1
|
Barandov A, Ghosh S, Jasanoff A. Probing nitric oxide signaling using molecular MRI. Free Radic Biol Med 2022; 191:241-248. [PMID: 36084790 PMCID: PMC10204116 DOI: 10.1016/j.freeradbiomed.2022.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022]
Abstract
Wide field measurements of nitric oxide (NO) signaling could help understand and diagnose the many physiological processes in which NO plays a key role. Magnetic resonance imaging (MRI) can support particularly powerful approaches for this purpose if equipped with molecular probes sensitized to NO and NO-associated targets. In this review, we discuss the development of MRI-detectable probes that could enable studies of nitrergic signaling in animals and potentially human subjects. Major families of probes include contrast agents designed to capture and report integrated NO levels directly, as well as molecules that respond to or emulate the activity of nitric oxide synthase enzymes. For each group, we outline the relevant molecular mechanisms and discuss results that have been obtained in vitro and in animals. The most promising in vivo data described to date have been acquired using NO capture-based relaxation agents and using engineered nitric oxide synthases that provide hemodynamic readouts of NO signaling pathway activation. These advances establish a beachhead for ongoing efforts to improve the sensitivity, specificity, and clinical applicability of NO-related molecular MRI technology.
Collapse
Affiliation(s)
- Ali Barandov
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Souparno Ghosh
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Alan Jasanoff
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA; Department of Nuclear Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA.
| |
Collapse
|
2
|
Lehnert N, Kim E, Dong HT, Harland JB, Hunt AP, Manickas EC, Oakley KM, Pham J, Reed GC, Alfaro VS. The Biologically Relevant Coordination Chemistry of Iron and Nitric Oxide: Electronic Structure and Reactivity. Chem Rev 2021; 121:14682-14905. [PMID: 34902255 DOI: 10.1021/acs.chemrev.1c00253] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule that is involved in a wide range of physiological and pathological events in biology. Metal coordination chemistry, especially with iron, is at the heart of many biological transformations involving NO. A series of heme proteins, nitric oxide synthases (NOS), soluble guanylate cyclase (sGC), and nitrophorins, are responsible for the biosynthesis, sensing, and transport of NO. Alternatively, NO can be generated from nitrite by heme- and copper-containing nitrite reductases (NIRs). The NO-bearing small molecules such as nitrosothiols and dinitrosyl iron complexes (DNICs) can serve as an alternative vehicle for NO storage and transport. Once NO is formed, the rich reaction chemistry of NO leads to a wide variety of biological activities including reduction of NO by heme or non-heme iron-containing NO reductases and protein post-translational modifications by DNICs. Much of our understanding of the reactivity of metal sites in biology with NO and the mechanisms of these transformations has come from the elucidation of the geometric and electronic structures and chemical reactivity of synthetic model systems, in synergy with biochemical and biophysical studies on the relevant proteins themselves. This review focuses on recent advancements from studies on proteins and model complexes that not only have improved our understanding of the biological roles of NO but also have provided foundations for biomedical research and for bio-inspired catalyst design in energy science.
Collapse
Affiliation(s)
- Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Eunsuk Kim
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Hai T Dong
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jill B Harland
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Andrew P Hunt
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Elizabeth C Manickas
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Kady M Oakley
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - John Pham
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Garrett C Reed
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Victor Sosa Alfaro
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
3
|
Omidkhah N, Ghodsi R. NO-HDAC dual inhibitors. Eur J Med Chem 2021; 227:113934. [PMID: 34700268 DOI: 10.1016/j.ejmech.2021.113934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/08/2021] [Accepted: 10/17/2021] [Indexed: 12/11/2022]
Abstract
HDAC inhibitors and NO donors have both demonstrated independently broad therapeutic potential in a variety of diseases. Borretto et al. presented the topic of NO-HDAC dual inhibitors for the first time in 2013 as an attractive new topic. Here we collected the general structure of all synthesized NO-HDAC dual inhibitors, lead compounds, synthesis methods and biological features of the most potent dual NO-HDAC inhibitor in each category with the intention of assisting in the synthesis and optimization of new drug-like compounds for diverse diseases. Based on studies done so far, NO-HDAC dual inhibitors have displayed satisfactory results against wound healing (3), heart hypertrophy (3), inflammatory, cardiovascular, neuromuscular illnesses (11a-11e) and cancer (6a-6o, 9a-9d, 10a-10d, 16 and 17). NO-HDAC dual inhibitors can have high therapeutic potential for various diseases due to their new properties, NO properties, HDAC inhibitor properties and also due to the effects of NO on HDAC enzymes.
Collapse
Affiliation(s)
- Negar Omidkhah
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Razieh Ghodsi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Nakamura T, Oh CK, Zhang X, Tannenbaum SR, Lipton SA. Protein Transnitrosylation Signaling Networks Contribute to Inflammaging and Neurodegenerative Disorders. Antioxid Redox Signal 2021; 35:531-550. [PMID: 33957758 PMCID: PMC8388249 DOI: 10.1089/ars.2021.0081] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Significance: Physiological concentrations of nitric oxide (NO•) and related reactive nitrogen species (RNS) mediate multiple signaling pathways in the nervous system. During inflammaging (chronic low-grade inflammation associated with aging) and in neurodegenerative diseases, excessive RNS contribute to synaptic and neuronal loss. "NO signaling" in both health and disease is largely mediated through protein S-nitrosylation (SNO), a redox-based posttranslational modification with "NO" (possibly in the form of nitrosonium cation [NO+]) reacting with cysteine thiol (or, more properly, thiolate anion [R-S-]). Recent Advances: Emerging evidence suggests that S-nitrosylation occurs predominantly via transnitros(yl)ation. Mechanistically, the reaction involves thiolate anion, as a nucleophile, performing a reversible nucleophilic attack on a nitroso nitrogen to form an SNO-protein adduct. Prior studies identified transnitrosylation reactions between glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-nuclear proteins, thioredoxin-caspase-3, and X-linked inhibitor of apoptosis (XIAP)-caspase-3. Recently, we discovered that enzymes previously thought to act in completely disparate biochemical pathways can transnitrosylate one another during inflammaging in an unexpected manner to mediate neurodegeneration. Accordingly, we reported a concerted tricomponent transnitrosylation network from Uch-L1-to-Cdk5-to-Drp1 that mediates synaptic damage in Alzheimer's disease. Critical Issues: Transnitrosylation represents a critical chemical mechanism for transduction of redox-mediated events to distinct subsets of proteins. Although thousands of thiol-containing proteins undergo S-nitrosylation, how transnitrosylation regulates a myriad of neuronal attributes is just now being uncovered. In this review, we highlight recent progress in the study of the chemical biology of transnitrosylation between proteins as a mechanism of disease. Future Directions: We discuss future areas of study of protein transnitrosylation that link our understanding of aging, inflammation, and neurodegenerative diseases. Antioxid. Redox Signal. 35, 531-550.
Collapse
Affiliation(s)
- Tomohiro Nakamura
- Department of Molecular Medicine and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, California, USA
| | - Chang-Ki Oh
- Department of Molecular Medicine and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, California, USA
| | - Xu Zhang
- Department of Molecular Medicine and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, California, USA
| | - Steven R Tannenbaum
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Stuart A Lipton
- Department of Molecular Medicine and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, California, USA.,Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, California, USA
| |
Collapse
|
5
|
Nakamura T, Oh CK, Zhang X, Lipton SA. Protein S-nitrosylation and oxidation contribute to protein misfolding in neurodegeneration. Free Radic Biol Med 2021; 172:562-577. [PMID: 34224817 PMCID: PMC8579830 DOI: 10.1016/j.freeradbiomed.2021.07.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/19/2022]
Abstract
Neurodegenerative disorders like Alzheimer's disease and Parkinson's disease are characterized by progressive degeneration of synapses and neurons. Accumulation of misfolded/aggregated proteins represents a pathological hallmark of most neurodegenerative diseases, potentially contributing to synapse loss and neuronal damage. Emerging evidence suggests that misfolded proteins accumulate in the diseased brain at least in part as a consequence of excessively generated reactive oxygen species (ROS) and reactive nitrogen species (RNS). Mechanistically, not only disease-linked genetic mutations but also known risk factors for neurodegenerative diseases, such as aging and exposure to environmental toxins, can accelerate production of ROS/RNS, which contribute to protein misfolding - in many cases mimicking the effect of rare genetic mutations known to be linked to the disease. This review will focus on the role of RNS-dependent post-translational modifications, such as S-nitrosylation and tyrosine nitration, in protein misfolding and aggregation. Specifically, we will discuss molecular mechanisms whereby RNS disrupt the activity of the cellular protein quality control machinery, including molecular chaperones, autophagy/lysosomal pathways, and the ubiquitin-proteasome system (UPS). Because chronic accumulation of misfolded proteins can trigger mitochondrial dysfunction, synaptic damage, and neuronal demise, further characterization of RNS-mediated protein misfolding may establish these molecular events as therapeutic targets for intervention in neurodegenerative diseases.
