1
|
Shill S, Dolai G, Sarkar A, Mandal B. Morphology Transition of Tripeptides from Porous Spherical to Rod-like Nanostructures for Small-Molecule Adsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:26889-26902. [PMID: 39654269 DOI: 10.1021/acs.langmuir.4c03211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Peptides possess a remarkable propensity to adopt distinct morphologies, ranging from simple aggregates to complex structures such as fibrils and nanotubes. Morphology transformation in peptides is intricately linked to the physicochemical properties of peptides and external factors such as pH, temperature, and solvent conditions. Thus, it is more complex. Herein, we present four tripeptides, Boc-LVL-OMe (LVL), Boc-IVI-OMe (IVI), Boc-LVI-OMe (LVI), and Boc-IVL-OMe (IVL), which undergo direct morphological transformation (except for Boc-IVL-OMe) with time. The morphological transformation from nanospheres to rod-like structures was verified using electron microscopic studies (FESEM and FETEM). Dynamic light scattering (DLS) studies further supported the results and are in good agreement with the observed phenomena. CD and FTIR studies were conducted for conformational analysis, suggesting a mixture of unordered and β-sheet conformations. Except for IVL, all other tripeptides are mesoporous and adsorb N2 gas. Another important application of our designed tripeptides is that they can encapsulate the low-molecular-weight biologically active drug molecule curcumin. The encapsulation property and its sustained release after being treated with salt were studied by using fluorescence spectroscopy and fluorescence microscopy. Therefore, understanding the dynamics of these interactions and their impact on peptide morphology is crucial for harnessing their functional diversity in applications, such as drug delivery, tissue engineering, and nanotechnology.
Collapse
Affiliation(s)
- Sukesh Shill
- Department of Chemistry, Laboratory of Peptide and Amyloid Research, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Gobinda Dolai
- Department of Chemistry, Laboratory of Peptide and Amyloid Research, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Avishek Sarkar
- Department of Chemistry, Laboratory of Peptide and Amyloid Research, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Bhubaneswar Mandal
- Department of Chemistry, Laboratory of Peptide and Amyloid Research, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
2
|
Avadanei M, Brunchi CE. Wheat gliadin/xanthan gum intermolecular complexes: Interaction mechanism and structural characterization. Food Chem 2024; 460:140619. [PMID: 39067426 DOI: 10.1016/j.foodchem.2024.140619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
In this study, the interactions between wheat gliadin (GL) and xanthan gum (XG) were investigated to design new systems with potential applications as a gluten-free substitute product. Combining spectral with morphological and molecular docking methods allowed the establishment of the complexation mechanism between globular hydrophobic GL and the hydrophilic XG with an extended and partially disordered backbone. GL maintains intact its hydrophobic core even at high GL/XG ratios and organizes into small aggregate-type assemblies. The stable and uniform complexes have a low GL content, based on intermolecular hydrogen bonds and hydrophobic interactions. The GL/XG combining ratio influences the size, structure and interaction mechanism of the microparticles. The preferred sites of interaction and the binding affinities were determined by molecular docking on GL libraries and XG models. This research may provide significant knowledge for the development of low-GL wheat food products using a dietary fiber polysaccharide as a functional compound.
Collapse
Affiliation(s)
- Mihaela Avadanei
- "Petru Poni" Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487, Iasi, Romania
| | - Cristina-Eliza Brunchi
- "Petru Poni" Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487, Iasi, Romania.
| |
Collapse
|
3
|
Liang W, Zheng S, Shu Y, Huang J. Machine Learning Optimizing Enzyme/ZIF Biocomposites for Enhanced Encapsulation Efficiency and Bioactivity. JACS AU 2024; 4:3170-3182. [PMID: 39211601 PMCID: PMC11350574 DOI: 10.1021/jacsau.4c00485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
In this study, we present the first example of using a machine learning (ML)-assisted design strategy to optimize the synthesis formulation of enzyme/ZIFs (zeolitic imidazolate framework) for enhanced performance. Glucose oxidase (GOx) and horseradish peroxidase (HRP) were chosen as model enzymes, while Zn(eIM)2 (eIM = 2-ethylimidazolate) was selected as the model ZIF to test our ML-assisted workflow paradigm. Through an iterative ML-driven training-design-synthesis-measurement workflow, we efficiently discovered GOx/ZIF (G151) and HRP/ZIF (H150) with their overall performance index (OPI) values (OPI represents the product of encapsulation efficiency (E in %), retained enzymatic activity (A in %), and thermal stability (T in %)) at least 1.3 times higher than those in systematic seed data studies. Furthermore, advanced statistical methods derived from the trained random forest model qualitatively and quantitatively reveal the relationship among synthesis, structure, and performance in the enzyme/ZIF system, offering valuable guidance for future studies on enzyme/ZIFs. Overall, our proposed ML-assisted design strategy holds promise for accelerating the development of enzyme/ZIFs and other enzyme immobilization systems for biocatalysis applications and beyond, including drug delivery and sensing, among others.
Collapse
Affiliation(s)
- Weibin Liang
- School of Chemical and Biomolecular
Engineering, The University of Sydney, Darlington, NSW 2008, Australia
| | | | - Ying Shu
- School of Chemical and Biomolecular
Engineering, The University of Sydney, Darlington, NSW 2008, Australia
| | - Jun Huang
- School of Chemical and Biomolecular
Engineering, The University of Sydney, Darlington, NSW 2008, Australia
| |
Collapse
|
4
|
Kalitnik A, Szefczyk M, Wojciechowska AW, Wojciechowski JW, Gąsior-Głogowska M, Olesiak-Bańska J, Kotulska M. Cytotoxic Staphylococcus aureus PSMα3 inhibits the aggregation of human insulin in vitro. Phys Chem Chem Phys 2024; 26:15587-15599. [PMID: 38757742 DOI: 10.1039/d4cp00669k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Phenol-soluble modulins (PSMs) are extracellular short amphipathic peptides secreted by the bacteria Staphylococcus aureus (S. aureus). They play an essential role in the bacterial lifecycle, biofilm formation, and stabilisation. From the PSM family, PSMα3 has been of special interest recently due to its cytotoxicity and highly stable α-helical conformation, which also remains in its amyloid fibrils. In particular, PSMα3 fibrils were shown to be composed of self-associating "sheets" of α-helices oriented perpendicular to the fibril axis, mimicking the architecture of canonical cross-β fibrils. Therefore, they were called cross-α-fibrils. PSMα3 was synthesised and verified for identity with wild-type sequences (S. aureus). Then, using several experimental techniques, we evaluated its propensity for in vitro aggregation. According to our findings, synthetic PSMα3 (which lacks the N-terminal formyl groups found in bacteria) does not form amyloid fibrils and maintains α-helical conformation in a soluble monomeric form for several days of incubation. We also evaluated the influence of PSMα3 on human insulin fibrillation in vitro, using a variety of experimental approaches in combination with computational molecular studies. First, it was shown that PSMα3 drastically inhibits the fibrillation of human insulin. The anti-fibrillation effect of PSMα3 was concentration-dependent and required a concentration ratio of PSMα3: insulin equal to or above 1 : 100. Molecular modelling revealed that PSMα3 most likely inhibits the production of insulin primary nuclei by competing for residues involved in its dimerization.
Collapse
Affiliation(s)
- Aleksandra Kalitnik
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| | - Monika Szefczyk
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Alicja W Wojciechowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| | - Jakub W Wojciechowski
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| | - Marlena Gąsior-Głogowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| | - Joanna Olesiak-Bańska
- Institute of Advanced Materials, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Małgorzata Kotulska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| |
Collapse
|
5
|
Feng RR, Wang M, Zhang W, Gai F. Unnatural Amino Acids for Biological Spectroscopy and Microscopy. Chem Rev 2024; 124:6501-6542. [PMID: 38722769 DOI: 10.1021/acs.chemrev.3c00944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Due to advances in methods for site-specific incorporation of unnatural amino acids (UAAs) into proteins, a large number of UAAs with tailored chemical and/or physical properties have been developed and used in a wide array of biological applications. In particular, UAAs with specific spectroscopic characteristics can be used as external reporters to produce additional signals, hence increasing the information content obtainable in protein spectroscopic and/or imaging measurements. In this Review, we summarize the progress in the past two decades in the development of such UAAs and their applications in biological spectroscopy and microscopy, with a focus on UAAs that can be used as site-specific vibrational, fluorescence, electron paramagnetic resonance (EPR), or nuclear magnetic resonance (NMR) probes. Wherever applicable, we also discuss future directions.
Collapse
Affiliation(s)
- Ran-Ran Feng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Manxi Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
| | - Feng Gai
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Čakić Semenčić M, Kovačević M, Barišić L. Recent Advances in the Field of Amino Acid-Conjugated Aminoferrocenes-A Personal Perspective. Int J Mol Sci 2024; 25:4810. [PMID: 38732028 PMCID: PMC11084972 DOI: 10.3390/ijms25094810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The development of turn-based inhibitors of protein-protein interactions has attracted considerable attention in medicinal chemistry. Our group has synthesized a series of peptides derived from an amino-functionalized ferrocene to investigate their potential to mimic protein turn structures. Detailed DFT and spectroscopic studies (IR, NMR, CD) have shown that, for peptides, the backbone chirality and bulkiness of the amino acid side chains determine the hydrogen-bond pattern, allowing tuning of the size of the preferred hydrogen-bonded ring in turn-folded structures. However, their biological potential is more dependent on their lipophilicity. In addition, our pioneering work on the chiroptical properties of aminoferrocene-containing peptides enables the correlation of their geometry with the sign of the CD signal in the absorption region of the ferrocene chromophore. These studies have opened up the possibility of using aminoferrocene and its derivatives as chirooptical probes for the determination of various chirality elements, such as the central chirality of amino acids and the helicity of peptide sequences.
Collapse
Affiliation(s)
| | | | - Lidija Barišić
- Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.Č.S.); (M.K.)
| |
Collapse
|
7
|
Lou Y, Gao Q, Fan M, Waleed AA, Wang L, Li Y, Qian H. Ferulic acid ameliorates hyperuricemia by regulating xanthine oxidase. Int J Biol Macromol 2023; 253:126542. [PMID: 37634782 DOI: 10.1016/j.ijbiomac.2023.126542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/14/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
Hyperuricemia is characterized by elevated uric acid (UA) level in the body. The xanthine oxidase (XO) inhibitory ability is an important way to evaluate the anti-hyperuricemia effect of natural products. Ferulic acid (FA) is a phenolic acid compound, and it is a free radical scavenger with many physiological functions. The aim of this study was to investigate the structure-activity relationship, potential mechanism and interaction of FA as XO's inhibitor. In the cell experiment, using 1.25 mM adenosine to incubate for 24 h under the optimal conditions (37 °C, pH = 7.2) can increase the UA production by 1.34 folds. PCR analysis showed that FA could reduce the mRNA expression level of XO. FA inhibited XO in a mixed mode (IC50 = 13.25 μM). The fluorescence quenching of XO by FA occurs through a static mechanism, with an inhibition constant of Ki = 9.527 × 10-5 mol L-1 and an apparent coefficient of α = 1.768. The enthalpy and entropy changes were found as -267.79 KJ mol-1 and - 860.85 KJ mol-1, indicating that both hydrogen binding and hydrophobic are involved in the interaction of this polyphenolic natural compound with XO. Thus, FA supplementation may be a potential therapeutic strategy to improve hyperuricemia by reducing UA production.
