1
|
Herzog S, Bartlett EA, Zanderigo F, Galfalvy HC, Burke A, Mintz A, Schmidt M, Hauser E, Huang YY, Melhem N, Sublette ME, Miller JM, Mann JJ. Neuroinflammation, Stress-Related Suicidal Ideation, and Negative Mood in Depression. JAMA Psychiatry 2024:2825422. [PMID: 39504032 PMCID: PMC11541744 DOI: 10.1001/jamapsychiatry.2024.3543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/17/2024] [Indexed: 11/09/2024]
Abstract
Importance Brain translocator protein 18k Da (TSPO) binding, a putative marker of neuroinflammatory processes (eg, gliosis), is associated with stress and elevated in depressed and suicidal populations. However, it is unclear whether neuroinflammation moderates the impact of daily life stress on suicidal ideation and negative affect, thereby increasing risk for suicidal behavior. Objective To examine the association of TSPO binding in participants with depression with real-world daily experiences of acute stress-related suicidal ideation and negative affect, as well as history of suicidal behavior and clinician-rated suicidal ideation. Design, Setting, and Participants Data for this cross-sectional study were collected from June 2019 through July 2023. Procedures were conducted at a hospital-based research center in New York, New York. Participants were recruited via clinical referrals, the Columbia University research subject web portal, and from responses to internet advertisements. Of 148 participants who signed informed consent for study protocols, 53 adults aged 18 to 60 years who met DSM-5 diagnostic criteria for current major depressive disorder completed procedures with approved data and were enrolled. Participants were free of schizophrenia spectrum disorders, active physical illness, cognitive impairment, and substance intoxication or withdrawal at the time of scan. Exposures All participants underwent positron emission tomography imaging of TSPO binding with 11C-ER176 and concurrent arterial blood sampling. Main Outcome and Measures A weighted average of 11C-ER176 total distribution volume (VT) was computed across 11 a priori brain regions and made up the primary outcome measure. Clinician-rated suicidal ideation was measured via the Beck Scale for Suicidal Ideation (BSS). A subset of participants (n = 21) completed 7 days of ecological momentary assessment (EMA), reporting daily on suicidal ideation, negative affect, and stressors. Results In the overall sample of 53 participants (mean [SD] age, 29.5 [9.8] years; 37 [69.8%] female and 16 [30.2%] male), 11C-ER176 VT was associated at trend levels with clinician-rated suicidal ideation severity (β, 0.19; 95% CI, -0.03 to 0.39; P = .09) and did not differ by suicide attempt history (n = 15; β, 0.18; 95% CI, -0.04 to 0.37; P = .11). Exploratory analyses indicated that presence of suicidal ideation (on BSS or EMA) was associated with higher 11C-ER176 VT (β, 0.21; 95% CI, 0.01 to 0.98; P = .045). In 21 participants who completed EMA, 11C-ER176 VT was associated with greater suicidal ideation and negative affect during EMA periods with stressors compared with nonstress periods (β, 0.12; SE, 0.06; 95% CI, 0.01 to 0.23; P = .03 and β, 0.19; SE, 0.06; 95% CI, 0.08 to 0.30; P < .001, respectively). Conclusion and Relevance TSPO binding in individuals with depression may be a marker of vulnerability to acute stress-related increases in suicidal ideation and negative affect. Continued study is needed to determine the causal direction of TSPO binding and stress-related suicidal ideation or negative affect and whether targeting neuroinflammation may improve resilience to life stress in patients with depression.
Collapse
Affiliation(s)
- Sarah Herzog
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | - Elizabeth A. Bartlett
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | - Francesca Zanderigo
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | - Hanga C. Galfalvy
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
- Department of Biostatistics, Columbia University, New York, New York
| | - Ainsley Burke
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | - Akiva Mintz
- Department of Radiology, Columbia University Irving Medical Center, New York, New York
| | - Mike Schmidt
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | - Eric Hauser
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | - Yung-yu Huang
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | - Nadine Melhem
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - M. Elizabeth Sublette
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | - Jeffrey M. Miller
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | - J. John Mann
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
- Department of Radiology, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
2
|
Salerno S, Viviano M, Baglini E, Poggetti V, Giorgini D, Castagnoli J, Barresi E, Castellano S, Da Settimo F, Taliani S. TSPO Radioligands for Neuroinflammation: An Overview. Molecules 2024; 29:4212. [PMID: 39275061 PMCID: PMC11397380 DOI: 10.3390/molecules29174212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
The translocator protein (TSPO) is predominately localized on the outer mitochondrial membrane in steroidogenic cells. In the brain, TSPO expression, low under normal conditions, results upregulated in response to glial cell activation, that occurs in neuroinflammation. As a consequence, TSPO has been extensively studied as a biomarker of such conditions by means of TSPO-targeted radiotracers. Although [11C]-PK11195, the prototypical TSPO radioligand, is still widely used for in vivo studies, it is endowed with severe limitations, mainly low sensitivity and poor amenability to quantification. Consequently, several efforts have been focused on the design of new radiotracers for the in vivo imaging of TSPO. The present review will provide an outlook on the latest advances in TSPO radioligands for neuroinflammation imaging. The final goal is to pave the way for (radio)chemists in the future design and development of novel effective and sensitive radiopharmaceuticals targeting TSPO.
Collapse
Affiliation(s)
- Silvia Salerno
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.S.); (E.B.); (V.P.); (J.C.); (S.T.)
| | - Monica Viviano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (M.V.); (D.G.); (S.C.)
| | - Emma Baglini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.S.); (E.B.); (V.P.); (J.C.); (S.T.)
| | - Valeria Poggetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.S.); (E.B.); (V.P.); (J.C.); (S.T.)
| | - Doralice Giorgini
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (M.V.); (D.G.); (S.C.)
| | - Jacopo Castagnoli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.S.); (E.B.); (V.P.); (J.C.); (S.T.)
| | - Elisabetta Barresi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.S.); (E.B.); (V.P.); (J.C.); (S.T.)
| | - Sabrina Castellano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (M.V.); (D.G.); (S.C.)
| | - Federico Da Settimo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.S.); (E.B.); (V.P.); (J.C.); (S.T.)
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.S.); (E.B.); (V.P.); (J.C.); (S.T.)
| |
Collapse
|
3
|
Giladi M, Montgomery AP, Kassiou M, Danon JJ. Structure-based drug design for TSPO: Challenges and opportunities. Biochimie 2024; 224:41-50. [PMID: 38782353 DOI: 10.1016/j.biochi.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/27/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024]
Abstract
The translocator protein 18 kDa (TSPO) is an evolutionarily conserved mitochondrial transmembrane protein implicated in various neuropathologies and inflammatory conditions, making it a longstanding diagnostic and therapeutic target of interest. Despite the development of various classes of TSPO ligand chemotypes, and the elucidation of bacterial and non-human mammalian experimental structures, many unknowns exist surrounding its differential structural and functional features in health and disease. There are several limitations associated with currently used computational methodologies for modelling the native structure and ligand-binding behaviour of this enigmatic protein. In this perspective, we provide a critical analysis of the developments in the uses of these methods, outlining their uses, inherent limitations, and continuing challenges. We offer suggestions of unexplored opportunities that exist in the use of computational methodologies which offer promise for enhancing our understanding of the TSPO.
Collapse
Affiliation(s)
- Mia Giladi
- School of Chemistry, The University of Sydney, 2050, Sydney, NSW, Australia
| | | | - Michael Kassiou
- School of Chemistry, The University of Sydney, 2050, Sydney, NSW, Australia.
| | - Jonathan J Danon
- School of Chemistry, The University of Sydney, 2050, Sydney, NSW, Australia.
| |
Collapse
|
4
|
Liao K, Chen JH, Ma J, Dong CC, Bi CY, Gao YB, Jiang YF, Wang T, Wei HY, Hou L, Hu JQ, Wei JJ, Zeng CY, Li YL, Yan S, Xu H, Liang SH, Wang L. Preclinical characterization of [ 18F]D 2-LW223: an improved metabolically stable PET tracer for imaging the translocator protein 18 kDa (TSPO) in neuroinflammatory rodent models and non-human primates. Acta Pharmacol Sin 2024:10.1038/s41401-024-01375-9. [PMID: 39210042 DOI: 10.1038/s41401-024-01375-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Positron emission tomography (PET) targeting translocator protein 18 kDa (TSPO) can be used for the noninvasive detection of neuroinflammation. Improved in vivo stability of a TSPO tracer is beneficial for minimizing the potential confounding effects of radiometabolites. Deuteration represents an important strategy for improving the pharmacokinetics and stability of existing drug molecules in the plasma. This study developed a novel tracer via the deuteration of [18F]LW223 and evaluated its in vivo stability and specific binding in neuroinflammatory rodent models and nonhuman primate (NHP) brains. Compared with LW223, D2-LW223 exhibited improved binding affinity to TSPO. Compared with [18F]LW223, [18F]D2-LW223 has superior physicochemical properties and favorable brain kinetics, with enhanced metabolic stability and reduced defluorination. Preclinical investigations in rodent models of LPS-induced neuroinflammation and cerebral ischemia revealed specific [18F]D2-LW223 binding to TSPO in regions affected by neuroinflammation. Two-tissue compartment model analyses provided excellent model fits and allowed the quantitative mapping of TSPO across the NHP brain. These results indicate that [18F]D2-LW223 holds significant promise for the precise quantification of TSPO expression in neuroinflammatory pathologies of the brain.
Collapse
Affiliation(s)
- Kai Liao
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine & Key laboratory of Basic and Translational Research on Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jia-Hui Chen
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Jie Ma
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine & Key laboratory of Basic and Translational Research on Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Chen-Chen Dong
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine & Key laboratory of Basic and Translational Research on Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Chun-Yang Bi
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Ya-Biao Gao
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Yuan-Fang Jiang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine & Key laboratory of Basic and Translational Research on Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Tao Wang
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, 510632, China
| | - Hui-Yi Wei
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine & Key laboratory of Basic and Translational Research on Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Lu Hou
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine & Key laboratory of Basic and Translational Research on Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jun-Qi Hu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine & Key laboratory of Basic and Translational Research on Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jun-Jie Wei
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine & Key laboratory of Basic and Translational Research on Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Chun-Yuan Zeng
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine & Key laboratory of Basic and Translational Research on Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Yin-Long Li
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Sen Yan
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, 510632, China
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine & Key laboratory of Basic and Translational Research on Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA.
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine & Key laboratory of Basic and Translational Research on Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
- Guangzhou Key Laboratory of Basic and Translational Research on Chronic Disease, Guangzhou, 510630, China.
| |
Collapse
|
5
|
Lee N, Choi JY, Ryu YH. The development status of PET radiotracers for evaluating neuroinflammation. Nucl Med Mol Imaging 2024; 58:160-176. [PMID: 38932754 PMCID: PMC11196502 DOI: 10.1007/s13139-023-00831-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/16/2023] [Accepted: 12/05/2023] [Indexed: 06/28/2024] Open
Abstract
Neuroinflammation is associated with the pathophysiologies of neurodegenerative and psychiatric disorders. Evaluating neuroinflammation using positron emission tomography (PET) plays an important role in the early diagnosis and determination of proper treatment of brain diseases. To quantify neuroinflammatory responses in vivo, many PET tracers have been developed using translocator proteins, imidazole-2 binding site, cyclooxygenase, monoamine oxidase-B, adenosine, cannabinoid, purinergic P2X7, and CSF-1 receptors as biomarkers. In this review, we introduce the latest developments in PET tracers that can image neuroinflammation, focusing on clinical trials, and further consider their current implications.
Collapse
Affiliation(s)
- Namhun Lee
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812 Korea
| | - Jae Yong Choi
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812 Korea
- Radiological and Medico-Oncological Sciences, University of Science and Technology (UST), Seoul, Korea
| | - Young Hoon Ryu
- Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Uzuegbunam BC, Rummel C, Librizzi D, Culmsee C, Hooshyar Yousefi B. Radiotracers for Imaging of Inflammatory Biomarkers TSPO and COX-2 in the Brain and in the Periphery. Int J Mol Sci 2023; 24:17419. [PMID: 38139248 PMCID: PMC10743508 DOI: 10.3390/ijms242417419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Inflammation involves the activation of innate immune cells and is believed to play an important role in the development and progression of both infectious and non-infectious diseases such as neurodegeneration, autoimmune diseases, pulmonary and cancer. Inflammation in the brain is marked by the upregulation of translocator protein (TSPO) in microglia. High TSPO levels are also found, for example, in macrophages in cases of rheumatoid arthritis and in malignant tumor cells compared to their relatively low physiological expression. The same applies for cyclooxgenase-2 (COX-2), which is constitutively expressed in the kidney, brain, thymus and gastrointestinal tract, but induced in microglia, macrophages and synoviocytes during inflammation. This puts TSPO and COX-2 in the spotlight as important targets for the diagnosis of inflammation. Imaging modalities, such as positron emission tomography and single-photon emission tomography, can be used to localize inflammatory processes and to track their progression over time. They could also enable the monitoring of the efficacy of therapy and predict its outcome. This review focuses on the current development of PET and SPECT tracers, not only for the detection of neuroinflammation, but also for emerging diagnostic measures in infectious and other non-infectious diseases such as rheumatic arthritis, cancer, cardiac inflammation and in lung diseases.