Collapse
Affiliation(s)
- Tomohiro Nakamura
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - Chang-Ki Oh
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Xu Zhang
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Stuart A Lipton
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA; Department of Neurosciences, University of California San Diego, School of Medicine, La Jolla, CA, 92093, USA.
| |
Collapse
|
6
|
Mintz J, Vedenko A, Rosete O, Shah K, Goldstein G, Hare JM, Ramasamy R, Arora H. Current Advances of Nitric Oxide in Cancer and Anticancer Therapeutics. Vaccines (Basel) 2021; 9:94. [PMID: 33513777 PMCID: PMC7912608 DOI: 10.3390/vaccines9020094] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a short-lived, ubiquitous signaling molecule that affects numerous critical functions in the body. There are markedly conflicting findings in the literature regarding the bimodal effects of NO in carcinogenesis and tumor progression, which has important consequences for treatment. Several preclinical and clinical studies have suggested that both pro- and antitumorigenic effects of NO depend on multiple aspects, including, but not limited to, tissue of generation, the level of production, the oxidative/reductive (redox) environment in which this radical is generated, the presence or absence of NO transduction elements, and the tumor microenvironment. Generally, there are four major categories of NO-based anticancer therapies: NO donors, phosphodiesterase inhibitors (PDE-i), soluble guanylyl cyclase (sGC) activators, and immunomodulators. Of these, NO donors are well studied, well characterized, and also the most promising. In this study, we review the current knowledge in this area, with an emphasis placed on the role of NO as an anticancer therapy and dysregulated molecular interactions during the evolution of cancer, highlighting the strategies that may aid in the targeting of cancer.
Collapse
Affiliation(s)
- Joel Mintz
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, FL 33328, USA;
| | - Anastasia Vedenko
- John P Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.V.); (J.M.H.)
| | - Omar Rosete
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Khushi Shah
- College of Arts and Sciences, University of Miami, Miami, FL 33146, USA;
| | - Gabriella Goldstein
- College of Health Professions and Sciences, University of Central Florida, Orlando, FL 32816, USA;
| | - Joshua M. Hare
- John P Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.V.); (J.M.H.)
- The Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Medicine, Cardiology Division, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ranjith Ramasamy
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- The Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Himanshu Arora
- John P Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.V.); (J.M.H.)
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- The Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
7
|
Amal H, Barak B, Bhat V, Gong G, Joughin BA, Wang X, Wishnok JS, Feng G, Tannenbaum SR. Shank3 mutation in a mouse model of autism leads to changes in the S-nitroso-proteome and affects key proteins involved in vesicle release and synaptic function. Mol Psychiatry 2020; 25:1835-1848. [PMID: 29988084 PMCID: PMC6614015 DOI: 10.1038/s41380-018-0113-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 05/14/2018] [Accepted: 06/05/2018] [Indexed: 12/25/2022]
Abstract
Mutation in the SHANK3 human gene leads to different neuropsychiatric diseases including Autism Spectrum Disorder (ASD), intellectual disabilities and Phelan-McDermid syndrome. Shank3 disruption in mice leads to dysfunction of synaptic transmission, behavior, and development. Protein S-nitrosylation, the nitric oxide (NO•)-mediated posttranslational modification (PTM) of cysteine thiols (SNO), modulates the activity of proteins that regulate key signaling pathways. We tested the hypothesis that Shank3 mutation would generate downstream effects on PTM of critical proteins that lead to modification of synaptic functions. SNO-proteins in two ASD-related brain regions, cortex and striatum of young and adult InsG3680(+/+) mice (a human mutation-based Shank3 mouse model), were identified by an innovative mass spectrometric method, SNOTRAP. We found changes of the SNO-proteome in the mutant compared to WT in both ages. Pathway analysis showed enrichment of processes affected in ASD. SNO-Calcineurin in mutant led to a significant increase of phosphorylated Synapsin1 and CREB, which affect synaptic vesicle mobilization and gene transcription, respectively. A significant increase of 3-nitrotyrosine was found in the cortical regions of the adult mutant, signaling both oxidative and nitrosative stress. Neuronal NO• Synthase (nNOS) was examined for levels and localization in neurons and no significant difference was found in WT vs. mutant. S-nitrosoglutathione concentrations were higher in mutant mice compared to WT. This is the first study on NO•-related molecular changes and SNO-signaling in the brain of an ASD mouse model that allows the characterization and identification of key proteins, cellular pathways, and neurobiological mechanisms that might be affected in ASD.
Collapse
Affiliation(s)
- Haitham Amal
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Boaz Barak
- McGovern Institute for Brain Research, Massachusetts
Institute of Technology, Cambridge, MA 02139, USA
| | | | - Guanyu Gong
- Department of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, MA 02139, USA
| | - Brian A. Joughin
- Department of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, MA 02139, USA,Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xin Wang
- Department of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, MA 02139, USA
| | - John S. Wishnok
- Department of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, MA 02139, USA
| | - Guoping Feng
- McGovern Institute for Brain Research, Massachusetts
Institute of Technology, Cambridge, MA 02139, USA
| | - Steven R. Tannenbaum
- Department of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, MA 02139, USA,Department of Chemistry, Massachusetts Institute of
Technology, Cambridge, MA 02139, USA
| |
Collapse
|
8
|
Nakamura T, Lipton SA. Nitric Oxide-Dependent Protein Post-Translational Modifications Impair Mitochondrial Function and Metabolism to Contribute to Neurodegenerative Diseases. Antioxid Redox Signal 2020; 32:817-833. [PMID: 31657228 PMCID: PMC7074890 DOI: 10.1089/ars.2019.7916] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Significance: Most brains affected by neurodegenerative diseases manifest mitochondrial dysfunction as well as elevated production of reactive oxygen species and reactive nitrogen species (RNS), contributing to synapse loss and neuronal injury. Recent Advances: Excessive production of RNS triggers nitric oxide (NO)-mediated post-translational modifications of proteins, such as S-nitrosylation of cysteine residues and nitration of tyrosine residues. Proteins thus affected impair mitochondrial metabolism, mitochondrial dynamics, and mitophagy in the nervous system. Critical Issues: Identification and better characterization of underlying molecular mechanisms for NO-mediated mitochondrial dysfunction will provide important insights into the pathogenesis of neurodegenerative disorders. In this review, we highlight recent discoveries concerning S-nitrosylation of the tricarboxylic acid cycle enzymes, mitochondrial fission GTPase dynamin-related protein 1, and mitophagy-related proteins Parkin and phosphatase and tensin homolog-induced putative kinase protein 1. We delineate signaling cascades affected by pathologically S-nitrosylated proteins that diminish mitochondrial function in neurodegenerative diseases. Future Directions: Further elucidation of the pathological events resulting from aberrant S-nitrosothiol or nitrotyrosine formation may lead to new therapeutic approaches to ameliorate neurodegenerative disorders.
Collapse
Affiliation(s)
- Tomohiro Nakamura
- Departments of Molecular Medicine and Neuroscience, Neuroscience Translational Center, The Scripps Research Institute, La Jolla, California
- Address correspondence to: Dr. Tomohiro Nakamura, Departments of Molecular Medicine and Neuroscience, Neuroscience Translational Center, The Scripps Research Institute, La Jolla, CA 92037
| | - Stuart A. Lipton
- Departments of Molecular Medicine and Neuroscience, Neuroscience Translational Center, The Scripps Research Institute, La Jolla, California
- Department of Neurosciences, University of California San Diego, School of Medicine, La Jolla, California
- Dr. Stuart A. Lipton, Departments of Molecular Medicine and Neuroscience, Neuroscience Translational Center, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
9
|
Dagnell M, Schmidt EE, Arnér ESJ. The A to Z of modulated cell patterning by mammalian thioredoxin reductases. Free Radic Biol Med 2018; 115:484-496. [PMID: 29278740 PMCID: PMC5771652 DOI: 10.1016/j.freeradbiomed.2017.12.029] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/16/2017] [Accepted: 12/21/2017] [Indexed: 12/12/2022]
Abstract
Mammalian thioredoxin reductases (TrxRs) are selenocysteine-containing proteins (selenoproteins) that propel a large number of functions through reduction of several substrates including the active site disulfide of thioredoxins (Trxs). Well-known enzymatic systems that in turn are supported by Trxs and TrxRs include deoxyribonucleotide synthesis through ribonucleotide reductase, antioxidant defense through peroxiredoxins and methionine sulfoxide reductases, and redox modulation of a number of transcription factors. Although these functions may be essential for cells due to crucial roles in maintenance of cell viability and proliferation, findings during the last decade reveal that mammals have major redundancy in their cellular reductive systems. The synthesis of glutathione (GSH) and reductive functions of GSH-dependent pathways typically act in parallel with Trx-dependent pathways, with only one of these systems often being sufficient to support viability. Importantly, this does not imply that a modulation of the Trx system will remain without consequences, even when GSH-dependent pathways remain functional. As suggested by several recent findings, the Trx system in general and the TrxRs in particular, function as key regulators of signaling pathways. In this review article we will discuss findings that collectively suggest that modulation in mammalian systems of cytosolic TrxR1 (TXNRD1) or mitochondrial TrxR2 (TXNRD2) influence cell patterning and cellular stress responses. Effects of lower activities include increased adipogenesis, insulin responsiveness, glycogen accumulation, hyperproliferation, and distorted embryonic development, while increased activities correlate with decreased proliferation and extended lifespan, as well as worse cancer prognosis. The molecular mechanisms that underlie these diverse effects, involving regulation of protein phosphorylation cascades and of key transcription factors that guide cellular differentiation pathways, will be discussed. We conclude that the selenium-dependent oxidoreductases TrxR1 and TrxR2 should be considered as key components of signaling pathways that control cell differentiation and cellular stress responses.
