8
|
Mikhailidi A, Volf I, Belosinschi D, Tofanica BM, Ungureanu E. Cellulose-Based Metallogels-Part 2: Physico-Chemical Properties and Biological Stability. Gels 2023; 9:633. [PMID: 37623088 PMCID: PMC10453698 DOI: 10.3390/gels9080633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
Metallogels represent a class of composite materials in which a metal can be a part of the gel network as a coordinated ion, act as a cross-linker, or be incorporated as metal nanoparticles in the gel matrix. Cellulose is a natural polymer that has a set of beneficial ecological, economic, and other properties that make it sustainable: wide availability, renewability of raw materials, low-cost, biocompatibility, and biodegradability. That is why metallogels based on cellulose hydrogels and additionally enriched with new properties delivered by metals offer exciting opportunities for advanced biomaterials. Cellulosic metallogels can be either transparent or opaque, which is determined by the nature of the raw materials for the hydrogel and the metal content in the metallogel. They also exhibit a variety of colors depending on the type of metal or its compounds. Due to the introduction of metals, the mechanical strength, thermal stability, and swelling ability of cellulosic materials are improved; however, in certain conditions, metal nanoparticles can deteriorate these characteristics. The embedding of metal into the hydrogel generally does not alter the supramolecular structure of the cellulose matrix, but the crystallinity index changes after decoration with metal particles. Metallogels containing silver (0), gold (0), and Zn(II) reveal antimicrobial and antiviral properties; in some cases, promotion of cell activity and proliferation are reported. The pore system of cellulose-based metallogels allows for a prolonged biocidal effect. Thus, the incorporation of metals into cellulose-based gels introduces unique properties and functionalities of this material.
Collapse
Affiliation(s)
- Aleksandra Mikhailidi
- Higher School of Printing and Media Technologies, St. Petersburg State University of Industrial Technologies and Design, 18 Bolshaya Morskaya Street, 191186 St. Petersburg, Russia;
| | - Irina Volf
- “Gheorghe Asachi” Technical University of Iasi, 73 Prof. Dr. Docent D. Mangeron Boulevard, 700050 Iasi, Romania
| | - Dan Belosinschi
- Département de Chimie-Biologie/Biologie Medicale, Université du Québec à Trois-Rivières, Trois-Rivieres, QC G8Z 4M3, Canada;
| | - Bogdan-Marian Tofanica
- “Gheorghe Asachi” Technical University of Iasi, 73 Prof. Dr. Docent D. Mangeron Boulevard, 700050 Iasi, Romania
- IF2000 Academic Foundation, 73 Prof. Dr. Docent D. Mangeron Boulevard, 700050 Iasi, Romania
| | - Elena Ungureanu
- “Ion Ionescu de la Brad” University of Life Sciences Iasi, 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania;
| |
Collapse
|
9
|
Tahir I, Alkheraije KA. A review of important heavy metals toxicity with special emphasis on nephrotoxicity and its management in cattle. Front Vet Sci 2023; 10:1149720. [PMID: 37065256 PMCID: PMC10090567 DOI: 10.3389/fvets.2023.1149720] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 02/21/2023] [Indexed: 03/30/2023] Open
Abstract
Toxicity with heavy metals has proven to be a significant hazard with several health problems linked to it. Heavy metals bioaccumulate in living organisms, pollute the food chain, and possibly threaten the health of animals. Many industries, fertilizers, traffic, automobile, paint, groundwater, and animal feed are sources of contamination of heavy metals. Few metals, such as aluminum (Al), may be eliminated by the elimination processes, but other metals like lead (Pb), arsenic (As), and cadmium (Ca) accumulate in the body and food chain, leading to chronic toxicity in animals. Even if these metals have no biological purpose, their toxic effects are still present in some form that is damaging to the animal body and its appropriate functioning. Cadmium (Cd) and Pb have negative impacts on a number of physiological and biochemical processes when exposed to sub-lethal doses. The nephrotoxic effects of Pb, As, and Cd are well known, and high amounts of naturally occurring environmental metals as well as occupational populations with high exposures have an adverse relationship between kidney damage and toxic metal exposure. Metal toxicity is determined by the absorbed dosage, the route of exposure, and the duration of exposure, whether acute or chronic. This can lead to numerous disorders and can also result in excessive damage due to oxidative stress generated by free radical production. Heavy metals concentration can be decreased through various procedures including bioremediation, pyrolysis, phytoremediation, rhizofiltration, biochar, and thermal process. This review discusses few heavy metals, their toxicity mechanisms, and their health impacts on cattle with special emphasis on the kidneys.
Collapse
Affiliation(s)
- Ifrah Tahir
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Khalid Ali Alkheraije
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
10
|
Zhang H, Hu Q, Si T, Tang X, Shan S, Gao X, Peng L, Chen K. All-cellulose air filter composed with regenerated nanocellulose prepared through a facile method with shear-induced. Int J Biol Macromol 2023; 228:548-558. [PMID: 36423811 DOI: 10.1016/j.ijbiomac.2022.11.095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 11/23/2022]
Abstract
High-speed shear system is usually used for the dispersion improvement of slurry, nanomaterials preparation, and even two-dimensional materials production. However, there is barely study that focused on the regenerated cellulose (RC) which was coagulated with shear induced. In this work, a new type of all-cellulose air filter was fabricated through high-speed shear in aqueous regeneration system using parenchyma cellulose from corn stalk. The obtained RC were aggregated by ribbon-like fine cellulose and nanocellulose sheets. The study exhibited the micro-structure of RC displayed excellent unidirectional alignment and a relatively high crystallinity. All-cellulose air filter which was produced via RC presented excellent filtration efficiency (PM2.5 97.3 %, PM10.0 97.7 %) with slightly pressure drop (19 Pa). Therefore, this work provides a facile method to obtain a novel RC with nanocellulose particles used for air filtration, which gives an effective strategy application in the conversion of all-cellulose materials from agricultural waste.
Collapse
Affiliation(s)
- Heng Zhang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Qiuyue Hu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Tian Si
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Xiaoning Tang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Shaoyun Shan
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Xin Gao
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, Zhejiang, China.
| | - Lincai Peng
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China.
| | - Keli Chen
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| |
Collapse
|
11
|
Manna S, Roy S, Dolai A, Ravula AR, Perumal V, Das A. Current and future prospects of “all-organic” nanoinsecticides for agricultural insect pest management. FRONTIERS IN NANOTECHNOLOGY 2023. [DOI: 10.3389/fnano.2022.1082128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Graphical Abstract
Collapse
|
12
|
Duceac IA, Stanciu MC, Nechifor M, Tanasă F, Teacă CA. Insights on Some Polysaccharide Gel Type Materials and Their Structural Peculiarities. Gels 2022; 8:771. [PMID: 36547295 PMCID: PMC9778405 DOI: 10.3390/gels8120771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Global resources have to be used in responsible ways to ensure the world's future need for advanced materials. Ecologically friendly functional materials based on biopolymers can be successfully obtained from renewable resources, and the most prominent example is cellulose, the well-known most abundant polysaccharide which is usually isolated from highly available biomass (wood and wooden waste, annual plants, cotton, etc.). Many other polysaccharides originating from various natural resources (plants, insects, algae, bacteria) proved to be valuable and versatile starting biopolymers for a wide array of materials with tunable properties, able to respond to different societal demands. Polysaccharides properties vary depending on various factors (origin, harvesting, storage and transportation, strategy of further modification), but they can be processed into materials with high added value, as in the case of gels. Modern approaches have been employed to prepare (e.g., the use of ionic liquids as "green solvents") and characterize (NMR and FTIR spectroscopy, X ray diffraction spectrometry, DSC, electronic and atomic force microscopy, optical rotation, circular dichroism, rheological investigations, computer modelling and optimization) polysaccharide gels. In the present paper, some of the most widely used polysaccharide gels will be briefly reviewed with emphasis on their structural peculiarities under various conditions.
