1
|
Sun H, Meng W, Ma X, Cheng Z, Chen C, Ni Y, Yan F, Zhu Q, Zhang P, Sui X. Photoredox-Catalyzed Three-Component Construction of Aryl Sulfonyl Fluoride Using KHF 2: Late-Stage Drug Fluorosulfonylation. J Org Chem 2024. [PMID: 39482942 DOI: 10.1021/acs.joc.4c01892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Aryl sulfonyl fluorides are prominently featured in organic synthesis and medicinal chemistry. Herein, a metal-free photoredox-catalyzed three-component assembly of aryl sulfonyl fluoride via aryl sulfonyl ammonium salt intermediate has been reported. A variety of structurally diverse aryl sulfonyl fluorides were synthesized rapidly from dibenzothiophenium (DBT) salts under mild conditions by using KHF2 as the fluorine source. Notably, this methodology can be employed as an efficient and sustainable approach for late-stage drug fluorosulfonylation. Good yields and broad functionality tolerance were the features of this methodology. Moreover, the derivatization of aryl sulfonyl fluoride molecules was also demonstrated to showcase its synthetic utility.
Collapse
Affiliation(s)
- Hanhan Sun
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Wanqing Meng
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Xiaoxu Ma
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Zhiling Cheng
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Cheng Chen
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Yan Ni
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Fengying Yan
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Qiaomei Zhu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Ping Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Xianwei Sui
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| |
Collapse
|
2
|
Wahl J, Ahsanullah, Zupan H, Gottschalk F, Nerlich A, Arkona C, Hocke AC, Keller BG, Rademann J. Chemically Stable Diazo Peptides as Selective Probes of Cysteine Proteases in Living Cells. Angew Chem Int Ed Engl 2024:e202411006. [PMID: 39380558 DOI: 10.1002/anie.202411006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024]
Abstract
Diazo peptides have been described earlier, however, due to their high reactivity have not been broadly used until today. Here, we report the preparation, properties, and applications of chemically stable internal diazo peptides. Peptidyl phosphoranylidene-esters and amides were found to react with triflyl azide primarily to novel 3,4-disubstituted triazolyl-peptides. Nonaflyl azide instead furnished diazo peptides, which are chemically stable from pH 1-14 as amides and from pH 1-8 as esters. Thus, diazo peptides prepared by solid phase peptide synthesis were stable to final deprotection with 95 % trifluoroacetic acid. Diazo peptides with the recognition sequence of caspase-3 were identified as specific, covalent, and irreversible inhibitors of this enzyme at low nanomolar concentrations. A fluorescent diazo peptide entered living cells enabling microscopic imaging and quantification of apoptotic cells via flow cytometry. Thus, internal diazo peptides constitute a novel class of activity-based probes and enzyme inhibitors useful in chemical biology and medicinal chemistry.
Collapse
Affiliation(s)
- Juliane Wahl
- Institute of Pharmacy, Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Ahsanullah
- Institute of Pharmacy, Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Hana Zupan
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Franziska Gottschalk
- Institute of Pharmacy, Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Andreas Nerlich
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
| | - Christoph Arkona
- Institute of Pharmacy, Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Andreas C Hocke
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
| | - Bettina G Keller
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Jörg Rademann
- Institute of Pharmacy, Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| |
Collapse
|
3
|
Poli ANR, Tietjen I, Nandwana NK, Cassel J, Messick TE, Register ET, Keeney F, Rajaiah R, Verma AK, Pandey K, Acharya A, Byrareddy SN, Montaner LJ, Salvino JM. Design of novel and highly selective SARS-CoV-2 main protease inhibitors. Antimicrob Agents Chemother 2024; 68:e0056224. [PMID: 39225484 PMCID: PMC11459967 DOI: 10.1128/aac.00562-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024] Open
Abstract
We have synthesized a novel and highly selective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease peptide mimetic inhibitor mimicking the replicase 1ab recognition sequence -Val-Leu-Gln- and utilizing a cysteine selective acyloxymethyl ketone as the electrophilic warhead to target the active site Cys145. Utilizing a constrained cyclic peptide that locks the conformation between the P3 (Val) and P2 (Leu) residues, we identified a highly selective inhibitor that fills the P2 pocket occupied by the leucine residue sidechain of PF-00835231 and the dimethyl-3-azabicyclo-hexane motif in nirmatrelvir (PF-07321332). This strategy resulted in potent and highly selective Mpro inhibitors without inhibiting essential host cathepsin cysteine or serine proteases. The lead prototype compound 1 (MPro IC50 = 230 ± 18 nM) also inhibits the replication of multiple SARS-CoV-2 variants in vitro, including SARS-CoV-2 variants of concern, and can synergize at lower concentrations with the viral RNA polymerase inhibitor, remdesivir, to inhibit replication. It also reduces SARS-CoV-2 replication in SARS-CoV-2 Omicron-infected Syrian golden hamsters without obvious toxicities, demonstrating in vivo efficacy. This novel lead structure provides the basis for optimization of improved agents targeting evolving SARS-CoV-2 drug resistance that can selectively act on Mpro versus host proteases and are less likely to have off-target effects due to non-specific targeting. Developing inhibitors against the active site of the main protease (Mpro), which is highly conserved across coronaviruses, is expected to impart a higher genetic barrier to evolving SARS-CoV-2 drug resistance. Drugs that selectively inhibit the viral Mpro are less likely to have off-target effects warranting efforts to improve this therapy.
Collapse
Affiliation(s)
- Adi N. R. Poli
- Medicinal Chemistry, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Ian Tietjen
- HIV-1 Program in the Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Nitesh K. Nandwana
- Medicinal Chemistry, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Joel Cassel
- The Wistar Cancer Center Molecular Screening, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | | | - Emery T. Register
- HIV-1 Program in the Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Frederick Keeney
- HIV-1 Program in the Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Rajesh Rajaiah
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Atul K. Verma
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Kabita Pandey
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Arpan Acharya
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Siddappa N. Byrareddy
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Luis J. Montaner
- HIV-1 Program in the Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Joseph M. Salvino
- Medicinal Chemistry, The Wistar Institute, Philadelphia, Pennsylvania, USA
- The Wistar Cancer Center Molecular Screening, The Wistar Institute, Philadelphia, Pennsylvania, USA
- Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Ghoshal A, Asressu KH, Hossain MA, Brown PJ, Nandakumar M, Vala A, Merten EM, Sears JD, Law I, Burdick JE, Morales NL, Perveen S, Pearce KH, Popov KI, Moorman NJ, Heise MT, Willson TM. Structure Activity of β-Amidomethyl Vinyl Sulfones as Covalent Inhibitors of Chikungunya nsP2 Cysteine Protease with Antialphavirus Activity. J Med Chem 2024; 67:16505-16532. [PMID: 39235978 PMCID: PMC11440497 DOI: 10.1021/acs.jmedchem.4c01346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
Despite their widespread impact on human health, there are no approved drugs for combating alphavirus infections. The heterocyclic β-aminomethyl vinyl sulfone RA-0002034 (1a) is a potent irreversible covalent inhibitor of the alphavirus nsP2 cysteine protease with broad-spectrum antiviral activity. Analogs of 1a that varied each of the three regions of the molecule were synthesized to establish structure-activity relationships for the inhibition of Chikungunya (CHIKV) nsP2 protease and viral replication. The vinyl sulfone covalent warhead was highly sensitive to modifications. However, alterations to the core five-membered heterocycle and aryl substituent were well tolerated. The 5-(2,5-dimethoxyphenyl)pyrazole (1o) and 4-cyanopyrazole (8d) analogs exhibited kinact/Ki ratios >9000 M-1 s-1. 3-Arylisoxazole (10) was identified as an isosteric replacement for the five-membered heterocycle, which circumvented the intramolecular cyclization of pyrazole-based inhibitors like 1a. A ligand-based model of the enzyme active site was developed to aid the design of nsP2 protease inhibitors as potential therapeutics against alphaviruses.
Collapse
Affiliation(s)
- Anirban Ghoshal
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- READDI
AViDD Center, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Kesatebrhan Haile Asressu
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- READDI
AViDD Center, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Mohammad Anwar Hossain
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- READDI
AViDD Center, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Peter J. Brown
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- READDI
AViDD Center, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Meganathan Nandakumar
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Anand Vala
- Piramal
Discovery Solutions, Pharmaceutical Special Economic Zone, Sarkhej, Bavla Highway, Ahmedabad, Gujarat 382213, India
| | - Eric M. Merten
- READDI
AViDD Center, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
- UNC
Eshelman School of Pharmacy, Center for Integrative Chemical Biology
and Drug Discovery, University of North
Carolina at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - John D. Sears
- READDI
AViDD Center, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
- Department
of Microbiology and Immunology, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Isabella Law
- Department
of Genetics, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jane E. Burdick
- Department
of Genetics, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Noah L. Morales
- Department
of Genetics, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sumera Perveen
- Structural
Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Kenneth H. Pearce
- READDI
AViDD Center, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
- UNC
Eshelman School of Pharmacy, Center for Integrative Chemical Biology
and Drug Discovery, University of North
Carolina at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Konstantin I. Popov
- READDI
AViDD Center, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
- UNC
Eshelman School of Pharmacy, Center for Integrative Chemical Biology
and Drug Discovery, University of North
Carolina at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Nathaniel J. Moorman
- READDI
AViDD Center, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
- Department
of Microbiology and Immunology, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Mark T. Heise
- READDI
AViDD Center, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
- Department
of Microbiology and Immunology, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department
of Genetics, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Timothy M. Willson
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- READDI
AViDD Center, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| |
Collapse
|
5
|
Zhao Z, Bourne PE. Advances in reversible covalent kinase inhibitors. Med Res Rev 2024. [PMID: 39287197 DOI: 10.1002/med.22084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 08/07/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
Reversible covalent kinase inhibitors (RCKIs) are a class of novel kinase inhibitors attracting increasing attention because they simultaneously show the selectivity of covalent kinase inhibitors yet avoid permanent protein-modification-induced adverse effects. Over the last decade, RCKIs have been reported to target different kinases, including Atypical group of kinases. Currently, three RCKIs are undergoing clinical trials. Here, advances in RCKIs are reviewed to systematically summarize the characteristics of electrophilic groups, chemical scaffolds, nucleophilic residues, and binding modes. In so doing, we integrate key insights into privileged electrophiles, the distribution of nucleophiles, and hence effective design strategies for the development of RCKIs. Finally, we provide a further perspective on future design strategies for RCKIs, including those that target proteins other than kinases.
Collapse
Affiliation(s)
- Zheng Zhao
- School of Data Science, University of Virginia, Charlottesville, Virginia, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Philip E Bourne
- School of Data Science, University of Virginia, Charlottesville, Virginia, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
6
|
Brown L, Vidal AV, Dias AL, Rodrigues T, Sigurdardottir A, Journeaux T, O'Brien S, Murray TV, Ravn P, Papworth M, Bernardes GJL. Proximity-driven site-specific cyclization of phage-displayed peptides. Nat Commun 2024; 15:7308. [PMID: 39181880 PMCID: PMC11344848 DOI: 10.1038/s41467-024-51610-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
Cyclization provides a general strategy for improving the proteolytic stability, cell membrane permeability and target binding affinity of peptides. Insertion of a stable, non-reducible linker into a disulphide bond is a commonly used approach for cyclizing phage-displayed peptides. However, among the vast collection of cysteine reactive linkers available, few provide the selectivity required to target specific cysteine residues within the peptide in the phage display system, whilst sparing those on the phage capsid. Here, we report the development of a cyclopropenone-based proximity-driven chemical linker that can efficiently cyclize synthetic peptides and peptides fused to a phage-coat protein, and cyclize phage-displayed peptides in a site-specific manner, with no disruption to phage infectivity. Our cyclization strategy enables the construction of stable, highly diverse phage display libraries. These libraries can be used for the selection of high-affinity cyclic peptide binders, as exemplified through model selections on streptavidin and the therapeutic target αvβ3.