Collapse
Affiliation(s)
- Markus Dagnell
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Edward E Schmidt
- Microbiology & Immunology, Montana State University, Bozeman, MT 59718, USA
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden.
| |
Collapse
|
10
|
Study of adenylyl cyclase-GαS interactions and identification of novel AC ligands. Mol Cell Biochem 2018; 446:63-72. [DOI: 10.1007/s11010-018-3273-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/04/2018] [Indexed: 10/18/2022]
|
11
|
Abstract
The cytosolic selenoprotein thioredoxin reductase 1 (TrxR1, encoded in human by TXNRD1) is implied to have several different roles in relation to cancer. Its physiologic functions may protect normal cells from carcinogenesis, but may also promote cancer progression if carcinogenesis nonetheless occurs. With distinct links to Nrf2 signaling, ribonucleotide reductase-dependent production of deoxyribonucleotides and its support of several antioxidant systems counteracting oxidative stress, the metabolic pathways regulated, and affected by TrxR1, are altogether of crucial importance in cancer. These pathways and causal relationships are at the same time highly intricate. In spite of the complexity in the cellular redox networks, several observations discussed in this chapter suggest that specific targeting of TrxR1 may be promising as a mechanistic principle for anticancer therapy.
Collapse
|
12
|
Lohman AW, Straub AC, Johnstone SR. Identification of Connexin43 Phosphorylation and S-Nitrosylation in Cultured Primary Vascular Cells. Methods Mol Biol 2016; 1437:97-111. [PMID: 27207289 DOI: 10.1007/978-1-4939-3664-9_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
All connexins (Cx) proteins contain both highly ordered domains (i.e., 4 transmembrane domains) and primarily unstructured regions (i.e., n- and c-terminal domains). The c-terminal domains vary in length and amino acid composition from the shortest on Cx26 to the longest on Cx43. With the exception of Cx26, the c-terminal domains contain multiple sites for posttranslational modification (PTM) including serines (S), threonines (T), and tyrosines (Y) for phosphorylation or cysteines (C) for S-nitrosylation. These PTMs are critical for regulating cellular localization, protein-protein interactions, and channel functionality. There are several biochemical techniques that allow for the identification of these PTM including Western blotting and the "Biotin Switch" assay for nitrosylation. Quantitative analysis of Western blots can be achieved through use of secondary antibodies in the near infrared scale and high-resolution scanning on a fluorescent scanner.
Collapse
Affiliation(s)
- Alexander W Lohman
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Adam C Straub
- Department of Pharmacology and Chemical Biology, Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Scott R Johnstone
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK.
| |
Collapse
|
13
|
Zaręba-Kozioł M, Szwajda A, Dadlez M, Wysłouch-Cieszyńska A, Lalowski M. Global analysis of S-nitrosylation sites in the wild type (APP) transgenic mouse brain-clues for synaptic pathology. Mol Cell Proteomics 2014; 13:2288-305. [PMID: 24895380 DOI: 10.1074/mcp.m113.036079] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by an early synaptic loss, which strongly correlates with the severity of dementia. The pathogenesis and causes of characteristic AD symptoms are not fully understood. Defects in various cellular cascades were suggested, including the imbalance in production of reactive oxygen and nitrogen species. Alterations in S-nitrosylation of several proteins were previously demonstrated in various AD animal models and patients. In this work, using combined biotin-switch affinity/nano-LC-MS/MS and bioinformatic approaches we profiled endogenous S-nitrosylation of brain synaptosomal proteins from wild type and transgenic mice overexpressing mutated human Amyloid Precursor Protein (hAPP). Our data suggest involvement of S-nitrosylation in the regulation of 138 synaptic proteins, including MAGUK, CamkII, or synaptotagmins. Thirty-eight proteins were differentially S-nitrosylated in hAPP mice only. Ninety-five S-nitrosylated peptides were identified for the first time (40% of total, including 33 peptides exclusively in hAPP synaptosomes). We verified differential S-nitrosylation of 10 (26% of all identified) synaptosomal proteins from hAPP mice, by Western blotting with specific antibodies. Functional enrichment analysis linked S-nitrosylated proteins to various cellular pathways, including: glycolysis, gluconeogenesis, calcium homeostasis, ion, and vesicle transport, suggesting a basic role of this post-translational modification in the regulation of synapses. The linkage of SNO-proteins to axonal guidance and other processes related to APP metabolism exclusively in the hAPP brain, implicates S-nitrosylation in the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Monika Zaręba-Kozioł
- From the ‡Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | - Michał Dadlez
- From the ‡Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | - Maciej Lalowski
- ¶Biomedicum Helsinki, Institute of Biomedicine, Biochemistry/Developmental Biology, Meilahti Clinical Proteomics Core Unit, University of Helsinki, Finland; ‖Folkhälsan Institute of Genetics, Helsinki, Finland
| |
Collapse
|
14
|
Talbott SJ, Luanpitpong S, Stehlik C, Azad N, Iyer AKV, Wang L, Rojanasakul Y. S-nitrosylation of FLICE inhibitory protein determines its interaction with RIP1 and activation of NF-κB. Cell Cycle 2014; 13:1948-57. [PMID: 24762656 DOI: 10.4161/cc.28898] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Death receptor (DR) ligation can lead to divergent signaling pathways causing either caspase-mediated cell death or cell proliferation and inflammation. These variations in cellular fate are determined by adaptor proteins that are recruited to the DR signaling complex. FLICE inhibitory protein (FLIP) is an established inhibitor of caspase-8-mediated apoptosis, and it is also involved in NF-κB activation. However, the molecular mechanism that regulates FLIP within this complex is unknown. In this study, we provide new evidence for the regulation of NF-κB by FLIP through S-nitrosylation, which involves covalent modification of the protein's cysteine thiol by nitric oxide to form S-nitrosothiol. Point mutations of FLIP at cysteine residues 254 and 259 prevent FLIP S-nitrosylation and its ability to activate NF-κB. The mechanism by which FLIP nitrosylation regulates NF-κB activity involves RIP1 binding and redistribution, whereas TRAF2 binding and distribution are unaffected. We further show that FLIP processing and cleavage is dependent on its nitrosylation status. Collectively, our study reveals a novel pathway for FLIP regulation of NF-κB through protein S-nitrosylation, which is a key posttranslational mechanism controlling DR-mediated cell death and survival. Since increased expression of FLIP and nitric oxide are frequently observed in chemotherapy-resistant tumors, S-nitrosylation of FLIP could be a key mechanism of chemoresistance and tumor growth.
Collapse
Affiliation(s)
- Siera Jo Talbott
- Department of Pharmaceutical Sciences; West Virginia University; Morgantown, WV USA; Mary Babb Randolph Cancer Center; West Virginia University; Morgantown, WV USA
| | - Sudjit Luanpitpong
- Department of Pharmaceutical Sciences; West Virginia University; Morgantown, WV USA; Mary Babb Randolph Cancer Center; West Virginia University; Morgantown, WV USA
| | | | - Neelam Azad
- Department of Pharmaceutical Sciences; Hampton University; Hampton, VA USA
| | | | - Liying Wang
- National Institute for Occupational Safety and Health; Morgantown, WV USA
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences; West Virginia University; Morgantown, WV USA; Mary Babb Randolph Cancer Center; West Virginia University; Morgantown, WV USA
| |
Collapse
|
15
|
Hanschmann EM, Godoy JR, Berndt C, Hudemann C, Lillig CH. Thioredoxins, glutaredoxins, and peroxiredoxins--molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling. Antioxid Redox Signal 2013; 19:1539-605. [PMID: 23397885 PMCID: PMC3797455 DOI: 10.1089/ars.2012.4599] [Citation(s) in RCA: 496] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 02/01/2013] [Accepted: 02/07/2013] [Indexed: 12/19/2022]
Abstract
Thioredoxins (Trxs), glutaredoxins (Grxs), and peroxiredoxins (Prxs) have been characterized as electron donors, guards of the intracellular redox state, and "antioxidants". Today, these redox catalysts are increasingly recognized for their specific role in redox signaling. The number of publications published on the functions of these proteins continues to increase exponentially. The field is experiencing an exciting transformation, from looking at a general redox homeostasis and the pathological oxidative stress model to realizing redox changes as a part of localized, rapid, specific, and reversible redox-regulated signaling events. This review summarizes the almost 50 years of research on these proteins, focusing primarily on data from vertebrates and mammals. The role of Trx fold proteins in redox signaling is discussed by looking at reaction mechanisms, reversible oxidative post-translational modifications of proteins, and characterized interaction partners. On the basis of this analysis, the specific regulatory functions are exemplified for the cellular processes of apoptosis, proliferation, and iron metabolism. The importance of Trxs, Grxs, and Prxs for human health is addressed in the second part of this review, that is, their potential impact and functions in different cell types, tissues, and various pathological conditions.
Collapse
Affiliation(s)
- Eva-Maria Hanschmann
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, Ernst-Moritz Arndt University, Greifswald, Germany
| | - José Rodrigo Godoy
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Duesseldorf, Germany
| | - Christoph Hudemann
- Institute of Laboratory Medicine, Molecular Diagnostics, Philipps University, Marburg, Germany
| | - Christopher Horst Lillig
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, Ernst-Moritz Arndt University, Greifswald, Germany
| |
Collapse
|
16
|
Gupta V, Carroll KS. Sulfenic acid chemistry, detection and cellular lifetime. Biochim Biophys Acta Gen Subj 2013; 1840:847-75. [PMID: 23748139 DOI: 10.1016/j.bbagen.2013.05.040] [Citation(s) in RCA: 302] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 05/24/2013] [Accepted: 05/26/2013] [Indexed: 02/03/2023]
Abstract
BACKGROUND Reactive oxygen species-mediated cysteine sulfenic acid modification has emerged as an important regulatory mechanism in cell signaling. The stability of sulfenic acid in proteins is dictated by the local microenvironment and ability of antioxidants to reduce this modification. Several techniques for detecting this cysteine modification have been developed, including direct and in situ methods. SCOPE OF REVIEW This review presents a historical discussion of sulfenic acid chemistry and highlights key examples of this modification in proteins. A comprehensive survey of available detection techniques with advantages and limitations is discussed. Finally, issues pertaining to rates of sulfenic acid formation, reduction, and chemical trapping methods are also covered. MAJOR CONCLUSIONS Early chemical models of sulfenic acid yielded important insights into the unique reactivity of this species. Subsequent pioneering studies led to the characterization of sulfenic acid formation in proteins. In parallel, the discovery of oxidant-mediated cell signaling pathways and pathological oxidative stress has led to significant interest in methods to detect these modifications. Advanced methods allow for direct chemical trapping of protein sulfenic acids directly in cells and tissues. At the same time, many sulfenic acids are short-lived and the reactivity of current probes must be improved to sample these species, while at the same time, preserving their chemical selectivity. Inhibitors with binding scaffolds can be rationally designed to target sulfenic acid modifications in specific proteins. GENERAL SIGNIFICANCE Ever increasing roles for protein sulfenic acids have been uncovered in physiology and pathology. A more complete understanding of sulfenic acid-mediated regulatory mechanisms will continue to require rigorous and new chemical insights. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.