Collapse
Affiliation(s)
- Ye Lou
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Qiang Gao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Al-Ansi Waleed
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
8
|
Brüggemann J, Chekmeneva M, Wolter M, Jacob CR. Structural Dependence of Extended Amide III Vibrations in Two-Dimensional Infrared Spectra. J Phys Chem Lett 2023; 14:9257-9264. [PMID: 37812580 PMCID: PMC10591501 DOI: 10.1021/acs.jpclett.3c02662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
Two-dimensional infrared (2D-IR) spectroscopy is a powerful experimental method for probing the structure and dynamics of proteins in aqueous solution. So far, most experimental studies have focused on the amide I vibrations, for which empirical vibrational exciton models provide a means of interpreting such experiments. However, such models are largely lacking for other regions of the vibrational spectrum. To close this gap, we employ an efficient quantum-chemical methodology for the calculation of 2D-IR spectra, which is based on anharmonic theoretical vibrational spectroscopy with localized modes. We apply this approach to explore the potential of 2D-IR spectroscopy in the extended amide III region. Using calculations for a dipeptide model as well as alanine polypeptides, we show that distinct 2D-IR cross-peaks in the extended amide III region can potentially be used to distinguish α-helix and β-strand structures. We propose that the extended amide III region could be a promising target for future 2D-IR experiments.
Collapse
Affiliation(s)
- Julia Brüggemann
- Technische Universität Braunschweig, Institute of Physical and Theoretical Chemistry, Gaußstraße 17, 38106 Braunschweig, Germany
| | - Maria Chekmeneva
- Technische Universität Braunschweig, Institute of Physical and Theoretical Chemistry, Gaußstraße 17, 38106 Braunschweig, Germany
| | - Mario Wolter
- Technische Universität Braunschweig, Institute of Physical and Theoretical Chemistry, Gaußstraße 17, 38106 Braunschweig, Germany
| | - Christoph R. Jacob
- Technische Universität Braunschweig, Institute of Physical and Theoretical Chemistry, Gaußstraße 17, 38106 Braunschweig, Germany
| |
Collapse
|
9
|
Caramiello A, Bellucci MC, Cristina G, Castellano C, Meneghetti F, Mori M, Secundo F, Viani F, Sacchetti A, Volonterio A. Synthesis and Conformational Analysis of Hydantoin-Based Universal Peptidomimetics. J Org Chem 2023; 88:10381-10402. [PMID: 36226862 PMCID: PMC10407853 DOI: 10.1021/acs.joc.2c01903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Indexed: 11/30/2022]
Abstract
The synthesis of a collection of enantiomerically pure, systematically substituted hydantoins as structural privileged universal mimetic scaffolds is presented. It relies on a chemoselective condensation/cyclization domino process between isocyanates of quaternary or unsubstituted α-amino esters and N-alkyl aspartic acid diesters followed by standard hydrolysis/coupling reactions with amines, using liquid-liquid acid/base extraction protocols for the purification of the intermediates. Besides the nature of the α carbon on the isocyanate moiety, either a quaternary carbon or a more flexible methylene group, conformational studies in silico (molecular modeling), in solution (NMR, circular dichroism (CD), Fourier transform infrared (FTIR)), and in solid state (X-ray) showed that the presented hydantoin-based peptidomimetics are able to project their substituents in positions superimposable to the side chains of common protein secondary structures such as α-helix and β-turn, being the open α-helix conformation slightly favorable according to molecular modeling, while the closed β-turn conformation preferred in solution and in solid state.
Collapse
Affiliation(s)
- Alessio
M. Caramiello
- Department
of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131Milano, Italy
| | - Maria Cristina Bellucci
- Department
of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133Milano, Italy
| | - Gaetano Cristina
- Department
of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131Milano, Italy
| | - Carlo Castellano
- Department
of Chemistry, Università degli Studi
di Milano, via Golgi
19, 20133Milano, Italy
| | - Fiorella Meneghetti
- Department
of Pharmaceutical Sciences, Università
degli Studi di Milano, via Mangiagalli 25, 20133Milano, Italy
| | - Matteo Mori
- Department
of Pharmaceutical Sciences, Università
degli Studi di Milano, via Mangiagalli 25, 20133Milano, Italy
| | - Francesco Secundo
- Consiglio
Nazionale delle Ricerche, Istituto di Scienze
e Tecnologie Chimiche “G. Natta” (SCITEC), via Mario Bianco 9, 20131Milan, Italy
| | - Fiorenza Viani
- Consiglio
Nazionale delle Ricerche, Istituto di Scienze
e Tecnologie Chimiche “G. Natta” (SCITEC), via Mario Bianco 9, 20131Milan, Italy
| | - Alessandro Sacchetti
- Department
of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131Milano, Italy
| | - Alessandro Volonterio
- Department
of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131Milano, Italy
- Consiglio
Nazionale delle Ricerche, Istituto di Scienze
e Tecnologie Chimiche “G. Natta” (SCITEC), via Mario Bianco 9, 20131Milan, Italy
| |
Collapse
|
10
|
Sahu N, Khire SS, Gadre SR. Combining fragmentation method and high-performance computing: Geometry optimization and vibrational spectra of proteins. J Chem Phys 2023; 159:044309. [PMID: 37522406 DOI: 10.1063/5.0149572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023] Open
Abstract
Exploring the structures and spectral features of proteins with advanced quantum chemical methods is an uphill task. In this work, a fragment-based molecular tailoring approach (MTA) is appraised for the CAM-B3LYP/aug-cc-pVDZ-level geometry optimization and vibrational infrared (IR) spectra calculation of ten real proteins containing up to 407 atoms and 6617 basis functions. The use of MTA and the inherently parallel nature of the fragment calculations enables a rapid and accurate calculation of the IR spectrum. The applicability of MTA to optimize the protein geometry and evaluate its IR spectrum employing a polarizable continuum model with water as a solvent is also showcased. The typical errors in the total energy and IR frequencies computed by MTA vis-à-vis their full calculation (FC) counterparts for the studied protein are 5-10 millihartrees and 5 cm-1, respectively. Moreover, due to the independent execution of the fragments, large-scale parallelization can also be achieved. With increasing size and level of theory, MTA shows an appreciable advantage in computer time as well as memory and disk space requirement over the corresponding FCs. The present study suggests that the geometry optimization and IR computations on the biomolecules containing ∼1000 atoms and/or ∼15 000 basis functions using MTA and HPC facility can be clearly envisioned in the near future.
Collapse
Affiliation(s)
- Nityananda Sahu
- Theoretische Chemie, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Subodh S Khire
- RIKEN Center for Computational Science, Kobe 650-0047, Japan
| | - Shridhar R Gadre
- Departments of Scientific Computing, Modelling & Simulation and Chemistry, Savitribai Phule Pune University, Pune 411007, India
| |
Collapse
|
11
|
Dolai G, Shill S, Roy S, Mandal B. Atomic Insight on Inhibition of Fibrillization of Dipeptides by Replacement of Phenylalanine with Tryptophan. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37339161 DOI: 10.1021/acs.langmuir.3c00823] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Tryptophan (Trp) conjugates destabilize amyloid fibrils responsible for amyloidoses. However, the mechanism of such destabilization is obscure. Herein the self-assembly of four synthesized Trp-containing dipeptides Boc-xxx-Trp-OMe (xxx: Val, Leu, Ile, and Phe) has been investigated and compared with the existing report on their Phe congeners. Two among them are the C-terminal tryptophan analogs of Boc-Val-Phe-OMe (VF, Aβ18-19) and Boc-Phe-Phe-OMe (FF, Aβ19-20), part of the central hydrophobic region of amyloid-β (Aβ1-42). While Boc-Val-Trp-OMe (VW), Boc-Leu-Trp-OMe (LW), Boc-Ile-Trp-OMe (IW), and Boc-Phe-Trp-OMe (FW) displayed a spherical morphology in FESEM and AFM images, the corresponding phenylalanine-containing dipeptides displayed various fibrous structures. Single-crystal X-ray diffraction (SC-XRD) indicated that peptides VW and IW exhibited structures containing parallel β-sheet, cross-β-structure, sheet-like layer structure, and helical arrangement in the solid state. Interestingly, peptide FW displayed inverse γ-turn conformation (similar to open-turn structure), antiparallel β-sheet structure, columnar structure, supramolecular nanozipper structure, sheet-like layer arrangement, and helical architecture in the solid state. The open-turn conformation and nanozipper structure formation by FW may be the first example of a dipeptide that forms such structures. The minute but consistent differences in molecular packing at the atomic level between Trp and Phe congeners may be responsible for their remarkably different supramolecular structure generation. This molecular-level structural analysis may be helpful for the de novo design of peptide nanostructures and therapeutics. Similar studies by the Debasish Haldar group are reported, but they investigated the inhibition of fibrillization of dipeptides by tyrosine and interactions are expectedly different.
Collapse
Affiliation(s)
- Gobinda Dolai
- Department of Chemistry, Laboratory of Peptide and Amyloid Research, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sukesh Shill
- Department of Chemistry, Laboratory of Peptide and Amyloid Research, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sayanta Roy
- Department of Chemistry, Laboratory of Peptide and Amyloid Research, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Bhubaneswar Mandal
- Department of Chemistry, Laboratory of Peptide and Amyloid Research, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
12
|
Hiew SH, Lu Y, Han H, Gonçalves RA, Alfarano SR, Mezzenga R, Parikh AN, Mu Y, Miserez A. Modulation of Mechanical Properties of Short Bioinspired Peptide Materials by Single Amino-Acid Mutations. J Am Chem Soc 2023; 145:3382-3393. [PMID: 36730942 DOI: 10.1021/jacs.2c09853] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The occurrence of modular peptide repeats in load-bearing (structural) proteins is common in nature, with distinctive peptide sequences that often remain conserved across different phylogenetic lineages. These highly conserved peptide sequences endow specific mechanical properties to the material, such as toughness or elasticity. Here, using bioinformatic tools and phylogenetic analysis, we have identified the GX8 peptide with the sequence GLYGGYGX (where X can be any residue) in a wide range of organisms. By simple mutation of the X residue, we demonstrate that GX8 can be self-assembled into various supramolecular structures, exhibiting vastly different physicochemical and viscoelastic properties, from liquid-like coacervate microdroplets to hydrogels to stiff solid materials. A combination of spectroscopic, electron microscopy, mechanical, and molecular dynamics studies is employed to obtain insights into molecular scale interactions driving self-assembly of GX8 peptides, underscoring that π-π stacking and hydrophobic interactions are the drivers of peptide self-assembly, whereas the X residue determines the extent of hydrogen bonding that regulates the macroscopic mechanical response. This study highlights the ability of single amino-acid polymorphism to tune the supramolecular assembly and bulk material properties of GX8 peptides, enabling us to cover a broad range of potential biomedical applications such as hydrogels for tissue engineering or coacervates for drug delivery.
