1
|
Wu MM, Zhang H, Yang Y, Wang Y, Luk PK, Xia IF, Wong KH, Kwok KW. Food emulsifiers aggravate inflammation and oxidative stress induced by food contaminants in zebrafish. Food Chem Toxicol 2024; 191:114850. [PMID: 38986831 DOI: 10.1016/j.fct.2024.114850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
Food emulsifiers like glycerol monostearate (G) and Tween 80 (TW) are commonly used to help formation and maintain stability of emulsions. However, certain food contaminants and emulsifiers often co-occur in the same food item due to food culture and cooking methods. For this reason, the present study investigated interaction of toxic effect of emulsifiers (G and TW) and process contaminants (acrylamide (AA) and benzo [a]pyrene (BAP)) on zebrafish. Adult zebrafish were exposed to emulsifiers, food contaminants, or the combination through diet for 2 h and 7 days. Oxidative stress and inflammation caused by food contaminants were increased when food emulsifiers were present. These combined treatments also induced more severe morphological changes than the contaminant alone treatments. In the gut, disruption of villi structure and increased number of goblet cells was observed and in the liver there were increased lipid deposition, infiltration of immune cells, glycogen depletion and focal necrosis. Increased accumulation of AA and BAP in the liver and gut were detected after addition of emulsifiers, suggesting that emulsifiers can enhance absorption of diet-borne contaminants. Our results showed food emulsifiers and contaminants can interact synergistically and increase risk.
Collapse
Affiliation(s)
- Margaret Mh Wu
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, China; Research Institute for Future Food, The Hong Kong Polytechnic University, China.
| | - Huan Zhang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, China
| | - Ye Yang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, China
| | - Yinglun Wang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, China
| | - Peter Kh Luk
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, China
| | - Ivan Fan Xia
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, China; Section of Cardiology, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Ka-Hing Wong
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, China; Research Institute for Future Food, The Hong Kong Polytechnic University, China
| | - Kevin Wh Kwok
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, China; Research Institute for Future Food, The Hong Kong Polytechnic University, China.
| |
Collapse
|
2
|
Wu MM, Liao B, Xia IF, Luk PK, Wong KH, Kwok KW. Food emulsifiers increase toxicity of food contaminants in three human GI tract cell lines. Food Chem Toxicol 2024; 185:114499. [PMID: 38309685 DOI: 10.1016/j.fct.2024.114499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/05/2024]
Abstract
Food products simultaneously containing both food contaminants and emulsifiers are common in baked products, coffee and chocolate. Little is known regarding how food contaminants and emulsifiers interact and alter toxicity. Recent studies have shown that while emulsifiers themselves have little toxicity, they could cause changes in the gut microenvironment and lead to issues such as increased uptake of allergens. This study examined toxic effect of two common process contaminants acrylamide (AA) and benzo [a]pyrene (BAP) combined with food emulsifiers polyoxyethylene sorbitan monooleate (TW) or glycerol monostearate (G). In liver cell line HepG2 and gastrointestinal cell lines HIEC6 and Caco-2, toxicities of AA and BAP were increased by TW but not by G as indicated by decrease in IC50 values. Addition of TW also exacerbated gene expression changes caused by AA or BAP. Cellular uptake and cell membrane permeability were enhanced by TW but not by G, but tight junction proteins of Caco-2 monolayer was impacted by both emulsifiers. These results suggested that TW could increase toxicity of AA and BAP through increasing cell permeability thus chemical uptake and potentially through other interactions. The study is to draw the attention of regulators on the potential synergistic interaction of co-occurring chemicals in food.
Collapse
Affiliation(s)
- Margaret Mh Wu
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Baoshan Liao
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China; Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Ivan Fan Xia
- Section of Cardiology, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Peter Kh Luk
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, China
| | - Ka-Hing Wong
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, China
| | - Kevin Wh Kwok
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
3
|
Gomte SS, Agnihotri TG, Khopade S, Jain A. Exploring the potential of pH-sensitive polymers in targeted drug delivery. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:228-268. [PMID: 37927045 DOI: 10.1080/09205063.2023.2279792] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
The pH-sensitive polymers have attained significant attention in the arena of targeted drug delivery (TDD) because of their exceptional capability to respond to alteration in pH in various physiological environments. This attribute aids pH-sensitive polymers to act as smart carriers for therapeutic agents, transporting them precisely to target locations while curtailing the release of drugs in off-targeted sites, thereby diminishing side effects. Many pH-responsive polymers in TDD have revealed promising results, with increased therapeutic efficacy and decreased toxic effects. Several pH-sensitive polymers, including, hydroxy-propyl-methyl cellulose, poly (methacrylic acid) (Eudragit series), poly (acrylic acid), and chitosan, have been broadly studied for their myriad applications in the management of various types of diseases. Additionally, the amalgamation of pH-sensitive polymers with, additive manufacturing techniques like 3D printing, has resulted in the progression of novel drug delivery systems that regulate drug release in a controlled manner. Herein, types of pH-sensitive polymers in TDD are systemically reviewed. We have briefly discussed the nanocarriers employed for the delivery of various pH-sensitive polymers in TDD. Finally, miscellaneous applications of pH-sensitive polymers are discussed thoroughly with special attention to the implication of 3D printing in pH-sensitive polymers.
Collapse
Affiliation(s)
- Shyam Sudhakar Gomte
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, Gujarat, India
| | - Tejas Girish Agnihotri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, Gujarat, India
| | - Shivani Khopade
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, Gujarat, India
| | - Aakanchha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, Gujarat, India
| |
Collapse
|
4
|
Zhou B, Guo Z, Zhao P, Wang H, Dong S, Cheng B, Yang J, Li B, Wang X. Fabrication and characterization of coated microneedle patches based on PEGDA for transdermal administration of metformin. Drug Deliv Transl Res 2024; 14:131-142. [PMID: 37450235 DOI: 10.1007/s13346-023-01387-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 07/18/2023]
Abstract
Type 2 diabetes is one of the major challenges that the world is facing today. However, metformin (MET) as most type 2 diabetics' first-line oral hypoglycemic drug may cause serious side effects such as gastrointestinal irritation and nausea which reduce the patients' medication compliance. Therefore, the aim of the study was to design a safe and effective self-treatment device for the delivery of MET. Here, a kind of coated microneedle (MN) patches based on poly(ethylene glycol)diacrylate (PEGDA) were prepared by a two-step casting method and photopolymerization process for transdermal administration of MET. The needles wrapped with drug-loaded hyaluronic acid (HA) coating showed promising mechanical properties and drug delivery ability that allowed them to penetrate the skin barrier for rapid drug delivery, and they had no skin irritancy. The in vivo experiment of type 2 diabetic rats showed a satisfying hypoglycemic effect of the coated MN patches. The study shows that the prepared MN patches will be a potential method for the treatment of type 2 diabetes in the future.
Collapse
Affiliation(s)
- Bo Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
- Hainan Institute, Wuhan University of Technology, Sanya, 572000, People's Republic of China
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Zhendong Guo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Peiwen Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Hao Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Siyan Dong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Bo Cheng
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Jing Yang
- School of Foreign Languages, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Binbin Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China.
- Hainan Institute, Wuhan University of Technology, Sanya, 572000, People's Republic of China.
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, People's Republic of China.
| | - Xinyu Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China.
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, People's Republic of China.
- Hainan Institute, Wuhan University of Technology, Sanya, 572000, People's Republic of China.
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, People's Republic of China.
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
5
|
Pamshong SR, Bhatane D, Sarnaik S, Alexander A. Mesoporous silica nanoparticles: An emerging approach in overcoming the challenges with oral delivery of proteins and peptides. Colloids Surf B Biointerfaces 2023; 232:113613. [PMID: 37913702 DOI: 10.1016/j.colsurfb.2023.113613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/21/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
Proteins and peptides (PPs), as therapeutics are widely explored in the past few decades, by virtue of their inherent advantages like high specificity and biocompatibility with minimal side effects. However, owing to their macromolecular size, poor membrane permeability, and high enzymatic susceptibility, the effective delivery of PPs is often challenging. Moreover, their subjection to varying environmental conditions, when administered orally, results in PPs denaturation and structural conformation, thereby lowering their bioavailability. Hence, for effective delivery with enhanced bioavailability, protection of PPs using nanoparticle-based delivery system has gained a growing interest. Mesoporous silica nanoparticles (MSNs), with their tailored morphology and pore size, high surface area, easy surface modification, versatile loading capacity, excellent thermal stability, and good biocompatibility, are eligible candidates for the effective delivery of macromolecules to the target site. This review highlights the different barriers hindering the oral absorption of PPs and the various strategies available to overcome them. In addition, the potential benefits of MSNs, along with their diversifying role in controlling the loading of PPs and their release under the influence of specific stimuli, are also discussed in length. Further, the tuning of MSNs for enhanced gene transfection efficacy is also highlighted. Since extensive research is ongoing in this area, this review is concluded with an emphasis on the potential risks of MSNs that need to be addressed prior to their clinical translation.