Collapse
Affiliation(s)
- Ioana Alexandra Duceac
- Polyaddition and Photochemistry Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Magdalena-Cristina Stanciu
- Natural Polymers, Bioactive and Biocompatible Materials Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Marioara Nechifor
- Polyaddition and Photochemistry Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Fulga Tanasă
- Polyaddition and Photochemistry Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Carmen-Alice Teacă
- Center for Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
13
|
Synthesis and Application of Innovative and Environmentally Friendly Photocatalysts: A Review. Catalysts 2022. [DOI: 10.3390/catal12101074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Modern society faces two major challenges: removing pollutants from water and producing energy from renewable sources. To do this, science proposes innovative, low-cost, and environmentally friendly methods. The heterogeneous photocatalysis process fits perfectly in this scenario. In fact, with photocatalysis, it is possible both to mineralize contaminants that are not easily biodegradable and to produce hydrogen from the water splitting reaction or from the conversion of organic substances present in water. However, the main challenge in the field of heterogeneous photocatalysis is to produce low-cost and efficient photocatalysts active under visible light or sunlight. The objective of this review is to compare the new proposals for the synthesis of innovative photocatalysts that reflect the requirements of green chemistry, applied both in the removal of organic contaminants and in hydrogen production. From this comparison, we want to bring out the strengths and weaknesses of the proposals in the literature, but above all, new ideas to improve the efficiency of heterogeneous photocatalysis guaranteeing the principles of environmental and economic sustainability.
Collapse
|
14
|
Li S, Chen H, Liu X, Li P, Wu W. Nanocellulose as a promising substrate for advanced sensors and their applications. Int J Biol Macromol 2022; 218:473-487. [PMID: 35870627 DOI: 10.1016/j.ijbiomac.2022.07.124] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 01/14/2023]
Abstract
Nanocellulose has broad and promising applications owing to its low density, large specific surface area, high mechanical strength, modifiability, renewability. Recently, nanocellulose has been widely used to fabricate flexible, durable and environmental-friendly sensor substrates. In this contribution, the construction and characteristics of nanocellulose-based sensors are comprehensively reviewed. Various nanocellulose-based sensors are summarized and divided into colorimetric, fluorescent, electronic, electrochemical and SERS types according to the sensing mechanism. This review also introduces the applications of nanocellulose-based sensors in the fields of biomedicine, environmental monitoring, food safety, and wearable devices.
Collapse
Affiliation(s)
- Sijie Li
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Haibo Chen
- School of Electronic and Information Engineering, Soochow University, Suzhou 215000, Jiangsu, China
| | - Xingyue Liu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Peng Li
- School of Electronic and Information Engineering, Soochow University, Suzhou 215000, Jiangsu, China.
| | - Weibing Wu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
15
|
Basit F, Asghar S, Ahmed T, Ijaz U, Noman M, Hu J, Liang X, Guan Y. Facile synthesis of nanomaterials as nanofertilizers: a novel way for sustainable crop production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:51281-51297. [PMID: 35614352 DOI: 10.1007/s11356-022-20950-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/16/2022] [Indexed: 05/27/2023]
Abstract
Nutrient fertilization plays a major role in improving crop productivity and maintaining soil fertility. In the last few decades, the productivity of current agricultural practices highly depends on the use of chemical fertilizers. Major drawback of traditional fertilizers is their low crop nutrient use efficiency and high loss into water. Nanomaterial in agriculture is a multipurpose tool for increasing growth, development, and yield of plants. Nanotechnology facilitates the amplifying of agriculture production by reducing relevant losses and improving the input efficiency. Nanotechnology has emerged as an attractive field of research and has various agriculture applications, especially the use of nano-agrochemicals to increase nutrient use efficiency and agricultural yield. Nanofertilizers are more effective as compared to chemical fertilizers due to their cost-efficient, eco-friendly, non-toxic, and more stable in nature. Overall, this chapter focuses on synthesis of nanofertilizers through physical, chemical, and biological methods. This chapter will also explore the use of nano-enabled fertilizers to enhance the nutrient use efficiency for sustainable crop production, and global food safety.
Collapse
Affiliation(s)
- Farwa Basit
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
- Hainan Research Institute, Zhejiang University, Sanya, 572025, People's Republic of China
| | - Sana Asghar
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Temoor Ahmed
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Usman Ijaz
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Muhammad Noman
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Jin Hu
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
- Hainan Research Institute, Zhejiang University, Sanya, 572025, People's Republic of China
| | - Xinqiang Liang
- Key Laboratory of Watershed Non-Point Source Pollution Control and Water Eco-Security of Ministry of Water Resources, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Yajing Guan
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, People's Republic of China.
- Hainan Research Institute, Zhejiang University, Sanya, 572025, People's Republic of China.
| |
Collapse
|
16
|
Mittal S, Chakole CM, Sharma A, Pandey J, Chauhan MK. An Overview of Green Synthesis and Potential Pharmaceutical Applications of Nanoparticles as Targeted Drug Delivery System in Biomedicines. Drug Res (Stuttg) 2022; 72:274-283. [PMID: 35562101 DOI: 10.1055/a-1801-6793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Nanotechnology-based nanomedicine offers several benefits over conventional forms of therapeutic agents. Moreover, nanomedicine has become a potential candidate for targeting therapeutic agents at specific sites. However, nanomedicine prepared by synthetic methods may produce unwanted toxic effects. Due to their nanosize range, nanoparticles can easily reach the reticuloendothelial system and may produce unwanted systemic effects. The nanoparticles produced by the green chemistry approach would enhance the safety profile by avoiding synthetic agents and solvents in its preparations. This review encompasses toxicity consideration of nanoparticles, green synthesis techniques of nanoparticle preparation, biomedical application of nanoparticles, and future prospects.
Collapse
Affiliation(s)
- Shweta Mittal
- NDDS Research Laboratory, Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, DPSR-University, New Delhi, INDIA
| | - Chandrashekhar Mahadeo Chakole
- NDDS Research Laboratory, Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, DPSR-University, New Delhi, INDIA
| | - Aman Sharma
- NDDS Research Laboratory, Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, DPSR-University, New Delhi, INDIA
| | - Jaya Pandey
- Amity School school of Applied Sciences Lucknow, Amity University, Uttar Pradesh, India
| | - Meenakshi Kanwar Chauhan
- NDDS Research Laboratory, Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, DPSR-University, New Delhi, INDIA
| |
Collapse
|
17
|
Optically active plasmonic cellulose fibers based on Au nanorods for SERS applications. Carbohydr Polym 2022; 279:119010. [PMID: 34980354 DOI: 10.1016/j.carbpol.2021.119010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 11/20/2022]
Abstract
Cellulose might be a promising material for surface-enhanced Raman scattering (SERS) substrates due to its wide availability, low cost, ease of fabrication, high flexibility and low optical activity. This work shows, for the first time development of the cellulose-based substrate, that owes its SERS activity to the presence of gold nanorods in its internal structure, and not only on the surface, as it is shown elsewhere, thus ensuring superior stability of the obtained material. This flexible cellulose-based substrate exhibiting plasmonic activity, provide easy and reproducible detection of different analytes via SERS technique. The substrate was prepared by introduction of gold nanorods into the cellulose fibers matrix using an eco-friendly process based on N-Methylmorpholine-N-Oxide. Au-modified cellulose fibers were used for the detection of p-Mercaptobenzoic acid and Bovine Serum Albumin by the SERS method. The obtained results show that this substrate offers large signal enhancement of 6-orders of magnitude, and high signal reproducibility with a relative standard deviation of 8.3%. Additionally, washing tests (90 °C, 20 h) showed superior stability of the as prepared plasmonic fibers, thus proving the good reusability of the substrates and the long shelf life.
