1
|
Suzuki Y, Nakamura Y, Igarashi H. Interstitial fluid flow decreases with age, especially after 50 years. Neurobiol Aging 2024; 141:14-20. [PMID: 38796942 DOI: 10.1016/j.neurobiolaging.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
Physiological age-related alterations in the interstitial flow in the brain, which plays an important role in waste product removal, remain unclear. Using [15O]H2O positron emission tomography (PET), water dynamics were evaluated in 63 healthy adult participants aged between 20 and 80 years. Interstitial flow was assessed by influx ratio (IR) and drain rate (DR), using time-activity concentration data. Participants were divided into four age groups with 15-year ranges, to evaluate age-related functional alterations. At least one of the indices declined significantly with age across all groups. A significant linear negative correlation between age and both indicators was found in the scatter plots (IR: R2 = 0.54, DR: R2 = 0.44); both indicators were predominantly lower after age 50 years. These results suggest interstitial flow decreases with age, especially after 50 years. These important findings can contribute to devising therapeutic interventions for neurological diseases characterized by abnormal accumulation of waste products, and suggest the need for taking measures to maintain interstitial flow starting around the age of 50 years.
Collapse
Affiliation(s)
- Yuji Suzuki
- Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, Niigata, Japan.
| | - Yukimi Nakamura
- Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hironaka Igarashi
- Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
2
|
Castro-Arnau J, Chauvigné F, Toft-Bertelsen TL, Finn RN, MacAulay N, Cerdà J. Aqp4a and Trpv4 mediate regulatory cell volume increase for swimming maintenance of marine fish spermatozoa. Cell Mol Life Sci 2024; 81:285. [PMID: 38969941 PMCID: PMC11335209 DOI: 10.1007/s00018-024-05341-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/19/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
Volume regulation is essential for cell homeostasis and physiological function. Amongst the sensory molecules that have been associated with volume regulation is the transient receptor potential vanilloid 4 (TRPV4), which is a non-selective cation channel that in conjunction with aquaporins, typically controls regulatory volume decrease (RVD). Here we show that the interaction between orthologous AQP4 (Aqp4a) and TRPV4 (Trpv4) is important for regulatory volume increase (RVI) in post-activated marine fish spermatozoa under high osmotic stress. Based upon electrophysiological, volumetric, and in vivo and ex vivo functional experiments using the pharmacological and immunological inhibition of Aqp4a and Trpv4 our model suggests that upon ejaculation and exposure to the hypertonic seawater, spermatozoon shrinkage is initially mediated by water efflux through Aqp1aa in the flagellar tail. The shrinkage results in an increase in intracellular Ca2+ concentration, and the activation of sperm motility and a Na+/K+/2Cl- (NKCC1) cotransporter. The activity of NKCC1 is required for the initiation of cell swelling, which secondarily activates the Aqp4a-Trpv4 complex to facilitate the influx of water via Aqp4a-M43 and Ca2+ via Trpv4 and L-type channels for the mediation of RVI. The inhibitory experiments show that blocking of each of these events prevents either shrinkage or RVI. Our data thus reveal that post-activated marine fish spermatozoa are capable of initiating RVI under a high hypertonic stress, which is essential for the maintenance of sperm motility.
Collapse
Affiliation(s)
- Júlia Castro-Arnau
- Institute of Marine Sciences, Spanish National Research Council (CSIC), Barcelona, 08003, Spain
- Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Bellaterra (Barcelona), 08193, Spain
- Department of Cell Biology & Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - François Chauvigné
- Institute of Marine Sciences, Spanish National Research Council (CSIC), Barcelona, 08003, Spain
- Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Bellaterra (Barcelona), 08193, Spain
| | | | - Roderick Nigel Finn
- Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Bellaterra (Barcelona), 08193, Spain
- Department of Biological Sciences, University of Bergen, Bergen, 5020, Norway
| | - Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, Copenhagen N, 2200, Denmark
| | - Joan Cerdà
- Institute of Marine Sciences, Spanish National Research Council (CSIC), Barcelona, 08003, Spain.
- Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Bellaterra (Barcelona), 08193, Spain.