Collapse
Affiliation(s)
| | - Christoph Rummel
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Gießen, Germany;
- Center for Mind Brain and Behavior, Universities Giessen and Marburg, 35043 Marburg, Germany;
| | - Damiano Librizzi
- Department of Nuclear Medicine, Philipps University of Marburg, 35043 Marburg, Germany;
| | - Carsten Culmsee
- Center for Mind Brain and Behavior, Universities Giessen and Marburg, 35043 Marburg, Germany;
- Institute of Pharmacology and Clinical Pharmacy, Philipps University of Marburg, 35037 Marburg, Germany
| | | |
Collapse
|
7
|
Yan X, Siméon FG, Liow JS, Morse CL, Montero Santamaria JA, Jenkins M, Manly LS, Van Buskirk M, Zoghbi SS, Pike VW, Innis RB, Zanotti-Fregonara P. In vivo evaluation of a novel 18F-labeled PET radioligand for translocator protein 18 kDa (TSPO) in monkey brain. Eur J Nucl Med Mol Imaging 2023; 50:2962-2970. [PMID: 37249618 PMCID: PMC10382351 DOI: 10.1007/s00259-023-06270-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 05/18/2023] [Indexed: 05/31/2023]
Abstract
PURPOSE [18F]SF51 was previously found to have high binding affinity and selectivity for 18 kDa translocator protein (TSPO) in mouse brain. This study sought to assess the ability of [18F]SF51 to quantify TSPO in rhesus monkey brain. METHODS Positron emission tomography (PET) imaging was performed in monkey brain (n = 3) at baseline and after pre-blockade with the TSPO ligands PK11195 and PBR28. TSPO binding was calculated as total distribution volume corrected for free parent fraction in plasma (VT/fP) using a two-tissue compartment model. Receptor occupancy and nondisplaceable uptake were determined via Lassen plot. Binding potential (BPND) was calculated as the ratio of specific binding to nondisplaceable uptake. Time stability of VT was used as an indirect probe to detect radiometabolite accumulation in the brain. In vivo and ex vivo experiments were performed in mice to determine the distribution of the radioligand. RESULTS After [18F]SF51 injection, the concentration of brain radioactivity peaked at 2.0 standardized uptake value (SUV) at ~ 10 min and declined to 30% of the peak at 180 min. VT/fP at baseline was generally high (203 ± 15 mL· cm-3) and decreased by ~ 90% after blockade with PK11195. BPND of the whole brain was 7.6 ± 4.3. VT values reached levels similar to terminal 180-min values by 100 min and remained relatively stable thereafter with excellent identifiability (standard errors < 5%), suggesting that no significant radiometabolites accumulated in the brain. Ex vivo experiments in mouse brain showed that 96% of radioactivity was parent. No significant uptake was observed in the skull, suggesting a lack of defluorination in vivo. CONCLUSION The results demonstrate that [18F]SF51 is an excellent radioligand that can quantify TSPO with a good ratio of specific to nondisplaceable uptake and has minimal radiometabolite accumulation in brain. Collectively, the results suggest that [18F]SF51 warrants further evaluation in humans.
Collapse
Affiliation(s)
- Xuefeng Yan
- Molecular Imaging Branch, National Institute of Mental Health, NIH, 10 Center Drive, Bethesda, MD, 20892, USA.
| | - Fabrice G Siméon
- Molecular Imaging Branch, National Institute of Mental Health, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Jeih-San Liow
- Molecular Imaging Branch, National Institute of Mental Health, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Cheryl L Morse
- Molecular Imaging Branch, National Institute of Mental Health, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Jose A Montero Santamaria
- Molecular Imaging Branch, National Institute of Mental Health, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Madeline Jenkins
- Molecular Imaging Branch, National Institute of Mental Health, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Lester S Manly
- Molecular Imaging Branch, National Institute of Mental Health, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Maia Van Buskirk
- Molecular Imaging Branch, National Institute of Mental Health, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Sami S Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Paolo Zanotti-Fregonara
- Molecular Imaging Branch, National Institute of Mental Health, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| |
Collapse
|
8
|
PET Imaging of Neuro-Inflammation with Tracers Targeting the Translocator Protein (TSPO), a Systematic Review: From Bench to Bedside. Diagnostics (Basel) 2023; 13:diagnostics13061029. [PMID: 36980337 PMCID: PMC10047854 DOI: 10.3390/diagnostics13061029] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Parkinson’s disease is the second most common neurodegenerative disorder, affecting 2–3% of the population of patients >65 years. Although the standard diagnosis of PD is clinical, neuroimaging plays a key role in the evaluation of patients who present symptoms related to neurodegenerative disorders. MRI, DAT-SPECT, and PET with [18F]-FDG are routinely used in the diagnosis and focus on the investigation of morphological changes, nigrostriatal degeneration or shifts in glucose metabolism in patients with parkinsonian syndromes. The aim of this study is to review the current PET radiotracers targeting TSPO, a transmembrane protein that is overexpressed by microglia in another pathophysiological process associated with neurodegenerative disorders known as neuroinflammation. To the best of our knowledge, neuroinflammation is present not only in PD but in many other neurodegenerative disorders, including AD, DLB, and MSA, as well as atypical parkinsonian syndromes. Therefore, in this study, specific patterns of microglial activation in PD and the differences in distribution volumes of these radiotracers in patients with PD as compared to other neurodegenerative disorders are reviewed.
Collapse
|
9
|
Zheng W, Huang Y, Chen H, Jiang Z, Yu Z, Yang T, Zhang L, Cheng X, Liu Y, Liu Q, Ji X, Wu Z. Synthesis and In Vitro and In Vivo Evaluation of 18F-Labeled Positron Emission Tomography Tracers for Imaging Aβ Plaques. ACS Chem Neurosci 2023; 14:988-1003. [PMID: 36795539 DOI: 10.1021/acschemneuro.3c00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Accurate quantification of amyloid beta (Aβ) plaques is an important indicator for Alzheimer's disease diagnosis and treatment. For this purpose, new highly sensitive Aβ tracers were designed by regulating the position and number of nitrogen atoms. A series of derivatives of florbetapir (AV45) containing different numbers and positions of N atoms were synthesized and evaluated for in vitro affinity and in vivo biodistribution. Preliminary study results showed that [18F]BIBD-124 and [18F]BIBD-127 had better clearance rates and less in vivo defluorination than AV45 in ICR (ICR = Institute of Cancer Research) mice. Autoradiography and molecular docking indicated that the binding sites of [18F]BIBD-124/127 were similar to that of [18F]AV45. Micro-positron emission tomography-computed tomography imaging further demonstrated that [18F]BIBD-124 could monitor Aβ plaques similar to [18F]AV45. Besides, the imaging contrast of [18F]BIBD-124 is better than that of [18F]AV45. Mass spectrometric metabolic analysis showed that BIBD-124 was less demethylated than AV45 without subsequent acetylation, which might explain its less non-specific uptake and higher imaging contrast. Gauss calculations further confirmed that the introduction of N5 in [18F]BIBD-124 decreased demethylation. Considering imaging contrast and in vivo defluorination, [18F]BIBD-124 is expected to be a promising radiotracer of Aβ plaques for further clinical trials.
Collapse
Affiliation(s)
- Wei Zheng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Yong Huang
- Department of Nuclear Medicine, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Hualong Chen
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Zeng Jiang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Ziyue Yu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Tingyu Yang
- School of Pharmaceutical Science, Capital Medical University, Beijing 100069, China
| | - Lu Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Xuebo Cheng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Yajing Liu
- School of Pharmaceutical Science, Capital Medical University, Beijing 100069, China
| | - Qi Liu
- Institute of Biomedical Engineering, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China.,Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Zehui Wu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| |
Collapse
|
10
|
Adhikari A, Zhang MR, Tiwari AK. Acetamidobenzoxazolone scaffold as a promising translocator protein (18 kDa, TSPO) marker for neuroinflammation imaging: Advancement in last decennial period. Drug Dev Res 2022; 83:1519-1533. [PMID: 36074736 DOI: 10.1002/ddr.21989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 11/09/2022]
Abstract
Inflammation has been linked to the onset and progression of a wide range of neuropathological disorders. The well-conserved outer mitochondrial membrane 18 kDa translocator protein (TSPO) is perceived as an in vivo neuroinflammation marker. A dearth of a reference region, genetic disparity influencing the ligand's affinity for TSPO, and a substantial signal in the endothelium of the brain veins contributes toward complications in quantifying TSPO positron emission tomography (PET) image. Up to the present time several radiotracers based on different pharmacophore such as (R)[11 C]PK11195, [18 F]DPA714, [11 C]PBR28, [11 C]ER176, and many more have been recognized for envisaging the prominent TSPO level observed in neurological conditions. Recently acetamidobenzoxazolone (ABO) scaffold, a bicyclic ring system composed of a phenyl ring fused to a carbamate and its substituted radiolabelled analogues especially at C-5 position has evidenced encouraging outcomes as next generation of TSPO PET ligands. Diverse ABO framework-based TSPO ligands have been designed embracing imperative aspects such as lipophilicity, metabolic profile, and capability to penetrate the blood-brain barrier apart from least effect of polymorphism (rs6971). Over the years numerous systematic literature reviews compiling different structural class of TSPO ligands characterized on the grounds of their binding affinity and metabolite profile have been reported but none is especially focused toward a fascinating benzoxazolone scaffold. This review exclusively bestows an overview of the recent advancements on ABO derivatives with neuroinflammation imaging potential and emphases on the structural features accountable for visualizing TSPO in-vivo with collation of published reports during last 10 years.
Collapse
Affiliation(s)
- Anupriya Adhikari
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, India
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Anjani Kumar Tiwari
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, India
| |
Collapse
|
11
|
Viviano M, Barresi E, Siméon FG, Costa B, Taliani S, Da Settimo F, Pike VW, Castellano S. Essential Principles and Recent Progress in the Development of TSPO PET Ligands for Neuroinflammation Imaging. Curr Med Chem 2022; 29:4862-4890. [PMID: 35352645 PMCID: PMC10080361 DOI: 10.2174/0929867329666220329204054] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/21/2021] [Accepted: 01/25/2022] [Indexed: 11/22/2022]
Abstract
The translocator protein 18kDa (TSPO) is expressed in the outer mitochondrial membrane and is implicated in several functions, including cholesterol transport and steroidogenesis. Under normal physiological conditions, TSPO is present in very low concentrations in the human brain but is markedly upregulated in response to brain injury and inflammation. This upregulation is strongly associated with activated microglia. Therefore, TSPO is particularly suited for assessing active gliosis associated with brain lesions following injury or disease. For over three decades, TSPO has been studied as a biomarker. Numerous radioligands for positron emission tomography (PET) that target TSPO have been developed for imaging inflammatory progression in the brain. Although [11C]PK11195, the prototypical first-generation PET radioligand, is still widely used for in vivo studies, mainly now as its single more potent R-enantiomer, it has severe limitations, including low sensitivity and poor amenability to quantification. Second-generation radioligands are characterized by higher TSPO specific signals but suffer from other drawbacks, such as sensitivity to the TSPO single nucleotide polymorphism (SNP) rs6971. Therefore, their applications in human studies have the burden of needing to genotype subjects. Consequently, recent efforts are focused on developing improved radioligands that combine the optimal features of the second generation with the ability to overcome the differences in binding affinities across the population. This review presents essential principles in the design and development of TSPO PET ligands and discusses prominent examples among the main chemotypes.