Collapse
|
18
|
|
19
|
Song H, Hu N, Gao Z, Zhang B, Hu J, Qiu Z, Zheng G, Chang C, Meng Y. Construction of gold nanoparticles by tubular polysaccharide from
black fungus
and their apoptosis‐inducing activities in
HepG2
cells. J Appl Polym Sci 2021. [DOI: 10.1002/app.51537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Haoying Song
- College of Pharmacy Hubei University of Chinese Medicine Wuhan China
| | - Na Hu
- College of Pharmacy Hubei University of Chinese Medicine Wuhan China
| | - Ziwei Gao
- College of Pharmacy Hubei University of Chinese Medicine Wuhan China
| | - Baohui Zhang
- College of Pharmacy Hubei University of Chinese Medicine Wuhan China
| | - Junjie Hu
- College of Pharmacy Hubei University of Chinese Medicine Wuhan China
| | - Zhenpeng Qiu
- College of Pharmacy Hubei University of Chinese Medicine Wuhan China
| | - Guohua Zheng
- Key Laboratory of Chinese Medicine Resource and Compound Prescription Hubei University of Chinese Medicine Wuhan China
| | - Cong Chang
- College of Pharmacy Hubei University of Chinese Medicine Wuhan China
| | - Yan Meng
- College of Pharmacy Hubei University of Chinese Medicine Wuhan China
| |
Collapse
|
20
|
Salama A, Abouzeid RE, Owda ME, Cruz-Maya I, Guarino V. Cellulose-Silver Composites Materials: Preparation and Applications. Biomolecules 2021; 11:1684. [PMID: 34827681 PMCID: PMC8615592 DOI: 10.3390/biom11111684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/04/2021] [Accepted: 11/07/2021] [Indexed: 01/05/2023] Open
Abstract
Cellulose has received great attention owing to its distinctive structural features, exciting physico-chemical properties, and varied applications. The combination of cellulose and silver nanoparticles currently allows to fabricate different promising functional nanocomposites with unique properties. The current work offers a wide and accurate overview of the preparation methods of cellulose-silver nanocomposite materials, also providing a punctual discussion of their potential applications in different fields (i.e., wound dressing, high-performance textiles, electronics, catalysis, sensing, antimicrobial filtering, and packaging). In particular, different preparation methods of cellulose/silver nanocomposites based on in situ thermal reduction, blending and dip-coating, or additive manufacturing techniques were thoroughly described. Hence, the correlations among the structure and physico-chemical properties in cellulose/silver nanocomposites were investigated in order to better control the final properties of the nanocomposites and analyze the key points and limitations of the current manufacturing approaches.
Collapse
Affiliation(s)
- Ahmed Salama
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt;
| | - Ragab E. Abouzeid
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt;
| | - Medhat E. Owda
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt;
| | - Iriczalli Cruz-Maya
- Institute of Polymers, Composite and Biomaterials, National Research Council of Italy, Mostra D’Oltremare, Pad 20, V. J.F. Kennedy 54, 80125 Naples, Italy;
| | - Vincenzo Guarino
- Institute of Polymers, Composite and Biomaterials, National Research Council of Italy, Mostra D’Oltremare, Pad 20, V. J.F. Kennedy 54, 80125 Naples, Italy;
| |
Collapse
|
21
|
Benign Production of AgNPs/Bacterial Nanocellulose for Wound Healing Dress: Antioxidant, Cytotoxicity and In Vitro Studies. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02190-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
22
|
Solar radiation-induced synthesis of bacterial cellulose/silver nanoparticles (BC/AgNPs) composite using BC as reducing and capping agent. Bioprocess Biosyst Eng 2021; 45:257-268. [PMID: 34665338 DOI: 10.1007/s00449-021-02655-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/07/2021] [Indexed: 01/12/2023]
Abstract
In the present work, a simple, novel, and ecofriendly method for synthesis of silver nanoparticles (AgNPs) and BC/AgNP composite using bacterial cellulose (BC) nanofibers soaked in AgNO3 solution under induction action of solar radiation. The photochemical reduction of silver Ag + ions into silver nanoparticles (Ago) was confirmed using UV visible spectra; the surface plasmon resonance of synthesized AgNPs was localized around 425 nm. The mean diameter of AgNPs obtained by DLS analysis was 52.0 nm with a zeta potential value of - 9.98 mV. TEM images showed a spherical shape of AgNPs. The formation of BC/AgNP composite was confirmed by FESEM, EDX, FTIR, and XRD analysis. FESEM images for BC showed the 3D structures of BC nanofibers and the deposited AgNPs in the BC crystalline nanofibers. XRD measurements revealed the high crystallinity of BC and BC/AgNP composite with crystal sizes of 5.13 and 5.6 nm, respectively. BC/AgNP composite and AgNPs exhibited strong antibacterial activity against both Gram-positive and Gram-negative bacteria. The present work introduces a facile green approach for BC/AgNP composite synthesis and its utility as potential food packaging and wound dressings, as well as sunlight indicator application.
Collapse
|
23
|
Preparation of cellulose microparticles having hierarchical internal structures from multiple emulsion templates. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Ballan M, Vettorato E, Morselli L, Tosato M, Nardella S, Borgna F, Corradetti S, Monetti A, Lunardon M, Zenoni A, Di Marco V, Realdon N, Andrighetto A. Development of implantation substrates for the collection of radionuclides of medical interest produced via ISOL technique at INFN-LNL. Appl Radiat Isot 2021; 175:109795. [PMID: 34087532 DOI: 10.1016/j.apradiso.2021.109795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 11/19/2022]
Abstract
Accelerator-based techniques with electromagnetic mass separation are considered among the most innovative and promising strategies to produce non-conventional radionuclides for nuclear medicine. Such approach was successfully used at CERN, where the dedicated MEDICIS facility was built, and at TRIUMF, where the ISAC radioactive beam facility was used to produce unconventional α-emitters. In such framework, the Legnaro National Laboratories of the Italian Institute of Nuclear Physics (INFN-LNL) proposed the ISOLPHARM project (ISOL technique for radioPHARMaceuticals), which will exploit radionuclides producible with the SPES (Selective Production of Exotic Species) ISOL (Isotope Separation On-Line) facility to develop novel radiopharmaceuticals. The ISOL technique utilizes the irradiation with a primary beam of particles/nuclei of a production target where radionuclides are produced. A radioactive ion beam is subsequently extracted from the production target unit, and transported up to an analyzing magnet, where non-isobaric contaminants are filtered out. The so-obtained purified radioactive beam is dumped onto an implantation substrate, referred as collection target. Then, the desired nuclides can be chemically harvested from the collected isobars, and the isotopically pure atom collection can be employed to radiolabel high specific activity radiopharmaceuticals. Metallic deposition targets in the form of coated metal foils were mostly used at TRIUMF and CERN. At ISOLPHARM, a different approach is under investigation which foresees the use of soluble cold-pressed collection targets, possibly facilitating the chemical purification process of the collected radionuclides. In this study, the production and characterization of some of the ISOLPHARM collection targets is presented, in particular, soluble salts (NaCl and NaNO3) and organic materials widely used for pharmaceutical tablets production are considered. All such materials proved to be potentially suitable as collection targets, since solid samples were easily produced and resulted compatible with the vacuum conditions required for the ion implantation process. Furthermore, some of the selected substrates were used for proof-of-concept deposition tests with stable silver, to prove their suitability as ISOLPHARM deposition substrates for silver-111, a promising candidate for radiotherapy. Such tests highlighted possible scenarios useful for the development of new alternative materials, as the use of insoluble organic targets.