| |
Collapse
|
3
|
Chen Z, Lai JHC, Xu J, Zhang H, Huang J, Chan KWY. The effect of aquaporin-4 inhibition on cerebrospinal fluid-tissue water exchange in mouse brain detected by magnetization transfer indirect spin labeling MRI. NMR IN BIOMEDICINE 2024; 37:e5093. [PMID: 38163739 DOI: 10.1002/nbm.5093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 11/19/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024]
Abstract
The fluid transport of cerebrospinal fluid (CSF) and interstitial fluid in surrounding tissues plays an important role in the drainage pathway that facilitates waste clearance from the brain. This pathway is known as the glymphatic or perivascular system, and its functions are dependent on aquaporin-4 (AQP4). Recently, magnetization transfer indirect spin labeling (MISL) magnetic resonance imaging (MRI) has been proposed as a noninvasive and noncontrast-enhanced method for detecting water exchange between CSF and brain tissue. In this study, we first optimized the MISL sequence at preclinical 3 T MRI, and then studied the correlation of MISL in CSF with magnetization transfer (MT) in brain tissue, as well as the altered water exchange under AQP4 inhibition, using C57BL/6 mice. Results showed a strong correlation of MISL signal with MT signal. With the AQP4 inhibitor, we observed a significant decrease in MISL value (P < 0.05), suggesting that the hampered AQP4 activity led to decreased water exchange between CSF and brain tissue or the impairment of the glymphatic function. Overall, our findings demonstrate the potential application of MISL in assessing brain water exchange at 3 T MRI and its potential clinical translation.
Collapse
Affiliation(s)
- Zilin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Joseph H C Lai
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hao Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Jianpan Huang
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong, China
| | - Kannie W Y Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
- Tung Biomedical Sciences Centre (TBSC), Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
4
|
Giannetto MJ, Gomolka RS, Gahn-Martinez D, Newbold EJ, Bork PAR, Chang E, Gresser M, Thompson T, Mori Y, Nedergaard M. Glymphatic fluid transport is suppressed by the aquaporin-4 inhibitor AER-271. Glia 2024; 72:982-998. [PMID: 38363040 PMCID: PMC11203403 DOI: 10.1002/glia.24515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
The glymphatic system transports cerebrospinal fluid (CSF) into the brain via arterial perivascular spaces and removes interstitial fluid from the brain along perivenous spaces and white matter tracts. This directional fluid flow supports the clearance of metabolic wastes produced by the brain. Glymphatic fluid transport is facilitated by aquaporin-4 (AQP4) water channels, which are enriched in the astrocytic vascular endfeet comprising the outer boundary of the perivascular space. Yet, prior studies of AQP4 function have relied on genetic models, or correlated altered AQP4 expression with glymphatic flow in disease states. Herein, we sought to pharmacologically manipulate AQP4 function with the inhibitor AER-271 to assess the contribution of AQP4 to glymphatic fluid transport in mouse brain. Administration of AER-271 inhibited glymphatic influx as measured by CSF tracer infused into the cisterna magna and inhibited increases in the interstitial fluid volume as measured by diffusion-weighted MRI. Furthermore, AER-271 inhibited glymphatic efflux as assessed by an in vivo clearance assay. Importantly, AER-271 did not affect AQP4 localization to the astrocytic endfeet, nor have any effect in AQP4 deficient mice. Since acute pharmacological inhibition of AQP4 directly decreased glymphatic flow in wild-type but not in AQP4 deficient mice, we foresee AER-271 as a new tool for manipulation of the glymphatic system in rodent brain.
Collapse
Affiliation(s)
- Michael J. Giannetto
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - Ryszard S. Gomolka
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Daniel Gahn-Martinez
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Evan J. Newbold
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - Peter A. R. Bork
- Department of Physics, Technical University of Denmark, Richard Petersens Plads, 2800 Lyngby, Denmark
| | - Ethan Chang
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Michael Gresser
- Aeromics Inc., 470 James Street Suite 007, New Haven, CT 06513
| | - Trevor Thompson
- Aeromics Inc., 470 James Street Suite 007, New Haven, CT 06513
| | - Yuki Mori
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
5
|
Harris WJ, Asselin MC, Hinz R, Parkes LM, Allan S, Schiessl I, Boutin H, Dickie BR. In vivo methods for imaging blood-brain barrier function and dysfunction. Eur J Nucl Med Mol Imaging 2023; 50:1051-1083. [PMID: 36437425 PMCID: PMC9931809 DOI: 10.1007/s00259-022-05997-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/09/2022] [Indexed: 11/29/2022]
Abstract
The blood-brain barrier (BBB) is the interface between the central nervous system and systemic circulation. It tightly regulates what enters and is removed from the brain parenchyma and is fundamental in maintaining brain homeostasis. Increasingly, the BBB is recognised as having a significant role in numerous neurological disorders, ranging from acute disorders (traumatic brain injury, stroke, seizures) to chronic neurodegeneration (Alzheimer's disease, vascular dementia, small vessel disease). Numerous approaches have been developed to study the BBB in vitro, in vivo, and ex vivo. The complex multicellular structure and effects of disease are difficult to recreate accurately in vitro, and functional aspects of the BBB cannot be easily studied ex vivo. As such, the value of in vivo methods to study the intact BBB cannot be overstated. This review discusses the structure and function of the BBB and how these are affected in diseases. It then discusses in depth several established and novel methods for imaging the BBB in vivo, with a focus on MRI, nuclear imaging, and high-resolution intravital fluorescence microscopy.