Collapse
Affiliation(s)
- Sharon Rose Pamshong
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Dhananjay Bhatane
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Santosh Sarnaik
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India.
| |
Collapse
|
6
|
Kopp KT, Saerens L, Voorspoels J, Van den Mooter G. Solidification and oral delivery of biologics to the colon- A review. Eur J Pharm Sci 2023; 190:106523. [PMID: 37429482 DOI: 10.1016/j.ejps.2023.106523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/16/2023] [Accepted: 07/08/2023] [Indexed: 07/12/2023]
Abstract
The oral delivery of biologics such as therapeutic proteins, peptides and oligonucleotides for the treatment of colon related diseases has been the focus of increasing attention over the last years. However, the major disadvantage of these macromolecules is their degradation propensity in liquid state which can lead to the undesirable and complete loss of function. Therefore, to increase the stability of the biologic and reduce their degradation propensity, formulation techniques such as solidification can be performed to obtain a stable solid dosage form for oral administration. Due to their fragility, stress exerted on the biologic during solidification has to be reduced with the incorporation of stabilizing excipients into the formulation. This review focuses on the state-of-the-art solidification techniques required to obtain a solid dosage form for the oral delivery of biologics to the colon and the use of suitable excipients for adequate stabilization upon solidification. The solidifying processes discussed within this review are spray drying, freeze drying, bead coating and also other techniques such as spray freeze drying, electro spraying, vacuum- and supercritical fluid drying. Further, the colon as site of absorption in both healthy and diseased state is critically reviewed and possible oral delivery systems for biologics are discussed.
Collapse
Affiliation(s)
- Katharina Tatjana Kopp
- Eurofins Amatsigroup, Industriepark-Zwijnaarde 7B, 9052 Gent, Belgium; Drug Delivery and Disposition, KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg ON2, Herestraat 49, 3000 Leuven, Belgium
| | - Lien Saerens
- Eurofins Amatsigroup, Industriepark-Zwijnaarde 7B, 9052 Gent, Belgium
| | - Jody Voorspoels
- Eurofins Amatsigroup, Industriepark-Zwijnaarde 7B, 9052 Gent, Belgium
| | - Guy Van den Mooter
- Drug Delivery and Disposition, KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg ON2, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
7
|
Ghosh P, Banerjee P. Drug delivery using biocompatible covalent organic frameworks (COFs) towards a therapeutic approach. Chem Commun (Camb) 2023; 59:12527-12547. [PMID: 37724444 DOI: 10.1039/d3cc01829f] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Covalent organic frameworks (COFs) are constructed exclusively with lightweight organic scaffolds, which can have a 2D or 3D architecture. The ease of synthesis, robust skeleton and tunable properties of COFs make them superior candidates among their counterparts for a wide range of uses including biomedical applications. In the biomedical field, drug delivery or photodynamic-photothermal (PDT-PTT) therapy can be individually considered a potential parameter to be investigated. Therefore, this comprehensive review is focused on drug delivery using COFs, highlighting the encapsulation and decapsulation of drugs by COF scaffolds and their delivery in biological media including live cells. Versatile COF scaffolds together with the delivery of several drug molecules are considered. We attempted to incorporate the status of drug encapsulation and decapsulation considering a wide range of recent publications.
Collapse
Affiliation(s)
- Pritam Ghosh
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology, Chennai Campus, Chennai 600127, Tamilnadu, India.
| | - Priyabrata Banerjee
- Electric Mobility and Tribology Research Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur, India.
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Ghaziabad 201002, Uttarpradesh, India
| |
Collapse
|
8
|
Lin HL, Mohamed Shukri FN, Yih ES, Sha GH, Jing GS, Jin GW, Hoong CW, Ying CQ, Panda BP, Candasamy M, Bhattamisra SK. Newer therapeutic approaches towards the management of diabetes mellitus: an update. Panminerva Med 2023; 65:362-375. [PMID: 31663302 DOI: 10.23736/s0031-0808.19.03655-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Diabetes mellitus is a chronic metabolic condition characterized by an elevation of blood glucose levels, resulting from defects in insulin secretion, insulin action, or both. The prevalence of the disease has been rapidly rising all over the globe at an alarming rate. Despite advances in the management of diabetes mellitus, it remains a growing epidemic that has become a significant public health burden due to its high healthcare costs and its complications. There is no cure has yet been found for the disease, however, treatment modalities include insulin and antidiabetic agents along with lifestyle modifications are still the mainstay of therapy for diabetes mellitus. The treatment spectrum for the management of diabetes mellitus has rapidly developed in recent years, with new class of therapeutics and expanded indications. This article focused on the emerging therapeutic approaches other than the conventional pharmacological therapies, which include stem cell therapy, gene therapy, siRNA, nanotechnology and theranostics.
Collapse
Affiliation(s)
- Heng L Lin
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | | | - Eric S Yih
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Grace H Sha
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Grace S Jing
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Gan W Jin
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Chow W Hoong
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Choong Q Ying
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Bibhu P Panda
- Department of Pharmaceutical Technology, School of Pharmacy, Taylor's University, Lakeside Campus, Subang Jaya, Selangor, Malaysia
| | - Mayuren Candasamy
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Subrat K Bhattamisra
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia -
| |
Collapse
|
9
|
Spoorthi Shetty S, Halagali P, Johnson AP, Spandana KMA, Gangadharappa HV. Oral insulin delivery: Barriers, strategies, and formulation approaches: A comprehensive review. Int J Biol Macromol 2023:125114. [PMID: 37263330 DOI: 10.1016/j.ijbiomac.2023.125114] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/03/2023]
Abstract
Diabetes Mellitus is characterized by a hyperglycemic condition which can either be caused by the destruction of the beta cells or by the resistance developed against insulin in the cells. Insulin is a peptide hormone that regulates the metabolism of carbohydrates, proteins, and fats. Type 1 Diabetes Mellitus needs the use of Insulin for efficient management. However invasive methods of administration may lead to reduced adherence by the patients. Hence there is a need for a non-invasive method of administration. Oral Insulin has several merits over the conventional method including patient compliance, and reduced cost, and it also mimics endogenous insulin and hence reaches the liver by the portal vein at a higher concentration and thereby showing improved efficiency. However oral Insulin must pass through several barriers in the gastrointestinal tract. Some strategies that could be utilized to bypass these barriers include the use of permeation enhancers, absorption enhancers, use of suitable polymers, use of suitable carriers, and other agents. Several formulation types have been explored for the oral delivery of Insulin like hydrogels, capsules, tablets, and patches which have been described briefly by the article. A lot of attempts have been made for developing oral insulin delivery however none of them have been commercialized due to numerous shortcomings. Currently, there are several formulations from the companies that are still in the clinical phase, the success or failure of some is yet to be seen in the future.
Collapse
Affiliation(s)
- S Spoorthi Shetty
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| | - Praveen Halagali
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| | - Asha P Johnson
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| | - K M Asha Spandana
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| | - H V Gangadharappa
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India.
| |
Collapse
|
10
|
Luo MJ, Zhou W, Yang R, Ding H, Song XR, Xiao Q. Electrochemically enabled decyanative C(sp 3)-H oxygenation of N-cyanomethylamines to formamides. Org Biomol Chem 2023; 21:2917-2921. [PMID: 36942930 DOI: 10.1039/d3ob00313b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Selective oxygenation of C(sp3)-H bonds adjacent to nitrogen atoms is a highly attractive strategy for synthesizing various formamide derivatives while preserving the substrate skeletons. Herein, an environmentally benign electrochemically enabled decyanative C(sp3)-H oxygenation of N-cyanomethylamines using H2O as a carbonyl oxygen atom source is described, leading to the synthesis of a large class of formamides in good to excellent yields with a broad substrate scope under metal- and oxidant-free conditions. This electrochemical technology highlights the facile incorporation of N-formyl into some important bioactive molecules.
Collapse
Affiliation(s)
- Mu-Jia Luo
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Wei Zhou
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Ruchun Yang
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Haixin Ding
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Xian-Rong Song
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Qiang Xiao
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| |
Collapse
|
11
|
Progress in oral insulin delivery by PLGA nanoparticles for the management of diabetes. Drug Discov Today 2023; 28:103393. [PMID: 36208724 DOI: 10.1016/j.drudis.2022.103393] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/28/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
Abstract
Currently, the only practical way to treat type 1 and advanced insulin-dependent type 2 diabetes mellitus (T1/2DM) is the frequent subcutaneous injection of insulin, which is significantly different physiologically from endogenous insulin secretion from pancreatic islets and can lead to hyperinsulinemia, pain, and infection in patients with poor compliance. Hence, oral insulin delivery has been actively pursued to revolutionize the treatment of insulin-dependent diabetes. In this review, we provide an overview of recent progress in developing poly(lactic co-glycolic acid) (PLGA) nanoparticles (NPs) for oral insulin delivery. Different strategies for insulin-loaded PLGA NPs to achieve normoglycemic effects are discussed. Finally, challenges and future perspectives of PLGA NPs for oral insulin delivery are put forward.