Collapse
Affiliation(s)
- Monica Viviano
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy
| | | | - Fabrice G. Siméon
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barbara Costa
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | | | - Victor W. Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sabrina Castellano
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy
| |
Collapse
|
12
|
Lee JH, Siméon FG, Liow JS, Morse CL, Gladding RL, Santamaria JAM, Henter ID, Zoghbi SS, Pike VW, Innis RB. In Vivo Evaluation of 6 Analogs of 11C-ER176 as Candidate 18F-Labeled Radioligands for 18-kDa Translocator Protein. J Nucl Med 2022; 63:1252-1258. [PMID: 35027372 PMCID: PMC9364345 DOI: 10.2967/jnumed.121.263168] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/30/2021] [Indexed: 02/03/2023] Open
Abstract
Because of its excellent ratio of specific to nondisplaceable uptake, the radioligand 11C-ER176 can successfully image 18-kDa translocator protein (TSPO), a biomarker of inflammation, in the human brain and accurately quantify target density in homozygous low-affinity binders. Our laboratory sought to develop an 18F-labeled TSPO PET radioligand based on ER176 with the potential for broader distribution. This study used generic 11C labeling and in vivo performance in the monkey brain to select the most promising among 6 fluorine-containing analogs of ER176 for subsequent labeling with longer-lived 18F. Methods: Six fluorine-containing analogs of ER176-3 fluoro and 3 trifluoromethyl isomers-were synthesized and labeled by 11C methylation at the secondary amide group of the respective N-desmethyl precursor. PET imaging of the monkey brain was performed at baseline and after blockade by N-butan-2-yl-1-(2-chlorophenyl)-N-methylisoquinoline-3-carboxamide (PK11195). Uptake was quantified using radiometabolite-corrected arterial input function. The 6 candidate radioligands were ranked for performance on the basis of 2 in vivo criteria: the ratio of specific to nondisplaceable uptake (i.e., nondisplaceable binding potential [BPND]) and the time stability of total distribution volume (VT), an indirect measure of lack of radiometabolite accumulation in the brain. Results: Total TSPO binding was quantified as VT corrected for plasma free fraction (VT/fP) using Logan graphical analysis for all 6 radioligands. VT/fP was generally high at baseline (222 ± 178 mL·cm-3) and decreased by 70%-90% after preblocking with PK11195. BPND calculated using the Lassen plot was 9.6 ± 3.8; the o-fluoro radioligand exhibited the highest BPND (12.1), followed by the m-trifluoromethyl (11.7) and m-fluoro (8.1) radioligands. For all 6 radioligands, VT reached 90% of the terminal 120-min values by 70 min and remained relatively stable thereafter, with excellent identifiability (SEs < 5%), suggesting that no significant radiometabolites accumulated in the brain. Conclusion: All 6 radioligands had good BPND and good time stability of VT Among them, the o-fluoro, m-trifluoromethyl, and m-fluoro compounds were the 3 best candidates for development as radioligands with an 18F label.
Collapse
Affiliation(s)
- Jae-Hoon Lee
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; and,Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Fabrice G. Siméon
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; and
| | - Jeih-San Liow
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; and
| | - Cheryl L. Morse
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; and
| | - Robert L. Gladding
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; and
| | - Jose A. Montero Santamaria
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; and
| | - Ioline D. Henter
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; and
| | - Sami S. Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; and
| | - Victor W. Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; and
| | - Robert B. Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; and
| |
Collapse
|
13
|
Chen H, Jiang Z, Cheng X, Zheng W, Sun Y, Yu Z, Yang T, Zhang L, Yan J, Liu Y, Ji X, Wu Z. [ 18F]BIBD-239: 18F-Labeled ER176, a Positron Emission Tomography Tracer Specific for the Translocator Protein. Mol Pharm 2022; 19:2351-2366. [PMID: 35671264 DOI: 10.1021/acs.molpharmaceut.2c00157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
[11C]ER176 has adequate sensitivity to image the human brain translocator protein (TSPO) in all three genotypes by positron emission tomography (PET). However, its clinical application is limited by the short half-life of 11C (20.38 min). To overcome the deficiency of [11C]ER176 and keep the pharmacophore features of ER176 to the maximum extent, we designed four fluorine-labeled ER176 derivatives using the deuterium method. In vitro competition binding confirmed that the designed compounds had high affinity for TSPO. Biodistribution experiments showed that tissues with high expression of TSPO had high uptake of these compounds, as well as that the compound showed high brain penetration and mild defluorination in vivo. Therefore, [18F]BIBD-239 with simple synthesis conditions was selected for further biological evaluation. Theoretical simulations showed that BIBD-239 and ER176 have similar binding modes and sites to Ala147-TSPO and Thr147-TSPO, which indicated that the tracers may have consistent sensitivity to the three affinity genotypes. In vitro autoradiography and in vivo PET studies of the ischemic rat brain showed dramatically higher uptake of [18F]BIBD-239 on the lesion site compared to the contralateral side with good brain kinetics. Additionally, [18F]BIBD-239 provided clear tumor PET images in a GL261 glioma model. Importantly, PET imaging and liquid chromatography-high-resolution mass spectrometry (LC-HRMS) results showed that in vivo defluorination and other metabolites of [18F]BIBD-239 did not interfere with brain imaging. Conclusively, [18F]BIBD-239, similar to ER176 with low polymorphism sensitivity, has simple labeling conditions, high labeling yield, high affinity, and high specificity for TSPO, and it is planned for further evaluation in higher species.
Collapse
Affiliation(s)
- Hualong Chen
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Zeng Jiang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Xuebo Cheng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Wei Zheng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Yuli Sun
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Ziyue Yu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Tingyu Yang
- School of Pharmaceutical Science, Capital Medical University, Beijing 100069, China
| | - Lu Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Jun Yan
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Yajing Liu
- School of Pharmaceutical Science, Capital Medical University, Beijing 100069, China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China.,Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Zehui Wu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| |
Collapse
|
14
|
Singh P, Adhikari A, Singh D, Gond C, Tiwari AK. The 18-kDa Translocator Protein PET Tracers as a Diagnostic Marker for Neuroinflammation: Development and Current Standing. ACS OMEGA 2022; 7:14412-14429. [PMID: 35557664 PMCID: PMC9089361 DOI: 10.1021/acsomega.2c00588] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/05/2022] [Indexed: 05/13/2023]
Abstract
Translocator protein (TSPO, 18 kDa) is an evolutionary, well-preserved, and tryptophan-rich 169-amino-acid protein which localizes on the contact sites between the outer and inner mitochondrial membranes of steroid-synthesizing cells. This mitochondrial protein is implicated in an extensive range of cellular activities, including steroid synthesis, cholesterol transport, apoptosis, mitochondrial respiration, and cell proliferation. The upregulation of TSPO is well documented in diverse disease conditions including neuroinflammation, cancer, brain injury, and inflammation in peripheral organs. On the basis of these outcomes, TSPO has been assumed to be a fascinating subcellular target for early stage imaging of the diseased state and for therapeutic purposes. The main outline of this Review is to give an update on dealing with the advances made in TSPO PET tracers for neuroinflammation, synchronously emphasizing the approaches applied for the design and advancement of new tracers with reference to their structure-activity relationship (SAR).
Collapse
Affiliation(s)
- Priya Singh
- Department
of Chemistry, Babasaheb Bhimrao Ambedkar
University (A Central University), Lucknow, 226025, Uttar Pradesh, India
| | - Anupriya Adhikari
- Department
of Chemistry, Babasaheb Bhimrao Ambedkar
University (A Central University), Lucknow, 226025, Uttar Pradesh, India
| | - Deepika Singh
- Department
of Chemistry, Babasaheb Bhimrao Ambedkar
University (A Central University), Lucknow, 226025, Uttar Pradesh, India
| | - Chandraprakash Gond
- Department
of Chemistry, Babasaheb Bhimrao Ambedkar
University (A Central University), Lucknow, 226025, Uttar Pradesh, India
| | - Anjani Kumar Tiwari
- Department
of Chemistry, Babasaheb Bhimrao Ambedkar
University (A Central University), Lucknow, 226025, Uttar Pradesh, India
- Address:
Department of Chemistry,
Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh. Tel.: +91-7503381343. Fax: +91-522-2440821. E-mail:
| |
Collapse
|
15
|
Li XG, Velikyan I, Viitanen R, Roivainen A. PET radiopharmaceuticals for imaging inflammatory diseases. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00075-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
16
|
Jia H, Xie T. Tracers progress for positron emission tomography imaging of glial-related disease. J Biomed Res 2022; 36:321-335. [PMID: 36131689 PMCID: PMC9548440 DOI: 10.7555/jbr.36.20220017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Glial cells play an essential part in the neuron system. They can not only serve as structural blocks in the human brain but also participate in many biological processes. Extensive studies have shown that astrocytes and microglia play an important role in neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, as well as glioma, epilepsy, ischemic stroke, and infections. Positron emission tomography is a functional imaging technique providing molecular-level information before anatomic changes are visible and has been widely used in many above-mentioned diseases. In this review, we focus on the positron emission tomography tracers used in pathologies related to glial cells, such as glioma, Alzheimer's disease, and neuroinflammation.
Collapse
Affiliation(s)
- Haoran Jia
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Tianwu Xie
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
- Tianwu Xie, Institute of Radiation Medicine, Fudan University, 2094 Xietu Road, Shanghai 200032, China. Tel: +86-21-64048363, E-mail:
| |
Collapse
|
17
|
Ramakrishnan NK, Hird M, Thompson S, Williamson DJ, Qiao L, Owen DR, Brooks AF, Scott PJH, Bacallado S, O'Brien JT, Aigbirhio FI. Preclinical evaluation of (S)-[ 18F]GE387, a novel 18-kDa translocator protein (TSPO) PET radioligand with low binding sensitivity to human polymorphism rs6971. Eur J Nucl Med Mol Imaging 2021; 49:125-136. [PMID: 34405276 PMCID: PMC8712295 DOI: 10.1007/s00259-021-05495-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/08/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE Positron emission tomography (PET) studies with radioligands for 18-kDa translocator protein (TSPO) have been instrumental in increasing our understanding of the complex role neuroinflammation plays in disorders affecting the brain. However, (R)-[11C]PK11195, the first and most widely used TSPO radioligand has limitations, while the next-generation TSPO radioligands have suffered from high interindividual variability in binding due to a genetic polymorphism in the TSPO gene (rs6971). Herein, we present the biological evaluation of the two enantiomers of [18F]GE387, which we have previously shown to have low sensitivity to this polymorphism. METHODS Dynamic PET scans were conducted in male Wistar rats and female rhesus macaques to investigate the in vivo behaviour of (S)-[18F]GE387 and (R)-[18F]GE387. The specific binding of (S)-[18F]GE387 to TSPO was investigated by pre-treatment with (R)-PK11195. (S)-[18F]GE387 was further evaluated in a rat model of lipopolysaccharide (LPS)-induced neuroinflammation. Sensitivity to polymorphism of (S)-GE387 was evaluated in genotyped human brain tissue. RESULTS (S)-[18F]GE387 and (R)-[18F]GE387 entered the brain in both rats and rhesus macaques. (R)-PK11195 blocked the uptake of (S)-[18F]GE387 in healthy olfactory bulb and peripheral tissues constitutively expressing TSPO. A 2.7-fold higher uptake of (S)-[18F]GE387 was found in the inflamed striatum of LPS-treated rodents. In genotyped human brain tissue, (S)-GE387 was shown to bind similarly in low affinity binders (LABs) and high affinity binders (HABs) with a LAB to HAB ratio of 1.8. CONCLUSION We established that (S)-[18F]GE387 has favourable kinetics in healthy rats and non-human primates and that it can distinguish inflamed from normal brain regions in the LPS model of neuroinflammation. Crucially, we have reconfirmed its low sensitivity to the TSPO polymorphism on genotyped human brain tissue. Based on these factors, we conclude that (S)-[18F]GE387 warrants further evaluation with studies on human subjects to assess its suitability as a TSPO PET radioligand for assessing neuroinflammation.