Collapse
Affiliation(s)
- M Ballan
- Legnaro National Laboratories, National Institute of Nuclear Physics, 35020, Legnaro, Italy.
| | - E Vettorato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131, Padua, Italy
| | - L Morselli
- Legnaro National Laboratories, National Institute of Nuclear Physics, 35020, Legnaro, Italy; Department of Physics and Earth Science, University of Ferrara, 44122, Ferrara, Italy
| | - M Tosato
- Department of Chemical Sciences, University of Padua, 35131, Padua, Italy
| | - S Nardella
- Department of Chemical Sciences, University of Padua, 35131, Padua, Italy
| | - F Borgna
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131, Padua, Italy
| | - S Corradetti
- Legnaro National Laboratories, National Institute of Nuclear Physics, 35020, Legnaro, Italy
| | - A Monetti
- Legnaro National Laboratories, National Institute of Nuclear Physics, 35020, Legnaro, Italy
| | - M Lunardon
- Department of Physics and Astronomy, University of Padua, 35131, Padua, Italy; Padova Division, National Institute of Nuclear Physics, 35131, Padua, Italy
| | - A Zenoni
- Department of Mechanical and Industrial Engineering, University of Brescia, 25123, Brescia, Italy
| | - V Di Marco
- Department of Chemical Sciences, University of Padua, 35131, Padua, Italy
| | - N Realdon
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131, Padua, Italy
| | - A Andrighetto
- Legnaro National Laboratories, National Institute of Nuclear Physics, 35020, Legnaro, Italy
| |
Collapse
|
25
|
Höglund M, Garemark J, Nero M, Willhammar T, Popov S, Berglund LA. Facile Processing of Transparent Wood Nanocomposites with Structural Color from Plasmonic Nanoparticles. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2021; 33:3736-3745. [PMID: 34054216 PMCID: PMC8158850 DOI: 10.1021/acs.chemmater.1c00806] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/20/2021] [Indexed: 05/29/2023]
Abstract
Wood is an eco-friendly and abundant substrate and a candidate for functionalization by large-scale nanotechnologies. Infiltration of nanoparticles into wood, however, is hampered by the hierarchically structured and interconnected fibers in wood. In this work, delignified wood is impregnated with gold and silver salts, which are reduced in situ to plasmonic nanoparticles via microwave-assisted synthesis. Transparent biocomposites are produced from nanoparticle-containing wood in the form of load-bearing materials with structural color. The coloration stems from nanoparticle surface plasmons, which require low size dispersity and particle separation. Delignified wood functions as a green reducing agent and a reinforcing scaffold to which the nanoparticles attach, predesigning their distribution on the surface of fibrous "tubes". The nanoscale structure is investigated using scanning transmission electron microscopy (STEM), energy-dispersive spectroscopy (EDS), and Raman microscopy to determine particle size, particle distribution, and structure-property relationships. Optical properties, including response to polarized light, are of particular interest.
Collapse
Affiliation(s)
- Martin Höglund
- Department
of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Jonas Garemark
- Department
of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Mathias Nero
- Department
of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Tom Willhammar
- Department
of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Sergei Popov
- Department
of Applied Physics, KTH Royal Institute
of Technology, 114 19 Stockholm, Sweden
| | - Lars A. Berglund
- Department
of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| |
Collapse
|
26
|
Omura T, Fujii Y, Suzuki T, Minami H. In situ preparation of inorganic nanoparticles in amino‐functionalized porous cellulose particles. J Appl Polym Sci 2021. [DOI: 10.1002/app.50397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Taro Omura
- Department of Chemical Science and Engineering, Graduated School of Engineering Kobe University Kobe Japan
| | - Yuki Fujii
- Department of Chemical Science and Engineering, Graduated School of Engineering Kobe University Kobe Japan
| | - Toyoko Suzuki
- Department of Chemical Science and Engineering, Graduated School of Engineering Kobe University Kobe Japan
| | - Hideto Minami
- Department of Chemical Science and Engineering, Graduated School of Engineering Kobe University Kobe Japan
| |
Collapse
|
27
|
Abstract
Abstract
The presented chapter deals with structure, morphology, and properties aspects concerning cellulose-based polymers in both research and industrial production, such as cellulose fibers, cellulose membranes, cellulose nanocrystals, and bacterial cellulose, etc. The idea was to highlight the main cellulose-based polymers and cellulose derivatives, as well as the dissolution technologies in processing cellulose-based products. The structure and properties of cellulose are introduced briefly. The main attention has been paid to swelling and dissolution of cellulose in order to yield various kinds of cellulose derivatives through polymerization. The main mechanisms and methods are also presented. Finally, the environmental friendly and green cellulose-based polymers will be evaluated as one of the multifunctional and smart materials with significant progress.
Collapse
Affiliation(s)
- Xing Zhou
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology , Xi’an 710048 , P. R. China
- School of Materials Science and Engineering, Xi’an University of Technology , Xi’an 710048 , P. R. China
| | - Yaya Hao
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology , Xi’an 710048 , P. R. China
| | - Xin Zhang
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology , Xi’an 710048 , P. R. China
| | - Xinyu He
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology , Xi’an 710048 , P. R. China
| | - Chaoqun Zhang
- College of Materials and Energy, South China Agricultural University , Guangzhou 510642 , P. R. China
| |
Collapse
|
28
|
Zhu X, Zhang L, Zou G, Chen Q, Guo Y, Liang S, Hu L, North M, Xie H. Carboxylcellulose hydrogel confined-Fe 3O 4 nanoparticles catalyst for Fenton-like degradation of Rhodamine B. Int J Biol Macromol 2021; 180:792-803. [PMID: 33872611 DOI: 10.1016/j.ijbiomac.2021.04.067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 11/26/2022]
Abstract
Facile preparation of functional hydrogel materials for environmental catalysis is a hot research topic of soft materials science and green catalysis. In this study, a carboxylcellulose hydrogel confined Fe3O4 nanoparticles composite catalyst (Fe3O4@CHC) with magnetic recyclability has been synthesized by taking the advantages of the newly developed cellulose solution in tetramethyl guanidine/DMSO/CO2 through in situ acylation using mixed cyclic anhydrides and ion exchange reaction. The achieved Fe3O4@CHC hydrogel catalyst was shown to be an more efficient and better Fenton-like catalyst for decomposition of the organic dye rhodamine B (RhB) in the presence of hydrogen peroxide, with almost complete decomposition occurring within 180 min, in comparison with Fe3O4@cellulose hydrogel (CH) with excellent recyclability. This work provided a facile strategy for the preparation of hydrogel-based functional composite green catalytic materials, which has potential applications in green catalysis.