Collapse
|
12
|
Pang H, Huang X, Xu ZP, Chen C, Han FY. Progress in oral insulin delivery by PLGA nanoparticles for the management of diabetes. Drug Discov Today 2023; 28:103393. [DOI: https:/doi.org/10.1016/j.drudis.2022.103393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2024]
|
13
|
Stalder T, Zaiter T, El-Basset W, Cornu R, Martin H, Diab-Assaf M, Béduneau A. Interaction and toxicity of ingested nanoparticles on the intestinal barrier. Toxicology 2022; 481:153353. [DOI: 10.1016/j.tox.2022.153353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 11/28/2022]
|
14
|
Reys LL, Silva SS, Soares da Costa D, Reis RL, Silva TH. Fucoidan-based hydrogels particles as versatile carriers for diabetes treatment strategies. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1939-1954. [PMID: 35699411 DOI: 10.1080/09205063.2022.2088533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is a current lack of fully efficient therapies for diabetes mellitus, a chronic disease where the metabolism of blood glucose is severely hindered by a deficit in insulin or cell resistance to this hormone. Therefore, it is crucial to develop new therapeutic strategies to treat this disease, including devices for the controlled delivery of insulin or encapsulation of insulin-producing cells. In this work, fucoidan (Fu) - a marine sulfated polysaccharide exhibiting relevant properties on reducing blood glucose and antioxidant and anti-inflammatory effects - was used for the development of versatile carriers envisaging diabetes advanced therapies. Fu was functionalized by methacrylation (MFu) using 8% and 12% (v/v) of methacrylic anhydride and further photocrosslinked using visible light in the presence of triethanolamine and eosin-y to produce hydrogel particles. Degree of methacrylation varied between 2.78 and 6.50, as determined by 1HNMR, and the produced particles have an average diameter ranging from 0.63 to 1.3 mm (dry state). Insulin (5%) was added to MFu solution to produce drug-loaded particles and the release profile was assessed in phosphate buffer solution (PBS) and simulated intestinal fluid (SIF) for 24 h. Insulin was released in a sustained manner during the initial 8 h, reaching then a plateau, higher in PBS than in SIF, indicating that lower pH favors drug liberation. Moreover, the ability of MFu particles to serve as templates for the culture of human pancreatic cells was assessed using 1.1B4 cell line during up to 7 days. During the culture period studied, pancreatic beta cells were proliferating, with a global viability over 80% and tend to form pseudo-islets, thus suggesting that the proposed biomaterial could be a good candidate as versatile carrier for diabetes treatment as they sustain the release of insulin and support pancreatic beta cells viability.
Collapse
Affiliation(s)
- Lara L Reys
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Simone S Silva
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Diana Soares da Costa
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Tiago H Silva
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| |
Collapse
|
15
|
Jaiswal A, Preeti, Singh KN. A convenient synthesis of N-(hetero)arylamides by the oxidative coupling of methylheteroarenes with amines. Org Biomol Chem 2022; 20:6915-6922. [PMID: 35979753 DOI: 10.1039/d2ob01106a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An oxidative amidation of 2-methylpyridines/2-methylbenzimidazole with amines using copper acetate and elemental sulfur in DMSO to afford various N-(hetero)arylamides has been accomplished. Mechanistic studies reveal the intermediacy of N-(pyridin-2-ylmethyl)aniline and confirm the role of DMSO as the oxygen source.
Collapse
Affiliation(s)
- Anjali Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Preeti
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Krishna Nand Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
16
|
Neerathilingam N, Bhargava Reddy M, Anandhan R. Regioselective Synthesis of 2° Amides Using Visible-Light-Induced Photoredox-Catalyzed Nonaqueous Oxidative C-N Cleavage of N, N-Dibenzylanilines. J Org Chem 2021; 86:15117-15127. [PMID: 34619960 DOI: 10.1021/acs.joc.1c01792] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A visible-light-driven photoredox-catalyzed nonaqueous oxidative C-N cleavage of N,N-dibenzylanilines to 2° amides is reported. Further, we have applied this protocol on 2-(dibenzylamino)benzamide to afford quinazolinones with (NH4)2S2O8 as an additive. Mechanistic studies imply that the reaction might undergo in situ generation of α-amino radical to imine by C-N bond cleavage followed by the addition of superoxide ion to form amides.
Collapse
Affiliation(s)
| | | | - Ramasamy Anandhan
- Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
| |
Collapse
|
17
|
Jacob S, Nair AB, Boddu SHS, Gorain B, Sreeharsha N, Shah J. An Updated Overview of the Emerging Role of Patch and Film-Based Buccal Delivery Systems. Pharmaceutics 2021; 13:1206. [PMID: 34452167 PMCID: PMC8399227 DOI: 10.3390/pharmaceutics13081206] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022] Open
Abstract
Buccal mucosal membrane offers an attractive drug-delivery route to enhance both systemic and local therapy. This review discusses the benefits and drawbacks of buccal drug delivery, anatomical and physiological aspects of oral mucosa, and various in vitro techniques frequently used for examining buccal drug-delivery systems. The role of mucoadhesive polymers, penetration enhancers, and enzyme inhibitors to circumvent the formulation challenges particularly due to salivary renovation cycle, masticatory effect, and limited absorption area are summarized. Biocompatible mucoadhesive films and patches are favored dosage forms for buccal administration because of flexibility, comfort, lightness, acceptability, capacity to withstand mechanical stress, and customized size. Preparation methods, scale-up process and manufacturing of buccal films are briefed. Ongoing and completed clinical trials of buccal film formulations designed for systemic delivery are tabulated. Polymeric or lipid nanocarriers incorporated in buccal film to resolve potential formulation and drug-delivery issues are reviewed. Vaccine-enabled buccal films have the potential ability to produce both antibodies mediated and cell mediated immunity. Advent of novel 3D printing technologies with built-in flexibility would allow multiple drug combinations as well as compartmentalization to separate incompatible drugs. Exploring new functional excipients with potential capacity for permeation enhancement of particularly large-molecular-weight hydrophilic drugs and unstable proteins, oligonucleotides are the need of the hour for rapid advancement in the exciting field of buccal drug delivery.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.)
| | - Sai H. S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates;
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Selangor, Malaysia;
- Centre for Drug Delivery and Molecular Pharmacology, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Selangor, Malaysia
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.)
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India;
| |
Collapse
|
18
|
Macedo A, Filipe P, Thomé NG, Vieira J, Oliveira C, Teodósio C, Ferreira R, Roque L, Fonte P. A Brief Overview of the Oral Delivery of Insulin as an Alternative to the Parenteral Delivery. Curr Mol Med 2021; 20:134-143. [PMID: 31965934 DOI: 10.2174/1566524019666191010095522] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/18/2019] [Accepted: 09/23/2019] [Indexed: 12/27/2022]
Abstract
Diabetes mellitus greatly affects the quality of life of patients and has a worldwide prevalence. Insulin is the most commonly used drug to treat diabetic patients and is usually administered through the subcutaneous route. However, this route of administration is ineffective due to the low concentration of insulin at the site of action. This route of administration causes discomfort to the patient and increases the risk of infection due to skin barrier disturbance caused by the needle. The oral administration of insulin has been proposed to surpass the disadvantages of subcutaneous administration. In this review, we give an overview of the strategies to deliver insulin by the oral route, from insulin conjugation to encapsulation into nanoparticles. These strategies are still under development to attain efficacy and effectiveness that are expected to be achieved in the near future.
Collapse
Affiliation(s)
- Ana Macedo
- LAQV, REQUIMTE, Department of Chemical Sciences - Applied Chemistry Lab, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.,CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Patrícia Filipe
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal.,Department of Biomedical Sciences, University of Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain
| | - Natália G Thomé
- Center for Marine Sciences (CCMAR), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal.,Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
| | - João Vieira
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Carolina Oliveira
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Catarina Teodósio
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Raquel Ferreira
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Luís Roque
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Pedro Fonte
- LAQV, REQUIMTE, Department of Chemical Sciences - Applied Chemistry Lab, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.,CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal.,Center for Marine Sciences (CCMAR), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal.,Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal.,IBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal
| |
Collapse
|
19
|
Liu S, Tian M, Bu X, Tian H, Yang X. Covalent Organic Frameworks toward Diverse Photocatalytic Aerobic Oxidations. Chemistry 2021; 27:7738-7744. [PMID: 33788327 DOI: 10.1002/chem.202100398] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Indexed: 12/18/2022]
Abstract
Photoactive two-dimensional covalent organic frameworks (2D-COFs) have become promising heterogenous photocatalysts in visible-light-driven organic transformations. Herein, a visible-light-driven selective aerobic oxidation of various small organic molecules by using 2D-COFs as the photocatalyst was developed. In this protocol, due to the remarkable photocatalytic capability of hydrazone-based 2D-COF-1 on molecular oxygen activation, a wide range of amides, quinolones, heterocyclic compounds, and sulfoxides were obtained with high efficiency and excellent functional group tolerance under very mild reaction conditions. Furthermore, benefiting from the inherent advantage of heterogenous photocatalysis, prominent sustainability and easy photocatalyst recyclability, a drug molecule (modafinil) and an oxidized mustard gas simulant (2-chloroethyl ethyl sulfoxide) were selectively and easily obtained in scale-up reactions. Mechanistic investigations were conducted using radical quenching experiments and in situ ESR spectroscopy, all corroborating the proposed role of 2D-COF-1 in photocatalytic cycle.