Collapse
Affiliation(s)
- Libby Brown
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Biologics Engineering, Oncology R&D, AstraZeneca, The Discovery Centre; Cambridge Biomedical Campus, Cambridge, UK
| | - Aldrin V Vidal
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Ana Laura Dias
- Instituto de Investigação do Medicamento (iMed), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Tiago Rodrigues
- Instituto de Investigação do Medicamento (iMed), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Anna Sigurdardottir
- Biologics Engineering, Oncology R&D, AstraZeneca, The Discovery Centre; Cambridge Biomedical Campus, Cambridge, UK
| | - Toby Journeaux
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Siobhan O'Brien
- Biologics Engineering, Oncology R&D, AstraZeneca, The Discovery Centre; Cambridge Biomedical Campus, Cambridge, UK
| | - Thomas V Murray
- Biologics Engineering, Oncology R&D, AstraZeneca, The Discovery Centre; Cambridge Biomedical Campus, Cambridge, UK
| | - Peter Ravn
- Biologics Engineering, Oncology R&D, AstraZeneca, The Discovery Centre; Cambridge Biomedical Campus, Cambridge, UK
- Department of Biotherapeutic Discovery, H. Lundbeck A/S, Valby, Denmark
| | - Monika Papworth
- Biologics Engineering, Oncology R&D, AstraZeneca, The Discovery Centre; Cambridge Biomedical Campus, Cambridge, UK
| | - Gonçalo J L Bernardes
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
7
|
Ivachtchenko AV, Khvat AV, Shkil DO. Development and Prospects of Furin Inhibitors for Therapeutic Applications. Int J Mol Sci 2024; 25:9199. [PMID: 39273149 PMCID: PMC11394684 DOI: 10.3390/ijms25179199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/17/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Furin, a serine protease enzyme located in the Golgi apparatus of animal cells, plays a crucial role in cleaving precursor proteins into their mature, active forms. It is ubiquitously expressed across various tissues, including the brain, lungs, gastrointestinal tract, liver, pancreas, and reproductive organs. Since its discovery in 1990, furin has been recognized as a significant therapeutic target, leading to the active development of furin inhibitors for potential use in antiviral, antibacterial, anticancer, and other therapeutic applications. This review provides a comprehensive overview of the progress in the development and characterization of furin inhibitors, encompassing peptides, linear and macrocyclic peptidomimetics, and non-peptide compounds, highlighting their potential in the treatment of both infectious and non-infectious diseases.
Collapse
|
8
|
Lu S, Ren L, Mao D, Kakeya H. Mechanistic study of the retro-aza-Michael reaction in saccharothriolide L: identification of 2-amino-4-methylphenol as an effective protecting tool for the Michael acceptor. J Antibiot (Tokyo) 2024; 77:544-547. [PMID: 38789532 DOI: 10.1038/s41429-024-00741-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/17/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
Saccharothriolide L (1), a derivative of saccharothriolides (STLs) produced by the rare actinomycete Saccharotrix sp. A1506, was synthesized through the precursor-directed in situ synthesis (PDSS) method. The structure of 1 was determined by 1D and 2D NMR and HR-ESI-MS data analyses. A comparison of the rate of the retro-aza-Michael reaction between saccharothriolide L (1) and saccharothriolide B (2) indicated that the 2-amino-4-methylphenol group in 1 might be an effective masking tool for highly reactive, bioactive α, β-unsaturated carbonyl compounds.
Collapse
Affiliation(s)
- Shan Lu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Lingling Ren
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China
| | - Di Mao
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
9
|
Kahler JP, Ji S, Speelman-Rooms F, Vanhoutte R, Verhelst SHL. Phosphinate Esters as Novel Warheads for Quenched Activity-Based Probes Targeting Serine Proteases. ACS Chem Biol 2024; 19:1409-1415. [PMID: 38913607 DOI: 10.1021/acschembio.3c00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Quenched activity-based probes (qABP) are invaluable tools to visualize aberrant protease activity. Unfortunately, most studies so far have only focused on cysteine proteases, and only a few studies describe the synthesis and use of serine protease qABPs. We recently used phosphinate ester electrophiles as a novel type of reactive group to construct ABPs for serine proteases. Here, we report on the construction of qABPs based on the phosphinate warhead, exemplified by probes for the neutrophil serine proteases. The most successful probes show sub-stoichiometric reaction with human neutrophil elastase, efficient fluorescence quenching, and rapid unquenching of fluorescence upon reaction with target proteases.
Collapse
Affiliation(s)
- Jan Pascal Kahler
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Herestraat 49 box 901b, 3000 Leuven, Belgium
| | - Shanping Ji
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Herestraat 49 box 901b, 3000 Leuven, Belgium
| | - Femke Speelman-Rooms
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Herestraat 49 box 901b, 3000 Leuven, Belgium
- Laboratory of Molecular & Cellular Signaling, Department of Cellular and Molecular Medicine, Herestraat 49 box 802, 3000 Leuven, Belgium
| | - Roeland Vanhoutte
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Herestraat 49 box 901b, 3000 Leuven, Belgium
| | - Steven H L Verhelst
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Herestraat 49 box 901b, 3000 Leuven, Belgium
- AG Chemical Proteomics, Leibniz Institute for Analytical Sciences - ISAS, Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| |
Collapse
|
10
|
Kasperkiewicz P, Kołt S, Janiszewski T, Skowron PM, Krefft D, Brodzik R, Koller KP, Drąg M. Substrate specificity profiling of heat-sensitive serine protease from the fungus Onygena corvina. Biochimie 2024:S0300-9084(24)00161-5. [PMID: 38971457 DOI: 10.1016/j.biochi.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Proteases catalyze hydrolysis of amide bonds within peptides and proteins, therefore they play crucial functions for organism functioning, but also in industry to facilitate numerous processes. Feather-degrading fungus Onygena corvina (O. corvina) is loaded with numerous proteases that can be utilized for variety of applications. The most active species of these enzymes is heat-sensitive serine protease (NHSSP), from O. corvina fungi and due to its potential applications in industry is an alternative to proteinase K. The uniqueness of NHSSP relies on the ability of this enzyme to hydrolyze peptides at neutral to acidic pH values between 5.0 and 8.5, with an optimum of 6.8 and a temperature activity ranging from 15 to 50 °C making NHSSP exceptionally universal enzyme. Thus, we have performed the in-depth characterization of NHSSP substrate specificity by using a positional scanning substrate combinatorial library (PS-SCL). Afterward, we obtained a set of fluorescent substrates hydrolyzed by NHSSP that served as a leading sequence for the first tailored covalent inhibitor of this enzyme, containing a diphenylphosphonate as a warhead and MeOSuc amine protecting group. Our first inhibitor for NHSSP binds potently with target protease and is a tool for future study of this enzyme functions.
Collapse
Affiliation(s)
- Paulina Kasperkiewicz
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Sonia Kołt
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Tomasz Janiszewski
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Piotr M Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-309, Gdansk, Poland
| | - Daria Krefft
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-309, Gdansk, Poland
| | - Robert Brodzik
- QIAGEN Gdańsk Sp. Z o.o., Trzy Lipy 3/2.58 Street, Gdańsk, Poland
| | - Klaus-Peter Koller
- Institute for Molecular BioScience, University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Marcin Drąg
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland.
| |
Collapse
|
11
|
Bose HS. Dry molten globule conformational state of CYP11A1 (SCC) regulates the first step of steroidogenesis in the mitochondrial matrix. iScience 2024; 27:110039. [PMID: 38868187 PMCID: PMC11167429 DOI: 10.1016/j.isci.2024.110039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/18/2024] [Accepted: 05/16/2024] [Indexed: 06/14/2024] Open
Abstract
Multiple metabolic events occur in mitochondria. Mitochondrial protein translocation from the cytoplasm across compartments depends on the amino acid sequence within the precursor. At the mitochondria associated-ER membrane, misfolding of a mitochondrial targeted protein prior to import ablates metabolism. CYP11A1, cytochrome P450 cholesterol side chain cleavage enzyme (SCC), is imported from the cytoplasm to mitochondrial matrix catalyzing cholesterol to pregnenolone, an essential step for metabolic processes and mammalian survival. Multiple steps regulate the availability of an actively folded SCC; however, the mechanism is unknown. We identified that a dry molten globule state of SCC exists in the matrix by capturing intermediate protein folding steps dictated by its C-terminus. The intermediate dry molten globule state in the mitochondrial matrix of living cells is stable with a limited network of interaction and is inactive. The dry molten globule is activated with hydrogen ions availability, triggering cleavage of cholesterol sidechain, and initiating steroidogenesis.
Collapse
Affiliation(s)
- Himangshu S. Bose
- Laboratory of Biochemistry, Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA
- Anderson Cancer Institute, Memorial University Medical Center, Savannah, GA 31404, USA
| |
Collapse
|
12
|
Ghoshal A, Asressu KH, Hossain MA, Brown PJ, Merten EM, Sears JD, Perveen S, Pearce KH, Popov KI, Moorman NJ, Heise MT, Willson TM. Structure Activity of β-Amidomethyl Vinyl Sulfones as Covalent Inhibitors of Chikungunya nsP2 Cysteine Protease with Anti-alphavirus Activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598722. [PMID: 38915519 PMCID: PMC11195264 DOI: 10.1101/2024.06.12.598722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Despite their widespread impact on human health there are no approved drugs for combating alphavirus infections. The heterocyclic β-aminomethyl vinyl sulfone RA-0002034 (1a) is a potent irreversible covalent inhibitor of the alphavirus nsP2 cysteine protease with broad spectrum antiviral activity. Analogs of 1a that varied each of three regions of the molecule were synthesized to establish structure-activity relationships for inhibition of Chikungunya (CHIKV) nsP2 protease and viral replication. The covalent warhead was highly sensitive to modifications of the sulfone or vinyl substituents. However, numerous alterations to the core 5-membered heterocycle and its aryl substituent were well tolerated and several analogs were identified that enhanced CHIKV nsP2 binding. For example, the 4-cyanopyrazole analog 8d exhibited a kinact /Ki ratio >10,000 M-1s-1. 3-Arylisoxazole was identified an isosteric replacement for the 5-membered heterocycle, which circumvented the intramolecular cyclization that complicated the synthesis of pyrazole-based inhibitors like 1a. The accumulated structure-activity data was used to build a ligand-based model of the enzyme active site, which can be used to guide the design of covalent nsP2 protease inhibitors as potential therapeutics against alphaviruses.
Collapse
Affiliation(s)
- Anirban Ghoshal
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- READDI AViDD Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kesatebrhan Haile Asressu
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- READDI AViDD Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mohammad Anwar Hossain
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- READDI AViDD Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Peter J. Brown
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- READDI AViDD Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Eric M. Merten
- READDI AViDD Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - John D. Sears
- READDI AViDD Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Sumera Perveen
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Kenneth H. Pearce
- READDI AViDD Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Konstantin I. Popov
- READDI AViDD Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nathaniel J. Moorman
- READDI AViDD Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mark T. Heise
- READDI AViDD Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Timothy M. Willson
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- READDI AViDD Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
13
|
An D, Li Z, Beavis AC, Briggs KR, Harvill M, He B. Cleavage of the syncytial protein of J paramyxovirus is required for its ability to promote cell-cell fusion. Proc Natl Acad Sci U S A 2024; 121:e2403389121. [PMID: 38833471 PMCID: PMC11181024 DOI: 10.1073/pnas.2403389121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/02/2024] [Indexed: 06/06/2024] Open
Abstract
Cell-cell fusion mediated by most paramyxovirus requires fusion protein (F) and attachment protein (H, HN, or G). The F protein is proteolytic cleaved to be fusogenically active. J paramyxovirus (JPV) has a unique feature in the family Paramyxoviridae: It encodes an integral membrane protein, syncytial protein (SP, formerly known as transmembrane protein, TM), which is essential in JPV-promoted cell-cell fusion (i.e., syncytial). In this study, we report that cleavage of SP is essential for its syncytial-promoting activity. We have identified the cleavage site of SP at amino acid residues 172 to 175, LKTG, and deletion of the "LKTG" residues abolished SP protein cleavage and its ability to promote cell-cell fusion. Replacing the cleavage site LKTG with a factor Xa protease cleavage site allows cleavage of the SP with factor Xa protease and restores its ability to promote cell-cell fusion. Furthermore, results from a hemifusion assay indicate that cleavage of SP plays an important role in the progression from the intermediate hemifusion state to a complete fusion. This work indicates that SP has many characteristics of a fusion protein. We propose that SP is likely a cell-cell fusion-promoting protein.