Collapse
Affiliation(s)
- William James Harris
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK
| | - Marie-Claude Asselin
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, University of Manchester, Manchester, UK
| | - Rainer Hinz
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
| | - Laura Michelle Parkes
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK
| | - Stuart Allan
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK
| | - Ingo Schiessl
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK
| | - Herve Boutin
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK.
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK.
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK.
| | - Ben Robert Dickie
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
6
|
Soden PA, Henderson AR, Lee E. A Microfluidic Model of AQP4 Polarization Dynamics and Fluid Transport in the Healthy and Inflamed Human Brain: The First Step Towards Glymphatics-on-a-Chip. Adv Biol (Weinh) 2022; 6:e2200027. [PMID: 35922370 PMCID: PMC9771879 DOI: 10.1002/adbi.202200027] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/01/2022] [Indexed: 01/28/2023]
Abstract
Dysfunction of the aquaporin-4 (AQP4)-dependent glymphatic waste clearance pathway has recently been implicated in the pathogenesis of several neurodegenerative diseases. However, it is difficult to unravel the causative relationship between glymphatic dysfunction, AQP4 depolarization, protein aggregation, and inflammation in neurodegeneration using animal models alone. There is currently a clear, unmet need for in vitro models of the brain's waterscape, and the first steps towards a bona fide "glymphatics-on-a-chip" are taken in the present study. It is demonstrated that chronic exposure to lipopolysaccharide (LPS), amyloid-β(1-42) oligomers, and an AQP4 inhibitor impairs the drainage of fluid and amyloid-β(1-40) tracer in a gliovascular unit (GVU)-on-a-chip model containing human astrocytes and brain microvascular endothelial cells. The LPS-induced drainage impairment is partially retained following cell lysis, indicating that neuroinflammation induces parallel changes in cell-dependent and matrisome-dependent fluid transport pathways in GVU-on-a-chip. Additionally, AQP4 depolarization is observed following LPS treatment, suggesting that LPS-induced drainage impairments on-chip may be driven in part by changes in AQP4-dependent fluid dynamics.
Collapse
Affiliation(s)
- Paul A Soden
- College of Human Ecology, Cornell University, Ithaca, NY, 14853, USA
| | - Aria R Henderson
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Esak Lee
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
7
|
Lapshina KV, Abramova YY, Guzeev MA, Ekimova IV. TGN-020, an Inhibitor of the Water Channel Aquaporin-4, Accelerates Nigrostriatal Neurodegeneration in the Rat Model of Parkinson’s Disease. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022060308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Suzuki Y, Nakamura Y, Igarashi H. Blood Cerebrospinal Fluid Barrier Function Disturbance Can Be Followed by Amyloid-β Accumulation. J Clin Med 2022; 11:6118. [PMID: 36294439 PMCID: PMC9605218 DOI: 10.3390/jcm11206118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/25/2022] [Accepted: 10/13/2022] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Elucidation of the mechanism of amyloid-β accumulation plays an important role in therapeutic strategies for Alzheimer's disease (AD). The aim of this study is to elucidate the relationship between the function of the blood-cerebrospinal fluid barrier (BCSFB) and the clearance of amyloid-β (Aβ). METHODS Twenty-five normal older adult volunteers (60-81 years old) participated in this PET study for clarifying the relationship between interstitial water flow and Aβ accumulation. Water dynamics were analyzed using two indices in [15O]H2O PET, the influx ratio (IR) and drain rate (DR), and Aβ accumulation was assessed qualitatively by [18F]flutemetamol PET. RESULTS [15O]H2O PET examinations conducted initially and after 2 years showed no significant changes in both indices over the 2-year period (IR: 1.03 ± 0.21 and 1.02 ± 0.20, DR: 1.74 ± 0.43 and 1.67 ± 0.47, respectively). In [18F]flutemetamol PET, on the other hand, one of the 25 participants showed positive results and two showed positive changes after 2 years. In these three participants, the two indices of water dynamics showed low values at both periods (IR: 0.60 ± 0.15 and 0.60 ± 0.13, DR: 1.24 ± 0.12 and 1.11 ± 0.10). CONCLUSIONS Our results indicated that BCSFB function disturbances could be followed by Aβ accumulation, because the reduced interstitial flow preceded amyloid accumulation in the positive-change subjects, and amyloid accumulation was not observed in the older adults with sufficiently high values for the two indices. We believe that further elucidation of interstitial water flow will be the key to developing therapeutic strategies for AD, especially with regard to prevention.