Collapse
Affiliation(s)
- Shuyang Liu
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, 110034, Shenyang, P. R. China
| | - Miao Tian
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, 110034, Shenyang, P. R. China
| | - Xiubin Bu
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, 110034, Shenyang, P. R. China
| | - Hua Tian
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, P. R. China
| | - Xiaobo Yang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, 110034, Shenyang, P. R. China.,Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| |
Collapse
|
20
|
Wang L, Yu M, Yang H. Recent Progress in the Diagnosis and Precise Nanocarrier-Mediated Therapy of Inflammatory Bowel Disease. J Inflamm Res 2021; 14:1701-1716. [PMID: 33953597 PMCID: PMC8092629 DOI: 10.2147/jir.s304101] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/30/2021] [Indexed: 12/23/2022] Open
Abstract
The effective colon drug delivery remains to be an international frontier research in inflammatory bowel disease (IBD) therapy. The exploration and research of nanocarrier-based nanomedicine with great potential brings new opportunities for IBD therapy and diagnoses. Functional nanocarriers with varying morphology and characteristics can not only effectively avoid the destruction of the complex gastrointestinal (GI) tract microenvironment but also endow drugs with target therapy and improved bioavailability, thus elevating therapeutic efficacy. In this review, we illustrated several challenges in IBD therapy, then emphasis on some latest research progress of nanoparticles based therapy of oral administration, rectal administration and parenteral administration, as well as IBD diagnoses. Finally, we described the future perspective of nanocarriers in the treatment and diagnoses of IBD.
Collapse
Affiliation(s)
- Liucan Wang
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Min Yu
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Hua Yang
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
21
|
Zhang Y, Xiong M, Ni X, Wang J, Rong H, Su Y, Yu S, Mohammad IS, Leung SSY, Hu H. Virus-Mimicking Mesoporous Silica Nanoparticles with an Electrically Neutral and Hydrophilic Surface to Improve the Oral Absorption of Insulin by Breaking Through Dual Barriers of the Mucus Layer and the Intestinal Epithelium. ACS APPLIED MATERIALS & INTERFACES 2021; 13:18077-18088. [PMID: 33830730 DOI: 10.1021/acsami.1c00580] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Protein and peptide drugs orally suffer from extremely low bioavailability principally for the complicated gastrointestinal environment along with the difficulty of passing through the mucus layer and the underlying epithelium. In our work, we fabricated mesoporous silica nanoparticles with modification groups (MSN-NH2@COOH/CPP5) that effectively penetrated the mucus layer and passed through the intestinal epithelium by mimicking the virus surface. Naked nanoparticles were prepared with inner pores of 6 nm diameter to allow efficient insulin loading and coated with the cationic cell-penetrating KLPVM peptide and the anionic glutaric anhydride to yield hydrophilic MSN-NH2@COOH/CPP5 with a ζ-potential of -0.49 mV. The apparent permeability coefficient of virus-mimicking nanoparticles was 14.61 × 10-5 cm/s. The virus-mimicking nanoparticles showed dramatically lower binding to mucin and faster penetration of the mucus layer than positively charged nanoparticles (MSN@NH2) with a ζ-potential of +35.00 mV. The KLPVM peptide enhanced the uptake of MSN-NH2@COOH/CPP5 by coculturing Caco-2 and E12 cells as an intestinal epithelium model. MSN-NH2@COOH/CPP5 enhanced apical-to-basal transcytosis for being internalized primarily through caveolae-mediated endocytosis. Indeed, for MSN-NH2@COOH/CPP5, the transepithelial transport of the Caco-2 cell monolayer was 2.4-fold higher than MSN@NH2 and 2.0-fold higher than MSN-NH2@COOH. In vitro, loading insulin into nanoparticles maintained the bioactivity of the protein under simulated intestinal conditions. Insulin loaded into MSN-NH2@COOH/CPP5 reduced the diabetic rats' blood glucose level by nearly 50%. The bioavailability of insulin encapsulated in the MSN-NH2@COOH/CPP5 nanoparticles was 2.1-fold more than insulin when administered directly into the jejunum. Nanoparticles with modifications indicated no significant toxicity in in vitro or in vivo preliminary studies. The obstacles of the mucus layer and intestinal epithelium may be effectively conquered by these virus-mimicking nanoparticles for oral delivery of protein and peptide drugs.
Collapse
Affiliation(s)
- Yi Zhang
- Laboratory of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Mengting Xiong
- Laboratory of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Xiaomin Ni
- Laboratory of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Jingrou Wang
- Laboratory of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Hehui Rong
- Laboratory of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Yuqing Su
- Laboratory of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Shihui Yu
- Laboratory of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Imran Shair Mohammad
- Laboratory of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Sharon Shui Yee Leung
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Shatin, New Territories, Hong Kong SAR 999077, P. R. China
| | - Haiyan Hu
- Laboratory of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
22
|
Benyettou F, Kaddour N, Prakasam T, Das G, Sharma SK, Thomas SA, Bekhti-Sari F, Whelan J, Alkhalifah MA, Khair M, Traboulsi H, Pasricha R, Jagannathan R, Mokhtari-Soulimane N, Gándara F, Trabolsi A. In vivo oral insulin delivery via covalent organic frameworks. Chem Sci 2021; 12:6037-6047. [PMID: 33995999 PMCID: PMC8098678 DOI: 10.1039/d0sc05328g] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 03/03/2021] [Indexed: 12/15/2022] Open
Abstract
With diabetes being the 7th leading cause of death worldwide, overcoming issues limiting the oral administration of insulin is of global significance. The development of imine-linked-covalent organic framework (nCOF) nanoparticles for oral insulin delivery to overcome these delivery barriers is herein reported. A gastro-resistant nCOF was prepared from layered nanosheets with insulin loaded between the nanosheet layers. The insulin-loaded nCOF exhibited insulin protection in digestive fluids in vitro as well as glucose-responsive release, and this hyperglycemia-induced release was confirmed in vivo in diabetic rats without noticeable toxic effects. This is strong evidence that nCOF-based oral insulin delivery systems could replace traditional subcutaneous injections easing insulin therapy.
Collapse
Affiliation(s)
- Farah Benyettou
- New York University Abu Dhabi P.O. Box 129188 Abu Dhabi United Arab Emirates
| | - Nawel Kaddour
- Laboratory of Physiology Physiopathology and Biochemistry of Nutrition, Department of Biology, University of Tlemcen Algeria
| | | | - Gobinda Das
- New York University Abu Dhabi P.O. Box 129188 Abu Dhabi United Arab Emirates
| | - Sudhir Kumar Sharma
- New York University Abu Dhabi P.O. Box 129188 Abu Dhabi United Arab Emirates
| | - Sneha Ann Thomas
- New York University Abu Dhabi P.O. Box 129188 Abu Dhabi United Arab Emirates
| | - Fadia Bekhti-Sari
- Laboratory of Physiology Physiopathology and Biochemistry of Nutrition, Department of Biology, University of Tlemcen Algeria
| | - Jamie Whelan
- New York University Abu Dhabi P.O. Box 129188 Abu Dhabi United Arab Emirates
| | - Mohammed A Alkhalifah
- Department of Chemistry, College of Science, King Faisal University P.O. Box 400, Al-Ahsa 31982 Saudi Arabia
- School of Chemistry, University of Bristol Cantocks Close Bristol BS8 1TS UK
| | - Mostafa Khair
- New York University Abu Dhabi P.O. Box 129188 Abu Dhabi United Arab Emirates
| | - Hassan Traboulsi
- Department of Chemistry, College of Science, King Faisal University P.O. Box 400, Al-Ahsa 31982 Saudi Arabia
| | - Renu Pasricha
- New York University Abu Dhabi P.O. Box 129188 Abu Dhabi United Arab Emirates
| | - Ramesh Jagannathan
- New York University Abu Dhabi P.O. Box 129188 Abu Dhabi United Arab Emirates
| | - Nassima Mokhtari-Soulimane
- Laboratory of Physiology Physiopathology and Biochemistry of Nutrition, Department of Biology, University of Tlemcen Algeria
| | | | - Ali Trabolsi
- New York University Abu Dhabi P.O. Box 129188 Abu Dhabi United Arab Emirates
| |
Collapse
|
23
|
Poudwal S, Misra A, Shende P. Role of lipid nanocarriers for enhancing oral absorption and bioavailability of insulin and GLP-1 receptor agonists. J Drug Target 2021; 29:834-847. [PMID: 33620269 DOI: 10.1080/1061186x.2021.1894434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Growing demand for insulin and glucagon-like peptide-1 receptor agonists (GLP-1 RA) is observed, considering the progressive nature of diabetes and the potential therapeutic role of peptides in its treatment. However, chronic parenteral administration is responsible for pain and rashes at the site of injection. Oral delivery of insulin and GLP-1 RA promises better patient compliance owing to their ease of administration and reduction in chances of peripheral hypoglycaemia and weight gain. The review article discusses the potential of lipid carriers in combination with different strategies such as absorption enhancers, PEGylation, lipidisation, etc. The lipid nanocarriers improve the membrane permeability and oral bioavailability of high molecular weight peptides. Additionally, the clinical status of different nanocarriers for anti-diabetic peptides is discussed. Previous research on nanocarriers showed significant hypoglycaemic activity and safety in animal studies; however, extrapolation of the same in human subjects is not validated. With the rising global burden of diabetes, the lipid nanocarriers show the potential to revolutionise treatment with oral delivery of insulin and GLP-1 RA.