Collapse
Affiliation(s)
- Dong An
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA30602
| | - Zhuo Li
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA30602
| | - Ashley C. Beavis
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA30602
| | - Kelsey R. Briggs
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA30602
| | - Mason Harvill
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA30602
| | - Biao He
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA30602
| |
Collapse
|
14
|
Gayatri, Brewitz L, Ibbotson L, Salah E, Basak S, Choudhry H, Schofield CJ. Thiophene-fused γ-lactams inhibit the SARS-CoV-2 main protease via reversible covalent acylation. Chem Sci 2024; 15:7667-7678. [PMID: 38784729 PMCID: PMC11110133 DOI: 10.1039/d4sc01027b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
Enzyme inhibitors working by O-acylation of nucleophilic serine residues are of immense medicinal importance, as exemplified by the β-lactam antibiotics. By contrast, inhibition of nucleophilic cysteine enzymes by S-acylation has not been widely exploited for medicinal applications. The SARS-CoV-2 main protease (Mpro) is a nucleophilic cysteine protease and a validated therapeutic target for COVID-19 treatment using small-molecule inhibitors. The clinically used Mpro inhibitors nirmatrelvir and simnotrelvir work via reversible covalent reaction of their electrophilic nitrile with the Mpro nucleophilic cysteine (Cys145). We report combined structure activity relationship and mass spectrometric studies revealing that appropriately functionalized γ-lactams can potently inhibit Mpro by reversible covalent reaction with Cys145 of Mpro. The results suggest that γ-lactams have potential as electrophilic warheads for development of covalently reacting small-molecule inhibitors of Mpro and, by implication, other nucleophilic cysteine enzymes.
Collapse
Affiliation(s)
- Gayatri
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford UK
| | - Lennart Brewitz
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford UK
| | - Lewis Ibbotson
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford UK
| | - Eidarus Salah
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford UK
| | - Shyam Basak
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford UK
| | - Hani Choudhry
- Department of Biochemistry, Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University Jeddah Saudi Arabia
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford UK
| |
Collapse
|
15
|
Cheng L, Wang Y, Guo Y, Zhang SS, Xiao H. Advancing protein therapeutics through proximity-induced chemistry. Cell Chem Biol 2024; 31:428-445. [PMID: 37802076 PMCID: PMC10960704 DOI: 10.1016/j.chembiol.2023.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/21/2023] [Accepted: 09/15/2023] [Indexed: 10/08/2023]
Abstract
Recent years have seen a remarkable growth in the field of protein-based medical treatments. Nevertheless, concerns have arisen regarding the cytotoxicity limitations, low affinity, potential immunogenicity, low stability, and challenges to modify these proteins. To overcome these obstacles, proximity-induced chemistry has emerged as a next-generation strategy for advancing protein therapeutics. This method allows site-specific modification of proteins with therapeutic agents, improving their effectiveness without extensive engineering. In addition, this innovative approach enables spatial control of the reaction based on proximity, facilitating the formation of irreversible covalent bonds between therapeutic proteins and their targets. This capability becomes particularly valuable in addressing challenges such as the low affinity frequently encountered between therapeutic proteins and their targets, as well as the limited availability of small molecules for specific protein targets. As a result, proximity-induced chemistry is reshaping the field of protein drug preparation and propelling the revolution in novel protein therapeutics.
Collapse
Affiliation(s)
- Linqi Cheng
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Yixian Wang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Yiming Guo
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Sophie S Zhang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Han Xiao
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA; Department of Biosciences, Rice University, 6100 Main Street, Houston, TX 77005, USA; Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77005, USA.
| |
Collapse
|
16
|
Yuan W, Chen X, Du K, Jiang T, Li M, Cao Y, Li X, Doehlemann G, Fan Z, Zhou T. NIa-Pro of sugarcane mosaic virus targets Corn Cysteine Protease 1 (CCP1) to undermine salicylic acid-mediated defense in maize. PLoS Pathog 2024; 20:e1012086. [PMID: 38484013 DOI: 10.1371/journal.ppat.1012086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 03/26/2024] [Accepted: 03/01/2024] [Indexed: 03/27/2024] Open
Abstract
Papain-like cysteine proteases (PLCPs) play pivotal roles in plant defense against pathogen invasions. While pathogens can secrete effectors to target and inhibit PLCP activities, the roles of PLCPs in plant-virus interactions and the mechanisms through which viruses neutralize PLCP activities remain largely uncharted. Here, we demonstrate that the expression and activity of a maize PLCP CCP1 (Corn Cysteine Protease), is upregulated following sugarcane mosaic virus (SCMV) infection. Transient silencing of CCP1 led to a reduction in PLCP activities, thereby promoting SCMV infection in maize. Furthermore, the knockdown of CCP1 resulted in diminished salicylic acid (SA) levels and suppressed expression of SA-responsive pathogenesis-related genes. This suggests that CCP1 plays a role in modulating the SA signaling pathway. Interestingly, NIa-Pro, the primary protease of SCMV, was found to interact with CCP1, subsequently inhibiting its protease activity. A specific motif within NIa-Pro termed the inhibitor motif was identified as essential for its interaction with CCP1 and the suppression of its activity. We have also discovered that the key amino acids responsible for the interaction between NIa-Pro and CCP1 are crucial for the virulence of SCMV. In conclusion, our findings offer compelling evidence that SCMV undermines maize defense mechanisms through the interaction of NIa-Pro with CCP1. Together, these findings shed a new light on the mechanism(s) controlling the arms races between virus and plant.
Collapse
Affiliation(s)
- Wen Yuan
- State Key Laboratory for Maize Bio-breeding, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Xi Chen
- State Key Laboratory for Maize Bio-breeding, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Kaitong Du
- State Key Laboratory for Maize Bio-breeding, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Tong Jiang
- State Key Laboratory for Maize Bio-breeding, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Mengfei Li
- State Key Laboratory for Maize Bio-breeding, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Yanyong Cao
- Cereal Crops Institute, Henan Academy of Agricultural Science, Zhengzhou, China
| | - Xiangdong Li
- Department of Plant Pathology, Shandong Agricultural University, Taian, China
| | - Gunther Doehlemann
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Center for Molecular Biosciences, Cologne, Germany
| | - Zaifeng Fan
- State Key Laboratory for Maize Bio-breeding, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Tao Zhou
- State Key Laboratory for Maize Bio-breeding, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| |
Collapse
|
17
|
Xuan W, Ma JA. Pinpointing Acidic Residues in Proteins. ChemMedChem 2024; 19:e202300623. [PMID: 38303683 DOI: 10.1002/cmdc.202300623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/18/2023] [Indexed: 02/03/2024]
Abstract
It is of great importance to pinpoint specific residues or sites of a protein in biological contexts to enable desired mechanism of action for small molecules or to precisely control protein function. In this regard, acidic residues including aspartic acid (Asp) and glutamic acid (Glu) hold great potential due to their great prevalence and unique function. To unlock the largely untapped potential, great efforts have been made recently by synthetic chemists, chemical biologists and pharmacologists. Herein, we would like to highlight the remarkable progress and particularly introduce the electrophiles that exhibit reactivity to carboxylic acids, the light-induced reactivities to carboxylic acids and the genetically encoded noncanonical amino acids that allow protein manipulations at acidic residues. We also comment on certain unresolved challenges, hoping to draw more attention to this rapidly developing area.
Collapse
Affiliation(s)
- Weimin Xuan
- Frontiers Science Center for Synthetic Biology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Jun-An Ma
- Department of Chemistry, Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
18
|
Jiang X, Zhang X, Cai X, Li N, Zheng H, Tang M, Zhu J, Su K, Zhang R, Ye N, Peng J, Zhao M, Wu W, Yang J, Ye H. NU6300 covalently reacts with cysteine-191 of gasdermin D to block its cleavage and palmitoylation. SCIENCE ADVANCES 2024; 10:eadi9284. [PMID: 38324683 PMCID: PMC10849585 DOI: 10.1126/sciadv.adi9284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024]
Abstract
Gasdermin D (GSDMD) serves as a vital mediator of inflammasome-driven pyroptosis. In our study, we have identified NU6300 as a specific GSDMD inhibitor that covalently interacts with cysteine-191 of GSDMD, effectively blocking its cleavage while not affecting earlier steps such as ASC oligomerization and caspase-1 processing in AIM2- and NLRC4-mediated inflammation. On the contrary, NU6300 robustly inhibits these earlier steps in NLRP3 inflammasome, confirming a unique feedback inhibition effect in the NLRP3-GSDMD pathway upon GSDMD targeting. Our study reveals a previously undefined mechanism of GSDMD inhibitors: NU6300 impairs the palmitoylation of both full-length and N-terminal GSDMD, impeding the membrane localization and oligomerization of N-terminal GSDMD. In vivo studies further demonstrate the efficacy of NU6300 in ameliorating dextran sodium sulfate-induced colitis and improving survival in lipopolysaccharide-induced sepsis. Overall, these findings highlight the potential of NU6300 as a promising lead compound for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Xueqin Jiang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinlu Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoying Cai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Na Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongyu Zheng
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Minghai Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiangli Zhu
- Department of Urology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kaiyue Su
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ruijia Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Neng Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Peng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Zhao
- Laboratory of Metabolomics and Drug-induced Liver Injury, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenshuang Wu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jianhong Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haoyu Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
19
|
Gutti G, He Y, Coldren WH, Lalisse RF, Border SE, Hadad CM, McElroy CA, Ekici ÖD. In-silico guided design, screening, and molecular dynamic simulation studies for the identification of potential SARS-CoV-2 main protease inhibitors for the targeted treatment of COVID-19. J Biomol Struct Dyn 2024; 42:1733-1750. [PMID: 37114441 DOI: 10.1080/07391102.2023.2202247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023]
Abstract
COVID-19, the disease responsible for the recent pandemic, is caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The main protease (Mpro) of SARS-CoV-2 is an essential proteolytic enzyme that plays a number of important roles in the replication of the virus in human host cells. Blocking the function of SARS-CoV-2 Mpro offers a promising and targeted, therapeutic option for the treatment of the COVID-19 infection. Such an inhibitory strategy is currently successful in treating COVID-19 under FDA's emergency use authorization, although with limited benefit to the immunocompromised along with an unfortunate number of side effects and drug-drug interactions. Current COVID vaccines protect against severe disease and death but are mostly ineffective toward long COVID which has been seen in 5-36% of patients. SARS-CoV-2 is a rapidly mutating virus and is here to stay endemically. Hence, alternate therapeutics to treat SARS-CoV-2 infections are still needed. Moreover, because of the high degree of conservation of Mpro among different coronaviruses, any newly developed antiviral agents should better prepare us for potential future epidemics or pandemics. In this paper, we first describe the design and computational docking of a library of novel 188 first-generation peptidomimetic protease inhibitors using various electrophilic warheads with aza-peptide epoxides, α-ketoesters, and β-diketones identified as the most effective. Second-generation designs, 192 compounds in total, focused on aza-peptide epoxides with drug-like properties, incorporating dipeptidyl backbones and heterocyclic ring motifs such as proline, indole, and pyrrole groups, yielding 8 hit candidates. These novel and specific inhibitors for SARS-CoV-2 Mpro can ultimately serve as valuable alternate and broad-spectrum antivirals against COVID-19.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Gopichand Gutti
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Yiran He
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - William H Coldren
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Remy F Lalisse
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Sarah E Border
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Christopher M Hadad
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Craig A McElroy
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Özlem Doğan Ekici
- Department of Chemistry and Biochemistry, The Ohio State University, Newark, Ohio, USA
| |
Collapse
|
20
|
Janin YL. On the origins of SARS-CoV-2 main protease inhibitors. RSC Med Chem 2024; 15:81-118. [PMID: 38283212 PMCID: PMC10809347 DOI: 10.1039/d3md00493g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/13/2023] [Indexed: 01/30/2024] Open
Abstract
In order to address the world-wide health challenge caused by the COVID-19 pandemic, the 3CL protease/SARS-CoV-2 main protease (SARS-CoV-2-Mpro) coded by its nsp5 gene became one of the biochemical targets for the design of antiviral drugs. In less than 3 years of research, 4 inhibitors of SARS-CoV-2-Mpro have actually been authorized for COVID-19 treatment (nirmatrelvir, ensitrelvir, leritrelvir and simnotrelvir) and more such as EDP-235, FB-2001 and STI-1558/Olgotrelvir or five undisclosed compounds (CDI-988, ASC11, ALG-097558, QLS1128 and H-10517) are undergoing clinical trials. This review is an attempt to picture this quite unprecedented medicinal chemistry feat and provide insights on how these cysteine protease inhibitors were discovered. Since many series of covalent SARS-CoV-2-Mpro inhibitors owe some of their origins to previous work on other proteases, we first provided a description of various inhibitors of cysteine-bearing human caspase-1 or cathepsin K, as well as inhibitors of serine proteases such as human dipeptidyl peptidase-4 or the hepatitis C protein complex NS3/4A. This is then followed by a description of the results of the approaches adopted (repurposing, structure-based and high throughput screening) to discover coronavirus main protease inhibitors.