Collapse
Affiliation(s)
- Yuji Suzuki
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, Niigata 951-8585, Japan
| | | | | |
Collapse
|
9
|
Molecular Mechanisms of Neuroimmune Crosstalk in the Pathogenesis of Stroke. Int J Mol Sci 2021; 22:ijms22179486. [PMID: 34502395 PMCID: PMC8431165 DOI: 10.3390/ijms22179486] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 12/21/2022] Open
Abstract
Stroke disrupts the homeostatic balance within the brain and is associated with a significant accumulation of necrotic cellular debris, fluid, and peripheral immune cells in the central nervous system (CNS). Additionally, cells, antigens, and other factors exit the brain into the periphery via damaged blood–brain barrier cells, glymphatic transport mechanisms, and lymphatic vessels, which dramatically influence the systemic immune response and lead to complex neuroimmune communication. As a result, the immunological response after stroke is a highly dynamic event that involves communication between multiple organ systems and cell types, with significant consequences on not only the initial stroke tissue injury but long-term recovery in the CNS. In this review, we discuss the complex immunological and physiological interactions that occur after stroke with a focus on how the peripheral immune system and CNS communicate to regulate post-stroke brain homeostasis. First, we discuss the post-stroke immune cascade across different contexts as well as homeostatic regulation within the brain. Then, we focus on the lymphatic vessels surrounding the brain and their ability to coordinate both immune response and fluid homeostasis within the brain after stroke. Finally, we discuss how therapeutic manipulation of peripheral systems may provide new mechanisms to treat stroke injury.
Collapse
|
10
|
MacAulay N. Reply to 'Aquaporin 4 and glymphatic flow have central roles in brain fluid homeostasis'. Nat Rev Neurosci 2021; 22:651-652. [PMID: 34408335 DOI: 10.1038/s41583-021-00515-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Nanna MacAulay
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
11
|
Howe MD, McCullough LD, Urayama A. The Role of Basement Membranes in Cerebral Amyloid Angiopathy. Front Physiol 2020; 11:601320. [PMID: 33329053 PMCID: PMC7732667 DOI: 10.3389/fphys.2020.601320] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/28/2020] [Indexed: 12/25/2022] Open
Abstract
Dementia is a neuropsychiatric syndrome characterized by cognitive decline in multiple domains, often leading to functional impairment in activities of daily living, disability, and death. The most common causes of age-related progressive dementia include Alzheimer's disease (AD) and vascular cognitive impairment (VCI), however, mixed disease pathologies commonly occur, as epitomized by a type of small vessel pathology called cerebral amyloid angiopathy (CAA). In CAA patients, the small vessels of the brain become hardened and vulnerable to rupture, leading to impaired neurovascular coupling, multiple microhemorrhage, microinfarction, neurological emergencies, and cognitive decline across multiple functional domains. While the pathogenesis of CAA is not well understood, it has long been thought to be initiated in thickened basement membrane (BM) segments, which contain abnormal protein deposits and amyloid-β (Aβ). Recent advances in our understanding of CAA pathogenesis link BM remodeling to functional impairment of perivascular transport pathways that are key to removing Aβ from the brain. Dysregulation of this process may drive CAA pathogenesis and provides an important link between vascular risk factors and disease phenotype. The present review summarizes how the structure and composition of the BM allows for perivascular transport pathways to operate in the healthy brain, and then outlines multiple mechanisms by which specific dementia risk factors may promote dysfunction of perivascular transport pathways and increase Aβ deposition during CAA pathogenesis. A better understanding of how BM remodeling alters perivascular transport could lead to novel diagnostic and therapeutic strategies for CAA patients.
Collapse
Affiliation(s)
| | | | - Akihiko Urayama
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
12
|
Toft-Bertelsen TL, Larsen BR, Christensen SK, Khandelia H, Waagepetersen HS, MacAulay N. Clearance of activity-evoked K + transients and associated glia cell swelling occur independently of AQP4: A study with an isoform-selective AQP4 inhibitor. Glia 2020; 69:28-41. [PMID: 32506554 DOI: 10.1002/glia.23851] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/29/2022]
Abstract
The mammalian brain consists of 80% water, which is continuously shifted between different compartments and cellular structures by mechanisms that are, to a large extent, unresolved. Aquaporin 4 (AQP4) is abundantly expressed in glia and ependymal cells of the mammalian brain and has been proposed to act as a gatekeeper for brain water dynamics, predominantly based on studies utilizing AQP4-deficient mice. However, these mice have a range of secondary effects due to the gene deletion. An efficient and selective AQP4 inhibitor has thus been sorely needed to validate the results obtained in the AQP4-/- mice to quantify the contribution of AQP4 to brain fluid dynamics. In AQP4-expressing Xenopus laevis oocytes monitored by a high-resolution volume recording system, we here demonstrate that the compound TGN-020 is such a selective AQP4 inhibitor. TGN-020 targets the tested species of AQP4 with an IC50 of ~3.5 μM, but displays no inhibitory effect on the other AQPs (AQP1-AQP9). With this tool, we employed rat hippocampal slices and ion-sensitive microelectrodes to determine the role of AQP4 in glia cell swelling following neuronal activity. TGN-020-mediated inhibition of AQP4 did not prevent stimulus-induced extracellular space shrinkage, nor did it slow clearance of the activity-evoked K+ transient. These data, obtained with a verified isoform-selective AQP4 inhibitor, indicate that AQP4 is not required for the astrocytic contribution to the K+ clearance or the associated extracellular space shrinkage.