Collapse
Affiliation(s)
- Swapna Poudwal
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Mumbai, India
| | - Ambikanandan Misra
- School of Pharmacy and Technology Management, SVKM'S NMIMS, Dhule, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Mumbai, India
| |
Collapse
|
24
|
An Update on Pharmaceutical Strategies for Oral Delivery of Therapeutic Peptides and Proteins in Adults and Pediatrics. CHILDREN-BASEL 2020; 7:children7120307. [PMID: 33352795 PMCID: PMC7766037 DOI: 10.3390/children7120307] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
While each route of therapeutic drug delivery has its own advantages and limitations, oral delivery is often favored because it offers convenient painless administration, sustained delivery, prolonged shelf life, and often lower manufacturing cost. Its limitations include mucus and epithelial cell barriers in the gastrointestinal (GI) tract that can block access of larger molecules including Therapeutic protein or peptide-based drugs (TPPs), resulting in reduced bioavailability. This review describes these barriers and discusses different strategies used to modify TPPs to enhance their oral bioavailability and/or to increase their absorption. Some seek to stabilize the TTPs to prevent their degradation by proteolytic enzymes in the GI tract by administering them together with protease inhibitors, while others modify TPPs with mucoadhesive polymers like polyethylene glycol (PEG) to allow them to interact with the mucus layer, thereby delaying their clearance. The further barrier provided by the epithelial cell membrane can be overcome by the addition of a cell-penetrating peptide (CPP) and the use of a carrier molecule such as a liposome, microsphere, or nanosphere to transport the TPP-CPP chimera. Enteric coatings have also been used to help TPPs reach the small intestine. Key efficacious TPP formulations that have been approved for clinical use will be discussed.
Collapse
|
25
|
The effect of efflux pump inhibitors on in vitro and in vivo efficacy of solid lipid nanoparticles containing SN38. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Amigo L, Hernández-Ledesma B. Current Evidence on the Bioavailability of Food Bioactive Peptides. Molecules 2020; 25:E4479. [PMID: 33003506 PMCID: PMC7582556 DOI: 10.3390/molecules25194479] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 12/23/2022] Open
Abstract
Food protein-derived bioactive peptides are recognized as valuable ingredients of functional foods and/or nutraceuticals to promote health and reduce the risk of chronic diseases. However, although peptides have been demonstrated to exert multiple benefits by biochemical assays, cell culture, and animal models, the ability to translate the new findings into practical or commercial uses remains delayed. This fact is mainly due to the lack of correlation of in vitro findings with in vivo functions of peptides because of their low bioavailability. Once ingested, peptides need to resist the action of digestive enzymes during their transit through the gastrointestinal tract and cross the intestinal epithelial barrier to reach the target organs in an intact and active form to exert their health-promoting properties. Thus, for a better understanding of the in vivo physiological effects of food bioactive peptides, extensive research studies on their gastrointestinal stability and transport are needed. This review summarizes the most current evidence on those factors affecting the digestive and absorptive processes of food bioactive peptides, the recently designed models mimicking the gastrointestinal environment, as well as the novel strategies developed and currently applied to enhance the absorption and bioavailability of peptides.
Collapse
Affiliation(s)
| | - Blanca Hernández-Ledesma
- Department of Bioactivity and Food Analysis, Institute of Research in Food Sciences (CIAL, CSIC-UAM, CEI-UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain;
| |
Collapse
|
27
|
Faghmous N, Bouzid D, Boumaza M, Touati A, Boyron O. Optimization of chitosan-coated W/O/W multiple emulsion stabilized with Span 80 and Tween 80 using Box–Behnken design. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1774387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Naima Faghmous
- Process Engineering Laboratory for Sustainable Development and Health Products, National Polytechnic School of Constantine, Constantine, Algeria
- Department of Pharmaceutical Engineering, Faculty of Process Engineering, Salah Boubnider Constantine 3 University, Constantine, Algeria
| | - Djallel Bouzid
- Process Engineering Laboratory for Sustainable Development and Health Products, National Polytechnic School of Constantine, Constantine, Algeria
- Department of Process Engineering, National Polytechnic School of Constantine Malek Bennabi, Constantine, Algeria
| | - Marwa Boumaza
- Department of Process Engineering, National Polytechnic School of Constantine Malek Bennabi, Constantine, Algeria
| | - Asma Touati
- Department of Process Engineering, National Polytechnic School of Constantine Malek Bennabi, Constantine, Algeria
| | - Olivier Boyron
- Chemistry, Catalysis, Polymers and Processes, Villeurbanne Cedex, France
| |
Collapse
|
28
|
Xu X, Rui S, Chen C, Zhang G, Li Z, Wang J, Luo Y, Zhu H, Ma X. Protective effects of astragalus polysaccharide nanoparticles on septic cardiac dysfunction through inhibition of TLR4/NF-κB signaling pathway. Int J Biol Macromol 2020; 153:977-985. [DOI: 10.1016/j.ijbiomac.2019.10.227] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 10/17/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022]
|
29
|
Formulation technologies and advances for oral delivery of novel nitroimidazoles and antimicrobial peptides. J Control Release 2020; 324:728-749. [PMID: 32380201 DOI: 10.1016/j.jconrel.2020.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 02/06/2023]
Abstract
Antibiotic resistance has become a global crisis, driving the exploration for novel antibiotics and novel treatment approaches. Among these research efforts two classes of antibiotics, bicyclic nitroimidazoles and antimicrobial peptides, have recently shown promise as novel antimicrobial agents with the possibility to treat multi-drug resistant infections. However, they suffer from the issue of poor oral bioavailability due to disparate factors: low solubility in the case of nitroimidazoles (BCS class II drugs), and low permeability in the case of peptides (BCS class III drugs). Moreover, antimicrobial peptides present another challenge as they are susceptible to chemical and enzymatic degradation, which can present an additional pharmacokinetic hurdle for their oral bioavailability. Formulation technologies offer a potential means for improving the oral bioavailability of poorly permeable and poorly soluble drugs, but there are still drawbacks and limitations associated with this approach. This review discusses in depth the challenges associated with oral delivery of nitroimidazoles and antimicrobial peptides and the formulation technologies that have been used to overcome these problems, including an assessment of the drawbacks and limitations associated with the technologies that have been applied. Furthermore, the potential for supercritical fluid technology to overcome the shortcomings associated with conventional drug formulation methods is reviewed.
Collapse
|
30
|
Asfour MH. Advanced trends in protein and peptide drug delivery: a special emphasis on aquasomes and microneedles techniques. Drug Deliv Transl Res 2020; 11:1-23. [PMID: 32337668 DOI: 10.1007/s13346-020-00746-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Proteins and peptides have a great potential as therapeutic agents; they have higher efficiency and lower toxicity, compared to chemical drugs. However, their oral bioavailability is very low; also, the transdermal peptide delivery faces absorption limitations. Accordingly, most of proteins and peptides are administered by parenteral route, but there are many problems associated with this route such as patient discomfort, especially for pediatric use. Thus, it is a great challenge to develop drug delivery systems for administration of proteins and peptides by routes other than parenteral one. This review provides an overview on recent advances adopted for protein and peptide drug delivery, focusing on oral and transdermal routes. This is followed by an emphasis on two recent approaches adopted as delivery systems for protein and peptide drugs, namely aquasomes and microneedles. Aquasomes are nanoparticles fabricated from ceramics developed to enhance proteins and peptides stability, providing an adequate residence time in circulation. It consists of ceramic core coated with poly hydroxyl oligomer, on which protein and peptide drug can be adsorbed. Aquasomes preparation, characterization, and application in protein and peptide drug delivery are discussed. Microneedles are promising transdermal approach; it involves creation of micron-sized pores in the skin for enhancing the drug delivery across the skin, as their length ranged between 150 and 1500 μm. Types of microneedles with different drug delivery mechanisms, characterization, and application in protein and peptide drug delivery are discussed. Graphical abstract.
Collapse
Affiliation(s)
- Marwa Hasanein Asfour
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth Street, Dokki, Cairo, 12622, Egypt.
| |
Collapse
|
31
|
Yuan JW, Chen Q, Li C, Zhu JL, Yang LR, Zhang SR, Mao P, Xiao YM, Qu LB. Silver-catalyzed direct C-H oxidative carbamoylation of quinolines with oxamic acids. Org Biomol Chem 2020; 18:2747-2757. [PMID: 32227021 DOI: 10.1039/d0ob00358a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A silver-catalyzed efficient and direct C-H carbamoylation of quinolines with oxamic acids to access carbamoylated quinolines has been developed through oxidative decarboxylation reaction. The reaction proceeds smoothly over a broad range of substrates with excellent functional group tolerance and excellent yields under mild conditions.