Collapse
Affiliation(s)
- Yves L Janin
- Structure et Instabilité des Génomes (StrInG), Muséum National d'Histoire Naturelle, INSERM, CNRS, Alliance Sorbonne Université 75005 Paris France
| |
Collapse
|
21
|
Chen Y, Sonawane A, Manda R, Gadi RK, Tesmer JJG, Ghosh AK. Development of a new class of potent and highly selective G protein-coupled receptor kinase 5 inhibitors and structural insight from crystal structures of inhibitor complexes. Eur J Med Chem 2024; 264:115931. [PMID: 38016297 PMCID: PMC10841647 DOI: 10.1016/j.ejmech.2023.115931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 11/30/2023]
Abstract
G protein-coupled receptor kinase 5 (GRK5) is an important drug development target for heart failure, cardiac hypertrophy, and cancer. We have designed and developed a new class of highly selective, potent, and non-covalent GRK5 inhibitors. One of the inhibitors displayed GRK5 IC50 value of 10 nM and exhibited >100,000-fold selectivity over GRK2. The X-ray structure of a ketoamide-derived inhibitor-bound GRK5 showed the formation of a hemithioketal intermediate with active site Cys474 in the GRK5 active site and provided new insights into the ligand-binding site interactions responsible for high selectivity. The current studies serve as an important guide to therapeutic GRK5 inhibitor drug development.
Collapse
Affiliation(s)
- Yueyi Chen
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA; Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Amol Sonawane
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Rajesh Manda
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Ranjith Kumar Gadi
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - John J G Tesmer
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA; Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Arun K Ghosh
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA; Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
22
|
Omidkhah N, Hadizadeh F, Ghodsi R, Kesharwani P, Sahebkar A. In silico Evaluation of NO-Sartans against SARS-CoV-2. Curr Drug Discov Technol 2024; 21:e050324227669. [PMID: 38445698 DOI: 10.2174/0115701638279362240223070810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 03/07/2024]
Abstract
INTRODUCTION Numerous clinical trials are currently investigating the potential of nitric oxide (NO) as an antiviral agent against coronaviruses, including SARS-CoV-2. Additionally, some researchers have reported positive effects of certain Sartans against SARS-CoV-2. METHOD Considering the impact of NO-Sartans on the cardiovascular system, we have compiled information on the general structure, synthesis methods, and biological studies of synthesized NOSartans. In silico evaluation of all NO-Sartans and approved sartans against three key SARS-CoV- -2 targets, namely Mpro (PDB ID: 6LU7), NSP16 (PDB ID: 6WKQ), and ACE-2 (PDB ID: 1R4L), was performed using MOE. RESULTS Almost all NO-Sartans and approved sartans demonstrated promising results in inhibiting these SARS-CoV-2 targets. Compound 36 (CLC-1280) showed the best docking scores against the three evaluated targets and was further evaluated using molecular dynamics (MD) simulations. CONCLUSION Based on our in silico studies, CLC-1280 (a Valsartan dinitrate) has the potential to be considered as an inhibitor of the SARS-CoV-2 virus. However, further in vitro and in vivo evaluations are necessary for the drug development process.
Collapse
Affiliation(s)
- Negar Omidkhah
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Razieh Ghodsi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard University, New Delhi, 110062, India
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
23
|
González JEH, Salas-Sarduy E, Alvarez LH, Valiente PA, Arni RK, Pascutti PG. Three Decades of Targeting Falcipains to Develop Antiplasmodial Agents: What have we Learned and What can be Done Next? Curr Med Chem 2024; 31:2234-2263. [PMID: 37711130 DOI: 10.2174/0929867331666230913165219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/06/2023] [Accepted: 07/25/2023] [Indexed: 09/16/2023]
Abstract
Malaria is a devastating infectious disease that affects large swathes of human populations across the planet's tropical regions. It is caused by parasites of the genus Plasmodium, with Plasmodium falciparum being responsible for the most lethal form of the disease. During the intraerythrocytic stage in the human hosts, malaria parasites multiply and degrade hemoglobin (Hb) using a battery of proteases, which include two cysteine proteases, falcipains 2 and 3 (FP-2 and FP-3). Due to their role as major hemoglobinases, FP-2 and FP-3 have been targeted in studies aiming to discover new antimalarials and numerous inhibitors with activity against these enzymes, and parasites in culture have been identified. Nonetheless, cross-inhibition of human cysteine cathepsins remains a serious hurdle to overcome for these compounds to be used clinically. In this article, we have reviewed key functional and structural properties of FP-2/3 and described different compound series reported as inhibitors of these proteases during decades of active research in the field. Special attention is also paid to the wide range of computer-aided drug design (CADD) techniques successfully applied to discover new active compounds. Finally, we provide guidelines that, in our understanding, will help advance the rational discovery of new FP-2/3 inhibitors.
Collapse
Affiliation(s)
- Jorge Enrique Hernández González
- Multiuser Center for Biomolecular Innovation, IBILCE/UNESP, São José do Rio Preto, SP, Brazil
- Department of Pharmaceutical Sciences, UZA II, University of Vienna, Vienna, 1090, Austria
| | - Emir Salas-Sarduy
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo Ugalde, Universidad Nacional de San Martín, CONICET, San Martín, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnología (EByN), Universidad de San Martín (UNSAM), San Martín, Buenos Aires, Argentina
| | | | - Pedro Alberto Valiente
- Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Canada
| | | | - Pedro Geraldo Pascutti
- Laboratório de Modelagem e Dinâmica Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, Brazil
| |
Collapse
|
24
|
Guo H, Yang H, Di C, Xu F, Sun H, Xu Y, Liu H, Wu L, Ding K, Zhang T, Xie L, Wang G, Liang Y. Identification and Validation of Active Ingredient in Cerebrotein Hydrolysate-I Based on Pharmacokinetic and Pharmacodynamic Studies. Drug Metab Dispos 2023; 51:1615-1627. [PMID: 37758480 DOI: 10.1124/dmd.123.001443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/01/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023] Open
Abstract
Cerebrotein hydrolysate-1 (CH-1), a mixture of small peptides, polypeptides, and various amino acids derived from porcine brain, has been widely used in the treatment of cerebral injury. However, the bioactive composition and pharmacokinetics of CH-1 are still unexplored because of their complicated composition and relatively tiny amounts in vivo. Herein, NanoLC Orbitrap Fusion Lumos Tribrid Mass Spectrometer was firstly used to qualitatively analyze the components of CH-1. A total of 1347 peptides were identified, of which 43 peptides were characterized by high mass spectrometry (MS) intensity and identification accuracy. We then innovatively synthesized four main peptides for activity verification, and the results suggested that Pep72 (NYEPPTVVPGGDL) had the strongest neuroprotective effect on both in vivo and in vitro models. Next, a quantitative method for Pep72 was established based on liquid chromatography tandem mass spectrometry (LC-MS/MS) with the aid of Skyline software and then used in its pharmacokinetic studies. The results revealed that Pep72 had a high elimination rate and low exposure in rats. In addition, a hCMEC/D3-based in vitro model was built and firstly used to investigate the transport of Pep72. We found that Pep72 had extremely low blood-brain barrier permeability and was not a substrate of efflux transporters. The biotransformation of Pep72 in rat fresh plasma and tissues was investigated to explore the contradiction between pharmacokinetics and efficacy. A total of 11 main metabolites were structurally identified, with PGGDL and EPPTVPGGDL being the main metabolites of Pep72. Notably, metalloproteinase and cysteine protease were confirmed to be the main enzymes mediating Pep72 metabolism in rat tissues. SIGNIFICANCE STATEMENT: The NanoLC Orbitrap Fusion Lumos Tribrid Mass Spectrometer was firstly applied to discover the components of CH-1, and one main peptide Pep72 (NYEPPTVVPGGDL) was innovatively synthesized and firstly found to have the strongest neuroprotective effect among 1347 peptides identified from CH-1. Our study is the first time to identify and verify the active ingredient of CH-1 from the perspective of pharmacokinetics and pharmacodynamics, and provides a systematic technical platforms and strategies for the active substance research of other protein hydrolysates.
Collapse
Affiliation(s)
- Huimin Guo
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (H.G., H.Y., H.S., Y.X., H.L., L.W., K.D., T.Z., L.X., G.W., Y.L.) and Hebei Zhitong Biopharmaceutical Co., Ltd, Baoding, China (C.D., F.X.)
| | - Huizhu Yang
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (H.G., H.Y., H.S., Y.X., H.L., L.W., K.D., T.Z., L.X., G.W., Y.L.) and Hebei Zhitong Biopharmaceutical Co., Ltd, Baoding, China (C.D., F.X.)
| | - Chanjuan Di
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (H.G., H.Y., H.S., Y.X., H.L., L.W., K.D., T.Z., L.X., G.W., Y.L.) and Hebei Zhitong Biopharmaceutical Co., Ltd, Baoding, China (C.D., F.X.)
| | - Feng Xu
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (H.G., H.Y., H.S., Y.X., H.L., L.W., K.D., T.Z., L.X., G.W., Y.L.) and Hebei Zhitong Biopharmaceutical Co., Ltd, Baoding, China (C.D., F.X.)
| | - Hong Sun
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (H.G., H.Y., H.S., Y.X., H.L., L.W., K.D., T.Z., L.X., G.W., Y.L.) and Hebei Zhitong Biopharmaceutical Co., Ltd, Baoding, China (C.D., F.X.)
| | - Yexin Xu
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (H.G., H.Y., H.S., Y.X., H.L., L.W., K.D., T.Z., L.X., G.W., Y.L.) and Hebei Zhitong Biopharmaceutical Co., Ltd, Baoding, China (C.D., F.X.)
| | - Huafang Liu
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (H.G., H.Y., H.S., Y.X., H.L., L.W., K.D., T.Z., L.X., G.W., Y.L.) and Hebei Zhitong Biopharmaceutical Co., Ltd, Baoding, China (C.D., F.X.)
| | - Linlin Wu
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (H.G., H.Y., H.S., Y.X., H.L., L.W., K.D., T.Z., L.X., G.W., Y.L.) and Hebei Zhitong Biopharmaceutical Co., Ltd, Baoding, China (C.D., F.X.)
| | - Ke Ding
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (H.G., H.Y., H.S., Y.X., H.L., L.W., K.D., T.Z., L.X., G.W., Y.L.) and Hebei Zhitong Biopharmaceutical Co., Ltd, Baoding, China (C.D., F.X.)
| | - Tingting Zhang
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (H.G., H.Y., H.S., Y.X., H.L., L.W., K.D., T.Z., L.X., G.W., Y.L.) and Hebei Zhitong Biopharmaceutical Co., Ltd, Baoding, China (C.D., F.X.)
| | - Lin Xie
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (H.G., H.Y., H.S., Y.X., H.L., L.W., K.D., T.Z., L.X., G.W., Y.L.) and Hebei Zhitong Biopharmaceutical Co., Ltd, Baoding, China (C.D., F.X.)
| | - Guangji Wang
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (H.G., H.Y., H.S., Y.X., H.L., L.W., K.D., T.Z., L.X., G.W., Y.L.) and Hebei Zhitong Biopharmaceutical Co., Ltd, Baoding, China (C.D., F.X.)
| | - Yan Liang
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (H.G., H.Y., H.S., Y.X., H.L., L.W., K.D., T.Z., L.X., G.W., Y.L.) and Hebei Zhitong Biopharmaceutical Co., Ltd, Baoding, China (C.D., F.X.)
| |
Collapse
|
25
|
Cosgrove B, Grant EK, Bertrand S, Down KD, Somers DO, P Evans J, Tomkinson NCO, Barker MD. Covalent targeting of non-cysteine residues in PI4KIIIβ. RSC Chem Biol 2023; 4:1111-1122. [PMID: 38033723 PMCID: PMC10685791 DOI: 10.1039/d3cb00142c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/11/2023] [Indexed: 12/02/2023] Open
Abstract
The synthesis and characterisation of fluorosulfate covalent inhibitors of the lipid kinase PI4KIIIβ is described. The conserved lysine residue located within the ATP binding site was targeted, and optimised compounds based upon reversible inhibitors with good activity and physicochemical profile showed strong reversible interactions and slow onset times for the covalent inhibition, resulting in an excellent selectivity profile for the lipid kinase target. X-Ray crystallography demonstrated a distal tyrosine residue could also be targeted using a fluorosulfate strategy. Combination of this knowledge showed that a dual covalent inhibitor could be developed which reveals potential in addressing the challenges associated with drug resistant mutations.