Collapse
Affiliation(s)
- Shu Hui Hiew
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Yang Lu
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Hao Han
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Rui A Gonçalves
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Serena Rosa Alfarano
- Department of Health Sciences and Technology, ETH Zürich, Zürich 8092, Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zürich, Zürich 8092, Switzerland
| | - Atul N Parikh
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.,Departments of Biomedical Engineering and Materials Science & Engineering, University of California, Davis, California 95616, United States
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Ali Miserez
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
13
|
In Vitro Antibacterial and Wound Healing Activities Evoked by Silver Nanoparticles Synthesized through Probiotic Bacteria. Antibiotics (Basel) 2023; 12:antibiotics12010141. [PMID: 36671342 PMCID: PMC9854575 DOI: 10.3390/antibiotics12010141] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
The prospective application of probiotics is an adjuvant for the advancement of novel antimicrobial and wound-healing agents. Currently, probiotic bacteria are utilized for the biosynthesis of nanoparticles in the development of innovative therapeutics. The present study aimed at using nanoparticle-conjugated probiotic bacteria for enhanced antibacterial and wound-healing activity. In the present investigation, the probiotic bacteria were isolated from a dairy source (milk from domestic herbivores). They screened for antibacterial activity against infection-causing Gram-negative (Pseudomonas aeruginosa and Escherichia coli) and Gram-positive (Bacillus subtilis and Staphylococcus aureus) pathogens. Further, the probiotic strain with higher bactericidal activity was used to synthesize silver, selenium, and copper nanoparticles. The isolated strain was found to be Lactiplantibacillus plantarum and it only has the ability to synthesize silver nanoparticles. This was verified using Ultra violet-Visible (UV-Vis) spectroscopy, where the test solution turned brown and the greatest UV-Vis absorptions peaked at 425 nm. Optimization studies on the synthesis of AgNPs (silver nanoparticles) are presented and the results show that stable synthesis was obtained by using a concentration of 1mM silver nitrate (AgNO3) at a temperature of 37 °C with pH 8. The FTIR (Fourier transform infrared spectroscopy) study confirmed the involvement of functional groups from the cell biomass that were involved in the reduction process. Additionally, biosynthesized AgNPs showed increased antioxidant and antibacterial activities. The nano silver had a size distribution of 14 nm and was recorded with HR-TEM (high-resolution transmission electron microscopy) examination. The EDX (energy dispersive X-ray) analysis revealed 57% of silver groups found in the nanoparticle production. The biosynthesized AgNPs show significant wound-healing capabilities with 96% of wound closure (fibroblast cells) being observed through an in vitro scratch-wound assay. The cytotoxic experiments demonstrated that the biosynthesized AgNPs are not extremely hazardous to the fibroblast cells. The present study provides a new platform for the green synthesis of AgNPs using probiotic bacteria, showing significant antibacterial and wound-healing potentials against infectious pathogens.
Collapse
|
14
|
Bauer DR, Chafin DR. Assessing Tissue Fixation Time and Quality with Label-free Mid Infrared Spectroscopy and Machine Learning. Biopreserv Biobank 2022; 21:208-216. [PMID: 36516138 PMCID: PMC10125394 DOI: 10.1089/bio.2022.0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Objectives: This work investigates whether changes in a biospecimen's molecular composition from formaldehyde fixation drive changes in the mid infrared (MID-IR) spectrum. Our ultimate goal was to develop an analytical metrology that could be used to accurately determine the fixation time of a tissue sample as a surrogate to overall tissue quality. Methods: Multiple unstained formalin-fixed paraffin-embedded tissue samples were scanned with an MID-IR microscope to identify a molecular fingerprint of formaldehyde fixation. The fixation specific patterns were then mined to develop a predictive model. A multiple tissue experiment using greater than 100 samples was designed to train the algorithm and validate the accuracy of predicting fixation status. Results: We present data that formaldehyde crosslinking results in alterations to multiple bands of the MID-IR spectra. The impact was most dramatic in the Amide I band, which is sensitive to the conformational state of proteins. The spectroscopic fixation signature was used to train a machine-learning model that could predict fixation time of unknown tissues with an average accuracy of 1.4 hours. Results were validated by histological stain quality for bcl-2, FOXP3, and ki-67. Further, two-dimensional imaging was used to visualize the spatial dependence of fixation, as demonstrated by multiple features in the tissue's vibrational spectra. Conclusions: This work demonstrates that it is possible to predict the fixation status of tissues for which the preanalytics are unknown. This novel capability could help standardize clinical tissue diagnostics and ensure every patient gets the absolutely best treatment based on the highest quality tissue sample.
Collapse
Affiliation(s)
- Daniel R Bauer
- Roche Diagnostics Solutions, Pathology Research and Early Development (Ventana Medical Systems, Inc.), Tucson, Arizona, USA
| | - David R Chafin
- Roche Diagnostics Solutions, Pathology Research and Early Development (Ventana Medical Systems, Inc.), Tucson, Arizona, USA
| |
Collapse
|
15
|
Intrinsically fluorescent polyureas toward conformation-assisted metamorphosis, discoloration and intracellular drug delivery. Nat Commun 2022; 13:4551. [PMID: 35931687 PMCID: PMC9355952 DOI: 10.1038/s41467-022-32053-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 07/13/2022] [Indexed: 11/08/2022] Open
Abstract
Peptidomimetic polymers have attracted increasing interest because of the advantages of facile synthesis, high molecular tunability, resistance to degradation, and low immunogenicity. However, the presence of non-native linkages compromises their ability to form higher ordered structures and protein-inspired functions. Here we report a class of amino acid-constructed polyureas with molecular weight- and solvent-dependent helical and sheet-like conformations as well as green fluorescent protein-mimic autofluorescence with aggregation-induced emission characteristics. The copolymers self-assemble into vesicles and nanotubes and exhibit H-bonding-mediated metamorphosis and discoloration behaviors. We show that these polymeric vehicles with ultrahigh stability, superfast responsivity and conformation-assisted cell internalization efficiency could act as an “on-off” switchable nanocarrier for specific intracellular drug delivery and effective cancer theranosis in vitro and in vivo. This work provides insights into the folding and hierarchical assembly of biomacromolecules, and a new generation of bioresponsive polymers and nonconventional luminescent aliphatic materials for diverse applications. Biomimetic materials are of interest but can often suffer from limitations caused by the non-native linkages used. Here, the authors report on the creation of amino acid constructed polyureas which can self-assemble into vesicles and nanotubes with aggregation induced fluorescence and the potential for drug delivery applications.
Collapse
|
16
|
Kumar S, Borish K, Dey S, Nagesh J, Das A. Sequence dependent folding motifs of the secondary structures of Gly-Pro and Pro-Gly containing oligopeptides. Phys Chem Chem Phys 2022; 24:18408-18418. [PMID: 35880873 DOI: 10.1039/d2cp01306a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Folding motifs of the secondary structures of peptides and proteins are primarily based on the hydrogen bonding interactions in the backbone as well as the sequence of the amino acid residues present. For instance, the β-turn structure directed by the Pro-Gly sequence is the key to the β-hairpin structure of peptides/proteins as well as a selective site for the enzymatic hydroxylation of pro-collagen. Herein, we have investigated the sequence dependent folding motifs of end-protected Gly-Pro and Pro-Gly dipeptides using a combination of gas phase laser spectroscopy, quantum chemistry calculations, solution phase IR and NMR spectroscopy and single crystal X-Ray diffraction (XRD). All three observed conformers of the Gly-Pro peptide in the gas phase have been found to have extended β-strand or polyproline-II (PP-II) structures with C5-C7 hydrogen bonding interactions, which correlates well with the structure obtained from solution phase spectroscopy and XRD. On the other hand, we have found that the Pro-Gly peptide has a C10/β-turn structure in the solution phase in contrast to the C7-C7 (i.e. 27-ribbon) structure observed in the gas phase. Although the lowest energy structure in the gas phase is not C10, we find that C7-C7 is an abundantly found structural motif of Pro-Gly containing peptides in the Cambridge Structural Database, indicating that the gas phase conformers are not sampling any unusual forms. We surmise that the role of the solvent could be crucial in dictating the preferential stabilization of the C10 structure in the solution phase. The present investigation provides a comprehensive picture of the folding motifs of the Gly-Pro and Pro-Gly peptides observed in the gas phase and condensed phase weaving a fine interplay of the intrinsic conformational properties, solvation, and crystal packing of the peptides.
Collapse
Affiliation(s)
- Satish Kumar
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| | - Kshetrimayum Borish
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| | - Sanjit Dey
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| | - Jayashree Nagesh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore-560012, India.
| | - Aloke Das
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| |
Collapse
|
17
|
Asakura T, Naito A. Structure of silk I (Bombyx mori silk fibroin before spinning) in the dry and hydrated states studied using 13C solid-state NMR spectroscopy. Int J Biol Macromol 2022; 216:282-290. [PMID: 35788005 DOI: 10.1016/j.ijbiomac.2022.06.192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 11/05/2022]
Abstract
Nowadays, much attention has been paid to Bombyx mori silk fibroin (SF) by many researchers because of excellent physical properties and biocompatibility. These superior properties originate from the structure of SF and therefore, the structural analysis is a key to clarify the superiority. Here we concentrated on silk I structure (SF structure before spinning). We showed that silk I* (the structure of (GAGAGS)n which is a main part of SF) is a repeated type II β-turn, neither α-helix nor random coil, from the conformation-dependent 13C NMR chemical shift data. This conclusion is different from that obtained using IR by many researchers. Next, the formation of silk I* structure was investigated at molecular level using 13C solid-state NMR spectroscopy. Three kinds of 13C INEPT, CP/MAS and DD/MAS NMR spectra were observed for SF, [3-13C] Ser- and [3-13C] Tyr-SF, the crystalline fraction obtained by chymotrypsin treatment of SF and their model peptide with silk I structures in the dry and hydrated states. Especially, the presence of the sequences containing Tyr, (((GX)m1GY)m2 where X = A or V) with random coil conformations adjacent to (GAGAGS)n is an essence to get water-soluble SF and the formation of silk I* structure of (GAGAGS)n.