Collapse
Affiliation(s)
- Trine Lisberg Toft-Bertelsen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brian Roland Larsen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sofie Kjellerup Christensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Himanshu Khandelia
- Department of Physics, Chemistry and Pharmacy, Faculty of Science, University of Southern Denmark, Odense, Denmark
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nanna MacAulay
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Suzuki Y, Kitaura H, Nakamura Y, Kakita A, Huber VJ, Capozzoli N, Kwee IL, Nakada T. Skull diploë is rich in aquaporin-4. Heliyon 2020; 6:e03259. [PMID: 32042979 PMCID: PMC7002819 DOI: 10.1016/j.heliyon.2020.e03259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 10/10/2019] [Accepted: 01/15/2020] [Indexed: 12/03/2022] Open
Abstract
Aquaporin-4 (AQP4) is a water conducting membrane integral protein channel which is widely expressed in the astrocyte system of the brain. During the development of the AQP4 positron emission tomography (PET) imaging agent [11C]TGN-020 (N-(1,3,4-thiadiazol-2-yl)pyridine-3-[11C]-carboxamide), significant radioligand uptake was observed in the skull, where there was no known distribution of any aquaporin family proteins. Herein we confirmed via a newly developed method for bone-tissue immunohistology, a hitherto unrecognized distribution of AQP4, and not AQP1, in the skull. Other bony structures, by contrast, showed virtually no uptake of [11C]TGN-020, and likewise, do not express either AQP4 or AQP1. Immunohistological analysis demonstrated that the AQP4 expression in the skull is restricted to the diploë. Consequently, we suspect AQP4 plays a pivotal role in the formation and maintenance of yellow marrow and the diploë. However, elucidating the exact nature of that role will require further studies.
Collapse
Affiliation(s)
- Yuji Suzuki
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, Japan
| | - Hiroki Kitaura
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, Japan.,Department of Pathology, Brain Research Institute, University of Niigata, Japan
| | - Yukimi Nakamura
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, University of Niigata, Japan
| | - Vincent J Huber
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, Japan
| | | | - Ingrid L Kwee
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, Japan.,Department of Neurology, University of California, Davis, USA
| | - Tsutomu Nakada
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, Japan.,Department of Neurology, University of California, Davis, USA
| |
Collapse
|
14
|
Suzuki Y, Nakamura Y, Yamada K, Kurabe S, Okamoto K, Aoki H, Kitaura H, Kakita A, Fujii Y, Huber VJ, Igarashi H, Kwee IL, Nakada T. Aquaporin Positron Emission Tomography Differentiates Between Grade III and IV Human Astrocytoma. Neurosurgery 2019. [PMID: 28645205 PMCID: PMC5952963 DOI: 10.1093/neuros/nyx314] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Aquaporin (AQP) water channels play a significant role in mesenchymal microvascular proliferation and infiltrative growth. AQPs are highly expressed in malignant astrocytomas, and a positive correlation is observed between their expression levels and histological tumor grade. OBJECTIVE To examine the utility of aquaporin positron emission tomography (PET) for differentiating between astrocytoma grade III and grade IV using the AQP radioligand [11C]TGN-020. METHODS Fifteen astrocytoma patients, grade III (n = 7) and grade IV (n = 8), and 10 healthy volunteers underwent [11C]TGN-020 aquaporin PET imaging. Surgical tissues of astrocytoma patients were examined for histopathological grading using the WHO classification standard and expression of AQP1 and AQP4 immunohistochemically. RESULTS Mean standardized uptake values of astrocytoma grade III and IV (0.51 ± 0.11 vs 1.50 ± 0.44, respectively) were higher than normal white matter (0.17 ± 0.02, P < .001) for both tumor grades. Importantly, mean standardized uptake values of astrocytoma grade IV were significantly higher than grade III (P < .01). CONCLUSION Our study demonstrated that [11C]TGN-020 aquaporin PET imaging differentiated between astrocytoma grades III and IV. We suggest its clinical application as a noninvasive diagnostic tool would lead to advancements in the management of these malignant brain tumors.