Collapse
Affiliation(s)
- Brett Cosgrove
- Medicinal Chemistry, GlaxoSmithKline Medicines Research Centre Stevenage SG1 2NY UK
- Department of Pure and Applied Chemistry, University of Strathclyde Glasgow G1 1XL UK
| | - Emma K Grant
- Medicinal Chemistry, GlaxoSmithKline Medicines Research Centre Stevenage SG1 2NY UK
| | - Sophie Bertrand
- Medicinal Chemistry, GlaxoSmithKline Medicines Research Centre Stevenage SG1 2NY UK
| | - Kenneth D Down
- Medicinal Chemistry, GlaxoSmithKline Medicines Research Centre Stevenage SG1 2NY UK
| | - Don O Somers
- Structural and Biophysical Science, GlaxoSmithKline Medicines Research Centre Stevenage SG1 2NY UK
| | - John P Evans
- Screening, Profiling and Mechanistic Biology, GlaxoSmithKline Medicines Research Centre Stevenage SG1 2NY UK
| | | | - Michael D Barker
- Medicinal Chemistry, GlaxoSmithKline Medicines Research Centre Stevenage SG1 2NY UK
| |
Collapse
|
26
|
Barasa L, Thompson PR. Protein citrullination: inhibition, identification and insertion. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220240. [PMID: 37778377 PMCID: PMC10542963 DOI: 10.1098/rstb.2022.0240] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/26/2023] [Indexed: 10/03/2023] Open
Abstract
Protein citrullination is a post-translational modification (PTM) that is catalysed by the protein arginine deiminase (PAD) family of enzymes. This PTM involves the transformation of an arginine residue into citrulline. Protein citrullination is associated with several physiological processes, including the epigenetic regulation of gene expression, neutrophil extracellular trap formation and DNA damage-induced apoptosis. Aberrant protein citrullination is relevant to several autoimmune and neurodegenerative diseases and certain forms of cancer. PAD inhibitors have shown remarkable efficacy in a range of diseases including rheumatoid arthritis (RA), lupus, atherosclerosis and ulcerative colitis. In RA, anti-citrullinated protein antibodies can be detected prior to disease onset and are thus a valuable diagnostic tool for RA. Notably, citrullinated proteins may serve more generally as biomarkers of specific disease states; however, the identification of citrullinated protein residues remains challenging owing to the small 1 Da mass change that occurs upon citrullination. Herein, we highlight the progress made so far in the development of pan-PAD and isozyme selective inhibitors as well as the identification of citrullinated proteins and the site-specific incorporation of citrulline into proteins. This article is part of the Theo Murphy meeting issue 'The virtues and vices of protein citrullination'.
Collapse
Affiliation(s)
- Leonard Barasa
- Program in Chemical Biology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Paul R. Thompson
- Program in Chemical Biology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
27
|
Jelisejevs D, Bula AL, Kinena L. Pyrazolidinone-based peptidomimetic SARS-CoV-2 M pro inhibitors. Bioorg Med Chem Lett 2023; 96:129530. [PMID: 37866713 DOI: 10.1016/j.bmcl.2023.129530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/02/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
The main protease (Mpro) of SARS-CoV-2 is an attractive drug target for COVID-19 treatment as it plays an integral role in the proliferation of coronavirus. Herein, we describe the investigation of β- and γ-lactams as electrophilic "warheads" for covalent binding to Cys145 of the Mpro active site. The highest inhibitory activity (IC50 = 45 ± 3 μM) was achieved using a pyrazolidinone warhead attached to the targeting dipeptide. Importantly, the synergy of the warhead and the targeting dipeptide is crucial for the successful inhibition of Mpro.
Collapse
Affiliation(s)
- Daniels Jelisejevs
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Anna Lina Bula
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Linda Kinena
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia.
| |
Collapse
|
28
|
Verhelst SHL, Prothiwa M. Chemical Probes for Profiling of MALT1 Protease Activity. Chembiochem 2023; 24:e202300444. [PMID: 37607867 DOI: 10.1002/cbic.202300444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 08/24/2023]
Abstract
The paracaspase MALT1 is a key regulator of the human immune response. It is implicated in a variety of human diseases. For example, deregulated protease activity drives the survival of malignant lymphomas and is involved in the pathophysiology of autoimmune/inflammatory diseases. Thus, MALT1 has attracted attention as promising drug target. Although many MALT1 inhibitors have been identified, molecular tools to study MALT1 activity, target engagement and inhibition in complex biological samples, such as living cells and patient material, are still scarce. Such tools are valuable to validate MALT1 as a drug target in vivo and to assess yet unknown biological roles of MALT1. In this review, we discuss the recent literature on the development and biological application of molecular tools to study MALT1 activity and inhibition.
Collapse
Affiliation(s)
- Steven H L Verhelst
- Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Herestraat 49, box 901b, 3000, Leuven, Belgium
- Leibniz Institut für Analytische Wissenschaften - ISAS - e.V., Otto-Hahn Strasse 6b, 44227, Dortmund, Germany
| | - Michaela Prothiwa
- Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| |
Collapse
|
29
|
Uddin MJ, Overkleeft HS, Lentz CS. Activity-Based Protein Profiling in Methicillin-Resistant Staphylococcus aureus Reveals the Broad Reactivity of a Carmofur-Derived Probe. Chembiochem 2023; 24:e202300473. [PMID: 37552008 DOI: 10.1002/cbic.202300473] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/09/2023]
Abstract
Activity-based protein profiling is a powerful chemoproteomic technique to detect active enzymes and identify targets and off-targets of drugs. Here, we report the use of carmofur- and activity-based probes to identify biologically relevant enzymes in the bacterial pathogen Staphylococcus aureus. Carmofur is an anti-neoplastic prodrug of 5-fluorouracil and also has antimicrobial and anti-biofilm activity. Carmofur probes were originally designed to target human acid ceramidase, a member of the NTN hydrolase family with an active-site cysteine nucleophile. Here, we first profiled the targets of a fluorescent carmofur probe in live S. aureus under biofilm-promoting conditions and in liquid culture, before proceeding to target identification by liquid chromatography/mass spectrometry. Treatment with a carmofur-biotin probe led to enrichment of 20 enzymes from diverse families awaiting further characterization, including the NTN hydrolase-related IMP cyclohydrolase PurH. However, the probe preferentially labeled serine hydrolases, thus displaying a reactivity profile similar to that of carbamates. Our results suggest that the electrophilic N-carbamoyl-5-fluorouracil scaffold could potentially be optimized to achieve selectivity towards diverse enzyme families. The observed promiscuous reactivity profile suggests that the clinical use of carmofur presumably leads to inactivation of a number human and microbial enzymes, which could lead to side effects and/or contribute to therapeutic efficacy.
Collapse
Affiliation(s)
- Md Jalal Uddin
- Department of Medical Biology, UiT- The Arctic University of Norway, 9019, Tromsø, Norway
| | - Hermen S Overkleeft
- Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Christian S Lentz
- Department of Medical Biology, UiT- The Arctic University of Norway, 9019, Tromsø, Norway
| |
Collapse
|
30
|
Balakrishnan MH, Sureshbabu P, Korivi R, Mannathan S. Regioselective Synthesis of 3-Substituted Isocoumarin-1-imines via Palladium-Catalyzed Denitrogenative Transannulation of 1,2,3-Benzotriazin-4(3H)-ones and Terminal Alkynes. Chem Asian J 2023; 18:e202300726. [PMID: 37711073 DOI: 10.1002/asia.202300726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
A palladium-catalyzed denitrogenative transannulation strategy to access various 3-substituted isocoumarin-1-imine frameworks using 1,2,3-benzotriazin-4(3H)-ones and terminal alkynes is described. The reaction is highly regioselective and tolerates a wide range of functional groups. The reaction is believed to proceed via a five-membered palladacycle intermediate extruding environmentally benign molecular nitrogen as a by-product. The utility of this method was showcased through the one-pot synthesis of biologically relevant 3-substituted isocoumarin scaffolds.
Collapse
Affiliation(s)
- Madasamy Hari Balakrishnan
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
| | - Popuri Sureshbabu
- Department of Chemistry, SRM University AP, Amaravati, Andhra Pradesh, 522502, India
| | - Ramaraju Korivi
- Department of Chemistry, SRM University AP, Amaravati, Andhra Pradesh, 522502, India
| | | |
Collapse
|
31
|
de Munnik M, Lithgow J, Brewitz L, Christensen KE, Bates RH, Rodriguez-Miquel B, Schofield CJ. αβ,α'β'-Diepoxyketones are mechanism-based inhibitors of nucleophilic cysteine enzymes. Chem Commun (Camb) 2023; 59:12859-12862. [PMID: 37815791 PMCID: PMC10601815 DOI: 10.1039/d3cc02932h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/30/2023] [Indexed: 10/11/2023]
Abstract
Epoxides are an established class of electrophilic alkylating agents that react with nucleophilic protein residues. We report αβ,α'β'-diepoxyketones (DEKs) as a new type of mechanism-based inhibitors of nucleophilic cysteine enzymes. Studies with the L,D-transpeptidase LdtMt2 from Mycobacterium tuberculosis and the main protease from SARS-CoV-2 (Mpro) reveal that following epoxide ring opening by a nucleophilic cysteine, further reactions can occur, leading to irreversible alkylation.
Collapse
Affiliation(s)
- Mariska de Munnik
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Jasper Lithgow
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Lennart Brewitz
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Kirsten E Christensen
- Chemical Crystallography, Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Robert H Bates
- Tres Cantos Medicines Development Campus, GlaxoSmithKline, Calle Severo Ochoa 2, Tres Cantos, Madrid, Spain
| | - Beatriz Rodriguez-Miquel
- Tres Cantos Medicines Development Campus, GlaxoSmithKline, Calle Severo Ochoa 2, Tres Cantos, Madrid, Spain
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
32
|
Velasco-Saavedra MA, Mar-Antonio E, Aguayo-Ortiz R. Molecular Insights into the Covalent Binding of Zoxamide to the β-Tubulin of Botrytis cinerea. J Chem Inf Model 2023; 63:6386-6395. [PMID: 37802126 DOI: 10.1021/acs.jcim.3c00911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
Botrytis cinerea is a fungal plant pathogen that causes significant economic losses in the agricultural industry worldwide. Fungicides that target microtubules, such as carbendazim (CBZ), diethofencarb (DEF), and zoxamide (ZOX), are widely used in crop protection against this pathogen. These groups of compounds exert their fungicidal activity by disrupting the microtubule assembly by binding to the β-tubulin subunit, provoking cell-cycle arrest and cell death. However, with the appearance of isolates resistant to these compounds, it is necessary to search for new alternatives to control this pathogenic fungus. In this work, we gained insight into the binding and stability of these fungicides in the benzimidazole binding site of B. cinerea β-tubulin through different computational approaches. Our molecular dynamics simulation replicas showed that R enantiomers of ZOX and its analog RH-4032 had better interaction profiles at the site compared to S enantiomers. The simulations also revealed that while the R-isomer fungicides formed H-bonds with the main chain carbonyl of V236 or the side chain residue of S314, only CBZ interacted with E198. Previous experimental data have identified key mutations in B. cinerea's β-tubulin gene that lead to the development of resistance or, on the contrary, increased sensitivity for treatment with these fungicide compounds. In agreement with experimental findings, alchemical free energy calculations showed that E198A and E198V mutations in B. cinerea β-tubulin have high sensitivity to (R)-ZOX, whereas the E198K mutation decreased its affinity. Similarly, the results obtained explain the resistance to CBZ of B. cinerea isolates with E198A/V/K mutations and the insensitivity of the wild-type organism to DEF. Our work provides a deeper insight into the molecular mechanism of action of these fungicides, highlighting the importance of understanding the interaction profiles to develop more effective antifungal agents.