Collapse
Affiliation(s)
- Vinayak Gupta
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | |
Collapse
|
17
|
Abstract
SIGNIFICANCE Glutaredoxins (Grxs) are small oxidoreductases of the thioredoxin family of proteins regulating the thiol redox state of several proteins. Thereby, Grxs are key elements in redox signaling. RECENT ADVANCES Redox signaling via protein thiols depends on reversible oxidative modifications induced mainly by reactive oxygen/nitrogen species and glutathione (GSH) in form of its oxidized disulfide or S-nitroso-glutathione. Grxs contribute to redox signaling by the catalysis of glutathionylation, de-glutathionylation, as well as reduction of disulfide bridges via two distinct enzymatic mechanisms. The dithiol mechanism utilizes both active site cysteines to reduce disulfides, whereas the monothiol mechanism utilizes only the N-terminal active site cysteine for the reduction of GSH mixed disulfides. The sphere of action of Grxs continues to grow with the recent identification of novel targets. CRITICAL ISSUES Because of limited methodological tools, the identification of new substrates for oxidoreductases in general is one of the biggest challenges in this research area. FUTURE DIRECTIONS With this review, we provide a condensed summary of the current knowledge of thiol/disulfide exchange reactions catalyzed by Grxs regarding the mechanistic, structural, and functional aspects. The latter will be of high importance for future research directions, gaining novel insights into redox signaling in general, and the role of Grxs in particular.
Collapse
Affiliation(s)
- Christopher Horst Lillig
- Institut für Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Ernst Moritz Arndt-Universität Greifswald, Greifswald, Germany
| | | |
Collapse
|
18
|
Methods for detection and characterization of protein S-nitrosylation. Methods 2013; 62:138-50. [PMID: 23628946 DOI: 10.1016/j.ymeth.2013.04.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 04/15/2013] [Accepted: 04/18/2013] [Indexed: 11/24/2022] Open
Abstract
Reversible protein S-nitrosylation, defined as the covalent addition of a nitroso moiety to the reactive thiol group on a cysteine residue, has received increasing recognition as a critical post-translational modification that exerts ubiquitous influence in a wide range of cellular pathways and physiological processes. Due to the lability of the S-NO bond, which is a dynamic modification, and the low abundance of endogenously S-nitrosylated proteins in vivo, unambiguous identification of S-nitrosylated proteins and S-nitrosylation sites remains methodologically challenging. In this review, we summarize recent advancements and the use of state-of-art approaches for the enrichment, systematic identification and quantitation of S-nitrosylation protein targets and their modification sites at the S-nitrosoproteome scale. These advancements have facilitated the global identification of >3000 S-nitrosylated proteins that are associated with wide range of human diseases. These strategies hold promise to site-specifically unravel potential molecular targets and to change S-nitrosylation-based pathophysiology, which may further the understanding of the potential role of S-nitrosylation in diseases.
Collapse
|
19
|
Lu XM, Tompkins RG, Fischman AJ. Nitric oxide activates intradomain disulfide bond formation in the kinase loop of Akt1/PKBα after burn injury. Int J Mol Med 2013; 31:740-50. [PMID: 23314241 PMCID: PMC3597556 DOI: 10.3892/ijmm.2013.1241] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 12/14/2012] [Indexed: 11/23/2022] Open
Abstract
Severe burn injury is an acute inflammatory state with massive alterations in gene expression and levels of growth factors, cytokines and free radicals. During the catabolic processes, changes in insulin sensitivity and skeletal muscle wasting (unintended loss of 5–15% of lean body mass) are observed clinically. Here, we reveal a novel molecular mechanism of Akt1/protein kinase Bα (Akt1/PKBα) regulated via cross-talking between dephosphorylation of Thr308 and S-nitrosylation of Cys296 post severe burn injury, which were characterized using nano-LC interfaced with tandem quadrupole time-of-fight mass spectrometry (Q-TOF)micro tandem mass spectrometry in both in vitro and in vivo studies. For the in vitro studies, Akt1/PKBα was S-nitrosylated with S-nitrosoglutathione and derivatized by three methods. The derivatives were isolated by SDS-PAGE, trypsinized and analyzed by the tandem MS. For the in vivo studies, Akt1/PKBα in muscle lysates from burned rats was immuno-precipitated, derivatized with HPDP-Biotin and analyzed as above. The studies demonstrated that the NO free radical reacts with the free thiol of Cys296 to produce a Cys296-SNO intermediate which accelerates interaction with Cys310 to form Cys296-Cys310 in the kinase loop. MS/MS sequence analysis indicated that the dipeptide, linked via Cys296-Cys310, underwent dephosphorylation at Thr308. These effects were not observed in lysates from sham animals. As a result of this dual effect of burn injury, the loose conformation that is slightly stabilized by the Lys297-Thr308 salt bridge may be replaced by a more rigid structure which may block substrate access. Together with the findings of our previous report concerning mild IRS-1 integrity changes post burn, it is reasonable to conclude that the impaired Akt1/PKBα has a major impact on FOXO3 subcellular distribution and activities.
Collapse
Affiliation(s)
- X-M Lu
- Surgical Service, Massachusetts General Hospital, Boston, MA, USA
| | | | | |
Collapse
|
20
|
Bechtold E, King SB. Chemical methods for the direct detection and labeling of S-nitrosothiols. Antioxid Redox Signal 2012; 17:981-91. [PMID: 22356122 PMCID: PMC3411347 DOI: 10.1089/ars.2012.4570] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
SIGNIFICANCE Posttranslational modification of proteins through phosphorylation, glycosylation, and oxidation adds complexity to the proteome by reversibly altering the structure and function of target proteins in a highly controlled fashion. RECENT ADVANCES The study of reversible cysteine oxidation highlights a role for this oxidative modification in complex signal transduction pathways. Nitric oxide (NO), and its respective metabolites (including reactive nitrogen species), participates in a variety of these cellular redox processes, including the reversible oxidation of cysteine to S-nitrosothiols (RSNOs). RSNOs act as endogenous transporters of NO, but also possess beneficial effects independent of NO-related signaling, which suggests a complex and versatile biological role. In this review, we highlight the importance of RSNOs as a required posttranslational modification and summarize the current methods available for detecting S-nitrosation. CRITICAL ISSUES Given the limitations of these indirect detection methods, the review covers recent developments toward the direct detection of RSNOs by phosphine-based chemical probes. The intrinsic properties that dictate this phosphine/RSNO reactivity are summarized. In general, RSNOs (both small molecule and protein) react with phosphines to yield reactive S-substituted aza-ylides that undergo further reactions leading to stable RSNO-based adducts. FUTURE DIRECTIONS This newly explored chemical reactivity forms the basis of a number of exciting potential chemical methods for protein RSNO detection in biological systems.
Collapse
Affiliation(s)
- Erika Bechtold
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, USA
| | | |
Collapse
|
21
|
Bicarbonate plays a critical role in the generation of cytotoxicity during SIN-1 decomposition in culture medium. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:326731. [PMID: 22848780 PMCID: PMC3400428 DOI: 10.1155/2012/326731] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 05/14/2012] [Indexed: 11/30/2022]
Abstract
3-Morpholinosydnonimine (SIN-1) is used as a donor of peroxynitrite (ONOO−) in various studies. We demonstrated, however, that, the cell-culture medium remains cytotoxic to PC12 cells even after almost complete SIN-1 decomposition, suggesting that reaction product(s) in the medium, rather than ONOO−, exert cytotoxic effects. Here, we clarified that significant cytotoxicity persists after SIN-1 decomposes in bicarbonate, a component of the culture medium, but not in NaOH. Cytotoxic SIN-1-decomposed bicarbonate, which lacks both oxidizing and nitrosating activities, degrades to innocuous state over time. The extent of SIN-1 cytotoxicity, irrespective of its fresh or decomposed state, appears to depend on the total number of initial SIN-1 molecules per cell, rather than its concentration, and involves oxidative/nitrosative stress-related cell damage. These results suggest that, despite its low abundance, the bicarbonate-dependent cytotoxic substance that accumulates in the medium during SIN-1 breakdown is the cytotoxic entity of SIN-1.