Collapse
Affiliation(s)
- Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Koganei, Tokyo 184-8588, Japan.
| | - Akira Naito
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
18
|
Bollu A, Giri P, Dalabehera NR, Asmi AR, Sharma NK. Unnatural Amino Acid: 4-Aminopyrazolonyl Amino Acid Comprising Tri-Peptides Forms Organogel With Co-Solvent (EtOAc:Hexane). Front Chem 2022; 10:821971. [PMID: 35601543 PMCID: PMC9117720 DOI: 10.3389/fchem.2022.821971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/29/2022] [Indexed: 11/26/2022] Open
Abstract
Ampyrone is an amino-functionalized heterocyclic pyrazolone derivative that possesses therapeutic values such as analgesic, anti-inflammatory, and antipyretics. The chemical structure of ampyrone exhibits excellent hydrogen bonding sites and is considered as the potential scaffold of supramolecular self-assembly. Recently, this molecule has been derived into unnatural amino acids such as aminopyrazolone amino acid and its peptides. This report describes that one of its amino acids, O-alkylated ampyrone, containing hybrid (α/β) peptides forms organogel after sonication at 50–55°C with 0.7–0.9% (w/v) in ethyl acetate: hexane (1:3). The formation/morphology of such organogels is studied by nuclear magnetic resonance Fourier-transform infrared (FT-IR), circular dichroism (CD), scanning electron microscope (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (Powder-XRD), and thermogravimetric analysis (TGA). Energy-minimized conformation of APA-peptides reveals the possibility of intermolecular hydrogen bonding. Hence, APA-peptides are promising peptidomimetics for the organogel-peptides.
Collapse
Affiliation(s)
- Amarnath Bollu
- National Institute of Science Education and Research (NISER), Bhubaneswar, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Prajnanandan Giri
- National Institute of Science Education and Research (NISER), Bhubaneswar, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Nihar Ranjan Dalabehera
- National Institute of Science Education and Research (NISER), Bhubaneswar, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Asmita Rani Asmi
- National Institute of Science Education and Research (NISER), Bhubaneswar, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Nagendra K Sharma
- National Institute of Science Education and Research (NISER), Bhubaneswar, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| |
Collapse
|
19
|
Nandi S, Sarkar R, Jaiswar A, Roy S, Haldar D. Miniature β-Hairpin Mimetic by Intramolecular Hydrogen Bond and C-H···π Interactions. ACS OMEGA 2022; 7:17245-17252. [PMID: 35647431 PMCID: PMC9134230 DOI: 10.1021/acsomega.2c01168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
Canonically, protein β-hairpin motifs are stabilized by intramolecular hydrogen bonds. Here, we attempt to develop a rational design recipe for a miniature hairpin structure stabilized by hydrogen bonding as well as C-H···π interaction and try to understand how such a stabilization effect varies with different functional groups at each terminus. Database analysis shows that the α-amino acids with an aromatic side chain will not favor that kind of C-H···π stabilized hairpin structure. However, hybrid tripeptides with an N-terminal Boc-Trp-Aib corner residue and C-terminal aromatic ω-amino acids fold into the hairpin conformation with a central β-turn/open-turn that is reinforced by a C-H···π interaction. The CCDC database analysis further confirms that this C-H···π stabilized hairpin motif is general for Boc-protected tripeptides containing Aib in the middle and aromatic functionality at the C-terminus. The different α-amino acids like Leu/Ala/Phe/Pro/Ser at the N-terminus have a minor influence on the C-H···π interaction and stabilities of the folded structures in solid-state. However, the hybrid peptides exhibit different degrees of conformational heterogeneity both in the solid and solution phase, which is common for this kind of flexible small molecule. Conformational heterogeneity in the solution phase including the C-H···π stabilized β-hairpin structures are characterized by the molecular dynamics (MD) simulations explaining their plausible origin at an atomistic level.
Collapse
Affiliation(s)
- Sujay
Kumar Nandi
- Department
of Chemical Sciences, Indian Institute of
Science Education and Research Kolkata, Mohanpur , Nadia, West Bengal 741246, India
| | - Raju Sarkar
- Department
of Chemical Sciences, Indian Institute of
Science Education and Research Kolkata, Mohanpur , Nadia, West Bengal 741246, India
| | - Akhilesh Jaiswar
- Department
of Chemical Sciences, Indian Institute of
Science Education and Research Kolkata, Mohanpur , Nadia, West Bengal 741246, India
| | - Susmita Roy
- Department
of Chemical Sciences, Indian Institute of
Science Education and Research Kolkata, Mohanpur , Nadia, West Bengal 741246, India
| | - Debasish Haldar
- Department
of Chemical Sciences, Indian Institute of
Science Education and Research Kolkata, Mohanpur , Nadia, West Bengal 741246, India
| |
Collapse
|
20
|
The combined bactericidal effect of nisin and thymoquinone against Listeria monocytogenes in Tryptone Soy Broth and sterilized milk. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108771] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
21
|
Roy Chowdhury S, Haldar D. A gama-turn mimetic for selective sensing of Cu(II) and combinatorial multiple logic gate. CrystEngComm 2022. [DOI: 10.1039/d2ce00462c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have designed and synthesized a gama-turn mimetic using fenamic acid and α-aminoisobutyricacid (Aib), the conformation and optoelectronic properties of which can be changed by appropriate external stimuli. From single-crystal...
Collapse
|
22
|
Secondary structure of muramyl dipeptide glycoside in pristine state and immobilized on nanosilica surface. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Hu T, Agazani O, Nir S, Cohen M, Pan S, Reches M. Antiviral Activity of Peptide-Based Assemblies. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48469-48477. [PMID: 34623127 DOI: 10.1021/acsami.1c16003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The COVID-19 pandemic highlighted the importance of developing surfaces and coatings with antiviral activity. Here, we present, for the first time, peptide-based assemblies that can kill viruses. The minimal inhibitory concentration (MIC) of the assemblies is in the range tens of micrograms per milliliter. This value is 2 orders of magnitude smaller than the MIC of metal nanoparticles. When applied on a surface, by drop casting, the peptide spherical assemblies adhere to the surface and form an antiviral coating against both RNA- and DNA-based viruses including coronavirus. Our results show that the coating reduced the number of T4 bacteriophages (DNA-based virus) by 3 log, compared with an untreated surface and 6 log, when compared with a stock solution. Importantly, we showed that this coating completely inactivated canine coronavirus (RNA-based virus). This peptide-based coating can be useful wherever sterile surfaces are needed to reduce the risk of viral transmission.
Collapse
Affiliation(s)
- Tan Hu
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, Hubei 430070, P. R. China
| | - Omer Agazani
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Sivan Nir
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Mor Cohen
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, Hubei 430070, P. R. China
| | - Meital Reches
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
24
|
Structure of Silk I ( Bombyx mori Silk Fibroin before Spinning) -Type II β-Turn, Not α-Helix. Molecules 2021; 26:molecules26123706. [PMID: 34204550 PMCID: PMC8234240 DOI: 10.3390/molecules26123706] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/04/2022] Open
Abstract
Recently, considerable attention has been paid to Bombyx mori silk fibroin by a range of scientists from polymer chemists to biomaterial researchers because it has excellent physical properties, such as strength, toughness, and biocompatibility. These appealing physical properties originate from the silk fibroin structure, and therefore, structural determinations of silk fibroin before (silk I) and after (silk II) spinning are a key to make wider applications of silk. There are discrepancies about the silk I structural model, i.e., one is type II β-turn structure determined using many solid-state and solution NMR spectroscopies together with selectively stable isotope-labeled model peptides, but another is α-helix or partially α-helix structure speculated using IR and Raman methods. In this review, firstly, the process that led to type II β-turn structure by the authors was introduced in detail. Then the problems in speculating silk I structure by IR and Raman methods were pointed out together with the problem in the assignment of the amide I band in the spectra. It has been emphasized that the conformational analyses of proteins and peptides from IR and Raman studies are not straightforward and should be very careful when the proteins contain β-turn structure using many experimental data by Vass et al. In conclusion, the author emphasized here that silk I structure should be type II β-turn, not α-helix.
Collapse
|
25
|
Gruskiene R, Kavleiskaja T, Staneviciene R, Kikionis S, Ioannou E, Serviene E, Roussis V, Sereikaite J. Nisin-Loaded Ulvan Particles: Preparation and Characterization. Foods 2021; 10:foods10051007. [PMID: 34064524 PMCID: PMC8147952 DOI: 10.3390/foods10051007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/27/2021] [Accepted: 05/01/2021] [Indexed: 11/17/2022] Open
Abstract
Nisin is an attractive alternative to chemical preservatives in the food industry. It is a cationic peptide of 34 amino acid residues that exhibits antimicrobial activity against Gram-positive bacteria. To ensure nisin stability in food matrices, new nisin-loaded ulvan particles were developed by the complexation method. The interaction of nisin with ulvan was demonstrated by FT-IR spectroscopy and differential scanning calorimetry. The encapsulation efficiency was calculated at different pH values within the range of 4.0–7.0 and was found to have the highest value at pH 7.0. The size and surface charge of particles fabricated at different concentrations of nisin and pH values were determined. Nisin-loaded ulvan particles exhibited antimicrobial activity against Gram-positive bacteria comparable to that of free nisin. Therefore, the developed complexes have the potential for application as biopreservatives in the food industry. For the first time, the potential of ulvan as a carrier of antimicrobial agent nisin was demonstrated.
Collapse
Affiliation(s)
- Ruta Gruskiene
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, 10221 Vilnius, Lithuania; (R.G.); (E.S.)
| | | | - Ramune Staneviciene
- Laboratory of Genetics, Institute of Botany, Nature Research Centre, 08412 Vilnius, Lithuania;
| | - Stefanos Kikionis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (S.K.); (E.I.); (V.R.)
| | - Efstathia Ioannou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (S.K.); (E.I.); (V.R.)
| | - Elena Serviene
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, 10221 Vilnius, Lithuania; (R.G.); (E.S.)
- Laboratory of Genetics, Institute of Botany, Nature Research Centre, 08412 Vilnius, Lithuania;
| | - Vassilios Roussis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (S.K.); (E.I.); (V.R.)
| | - Jolanta Sereikaite
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, 10221 Vilnius, Lithuania; (R.G.); (E.S.)