Collapse
Affiliation(s)
- Nisha K Ramakrishnan
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Biomedical Campus, Cambridge, CB2 0SZ, UK.
| | - Matthew Hird
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Biomedical Campus, Cambridge, CB2 0SZ, UK
| | - Stephen Thompson
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Biomedical Campus, Cambridge, CB2 0SZ, UK
| | - David J Williamson
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Biomedical Campus, Cambridge, CB2 0SZ, UK
| | - Luxi Qiao
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Biomedical Campus, Cambridge, CB2 0SZ, UK
| | - David R Owen
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Allen F Brooks
- Division of Nuclear Medicine, Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, MI, 48109, USA
| | - Peter J H Scott
- Division of Nuclear Medicine, Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, MI, 48109, USA
| | - Sergio Bacallado
- Statistical Laboratory, Centre for the Mathematical Sciences, University of Cambridge, Wilberforce Rd., Cambridge, CB3 0WB, UK
| | - John T O'Brien
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Franklin I Aigbirhio
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Biomedical Campus, Cambridge, CB2 0SZ, UK
| |
Collapse
|
18
|
Lee SH, Denora N, Laquintana V, Mangiatordi GF, Lopedota A, Lopalco A, Cutrignelli A, Franco M, Delre P, Song IH, Kim HW, Kim SB, Park HS, Kim K, Lee SY, Youn H, Lee BC, Kim SE. Radiosynthesis and characterization of [ 18F]BS224: a next-generation TSPO PET ligand insensitive to the rs6971 polymorphism. Eur J Nucl Med Mol Imaging 2021; 49:110-124. [PMID: 34783879 PMCID: PMC8712300 DOI: 10.1007/s00259-021-05617-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 11/03/2021] [Indexed: 01/03/2023]
Abstract
PURPOSE Translocator protein 18-kDa (TSPO) positron emission tomography (PET) is a valuable tool to detect neuroinflammed areas in a broad spectrum of neurodegenerative diseases. However, the clinical application of second-generation TSPO ligands as biomarkers is limited because of the presence of human rs6971 polymorphism that affects their binding. Here, we describe the ability of a new TSPO ligand, [18F]BS224, to identify abnormal TSPO expression in neuroinflammation independent of the rs6971 polymorphism. METHODS An in vitro competitive inhibition assay of BS224 was conducted with [3H]PK 11195 using membrane proteins isolated from 293FT cells expressing TSPO-wild type (WT) or TSPO-mutant A147T (Mut), corresponding to a high-affinity binder (HAB) and low-affinity binder (LAB), respectively. Molecular docking was performed to investigate the interaction of BS224 with the binding sites of rat TSPO-WT and TSPO-Mut. We synthesized a new 18F-labeled imidazopyridine acetamide ([18F]BS224) using boronic acid pinacol ester 6 or iodotoluene tosylate precursor 7, respectively, via aromatic 18F-fluorination. Dynamic PET scanning was performed up to 90 min after the injection of [18F]BS224 to healthy mice, and PET imaging data were obtained to estimate its absorbed doses in organs. To evaluate in vivo TSPO-specific uptake of [18F]BS224, lipopolysaccharide (LPS)-induced inflammatory and ischemic stroke rat models were used. RESULTS BS224 exhibited a high affinity (Ki = 0.51 nM) and selectivity for TSPO. The ratio of IC50 values of BS224 for LAB to that for HAB indicated that the TSPO binding affinity of BS224 has low binding sensitivity to the rs6971 polymorphism and it was comparable to that of PK 11195, which is not sensitive to the polymorphism. Docking simulations showed that the binding mode of BS224 is not affected by the A147T mutation and consequently supported the observed in vitro selectivity of [18F]BS224 regardless of polymorphisms. With optimal radiochemical yield (39 ± 6.8%, decay-corrected) and purity (> 99%), [18F]BS224 provided a clear visible image of the inflammatory lesion with a high signal-to-background ratio in both animal models (BPND = 1.43 ± 0.17 and 1.57 ± 0.37 in the LPS-induced inflammatory and ischemic stroke rat models, respectively) without skull uptake. CONCLUSION Our results suggest that [18F]BS224 may be a promising TSPO ligand to gauge neuroinflammatory disease-related areas in a broad range of patients irrespective of the common rs6971 polymorphism.
Collapse
Affiliation(s)
- Sang Hee Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, 13620 Republic of Korea
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826 Republic of Korea
| | - Nunzio Denora
- Department of Pharmacy – Drug Sciences, University of Bari “A. Moro”, 70121 Bari, Italy
| | - Valentino Laquintana
- Department of Pharmacy – Drug Sciences, University of Bari “A. Moro”, 70121 Bari, Italy
| | | | - Angela Lopedota
- Department of Pharmacy – Drug Sciences, University of Bari “A. Moro”, 70121 Bari, Italy
| | - Antonio Lopalco
- Department of Pharmacy – Drug Sciences, University of Bari “A. Moro”, 70121 Bari, Italy
| | - Annalisa Cutrignelli
- Department of Pharmacy – Drug Sciences, University of Bari “A. Moro”, 70121 Bari, Italy
| | - Massimo Franco
- Department of Pharmacy – Drug Sciences, University of Bari “A. Moro”, 70121 Bari, Italy
| | - Pietro Delre
- Institute of Crystallography, National Research Council, Via G. Amendola 122/O, 70126 Bari, Italy
- Department of Chemistry, University of Bari “A. Moro”, Via E. Orabona, 4, 70125 Bari, Italy
| | - In Ho Song
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, 13620 Republic of Korea
| | - Hye Won Kim
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, 13620 Republic of Korea
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826 Republic of Korea
| | - Su Bin Kim
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, 13620 Republic of Korea
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826 Republic of Korea
| | - Hyun Soo Park
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, 13620 Republic of Korea
| | - Kyungmin Kim
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, 03080 Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03080 Republic of Korea
- Laboratory of Molecular Imaging and Therapy, Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea
| | - Seok-Yong Lee
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, 03080 Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03080 Republic of Korea
- Laboratory of Molecular Imaging and Therapy, Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea
| | - Hyewon Youn
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, 03080 Republic of Korea
- Laboratory of Molecular Imaging and Therapy, Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea
| | - Byung Chul Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, 13620 Republic of Korea
- Center for Nanomolecular Imaging and Innovative Drug Development, Advanced Institutes of Convergence Technology, Suwon, 16229 Republic of Korea
| | - Sang Eun Kim
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, 13620 Republic of Korea
- Center for Nanomolecular Imaging and Innovative Drug Development, Advanced Institutes of Convergence Technology, Suwon, 16229 Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826 Republic of Korea
| |
Collapse
|
19
|
Wimberley C, Lavisse S, Hillmer A, Hinz R, Turkheimer F, Zanotti-Fregonara P. Kinetic modeling and parameter estimation of TSPO PET imaging in the human brain. Eur J Nucl Med Mol Imaging 2021; 49:246-256. [PMID: 33693967 PMCID: PMC8712306 DOI: 10.1007/s00259-021-05248-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/07/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE Translocator protein 18-kDa (TSPO) imaging with positron emission tomography (PET) is widely used in research studies of brain diseases that have a neuro-immune component. Quantification of TSPO PET images, however, is associated with several challenges, such as the lack of a reference region, a genetic polymorphism affecting the affinity of the ligand for TSPO, and a strong TSPO signal in the endothelium of the brain vessels. These challenges have created an ongoing debate in the field about which type of quantification is most useful and whether there is an appropriate simplified model. METHODS This review focuses on the quantification of TSPO radioligands in the human brain. The various methods of quantification are summarized, including the gold standard of compartmental modeling with metabolite-corrected input function as well as various alternative models and non-invasive approaches. Their advantages and drawbacks are critically assessed. RESULTS AND CONCLUSIONS Researchers employing quantification methods for TSPO should understand the advantages and limitations associated with each method. Suggestions are given to help researchers choose between these viable alternative methods.
Collapse
Affiliation(s)
| | - Sonia Lavisse
- CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Université Paris-Saclay, 92265, Fontenay-aux-Roses, France
| | - Ansel Hillmer
- Departments of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Departments of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Yale PET Center, Yale School of Medicine, New Haven, CT, USA
| | - Rainer Hinz
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, M20 3LJ, UK
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Centre for Neuroimaging Sciences, King's College London, De Crespigny Park, London, SE5 8AF, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, UK
| | - Paolo Zanotti-Fregonara
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
20
|
Siméon FG, Lee JH, Morse CL, Stukes I, Zoghbi SS, Manly LS, Liow JS, Gladding RL, Dick RM, Yan X, Taliani S, Costa B, Martini C, Da Settimo F, Castellano S, Innis RB, Pike VW. Synthesis and Screening in Mice of Fluorine-Containing PET Radioligands for TSPO: Discovery of a Promising 18F-Labeled Ligand. J Med Chem 2021; 64:16731-16745. [PMID: 34756026 PMCID: PMC8817670 DOI: 10.1021/acs.jmedchem.1c01562] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Translocator protein 18 kDa (TSPO) is a biomarker of neuroinflammation. [11C]ER176 robustly quantifies TSPO in the human brain with positron emission tomography (PET), irrespective of subject genotype. We aimed to develop an ER176 analog with potential for labeling with longer-lived fluorine-18 (t1/2 = 109.8 min). New fluoro and trifluoromethyl analogs of ER176 were prepared through a concise synthetic strategy. These ligands showed high TSPO affinity and low human genotype sensitivity. Each ligand was initially labeled by a generic 11C-methylation procedure, thereby enabling speedy screening in mice. Each radioligand was rapidly taken up and well retained in the mouse brain at baseline after intravenous injection. Preblocking of TSPO showed that high proportions of brain uptake were specifically bound to TSPO at baseline. Overall, the 3-fluoro analog of [11C]ER176 ([11C]3b) displayed the most promising imaging properties. Therefore, a method was developed to label 3b with [18F]fluoride ion. [18F]3b gave similarly promising PET imaging results and deserves evaluation in higher species.
Collapse
Affiliation(s)
- Fabrice G Siméon
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jae-Hoon Lee
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
- Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 03772, South Korea
| | - Cheryl L Morse
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Ian Stukes
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Sami S Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Lester S Manly
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jeih-San Liow
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Robert L Gladding
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Rachel M Dick
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Xuefeng Yan
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Barbara Costa
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | | | - Sabrina Castellano
- Department of Pharmacy, University of Salerno, 84084 Fisciano, SA, Italy
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
21
|
Mixdorf JC, Murali D, Xin Y, DiFilippo AH, Aluicio-Sarduy E, Barnhart TE, Engle JW, Ellison PA, Christian BT. Alternative strategies for the synthesis of [ 11C]ER176 for PET imaging of neuroinflammation. Appl Radiat Isot 2021; 178:109954. [PMID: 34607293 DOI: 10.1016/j.apradiso.2021.109954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
[11C]ER176 is a next generation PET radioligand for imaging 18 kDa translocator protein, a biomarker for neuroinflammation. The goal of this work was to investigate alternative strategies for the radiochemical synthesis, purification, and formulation of [11C]ER176. An optimized tri-solvent high-performance liquid chromatography (HPLC) protocol is described to separate the hydro-de-chlorinated byproduct from [11C]ER176. A newly implemented solid phase extraction work-up efficiently removed HPLC solvent while maintaining chemical purity and overall radiochemical yield and purity. This new HPLC purification and final formulation was completed within 40 min, providing 2.7 ± 0.5 GBq of [11C]ER176 at end of synthesis with 1400 ± 300 GBq/μmol molar activity while meeting all specifications for radiopharmaceutical quality control tests for human research use.
Collapse
Affiliation(s)
- Jason C Mixdorf
- Departments of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA; Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, WI, USA.
| | - Dhanabalan Murali
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, WI, USA
| | - Yangchun Xin
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, WI, USA
| | - Alexandra H DiFilippo
- Departments of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA; Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, WI, USA
| | - Eduardo Aluicio-Sarduy
- Departments of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Todd E Barnhart
- Departments of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Jonathan W Engle
- Departments of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA; Radiology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Paul A Ellison
- Departments of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Bradley T Christian
- Departments of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA; Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
22
|
Translation of 11C-labeled tracer synthesis to a CGMP environment as exemplified by [ 11C]ER176 for PET imaging of human TSPO. Nat Protoc 2021; 16:4419-4445. [PMID: 34363068 DOI: 10.1038/s41596-021-00584-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 06/07/2021] [Indexed: 11/08/2022]
Abstract
Radiotracers labeled with carbon-11 (t1/2 = 20.4 min) are widely used with positron emission tomography for biomedical research. Radiotracers must be produced for positron emission tomography studies in humans according to prescribed time schedules while also meeting current good manufacturing practice. Translation of an experimental radiosynthesis to a current good manufacturing practice environment is challenging. Here we exemplify such translation with a protocol for the production of an emerging radiotracer for imaging brain translocator protein 18 kDa, namely [11C]ER176. This radiotracer is produced by rapid conversion of cyclotron-produced [11C]carbon dioxide into [11C]iodomethane, which is then used to treat N-desmethyl-ER176 in the presence of base (tBuOK) at room temperature for 5 min. [11C]ER176 is separated in high purity by reversed-phase HPLC and formulated for intravenous injection in sterile ethanol-saline. The radiosynthesis is reliable and takes 50 min. Quality control takes another 20 min. All aspects of the protocol, including quality control, are discussed.