Collapse
Affiliation(s)
- M Andrés Velasco-Saavedra
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Efrén Mar-Antonio
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Rodrigo Aguayo-Ortiz
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
33
|
Li Q, Deng X, Xu YJ, Dong L. Development of Long-Acting Dipeptidyl Peptidase-4 Inhibitors: Structural Evolution and Long-Acting Determinants. J Med Chem 2023; 66:11593-11631. [PMID: 37647598 DOI: 10.1021/acs.jmedchem.3c00412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Considerable effort has been made to achieve less frequent dosing in the development of DPP-4 inhibitors. Enthusiasm for long-acting DPP-4 inhibitors is based on the promise that such agents with less frequent dosing regimens are associated with improved patient adherence, but the rational design of long-acting DPP-4 inhibitors remains a major challenge. In this Perspective, the development of long-acting DPP-4 inhibitors is comprehensively summarized to highlight the evolution of initial lead compounds on the path toward developing long-acting DPP-4 inhibitors over nearly three decades. The determinants for long duration of action are then examined, including the nature of the target, potency, binding kinetics, crystal structures, selectivity, and preclinical and clinical pharmacokinetic and pharmacodynamic profiles. More importantly, several possible approaches for the rational design of long-acting drugs are discussed. We hope that this information will facilitate the design and development of safer and more effective long-acting DPP-4 inhibitors and other oral drugs.
Collapse
Affiliation(s)
- Qing Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Xiaoyan Deng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Yan-Jun Xu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Lin Dong
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
34
|
Merle DA, Sen M, Armento A, Stanton CM, Thee EF, Meester-Smoor MA, Kaiser M, Clark SJ, Klaver CCW, Keane PA, Wright AF, Ehrmann M, Ueffing M. 10q26 - The enigma in age-related macular degeneration. Prog Retin Eye Res 2023; 96:101154. [PMID: 36513584 DOI: 10.1016/j.preteyeres.2022.101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
Abstract
Despite comprehensive research efforts over the last decades, the pathomechanisms of age-related macular degeneration (AMD) remain far from being understood. Large-scale genome wide association studies (GWAS) were able to provide a defined set of genetic aberrations which contribute to disease risk, with the strongest contributors mapping to distinct regions on chromosome 1 and 10. While the chromosome 1 locus comprises factors of the complement system with well-known functions, the role of the 10q26-locus in AMD-pathophysiology remains enigmatic. 10q26 harbors a cluster of three functional genes, namely PLEKHA1, ARMS2 and HTRA1, with most of the AMD-associated genetic variants mapping to the latter two genes. High linkage disequilibrium between ARMS2 and HTRA1 has kept association studies from reliably defining the risk-causing gene for long and only very recently the genetic risk region has been narrowed to ARMS2, suggesting that this is the true AMD gene at this locus. However, genetic associations alone do not suffice to prove causality and one or more of the 14 SNPs on this haplotype may be involved in long-range control of gene expression, leaving HTRA1 and PLEKHA1 still suspects in the pathogenic pathway. Both, ARMS2 and HTRA1 have been linked to extracellular matrix homeostasis, yet their exact molecular function as well as their role in AMD pathogenesis remains to be uncovered. The transcriptional regulation of the 10q26 locus adds an additional level of complexity, given, that gene-regulatory as well as epigenetic alterations may influence expression levels from 10q26 in diseased individuals. Here, we provide a comprehensive overview on the 10q26 locus and its three gene products on various levels of biological complexity and discuss current and future research strategies to shed light on one of the remaining enigmatic spots in the AMD landscape.
Collapse
Affiliation(s)
- David A Merle
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Department of Ophthalmology, Medical University of Graz, 8036, Graz, Austria.
| | - Merve Sen
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany
| | - Angela Armento
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany
| | - Chloe M Stanton
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Eric F Thee
- Department of Ophthalmology, Erasmus University Medical Center, 3015GD, Rotterdam, Netherlands; Department of Epidemiology, Erasmus University Medical Center, 3015CE, Rotterdam, Netherlands
| | - Magda A Meester-Smoor
- Department of Ophthalmology, Erasmus University Medical Center, 3015GD, Rotterdam, Netherlands; Department of Epidemiology, Erasmus University Medical Center, 3015CE, Rotterdam, Netherlands
| | - Markus Kaiser
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, 45117, Essen, Germany
| | - Simon J Clark
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus University Medical Center, 3015GD, Rotterdam, Netherlands; Department of Epidemiology, Erasmus University Medical Center, 3015CE, Rotterdam, Netherlands; Department of Ophthalmology, Radboudumc, 6525EX, Nijmegen, Netherlands; Institute of Molecular and Clinical Ophthalmology Basel, CH-4031, Basel, Switzerland
| | - Pearse A Keane
- Institute for Health Research, Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, London, EC1V 2PD, UK
| | - Alan F Wright
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Michael Ehrmann
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, 45117, Essen, Germany
| | - Marius Ueffing
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
35
|
Abdel-Rahman SA, Talagayev V, Pach S, Wolber G, Gabr MT. Discovery of Small-Molecule TIM-3 Inhibitors for Acute Myeloid Leukemia Using Pharmacophore-Based Virtual Screening. J Med Chem 2023; 66:11464-11475. [PMID: 37566998 DOI: 10.1021/acs.jmedchem.3c00960] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
T-cell immunoglobulin and mucin domain 3 (TIM-3) is a negative immune checkpoint that represents a promising target for cancer immunotherapy. Although encouraging results have been observed for TIM-3 inhibition in the context of acute myeloid leukemia (AML), targeting TIM-3 is currently restricted to monoclonal antibodies (mAbs). To fill this gap, we implemented a pharmacophore-based screening approach to identify small-molecule TIM-3 inhibitors. Our approach resulted in the identification of hit compounds with TIM-3 binding affinity. Subsequently, we used the structure-activity relationship (SAR) by a catalog approach to identify compound A-41 with submicromolar TIM-3 binding affinity. Remarkably, A-41 demonstrated the ability to block TIM-3 interactions with key ligands and inhibited the immunosuppressive function of TIM-3 using an in vitro coculture assay. This work will pave the way for future drug discovery efforts aiming at the development of small-molecule inhibitors TIM-3 for AML.
Collapse
Affiliation(s)
- Somaya A Abdel-Rahman
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, New York 10065, United States
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Valerij Talagayev
- Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Freie Universitaet Berlin, Berlin 14195, Germany
| | - Szymon Pach
- Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Freie Universitaet Berlin, Berlin 14195, Germany
| | - Gerhard Wolber
- Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Freie Universitaet Berlin, Berlin 14195, Germany
| | - Moustafa T Gabr
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, New York 10065, United States
| |
Collapse
|
36
|
Nicolau I, Hădade ND, Matache M, Funeriu DP. Synthetic Approaches of Epoxysuccinate Chemical Probes. Chembiochem 2023; 24:e202300157. [PMID: 37096389 DOI: 10.1002/cbic.202300157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 04/26/2023]
Abstract
Synthetic chemical probes are powerful tools for investigating biological processes. They are particularly useful for proteomic studies such as activity-based protein profiling (ABPP). These chemical methods initially used mimics of natural substrates. As the techniques gained prominence, more and more elaborate chemical probes with increased specificity towards given enzyme/protein families and amenability to various reaction conditions were used. Among the chemical probes, peptidyl-epoxysuccinates represent one of the first types of compounds used to investigate the activity of the cysteine protease papain-like family of enzymes. Structurally derived from the natural substrate, a wide body of inhibitors and activity- or affinity-based probes bearing the electrophilic oxirane unit for covalent labeling of active enzymes now exists. Herein, we review the literature regarding the synthetic approaches to epoxysuccinate-based chemical probes together with their reported applications, from biological chemistry and inhibition studies to supramolecular chemistry and the formation of protein arrays.
Collapse
Affiliation(s)
- Ioana Nicolau
- University of Bucharest, Faculty of Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, Research Centre of Applied Organic Chemistry, 90 Panduri Street, 050663, Bucharest, Romania
| | - Niculina D Hădade
- Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, Supramolecular and Organometallic Chemistry Centre, 11 Arany Janos Street, 400028, Cluj-Napoca, Romania
| | - Mihaela Matache
- University of Bucharest, Faculty of Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, Research Centre of Applied Organic Chemistry, 90 Panduri Street, 050663, Bucharest, Romania
| | - Daniel P Funeriu
- University of Bucharest, Faculty of Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, Research Centre of Applied Organic Chemistry, 90 Panduri Street, 050663, Bucharest, Romania
| |
Collapse
|
37
|
de Munnik M, Lang PA, De Dios Anton F, Cacho M, Bates RH, Brem J, Rodríguez Miquel B, Schofield CJ. High-throughput screen with the l,d-transpeptidase Ldt Mt2 of Mycobacterium tuberculosis reveals novel classes of covalently reacting inhibitors. Chem Sci 2023; 14:7262-7278. [PMID: 37416715 PMCID: PMC10321483 DOI: 10.1039/d2sc06858c] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/29/2023] [Indexed: 07/08/2023] Open
Abstract
Disruption of bacterial cell wall biosynthesis in Mycobacterium tuberculosis is a promising target for treating tuberculosis. The l,d-transpeptidase LdtMt2, which is responsible for the formation of 3 → 3 cross-links in the cell wall peptidoglycan, has been identified as essential for M. tuberculosis virulence. We optimised a high-throughput assay for LdtMt2, and screened a targeted library of ∼10 000 electrophilic compounds. Potent inhibitor classes were identified, including established (e.g., β-lactams) and unexplored covalently reacting electrophilic groups (e.g., cyanamides). Protein-observed mass spectrometric studies reveal most classes to react covalently and irreversibly with the LdtMt2 catalytic cysteine (Cys354). Crystallographic analyses of seven representative inhibitors reveal induced fit involving a loop enclosing the LdtMt2 active site. Several of the identified compounds have a bactericidal effect on M. tuberculosis within macrophages, one with an MIC50 value of ∼1 μM. The results provide leads for the development of new covalently reaction inhibitors of LdtMt2 and other nucleophilic cysteine enzymes.