- Correspondence:
| |
Collapse
|
26
|
Das S, Roy S. 6-acylamino nicotinic acid-based hydrogelators applicable in phase selective gelation, reproducible mat formation and toxic dye removal. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01234-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Cheng Y, Pham AT, Kato T, Lim B, Moreau D, López-Andarias J, Zong L, Sakai N, Matile S. Inhibitors of thiol-mediated uptake. Chem Sci 2020; 12:626-631. [PMID: 34163793 PMCID: PMC8179002 DOI: 10.1039/d0sc05447j] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ellman's reagent has caused substantial confusion and concern as a probe for thiol-mediated uptake because it is the only established inhibitor available but works neither efficiently nor reliably. Here we use fluorescent cyclic oligochalcogenides that enter cells by thiol-mediated uptake to systematically screen for more potent inhibitors, including epidithiodiketopiperazines, benzopolysulfanes, disulfide-bridged γ-turned peptides, heteroaromatic sulfones and cyclic thiosulfonates, thiosulfinates and disulfides. With nanomolar activity, the best inhibitors identified are more than 5000 times better than Ellman's reagent. Different activities found with different reporters reveal thiol-mediated uptake as a complex multitarget process. Preliminary results on the inhibition of the cellular uptake of pseudo-lentivectors expressing SARS-CoV-2 spike protein do not exclude potential of efficient inhibitors of thiol-mediated uptake for the development of new antivirals. Thiol-reactive inhibitors for the cellular entry of cyclic oligochalcogenide (COC) transporters and SARS-CoV-2 spike pseudo-lentivirus are reported.![]()
Collapse
Affiliation(s)
- Yangyang Cheng
- Department of Organic Chemistry, University of Geneva Geneva Switzerland http://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Anh-Tuan Pham
- Department of Organic Chemistry, University of Geneva Geneva Switzerland http://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Takehiro Kato
- Department of Organic Chemistry, University of Geneva Geneva Switzerland http://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Bumhee Lim
- Department of Organic Chemistry, University of Geneva Geneva Switzerland http://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Dimitri Moreau
- Department of Organic Chemistry, University of Geneva Geneva Switzerland http://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Javier López-Andarias
- Department of Organic Chemistry, University of Geneva Geneva Switzerland http://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Lili Zong
- Department of Organic Chemistry, University of Geneva Geneva Switzerland http://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Naomi Sakai
- Department of Organic Chemistry, University of Geneva Geneva Switzerland http://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva Geneva Switzerland http://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| |
Collapse
|
28
|
Zanuy D, Puiggalí-Jou A, Conflitti P, Bocchinfuso G, Palleschi A, Alemán C. Aggregation propensity of therapeutic fibrin-homing pentapeptides: insights from experiments and molecular dynamics simulations. SOFT MATTER 2020; 16:10169-10179. [PMID: 33165494 DOI: 10.1039/d0sm00930j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
CREKA (Cys-Arg-Glu-Lys-Ala) and its engineered analogue CRMeEKA, in which Glu has been replaced by N-methyl-Glu to provide resistance against proteolysis, are emerging pentapeptides that were specifically designed to bind fibrin-fibronectin complexes accumulated in the walls of tumour vessels. However, many of the intrinsic properties of CREKA and CRMeEKA, which are probably responsible for their different behaviour when combined with other materials (such as polymers) for diagnosis and therapeutics, remain unknown yet. The intrinsic tendency of these pentapeptides to form aggregates has been analysed by combining experimental techniques and atomistic Molecular Dynamics (MD) simulations. Dynamic light scattering assays show the formation of nanoaggregates that increase in size with the peptide concentration, even though aggregation occurs sooner for CRMeEKA, independently of the peptide concentration. FTIR and circular dichroism spectroscopy studies suggest that aggregated pentapeptides do not adopt any secondary structure. Atomistic MD trajectories show that CREKA aggregates faster and forms bigger molecular clusters than CRMeEKA. This behaviour has been explained by stability of the conformations adopted by un-associated peptide strands. While CREKA molecules organize by forming intramolecular backbone - side chain hydrogen bonds, CRMeEKA peptides display main chain - main chain hydrogen bonds closing very stable γ- or β-turns. Besides, energetic analyses reveal that CRMeEKA strands are better solvated in water than CREKA ones, independent of whether they are assembled or un-associated.
Collapse
Affiliation(s)
- David Zanuy
- Department of Chemical Engineering and Barcelona Research Center in Multiscale Science and Engineering, Universitat Polytècnica de Catalunya, 08019 Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
29
|
Gloaguen E, Mons M, Schwing K, Gerhards M. Neutral Peptides in the Gas Phase: Conformation and Aggregation Issues. Chem Rev 2020; 120:12490-12562. [PMID: 33152238 DOI: 10.1021/acs.chemrev.0c00168] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Combined IR and UV laser spectroscopic techniques in molecular beams merged with theoretical approaches have proven to be an ideal tool to elucidate intrinsic structural properties on a molecular level. It offers the possibility to analyze structural changes, in a controlled molecular environment, when successively adding aggregation partners. By this, it further makes these techniques a valuable starting point for a bottom-up approach in understanding the forces shaping larger molecular systems. This bottom-up approach was successfully applied to neutral amino acids starting around the 1990s. Ever since, experimental and theoretical methods developed further, and investigations could be extended to larger peptide systems. Against this background, the review gives an introduction to secondary structures and experimental methods as well as a summary on theoretical approaches. Vibrational frequencies being characteristic probes of molecular structure and interactions are especially addressed. Archetypal biologically relevant secondary structures investigated by molecular beam spectroscopy are described, and the influences of specific peptide residues on conformational preferences as well as the competition between secondary structures are discussed. Important influences like microsolvation or aggregation behavior are presented. Beyond the linear α-peptides, the main results of structural analysis on cyclic systems as well as on β- and γ-peptides are summarized. Overall, this contribution addresses current aspects of molecular beam spectroscopy on peptides and related species and provides molecular level insights into manifold issues of chemical and biochemical relevance.
Collapse
Affiliation(s)
- Eric Gloaguen
- CEA, CNRS, Université Paris-Saclay, CEA Paris-Saclay, Bât 522, 91191 Gif-sur-Yvette, France
| | - Michel Mons
- CEA, CNRS, Université Paris-Saclay, CEA Paris-Saclay, Bât 522, 91191 Gif-sur-Yvette, France
| | - Kirsten Schwing
- TU Kaiserslautern & Research Center Optimas, Erwin-Schrödinger-Straße 52, D-67663 Kaiserslautern, Germany
| | - Markus Gerhards
- TU Kaiserslautern & Research Center Optimas, Erwin-Schrödinger-Straße 52, D-67663 Kaiserslautern, Germany
| |
Collapse
|
30
|
Reddy SMM, Raßlenberg E, Sloan-Dennison S, Hesketh T, Silberbush O, Tuttle T, Smith E, Graham D, Faulds K, Ulijn RV, Ashkenasy N, Lampel A. Proton-Conductive Melanin-Like Fibers through Enzymatic Oxidation of a Self-Assembling Peptide. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003511. [PMID: 33058283 DOI: 10.1002/adma.202003511] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Melanin pigments have various properties that are of technological interest including photo- and radiation protection, rich coloration, and electronic functions. Nevertheless, laboratory-based synthesis of melanin and melanin-like materials with morphologies and chemical structures that are specifically optimized for these applications, is currently not possible. Here, melanin-like materials that are produced by enzymatic oxidation of a supramolecular tripeptide structures that are rich in tyrosine and have a 1D morphology are demonstrated, that are retained during the oxidation process while conducting tracks form through oxidative tyrosine crosslinking. Specifically, a minimalistic self-assembling peptide, Lys-Tyr-Tyr (KYY) with strong propensity to form supramolecular fibers, is utilized. Analysis by Raman spectroscopy shows that the tyrosines are pre-organized inside these fibers and, upon enzymatic oxidation, result in connected catechols. These form 1D conducting tracks along the length of the fiber, which gives rise to a level of internal disorder, but retention of the fiber morphology. This results in highly conductive structures demonstrated to be dominated by proton conduction. This work demonstrates the ability to control oxidation but retain a well-defined fibrous morphology that does not have a known equivalent in biology, and demonstrate exceptional conductivity that is enhanced by enzymatic oxidation.
Collapse
Affiliation(s)
- Samala Murali Mohan Reddy
- Department of Materials Engineering and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva, 84105, Israel
| | - Eileen Raßlenberg
- Organisch-Chemisches Institut, University of Muenster, Corrensstraße 40, Muenster, 48149, Germany
| | - Sian Sloan-Dennison
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Travis Hesketh
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Ohad Silberbush
- Department of Materials Engineering and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva, 84105, Israel
| | - Tell Tuttle
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Ewen Smith
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Duncan Graham
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Karen Faulds
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Rein V Ulijn
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), 85 St Nicholas Terrace, New York, NY, 10031, USA
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, New York, NY, 10065, USA
- Ph.D. programs in Biochemistry and Chemistry, The Graduate Center of the City, University of New York, New York, NY, 10016, USA
| | - Nurit Ashkenasy
- Department of Materials Engineering and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva, 84105, Israel
| | - Ayala Lampel
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), 85 St Nicholas Terrace, New York, NY, 10031, USA
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
- Sagol Center for Regenerative Biotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
31
|
Eco Friendly Approach for Synthesis, Characterization and Biological Activities of Milk Protein Stabilized Silver Nanoparticles. Polymers (Basel) 2020; 12:polym12061418. [PMID: 32599956 PMCID: PMC7362243 DOI: 10.3390/polym12061418] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 11/17/2022] Open
Abstract
Today, the overall occurrence of re-emerging and rising illnesses has been a serious load on economies as well as public health. Here, we describe a simple, nontoxic and eco-friendly method for the synthesis of milk protein (MP)-stabilized silver nanoparticles (MP-s-AgNPs) using ultrahigh-temperature full cream milk. Highly stable AgNPs were prepared with a fair control over their size, without using any reducing or stabilizing agent, and their formation was attributed to the presence of the MP casein. Ag+ ion reduction was possibly caused by the MPs. The synthesized MP-s-AgNPs were characterized in detail by ultraviolet-visible spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy and dynamic light scattering. MP-s-AgNPs showed inhibitory activity against both Gram-positive (Bacillus subtilis and Staphylococcus aureus) and Gram-negative microorganisms (Salmonella typhi and Escherichia coli). Moreover, MP-s-AgNPs were found to be more toxic to bacteria than to fungi (Aspergillus fumigatus, Aspergillus ochraceus and Penicillium chrysogenum).