Collapse
|
22
|
Protein S-nitrosylation and cancer. Cancer Lett 2012; 320:123-9. [PMID: 22425962 DOI: 10.1016/j.canlet.2012.03.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 03/02/2012] [Accepted: 03/05/2012] [Indexed: 11/23/2022]
Abstract
Protein S-nitrosylation is a covalent post-translational modification through coupling of a nitric oxide (NO) moiety with the reactive thiol group of a protein cysteine residue to form an S-nitrosothiol (SNO). S-nitrosylation is a key mechanism in the transmission of NO-based cellular signals in the vital cellular processes, including transcription regulation, DNA repair, and apoptosis. Contemporary research has implicated dysregulation of S-nitrosylation in severe pathological events, including cancer onset, progression, and treatment resistance. The S-nitrosylation status may be directly linked to many cancer therapy outcomes as well as therapeutic-resistance, emphasizing the need to develop S-nitrosylation-related anti-cancer therapeutics. The role of S-nitrosylated proteins in the development and progression of cancer are varied, generating a critical need for a thorough review of the current dynamic research in this area.
Collapse
|
23
|
Cocaine-induced adaptations in cellular redox balance contributes to enduring behavioral plasticity. Neuropsychopharmacology 2011; 36:2551-60. [PMID: 21796101 PMCID: PMC3194081 DOI: 10.1038/npp.2011.143] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Impaired glutamate homeostasis in the nucleus accumbens has been linked to cocaine relapse in animal models, and results in part from cocaine-induced downregulation of the cystine-glutamate exchanger. In addition to regulating extracellular glutamate, the uptake of cystine by the exchanger is a rate-limiting step in the synthesis of glutathione (GSH). GSH is critical for balancing cellular redox in response to oxidative stress. Cocaine administration induces oxidative stress, and we first determined if downregulated cystine-glutamate exchange alters redox homeostasis in rats withdrawn from daily cocaine injections and then challenged with acute cocaine. Among the daily cocaine-induced changes in redox homeostasis were an increase in protein S-glutathionylation and a decrease in expression of GSH-S-transferase pi (GSTpi). To mimic reduced GSTpi, a genetic mouse model of GSTpi deletion or pharmacological inhibition of GSTpi by administering ketoprofen during daily cocaine administration was used. The capacity of cocaine to induce conditioned place preference or locomotor sensitization was augmented, indicating that reducing GSTpi may contribute to cocaine-induced behavioral neuroplasticity. Conversely, an acute cocaine challenge after withdrawal from daily cocaine elicited a marked increase in accumbens GSTpi, and the expression of behavioral sensitization to a cocaine challenge injection was inhibited by ketoprofen pretreatment; supporting a protective effect by the acute cocaine-induced rise in GSTpi. Together, these data indicate that cocaine-induced oxidative stress induces changes in GSTpi that contribute to cocaine-induced behavioral plasticity.
Collapse
|
24
|
Tunnels modulate ligand flux in a heme nitric oxide/oxygen binding (H-NOX) domain. Proc Natl Acad Sci U S A 2011; 108:E881-9. [PMID: 21997213 DOI: 10.1073/pnas.1114038108] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Interior topological features, such as pockets and channels, have evolved in proteins to regulate biological functions by facilitating the diffusion of biomolecules. Decades of research using the globins as model heme proteins have clearly highlighted the importance of gas pockets around the heme in controlling the capture and release of O(2). However, much less is known about how ligand migration contributes to the diverse functions of other heme protein scaffolds. Heme nitric oxide/oxygen binding (H-NOX) domains are a conserved family of gas-sensing heme proteins with a divergent fold that are critical to numerous signaling pathways. Utilizing X-ray crystallography with xenon, a tunnel network has been shown to serve as a molecular pathway for ligand diffusion. Structure-guided mutagenesis results show that the tunnels have unexpected effects on gas-sensing properties in H-NOX domains. The findings provide insights on how the flux of biomolecules through protein scaffolds modulates protein chemistry.
Collapse
|
25
|
Generation, Translocation, and Action of Nitric Oxide in Living Systems. ACTA ACUST UNITED AC 2011; 18:1211-20. [DOI: 10.1016/j.chembiol.2011.09.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 09/19/2011] [Accepted: 09/20/2011] [Indexed: 01/01/2023]
|
26
|
S-nitrosation of cellular proteins by NO donors in rat embryonic fibroblast 3Y1 cells: factors affecting S-nitrosation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2011; 2011:450317. [PMID: 21904643 PMCID: PMC3163492 DOI: 10.1155/2011/450317] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 06/20/2011] [Indexed: 12/31/2022]
Abstract
The mechanism of protein S-nitrosation in cells is not fully understood. Using rat 3Y1 cells, we addressed this issue. Among S-nitrosothiols and NO donors tested, only S-nitrosocysteine (CysNO) induced S-nitrosation when exposed in Hanks' balanced salt solution (HBSS) and not in serum-containing general culture medium. In HBSS, NO release from CysNO was almost completely abolished by sequestering metal ions with a metal chelator without affecting cellular S-nitrosation. In contrast, L-leucine, a substrate of L-type amino acid transporters (LATs), significantly inhibited S-nitrosation. The absence of S-nitrosation with CysNO in general culture medium resulted not only from a competition with amino acids in the medium for LATs but also from transnitrosation of cysteine residues in serum albumin. Collectively, these results suggest that in simple buffered saline, CysNO-dependent S-nitrosation occurs through a cellular incorporation-dependent mechanism, but if it occurs in general culture media, it may be through an NO-dependent mechanism.
Collapse
|
27
|
Shahani N, Sawa A. Protein S-nitrosylation: role for nitric oxide signaling in neuronal death. Biochim Biophys Acta Gen Subj 2011; 1820:736-42. [PMID: 21803124 DOI: 10.1016/j.bbagen.2011.07.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 06/21/2011] [Accepted: 07/13/2011] [Indexed: 12/15/2022]
Abstract
BACKGROUND One of the signaling mechanisms mediated by nitric oxide (NO) is through S-nitrosylation, the reversible redox-based modification of cysteine residues, on target proteins that regulate a myriad of physiological and pathophysiological processes. In particular, an increasing number of studies have identified important roles for S-nitrosylation in regulating cell death. SCOPE OF REVIEW The present review focuses on different targets and functional consequences associated with nitric oxide and protein S-nitrosylation during neuronal cell death. MAJOR CONCLUSIONS S-Nitrosylation exhibits double-edged effects dependent on the levels, spatiotemporal distribution, and origins of NO in the brain: in general Snitrosylation resulting from the basal low level of NO in cells exerts anti-cell death effects, whereas S-nitrosylation elicited by induced NO upon stressed conditions is implicated in pro-cell death effects. GENERAL SIGNIFICANCE Dysregulated protein S-nitrosylation is implicated in the pathogenesis of several diseases including degenerative diseases of the central nervous system (CNS). Elucidating specific targets of S-nitrosylation as well as their regulatory mechanisms may aid in the development of therapeutic intervention in a wide range of brain diseases.
Collapse
Affiliation(s)
- Neelam Shahani
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | | |
Collapse
|
28
|
Shahani N, Sawa A. Nitric oxide signaling and nitrosative stress in neurons: role for S-nitrosylation. Antioxid Redox Signal 2011; 14:1493-504. [PMID: 20812870 DOI: 10.1089/ars.2010.3580] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nitric oxide (NO) mediates cellular signaling pathways that regulate a plethora of physiological processes. One of the signaling mechanisms mediated by NO is through S-nitrosylation of cysteine residues in target proteins, which is now regarded as an important redox-based physiological action. Deregulation of the protein S-nitrosylation upon nitrosative stress, however, has also been linked to various human diseases, such as neurodegenerative disorders. Between these physiological and pathophysiological roles, there are mechanisms whereby a milder level of nitrosative stress provides S-nitrosylation of some proteins that counteracts the pathological processes, serving as a negative feedback mechanism. In addition, NO has recently emerged as a mediator of epigenetic gene expression and chromatin changes. In this review, these molecular mechanisms, especially those in the central nervous system and neurodegenerative disorders, are described.
Collapse
Affiliation(s)
- Neelam Shahani
- Department of Psychiatry, Johns Hopkins University School of Medicine, 600N Wolfe St., Baltimore, MD 21287, USA
| | | |
Collapse
|
29
|
Carlson SM, White FM. Using small molecules and chemical genetics to interrogate signaling networks. ACS Chem Biol 2011; 6:75-85. [PMID: 21077690 DOI: 10.1021/cb1002834] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The limited clinical success of therapeutics targeting cellular signaling processes is due to multiple factors, including off-target effects and complex feedback regulation encoded within the signaling network. To understand these effects, chemical proteomics and chemical genetics tools have been developed to map the direct targets of kinase inhibitors, determine the network-level response to inhibitor treatment, and to infer network topology. Here we provide an overview of chemical phosphoproteomic and chemical genetic methods, including specific examples where these methods have been applied to yield biological insight regarding network structure and the system-wide effects of targeted therapeutics. The challenges and caveats associated with each method are described, along with approaches being used to resolve some of these issues. With the broad array of available techniques the next decade should see a rapid improvement in our understanding of signaling networks regulation and response to targeted perturbations, leading to more efficacious therapeutic strategies.