Collapse
Affiliation(s)
- Mariska de Munnik
- Chemistry Research Laboratory, Department of Chemistry, the Ineos Oxford Institute of Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Pauline A Lang
- Chemistry Research Laboratory, Department of Chemistry, the Ineos Oxford Institute of Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Francisco De Dios Anton
- Tres Cantos Medicines Development Campus, GlaxoSmithKline Calle Severo Ochoa 2, Tres Cantos Madrid Spain
| | - Mónica Cacho
- Tres Cantos Medicines Development Campus, GlaxoSmithKline Calle Severo Ochoa 2, Tres Cantos Madrid Spain
| | - Robert H Bates
- Tres Cantos Medicines Development Campus, GlaxoSmithKline Calle Severo Ochoa 2, Tres Cantos Madrid Spain
| | - Jürgen Brem
- Chemistry Research Laboratory, Department of Chemistry, the Ineos Oxford Institute of Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Beatriz Rodríguez Miquel
- Tres Cantos Medicines Development Campus, GlaxoSmithKline Calle Severo Ochoa 2, Tres Cantos Madrid Spain
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry, the Ineos Oxford Institute of Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
38
|
Liu L, Bulla LA. Cell death signaling in Anopheles gambiae initiated by Bacillus thuringiensis Cry4B toxin involves Na +/K + ATPase. Exp Biol Med (Maywood) 2023; 248:1191-1205. [PMID: 37642306 PMCID: PMC10621475 DOI: 10.1177/15353702231188072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/10/2023] [Indexed: 08/31/2023] Open
Abstract
Identifying the mechanisms by which bacterial pathogens kill host cells is fundamental to understanding how to control and prevent human and animal disease. In the case of Bacillus thuringiensis (Bt), such knowledge is critical to using the bacterium to kill insect vectors that transmit human and animal disease. For the Cry4B toxin produced by Bt, its capacity to kill Anopheles gambiae, the primary mosquito vector of malaria, is the consequence of a variety of signaling activities. We show here that Cry4B, acting as first messenger, binds specifically to the bitopic cadherin BT-R3 G-protein-coupled receptor (GPCR) localized in the midgut of A. gambiae, activating the downstream second messenger cyclic adenosine monophosphate (cAMP). The direct result of the Cry4B-BT-R3 binding is the release of αs from the heterotrimeric αβγ-G-protein complex and its activation of adenylyl cyclase (AC). The upshot is an increased level of cAMP, which activates protein kinase A (PKA). The functional impact of cAMP-PKA signaling is the stimulation of Na+/K+-ATPase (NKA) which serves as an Na+/K+ pump to maintain proper gradients of extracellular Na+ and intracellular K+. Increased level of cAMP amplifies NKA and upsets normal ion concentration gradients. NKA, as a scaffolding protein, accelerates the first messenger signal to the nucleus, generating additional BT-R3 molecules and promoting their exocytotic trafficking to the cell membrane. Accumulation of BT-R3 on the cell surface facilitates recruitment of additional toxin molecules which, in turn, amplify the original signal in a cascade-like manner. This report provides the first evidence of a bacterial toxin using NKA via AC/PKA signaling to execute cell death.
Collapse
Affiliation(s)
- Li Liu
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080-3021 USA
| | - Lee A Bulla
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080-3021 USA
| |
Collapse
|
39
|
Serafim LF, Jayasinghe-Arachchige VM, Wang L, Rathee P, Yang J, Moorkkannur N S, Prabhakar R. Distinct chemical factors in hydrolytic reactions catalyzed by metalloenzymes and metal complexes. Chem Commun (Camb) 2023. [PMID: 37366367 DOI: 10.1039/d3cc01380d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The selective hydrolysis of the extremely stable phosphoester, peptide and ester bonds of molecules by bio-inspired metal-based catalysts (metallohydrolases) is required in a wide range of biological, biotechnological and industrial applications. Despite the impressive advances made in the field, the ultimate goal of designing efficient enzyme mimics for these reactions is still elusive. Its realization will require a deeper understanding of the diverse chemical factors that influence the activities of both natural and synthetic catalysts. They include catalyst-substrate complexation, non-covalent interactions and the electronic nature of the metal ion, ligand environment and nucleophile. Based on our computational studies, their roles are discussed for several mono- and binuclear metallohydrolases and their synthetic analogues. Hydrolysis by natural metallohydrolases is found to be promoted by a ligand environment with low basicity, a metal bound water and a heterobinuclear metal center (in binuclear enzymes). Additionally, peptide and phosphoester hydrolysis is dominated by two competing effects, i.e. nucleophilicity and Lewis acid activation, respectively. In synthetic analogues, hydrolysis is facilitated by the inclusion of a second metal center, hydrophobic effects, a biological metal (Zn, Cu and Co) and a terminal hydroxyl nucleophile. Due to the absence of the protein environment, hydrolysis by these small molecules is exclusively influenced by nucleophile activation. The results gleaned from these studies will enhance the understanding of fundamental principles of multiple hydrolytic reactions. They will also advance the development of computational methods as a predictive tool to design more efficient catalysts for hydrolysis, Diels-Alder reaction, Michael addition, epoxide opening and aldol condensation.
Collapse
Affiliation(s)
- Leonardo F Serafim
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| | | | - Lukun Wang
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| | - Parth Rathee
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| | - Jiawen Yang
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| | | | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
40
|
Ostrówka M, Duda-Madej A, Pietluch F, Mackiewicz P, Gagat P. Testing Antimicrobial Properties of Human Lactoferrin-Derived Fragments. Int J Mol Sci 2023; 24:10529. [PMID: 37445717 DOI: 10.3390/ijms241310529] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Lactoferrin, an iron-binding glycoprotein, plays a significant role in the innate immune system, with antibacterial, antivirial, antifungal, anticancer, antioxidant and immunomodulatory functions reported. It is worth emphasizing that not only the whole protein but also its derived fragments possess antimicrobial peptide (AMP) activity. Using AmpGram, a top-performing AMP classifier, we generated three novel human lactoferrin (hLF) fragments: hLF 397-412, hLF 448-464 and hLF 668-683, predicted with high probability as AMPs. For comparative studies, we included hLF 1-11, previously confirmed to kill some bacteria. With the four peptides, we treated three Gram-negative and three Gram-positive bacterial strains. Our results indicate that none of the three new lactoferrin fragments have antimicrobial properties for the bacteria tested, but hLF 1-11 was lethal against Pseudomonas aeruginosa. The addition of serine protease inhibitors with the hLF fragments did not enhance their activity, except for hLF 1-11 against P. aeruginosa, which MIC dropped from 128 to 64 µg/mL. Furthermore, we investigated the impact of EDTA with/without serine protease inhibitors and the hLF peptides on selected bacteria. We stress the importance of reporting non-AMP sequences for the development of next-generation AMP prediction models, which suffer from the lack of experimentally validated negative dataset for training and benchmarking.
Collapse
Affiliation(s)
- Michał Ostrówka
- Faculty of Biotechnology, University of Wrocław, Fryderyka Joliot-Curie 14a, 50-137 Wrocław, Poland
| | - Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wrocław Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland
| | - Filip Pietluch
- Faculty of Biotechnology, University of Wrocław, Fryderyka Joliot-Curie 14a, 50-137 Wrocław, Poland
| | - Paweł Mackiewicz
- Faculty of Biotechnology, University of Wrocław, Fryderyka Joliot-Curie 14a, 50-137 Wrocław, Poland
| | - Przemysław Gagat
- Faculty of Biotechnology, University of Wrocław, Fryderyka Joliot-Curie 14a, 50-137 Wrocław, Poland
| |
Collapse
|
41
|
Grigorenko BL, Polyakov IV, Khrenova MG, Giudetti G, Faraji S, Krylov AI, Nemukhin AV. Multiscale Simulations of the Covalent Inhibition of the SARS-CoV-2 Main Protease: Four Compounds and Three Reaction Mechanisms. J Am Chem Soc 2023; 145:13204-13214. [PMID: 37294056 DOI: 10.1021/jacs.3c02229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report the results of computational modeling of the reactions of the SARS-CoV-2 main protease (MPro) with four potential covalent inhibitors. Two of them, carmofur and nirmatrelvir, have shown experimentally the ability to inhibit MPro. Two other compounds, X77A and X77C, were designed computationally in this work. They were derived from the structure of X77, a non-covalent inhibitor forming a tight surface complex with MPro. We modified the X77 structure by introducing warheads capable of reacting with the catalytic cysteine residue in the MPro active site. The reaction mechanisms of the four molecules with MPro were investigated by quantum mechanics/molecular mechanics (QM/MM) simulations. The results show that all four compounds form covalent adducts with the catalytic cysteine Cys 145 of MPro. From the chemical perspective, the reactions of these four molecules with MPro follow three distinct mechanisms. The reactions are initiated by a nucleophilic attack of the thiolate group of the deprotonated cysteine residue from the catalytic dyad Cys145-His41 of MPro. In the case of carmofur and X77A, the covalent binding of the thiolate to the ligand is accompanied by the formation of the fluoro-uracil leaving group. The reaction with X77C follows the nucleophilic aromatic substitution SNAr mechanism. The reaction of MPro with nirmatrelvir (which has a reactive nitrile group) leads to the formation of a covalent thioimidate adduct with the thiolate of the Cys145 residue in the enzyme active site. Our results contribute to the ongoing search for efficient inhibitors of the SARS-CoV-2 enzymes.
Collapse
Affiliation(s)
- Bella L Grigorenko
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Russia
| | - Igor V Polyakov
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Russia
| | - Maria G Khrenova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow 119071, Russia
| | - Goran Giudetti
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States
| | - Shirin Faraji
- Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States
| | - Alexander V Nemukhin
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Russia
| |
Collapse
|
42
|
Atkinson BN, Willis NJ, Zhao Y, Patel C, Frew S, Costelloe K, Magno L, Svensson F, Jones EY, Fish PV. Designed switch from covalent to non-covalent inhibitors of carboxylesterase Notum activity. Eur J Med Chem 2023; 251:115132. [PMID: 36934521 PMCID: PMC10626578 DOI: 10.1016/j.ejmech.2023.115132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/14/2023] [Accepted: 01/15/2023] [Indexed: 01/22/2023]
Abstract
N-Acyl indolines 4 are potent, non-covalent Notum inhibitors developed from a covalent virtual screening hit 2a. The lead compounds were simple to synthesise, achieved excellent potency in a biochemical Notum-OPTS assay and restored Wnt signalling in a cell-based TCF/LEF reporter assay. Multiple high resolution X-ray structures established a common binding mode of these inhibitors with the indoline bound centred in the palmiteolate pocket with key interactions being aromatic stacking and a water mediated hydrogen bond to the oxyanion hole. These N-acyl indolines 4 will be useful tools for use in vitro studies to investigate the role of Notum in disease models, especially when paired with a structurally related covalent inhibitor (e.g. 4w and 2a). Overall, this study highlights the designed switch from covalent to non-covalent Notum inhibitors and so illustrates a complementary approach for hit generation and target inhibition.
Collapse
Affiliation(s)
- Benjamin N Atkinson
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London, WC1E 6BT, UK
| | - Nicky J Willis
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London, WC1E 6BT, UK
| | - Yuguang Zhao
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Chandni Patel
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London, WC1E 6BT, UK
| | - Sarah Frew
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London, WC1E 6BT, UK
| | - Kathryn Costelloe
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London, WC1E 6BT, UK
| | - Lorenza Magno
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London, WC1E 6BT, UK
| | - Fredrik Svensson
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London, WC1E 6BT, UK.
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Paul V Fish
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
43
|
Hua J, Garcia de Paco E, Linck N, Maurice T, Desrumaux C, Manoury B, Rassendren F, Ulmann L. Microglial P2X4 receptors promote ApoE degradation and contribute to memory deficits in Alzheimer's disease. Cell Mol Life Sci 2023; 80:138. [PMID: 37145189 PMCID: PMC10163120 DOI: 10.1007/s00018-023-04784-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/06/2023]
Abstract
Numerous evidences support that microglia contributes to the progression of Alzheimer's disease. P2X4 receptors are ATP-gated channels with high calcium permeability, which are de novo expressed in a subset of reactive microglia associated with various pathological contexts, contributing to microglial functions. P2X4 receptors are mainly localized in lysosomes and trafficking to the plasma membrane is tightly regulated. Here, we investigated the role of P2X4 in the context of Alzheimer's disease (AD). Using proteomics, we identified Apolipoprotein E (ApoE) as a specific P2X4 interacting protein. We found that P2X4 regulates lysosomal cathepsin B (CatB) activity promoting ApoE degradation; P2rX4 deletion results in higher amounts of intracellular and secreted ApoE in both bone-marrow-derived macrophage (BMDM) and microglia from APPswe/PSEN1dE9 brain. In both human AD brain and APP/PS1 mice, P2X4 and ApoE are almost exclusively expressed in plaque-associated microglia. In 12-month-old APP/PS1 mice, genetic deletion of P2rX4 reverses topographical and spatial memory impairment and reduces amount of soluble small aggregates of Aß1-42 peptide, while no obvious alteration of plaque-associated microglia characteristics is observed. Our results support that microglial P2X4 promotes lysosomal ApoE degradation, indirectly altering Aß peptide clearance, which in turn might promotes synaptic dysfunctions and cognitive deficits. Our findings uncover a specific interplay between purinergic signaling, microglial ApoE, soluble Aß (sAß) species and cognitive deficits associated with AD.