Collapse
Affiliation(s)
- Jin-Wei Yuan
- School of Chemistry & Chemical Engineering, Henan University of Technology; Academician Workstation for Natural Medicinal Chemistry of Henan Province, Zhengzhou 450001, China.
| | - Qian Chen
- School of Chemistry & Chemical Engineering, Henan University of Technology; Academician Workstation for Natural Medicinal Chemistry of Henan Province, Zhengzhou 450001, China.
| | - Chuang Li
- School of Chemistry & Chemical Engineering, Henan University of Technology; Academician Workstation for Natural Medicinal Chemistry of Henan Province, Zhengzhou 450001, China.
| | - Jun-Liang Zhu
- School of Chemistry & Chemical Engineering, Henan University of Technology; Academician Workstation for Natural Medicinal Chemistry of Henan Province, Zhengzhou 450001, China.
| | - Liang-Ru Yang
- School of Chemistry & Chemical Engineering, Henan University of Technology; Academician Workstation for Natural Medicinal Chemistry of Henan Province, Zhengzhou 450001, China.
| | - Shou-Ren Zhang
- Henan Key Laboratory of Nanocomposites and Applications; Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China
| | - Pu Mao
- School of Chemistry & Chemical Engineering, Henan University of Technology; Academician Workstation for Natural Medicinal Chemistry of Henan Province, Zhengzhou 450001, China.
| | - Yong-Mei Xiao
- School of Chemistry & Chemical Engineering, Henan University of Technology; Academician Workstation for Natural Medicinal Chemistry of Henan Province, Zhengzhou 450001, China.
| | - Ling-Bo Qu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
32
|
Ren C, Li D, Zhou Q, Hu X. Mitochondria-targeted TPP-MoS 2 with dual enzyme activity provides efficient neuroprotection through M1/M2 microglial polarization in an Alzheimer's disease model. Biomaterials 2019; 232:119752. [PMID: 31923845 DOI: 10.1016/j.biomaterials.2019.119752] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/07/2019] [Accepted: 12/29/2019] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is one of the most common age-associated brain diseases and is induced by the accumulation of amyloid beta (Aβ) and oxidative stress. Many studies have focused on eliminating Aβ by nanoparticle affinity; however, nanoparticles are taken up mainly by microglia rather than neurons, leading poor control of AD. Herein, mitochondria-targeted nanozymes known as (3-carboxypropyl)triphenyl-phosphonium bromide-conjugated 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000]-functionalized molybdenum disulfide quantum dots (TPP-MoS2 QDs) were designed. TPP-MoS2 QDs mitigate Aβ aggregate-mediated neurotoxicity and eliminate Aβ aggregates in AD mice by switching microglia from the proinflammatory M1 phenotype to the anti-inflammatory M2 phenotype. TPP-MoS2 QDs cross the blood-brain barrier, escape from lysosomes, target mitochondria and exhibit the comprehensive activity of a bifunctional nanozyme, thus preventing spontaneous neuroinflammation by regulating the proinflammatory substances interleukin-1β, interleukin-6 and tumor necrosis factors as well as the anti-inflammatory substance transforming growth factor-β. In contrast to the low efficacy of eliminating Aβ by nanoparticle affinity, the present study provides a new pathway to mitigate AD pathology through mitochondria-targeted nanozymes and M1/M2 microglial polarization.
Collapse
Affiliation(s)
- Chaoxiu Ren
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Dandan Li
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
33
|
Song Y, Shi Y, Zhang L, Hu H, Zhang C, Yin M, Zhang X, Sun K. Oral delivery system for low molecular weight protamine-dextran-poly(lactic-co-glycolic acid) carrying exenatide to overcome the mucus barrier and improve intestinal targeting efficiency. Nanomedicine (Lond) 2019; 14:989-1009. [PMID: 31088322 DOI: 10.2217/nnm-2018-0322] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: This study aimed to explore the effect of nanoparticles loaded with exenatide in overcoming the mucus barrier and improving intestinal targeting efficiency, to improve the oral bioavailability. Materials & methods: Low molecular weight protamine (LMWP)-dextran-poly(lactic-co-glycolic acid) was used to create LMWP-dextran-poly(lactic-co-glycolic acid)-nanoparticles (LDPs) encapsulating exenatide-Zn2+ complex.Results & conclusion: LDPs showed improved penetration of the mucus barrier, and LMWP was helpful for mediating cell translocation through protein transduction domains. The absorption sites and distribution rates of LDPs were verified by intestinal localization experiments and in vivo distribution experiments. Cell uptake and transmembrane experiments confirmed the absorption efficiency in the intestinal epithelium. Furthermore, the relative bioavailability after oral administration of exenatide-Zn2+-LDPs was 8.4%, with a significant hypoglycemic effect on Type 2 diabetic mice.
Collapse
Affiliation(s)
- Yina Song
- School of Pharmacy, Key Laboratory of Molecular Pharmacology & Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System & Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Yanan Shi
- School of Pharmacy, Binzhou Medical University, Yantai, 264005, PR China
| | - Liping Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology & Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System & Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Haiyan Hu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology & Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System & Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Chunyan Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology & Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System & Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Miaomiao Yin
- School of Pharmacy, Key Laboratory of Molecular Pharmacology & Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System & Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Xuemei Zhang
- State Key Laboratory of Long-Acting & Targeting Drug Delivery System, Luye Pharmaceutical Co. Ltd, Yantai, 264005, PR China
| | - Kaoxiang Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology & Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System & Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China.,State Key Laboratory of Long-Acting & Targeting Drug Delivery System, Luye Pharmaceutical Co. Ltd, Yantai, 264005, PR China
| |
Collapse
|
34
|
Dheer D, Nicolas J, Shankar R. Cathepsin-sensitive nanoscale drug delivery systems for cancer therapy and other diseases. Adv Drug Deliv Rev 2019; 151-152:130-151. [PMID: 30690054 DOI: 10.1016/j.addr.2019.01.010] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 01/23/2019] [Indexed: 12/26/2022]
Abstract
Cathepsins are an important category of enzymes that have attracted great attention for the delivery of drugs to improve the therapeutic outcome of a broad range of nanoscale drug delivery systems. These proteases can be utilized for instance through actuation of polymer-drug conjugates (e.g., triggering the drug release) to bypass limitations of many drug candidates. A substantial amount of work has been witnessed in the design and the evaluation of Cathepsin-sensitive drug delivery systems, especially based on the tetra-peptide sequence (Gly-Phe-Leu-Gly, GFLG) which has been extensively used as a spacer that can be cleaved in the presence of Cathepsin B. This Review Article will give an in-depth overview of the design and the biological evaluation of Cathepsin-sensitive drug delivery systems and their application in different pathologies including cancer before discussing Cathepsin B-cleavable prodrugs under clinical trials.
Collapse
|
35
|
Dong Y, Liao H, Fu H, Yu J, Guo Q, Wang Q, Duan Y. pH-Sensitive Shell-Core Platform Block DNA Repair Pathway To Amplify Irreversible DNA Damage of Triple Negative Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2019; 11:38417-38428. [PMID: 31556584 DOI: 10.1021/acsami.9b12140] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Triple negative breast cancer (TNBC) is insensitive to either chemotherapy or endocrine therapy because of the powerful DNA reparation and the negative expression of surface antigens, which urgently claims for an effective approach to improve the prognosis. Herein, DNA repair blocker BRCA1 small interfering RNA (siRNA) was introduced with cisplatin (Pt) into the elaborately designed pH-sensitive shell-core platform to enhance the chemotherapeutic treatment effect by silencing the DNA repair related gene. In this platform, BRCA1 siRNA and Pt prodrug (Pro-Pt) were separately encapsulated in the porous outer shell and hydrophobic inner core with extremely high encapsulation efficiency and stability effectively preventing them from degradation during circulation. Suitable size and urokinase plasminogen activator analogues (uPA) with high affinity for the uPA receptor (uPAR) realized an excellent dual passive and active tumor targeting ability. Moreover, the exposed PEG hydrophilic chain prevented the nanoparticles (NPs) from precipitating by serum protein or inactivating by nuclease in the blood cycle. Most importantly, the degradable CaP (calcium ions and phosphate ions) shell with smart pH sensitivity would dissipate from NPs in the lysosomes to burst the lysosome membranes so as to guarantee the lysosomal escape and the sequential release of the siRNA and Pro-Pt where the BRCA1 siRNA blocked the DNA repairing pathway followed by reducing Pro-Pt to Pt for irreversible DNA damage. Hence, the uPA-SP@CaP NPs provided a promising strategy for high-efficiency treatment of TNBC along with bringing new hope for more patients.