Collapse
Affiliation(s)
- Yuji Suzuki
- Center for Integrated Human Brain Sci-ence, Brain Research Institute, University of Niigata, Niigata, Japan
| | - Yukihiro Nakamura
- Center for Integrated Human Brain Sci-ence, Brain Research Institute, University of Niigata, Niigata, Japan
| | - Kenichi Yamada
- Center for Integrated Human Brain Sci-ence, Brain Research Institute, University of Niigata, Niigata, Japan
| | - Satoshi Kurabe
- Center for Integrated Human Brain Sci-ence, Brain Research Institute, University of Niigata, Niigata, Japan.,Department of Neurosurgery, Brain Research Ins-titute, University of Niigata, Niigata, Japan
| | - Kouichirou Okamoto
- Department of Neurosurgery, Brain Research Ins-titute, University of Niigata, Niigata, Japan
| | - Hiroshi Aoki
- Department of Neurosurgery, Brain Research Ins-titute, University of Niigata, Niigata, Japan
| | - Hiroki Kitaura
- Center for Integrated Human Brain Sci-ence, Brain Research Institute, University of Niigata, Niigata, Japan.,Department of Pathology, Brain Research Institute, University of Niigata, Niigata, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, University of Niigata, Niigata, Japan
| | - Yukihiko Fujii
- Department of Neurosurgery, Brain Research Ins-titute, University of Niigata, Niigata, Japan
| | - Vincent J Huber
- Center for Integrated Human Brain Sci-ence, Brain Research Institute, University of Niigata, Niigata, Japan
| | - Hironaka Igarashi
- Center for Integrated Human Brain Sci-ence, Brain Research Institute, University of Niigata, Niigata, Japan
| | - Ingrid L Kwee
- Department of Neurology, University of California, Davis, Davis, California
| | - Tsutomu Nakada
- Center for Integrated Human Brain Sci-ence, Brain Research Institute, University of Niigata, Niigata, Japan
| |
Collapse
|
15
|
Li J, Jia Z, Xu W, Guo W, Zhang M, Bi J, Cao Y, Fan Z, Li G. TGN-020 alleviates edema and inhibits astrocyte activation and glial scar formation after spinal cord compression injury in rats. Life Sci 2019; 222:148-157. [PMID: 30851336 DOI: 10.1016/j.lfs.2019.03.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/21/2019] [Accepted: 03/05/2019] [Indexed: 12/11/2022]
Abstract
AIMS Identifying drugs that inhibit edema and glial scar formation and increase neuronal survival is crucial to improving outcomes after spinal cord injury (SCI). Here, we used 2-(nicotinamide)-1,3,4-thiadiazole (TGN-020), a potent selective inhibitor of aquaporin 4 (AQP4), to investigate the effects of TGN-020 on SCI in Sprague-Dawley rats. MAIN METHODS We compressed the spinal cord at T10 using a sterile impounder (35 g, 5 min), to induce moderate injury. TGN-020 (100 mg/kg) or an equal volume of 10% dimethyl sulfoxide was then administered via intraperitoneal injection. Neurological function was evaluated using the Basso-Beattie-Bresnahan open-field locomotor scale 1, 3, 7, 14, 21, and 28 days after SCI. The degree of edema was assessed via determination of the precise spinal cord water content 3 days after SCI. Expression levels of AQP4, glial fibrillary acidic protein (GFAP), proliferating cell nuclear antigen (PCNA), and growth-associated protein-43 (GAP-43) were determined via western blotting and immunofluorescence staining 3 days after SCI and 4 weeks after SCI. Numbers of surviving neurons and glial scar sizes were determined using Nissl and hematoxylin-eosin staining, respectively. KEY FINDINGS Our results showed that TGN-020 promoted functional recovery at days 3, 7, 14, 21, and 28, as well as reduced the degree of edema and inhibited the expression of AQP4, GFAP, PCNA at days 3 after SCI. Furthermore, observations 4 weeks after SCI revealed that TGN-020 inhibited the glial scar formation and upregulated GAP-43 expression. SIGNIFICANCE TGN-020 can alleviate spinal cord edema, inhibit glial scar formation, and promote axonal regeneration, conferring beneficial effects on recovery in rats.
Collapse
Affiliation(s)
- Jian Li
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Zhiqiang Jia
- Department of Spinal Surgery, The Second Affiliated Hospital, Henan University of Science and Technology, Luoyang 471003, China
| | - Wen Xu
- School of Nursing, Jinzhou Medical University, Jinzhou 121000, China
| | - Weidong Guo
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Mingchao Zhang
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Jing Bi
- Department of Neurobiology, Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University, Jinzhou 121000, China
| | - Yang Cao
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Zhongkai Fan
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China.