Collapse
|
23
|
Giordani A, Menziani MC, Moresco RM, Matarrese M, Paolino M, Saletti M, Giuliani G, Anzini M, Cappelli A. Exploring Translocator Protein (TSPO) Medicinal Chemistry: An Approach for Targeting Radionuclides and Boron Atoms to Mitochondria. J Med Chem 2021; 64:9649-9676. [PMID: 34254805 DOI: 10.1021/acs.jmedchem.1c00379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Translocator protein 18 kDa [TSPO or peripheral-type benzodiazepine receptor (PBR)] was identified in the search of binding sites for benzodiazepine anxiolytic drugs in peripheral regions. In these areas, binding sites for TSPO ligands were recognized in steroid-producing tissues. TSPO plays an important role in many cellular functions, and its coding sequence is highly conserved across species. TSPO is located predominantly on the membrane of mitochondria and is overexpressed in several solid cancers. TSPO basal expression in the CNS is low, but it becomes high in neurodegenerative conditions. Thus, TSPO constitutes not only as an outstanding drug target but also as a valuable marker for the diagnosis of a number of diseases. The aim of the present article is to show the lesson we have learned from our activity in TSPO medicinal chemistry and in approaching the targeted delivery to mitochondria by means of TSPO ligands.
Collapse
Affiliation(s)
- Antonio Giordani
- Rottapharm Biotech S.p.A., Via Valosa di Sopra 9, 20900 Monza, Italy
| | - Maria Cristina Menziani
- Dipartimento di Scienze Chimiche e Geologiche, Università di Modena e Reggio Emilia, Via Campi 103, 41121 Modena, Italy
| | - Rosa Maria Moresco
- Department of Medicine and Surgery, University of Milan-Bicocca, Nuclear Medicine Department, San Raffaele Scientific Institute, IBFM-CNR, Via Olgettina 60, 20132 Milano, Italy
| | - Mario Matarrese
- Department of Medicine and Surgery, University of Milan-Bicocca, Nuclear Medicine Department, San Raffaele Scientific Institute, IBFM-CNR, Via Olgettina 60, 20132 Milano, Italy
| | - Marco Paolino
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Mario Saletti
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Germano Giuliani
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Maurizio Anzini
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Andrea Cappelli
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| |
Collapse
|
24
|
Bao W, Xie F, Zuo C, Guan Y, Huang YH. PET Neuroimaging of Alzheimer's Disease: Radiotracers and Their Utility in Clinical Research. Front Aging Neurosci 2021; 13:624330. [PMID: 34025386 PMCID: PMC8134674 DOI: 10.3389/fnagi.2021.624330] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's Disease (AD), the leading cause of senile dementia, is a progressive neurodegenerative disorder affecting millions of people worldwide and exerting tremendous socioeconomic burden on all societies. Although definitive diagnosis of AD is often made in the presence of clinical manifestations in late stages, it is now universally believed that AD is a continuum of disease commencing from the preclinical stage with typical neuropathological alterations appearing decades prior to its first symptom, to the prodromal stage with slight symptoms of amnesia (amnestic mild cognitive impairment, aMCI), and then to the terminal stage with extensive loss of basic cognitive functions, i.e., AD-dementia. Positron emission tomography (PET) radiotracers have been developed in a search to meet the increasing clinical need of early detection and treatment monitoring for AD, with reference to the pathophysiological targets in Alzheimer's brain. These include the pathological aggregations of misfolded proteins such as β-amyloid (Aβ) plagues and neurofibrillary tangles (NFTs), impaired neurotransmitter system, neuroinflammation, as well as deficient synaptic vesicles and glucose utilization. In this article we survey the various PET radiotracers available for AD imaging and discuss their clinical applications especially in terms of early detection and cognitive relevance.
Collapse
Affiliation(s)
- Weiqi Bao
- PET Center, Huanshan Hospital, Fudan University, Shanghai, China
| | - Fang Xie
- PET Center, Huanshan Hospital, Fudan University, Shanghai, China
| | - Chuantao Zuo
- PET Center, Huanshan Hospital, Fudan University, Shanghai, China
| | - Yihui Guan
- PET Center, Huanshan Hospital, Fudan University, Shanghai, China
| | - Yiyun Henry Huang
- Department of Radiology and Biomedical Imaging, PET Center, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
25
|
Rocha NP, Charron O, Latham LB, Colpo GD, Zanotti-Fregonara P, Yu M, Freeman L, Furr Stimming E, Teixeira AL. Microglia Activation in Basal Ganglia Is a Late Event in Huntington Disease Pathophysiology. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:e984. [PMID: 33795375 PMCID: PMC8017723 DOI: 10.1212/nxi.0000000000000984] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/20/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To define the role played by microglia in different stages of Huntington disease (HD), we used the TSPO radioligand [11C]-ER176 and PET to evaluate microglial activation in relation to neurodegeneration and in relation to the clinical features seen at premanifest and manifest stages of the disease. METHODS This is a cross-sectional study in which 18 subjects (6 controls, 6 premanifest, and 6 manifest HD gene carriers) underwent a [11C]-ER176 PET scan and an MRI for anatomic localization. Segmentation of regions of interest (ROIs) was performed, and group differences in [11C]-ER176 binding (used to evaluate the extent of microglial activation) were assessed by the standardized uptake value ratio (SUVR). Microglial activation was correlated with ROIs volumes, disease burden, and the scores obtained in the clinical scales. As an exploratory aim, we evaluated the dynamic functions of microglia in vitro, by using induced microglia-like (iMG) cells from peripheral blood monocytes. RESULTS Individuals with manifest HD present higher [11C]-ER176 SUVR in both globi pallidi and putamina in comparison with controls. No differences were observed when we compared premanifest HD with controls or with manifest HD. We also found a significant correlation between increased microglial activation and cumulative disease burden, and with reduced volumes. iMG from controls, premanifest HD, and manifest HD patients showed similar phagocytic capacity. CONCLUSIONS Altogether, our data demonstrate that microglial activation is involved in HD pathophysiology and is associated with disease progression.
Collapse
Affiliation(s)
- Natalia P. Rocha
- From the Mitchell Center for Alzheimer's Disease and Related Brain Disorders (N.P.R.), Department of Neurology, McGovern Medical School, The University of Texas Health Science Center, Houston; Department of Neurology (O.C., L.F.), The University of Texas at Austin; School of Medicine (L.B.L.), University of Washington, Seattle; Neuropsychiatry Program (G.D.C., A.L.T.), Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas, Houston; Houston Methodist Research Institute and Weill Cornell Medicine (P.Z.-F., M.Y.), TX; and HDSA Center of Excellence at University of Texas Health Science Center at Houston (E.F.S.)
| | - Odelin Charron
- From the Mitchell Center for Alzheimer's Disease and Related Brain Disorders (N.P.R.), Department of Neurology, McGovern Medical School, The University of Texas Health Science Center, Houston; Department of Neurology (O.C., L.F.), The University of Texas at Austin; School of Medicine (L.B.L.), University of Washington, Seattle; Neuropsychiatry Program (G.D.C., A.L.T.), Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas, Houston; Houston Methodist Research Institute and Weill Cornell Medicine (P.Z.-F., M.Y.), TX; and HDSA Center of Excellence at University of Texas Health Science Center at Houston (E.F.S.)
| | - Leigh B. Latham
- From the Mitchell Center for Alzheimer's Disease and Related Brain Disorders (N.P.R.), Department of Neurology, McGovern Medical School, The University of Texas Health Science Center, Houston; Department of Neurology (O.C., L.F.), The University of Texas at Austin; School of Medicine (L.B.L.), University of Washington, Seattle; Neuropsychiatry Program (G.D.C., A.L.T.), Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas, Houston; Houston Methodist Research Institute and Weill Cornell Medicine (P.Z.-F., M.Y.), TX; and HDSA Center of Excellence at University of Texas Health Science Center at Houston (E.F.S.)
| | - Gabriela D. Colpo
- From the Mitchell Center for Alzheimer's Disease and Related Brain Disorders (N.P.R.), Department of Neurology, McGovern Medical School, The University of Texas Health Science Center, Houston; Department of Neurology (O.C., L.F.), The University of Texas at Austin; School of Medicine (L.B.L.), University of Washington, Seattle; Neuropsychiatry Program (G.D.C., A.L.T.), Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas, Houston; Houston Methodist Research Institute and Weill Cornell Medicine (P.Z.-F., M.Y.), TX; and HDSA Center of Excellence at University of Texas Health Science Center at Houston (E.F.S.)
| | - Paolo Zanotti-Fregonara
- From the Mitchell Center for Alzheimer's Disease and Related Brain Disorders (N.P.R.), Department of Neurology, McGovern Medical School, The University of Texas Health Science Center, Houston; Department of Neurology (O.C., L.F.), The University of Texas at Austin; School of Medicine (L.B.L.), University of Washington, Seattle; Neuropsychiatry Program (G.D.C., A.L.T.), Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas, Houston; Houston Methodist Research Institute and Weill Cornell Medicine (P.Z.-F., M.Y.), TX; and HDSA Center of Excellence at University of Texas Health Science Center at Houston (E.F.S.)
| | - Meixiang Yu
- From the Mitchell Center for Alzheimer's Disease and Related Brain Disorders (N.P.R.), Department of Neurology, McGovern Medical School, The University of Texas Health Science Center, Houston; Department of Neurology (O.C., L.F.), The University of Texas at Austin; School of Medicine (L.B.L.), University of Washington, Seattle; Neuropsychiatry Program (G.D.C., A.L.T.), Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas, Houston; Houston Methodist Research Institute and Weill Cornell Medicine (P.Z.-F., M.Y.), TX; and HDSA Center of Excellence at University of Texas Health Science Center at Houston (E.F.S.)
| | - Leorah Freeman
- From the Mitchell Center for Alzheimer's Disease and Related Brain Disorders (N.P.R.), Department of Neurology, McGovern Medical School, The University of Texas Health Science Center, Houston; Department of Neurology (O.C., L.F.), The University of Texas at Austin; School of Medicine (L.B.L.), University of Washington, Seattle; Neuropsychiatry Program (G.D.C., A.L.T.), Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas, Houston; Houston Methodist Research Institute and Weill Cornell Medicine (P.Z.-F., M.Y.), TX; and HDSA Center of Excellence at University of Texas Health Science Center at Houston (E.F.S.)
| | | | | |
Collapse
|
26
|
Comprehensive review on design perspective of PET ligands based on β-amyloids, tau and neuroinflammation for diagnostic intervention of Alzheimer’s disease. Clin Transl Imaging 2021. [DOI: 10.1007/s40336-021-00410-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Narayanaswami V, Tong J, Schifani C, Bloomfield PM, Dahl K, Vasdev N. Preclinical Evaluation of TSPO and MAO-B PET Radiotracers in an LPS Model of Neuroinflammation. PET Clin 2021; 16:233-247. [PMID: 33648665 DOI: 10.1016/j.cpet.2020.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Discovery of novel PET radiotracers targeting neuroinflammation (microglia and astrocytes) is actively pursued. Employing a lipopolysaccharide (LPS) rat model, this longitudinal study evaluated the translocator protein 18-kDa radiotracer [18F]FEPPA (primarily microglia) and monoamine oxidase B radiotracers [11C]L-deprenyl and [11C]SL25.1188 (astrocytes preferred). Increased [18F]FEPPA binding peaked at 1 week in LPS-injected striatum whereas increased lazabemide-sensitive [11C]L-deprenyl binding developed later. No increase in radiotracer uptake was observed for [11C]SL25.1188. The unilateral intrastriatal LPS rat model may serve as a useful tool for benchmarking PET tracers targeted toward distinct phases of neuroinflammatory reactions involving both microglia and astrocytes.
Collapse
Affiliation(s)
- Vidya Narayanaswami
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Room 270, Toronto, Ontario M5T 1R8, Canada
| | - Junchao Tong
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Room 339, Toronto, Ontario M5T 1R8, Canada
| | - Christin Schifani
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Room 270, Toronto, Ontario M5T 1R8, Canada
| | - Peter M Bloomfield
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Room B26A, Toronto, Ontario M5T 1R8, Canada
| | - Kenneth Dahl
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Room B02, Toronto, Ontario M5T 1R8, Canada
| | - Neil Vasdev
- Department of Psychiatry, Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, Centre for Addiction and Mental Health, University of Toronto, 250 College Street, Room PET G2, Toronto, Ontario M5T 1R8, Canada.
| |
Collapse
|
28
|
Zhang L, Hu K, Shao T, Hou L, Zhang S, Ye W, Josephson L, Meyer JH, Zhang MR, Vasdev N, Wang J, Xu H, Wang L, Liang SH. Recent developments on PET radiotracers for TSPO and their applications in neuroimaging. Acta Pharm Sin B 2021; 11:373-393. [PMID: 33643818 PMCID: PMC7893127 DOI: 10.1016/j.apsb.2020.08.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/15/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
The 18 kDa translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor, is predominately localized to the outer mitochondrial membrane in steroidogenic cells. Brain TSPO expression is relatively low under physiological conditions, but is upregulated in response to glial cell activation. As the primary index of neuroinflammation, TSPO is implicated in the pathogenesis and progression of numerous neuropsychiatric disorders and neurodegenerative diseases, including Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), multiple sclerosis (MS), major depressive disorder (MDD) and obsessive compulsive disorder (OCD). In this context, numerous TSPO-targeted positron emission tomography (PET) tracers have been developed. Among them, several radioligands have advanced to clinical research studies. In this review, we will overview the recent development of TSPO PET tracers, focusing on the radioligand design, radioisotope labeling, pharmacokinetics, and PET imaging evaluation. Additionally, we will consider current limitations, as well as translational potential for future application of TSPO radiopharmaceuticals. This review aims to not only present the challenges in current TSPO PET imaging, but to also provide a new perspective on TSPO targeted PET tracer discovery efforts. Addressing these challenges will facilitate the translation of TSPO in clinical studies of neuroinflammation associated with central nervous system diseases.