Collapse
Affiliation(s)
- Yang Dong
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai 200032 , China
| | - Hongze Liao
- Marine Drugs Research Center, Department of Pharmacy, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai 200127 , China
| | - Hao Fu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai 200032 , China
| | - Jian Yu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai 200032 , China
| | - Qianqian Guo
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai 200032 , China
| | - Qi Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai 200032 , China
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Yourong Duan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai 200032 , China
| |
Collapse
|
36
|
Maderuelo C, Lanao JM, Zarzuelo A. Enteric coating of oral solid dosage forms as a tool to improve drug bioavailability. Eur J Pharm Sci 2019; 138:105019. [DOI: 10.1016/j.ejps.2019.105019] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/10/2019] [Accepted: 07/28/2019] [Indexed: 02/07/2023]
|
37
|
Ghavimishamekh A, Ziamajidi N, Dehghan A, Goodarzi MT, Abbasalipourkabir R. Study of Insulin-Loaded Chitosan Nanoparticle Effects on TGF-β1 and Fibronectin Expression in Kidney Tissue of Type 1 Diabetic Rats. Indian J Clin Biochem 2019; 34:418-426. [PMID: 31686728 PMCID: PMC6801242 DOI: 10.1007/s12291-018-0771-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 06/16/2018] [Indexed: 11/29/2022]
Abstract
In diabetes, the increasing blood glucose levels through oxidative stress, with increase in inflammatory cytokines and growth factors, such as TGF-β1, can cause long-term complications, including nephropathy. Subcutaneous injection of insulin is a common method used to treat Type 1 diabetes, which can lead to problems such as hypoglycemia and edema. In the present study, we examined the effect of insulin in its two injectable and oral forms on the expression of TGF-β1 and fibronectin in kidney tissue of STZ diabetic rats. A total of 25 male Wistar rats were randomly divided into 5 groups: C: normal control, D: diabetic control, D+NP, oral insulin-loaded trimethyl chitosan nanoparticles (8 IU/kg), and subcutaneously injected insulin (8 IU/kg). The groups were treated from 8th to 10th weeks. After 10 weeks, FBS was measured. Also, the TGF-β1 and fibronectin mRNA expression and serum TGF-β1 protein were examined in the kidney tissue. Structural changes in the kidney tissue were studied using H&E staining. After 10 weeks of diabetes induction, the rats showed significant change in blood glucose, weight, serum TGF-β1, Fibronectin and TGF-β1 expression of kidney in diabetic groups (p < 0.05). Oral insulin-loaded trimethyl chitosan nanoparticles treatment, similar to injected insulin, significantly ameliorate blood glucose and rats' weight (p < 0.05). However, the reduction in fibronectin and TGF-β1 expression and serum TGF-β1 protein by both treatments was not statistically significant (p > 0.05). These data showed that oral insulin-loaded trimethyl chitosan nanoparticles were better therapeutic intervention than injected insulin for Type 1 diabetes.
Collapse
Affiliation(s)
- Azar Ghavimishamekh
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, 65178 Hamadan, Iran
| | - Nasrin Ziamajidi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, 65178 Hamadan, Iran
| | - Arash Dehghan
- Department of Clinical Pathology, School of Medicine, Hamadan University of Medical Sciences, 65178 Hamadan, Iran
| | | | - Roghayeh Abbasalipourkabir
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, 65178 Hamadan, Iran
| |
Collapse
|
38
|
A Structure-Activity Relationship Study of Bis-Benzamides as Inhibitors of Androgen Receptor-Coactivator Interaction. Molecules 2019; 24:molecules24152783. [PMID: 31370197 PMCID: PMC6696232 DOI: 10.3390/molecules24152783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 02/05/2023] Open
Abstract
The interaction between androgen receptor (AR) and coactivator proteins plays a critical role in AR-mediated prostate cancer (PCa) cell growth, thus its inhibition is emerging as a promising strategy for PCa treatment. To develop potent inhibitors of the AR-coactivator interaction, we have designed and synthesized a series of bis-benzamides by modifying functional groups at the N/C-terminus and side chains. A structure-activity relationship study showed that the nitro group at the N-terminus of the bis-benzamide is essential for its biological activity while the C-terminus can have either a methyl ester or a primary carboxamide. Surveying the side chains with various alkyl groups led to the identification of a potent compound 14d that exhibited antiproliferative activity (IC50 value of 16 nM) on PCa cells. In addition, biochemical studies showed that 14d exerts its anticancer activity by inhibiting the AR-PELP1 interaction and AR transactivation.
Collapse
|
39
|
F. Csáki K, Sebestyén É. Who will carry out the tests that would be necessary for proper safety evaluation of food emulsifiers? FOOD SCIENCE AND HUMAN WELLNESS 2019. [DOI: 10.1016/j.fshw.2019.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
40
|
Abdulkarim M, Sharma PK, Gumbleton M. Self-emulsifying drug delivery system: Mucus permeation and innovative quantification technologies. Adv Drug Deliv Rev 2019; 142:62-74. [PMID: 30974131 DOI: 10.1016/j.addr.2019.04.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 12/14/2022]
Abstract
Mucus is a dynamic barrier which covers and protects the underlying mucosal epithelial membrane against bacteria and foreign particles. This protection mechanism extends to include therapeutic macromolecules and nanoparticles (NPs) through trapping of these particles. Mucus is not only a physical barrier that limiting particles movements based on their sizes but it selectively binds with particles through both hydrophilic and lipophilic interactions. Therefore, nano-carriers for mucosal delivery should be designed to eliminate entrapment by the mucus barrier. For this reason, different strategies have been approached for both solid nano-carriers and liquid core nano-carriers to synthesise muco-diffusive nano-carrier. Among these nano-strategies, Self-Emulsifying Drug Delivery System (SEDDS) was recognised as very promising nano-carrier for mucus delivery. The system was introduced to enhance the dissolution and bioavailability of orally administered insoluble drugs. SEDDS has shown high stability against intestinal enzymatic activity and more importantly, relatively rapid permeation characteristics across mucus barrier. The high diffusivity of SEDDS has been tested using various in vitro measurement techniques including both bulk and individual measurement of droplets diffusion within mucus. The selection and processing of an optimum in vitro technique is of great importance to avoid misinterpretation of the diffusivity of SEDDS through mucus barrier. In conclusion, SEDDS is a system with high capacity to diffuse through intestinal mucus even though this system has not been studied to the same extent as solid nano-carriers.
Collapse
Affiliation(s)
- Muthanna Abdulkarim
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Peeyush Kumar Sharma
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK; Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Mark Gumbleton
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
41
|
Liu L, Yang H, Lou Y, Wu JY, Miao J, Lu XY, Gao JQ. Enhancement of oral bioavailability of salmon calcitonin through chitosan-modified, dual drug-loaded nanoparticles. Int J Pharm 2019; 557:170-177. [DOI: 10.1016/j.ijpharm.2018.12.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/03/2018] [Accepted: 12/20/2018] [Indexed: 11/30/2022]
|
42
|
Basic principles of drug delivery systems - the case of paclitaxel. Adv Colloid Interface Sci 2019; 263:95-130. [PMID: 30530177 DOI: 10.1016/j.cis.2018.11.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 01/15/2023]
Abstract
Cancer is the second cause of death worldwide, exceeded only by cardiovascular diseases. The prevalent treatment currently used against metastatic cancer is chemotherapy. Among the most studied drugs that inhibit neoplastic cells from acquiring unlimited replicative ability (a hallmark of cancer) are the taxanes. They operate via a unique molecular mechanism affecting mitosis. In this review, we show this mechanism for one of them, paclitaxel, and for other (non-taxanes) anti-mitotic drugs. However, the use of paclitaxel is seriously limited (its bioavailability is <10%) due to several long-standing challenges: its poor water solubility (0.3 μg/mL), its being a substrate for the efflux multidrug transporter P-gp, and, in the case of oral delivery, its first-pass metabolism by certain enzymes. Adequate delivery methods are therefore required to enhance the anti-tumor activity of paclitaxel. Thus, we have also reviewed drug delivery strategies in light of the various physical, chemical, and enzymatic obstacles facing the (especially oral) delivery of drugs in general and paclitaxel in particular. Among the powerful and versatile platforms that have been developed and achieved unprecedented opportunities as drug carriers, microemulsions might have great potential for this aim. This is due to properties such as thermodynamic stability (leading to long shelf-life), increased drug solubilization, and ease of preparation and administration. In this review, we define microemulsions and nanoemulsions, analyze their pertinent properties, and review the results of several drug delivery carriers based on these systems.
Collapse
|
43
|
Wu Z, Cheng C, Tang X, Liu S, Xi G, Zhao M, Liu P. Phosphine‐Promoted Amide Bond Formation Reactions from Carboxylic Acids and Tetraalkylthiuram Disulfides. ChemistrySelect 2018. [DOI: 10.1002/slct.201803311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Zhiyong Wu
- College of Tobacco ScienceFlavors and Fragrance Engineering & Technology Research Center of Henan ProvinceHenan Agricultural University Zhengzhou 450002, Henan, (P. R. China
| | - Chuance Cheng
- College of Tobacco ScienceFlavors and Fragrance Engineering & Technology Research Center of Henan ProvinceHenan Agricultural University Zhengzhou 450002, Henan, (P. R. China
| | - Xiangting Tang
- College of Tobacco ScienceFlavors and Fragrance Engineering & Technology Research Center of Henan ProvinceHenan Agricultural University Zhengzhou 450002, Henan, (P. R. China
| | - Shi Liu
- College of Tobacco ScienceFlavors and Fragrance Engineering & Technology Research Center of Henan ProvinceHenan Agricultural University Zhengzhou 450002, Henan, (P. R. China
| | - Gaolei Xi
- Technology CenterChina Tobacco Henan Industrial Co., Ltd. Zhengzhou 450000, Henan, (P. R. China
| | - Mingqin Zhao
- College of Tobacco ScienceFlavors and Fragrance Engineering & Technology Research Center of Henan ProvinceHenan Agricultural University Zhengzhou 450002, Henan, (P. R. China
| | - Pengfei Liu
- College of Tobacco ScienceFlavors and Fragrance Engineering & Technology Research Center of Henan ProvinceHenan Agricultural University Zhengzhou 450002, Henan, (P. R. China
| |
Collapse
|
44
|
Abstract
Oral delivery is the most common method of drug administration with high safety and good compliance for patients. However, delivering therapeutic proteins to the target site via oral route involves tremendous challenge due to unfavourable conditions like biochemical barrier, mucus barrier and epithelial barriers. According to the functional differences of various protein drug delivery systems, the recent advances in pH responsive polymer-based drug delivery system, mucoadhesive polymer-based drug delivery system, absorption enhancers-based drug delivery system and composite polymer-based delivery system all were briefly summarised in this review, which not only clarified the clinic potential of these novel drug delivery systems, but also described the way for increasing oral bioavailability of therapeutic protein.