Collapse
Affiliation(s)
- Scott M. Carlson
- Department of Biological Engineering and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Forest M. White
- Department of Biological Engineering and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
30
|
Uys JD, Reissner KJ. Glutamatergic Neuroplasticity in Cocaine Addiction. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 98:367-400. [DOI: 10.1016/b978-0-12-385506-0.00009-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
31
|
Paradise WA, Vesper BJ, Goel A, Waltonen JD, Altman KW, Haines GK, Radosevich JA. Nitric oxide: perspectives and emerging studies of a well known cytotoxin. Int J Mol Sci 2010; 11:2715-45. [PMID: 20717533 PMCID: PMC2920563 DOI: 10.3390/ijms11072715] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 06/17/2010] [Accepted: 07/13/2010] [Indexed: 12/19/2022] Open
Abstract
The free radical nitric oxide (NO•) is known to play a dual role in human physiology and pathophysiology. At low levels, NO• can protect cells; however, at higher levels, NO• is a known cytotoxin, having been implicated in tumor angiogenesis and progression. While the majority of research devoted to understanding the role of NO• in cancer has to date been tissue-specific, we herein review underlying commonalities of NO• which may well exist among tumors arising from a variety of different sites. We also discuss the role of NO• in human physiology and pathophysiology, including the very important relationship between NO• and the glutathione-transferases, a class of protective enzymes involved in cellular protection. The emerging role of NO• in three main areas of epigenetics—DNA methylation, microRNAs, and histone modifications—is then discussed. Finally, we describe the recent development of a model cell line system in which human tumor cell lines were adapted to high NO• (HNO) levels. We anticipate that these HNO cell lines will serve as a useful tool in the ongoing efforts to better understand the role of NO• in cancer.
Collapse
Affiliation(s)
- William A. Paradise
- Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA; E-Mails: (W.A.P.); (B.J.V.)
- Department of Jesse Brown, Veterans Administration Medical Center, Chicago, IL 60612, USA
| | - Benjamin J. Vesper
- Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA; E-Mails: (W.A.P.); (B.J.V.)
- Department of Jesse Brown, Veterans Administration Medical Center, Chicago, IL 60612, USA
| | - Ajay Goel
- Division of Gastroenterology, Department of Internal Medicine, Charles A. Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, Dallas, TX 75246, USA; E-Mail:
| | - Joshua D. Waltonen
- Department of Otolaryngology, Wake Forest University, Winston-Salem, NC 27157, USA; E-Mail:
| | | | - G. Kenneth Haines
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA; E-Mail:
| | - James A. Radosevich
- Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA; E-Mails: (W.A.P.); (B.J.V.)
- Department of Jesse Brown, Veterans Administration Medical Center, Chicago, IL 60612, USA
- Author to whom correspondence should be addressed; E-Mail:
| |
Collapse
|
32
|
Xue Y, Liu Z, Gao X, Jin C, Wen L, Yao X, Ren J. GPS-SNO: computational prediction of protein S-nitrosylation sites with a modified GPS algorithm. PLoS One 2010; 5:e11290. [PMID: 20585580 PMCID: PMC2892008 DOI: 10.1371/journal.pone.0011290] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 06/04/2010] [Indexed: 11/18/2022] Open
Abstract
As one of the most important and ubiquitous post-translational modifications (PTMs) of proteins, S-nitrosylation plays important roles in a variety of biological processes, including the regulation of cellular dynamics and plasticity. Identification of S-nitrosylated substrates with their exact sites is crucial for understanding the molecular mechanisms of S-nitrosylation. In contrast with labor-intensive and time-consuming experimental approaches, prediction of S-nitrosylation sites using computational methods could provide convenience and increased speed. In this work, we developed a novel software of GPS-SNO 1.0 for the prediction of S-nitrosylation sites. We greatly improved our previously developed algorithm and released the GPS 3.0 algorithm for GPS-SNO. By comparison, the prediction performance of GPS 3.0 algorithm was better than other methods, with an accuracy of 75.80%, a sensitivity of 53.57% and a specificity of 80.14%. As an application of GPS-SNO 1.0, we predicted putative S-nitrosylation sites for hundreds of potentially S-nitrosylated substrates for which the exact S-nitrosylation sites had not been experimentally determined. In this regard, GPS-SNO 1.0 should prove to be a useful tool for experimentalists. The online service and local packages of GPS-SNO were implemented in JAVA and are freely available at: http://sno.biocuckoo.org/.
Collapse
Affiliation(s)
- Yu Xue
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zexian Liu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xinjiao Gao
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Changjiang Jin
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Longping Wen
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xuebiao Yao
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Jian Ren
- Life Sciences School, Sun Yat-sen University (SYSU), Guangzhou, Guangdong, China
| |
Collapse
|
33
|
Malik M, Shukla A, Amin P, Niedelman W, Lee J, Jividen K, Phang JM, Ding J, Suh KS, Curmi PMG, Yuspa SH. S-nitrosylation regulates nuclear translocation of chloride intracellular channel protein CLIC4. J Biol Chem 2010; 285:23818-28. [PMID: 20504765 DOI: 10.1074/jbc.m109.091611] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear translocation of chloride intracellular channel protein CLIC4 is essential for its role in Ca(2+)-induced differentiation, stress-induced apoptosis, and modulating TGF-beta signaling in mouse epidermal keratinocytes. However, post-translational modifications on CLIC4 that govern nuclear translocation and thus these activities remain to be elucidated. The structure of CLIC4 is dependent on the redox environment, in vitro, and translocation may depend on reactive oxygen and nitrogen species in the cell. Here we show that NO directly induces nuclear translocation of CLIC4 that is independent of the NO-cGMP pathway. Indeed, CLIC4 is directly modified by NO through S-nitrosylation of a cysteine residue, as measured by the biotin switch assay. NO enhances association of CLIC4 with the nuclear import proteins importin alpha and Ran. This is likely a result of the conformational change induced by S-nitrosylated CLIC4 that leads to unfolding of the protein, as exhibited by CD spectra analysis and trypsinolysis of the modified protein. Cysteine mutants of CLIC4 exhibit altered nitrosylation, nuclear residence, and stability, compared with the wild type protein likely as a consequence of altered tertiary structure. Moreover, tumor necrosis factor alpha-induced nuclear translocation of CLIC4 is dependent on nitric-oxide synthase activity. Inhibition of nitric-oxide synthase activity inhibits tumor necrosis factor alpha-induced nitrosylation and association with importin alpha and Ran and ablates CLIC4 nuclear translocation. These results suggest that S-nitrosylation governs CLIC4 structure, its association with protein partners, and thus its intracellular distribution.
Collapse
Affiliation(s)
- Mariam Malik
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Nitric oxide (NO) plays an important role in the regulation of cardiovascular function. In addition to the classic NO activation of the cGMP-dependent pathway, NO can also regulate cell function through protein S-nitrosylation, a redox dependent, thiol-based, reversible posttranslational protein modification that involves attachment of an NO moiety to a nucleophilic protein sulfhydryl group. There are emerging data suggesting that S-nitrosylation of proteins plays an important role in cardioprotection. Protein S-nitrosylation not only leads to changes in protein structure and function but also prevents these thiol(s) from further irreversible oxidative/nitrosative modification. A better understanding of the mechanism regulating protein S-nitrosylation and its role in cardioprotection will provide us new therapeutic opportunities and targets for interventions in cardiovascular diseases.
Collapse
Affiliation(s)
- Junhui Sun
- Translational Medicine Branch, NHLBI, NIH, 10 Center Dr, Room 7N112, Bethesda, MD 20892, USA
| | | |
Collapse
|
35
|
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune syndrome marked by autoantibody production. Innate immunity is essential to transform humoral autoimmunity into the clinical lupus phenotype. Nitric oxide (NO) is a membrane- permeable signaling molecule involved in a broad array of biologic processes through its ability to modify proteins, lipids, and DNA and alter their function and immunogenicity. The literature regarding mechanisms through which NO regulates inflammation and cell survival is filled with contradictory findings. However, the effects of NO on cellular processes depend on its concentration and its interaction with reactive oxygen. Understanding this interaction will be essential to determine mechanisms through which reactive intermediates induce cellular autoimmunity and contribute to a sustained innate immune response and organ damage in SLE.
Collapse
Affiliation(s)
- Jim C Oates
- Medical Service, Ralph H. Johnson VA Medical Center, Charleston, SC 29425, USA.
| |
Collapse
|
36
|
Calabrese V, Cornelius C, Rizzarelli E, Owen JB, Dinkova-Kostova AT, Butterfield DA. Nitric oxide in cell survival: a janus molecule. Antioxid Redox Signal 2009; 11:2717-39. [PMID: 19558211 DOI: 10.1089/ars.2009.2721] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nitric oxide (NO), plays multiple roles in the nervous system. In addition to regulating proliferation, survival and differentiation of neurons, NO is involved in synaptic activity, neural plasticity, and memory function. Nitric oxide promotes survival and differentiation of neural cells and exerts long-lasting effects through regulation of transcription factors and modulation of gene expression. Signaling by reactive nitrogen species is carried out mainly by targeted modifications of critical cysteine residues in proteins, including S-nitrosylation and S-oxidation, as well as by lipid nitration. NO and other reactive nitrogen species are also involved in neuroinflammation and neurodegeneration, such as in Alzheimer disease, amyotrophic lateral sclerosis, Parkinson disease, multiple sclerosis, Friedreich ataxia, and Huntington disease. Susceptibility to NO and peroxynitrite exposure may depend on factors such as the intracellular reduced glutathione and cellular stress resistance signaling pathways. Thus, neurons, in contrast to astrocytes, appear particularly vulnerable to the effects of nitrosative stress. This article reviews the current understanding of the cytotoxic versus cytoprotective effects of NO in the central nervous system, highlighting the Janus-faced properties of this small molecule. The significance of NO in redox signaling and modulation of the adaptive cellular stress responses and its exciting future perspectives also are discussed.