Collapse
Key Words
- AD, Alzheimer's disease
- ALS, amyotrophic lateral sclerosis
- AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid
- ANT, adenine nucleotide transporter
- Am, molar activities
- BBB, blood‒brain barrier
- BMSC, bone marrow stromal cells
- BP, binding potential
- BPND, non-displaceable binding potential
- BcTSPO, Bacillus cereus TSPO
- CBD, corticobasal degeneration
- CNS disorders
- CNS, central nervous system
- CRAC, cholesterol recognition amino acid consensus sequence
- DLB, Lewy body dementias
- EP, epilepsy
- FTD, frontotemporal dementia
- HAB, high-affinity binding
- HD, Huntington's disease
- HSE, herpes simplex encephalitis
- IMM, inner mitochondrial membrane
- KA, kainic acid
- LAB, low-affinity binding
- LPS, lipopolysaccharide
- MAB, mixed-affinity binding
- MAO-B, monoamine oxidase B
- MCI, mild cognitive impairment
- MDD, major depressive disorder
- MMSE, mini-mental state examination
- MRI, magnetic resonance imaging
- MS, multiple sclerosis
- MSA, multiple system atrophy
- Microglial activation
- NAA/Cr, N-acetylaspartate/creatine
- Neuroinflammation
- OCD, obsessive compulsive disorder
- OMM, outer mitochondrial membrane
- P2X7R, purinergic receptor P2X7
- PAP7, RIa-associated protein
- PBR, peripheral benzodiazepine receptor
- PCA, posterior cortical atrophy
- PD, Parkinson's disease
- PDD, PD dementia
- PET, positron emission tomography
- PKA, protein kinase A
- PRAX-1, PBR-associated protein 1
- PSP, progressive supranuclear palsy
- Positron emission tomography (PET)
- PpIX, protoporphyrin IX
- QA, quinolinic acid
- RCYs, radiochemical yields
- ROS, reactive oxygen species
- RRMS, relapsing remitting multiple sclerosis
- SA, specific activity
- SAH, subarachnoid hemorrhage
- SAR, structure–activity relationship
- SCIDY, spirocyclic iodonium ylide
- SNL, selective neuronal loss
- SNR, signal to noise ratio
- SUV, standard uptake volume
- SUVR, standard uptake volume ratio
- TBAH, tetrabutyl ammonium hydroxide
- TBI, traumatic brain injury
- TLE, temporal lobe epilepsy
- TSPO
- TSPO, translocator protein
- VDAC, voltage-dependent anion channel
- VT, distribution volume
- d.c. RCYs, decay-corrected radiochemical yields
- dMCAO, distal middle cerebral artery occlusion
- fP, plasma free fraction
- n.d.c. RCYs, non-decay-corrected radiochemical yields
- p.i., post-injection
Collapse
|
29
|
|
30
|
Sokias R, Werry EL, Alison Cheng HW, Lloyd JH, Sohler G, Danon JJ, Montgomery AP, Du JJ, Gao Q, Hibbs DE, Ittner LM, Reekie TA, Kassiou M. Tricyclic heterocycles display diverse sensitivity to the A147T TSPO polymorphism. Eur J Med Chem 2020; 207:112725. [DOI: 10.1016/j.ejmech.2020.112725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022]
|
31
|
An update into the medicinal chemistry of translocator protein (TSPO) ligands. Eur J Med Chem 2020; 209:112924. [PMID: 33081988 DOI: 10.1016/j.ejmech.2020.112924] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 01/16/2023]
Abstract
The Translocator Protein 18 kDa (TSPO) has been discovered in 1977 as an alternative binding site for the benzodiazepine diazepam. It is an evolutionary well-conserved and tryptophan-rich 169-amino acids protein with five alpha helical transmembrane domains stretching the outer mitochondrial membrane, with the carboxyl-terminus in the cytosol and a short amino-terminus in the intermembrane space of mitochondrion. At this level, together with the voltage-dependent anion channel (VDAC) and the adenine nucleotide translocase (ANT), it forms the mitochondrial permeability transition pore (MPTP). TSPO expression is ubiquitary, with higher levels in steroid producing tissues; in the central nervous system, it is mainly expressed in glial cells and in neurons. TSPO is implicated in a variety of fundamental cellular processes including steroidogenesis, heme biosynthesis, mitochondrial respiration, mitochondrial membrane potential, cell proliferation and differentiation, cell life/death balance, oxidative stress. Altered TSPO expression has been found in some pathological conditions. In particular, high TSPO expression levels have been documented in cancer, neuroinflammation, and brain injury. Conversely, low TSPO expression levels have been evidenced in anxiety disorders. Therefore, TSPO is not only an interesting drug target for therapeutic purpose (anticonvulsant, anxiolytic, etc.), but also a valid diagnostic marker of related-diseases detectable by fluorescent or radiolabeled ligands. The aim of this report is to present an update of previous reviews dealing with the medicinal chemistry of TSPO and to highlight the most outstanding advances in the development of TSPO ligands as potential therapeutic or diagnostic tools, especially referring to the last five years.
Collapse
|
32
|
Zammit M, Tao Y, Olsen ME, Metzger J, Vermilyea SC, Bjornson K, Slesarev M, Block WF, Fuchs K, Phillips S, Bondarenko V, Zhang SC, Emborg ME, Christian BT. [ 18F]FEPPA PET imaging for monitoring CD68-positive microglia/macrophage neuroinflammation in nonhuman primates. EJNMMI Res 2020; 10:93. [PMID: 32761399 PMCID: PMC7410886 DOI: 10.1186/s13550-020-00683-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022] Open
Abstract
PURPOSE The aim of this study was to examine whether the translocator protein 18-kDa (TSPO) PET ligand [18F]FEPPA has the sensitivity for detecting changes in CD68-positive microglial/macrophage activation in hemiparkinsonian rhesus macaques treated with allogeneic grafts of induced pluripotent stem cell-derived midbrain dopaminergic neurons (iPSC-mDA). METHODS In vivo positron emission tomography (PET) imaging with [18F]FEPPA was used in conjunction with postmortem CD68 immunostaining to evaluate neuroinflammation in the brains of hemiparkinsonian rhesus macaques (n = 6) that received allogeneic iPSC-mDA grafts in the putamen ipsilateral to MPTP administration. RESULTS Based on assessment of radiotracer uptake and confirmed by visual inspection of the imaging data, nonhuman primates with allogeneic grafts showed increased [18F]FEPPA binding at the graft sites relative to the contralateral putamen. From PET asymmetry analysis of the images, the mean asymmetry index of the monkeys was AI = - 0.085 ± 0.018. Evaluation and scoring of CD68 immunoreactivity by an investigator blind to the treatment identified significantly more neuroinflammation in the grafted areas of the putamen compared to the contralateral putamen (p = 0.0004). [18F]FEPPA PET AI showed a positive correlation with CD68 immunoreactivity AI ratings in the monkeys (Spearman's ρ = 0.94; p = 0.005). CONCLUSION These findings reveal that [18F]FEPPA PET is an effective marker for detecting increased CD68-positive microglial/macrophage activation and demonstrates sufficient sensitivity to detect changes in neuroinflammation in vivo following allogeneic cell engraftment.
Collapse
Affiliation(s)
- Matthew Zammit
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Yunlong Tao
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Miles E Olsen
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Jeanette Metzger
- Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1220 Capitol Court, Madison, WI, 53715, USA
- Cellular and Molecular Pathology Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Scott C Vermilyea
- Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1220 Capitol Court, Madison, WI, 53715, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Neuroscience, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Kathryn Bjornson
- Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1220 Capitol Court, Madison, WI, 53715, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Maxim Slesarev
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Walter F Block
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Kerri Fuchs
- Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1220 Capitol Court, Madison, WI, 53715, USA
| | - Sean Phillips
- Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1220 Capitol Court, Madison, WI, 53715, USA
| | - Viktorya Bondarenko
- Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1220 Capitol Court, Madison, WI, 53715, USA
| | - Su-Chun Zhang
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | - Marina E Emborg
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA.
- Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1220 Capitol Court, Madison, WI, 53715, USA.
- Cellular and Molecular Pathology Training Program, University of Wisconsin-Madison, Madison, WI, USA.
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA.
| | - Bradley T Christian
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
33
|
Downer OM, Marcus RE, Zürcher NR, Hooker JM. Tracing the History of the Human Translocator Protein to Recent Neurodegenerative and Psychiatric Imaging. ACS Chem Neurosci 2020; 11:2192-2200. [PMID: 32662626 DOI: 10.1021/acschemneuro.0c00362] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The human 18 kDa translocator protein (TSPO) has been widely used as a measure of glial activation in health and disease. With the continuous progress of radiotracers with increased affinity and selectivity, associations between TSPO expression, disease severity, and progression have been examined, particularly in neurodegenerative disorders such as multiple sclerosis (MS), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). However, findings in psychiatric disorders have prompted reassessment of the interpretation of regional TSPO expression differences in the brain, specifically with respect to potential neuroinflammatory components. This "mini" Review aims to guide readers through the complexity of TSPO imaging research by identifying the successes, challenges, and promising new directions of the field. We will provide a brief history of how TSPO imaging has evolved over the last three decades and present lessons learned in the context of neurodegenerative and psychiatric disorders.
Collapse
Affiliation(s)
- Olivia M. Downer
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
| | - Rachel E.G. Marcus
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
| | - Nicole R. Zürcher
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
- Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Jacob M. Hooker
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
- Harvard Medical School, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
34
|
PET measurement of cyclooxygenase-2 using a novel radioligand: upregulation in primate neuroinflammation and first-in-human study. J Neuroinflammation 2020; 17:140. [PMID: 32359360 PMCID: PMC7195739 DOI: 10.1186/s12974-020-01804-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/03/2020] [Indexed: 02/06/2023] Open
Abstract
Background Cyclooxygenase-2 (COX-2), which is rapidly upregulated by inflammation, is a key enzyme catalyzing the rate-limiting step in the synthesis of several inflammatory prostanoids. Successful positron emission tomography (PET) radioligand imaging of COX-2 in vivo could be a potentially powerful tool for assessing inflammatory response in the brain and periphery. To date, however, the development of PET radioligands for COX-2 has had limited success. Methods The novel PET tracer [11C]MC1 was used to examine COX-2 expression [1] in the brains of four rhesus macaques at baseline and after injection of the inflammogen lipopolysaccharide (LPS) into the right putamen, and [2] in the joints of two human participants with rheumatoid arthritis and two healthy individuals. In the primate study, two monkeys had one LPS injection, and two monkeys had a second injection 33 and 44 days, respectively, after the first LPS injection. As a comparator, COX-1 expression was measured using [11C]PS13. Results COX-2 binding, expressed as the ratio of specific to nondisplaceable uptake (BPND) of [11C]MC1, increased on day 1 post-LPS injection; no such increase in COX-1 expression, measured using [11C]PS13, was observed. The day after the second LPS injection, a brain lesion (~ 0.5 cm in diameter) with high COX-2 density and high BPND (1.8) was observed. Postmortem brain analysis at the gene transcript or protein level confirmed in vivo PET results. An incidental finding in an unrelated monkey found a line of COX-2 positivity along an incision in skull muscle, demonstrating that [11C]MC1 can localize inflammation peripheral to the brain. In patients with rheumatoid arthritis, [11C]MC1 successfully imaged upregulated COX-2 in the arthritic hand and shoulder and apparently in the brain. Uptake was blocked by celecoxib, a COX-2 preferential inhibitor. Conclusions Taken together, these results indicate that [11C]MC1 can image and quantify COX-2 upregulation in both monkey brain after LPS-induced neuroinflammation and in human peripheral tissue with inflammation. Trial registration ClinicalTrials.gov NCT03912428. Registered April 11, 2019.