Collapse
Affiliation(s)
- Shiming He
- a Institute of Military Cognition and Brain Sciences , Beijing , China.,b College of Pharmaceutical Sciences , Hebei University , Baoding , China.,c Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences , Hebei university , Baoding , China
| | - Zhongcheng Liu
- b College of Pharmaceutical Sciences , Hebei University , Baoding , China.,c Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences , Hebei university , Baoding , China
| | - Donggang Xu
- a Institute of Military Cognition and Brain Sciences , Beijing , China
| |
Collapse
|
45
|
Liu L, Zhang Y, Yu S, Yang Z, He C, Chen X. Dual Stimuli-Responsive Nanoparticle-Incorporated Hydrogels as an Oral Insulin Carrier for Intestine-Targeted Delivery and Enhanced Paracellular Permeation. ACS Biomater Sci Eng 2018; 4:2889-2902. [DOI: 10.1021/acsbiomaterials.8b00646] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Liang Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Ying Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Shuangjiang Yu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhiming Yang
- Department of Orthopaedics, The First Hospital of Jilin University, Changchun 130021, China
| | - Chaoliang He
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
46
|
Zhang Y, Riemer D, Schilling W, Kollmann J, Das S. Visible-Light-Mediated Efficient Metal-Free Catalyst for α-Oxygenation of Tertiary Amines to Amides. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01897] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yu Zhang
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Daniel Riemer
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Waldemar Schilling
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Jiri Kollmann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Shoubhik Das
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| |
Collapse
|
47
|
Sun Q, Zhang Z, Zhang R, Gao R, McClements DJ. Development of Functional or Medical Foods for Oral Administration of Insulin for Diabetes Treatment: Gastroprotective Edible Microgels. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4820-4826. [PMID: 29701967 DOI: 10.1021/acs.jafc.8b00233] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Insulin and an antacid [Mg(OH)2] were co-encapsulated inside calcium alginate microgels (diameter = 280 μm) using a vibrating nozzle injector. Confocal microscopy indicated that insulin was successfully encapsulated inside the microgels and remained inside them after they were exposed to simulated gastric conditions. Localized fluorescence intensity measurements indicated that the internal pH of the antacid-loaded microgels was around pH 7.4 after incubation in acidic gastric fluids but below the limit of detection (pH < 4) in the antacid-free microgels. After incubation in small intestine conditions, around 30% of the insulin was released from the antacid-loaded microgels over a 2 h period. Encapsulation of insulin within the antacid-loaded microgels increased its biological activity after exposure to simulated gastric conditions. In particular, the encapsulated insulin significantly increased Akt phosphorylation at both Thr308 and Ser473 in L6 myotubes when compared to free insulin.
Collapse
Affiliation(s)
- Quancai Sun
- School of Food and Biological Engineering , Jiangsu University , Zhenjiang , Jiangsu 212001 , People's Republic of China
| | - Zipei Zhang
- Department of Food Science , University of Massachusetts Amherst , Amherst , Massachusetts 01003 , United States
| | - Ruojie Zhang
- Department of Food Science , University of Massachusetts Amherst , Amherst , Massachusetts 01003 , United States
| | - Ruichang Gao
- School of Food and Biological Engineering , Jiangsu University , Zhenjiang , Jiangsu 212001 , People's Republic of China
| | - David Julian McClements
- Department of Food Science , University of Massachusetts Amherst , Amherst , Massachusetts 01003 , United States
| |
Collapse
|
48
|
Liu L, Zhang Y, Yu S, Zhang Z, He C, Chen X. pH- and Amylase-Responsive Carboxymethyl Starch/Poly(2-isobutyl-acrylic acid) Hybrid Microgels as Effective Enteric Carriers for Oral Insulin Delivery. Biomacromolecules 2018; 19:2123-2136. [DOI: 10.1021/acs.biomac.8b00215] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Liang Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100039, People’s Republic of China
| | - Ying Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100039, People’s Republic of China
| | - Shuangjiang Yu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Zhen Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100039, People’s Republic of China
| | - Chaoliang He
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100039, People’s Republic of China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100039, People’s Republic of China
| |
Collapse
|
49
|
Wadhwani P, Heidenreich N, Podeyn B, Bürck J, Ulrich AS. Antibiotic gold: tethering of antimicrobial peptides to gold nanoparticles maintains conformational flexibility of peptides and improves trypsin susceptibility. Biomater Sci 2018; 5:817-827. [PMID: 28275774 DOI: 10.1039/c7bm00069c] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Peptide-coated nanoparticles are valuable tools for diverse biological applications, such as drug delivery, molecular recognition, and antimicrobial action. The functionalization of pre-fabricated nanoparticles with free peptides in solution is inefficient either due to aggregation of the particles or due to the poor ligand exchange reaction. Here, we present a one-pot synthesis for preparing gold nanoparticles with a homogeneous distribution that are covered in situ with cationic peptides in a site-selective manner via Cys-residue at the N-terminus. Five representative peptides were selected, which are known to perturb cellular membranes and exert their antimicrobial and/or cell penetrating activity by folding into amphiphilic α-helical structures. When tethered to the nanoparticles at a single site, all peptides were found to switch their conformation from unordered state (in aqueous buffers) to their functionally relevant α-helical conformation in the presence of model membranes, as shown by circular dichroism spectroscopy. The conjugated peptides also maintained the same antibacterial activity as in the free form. Most importantly, when tethered to the gold nanoparticles the peptides showed an enormous increase in stability against trypsin digestion compared to the free forms, leading to a dramatic improvement of their lifetimes and activities. These findings suggest that site-selective surface tethering of peptides to gold nanoparticles has several advantages: (i) it does not prevent the peptides from folding into their biologically active conformation, (ii) such conjugation protects the peptides against protease digestion, and (iii) this way it is possible to prepare stable, water soluble antimicrobial nanoparticles as promising antibacterial agents.
Collapse
Affiliation(s)
- Parvesh Wadhwani
- Karlsruhe Institute of Technology (KIT), 1Institute of Biological Interfaces (IBG-2) P.O.B. 3640, D 76021 Karlsruhe, Germany.
| | - Nico Heidenreich
- KIT, 2Institute of Organic Chemistry & CFN, Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Benjamin Podeyn
- KIT, 2Institute of Organic Chemistry & CFN, Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Jochen Bürck
- Karlsruhe Institute of Technology (KIT), 1Institute of Biological Interfaces (IBG-2) P.O.B. 3640, D 76021 Karlsruhe, Germany.
| | - Anne S Ulrich
- Karlsruhe Institute of Technology (KIT), 1Institute of Biological Interfaces (IBG-2) P.O.B. 3640, D 76021 Karlsruhe, Germany. and KIT, 2Institute of Organic Chemistry & CFN, Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| |
Collapse
|
50
|
Microencapsulation of Phosphorylated Human-Like Collagen-Calcium Chelates for Controlled Delivery and Improved Bioavailability. Polymers (Basel) 2018; 10:polym10020185. [PMID: 30966221 PMCID: PMC6414964 DOI: 10.3390/polym10020185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 11/17/2022] Open
Abstract
The bioavailability of Phosphorylated Human-like Collagen-calcium chelates (PHLC-Ca) as calcium supplement is influenced by the extremely low pH and proteolytic enzymes in the gastrointestinal tract. This study addresses these issues by microencapsulation technology using alginate (ALG) and chitosan (CS) as wall materials. The different ratio of ALG to PHLC-Ca on microcapsules encapsulation efficiency (EE) and loading capacity (LC) was evaluated and 1:1/2 was selected as the optimal proportion. The microcapsules were micron-sized and spherical in shape. PHLC-Ca was successfully entrapped into the matrix of ALG through forming intermolecular hydrogen bonding or other interactions. The confocal laser scanning microscopy (CLSM) indicated that CS was coated on ALG microspheres. The MTT assay exhibited that CS/ALG-(PHLC-Ca) microcapsules extracts were safe to L929. The animal experiment showed that CS/ALG-(PHLC-Ca) microcapsules was superior to treating osteoporosis than PHLC-Ca. These results illustrated that the bioavailability of PHLC-Ca was improved by microencapsulated.
Collapse
|