Collapse
Affiliation(s)
- Xianyi Zhu
- Department of Polymeric Materials & Engineering, College of Materials & Metallurgy, Guizhou University, Huaxi District, Guiyang 550025, PR China
| | - Lihua Zhang
- Department of Polymeric Materials & Engineering, College of Materials & Metallurgy, Guizhou University, Huaxi District, Guiyang 550025, PR China
| | - Guanglong Zou
- School of Chemical Engineering, Guizhou Minzu University, 550025, Guiyang, PR China
| | - Qin Chen
- Department of Polymeric Materials & Engineering, College of Materials & Metallurgy, Guizhou University, Huaxi District, Guiyang 550025, PR China
| | - Yuanlong Guo
- Department of Polymeric Materials & Engineering, College of Materials & Metallurgy, Guizhou University, Huaxi District, Guiyang 550025, PR China
| | - Songmiao Liang
- Separation Membrane Materials & Technologies Joint Research Centre of Vontron-Guizhou University, Vontron Technol Co Ltd, Guiyang 550018, Guizhou, PR China.
| | - Lijie Hu
- Separation Membrane Materials & Technologies Joint Research Centre of Vontron-Guizhou University, Vontron Technol Co Ltd, Guiyang 550018, Guizhou, PR China
| | - Michael North
- Green Chemistry Centre of Excellence, Department of Chemistry, The University of York, Heslington, York YO10 5DD, UK
| | - Haibo Xie
- Department of Polymeric Materials & Engineering, College of Materials & Metallurgy, Guizhou University, Huaxi District, Guiyang 550025, PR China; Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, PR China.
| |
Collapse
|
29
|
Goikuria U, Larrañaga A, Lizundia E, Vilas JL. Effect of metal‐oxide nanoparticle presence and alginate cross‐linking on cellulose nanocrystal‐based aerogels. J Appl Polym Sci 2021. [DOI: 10.1002/app.50639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Uribarri Goikuria
- Macromolecular Chemistry Research Group (LABQUIMAC), Department of Physical Chemistry, Faculty of Science and Technology University of the Basque Country (UPV/EHU) Leioa Spain
| | - Aitor Larrañaga
- SGIker, General Research Services University of the Basque Country (UPV/EHU) Leioa Spain
| | - Erlantz Lizundia
- Department of Graphic Design and Engineering Projects, Bilbao Faculty of Engineering University of the Basque Country (UPV/EHU) Bilbao Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures UPV/EHU Science Park Leioa Spain
| | - José Luis Vilas
- Macromolecular Chemistry Research Group (LABQUIMAC), Department of Physical Chemistry, Faculty of Science and Technology University of the Basque Country (UPV/EHU) Leioa Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures UPV/EHU Science Park Leioa Spain
| |
Collapse
|
30
|
Cheng Q, Li Q, Yuan Z, Li S, Xin JH, Ye D. Bifunctional Regenerated Cellulose/Polyaniline/Nanosilver Fibers as a Catalyst/Bactericide for Water Decontamination. ACS APPLIED MATERIALS & INTERFACES 2021; 13:4410-4418. [PMID: 33438389 DOI: 10.1021/acsami.0c20188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
For antagonizing urgent water pollution and increasing environmental consciousness, the integration of renewable resources and nanotechnologies has become a trend to improve water quality in the ecosystem. Here, we designed a green route to fabricate regenerated cellulose fibers (CFs) with 3D micro- and nanoporous structures in NaOH/urea aqueous solvent systems via a scalable wet-spinning procedure as support materials for nanoparticles (NPs). Modification of CFs with polyaniline@Ag nanocomposites through in situ reduction of the silver ion with aqueous aniline led to enhanced pollutant removal efficiency of functional cellulose-based fibers (FCFs), demonstrating both rapid hydrogenation catalytic performance for the reduction of p-nitrophenol and high antibacterial properties for in-flow water purification. Most importantly, the hierarchically porous structures of FCFs not only provided carrier space but also formed a limiting domain guaranteeing the homogeneity of FCFs even with a Ag NP content as high as 36.47 wt %. The prepared functional fibers show good behavior in in-flow water purification, representing significant advancement in the use of biomass fibers for catalytic and bactericidal applications in liquid media.
Collapse
Affiliation(s)
- Qiaoyun Cheng
- Institute of Bioengineering, Guangdong Academy of Science, Research Center for Sugarcane Industry Engineering Technology of Light Industry, Guangzhou 510316, China
| | - Qihua Li
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Zhanhong Yuan
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Shufen Li
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - John H Xin
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Dongdong Ye
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
31
|
Pereira ALS, Feitosa JPA, Morais JPS, Rosa MDF. Bacterial cellulose aerogels: Influence of oxidation and silanization on mechanical and absorption properties. Carbohydr Polym 2020; 250:116927. [DOI: 10.1016/j.carbpol.2020.116927] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/05/2020] [Accepted: 08/08/2020] [Indexed: 12/11/2022]
|
32
|
Zhang D, Ma XL, Gu Y, Huang H, Zhang GW. Green Synthesis of Metallic Nanoparticles and Their Potential Applications to Treat Cancer. Front Chem 2020; 8:799. [PMID: 33195027 PMCID: PMC7658653 DOI: 10.3389/fchem.2020.00799] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/30/2020] [Indexed: 01/14/2023] Open
Abstract
Nanoparticle synthesis using microorganisms and plants by green synthesis technology is biologically safe, cost-effective, and environment-friendly. Plants and microorganisms have established the power to devour and accumulate inorganic metal ions from their neighboring niche. The biological entities are known to synthesize nanoparticles both extra and intracellularly. The capability of a living system to utilize its intrinsic organic chemistry processes in remodeling inorganic metal ions into nanoparticles has opened up an undiscovered area of biochemical analysis. Nanotechnology in conjunction with biology gives rise to an advanced area of nanobiotechnology that involves living entities of both prokaryotic and eukaryotic origin, such as algae, cyanobacteria, actinomycetes, bacteria, viruses, yeasts, fungi, and plants. Every biological system varies in its capabilities to supply metallic nanoparticles. However, not all biological organisms can produce nanoparticles due to their enzymatic activities and intrinsic metabolic processes. Therefore, biological entities or their extracts are used for the green synthesis of metallic nanoparticles through bio-reduction of metallic particles leading to the synthesis of nanoparticles. These biosynthesized metallic nanoparticles have a range of unlimited pharmaceutical applications including delivery of drugs or genes, detection of pathogens or proteins, and tissue engineering. The effective delivery of drugs and tissue engineering through the use of nanotechnology exhibited vital contributions in translational research related to the pharmaceutical products and their applications. Collectively, this review covers the green synthesis of nanoparticles by using various biological systems as well as their applications.