Collapse
Affiliation(s)
- Vittorio Calabrese
- Department of Chemistry, Biochemistry and Molecular Biology Section, Faculty of Medicine, University of Catania , Catania, Italy.
| | | | | | | | | | | |
Collapse
|
37
|
Chowdhury G, Guengerich FP. Tandem mass spectrometry-based detection of c4'-oxidized abasic sites at specific positions in DNA fragments. Chem Res Toxicol 2009; 22:1310-9. [PMID: 19496605 DOI: 10.1021/tx900115z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxidative damage to DNA has been linked to aging, cancer, and other biological processes. Reactive oxygen species and various antitumor agents including bleomycin and ionizing radiation have been shown to cause oxidative DNA sugar damage. Detection of DNA lesions is important for understanding the toxicological or therapeutic consequences associated with such agents. C4'-oxidized abasic sites (C4-AP) are produced by the antitumor drug bleomycin and ionizing radiation. The currently available methods for the detection of C4-AP cannot provide both structural and sequence information. We have developed an LC-ESI-MS-based approach for specific detection and mapping of C4-AP from a mixture of lesions. We show using Fe-bleomycin-damaged DNA that C4-AP can be detected at cytosine and thymine sites by direct MS analysis. Our results reveal that collision-induced dissociation of C4-AP-containing oligonucleotides results in preferential fragmentation at C4-AP sites with the formation of the unique a* ions (18 amu more than the a-B ions) that allow mapping of the C4-AP sites. Various chemical modification strategies (e.g., reduction with NaBH4 and NaBD4 and derivatization with methoxyamine and hydrazine, followed by LC-MS analysis) were also used for unambiguous detection of C4-AP sites. Finally, we show that the methods described here can detect the presence of C4-AP at specific sites in a complex sample such as hydroxyl radical-damaged DNA. The LC-MS approach was also used for the simultaneous detection of the other C4'-oxidation end product, 3'-phosphoglycolate, at a specific site in hydroxyl radical-damaged DNA. Thus, LC-MS provides a rapid and direct approach for the detection and mapping of oxidative DNA lesions.
Collapse
Affiliation(s)
- Goutam Chowdhury
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, 638 Robinson Research Building, 2200 Pierce Avenue, Nashville, Tennessee 37232-0146, USA
| | | |
Collapse
|
38
|
Illi B, Colussi C, Grasselli A, Farsetti A, Capogrossi MC, Gaetano C. NO sparks off chromatin: tales of a multifaceted epigenetic regulator. Pharmacol Ther 2009; 123:344-52. [PMID: 19464317 DOI: 10.1016/j.pharmthera.2009.05.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 05/11/2009] [Indexed: 10/20/2022]
Abstract
The discovery of nitric oxide (NO) revealed its ambiguous nature, which is related to its pleiotropic activities that control the homeostasis of every organism from bacteria to mammals in several physiological and pathological situations. The wide range of action of NO basically depends on two features: 1) the variety of chemical reactions depending on NO, and 2) the differential cellular responses elicited by distinct NO concentrations. Despite the increasing body of knowledge regarding its chemistry, biology and NO-dependent signaling pathways, little information is available on the nuclear actions of NO in terms of gene expression regulation. Indeed, studies of a putative role for this diatomic compound in regulating chromatin remodeling are still in their infancy. Only recently has the role of NO in epigenetics emerged, and some of its putative epigenetic properties are still only hypothetical. In the present review, we discuss the current evidence for NO-related mechanisms of epigenetic gene expression regulation. We link some of the well known NO chemical reactions and metabolic processes (e.g., S-nitrosylation of thiols, tyrosine nitration, cGMP production) to chromatin modification and address the most recent, striking hypothesis about NO and the control of chromosomes structure.
Collapse
Affiliation(s)
- Barbara Illi
- Laboratorio di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | | | | | | | | | | |
Collapse
|
39
|
Arnér ESJ. Focus on mammalian thioredoxin reductases--important selenoproteins with versatile functions. Biochim Biophys Acta Gen Subj 2009; 1790:495-526. [PMID: 19364476 DOI: 10.1016/j.bbagen.2009.01.014] [Citation(s) in RCA: 498] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 01/30/2009] [Indexed: 02/07/2023]
Abstract
Thioredoxin systems, involving redox active thioredoxins and thioredoxin reductases, sustain a number of important thioredoxin-dependent pathways. These redox active proteins support several processes crucial for cell function, cell proliferation, antioxidant defense and redox-regulated signaling cascades. Mammalian thioredoxin reductases are selenium-containing flavoprotein oxidoreductases, dependent upon a selenocysteine residue for reduction of the active site disulfide in thioredoxins. Their activity is required for normal thioredoxin function. The mammalian thioredoxin reductases also display surprisingly multifaceted properties and functions beyond thioredoxin reduction. Expressed from three separate genes (in human named TXNRD1, TXNRD2 and TXNRD3), the thioredoxin reductases can each reduce a number of different types of substrates in different cellular compartments. Their expression patterns involve intriguingly complex transcriptional mechanisms resulting in several splice variants, encoding a number of protein variants likely to have specialized functions in a cell- and tissue-type restricted manner. The thioredoxin reductases are also targeted by a number of drugs and compounds having an impact on cell function and promoting oxidative stress, some of which are used in treatment of rheumatoid arthritis, cancer or other diseases. However, potential specific or essential roles for different forms of human or mouse thioredoxin reductases in health or disease are still rather unclear, although it is known that at least the murine Txnrd1 and Txnrd2 genes are essential for normal development during embryogenesis. This review is a survey of current knowledge of mammalian thioredoxin reductase function and expression, with a focus on human and mouse and a discussion of the striking complexity of these proteins. Several yet open questions regarding their regulation and roles in different cells or tissues are emphasized. It is concluded that the intriguingly complex regulation and function of mammalian thioredoxin reductases within the cellular context and in intact mammals strongly suggests that their functions are highly fi ne-tuned with the many pathways involving thioredoxins and thioredoxin-related proteins. These selenoproteins furthermore propagate many functions beyond a reduction of thioredoxins. Aberrant regulation of thioredoxin reductases, or a particular dependence upon these enzymes in diseased cells, may underlie their presumed therapeutic importance as enzymatic targets using electrophilic drugs. These reductases are also likely to mediate several of the effects on health and disease that are linked to different levels of nutritional selenium intake. The thioredoxin reductases and their splice variants may be pivotal components of diverse cellular signaling pathways, having importance in several redox-related aspects of health and disease. Clearly, a detailed understanding of mammalian thioredoxin reductases is necessary for a full comprehension of the thioredoxin system and of selenium dependent processes in mammals.
Collapse
Affiliation(s)
- Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
40
|
Guo CJ, Atochina-Vasserman EN, Abramova E, Foley JP, Zaman A, Crouch E, Beers MF, Savani RC, Gow AJ. S-nitrosylation of surfactant protein-D controls inflammatory function. PLoS Biol 2009; 6:e266. [PMID: 19007302 PMCID: PMC2581630 DOI: 10.1371/journal.pbio.0060266] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Accepted: 09/16/2008] [Indexed: 01/14/2023] Open
Abstract
The pulmonary collectins, surfactant proteins A and D (SP-A and SP-D) have been implicated in the regulation of the innate immune system within the lung. In particular, SP-D appears to have both pro- and anti-inflammatory signaling functions. At present, the molecular mechanisms involved in switching between these functions remain unclear. SP-D differs in its quaternary structure from SP-A and the other members of the collectin family, such as C1q, in that it forms large multimers held together by the N-terminal domain, rather than aligning the triple helix domains in the traditional "bunch of flowers" arrangement. There are two cysteine residues within the hydrophobic N terminus of SP-D that are critical for multimer assembly and have been proposed to be involved in stabilizing disulfide bonds. Here we show that these cysteines exist within the reduced state in dodecameric SP-D and form a specific target for S-nitrosylation both in vitro and by endogenous, pulmonary derived nitric oxide (NO) within a rodent acute lung injury model. S-nitrosylation is becoming increasingly recognized as an important post-translational modification with signaling consequences. The formation of S-nitrosothiol (SNO)-SP-D both in vivo and in vitro results in a disruption of SP-D multimers such that trimers become evident. SNO-SP-D but not SP-D, either dodecameric or trimeric, is chemoattractive for macrophages and induces p38 MAPK phosphorylation. The signaling capacity of SNO-SP-D appears to be mediated by binding to calreticulin/CD91. We propose that NO controls the dichotomous nature of this pulmonary collectin and that posttranslational modification by S-nitrosylation causes quaternary structural alterations in SP-D, causing it to switch its inflammatory signaling role. This represents new insight into both the regulation of protein function by S-nitrosylation and NO's role in innate immunity.
Collapse
Affiliation(s)
- Chang-Jiang Guo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Elena N Atochina-Vasserman
- Division of Pulmonary and Critical Care Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Elena Abramova
- Division of Pulmonary and Critical Care Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Joseph P Foley
- Division of Neonatology, Department of Pediatrics, Joseph Stokes Jr. Research Institute of The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Aisha Zaman
- Division of Neonatology, Department of Pediatrics, Joseph Stokes Jr. Research Institute of The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Erika Crouch
- Department of Pathology and Immunology, Washington University, St. Louis, Missouri, United States of America
| | - Michael F Beers
- Division of Pulmonary and Critical Care Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Rashmin C Savani
- Division of Neonatology, Department of Pediatrics, Joseph Stokes Jr. Research Institute of The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Division of Neonatal-Perinatal Medicine, Division of Pulmonary and Vascular Biology, University of Texas Southwestern at Dallas, Dallas, Texas, United States of America
| | - Andrew J Gow
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
41
|
Forman HJ, Fukuto JM, Miller T, Zhang H, Rinna A, Levy S. The chemistry of cell signaling by reactive oxygen and nitrogen species and 4-hydroxynonenal. Arch Biochem Biophys 2008; 477:183-95. [PMID: 18602883 PMCID: PMC2590784 DOI: 10.1016/j.abb.2008.06.011] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 06/11/2008] [Accepted: 06/14/2008] [Indexed: 02/07/2023]
Abstract
During the past several years, major advances have been made in understanding how reactive oxygen species (ROS) and nitrogen species (RNS) participate in signal transduction. Identification of the specific targets and the chemical reactions involved still remains to be resolved with many of the signaling pathways in which the involvement of reactive species has been determined. Our understanding is that ROS and RNS have second messenger roles. While cysteine residues in the thiolate (ionized) form found in several classes of signaling proteins can be specific targets for reaction with H(2)O(2) and RNS, better understanding of the chemistry, particularly kinetics, suggests that for many signaling events in which ROS and RNS participate, enzymatic catalysis is more likely to be involved than non-enzymatic reaction. Due to increased interest in how oxidation products, particularly lipid peroxidation products, also are involved with signaling, a review of signaling by 4-hydroxy-2-nonenal (HNE) is included. This article focuses on the chemistry of signaling by ROS, RNS, and HNE and will describe reactions with selected target proteins as representatives of the mechanisms rather attempt to comprehensively review the many signaling pathways in which the reactive species are involved.