Collapse
|
32
|
Pal S, Banerjee S, Kumar A, Prabhakaran EN. H-Bond Surrogate-Stabilized Shortest Single-Turn α-Helices: sp 2 Constraints and Residue Preferences for the Highest α-Helicities. ACS OMEGA 2020; 5:13902-13912. [PMID: 32566857 PMCID: PMC7301546 DOI: 10.1021/acsomega.0c01277] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/20/2020] [Indexed: 05/08/2023]
Abstract
Short α-helical sequences of proteins fail to maintain their native conformation when taken out of their protein context. Several covalent constraints have been designed, including the covalent H-bond surrogate (HBS)-where a peptide backbone i + 4 → i H-bond is replaced by a covalent surrogate-to nucleate α-helix in short sequences (>7 < 15 amino acids). But constraining the shortest sequences (four amino acids) into a single α-helical turn is still a significant challenge. Here, we introduce an HBS model that can be placed in unstructured tetrapeptides without excising any of its residues, and that biases them predominantly into remarkably stable single α-helical turns in varying solvents, pH values, and temperatures. Circular dichroism (CD), Fourier transform infrared (FT-IR) absorption, one-dimensional (1D)-NMR, two-dimensional (2D)-NMR spectral and computational analyses of the HBS-constrained tetrapeptide analogues reveal that (a) the number of sp2 atoms in the HBS-constrained backbone influences their predominance and rigidity in the α-helical conformation; and (b) residue preferences at the unnatural HBS-constrained positions influence their α-helicities, with Moc[GFA]G-OMe (1a) showing the highest known α-helicity (θn→π*MRE ∼-25.3 × 103 deg cm2 dmol-1 at 228 nm) for a single α-helical turn. Current findings benefit chemical biological applications desiring predictable access to single α-helical turns in tetrapeptides.
Collapse
|
33
|
Liu J, He X. Fragment-based quantum mechanical approach to biomolecules, molecular clusters, molecular crystals and liquids. Phys Chem Chem Phys 2020; 22:12341-12367. [PMID: 32459230 DOI: 10.1039/d0cp01095b] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To study large molecular systems beyond the system size that the current state-of-the-art ab initio electronic structure methods could handle, fragment-based quantum mechanical (QM) approaches have been developed over the past years, and proved to be efficient in dealing with large molecular systems at various ab initio levels. According to the fragmentation approach, a large molecular system can be divided into subsystems (fragments), and subsequently the property of the whole system can be approximately obtained by taking a proper combination of the corresponding terms of individual fragments. Therefore, the standard QM calculation of a large system could be circumvented by carrying out a series of calculations on small fragments, which significantly promotes computational efficiency. The electrostatically embedded generalized molecular fractionation with conjugate caps (EE-GMFCC) method is one of the fragment-based QM approaches which has been developed by our research group in recent years. This Perspective presents the theoretical framework of this fragmentation method and its applications in biomolecules, molecular clusters, molecular crystals and liquids, including total energy calculation, protein-ligand/protein binding affinity prediction, geometry optimization, vibrational spectrum simulation, ab initio molecular dynamics simulation, and prediction of excited-state properties.
Collapse
Affiliation(s)
- Jinfeng Liu
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | | |
Collapse
|
34
|
Martins DB, Pacca CC, da Silva AMB, de Souza BM, de Almeida MTG, Palma MS, Arcisio-Miranda M, Dos Santos Cabrera MP. Comparing activity, toxicity and model membrane interactions of Jelleine-I and Trp/Arg analogs: analysis of peptide aggregation. Amino Acids 2020; 52:725-741. [PMID: 32367434 DOI: 10.1007/s00726-020-02847-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/23/2020] [Indexed: 01/06/2023]
Abstract
Increasing resistance in antibiotic and chemotherapeutic treatments has been pushing studies of design and evaluation of bioactive peptides. Designing relies on different approaches from minimalist sequences and endogenous peptides modifications to computational libraries. Evaluation relies on microbiological tests. Aiming a deeper understanding, we chose the octapeptide Jelleine-I (JI) for its selective and low toxicity profile, designed small modifications combining the substitutions of Phe by Trp and Lys/His by Arg and tested the antimicrobial and anticancer activity on melanoma cells. Biophysical methods identified environment-dependent modulation of aggregation, but critical aggregation concentrations of JI and analogs in buffer show that peptides start membrane interactions as monomers. The presence of model membranes increases or reduces the partial aggregation of peptides. Compared to JI, analog JIF2WR shows the lowest tendency to aggregation on bacterial model membranes. JI and analogs are lytic to model membranes. Their composition-dependent performance indicates preference for the higher charged anionic bilayers in line with their superior performance toward Staphylococcus aureus and Streptococcus pneumoniae. JIF2WR presented the higher partitioning, higher lytic activity and lower aggregated contents. Despite these increased membranolytic activities, JIF2WR exhibited comparable antimicrobial activity in relation to JI at the expenses of some loss in selectivity. We found that the substitution Phe/Trp (JIF2W) tends to decrease antimicrobial but to increase anticancer activity and aggregation on model membranes and the toxicity toward human cells. However, the concomitant substitution Lys/His by Arg (JIF2WR) modulates some of these tendencies, increasing both the antimicrobial and the anticancer activity while decreasing the aggregation tendency.
Collapse
Affiliation(s)
- Danubia Batista Martins
- Departamento de Física, Universidade Estadual Paulista (Unesp), Instituto de Biociências Letras e Ciências Exatas (Ibilce), R. Cristóvão Colombo, 2265, São José do Rio Preto, SP, 15054-000, Brazil
| | | | - Annielle Mendes Brito da Silva
- Laboratório de Neurobiologia Estrutural e Funcional (LaNEF), Departamento de Biofísica, Universidade Federal de São Paulo, R. Botucatu, 862, Edifício ECB, 7º andar, São Paulo, SP, 04023-062, Brazil
| | - Bibiana Monson de Souza
- Centro de Estudos de Insetos Sociais, Universidade Estadual Paulista (Unesp), Câmpus Rio Claro, Av. 24-A, 1515, Rio Claro, SP, 13506-900, Brazil
| | - Margarete Teresa Gottardo de Almeida
- Departamento de Doenças Dermatológicas Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, SP, 15090-000, Brazil
| | - Mario Sérgio Palma
- Centro de Estudos de Insetos Sociais, Universidade Estadual Paulista (Unesp), Câmpus Rio Claro, Av. 24-A, 1515, Rio Claro, SP, 13506-900, Brazil
| | - Manoel Arcisio-Miranda
- Laboratório de Neurobiologia Estrutural e Funcional (LaNEF), Departamento de Biofísica, Universidade Federal de São Paulo, R. Botucatu, 862, Edifício ECB, 7º andar, São Paulo, SP, 04023-062, Brazil
| | - Marcia Perez Dos Santos Cabrera
- Departamento de Física, Universidade Estadual Paulista (Unesp), Instituto de Biociências Letras e Ciências Exatas (Ibilce), R. Cristóvão Colombo, 2265, São José do Rio Preto, SP, 15054-000, Brazil.
- Departamento de Química e Ciências Ambientais, Universidade Estadual Paulista (Unesp), Instituto de Biociências Letras e Ciências Exatas (Ibilce), R. Cristóvão Colombo, 2265, São José do Rio Preto, SP, 15054-000, Brazil.
| |
Collapse
|
35
|
Cobb J, Zai-Rose V, Correia JJ, Janorkar AV. FT-IR Spectroscopic Analysis of the Secondary Structures Present during the Desiccation Induced Aggregation of Elastin-Like Polypeptide on Silica. ACS OMEGA 2020; 5:8403-8413. [PMID: 32309751 PMCID: PMC7161207 DOI: 10.1021/acsomega.0c00271] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/06/2020] [Indexed: 05/25/2023]
Abstract
Previously, we found that elastin-like polypeptide (ELP), when dried above the lower critical solution temperature on top of a hydrophilic fused silica disk, exhibited a dynamic coalescence behavior. The ELP initially wet the silica, but over the next 12 h, dewett the surface and formed aggregates of precise sizes and shapes. Using Fourier-transform infrared (FT-IR) spectroscopy, the present study explores the role of secondary structures present in ELP during this progressive desiccation and their effect on aggregate size. The amide I peak (1600-1700 cm-1) in the ELP's FT-IR spectrum was deconvoluted using the second derivative method into eight subpeaks (1616, 1624, 1635, 1647, 1657, 1666, 1680, 1695 cm-1). These peaks were identified to represent extended strands, β-turns, 3(10)-helix, polyproline I, and polyproline II using previous studies on ELP and molecules similar in peptide composition. Positive correlations were established between the various subpeaks, water content, and aggregate size to understand the contributions of the secondary structures in particle formation. The positive correlations suggest that type II β-turns, independent of the water content, contributed to the growth of the aggregates at earlier time points (1-3.5 h). At later time points (6-12 h), the aggregate growth was attributed to the formation of 3(10)-helices that relied on a decrease in water content. Understanding these relationships gives greater control in creating precisely sized aggregates and surface coatings with varying roughness.
Collapse
Affiliation(s)
- Jared
S. Cobb
- Department
of Biomedical Materials Science, School of Dentistry and Department of
Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, 2500 North State Street, Jackson, Mississippi 39216, United States
| | - Valeria Zai-Rose
- Department
of Biomedical Materials Science, School of Dentistry and Department of
Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, 2500 North State Street, Jackson, Mississippi 39216, United States
| | - John J. Correia
- Department
of Biomedical Materials Science, School of Dentistry and Department of
Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, 2500 North State Street, Jackson, Mississippi 39216, United States
| | - Amol V. Janorkar
- Department
of Biomedical Materials Science, School of Dentistry and Department of
Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, 2500 North State Street, Jackson, Mississippi 39216, United States
| |
Collapse
|
36
|
Munro R, de Vlugt J, Ladizhansky V, Brown LS. Improved Protocol for the Production of the Low-Expression Eukaryotic Membrane Protein Human Aquaporin 2 in Pichia pastoris for Solid-State NMR. Biomolecules 2020; 10:biom10030434. [PMID: 32168846 PMCID: PMC7175339 DOI: 10.3390/biom10030434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/16/2022] Open
Abstract
Solid-state nuclear magnetic resonance (SSNMR) is a powerful biophysical technique for studies of membrane proteins; it requires the incorporation of isotopic labels into the sample. This is usually accomplished through over-expression of the protein of interest in a prokaryotic or eukaryotic host in minimal media, wherein all (or some) carbon and nitrogen sources are isotopically labeled. In order to obtain multi-dimensional NMR spectra with adequate signal-to-noise ratios suitable for in-depth analysis, one requires high yields of homogeneously structured protein. Some membrane proteins, such as human aquaporin 2 (hAQP2), exhibit poor expression, which can make producing a sample for SSNMR in an economic fashion extremely difficult, as growth in minimal media adds additional strain on expression hosts. We have developed an optimized growth protocol for eukaryotic membrane proteins in the methylotrophic yeast Pichia pastoris. Our new growth protocol uses the combination of sorbitol supplementation, higher cell density, and low temperature induction (LT-SEVIN), which increases the yield of full-length, isotopically labeled hAQP2 ten-fold. Combining mass spectrometry and SSNMR, we were able to determine the nature and the extent of post-translational modifications of the protein. The resultant protein can be functionally reconstituted into lipids and yields excellent resolution and spectral coverage when analyzed by two-dimensional SSNMR spectroscopy.