Collapse
Affiliation(s)
| | | | | | | | - Guang-wei Zhang
- Department of Cardiology, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
33
|
Bundjaja V, Santoso SP, Angkawijaya AE, Yuliana M, Soetaredjo FE, Ismadji S, Ayucitra A, Gunarto C, Ju YH, Ho MH. Fabrication of cellulose carbamate hydrogel-dressing with rarasaponin surfactant for enhancing adsorption of silver nanoparticles and antibacterial activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111542. [PMID: 33255094 DOI: 10.1016/j.msec.2020.111542] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/07/2020] [Accepted: 09/19/2020] [Indexed: 02/05/2023]
Abstract
Bacterial contamination on external wounds is known to be a factor that prevents wound healing and triggers tissue damage. Hydrogel-dressings with antibacterial activity is a useful medical device to avoid this contamination, wherein the antibacterial activity can be provided via incorporation of silver nanoparticles (AgNPs). Contrary to the conventional two-step preparation of an AgNPs-loaded hydrogel (AgNPs@hydrogel), this work aims to establish a new and facile synthesis method employing the adsorption principle. Once AgNO3 adsorbed into active sites of the hydrogels, in situ reductions using NaBH4 was employed to produce AgNPs@hydrogel. The effect of surfactant addition on the AgNO3 loading and the antibacterial activity of the resulting hydrogel dressing was investigated. The outcome of this work indicates that the addition of rarasaponin not only can increase the loading of AgNPs on cellulose carbamate hydrogel (CCH) but also significantly enhance the antibacterial activity of the resulted hydrogel-dressing. Superior to the other studied surfactant, the loading capacity (LC) of AgNPs is found to be 10.15, 9.94, and 7.53 mg/g for CCH modified with rarasaponin, CTAB, and Tween80, respectively. These findings conclude that the addition of surfactant, especially rarasaponin, can effectively improve the loading of AgNPs onto hydrogel-dressing via adsorption and promote the antibacterial activity. Furthermore, the cytotoxic test shows that the hydrogel-dressings have good biocompatibility toward skin fibroblast cells.
Collapse
Affiliation(s)
- Vania Bundjaja
- Chemical Engineering Department, National Taiwan University of Science and Technology, #43, Sec. 4, Keelung Rd., Taipei 10607, Taiwan
| | - Shella Permatasari Santoso
- Chemical Engineering Department, National Taiwan University of Science and Technology, #43, Sec. 4, Keelung Rd., Taipei 10607, Taiwan; Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, #37 Kalijudan Rd., Surabaya 60114, East Java, Indonesia.
| | - Artik Elisa Angkawijaya
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, #43, Sec. 4, Keelung Rd., Taipei 10607, Taiwan.
| | - Maria Yuliana
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, #37 Kalijudan Rd., Surabaya 60114, East Java, Indonesia
| | - Felycia Edi Soetaredjo
- Chemical Engineering Department, National Taiwan University of Science and Technology, #43, Sec. 4, Keelung Rd., Taipei 10607, Taiwan; Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, #37 Kalijudan Rd., Surabaya 60114, East Java, Indonesia
| | - Suryadi Ismadji
- Chemical Engineering Department, National Taiwan University of Science and Technology, #43, Sec. 4, Keelung Rd., Taipei 10607, Taiwan; Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, #37 Kalijudan Rd., Surabaya 60114, East Java, Indonesia
| | - Aning Ayucitra
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, #37 Kalijudan Rd., Surabaya 60114, East Java, Indonesia
| | - Chintya Gunarto
- Chemical Engineering Department, National Taiwan University of Science and Technology, #43, Sec. 4, Keelung Rd., Taipei 10607, Taiwan
| | - Yi-Hsu Ju
- Chemical Engineering Department, National Taiwan University of Science and Technology, #43, Sec. 4, Keelung Rd., Taipei 10607, Taiwan; Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, #43, Sec. 4, Keelung Rd., Taipei 10607, Taiwan; Taiwan Building Technology Center, National Taiwan University of Science and Technology, #43, Sec. 4, Keelung Rd., Taipei 10607, Taiwan
| | - Ming-Hua Ho
- Chemical Engineering Department, National Taiwan University of Science and Technology, #43, Sec. 4, Keelung Rd., Taipei 10607, Taiwan
| |
Collapse
|
34
|
Aerogels from copper (II)-cellulose nanofibers and carbon nanotubes as absorbents for the elimination of toxic gases from air. J Colloid Interface Sci 2020; 582:950-960. [PMID: 32927175 DOI: 10.1016/j.jcis.2020.08.100] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 11/22/2022]
Abstract
A novel deodorizer that is capable of selectively eliminating the odorous chemicals, such as ammonia, trimethylamine, hydrogen sulfide and methyl mercaptan, is described. The deodorizer is a nanostructured aerogel by nature, consisting of 2,2-6,6-tetramethylpiperidine-1-oxyl (TEMPO) oxidized cellulose nanofibrils (CNF), transition metal divalent cations (M2+), and multi-walled carbon nanotubes (CNT) as the constitutive elements. CNF are firstly mixed with M2+ (M2+, in this paper, typifies Ni2+, Co2+ and Cu2+) to form CNF-M2+ complexes, monodispersed CNT is then mixed to prepare CNT/CNF-M2+ waterborne slurries; CNT/CNF-M2+ hybridized aerogels are finally obtained via freezing-drying of the CNT/CNF-M2+ waterborne slurries. The CNT/CNF-M2+ aerogels are a foam-like structure consisting of CNF and CNT as backbones and M2+ as linkers. The aerogels show higher capabilities (in comparison with activated carbon) for selectively adsorbing ammonia, trimethylamine, hydrogen sulfide and methyl mercaptan. Computing simulations suggest a theoretical conclusion that the odorous chemicals are absorbed in a preferring manner of bimolecular absorptions via the M2+ moieties. The CNT/CNF-M2+ hybridized aerogels are lightweight, eco-friendly, and easy to produce in industrial scales. Our new finding, as is described in this paper, demonstrates potential applications of the TEMPO-oxidized CNF to the field of deodorizations.
Collapse
|
35
|
|
36
|
Zizovic I. Supercritical Fluid Applications in the Design of Novel Antimicrobial Materials. Molecules 2020; 25:E2491. [PMID: 32471270 PMCID: PMC7321342 DOI: 10.3390/molecules25112491] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 11/17/2022] Open
Abstract
Bacterial resistance to antibiotics is one of the biggest problems in the modern world. The prevention of bacterial spreading from hospitals to the community and vice versa is an issue we have to deal with. This review presents a vast potential of contemporary high-pressure techniques in the design of materials with antimicrobial activity. Scientists from all over the world came up with ideas on how to exploit extraordinary properties of supercritical fluids in the production of advantageous materials in an environmentally friendly way. The review summarizes reported methods and results.
Collapse
Affiliation(s)
- Irena Zizovic
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
37
|
Fahmy HM, Salah Eldin RE, Abu Serea ES, Gomaa NM, AboElmagd GM, Salem SA, Elsayed ZA, Edrees A, Shams-Eldin E, Shalan AE. Advances in nanotechnology and antibacterial properties of biodegradable food packaging materials. RSC Adv 2020; 10:20467-20484. [PMID: 35517734 PMCID: PMC9054293 DOI: 10.1039/d0ra02922j] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/12/2020] [Indexed: 11/21/2022] Open
Abstract
A large number of non-biodegradable and non-renewable materials are produced daily for application as food packaging materials. These waste materials have a greatly negative effect on our health and the ecosystem. The idea of a bio-based economy is steadily gaining attention from the scientific, societal, and financial communities, so there are several areas in which the intended approaches can be improved for this reason. Therefore, creating biopolymer-based materials from natural sources, including polysaccharides and proteins, is a good alternative to non-renewable fossil resources. In the current review paper, we plan to summarize the major recent findings in food biodegradable packaging materials that include nanotechnology either directly or indirectly. Several natural nano-materials applied in food packaging applications such as polymers, polysaccharides, and protein-based nano-materials have been included in order to make special biopolymer hosts for nanocomposites. Finally, this review will highlight the antibacterial properties of commonly used nanoparticles or nanomaterials.