Collapse
|
35
|
Keller T, López-Picón FR, Krzyczmonik A, Forsback S, Takkinen JS, Rajander J, Teperi S, Dollé F, Rinne JO, Haaparanta-Solin M, Solin O. Comparison of high and low molar activity TSPO tracer [ 18F]F-DPA in a mouse model of Alzheimer's disease. J Cereb Blood Flow Metab 2020; 40:1012-1020. [PMID: 31142224 PMCID: PMC7181084 DOI: 10.1177/0271678x19853117] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
[18F]F-DPA, a novel translocator protein 18 kDa (TSPO)-specific radioligand for imaging neuroinflammation, has to date been synthesized with low to moderate molar activities (Am's). In certain cases, low Am can skew the estimation of specific binding. The high proportion of the non-radioactive component can reduce the apparent-specific binding by competitively binding to receptors. We developed a nucleophilic synthesis of [18F]F-DPA resulting in high Am (990 ± 150 GBq/µmol) and performed in vivo comparison with low Am (9.0 ± 2.9 GBq/µmol) [18F]F-DPA in the same APP/PS1-21 and wild-type mice (injected masses: 0.34 ± 0.13 µg/kg and 38 ± 15 µg/kg, respectively). The high level of microgliosis in the APP/PS1-21 mouse model enables good differentiation between diseased and healthy animals and serves better to distinguish the effect of differing Am on specific binding. The differing injected masses affect the washout profile and shape of the time-activity curves. Ratios of standardized uptake values obtained with high and low Am [18F]F-DPA demonstrate that there is a 1.5-fold higher uptake of radioactivity in the brains of APP/PS1-21 animals when imaging is carried out with high Am [18F]F-DPA. The differences between APP/PS1-21 and wild-type animals showed higher significance when high Am was used.
Collapse
Affiliation(s)
- Thomas Keller
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku and Turku University Central Hospital, Turku, Finland.,Department of Chemistry, University of Turku, Turku, Finland
| | - Francisco R López-Picón
- MediCity Research Laboratory, University of Turku, Turku, Finland.,PET Preclinical Imaging Laboratory, Turku PET Centre, University of Turku, Turku, Finland
| | - Anna Krzyczmonik
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku and Turku University Central Hospital, Turku, Finland.,Department of Chemistry, University of Turku, Turku, Finland
| | - Sarita Forsback
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku and Turku University Central Hospital, Turku, Finland.,Department of Chemistry, University of Turku, Turku, Finland
| | - Jatta S Takkinen
- MediCity Research Laboratory, University of Turku, Turku, Finland.,PET Preclinical Imaging Laboratory, Turku PET Centre, University of Turku, Turku, Finland
| | - Johan Rajander
- Accelerator Laboratory, Turku PET Centre, Åbo Akademi University, Turku, Finland
| | - Simo Teperi
- Department of Biostatistics, University of Turku, Turku, Finland
| | - Frédéric Dollé
- CEA, I2BM, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Juha O Rinne
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku and Turku University Central Hospital, Turku, Finland
| | - Merja Haaparanta-Solin
- MediCity Research Laboratory, University of Turku, Turku, Finland.,PET Preclinical Imaging Laboratory, Turku PET Centre, University of Turku, Turku, Finland
| | - Olof Solin
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku and Turku University Central Hospital, Turku, Finland.,Department of Chemistry, University of Turku, Turku, Finland.,Accelerator Laboratory, Turku PET Centre, Åbo Akademi University, Turku, Finland
| |
Collapse
|
36
|
Zanotti-Fregonara P, Pascual B, Rostomily RC, Rizzo G, Veronese M, Masdeu JC, Turkheimer F. Anatomy of 18F-GE180, a failed radioligand for the TSPO protein. Eur J Nucl Med Mol Imaging 2020; 47:2233-2236. [DOI: 10.1007/s00259-020-04732-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 02/17/2020] [Indexed: 12/21/2022]
|
37
|
Lacapere JJ, Duma L, Finet S, Kassiou M, Papadopoulos V. Insight into the Structural Features of TSPO: Implications for Drug Development. Trends Pharmacol Sci 2020; 41:110-122. [PMID: 31864680 PMCID: PMC7021566 DOI: 10.1016/j.tips.2019.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 01/01/2023]
Abstract
The translocator protein (TSPO), an 18-kDa transmembrane protein primarily found in the outer mitochondrial membrane, is evolutionarily conserved and widely distributed across species. In mammals, TSPO has been described as a key member of a multiprotein complex involved in many putative functions and, over the years, several classes of ligand have been developed to modulate these functions. In this review, we consider the currently available atomic structures of mouse and bacterial TSPO and propose a rationale for the development of new ligands for the protein. We provide a review of TSPO monomeric and oligomeric states and their conformational flexibility, together with ligand-binding site and interaction mechanisms. These data are expected to help considerably the development of high-affinity ligands for TSPO-based therapies or diagnostics.
Collapse
Affiliation(s)
- Jean-Jacques Lacapere
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules (LBM), 4 Place Jussieu, F-75005 Paris, France.
| | - Luminita Duma
- CNRS Enzyme and Cell Engineering Laboratory, Sorbonne Université, Université de Technologie de Compiègne, 60203 Compiègne Cedex, France
| | - Stephanie Finet
- IMPMC, UMR 7590 CNRS Sorbonne Université, 4 Place Jussieu, F-75005 Paris, France
| | - Michael Kassiou
- School of Chemistry, Faculty of Science, The University of Sydney, F11, Eastern Ave, Sydney, NSW 2006, Australia
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
38
|
Cheng HWA, Sokias R, Werry EL, Ittner LM, Reekie TA, Du J, Gao Q, Hibbs DE, Kassiou M. First Nondiscriminating Translocator Protein Ligands Produced from a Carbazole Scaffold. J Med Chem 2019; 62:8235-8248. [DOI: 10.1021/acs.jmedchem.9b00980] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
| | | | | | - Lars M. Ittner
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, 2 Technology Place, North Ryde, New South Wales 2109, Australia
| | | | | | | | | | | |
Collapse
|
39
|
Recent Developments in TSPO PET Imaging as A Biomarker of Neuroinflammation in Neurodegenerative Disorders. Int J Mol Sci 2019; 20:ijms20133161. [PMID: 31261683 PMCID: PMC6650818 DOI: 10.3390/ijms20133161] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation is an inflammatory response in the brain and spinal cord, which can involve the activation of microglia and astrocytes. It is a common feature of many central nervous system disorders, including a range of neurodegenerative disorders. An overlap between activated microglia, pro-inflammatory cytokines and translocator protein (TSPO) ligand binding was shown in early animal studies of neurodegeneration. These findings have been translated in clinical studies, where increases in TSPO positron emission tomography (PET) signal occur in disease-relevant areas across a broad spectrum of neurodegenerative diseases. While this supports the use of TSPO PET as a biomarker to monitor response in clinical trials of novel neurodegenerative therapeutics, the clinical utility of current TSPO PET radioligands has been hampered by the lack of high affinity binding to a prevalent form of polymorphic TSPO (A147T) compared to wild type TSPO. This review details recent developments in exploration of ligand-sensitivity to A147T TSPO that have yielded ligands with improved clinical utility. In addition to developing a non-discriminating TSPO ligand, the final frontier of TSPO biomarker research requires developing an understanding of the cellular and functional interpretation of the TSPO PET signal. Recent insights resulting from single cell analysis of microglial phenotypes are reviewed.
Collapse
|
40
|
Head-to-head comparison of 11C-PBR28 and 11C-ER176 for quantification of the translocator protein in the human brain. Eur J Nucl Med Mol Imaging 2019; 46:1822-1829. [DOI: 10.1007/s00259-019-04349-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/29/2019] [Indexed: 10/26/2022]
|
41
|
(R)-[ 18F]NEBIFQUINIDE: A promising new PET tracer for TSPO imaging. Eur J Med Chem 2019; 176:410-418. [PMID: 31125895 DOI: 10.1016/j.ejmech.2019.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/19/2019] [Accepted: 05/06/2019] [Indexed: 12/11/2022]
Abstract
Positron emission tomography (PET) imaging of the 18 kDa translocator protein (TSPO), has a high diagnostic potential in neurodegenerative disorders and cancer. However, TSPO is considered a challenge for molecular imaging due to the poor availability of suitable radiotracers with adequate pharmacokinetic properties. Here, we describe the development of a radiofluorinated pyridinyl isoquinoline analogue of the established TSPO PET tracer (R)-[11C]PK11195 with improved binding properties in all known human TSPO phenotypes. We conducted a complete preclinical evaluation using in vitro, in vivo and ex vivo methods to assess the performance of this novel radiotracer and observed high specific binding of the radiotracer to TSPO, as well as high metabolic stability. Therefore, we propose this radiolabeled compound for further evaluation in animal models as well as in clinical trials.
Collapse
|
42
|
Synthesis and in vitro evaluation of new translocator protein ligands designed for positron emission tomography. Future Med Chem 2019; 11:539-550. [PMID: 30888874 DOI: 10.4155/fmc-2018-0444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
AIM Dysregulated levels of the translocator protein TSPO 18 KDa have been reported in several disorders, particularly neurodegenerative diseases. This makes TSPO an interesting target for the development of diagnostic biomarkers. Even though several radioligands have already been developed for in vivo TSPO imaging, the ideal TSPO radiotracer has still not been found. RESULTS Here, we report the chemical synthesis of a set of new TSPO ligands designed for future application in positron emission tomography, together with the determination of their biological activity and applied 11C-labeling strategy. CONCLUSION The lead compound of our series, (R)-[11C]Me@NEBIQUINIDE, showed very promising results and is therefore proposed to be further evaluated under in vivo settings.
Collapse
|
43
|
Zanotti-Fregonara P, Veronese M, Pascual B, Rostomily RC, Turkheimer F, Masdeu JC. The validity of 18F-GE180 as a TSPO imaging agent. Eur J Nucl Med Mol Imaging 2019; 46:1205-1207. [PMID: 30656358 DOI: 10.1007/s00259-019-4268-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/07/2019] [Indexed: 01/23/2023]
Affiliation(s)
- Paolo Zanotti-Fregonara
- Nantz National Alzheimer Center and Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA.
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, UK
| | - Belen Pascual
- Nantz National Alzheimer Center and Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Robert C Rostomily
- Department of Neurosurgery, Houston Methodist Hospital and Research Institute, Houston, TX, USA
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, UK
| | - Joseph C Masdeu
- Nantz National Alzheimer Center and Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| |
Collapse
|
44
|
VanElzakker MB, Brumfield SA, Lara Mejia PS. Neuroinflammation and Cytokines in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): A Critical Review of Research Methods. Front Neurol 2019; 9:1033. [PMID: 30687207 PMCID: PMC6335565 DOI: 10.3389/fneur.2018.01033] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 11/16/2018] [Indexed: 01/18/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is the label given to a syndrome that can include long-term flu-like symptoms, profound fatigue, trouble concentrating, and autonomic problems, all of which worsen after exertion. It is unclear how many individuals with this diagnosis are suffering from the same condition or have the same underlying pathophysiology, and the discovery of biomarkers would be clarifying. The name "myalgic encephalomyelitis" essentially means "muscle pain related to central nervous system inflammation" and many efforts to find diagnostic biomarkers have focused on one or more aspects of neuroinflammation, from periphery to brain. As the field uncovers the relationship between the symptoms of this condition and neuroinflammation, attention must be paid to the biological mechanisms of neuroinflammation and issues with its potential measurement. The current review focuses on three methods used to study putative neuroinflammation in ME/CFS: (1) positron emission tomography (PET) neuroimaging using translocator protein (TSPO) binding radioligand (2) magnetic resonance spectroscopy (MRS) neuroimaging and (3) assays of cytokines circulating in blood and cerebrospinal fluid. PET scanning using TSPO-binding radioligand is a promising option for studies of neuroinflammation. However, methodological difficulties that exist both in this particular technique and across the ME/CFS neuroimaging literature must be addressed for any results to be interpretable. We argue that the vast majority of ME/CFS neuroimaging has failed to use optimal techniques for studying brainstem, despite its probable centrality to any neuroinflammatory causes or autonomic effects. MRS is discussed as a less informative but more widely available, less invasive, and less expensive option for imaging neuroinflammation, and existing studies using MRS neuroimaging are reviewed. Studies seeking to find a peripheral circulating cytokine "profile" for ME/CFS are reviewed, with attention paid to the biological and methodological reasons for lack of replication among these studies. We argue that both the biological mechanisms of cytokines and the innumerable sources of potential variance in their measurement make it unlikely that a consistent and replicable diagnostic cytokine profile will ever be discovered.