Collapse
|
37
|
Keiderling TA. Structure of Condensed Phase Peptides: Insights from Vibrational Circular Dichroism and Raman Optical Activity Techniques. Chem Rev 2020; 120:3381-3419. [DOI: 10.1021/acs.chemrev.9b00636] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Timothy A. Keiderling
- Department of Chemistry, University of Illinois at Chicago 845 West Taylor Street m/c 111, Chicago, Illinois 60607-7061, United States
| |
Collapse
|
38
|
Freitas DS, Sousa CEA, Parente J, Drogalin A, Gil Fortes A, Cerqueira NMFSA, Alves MJ. (3S,4R)-3,4-Dihydroxy-N-alkyl-l-homoprolines: synthesis and computational mechanistic studies. Org Biomol Chem 2019; 17:10052-10064. [PMID: 31748775 DOI: 10.1039/c9ob02141h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This is the first synthetic report of (3S,4R)-dihydroxy-N-alkyl-l-homoprolines described so far. 2,4-O-Benzylidene-d-erythrose was obtained from d-glucose with an improved yield, and then transformed into the title (3S,4R)-dihydroxy-N-alkyl-l-homoprolines, in a two-step strategy, with excellent overall yields. Hydrogenolysis of the benzyl group led to the NH congener. The synthesis of final products from 1,4-lactone intermediates was studied by computational means either under acidic or basic conditions. The theoretical mechanism studies fully explain the experimental results: (a) an equilibrium between l-homoprolines and their bicyclic counterparts is established in acids; (b) the equilibrium suffers a complete displacement towards the l-homoproline side in a basic medium.
Collapse
Affiliation(s)
- David S Freitas
- Departamento de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | | | | | | | | | | | | |
Collapse
|
39
|
Torreggiani A, Tinti A, Jurasekova Z, Capdevila M, Saracino M, Di Foggia M. Structural Lesions of Proteins Connected to Lipid Membrane Damages Caused by Radical Stress: Assessment by Biomimetic Systems and Raman Spectroscopy. Biomolecules 2019; 9:E794. [PMID: 31783702 PMCID: PMC6995617 DOI: 10.3390/biom9120794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 12/16/2022] Open
Abstract
Model systems constituted by proteins and unsaturated lipid vesicles were used to gain more insight into the effects of the propagation of an initial radical damage on protein to the lipid compartment. The latter is based on liposome technology and allows measuring the trans unsaturated fatty acid content as a result of free radical stress on proteins. Two kinds of sulfur-containing proteins were chosen to connect their chemical reactivity with membrane lipid transformation, serum albumins and metallothioneins. Biomimetic systems based on radiation chemistry were used to mimic the protein exposure to different kinds of free radical stress and Raman spectroscopy to shed light on protein structural changes caused by the free radical attack. Among the amino acid residues, Cys is one of the most sensitive residues towards the attack of free radicals, thus suggesting that metal-Cys clusters are good interceptors of reactive species in metallothioneins, together with disulfides moieties in serum albumins. Met is another important site of the attack, in particular under reductive conditions. Tyr and Phe are sensitive to radical stress too, leading to electron transfer reactions or radical-induced modifications of their structures. Finally, modifications in protein folding take place depending on reactive species attacking the protein.
Collapse
Affiliation(s)
| | - Anna Tinti
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, via Belmeloro 8/2, 40126 Bologna, Italy; (A.T.); (M.D.F.)
| | - Zuzana Jurasekova
- Department of Biophysics, Faculty of Science, P.J. Safarik University, Jesenna 5, 04001 Kosice, Slovakia;
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P. J. Safarik University, Jesenna 5, 04001 Kosice, Slovakia
| | - Mercè Capdevila
- Departament de Quimica, Facultat de ciencies, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain;
| | - Michela Saracino
- Istituto I.S.O.F. (C.N.R.), via P. Gobetti 101, 40129 Bologna, Italy;
| | - Michele Di Foggia
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, via Belmeloro 8/2, 40126 Bologna, Italy; (A.T.); (M.D.F.)
| |
Collapse
|
40
|
Devitt G, Rice W, Crisford A, Nandhakumar I, Mudher A, Mahajan S. Conformational Evolution of Molecular Signatures during Amyloidogenic Protein Aggregation. ACS Chem Neurosci 2019; 10:4593-4611. [PMID: 31661242 DOI: 10.1021/acschemneuro.9b00451] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aggregation is a pathological hallmark of proteinopathies such as Alzheimer's disease and results in the deposition of β-sheet-rich amyloidogenic protein aggregates. Such proteinopathies can be classified by the identity of one or more aggregated proteins, with recent evidence also suggesting that distinct molecular conformers (strains) of the same protein can be observed in different diseases, as well is in subtypes of the same disease. Therefore, methods for the quantification of pathological changes in protein conformation are central to understanding and treating proteinopathies. In this work, the evolution of Raman spectroscopic molecular signatures of three conformationally distinct proteins, bovine serum albumin (α-helical-rich), β2-microglobulin (β-sheet-rich), and tau (natively disordered), was assessed during aggregation into oligomers and fibrils. The morphological evolution was tracked using atomic force microscopy and corresponding conformational changes were assessed by their Raman signatures acquired in both wet and dried conditions. A deconvolution model was developed which allowed us to quantify the conformation of the nonregular protein tau, as well as for the oligomeric and fibrillar species of each of the proteins. Principle component analysis of the fingerprint region allowed further identification of the distinguishing spectral features and unsupervised distinction. While an increase in β-sheet is seen on aggregation, crucially, however, each protein also retains a significant proportion of its native monomeric structure after aggregation. Thus, spectral analysis of each aggregated species, oligomeric, as well as fibrillar, for each protein resulted in a unique and quantitative "conformational fingerprint". This approach allowed us to provide the first differential detection of both oligomers and fibrils of the three different amyloidogenic proteins, including tau, whose aggregates have never before been interrogated using spontaneous Raman spectroscopy. Quantitative "conformational fingerprinting" by Raman spectroscopy thus demonstrates its huge potential and utility in understanding proteinopathic disease mechanisms and for providing strain-specific early diagnostic markers and targets for disease-modifying therapies.
Collapse
|
41
|
Hiew SH, Mohanram H, Ning L, Guo J, Sánchez‐Ferrer A, Shi X, Pervushin K, Mu Y, Mezzenga R, Miserez A. A Short Peptide Hydrogel with High Stiffness Induced by 3 10-Helices to β-Sheet Transition in Water. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901173. [PMID: 31728282 PMCID: PMC6839752 DOI: 10.1002/advs.201901173] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/23/2019] [Indexed: 05/24/2023]
Abstract
Biological gels generally require polymeric chains that produce long-lived physical entanglements. Low molecular weight colloids offer an alternative to macromolecular gels, but often require ad-hoc synthetic procedures. Here, a short biomimetic peptide composed of eight amino acid residues derived from squid sucker ring teeth proteins is demonstrated to form hydrogel in water without any cross-linking agent or chemical modification and exhibits a stiffness on par with the stiffest peptide hydrogels. Combining solution and solid-state NMR, circular dichroism, infrared spectroscopy, and X-ray scattering, the peptide is shown to form a supramolecular, semiflexible gel assembled from unusual right-handed 310-helices stabilized in solution by π-π stacking. During gelation, the 310-helices undergo conformational transition into antiparallel β-sheets with formation of new interpeptide hydrophobic interactions, and molecular dynamic simulations corroborate stabilization by cross β-sheet oligomerization. The current study broadens the range of secondary structures available to create supramolecular hydrogels, and introduces 310-helices as transient building blocks for gelation via a 310-to-β-sheet conformational transition.
Collapse
Affiliation(s)
- Shu Hui Hiew
- Center for Biomimetic Sensor ScienceSchool of Materials Science and EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Harini Mohanram
- Center for Biomimetic Sensor ScienceSchool of Materials Science and EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Lulu Ning
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
| | - Jingjing Guo
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
| | | | - Xiangyan Shi
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
| | - Konstantin Pervushin
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
| | - Yuguang Mu
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
| | - Raffaele Mezzenga
- Department of Health Sciences & TechnologyETH ZurichZurichCH‐8092Switzerland
| | - Ali Miserez
- Center for Biomimetic Sensor ScienceSchool of Materials Science and EngineeringNanyang Technological UniversitySingapore639798Singapore
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
| |
Collapse
|
42
|
Math RK, Kambiranda D, Yun HD, Ghebreiyessus Y. Binding of cloned Cel enzymes on clay minerals related to the pI of the enzymes and database survey of cellulases of soil bacteria for pI. Biosci Biotechnol Biochem 2019; 84:238-246. [PMID: 31625450 DOI: 10.1080/09168451.2019.1679613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The Cel genes from Bacillus licheniformis MSB03 were cloned and expressed to investigate binding ability on clay minerals and sea sand at pH ranging 3 to 9. FTIR analysis has been done to characterize bound enzymes on clay minerals. Subsequent, surveying of NCBI database for extracellular enzymes of soil bacteria was carried out. Among the five cloned Cel enzymes assayed for binding to clay minerals, only Cel5H enzyme had the binding ability. Enzyme Cel5H exhibited highest binding to montmorillonite followed by kaolinite and sea sand. Interestingly, Cel5H had higher pI value of 9.24 than other proteins (5.2-5.7). Cel5H binding to montmorillonite was shown to be negatively affected below pH 3 and above pH 9. Infrared absorption spectra of the Cel5H-montmorillonite complexes showed distinct peaks for clay minerals and bound proteins. Furthermore, database survey of soil bacterial extracellular enzymes revealed that Bacillus species enzymes had higher pI than other soil bacterial enzymes.