| | - Gang Li
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
16
|
Clément T, Rodriguez-Grande B, Badaut J. Aquaporins in brain edema. J Neurosci Res 2018; 98:9-18. [DOI: 10.1002/jnr.24354] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 10/15/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Tifenn Clément
- CNRS UMR 5287, INCIA, University of Bordeaux; Bordeaux France
| | | | - Jérôme Badaut
- CNRS UMR 5287, INCIA, University of Bordeaux; Bordeaux France
- Department of Basic Science; Loma Linda University School of Medicine; Loma Linda California
| |
Collapse
|
17
|
Isoflurane post-conditioning down-regulates expression of aquaporin 4 in rats with cerebral ischemia/reperfusion injury and is possibly related to bone morphogenetic protein 4/Smad1/5/8 signaling pathway. Biomed Pharmacother 2018; 97:429-438. [DOI: 10.1016/j.biopha.2017.10.082] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 10/14/2017] [Accepted: 10/16/2017] [Indexed: 01/25/2023] Open
|
18
|
Inhibition of Aquaporin-4 Improves the Outcome of Ischaemic Stroke and Modulates Brain Paravascular Drainage Pathways. Int J Mol Sci 2017; 19:ijms19010046. [PMID: 29295526 PMCID: PMC5795996 DOI: 10.3390/ijms19010046] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 01/09/2023] Open
Abstract
Aquaporin-4 (AQP4) is the most abundant water channel in the brain, and its inhibition before inducing focal ischemia, using the AQP4 inhibitor TGN-020, has been showed to reduce oedema in imaging studies. Here, we aimed to evaluate, for the first time, the histopathological effects of a single dose of TGN-020 administered after the occlusion of the medial cerebral artery (MCAO). On a rat model of non-reperfusion ischemia, we have assessed vascular densities, albumin extravasation, gliosis, and apoptosis at 3 and 7 days after MCAO. TGN-020 significantly reduced oedema, glial scar, albumin effusion, and apoptosis, at both 3 and 7 days after MCAO. The area of GFAP-positive gliotic rim decreased, and 3D fractal analysis of astrocytic processes revealed a less complex architecture, possibly indicating water accumulating in the cytoplasm. Evaluation of the blood vessels revealed thicker basement membranes colocalizing with exudated albumin in the treated animals, suggesting that inhibition of AQP4 blocks fluid flow towards the parenchyma in the paravascular drainage pathways of the interstitial fluid. These findings suggest that a single dose of an AQP4 inhibitor can reduce brain oedema, even if administered after the onset of ischemia, and AQP4 agonists/antagonists might be effective modulators of the paravascular drainage flow.
Collapse
|
19
|
Burnett ME, Johnston HM, Green KN. Structural characterization of the aquaporin inhibitor 2-nicotinamido-1,3,4-thiadiazole. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2015; 71:1074-9. [PMID: 26632834 DOI: 10.1107/s2053229615021130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/06/2015] [Indexed: 11/10/2022]
Abstract
Nicotinamides are a class of compounds with a wide variety of applications, from use as antimicrobial agents to inhibitors of biological processes. These compounds are also cofactors, which are necessary components of metabolic processes. Structural modification gives rise to the activities observed. Similarly, 1,3,4-thiadiazoles have been shown to possess antioxidant, antimicrobial, or anti-inflammatory biological activity. To take advantage of each of the inherent characteristics of the two aforementioned functional groups, 2-nicotinamido-1,3,4-thiadiazole, C8H6N4OS, was synthesized. Since defining chemical connectivity is paramount in understanding biological activity, in this report, the structural characterization of 2-nicotinamido-1,3,4-thiadiazole has been carried out using X-ray crystallographic methods. The NMR-derived assignments were made possible by utilizing one- (1D) and two-dimensional (2D) NMR techniques. In addition, UV-Visible and IR spectroscopies, and elemental analysis were used to fully characterize the product synthesized by the one-step reaction between nicotinoyl chloride hydrochloride and 2-amino-1,3,4-thiadiazole. Computational parameters related to blood-brain barrier permeability are also presented.
Collapse
Affiliation(s)
| | | | - Kayla N Green
- Texas Christian University, Box 299860, Fort Worth, TX 76129, USA
| |
Collapse
|
20
|
Hu Y, Li CY, Wang XM, Yang YH, Zhu HL. 1,3,4-Thiadiazole: synthesis, reactions, and applications in medicinal, agricultural, and materials chemistry. Chem Rev 2014; 114:5572-610. [PMID: 24716666 DOI: 10.1021/cr400131u] [Citation(s) in RCA: 337] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yang Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University , Nanjing 210093, People's Republic of China
| | | | | | | | | |
Collapse
|
21
|
Abstract
The effects of the aquaporin-4 (AQP-4) inhibitor TGN-020 on regional cerebral blood flow (rCBF) was examined in wild-type (WT) and AQP-4 knockout (KO) mice in vivo. Although baseline absolute rCBF of WT and KO mice were equivalent (158.9 ± 17.7 and 155.5 ± 10.4 ml/100 g/min, respectively), TGN-020 produced a significant increase in rCBF compared with saline-treated WT mice (control), reaching a plateau 20 min after administration (118.45 ± 8.13%, P<0.01). TGN-020 showed no effect on KO mice, supporting the concept that the observed increase in rCBF in WT mice was AQP-4 dependent. Administration of acetazolamide (positive control) produced an even greater increase in rCBF in WT compared with TGN-020 and a similar response in KO mice as well, reaching a sustained plateau 5 min after administration (138.50 ± 9.75 and 138.52 ± 9.76%, respectively, P<0.01 compared with baseline or saline-treated control mice). The study demonstrated that AQP-4 plays a role in regulation of rCBF.