Collapse
Affiliation(s)
- Michael B. VanElzakker
- Division of Neurotherapeutics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | | | | |
Collapse
|
45
|
Kwon YD, Kang S, Park H, Cheong IK, Chang KA, Lee SY, Jung JH, Lee BC, Lim ST, Kim HK. Novel potential pyrazolopyrimidine based translocator protein ligands for the evaluation of neuroinflammation with PET. Eur J Med Chem 2018; 159:292-306. [PMID: 30296688 DOI: 10.1016/j.ejmech.2018.09.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/06/2018] [Accepted: 09/28/2018] [Indexed: 01/06/2023]
Abstract
Translocator protein (TSPO) is an interesting biological target because TSPO overexpression is associated with microglial activation caused by neuronal damage or neuroinflammation, and these activated microglia are involved in several central nervous system diseases. Herein, novel fluorinated ligands (14a-c and 16a-c) based on a 2-phenylpyrazolo[1,5-a]pyrimidin-3-yl acetamide scaffold were synthesized, and in vitro characterization of each of the novel ligands was performed to elucidate structure activity relationships. All of the newly synthesized ligands displayed nano-molar affinity for TSPO. Particularly, an in vitro affinity study suggests that 2-(5,7-diethyl-2-(4-(3-fluoro-2-methylpropoxy)phenyl)pyrazolo[1,5-a]pyrimidin-3-yl)-N,N-diethylacetamide (14a), which exhibited high nano-molar affinity for TSPO and proper lipophilicity, was suitable for in vivo brain studies. Thus, radiosynthesis from tosylate precursor 13a using fluorine-18 was performed, and [18F]14a was obtained in a 31% radiochemical yield (decay-corrected). Dynamic positron emission tomography (PET) imaging studies were performed in a lipopolysaccharide (LPS)-induced neuroinflammation rat model using [18F]14a to identify the location of inflammation in the brain with a high target-to-background signal ratio. In addition, we validated that the locations of inflammatory lesions found by PET imaging were consistent with the locations observed by histological examination of dissected brains using antibodies. These results suggest that [18F]14a is a novel promising PET imaging agent for diagnosing neuroinflammation, and it may also prove to be applicable for diagnosing other diseases, including cancers associated with altered TSPO expression, using PET techniques.
Collapse
Affiliation(s)
- Young-Do Kwon
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Chonbuk National University Medical School and Hospital, Jeonju, 54907, Republic of Korea
| | - Shinwoo Kang
- Department of Pharmacology, College of Medicine, Gachon University, Incheon, 21936, Republic of Korea; Neuroscience Research Institute, Gachon University, Incheon, 21565, Republic of Korea
| | - Hyunjun Park
- Department of Pharmacology, College of Medicine, Gachon University, Incheon, 21936, Republic of Korea; Neuroscience Research Institute, Gachon University, Incheon, 21565, Republic of Korea; Gachon Advanced Institute for Health Science and Technology, Graduate School, Gachon University, Incheon, 21936, Republic of Korea
| | - Il-Koo Cheong
- Neuroscience Research Institute, Gachon University, Incheon, 21565, Republic of Korea; Gachon Advanced Institute for Health Science and Technology, Graduate School, Gachon University, Incheon, 21936, Republic of Korea
| | - Keun-A Chang
- Department of Pharmacology, College of Medicine, Gachon University, Incheon, 21936, Republic of Korea; Neuroscience Research Institute, Gachon University, Incheon, 21565, Republic of Korea; Gachon Advanced Institute for Health Science and Technology, Graduate School, Gachon University, Incheon, 21936, Republic of Korea.
| | - Sang-Yoon Lee
- Neuroscience Research Institute, Gachon University, Incheon, 21565, Republic of Korea; Gachon Advanced Institute for Health Science and Technology, Graduate School, Gachon University, Incheon, 21936, Republic of Korea; Department of Neuroscience, College of Medicine, Gachon University, Incheon, 21936, Republic of Korea
| | - Jae Ho Jung
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Byung Chul Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea; Center for Nanomolecular Imaging and Innovative Drug Development, Advanced Institutes of Convergence Technology, Suwon, 16229, Republic of Korea
| | - Seok Tae Lim
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Chonbuk National University Medical School and Hospital, Jeonju, 54907, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, 54907, Republic of Korea
| | - Hee-Kwon Kim
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Chonbuk National University Medical School and Hospital, Jeonju, 54907, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, 54907, Republic of Korea.
| |
Collapse
|
46
|
Vignal N, Cisternino S, Rizzo-Padoin N, San C, Hontonnou F, Gelé T, Declèves X, Sarda-Mantel L, Hosten B. [ 18F]FEPPA a TSPO Radioligand: Optimized Radiosynthesis and Evaluation as a PET Radiotracer for Brain Inflammation in a Peripheral LPS-Injected Mouse Model. Molecules 2018; 23:molecules23061375. [PMID: 29875332 PMCID: PMC6099542 DOI: 10.3390/molecules23061375] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/25/2018] [Accepted: 06/04/2018] [Indexed: 01/17/2023] Open
Abstract
[18F]FEPPA is a specific ligand for the translocator protein of 18 kDa (TSPO) used as a positron emission tomography (PET) biomarker for glial activation and neuroinflammation. [18F]FEPPA radiosynthesis was optimized to assess in a mouse model the cerebral inflammation induced by an intraperitoneal injection of Salmonella enterica serovar Typhimurium lipopolysaccharides (LPS; 5 mg/kg) 24 h before PET imaging. [18F]FEPPA was synthesized by nucleophilic substitution (90 °C, 10 min) with tosylated precursor, followed by improved semi-preparative HPLC purification (retention time 14 min). [18F]FEPPA radiosynthesis were carried out in 55 min (from EOB). The non-decay corrected radiochemical yield were 34 ± 2% (n = 17), and the radiochemical purity greater than 99%, with a molar activity of 198 ± 125 GBq/µmol at the end of synthesis. Western blot analysis demonstrated a 2.2-fold increase in TSPO brain expression in the LPS treated mice compared to controls. This was consistent with the significant increase of [18F]FEPPA brain total volume of distribution (VT) estimated with pharmacokinetic modelling. In conclusion, [18F]FEPPA radiosynthesis was implemented with high yields. The new purification/formulation with only class 3 solvents is more suitable for in vivo studies.
Collapse
Affiliation(s)
- Nicolas Vignal
- Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Unité Claude Kellershohn, 75010 Paris, France.
- Inserm UMR-S 1144, Faculté de Pharmacie de Paris, Université Paris Descartes, 75006 Paris, France.
| | - Salvatore Cisternino
- Inserm UMR-S 1144, Faculté de Pharmacie de Paris, Université Paris Descartes, 75006 Paris, France.
- Assistance Publique-Hôpitaux de Paris, Hôpital Universitaire Necker-Enfants Malades, 75015 Paris, France.
| | - Nathalie Rizzo-Padoin
- Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Unité Claude Kellershohn, 75010 Paris, France.
- Inserm UMR-S 1144, Faculté de Pharmacie de Paris, Université Paris Descartes, 75006 Paris, France.
| | - Carine San
- Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Unité Claude Kellershohn, 75010 Paris, France.
| | - Fortune Hontonnou
- Institut Universitaire d'Hématologie, Université Paris Diderot, 75013 Paris, France.
| | - Thibaut Gelé
- Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Unité Claude Kellershohn, 75010 Paris, France.
| | - Xavier Declèves
- Inserm UMR-S 1144, Faculté de Pharmacie de Paris, Université Paris Descartes, 75006 Paris, France.
- Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, 75014 Paris, France.
| | - Laure Sarda-Mantel
- Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Unité Claude Kellershohn, 75010 Paris, France.
- Assistance Publique-Hôpitaux de Paris, Hôpital Lariboisière, Médecine Nucléaire, 75010 Paris, France.
- Inserm UMR-S 942, Université Paris Diderot, 75013 Paris, France.
| | - Benoît Hosten
- Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Unité Claude Kellershohn, 75010 Paris, France.
- Inserm UMR-S 1144, Faculté de Pharmacie de Paris, Université Paris Descartes, 75006 Paris, France.
| |
Collapse
|
47
|
Meyer J. Novel Phenotypes Detectable with PET in Mood Disorders: Elevated Monoamine Oxidase A and Translocator Protein Level. PET Clin 2018; 12:361-371. [PMID: 28576173 DOI: 10.1016/j.cpet.2017.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
As a result of high prevalence and high rates of treatment resistance, major depressive disorder has become the leading cause of death and disability in moderate-income to high-income nations. Poor targeting of phenotypes is a plausible reason for treatment resistance and PET imaging offers a unique role to identify phenotypes. Both increased monoamine oxidase A binding and greater translocator protein 18 kDa binding occur throughout the gray matter during major depressive episodes, including affect-modulating brain regions such as the prefrontal and anterior cingulate cortex, and are detectable with advanced radioligand technology for both of these targets.
Collapse
Affiliation(s)
- Jeffrey Meyer
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario M5T1R8, Canada.
| |
Collapse
|
48
|
Cumming P, Burgher B, Patkar O, Breakspear M, Vasdev N, Thomas P, Liu GJ, Banati R. Sifting through the surfeit of neuroinflammation tracers. J Cereb Blood Flow Metab 2018; 38:204-224. [PMID: 29256293 PMCID: PMC5951023 DOI: 10.1177/0271678x17748786] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/26/2017] [Accepted: 11/09/2017] [Indexed: 01/09/2023]
Abstract
The first phase of molecular brain imaging of microglial activation in neuroinflammatory conditions began some 20 years ago with the introduction of [11C]-( R)-PK11195, the prototype isoquinoline ligand for translocator protein (18 kDa) (TSPO). Investigations by positron emission tomography (PET) revealed microgliosis in numerous brain diseases, despite the rather low specific binding signal imparted by [11C]-( R)-PK11195. There has since been enormous expansion of the repertoire of TSPO tracers, many with higher specific binding, albeit complicated by allelic dependence of the affinity. However, the specificity of TSPO PET for revealing microglial activation not been fully established, and it has been difficult to judge the relative merits of the competing tracers and analysis methods with respect to their sensitivity for detecting microglial activation. We therefore present a systematic comparison of 13 TSPO PET and single photon computed tomography (SPECT) tracers belonging to five structural classes, each of which has been investigated by compartmental analysis in healthy human brain relative to a metabolite-corrected arterial input. We emphasize the need to establish the non-displaceable binding component for each ligand and conclude with five recommendations for a standard approach to define the cellular distribution of TSPO signals, and to characterize the properties of candidate TSPO tracers.
Collapse
Affiliation(s)
- Paul Cumming
- School of Psychology and Counselling and IHBI, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- QIMR Berghofer Institute, Brisbane, Australia
| | - Bjorn Burgher
- QIMR Berghofer Institute, Brisbane, Australia
- Metro North Mental Health Service, Brisbane, Australia
| | - Omkar Patkar
- School of Psychology and Counselling and IHBI, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- QIMR Berghofer Institute, Brisbane, Australia
| | - Michael Breakspear
- QIMR Berghofer Institute, Brisbane, Australia
- Metro North Mental Health Service, Brisbane, Australia
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Paul Thomas
- Herston Imaging Research Facility, Faculty of Medicine, University of Queensland Centre for Clinical Research, Herston, Australia
| | - Guo-Jun Liu
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia
- National Imaging Facility, Brain and Mind Centre and Faculty of Health Sciences, University of Sydney, Camperdown, Australia
| | - Richard Banati
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia
- National Imaging Facility, Brain and Mind Centre and Faculty of Health Sciences, University of Sydney, Camperdown, Australia
| |
Collapse
|
49
|
Zanotti-Fregonara P, Pascual B, Rizzo G, Yu M, Pal N, Beers D, Carter R, Appel SH, Atassi N, Masdeu JC. Head-to-Head Comparison of 11C-PBR28 and 18F-GE180 for Quantification of the Translocator Protein in the Human Brain. J Nucl Med 2018; 59:1260-1266. [DOI: 10.2967/jnumed.117.203109] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/06/2017] [Indexed: 01/29/2023] Open
|
50
|
Barichello T, Simões LR, Collodel A, Giridharan VV, Dal-Pizzol F, Macedo D, Quevedo J. The translocator protein (18 kDa) and its role in neuropsychiatric disorders. Neurosci Biobehav Rev 2017; 83:183-199. [DOI: 10.1016/j.neubiorev.2017.10.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/20/2017] [Accepted: 10/10/2017] [Indexed: 02/08/2023]
|