Collapse
Affiliation(s)
- Renukaradhya K Math
- Research Institute of Agriculture and Life Science, Gyeongsang National University, Chinju, Republic of Korea
| | - Devaiah Kambiranda
- Department of Agricultural Sciences, Southern University Agriculture Research and Extension Center, Baton Rouge, LA, USA
| | - Han Dae Yun
- Research Institute of Agriculture and Life Science, Gyeongsang National University, Chinju, Republic of Korea
| | - Yemane Ghebreiyessus
- Department of Agricultural Sciences, Southern University Agriculture Research and Extension Center, Baton Rouge, LA, USA
| |
Collapse
|
43
|
Kumar S, Mishra KK, Singh SK, Borish K, Dey S, Sarkar B, Das A. Observation of a weak intra-residue C5 hydrogen-bond in a dipeptide containing Gly-Pro sequence. J Chem Phys 2019; 151:104309. [DOI: 10.1063/1.5115040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Satish Kumar
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Kamal K. Mishra
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Santosh K. Singh
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Kshetrimayum Borish
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Sanjit Dey
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Biplab Sarkar
- Department of Chemistry, North Eastern Hill University, Shillong, Meghalaya 793022, India
| | - Aloke Das
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
44
|
Jurasekova Z, Garcia-Leis A, Sanchez-Cortes S, Tinti A, Torreggiani A. Structural analysis of the neuropeptide substance P by using vibrational spectroscopy. Anal Bioanal Chem 2019; 411:7419-7430. [PMID: 31494687 DOI: 10.1007/s00216-019-02097-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Substance P (SP) is one of the most studied peptide hormones and knowing the relationship between its structure and function may have important therapeutic applications in the treatment of a variety of stress-related illnesses. In order to obtain a deeper insight into its folding, the effects of different factors, such as pH changes, the presence of Ca2+ ions, and the substitution of the Met-NH2 moiety in the SP structure, was studied by Raman and infrared spectroscopies. SP has a pH-dependent structure. Under acidic-neutral conditions, SP possesses a prevalent β-sheet structure although also other secondary structure elements are present. By increasing pH, a higher orderliness in the SP secondary structure is induced, as well as the formation of strongly bound intermolecular β-strands with a parallel alignment, which favour the self-assembly of SP in β-aggregates. The substitution of the Met-NH2 moiety with the acidic functional group in the SP sequence, giving rise to a not biologically active SP analogue, results in a more disordered folding, where the predominant contribution comes from a random coil. Conversely, the presence of Ca2+ ions affects slightly but sensitively the folding of the polypeptide chain, by favouring the α-helical content and a different alignment of β-strands; these are structural elements, which may favour the SP biological activity. In addition, the capability of SERS spectroscopy to detect SP in its biologically active form was also tested by using different metal nanoparticles. Thanks to the use of silver NPs prepared by reduction of silver nitrate with hydroxylamine hydrochloride, SP can be detected at very low peptide concentration (~ 90 nM). However, the SERS spectra cannot be obtained under alkaline conditions since both the formation of SP aggregates and the lack of ion pairs do not allow a strong enough interaction of SP with silver NPs. Graphical abstract.
Collapse
Affiliation(s)
- Zuzana Jurasekova
- Department of Biophysics, Faculty of Science, P. J. Šafárik University in Košice, Jesenná 5, 040 01, Košice, Slovakia.
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P. J. Šafárik University in Košice, Jesenná 5, 040 01, Košice, Slovakia.
| | - Adianez Garcia-Leis
- Instituto de Estructura de la Materia, CSIC, Serrano 121, 28006, Madrid, Spain
| | | | - Anna Tinti
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Via Belmeloro 8/2, 40126, Bologna, Italy
| | - Armida Torreggiani
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, CNR, Via P. Gobetti No. 101, 40129, Bologna, Italy.
| |
Collapse
|
45
|
Appavoo SD, Huh S, Diaz DB, Yudin AK. Conformational Control of Macrocycles by Remote Structural Modification. Chem Rev 2019; 119:9724-9752. [DOI: 10.1021/acs.chemrev.8b00742] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Solomon D. Appavoo
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario, Canada M5S 3H6
| | - Sungjoon Huh
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario, Canada M5S 3H6
| | - Diego B. Diaz
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario, Canada M5S 3H6
| | - Andrei K. Yudin
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario, Canada M5S 3H6
| |
Collapse
|
46
|
Djohan Y, Azukizawa T, Patmawati, Sakai K, Yano Y, Sato F, Takahashi R, Yohda M, Maeda M, Kamiya N, Zako T. Molecular chaperone prefoldin-assisted biosynthesis of gold nanoparticles with improved size distribution and dispersion. Biomater Sci 2019; 7:1801-1804. [PMID: 30869657 DOI: 10.1039/c8bm01026a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Here we report a novel aspect of molecular chaperone prefoldin (PFD) as a biomaterial in the biocatalytic synthesis of gold nanoparticles (AuNPs) using glycerol dehydrogenase (GLD). We found that PFD could inhibit the aggregation of AuNPs during the biosynthesis, leading to the formation of AuNPs with controlled size distribution.
Collapse
Affiliation(s)
- Yovita Djohan
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ozawa Y, Sato H, Kayano Y, Yamaki N, Izato YI, Miyake A, Naito A, Kawamura I. Self-assembly of tripeptides into γ-turn nanostructures. Phys Chem Chem Phys 2019; 21:10879-10883. [PMID: 30968092 DOI: 10.1039/c9cp00233b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Self-assembling phenylalanine-based peptides have garnered interest owing to their potential for creating new functional materials. Here, we designed four diastereomers, l-Phe-l-Phe-l-Phe (FFF), d-Phe-l-Phe-l-Phe (fFF), l-Phe-d-Phe-l-Phe (FfF) and l-Phe-l-Phe-d-Phe (FFf), to analyze the effect of the d-isomer on the self-assembly. Using SEM, TG, VCD, and solid-state NMR measurements, we found that only FFf forms a γ-turn conformation and self-assembles into a nanoplate with higher thermal stability. The supramolecular structure of FFf consists of intra- and intermolecular hydrogen bonds and π-π stackings. From our results, we have discovered that FFf forms a new type of self-assembling γ-turn conformation, clarifying the structural role of a d-amino acid residue in supramolecular formation.
Collapse
Affiliation(s)
- Yumi Ozawa
- Graduate School of Engineering, Yokohama National University, Hodogaya-ku, Yokohama 240-8501, Japan.
| | - Hisako Sato
- Department of Chemistry, Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan
| | - Yohei Kayano
- Graduate School of Engineering Science, Yokohama National University, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Nana Yamaki
- Graduate School of Environment and Information Sciences, Yokohama National University, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Yu-Ichiro Izato
- Graduate School of Environment and Information Sciences, Yokohama National University, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Atsumi Miyake
- Institute of Advanced Sciences, Yokohama National University, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Akira Naito
- Graduate School of Engineering, Yokohama National University, Hodogaya-ku, Yokohama 240-8501, Japan.
| | - Izuru Kawamura
- Graduate School of Engineering, Yokohama National University, Hodogaya-ku, Yokohama 240-8501, Japan. and Graduate School of Engineering Science, Yokohama National University, Hodogaya-ku, Yokohama 240-8501, Japan
| |
Collapse
|
48
|
Rodríguez R, Quiñoá E, Riguera R, Freire F. Stimuli-Directed Colorimetric Interconversion of Helical Polymers Accompanied by a Tunable Self-Assembly Process. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805413. [PMID: 30786148 DOI: 10.1002/smll.201805413] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/23/2019] [Indexed: 06/09/2023]
Abstract
Interconversion between extended and bent structures at the pendant groups of a chiral polyene framework [poly(phenylacetylene) with (R)-(2-methoxy-2-phenylacetyl)glycine residues linked to 4-vinylanilines] allows the reversible colorimetric transformation from stretched to compressed helical cis-transoid polyenic structures through manipulation of the flexible spacer. This transformation generates either organogels (stretched helical form) or nanoparticles (compressed helical form) under the control of polar/low polar stimuli respectively and opens the way to the development of new sensors and stimuli-sensitive materials based on these concepts.
Collapse
Affiliation(s)
- Rafael Rodríguez
- Centro Singular de investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| | - Emilio Quiñoá
- Centro Singular de investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| | - Ricardo Riguera
- Centro Singular de investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| | - Félix Freire
- Centro Singular de investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| |
Collapse
|
49
|
Vardhishna MV, Srinivasulu G, Harikrishna A, Thakur SS, Chatterjee B. Simultaneous Occurrence of Nanospheres and Nanofibers Self-Assembled from Achiral Tripeptides. ChemistryOpen 2019; 8:266-270. [PMID: 30868048 PMCID: PMC6398100 DOI: 10.1002/open.201800258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 11/28/2018] [Indexed: 11/24/2022] Open
Abstract
The achiral tripeptide Boc‐Aib‐MABA‐Aib‐OMe has the ability to co‐exist as nanospheres and as a network of nanofibers in methanol. Furthermore, AFM and TEM images show the presence of bulges in the network of nanofibers. Interestingly, the formation of nanofibers is seen to emerge from the outer boundary of the spherical structures. Some of the nanofibers curl up at the tip and later result in the formation of hollow nanospheres with thick boundaries. The presence of β‐turn‐like structures with hydrogen bonding is observed using FT‐IR studies. The presence of hydrogen bonding is also demonstrated by using NMR studies.
Collapse
Affiliation(s)
- Malapaka Venkata Vardhishna
- National Institute of Pharmaceutical Education and Research (NIPER) NIPER-Hyderabad Dept. of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Govt. of India Balanagar Hyderabad - 500 037, Telangana India
| | - Gannoju Srinivasulu
- National Institute of Pharmaceutical Education and Research (NIPER) NIPER-Hyderabad Dept. of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Govt. of India Balanagar Hyderabad - 500 037, Telangana India
| | - Adicherl Harikrishna
- Proteomics and Cell Signaling, Lab E409 Centre for Cellular and Molecular Biology Uppal Road Hyderabad - 500007 India
| | - Suman Siddharth Thakur
- Proteomics and Cell Signaling, Lab E409 Centre for Cellular and Molecular Biology Uppal Road Hyderabad - 500007 India
| | - Bhaswati Chatterjee
- National Institute of Pharmaceutical Education and Research (NIPER) NIPER-Hyderabad Dept. of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Govt. of India Balanagar Hyderabad - 500 037, Telangana India
| |
Collapse
|
50
|
Nakata H, Fedorov DG. Simulations of infrared and Raman spectra in solution using the fragment molecular orbital method. Phys Chem Chem Phys 2019; 21:13641-13652. [DOI: 10.1039/c9cp00940j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Calculation of IR and Raman spectra in solution for large molecular systems made possible with analytic FMO/PCM Hessians.
Collapse
Affiliation(s)
| | - Dmitri G. Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat)
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba
- Japan
| |
Collapse
|