Collapse
Affiliation(s)
- Henry Jay Forman
- School of Natural Sciences, University of California, Merced, 4225 N. Hospital Road, Building 1200, Merced, CA 95344, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Winterbourn CC, Hampton MB. Thiol chemistry and specificity in redox signaling. Free Radic Biol Med 2008; 45:549-61. [PMID: 18544350 DOI: 10.1016/j.freeradbiomed.2008.05.004] [Citation(s) in RCA: 889] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 05/02/2008] [Accepted: 05/06/2008] [Indexed: 12/16/2022]
Abstract
Exposure of cells to sublethal oxidative stress results in the modulation of various signaling pathways. Oxidants can activate and inactivate transcription factors, membrane channels, and metabolic enzymes, and regulate calcium-dependent and phosphorylation signaling pathways. Oxidation and reduction of thiol proteins are thought to be the major mechanisms by which reactive oxidants integrate into cellular signal transduction pathways. This review focuses on mechanisms for sensing and transmitting redox signals, from the perspective of their chemical reactivity with specific oxidants. We discuss substrate preferences for different oxidants and how the kinetics of these reactions determines how each oxidant will react in a cell. This kinetic approach helps to identify initial oxidant-sensitive targets and elucidate mechanisms involved in transmission of redox signals. It indicates that only those proteins with very high reactivity, such as peroxiredoxins, are likely to be direct targets for hydrogen peroxide. Other more modestly reactive thiol proteins such as protein tyrosine phosphatases are more likely to become oxidized by an indirect mechanism. The review also examines oxidative changes observed during receptor-mediated signaling, the strengths and limitations of detection methods for reactive oxidant production, and the evidence for hydrogen peroxide acting as the second messenger. We discuss areas where observations in cell systems can be rationalized with the reactivity of specific oxidants and where further work is needed to understand the mechanisms involved.
Collapse
Affiliation(s)
- Christine C Winterbourn
- Free Radical Research Group and the National Research Centre for Growth and Development, Department of Pathology, University of Otago, Christchurch, New Zealand.
| | | |
Collapse
|
43
|
Janssen-Heininger YMW, Mossman BT, Heintz NH, Forman HJ, Kalyanaraman B, Finkel T, Stamler JS, Rhee SG, van der Vliet A. Redox-based regulation of signal transduction: principles, pitfalls, and promises. Free Radic Biol Med 2008; 45:1-17. [PMID: 18423411 PMCID: PMC2453533 DOI: 10.1016/j.freeradbiomed.2008.03.011] [Citation(s) in RCA: 581] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Revised: 03/04/2008] [Accepted: 03/11/2008] [Indexed: 12/15/2022]
Abstract
Oxidants are produced as a by-product of aerobic metabolism, and organisms ranging from prokaryotes to mammals have evolved with an elaborate and redundant complement of antioxidant defenses to confer protection against oxidative insults. Compelling data now exist demonstrating that oxidants are used in physiological settings as signaling molecules with important regulatory functions controlling cell division, migration, contraction, and mediator production. These physiological functions are carried out in an exquisitely regulated and compartmentalized manner by mild oxidants, through subtle oxidative events that involve targeted amino acids in proteins. The precise understanding of the physiological relevance of redox signal transduction has been hampered by the lack of specificity of reagents and the need for chemical derivatization to visualize reversible oxidations. In addition, it is difficult to measure these subtle oxidation events in vivo. This article reviews some of the recent findings that illuminate the significance of redox signaling and exciting future perspectives. We also attempt to highlight some of the current pitfalls and the approaches needed to advance this important area of biochemical and biomedical research.
Collapse
|
44
|
Xu L, Han C, Lim K, Wu T. Activation of cytosolic phospholipase A2alpha through nitric oxide-induced S-nitrosylation. Involvement of inducible nitric-oxide synthase and cyclooxygenase-2. J Biol Chem 2007; 283:3077-3087. [PMID: 18029351 DOI: 10.1074/jbc.m705709200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cytosolic phospholipase A(2)alpha (cPLA(2)alpha) is the rate-limiting key enzyme that cleaves arachidonic acid (AA) from membrane phospholipids for the biosynthesis of eicosanoids, including prostaglandin E(2) (PGE(2)), a key lipid mediator involved in inflammation and carcinogenesis. Here we show that cPLA(2)alpha protein is S-nitrosylated, and its activity is enhanced by nitric oxide (NO). Forced expression of inducible nitric-oxide synthase (iNOS) in human epithelial cells induced cPLA(2)alpha S-nitrosylation, enhanced its catalytic activity, and increased AA release. The iNOS-induced cPLA(2)alpha activation is blocked by the specific iNOS inhibitor, 1400W. The addition of the NO donor, S-nitrosoglutathione, to isolated cell lysates or purified recombinant human cPLA(2)alpha protein induced S-nitrosylation of cPLA(2)alpha in vitro. Incubation of cultured cells with the iNOS substrate L-arginine and NO donor significantly increased cPLA(2)alpha activity and AA release. These findings demonstrate that iNOS-derived NO S-nitrosylates and activates cPLA(2)alpha in human cells. Site-directed mutagenesis revealed that Cys-152 of cPLA(2)alpha is critical for S-nitrosylation. Furthermore, COX-2 induction or expression markedly enhanced iNOS-induced cPLA(2)alpha S-nitrosylation and activation, leading to 9-, 23-, and 20-fold increase of AA release and 100-, 38-, and 88-fold of PGE(2) production in A549, SG231, and HEK293 cells, respectively, whereas COX-2 alone leads to less than 2-fold change. These results indicate that COX-2 has the ability to enhance iNOS-induced cPLA(2)alpha S-nitrosylation and that maximal PG synthesis is achieved by the synergistic interaction among iNOS, cPLA(2)alpha, and COX-2. Since COX-2 enhances the formation of cPLA(2)alpha-iNOS binding complex, it appears that COX-2-induced augmentation of cPLA(2)alpha S-nitrosylation is mediated at least in part through increased association between iNOS and cPLA(2)alpha. These findings disclose a novel link among cPLA(2)alpha, iNOS, and COX-2, which form a multiprotein complex leading to cPLA(2)alpha S-nitrosylation and activation. Therefore, therapy aimed at disrupting this interplay may represent a promising strategy to effectively inhibit PGE(2) production and prevent inflammation and carcinogenesis.
Collapse
Affiliation(s)
- Lihong Xu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Chang Han
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Kyu Lim
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Tong Wu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213.
| |
Collapse
|
45
|
Huang D, Cai DT, Chua RYR, Kemeny DM, Wong SH. Nitric-oxide synthase 2 interacts with CD74 and inhibits its cleavage by caspase during dendritic cell development. J Biol Chem 2007; 283:1713-1722. [PMID: 18003616 DOI: 10.1074/jbc.m705998200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Dendritic cells (DC) are professional antigen-presenting cells that possess specific and efficient mechanisms to initiate immune responses. Upon encounter with pathogens, immature DC will go through a maturation process that converts them to highly immunogenic mature DC. Despite the fact that nitric oxide (NO) was produced in large amounts in maturing DC, it is still unclear whether NO is the key molecule that initiates and enhances DC maturation and T cell proliferation, respectively. Here, we report that NO donor and overexpression of either nitric-oxide synthase 2 (NOS2) or nitric-oxide synthase 3 (NOS3) alone can induce surface expression of major histocompatibility complex class II (MHC II) and both the essential co-stimulatory molecules CD80 and CD86 in immature DC. Consistently, NO donor-treated immature DC were capable of enhancing T cell proliferation in vitro in the absence of lipolysaccharide. Interestingly, NOS2 interacts with CD74 (the MHC II-associated invariant chain), and the degradation of CD74 by caspases in immature DC was inhibited upon treatment with NO donor. Because the trafficking of MHC II is CD74-dependent, the increase in cell surface localization of MHC II in maturing DC is in part due to the increase in CD74 protein expression in the presence of NOS2 and NO.
Collapse
Affiliation(s)
- Dachuan Huang
- Laboratory of Membrane Trafficking and Immunoregulation, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Republic of Singapore
| | - Deyu Tarika Cai
- Laboratory of Membrane Trafficking and Immunoregulation, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Republic of Singapore
| | - Rong Yuan Ray Chua
- Laboratory of Membrane Trafficking and Immunoregulation, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Republic of Singapore
| | - David Michael Kemeny
- Immunology Programme, National University of Singapore, Singapore 117597, Republic of Singapore
| | - Siew Heng Wong
- Laboratory of Membrane Trafficking and Immunoregulation, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Republic of Singapore; Immunology Programme, National University of Singapore, Singapore 117597, Republic of Singapore.
| |
Collapse
|