Collapse
Affiliation(s)
| | | | - Esraa Samy Abu Serea
- Chemistry & Biochemistry Department, Faculty of Science, Cairo University 12613 Egypt
| | | | - Gehad M AboElmagd
- Physics Department, Faculty of Science, El-Menoufia University Menoufia Egypt
| | - Suzan A Salem
- Biophysics Department, Faculty of Women for Arts, Science and Education, Ain Shams University Egypt
| | - Ziad A Elsayed
- Chemistry & Physics Department, Faculty of Science, Cairo University 12613 Egypt
| | - Aisha Edrees
- Biophysics Department, Faculty of Science, Cairo University 12613 Egypt
| | - Engy Shams-Eldin
- Special Food and Nutrition Department, Food Technology Research Institute, Agriculture Research Center Giza Egypt
| | - Ahmed Esmail Shalan
- Central Metallurgical Research and Development Institute (CMRDI) P.O. Box 87, Helwan Cairo 11421 Egypt
- BCMaterials-Basque Center for Materials, Applications and Nanostructures Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n Leioa 48940 Spain
| |
Collapse
|
38
|
Miao Y, Pudukudy M, Zhi Y, Miao Y, Shan S, Jia Q, Ni Y. A facile method for in situ fabrication of silica/cellulose aerogels and their application in CO2 capture. Carbohydr Polym 2020; 236:116079. [DOI: 10.1016/j.carbpol.2020.116079] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022]
|
39
|
Qin L, Zhao X, He Y, Wang H, Wei H, Zhu Q, Zhang T, Qin Y, Du A. Preparation, Characterization, and In Vitro Evaluation of Resveratrol-Loaded Cellulose Aerogel. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1624. [PMID: 32244773 PMCID: PMC7178353 DOI: 10.3390/ma13071624] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023]
Abstract
Resveratrol is a natural active ingredient found in plants, which is a polyphenolic compound and has a variety of pharmaceutical uses. Resveratrol-loaded TEMPO-oxidized cellulose aerogel (RLTA) was prepared using a freeze-drying method, employing high speed homogenization followed by rapid freezing with liquid nitrogen. RLTAs were designed at varying drug-cellulose aerogel ratios (1:2, 2:3, 3:2, and 2:1). It could be seen via scanning electron microscopy (SEM) that Res integrated into TEMPO-oxidized cellulose (TC) at different ratios, which changed its aggregation state and turned it into a short rod-like structure. Fourier transform infrared (FTIR) spectra confirmed that the RLTAs had the characteristic peaks of TC and Res. In addition, X-ray diffraction (XRD) demonstrated that the grain size of RLTA was obviously smaller than that of pure Res. RLTAs also had excellent stability in both simulated gastric fluid and phosphate buffer solution. The drug release rate was initially completed within 5 h under a loading rate of 30.7 wt%. The results of an MTT assay showed the low toxicity and good biocompatibility of the RLTAs. TC aerogel could be a promising drug carrier that may be widely used in designing and preparing novel biomedicine.
Collapse
Affiliation(s)
- Lili Qin
- Sports and Health Research Center, Department of Physical Education, Tongji University, Shanghai 200092, China; (X.Z.)
| | - Xinyu Zhao
- Sports and Health Research Center, Department of Physical Education, Tongji University, Shanghai 200092, China; (X.Z.)
| | - Yiwei He
- Sports and Health Research Center, Department of Physical Education, Tongji University, Shanghai 200092, China; (X.Z.)
| | - Hongqiang Wang
- School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hanjing Wei
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Qiong Zhu
- School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ting Zhang
- School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yao Qin
- Sports and Health Research Center, Department of Physical Education, Tongji University, Shanghai 200092, China; (X.Z.)
| | - Ai Du
- School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
40
|
Ellebracht NC, Jones CW. Functionalized cellulose nanofibril aerogels as cooperative acid-base organocatalysts for liquid flow reactions. Carbohydr Polym 2020; 233:115825. [PMID: 32059881 DOI: 10.1016/j.carbpol.2019.115825] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/13/2019] [Accepted: 12/31/2019] [Indexed: 10/25/2022]
Abstract
Cellulose nanomaterial aerogels are macroscopic porous solids with relatively high surface areas and are thus an interesting basis for renewable catalyst materials. Cross-linked acid-base bifunctional catalyst aerogels are produced here from TEMPO-oxidized cellulose nanofibrils (TOCNF) and demonstrated in both batch and flow catalysis. Recently established acid-base modification for catalysis is expanded upon for chemical or physical cross-linking with small molecules and polymers. Low density and relatively high surface area (up to 74 m2 g-1) aerogel catalysts are produced with a variety of processing approaches and then freeze-dried from water or tert-butyl alcohol/water mixtures. Finer pore structure and increased surface area are achieved with tert-butyl alcohol as co-solvent. Chemical cross-linking improved aerogel stability to solvents. Homogeneous and aerogel TOCNF catalysts are shown to be effective acid-base cooperative catalysts for aldol condensation reactions in batch reactions. Continuous flow reactions are performed with glass column reactors packed with aerogel catalysts that showed improved rates relative to batch experiments, while also demonstrating physical stability. Catalyst deactivation in flow reactions is observed and observations of deactivation support previously reported mechanisms of site poisoning by competitive chemisorption of reactants in analogous acid-base catalysts. This report is a key demonstration of cellulose nanofibril aerogels for catalysis in continuous liquid flow reactions.
Collapse
Affiliation(s)
- Nathan C Ellebracht
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, GA, 30332-0100, United States.
| | - Christopher W Jones
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, GA, 30332-0100, United States.
| |
Collapse
|
41
|
Cellulose from sources to nanocellulose and an overview of synthesis and properties of nanocellulose/zinc oxide nanocomposite materials. Int J Biol Macromol 2020; 154:1050-1073. [PMID: 32201207 DOI: 10.1016/j.ijbiomac.2020.03.163] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 01/16/2023]
Abstract
Recently, environmental and ecological concerns are increasing due to the usage of petroleum-based products so the synthesis of ultra-fine chemicals and functional materials from natural resources is drawing a tremendous level of attention. Nanocellulose, a unique and promising natural material extracted from native cellulose, may prove to be most ecofriendly materials that are technically and economically feasible in modern times, minimizing the pollution generation. Nanocellulose has gained tremendous attention for its use in various applications, due to its excellent special surface chemistry, physical properties, and remarkable biological properties (biodegradability, biocompatibility, and non-toxicity). Various types of nanocellulose, viz. cellulose nanofibrils (CNFs), cellulose nanocrystals (CNCs), and bacterial nanocellulose (BNC), are deeply introduced and compared in this work in terms of sources, production, structures and properties. The metal and metal oxides especially zinc oxide nanoparticles (ZnO-NPs) are broadly used in various fields due to the diversity of functional properties such as antimicrobial and ultraviolet (UV) properties. Thus, the advancement of nanocellulose and zinc oxide nanoparticles (ZnO-NPs)-based composites materials are summarized in this article in terms of the preparation methods and remarkable properties with the help of recent knowledge and significant findings (especially from the past six years reports). The nanocellulose materials complement zinc oxide nanoparticles, where they impart their functional properties to the nanoparticle composites. As a result hybrid nanocomposite containing nanocellulose/zinc oxide composite has shown excellent mechanical, UV barrier, and antibacterial properties. The nanocellulose based hybrid nanomaterials have huge potential applications in the area of food packaging, biopharmaceuticals, biomedical, and cosmetics. Thus the functional composite materials containing nanocellulose and zinc oxide will determine the potential biomedical application for nanocellulose.