Collapse
|
22
|
Aquaporins in drug discovery and pharmacotherapy. Mol Aspects Med 2012; 33:691-703. [DOI: 10.1016/j.mam.2012.01.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/13/2012] [Accepted: 01/15/2012] [Indexed: 11/18/2022]
|
23
|
Brain water channel proteins in health and disease. Mol Aspects Med 2012; 33:562-78. [DOI: 10.1016/j.mam.2012.03.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 03/28/2012] [Accepted: 03/31/2012] [Indexed: 02/07/2023]
|
24
|
Suzuki Y, Nakamura Y, Yamada K, Huber VJ, Tsujita M, Nakada T. Aquaporin-4 positron emission tomography imaging of the human brain: first report. J Neuroimaging 2012; 23:219-23. [PMID: 22817997 DOI: 10.1111/j.1552-6569.2012.00704.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Aquaporin 4 (AQP-4) is the most abundant aquaporin isoform in the brain. Alterations in its expression and distribution have been correlated with the progression of several clinical disorders; however, the specific roles of AQP-4 in those disorders are not well understood. Visualizing AQP-4 in vivo is expected to provide fresh insights into its roles in disease pathology, as well as aiding the clinical assessment of those disorders. METHODS We developed a 11C-labeled analogue of the AQP-4 ligand TGN-020 (2-nicotinamido-1,3,4-thiadiazole) suitable for in vivo positron emission tomography (PET) imaging. RESULTS In the present study, we report the first PET images of AQP-4 in the human brain. The results unequivocally demonstrated a specific distribution pattern for AQP-4 within the brain, namely, the subpial and perivascular endfeet of astrocytes. The choroid plexus, where both AQP-4 and AQP-1 are expressed, also showed substantial uptake of the ligand. CONCLUSIONS Based on these initial results, we believe [11C]TGN-020 PET will be valuable in determining the role of AQP-4 in disease progression, and for the clinical assessment of water homeostasis under various settings.
Collapse
Affiliation(s)
- Yuji Suzuki
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata
| | | | | | | | | | | |
Collapse
|
25
|
Martins AP, Marrone A, Ciancetta A, Galán Cobo A, Echevarría M, Moura TF, Re N, Casini A, Soveral G. Targeting aquaporin function: potent inhibition of aquaglyceroporin-3 by a gold-based compound. PLoS One 2012; 7:e37435. [PMID: 22624030 PMCID: PMC3356263 DOI: 10.1371/journal.pone.0037435] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 04/19/2012] [Indexed: 01/13/2023] Open
Abstract
Aquaporins (AQPs) are membrane channels that conduct water and small solutes such as glycerol and are involved in many physiological functions. Aquaporin-based modulator drugs are predicted to be of broad potential utility in the treatment of several diseases. Until today few AQP inhibitors have been described as suitable candidates for clinical development. Here we report on the potent inhibition of AQP3 channels by gold(III) complexes screened on human red blood cells (hRBC) and AQP3-transfected PC12 cells by a stopped-flow method. Among the various metal compounds tested, Auphen is the most active on AQP3 (IC(50) = 0.8±0.08 µM in hRBC). Interestingly, the compound poorly affects the water permeability of AQP1. The mechanism of gold inhibition is related to the ability of Au(III) to interact with sulphydryls groups of proteins such as the thiolates of cysteine residues. Additional DFT and modeling studies on possible gold compound/AQP adducts provide a tentative description of the system at a molecular level. The mapping of the periplasmic surface of an homology model of human AQP3 evidenced the thiol group of Cys40 as a likely candidate for binding to gold(III) complexes. Moreover, the investigation of non-covalent binding of Au complexes by docking approaches revealed their preferential binding to AQP3 with respect to AQP1. The high selectivity and low concentration dependent inhibitory effect of Auphen (in the nanomolar range) together with its high water solubility makes the compound a suitable drug lead for future in vivo studies. These results may present novel metal-based scaffolds for AQP drug development.
Collapse
Affiliation(s)
- Ana Paula Martins
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Alessandro Marrone
- Dipartimento di Scienze del Farmaco, Università G. d'Annunzio, Chieti, Italy
| | - Antonella Ciancetta
- Dipartimento di Scienze del Farmaco, Università G. d'Annunzio, Chieti, Italy
| | - Ana Galán Cobo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Miriam Echevarría
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Teresa F. Moura
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Nazzareno Re
- Dipartimento di Scienze del Farmaco, Università G. d'Annunzio, Chieti, Italy
| | - Angela Casini
- Pharmacokinetics, Toxicology and Targeting, Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Graça Soveral
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
- Departamento de Bioquímica e Biologia Humana, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|