Collapse
|
42
|
Aritonang HF, Kamea OE, Koleangan H, Wuntu AD. Biotemplated synthesis of Ag-ZnO nanoparticles/bacterial cellulose nanocomposites for photocatalysis application. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2020.1738470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Henry F. Aritonang
- Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, Indonesia
| | - Olivia E. Kamea
- Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, Indonesia
| | - Harry Koleangan
- Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, Indonesia
| | - Audy D. Wuntu
- Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, Indonesia
| |
Collapse
|
43
|
Loading of Iron (II, III) Oxide Nanoparticles in Cryogels Based on Microfibrillar Cellulose for Heavy Metal Ion Separation. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/9261378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cryogels based on microfibrillar cellulose (MFC) and reinforced with chitosan to endow water resistance were loaded with magnetite nanoparticles (MNPs) and characterized by TEM, XRD, and TGA. The MNP-loaded cryogels were tested for heavy metal ion removal from aqueous matrices. The adsorption capacity under equilibrium conditions for Cr(VI), Pd(II), Cd(II), and Zn(II) was measured to be 2755, 2155, 3015, and 4100 mg/g, respectively. The results indicate the potential of the introduced bicomponent cryogels for nanoparticle loading, leading to a remarkably high metal ion sorption capacity.
Collapse
|
44
|
Wang J, Li X, Cheng Q, Lv F, Chang C, Zhang L. Construction of β-FeOOH@tunicate cellulose nanocomposite hydrogels and their highly efficient photocatalytic properties. Carbohydr Polym 2020; 229:115470. [DOI: 10.1016/j.carbpol.2019.115470] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/12/2019] [Accepted: 10/12/2019] [Indexed: 01/24/2023]
|
45
|
Klemmed B, Besteiro LV, Benad A, Georgi M, Wang Z, Govorov A, Eychmüller A. Hybrid Plasmonic-Aerogel Materials as Optical Superheaters with Engineered Resonances. Angew Chem Int Ed Engl 2020; 59:1696-1702. [PMID: 31638732 PMCID: PMC7003905 DOI: 10.1002/anie.201913022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Indexed: 01/07/2023]
Abstract
Solar radiation is a versatile source of energy, convertible to different forms of power. A direct path to exploit it is the generation of heat, for applications including passive building heating, but it can also drive secondary energy-conversion steps. We present a novel concept for a hybrid material which is both strongly photo-absorbing and with superior characteristics for the insulation of heat. The combination of that two properties is rather unique, and make this material an optical superheater. To realize such a material, we are combining plasmonic nanoheaters with alumina aerogel. The aerogel has the double function of providing structural support for plasmonic nanocrystals, which serve as nanoheaters, and reducing the diffusion rate of the heat generated by them, resulting in large local temperature increases under a relatively low radiation intensity. This work includes theoretical discussion on the physical mechanisms impacting the system's balanced thermal equilibrium.
Collapse
Affiliation(s)
- Benjamin Klemmed
- Physikalische ChemieTU DresdenBergstrasse 66b01069DresdenGermany
| | - Lucas V. Besteiro
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054China
- Centre Énergie Matériaux et TélécommunicationsInstitut National de la Recherche Scientifique1650 Boul. Lionel BouletVarennesQuebecJ3X 1S2Canada
| | - Albrecht Benad
- Physikalische ChemieTU DresdenBergstrasse 66b01069DresdenGermany
| | | | - Zhiming Wang
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Alexander Govorov
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054China
- Department of Physics and AstronomyOhio UniversityAthensOH45701USA
| | | |
Collapse
|
46
|
Song L, Shu L, Wang Y, Zhang XF, Wang Z, Feng Y, Yao J. Metal nanoparticle-embedded bacterial cellulose aerogels via swelling-induced adsorption for nitrophenol reduction. Int J Biol Macromol 2020; 143:922-927. [DOI: 10.1016/j.ijbiomac.2019.09.152] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/11/2019] [Accepted: 09/22/2019] [Indexed: 02/05/2023]
|
47
|
Green synthesis of κ-carrageenan@Ag submicron-particles with high aqueous stability, robust antibacterial activity and low cytotoxicity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110185. [DOI: 10.1016/j.msec.2019.110185] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 08/14/2019] [Accepted: 09/09/2019] [Indexed: 01/26/2023]
|
48
|
Deng J, Wu Y. Green Synthesis and Biomedical Properties of Novel Hydroxypropyl Cellulose-g-Polytetrahydrofuran Graft Copolymers with Silver Nanoparticles. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b04799] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jinrui Deng
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yixian Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
49
|
Klemmed B, Besteiro LV, Benad A, Georgi M, Wang Z, Govorov A, Eychmüller A. Hybrid Plasmonic–Aerogel Materials as Optical Superheaters with Engineered Resonances. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201913022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Benjamin Klemmed
- Physikalische Chemie TU Dresden Bergstrasse 66b 01069 Dresden Germany
| | - Lucas V. Besteiro
- Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 610054 China
- Centre Énergie Matériaux et Télécommunications Institut National de la Recherche Scientifique 1650 Boul. Lionel Boulet Varennes Quebec J3X 1S2 Canada
| | - Albrecht Benad
- Physikalische Chemie TU Dresden Bergstrasse 66b 01069 Dresden Germany
| | - Maximilian Georgi
- Physikalische Chemie TU Dresden Bergstrasse 66b 01069 Dresden Germany
| | - Zhiming Wang
- Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 610054 China
| | - Alexander Govorov
- Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 610054 China
- Department of Physics and Astronomy Ohio University Athens OH 45701 USA
| | | |
Collapse
|
50
|
Rivers G, Yu L, Zhao B. Cellulose Nanocrystal and Silver Nanobelt Gel: Cooperative Interactions Enabling Dispersion, Colloidal Gels, and Flexible Electronics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15897-15903. [PMID: 31393735 DOI: 10.1021/acs.langmuir.9b02003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Using cellulose nanocrystals (CNCs) as a dispersant and cross-linker, we sought to enable the dispersion of silver nanobelts (AgNBs) in water for use in the manufacture of flexible electronics. In this work, we obtained a colloidal gel relying on contributions from both particles. When dried, particle interactions during gel collapse induced cooperative buckling of the AgNBs, obtaining a desirable spring-like conductive network that was not seen without the presence of CNCs. Thus, exploiting the collapse of bonded colloidal gels may represent a novel method to obtain desirable network buckling behavior for use in flexible electronics, which previously has only been obtained through printing on prestrained substrates.
Collapse
Affiliation(s)
- Geoffrey Rivers
- Department of Chemical Engineering, Waterloo Institute of Nanotechnology, Institute for Polymer Research , University of Waterloo , 200 University Avenue West , Waterloo , Ontario N2L 3G1 , Canada
| | - Li Yu
- Department of Chemical Engineering, Waterloo Institute of Nanotechnology, Institute for Polymer Research , University of Waterloo , 200 University Avenue West , Waterloo , Ontario N2L 3G1 , Canada
| | - Boxin Zhao
- Department of Chemical Engineering, Waterloo Institute of Nanotechnology, Institute for Polymer Research , University of Waterloo , 200 University Avenue West , Waterloo , Ontario N2L 3G1 , Canada
| |
Collapse
|