Collapse
Affiliation(s)
- Jennifer Hua
- IGF, Univ Montpellier, CNRS, INSERM, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Montpellier, France
| | - Elvira Garcia de Paco
- IGF, Univ Montpellier, CNRS, INSERM, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Montpellier, France
| | - Nathalie Linck
- IGF, Univ Montpellier, CNRS, INSERM, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Montpellier, France
| | - Tangui Maurice
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France
| | | | - Bénédicte Manoury
- Institut Necker Enfants Malades, INSERM, CNRS, Université de Paris, Paris, France
| | - François Rassendren
- IGF, Univ Montpellier, CNRS, INSERM, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Montpellier, France
| | - Lauriane Ulmann
- IGF, Univ Montpellier, CNRS, INSERM, Montpellier, France.
- LabEx Ion Channel Science and Therapeutics, Montpellier, France.
| |
Collapse
|
44
|
Marin E, Kornilov DA, Bukhdruker SS, Aleksenko VA, Manuvera VA, Zinovev EV, Kovalev KV, Shevtsov MB, Talyzina AA, Bobrovsky PA, Kuzmichev PK, Mishin AV, Gushchin IY, Lazarev VN, Borshchevskiy VI. Structural insights into thrombolytic activity of destabilase from medicinal leech. Sci Rep 2023; 13:6641. [PMID: 37095116 PMCID: PMC10126035 DOI: 10.1038/s41598-023-32459-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/28/2023] [Indexed: 04/26/2023] Open
Abstract
Destabilase from the medical leech Hirudo medicinalis belongs to the family of i-type lysozymes. It has two different enzymatic activities: microbial cell walls destruction (muramidase activity), and dissolution of the stabilized fibrin (isopeptidase activity). Both activities are known to be inhibited by sodium chloride at near physiological concentrations, but the structural basis remains unknown. Here we present two crystal structures of destabilase, including a 1.1 Å-resolution structure in complex with sodium ion. Our structures reveal the location of sodium ion between Glu34/Asp46 residues, which were previously recognized as a glycosidase active site. While sodium coordination with these amino acids may explain inhibition of the muramidase activity, its influence on previously suggested Ser49/Lys58 isopeptidase activity dyad is unclear. We revise the Ser49/Lys58 hypothesis and compare sequences of i-type lysozymes with confirmed destabilase activity. We suggest that the general base for the isopeptidase activity is His112 rather than Lys58. pKa calculations of these amino acids, assessed through the 1 μs molecular dynamics simulation, confirm the hypothesis. Our findings highlight the ambiguity of destabilase catalytic residues identification and build foundations for further research of structure-activity relationship of isopeptidase activity as well as structure-based protein design for potential anticoagulant drug development.
Collapse
Affiliation(s)
- Egor Marin
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | | | | | | | - Valentin A Manuvera
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Egor V Zinovev
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | | | | | - Anna A Talyzina
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Pavel A Bobrovsky
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | | | - Alexey V Mishin
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ivan Y Gushchin
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Vassili N Lazarev
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Valentin I Borshchevskiy
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
- Joint Institute for Nuclear Research, Dubna, Russia.
| |
Collapse
|
45
|
S M, S J, C P, A MTN, S G. Synthesis and screening of cyclic diketone indanedione derivatives as future scaffolds for neutrophil elastase inhibition. RSC Adv 2023; 13:11838-11852. [PMID: 37077993 PMCID: PMC10107027 DOI: 10.1039/d3ra00106g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/23/2023] [Indexed: 04/21/2023] Open
Abstract
Human neutrophil elastase (HNE) and proteinase 3 (Pr3) released from neutrophils at inflammatory sites are the major causes of pathogens in chronic obstructive pulmonary disease (COPD) and various lung tissue derangements, among which cystic fibrosis and blockade of airway passages are chronic. These proteolytic mediatory agents combined with induced oxidative reactions sustain pathogenicity. Cyclic diketone indane-1,3-dione derivatives were designed, and toxicity evaluation predictions were performed in silico. Benzimidazole and hydrazide derivatives of indanedione were synthesized and characterized. Synthesized compounds were run using neutrophil elastase inhibition assay protocols. The compounds exhibit considerable inhibition of neutrophil elastase enzymes.
Collapse
Affiliation(s)
- Meena S
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University Al Dawadmi Kingdom of Saudi Arabia
| | - Jubie S
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research Ooty Tamilnadu India
| | - Pramila C
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University Al Dawadmi Kingdom of Saudi Arabia
| | - Manal T N A
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University Al Dawadmi Kingdom of Saudi Arabia
| | - Gigi S
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University Al Dawadmi Kingdom of Saudi Arabia
| |
Collapse
|
46
|
Zmudzinski M, Malon O, Poręba M, Drąg M. Imaging of proteases using activity-based probes. Curr Opin Chem Biol 2023; 74:102299. [PMID: 37031620 DOI: 10.1016/j.cbpa.2023.102299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/24/2023] [Accepted: 03/08/2023] [Indexed: 04/11/2023]
Abstract
Proteases (proteolytic enzymes) are proteins that catalyze one of the most important biochemical reactions, namely the hydrolysis of the peptide bond in peptide and protein substrates. Therefore these molecular biocatalysts participate in virtually all living processes. The proper balance between intact and processed protease substrates enables to maintenance of homeostasis from a single-cell level to the whole living system. However, when the proteolytic activity is altered, this delicate balance is disturbed, which might lead to the development of a plethora of diseases. Given this, monitoring proteolytic activity is indispensable to understanding how proteases operate in disease lesions and how their altered catalytic activity might be harnessed for a better diagnosis and treatment. In this manuscript, we provide a critical review of the recent development of protease chemical probes which are small molecules that detect proteolytic activity by interacting with protease active site, individual proteases as well as complex proteolytic networks.
Collapse
Affiliation(s)
- Mikolaj Zmudzinski
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wrocław, Poland
| | - Oliwia Malon
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wrocław, Poland
| | - Marcin Poręba
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wrocław, Poland.
| | - Marcin Drąg
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wrocław, Poland.
| |
Collapse
|
47
|
Patra J, Rana D, Arora S, Pal M, Mahindroo N. Falcipains: Biochemistry, target validation and structure-activity relationship studies of inhibitors as antimalarials. Eur J Med Chem 2023; 252:115299. [PMID: 36996716 DOI: 10.1016/j.ejmech.2023.115299] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/04/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023]
Abstract
Malaria is a tropical disease with significant morbidity and mortality burden caused by Plasmodium species in Africa, the Middle East, Asia, and South America. Pathogenic Plasmodium species have lately become increasingly resistant to approved chemotherapeutics and combination therapies. Therefore, there is an emergent need for identifying new druggable targets and novel chemical classes against the parasite. Falcipains, cysteine proteases required for heme metabolism in the erythrocytic stage, have emerged as promising drug targets against Plasmodium species that infect humans. This perspective discusses the biology, biochemistry, structural features, and genetics of falcipains. The efforts to identify selective or dual inhibitors and their structure-activity relationships are reviewed to give a perspective on the design of novel compounds targeting falcipains for antimalarial activity evaluating reasons for hits and misses for this important target.
Collapse
Affiliation(s)
- Jeevan Patra
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Energy Acres, Bidholi, Via Prem Nagar, Uttarakhand, 248007, India
| | - Devika Rana
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh, 173229, India
| | - Smriti Arora
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Energy Acres, Bidholi, Via Prem Nagar, Uttarakhand, 248007, India
| | - Mintu Pal
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Bathinda, Punjab, 151001, India
| | - Neeraj Mahindroo
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Energy Acres, Bidholi, Via Prem Nagar, Uttarakhand, 248007, India; School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, 124 Paud Road, Kothrud, Pune, Maharashtra, 411038, India.
| |
Collapse
|
48
|
Modrzycka S, Kołt S, Adams TE, Potoczek S, Huntington JA, Kasperkiewicz P, Drąg M. Fluorescent Activity-Based Probe To Image and Inhibit Factor XIa Activity in Human Plasma. J Med Chem 2023; 66:3785-3797. [PMID: 36898159 PMCID: PMC10041521 DOI: 10.1021/acs.jmedchem.2c00845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Anticoagulation therapy is a mainstay of the treatment of thrombotic disorders; however, conventional anticoagulants trade antithrombotic benefits for bleeding risk. Factor (f) XI deficiency, known as hemophilia C, rarely causes spontaneous bleeding, suggesting that fXI plays a limited role in hemostasis. In contrast, individuals with congenital fXI deficiency display a reduced incidence of ischemic stroke and venous thromboembolism, indicating that fXI plays a role in thrombosis. For these reasons, there is intense interest in pursuing fXI/factor XIa (fXIa) as targets for achieving antithrombotic benefit with reduced bleeding risk. To obtain selective inhibitors of fXIa, we employed libraries of natural and unnatural amino acids to profile fXIa substrate preferences. We developed chemical tools for investigating fXIa activity, such as substrates, inhibitors, and activity-based probes (ABPs). Finally, we demonstrated that our ABP selectively labels fXIa in the human plasma, making this tool suitable for further studies on the role of fXIa in biological samples.
Collapse
Affiliation(s)
- Sylwia Modrzycka
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Sonia Kołt
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Ty E Adams
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, U.K
| | - Stanisław Potoczek
- Department of Haematology, Blood Neoplasms, and Bone Marrow Transplantation, Wrocław Medical University, Pasteura 1, 50-367 Wrocław, Poland
| | - James A Huntington
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, U.K
| | - Paulina Kasperkiewicz
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Marcin Drąg
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
49
|
Rodríguez-Banqueri A, Moliner-Culubret M, Mendes SR, Guevara T, Eckhard U, Gomis-Rüth FX. Structural insights into latency of the metallopeptidase ulilysin (lysargiNase) and its unexpected inhibition by a sulfonyl-fluoride inhibitor of serine peptidases. Dalton Trans 2023; 52:3610-3622. [PMID: 36857690 DOI: 10.1039/d3dt00458a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Peptidases are regulated by latency and inhibitors, as well as compatibilization and cofactors. Ulilysin from Methanosarcina acetivorans, also called lysargiNase, is an archaeal metallopeptidase (MP) that is biosynthesized as a zymogen with a 60-residue N-terminal prosegment (PS). In the presence of calcium, it self-activates to yield the mature enzyme, which specifically cleaves before basic residues and thus complements trypsin in proteomics workflows. Here, we obtained a low-resolution crystal structure of proulilysin, in which 28 protomers arranged as 14 dimers form a continuous double helix of 544 Å pitch that parallels cell axis b of the crystal. The PS includes two α-helices and obstructs the active-site cleft of the catalytic domain (CD) by traversing it in the opposite orientation of a substrate, and a cysteine blocks the catalytic zinc according to a "cysteine-switch mechanism". Moreover, the PS interacts through its first helix with an "S-loop" of the CD, which acts as an "activation segment" that lacks one of two essential calcium cations. Upon PS removal during maturation, the S-loop adopts its competent conformation and binds the second calcium ion. Next, we found that in addition to general MP inhibitors, ulilysin was competitively and reversibly inhibited by 4-(2-aminoethyl)benzenesulfonyl fluoride (AEBSF; Ki = 4 μM). This is a compound that normally forms an irreversible covalent complex with serine peptidases but does not inhibit MPs. A high-resolution crystal structure of the complex revealed that the inhibitor penetrates the specificity pocket of ulilysin. A primary amine of the inhibitor salt-bridges an aspartate at the pocket bottom, thus mimicking the basic side chain of substrates. In contrast, the sulfonyl fluoride warhead is not involved and the catalytic zinc ion is freely accessible. Thus, the usage of inhibitor cocktails of peptidases, which typically contain AEBSF at ∼25-fold higher concentrations than the determined Ki, should be avoided when working with ulilysin. Finally, the structure of the complex, which occurred as a crystallographic dimer recurring in previous mature ulilysin structures, unveiled an N-terminal product fragment that delineated the non-primed side of the cleft. These results complement prior structures of ulilysin with primed-side product fragments and inhibitors.
Collapse
Affiliation(s)
- Arturo Rodríguez-Banqueri
- Proteolysis Laboratory; Department of Structural and Molecular Biology; Molecular Biology Institute of Barcelona (IBMB), Higher Scientific Research Council (CSIC); Barcelona Science Park; c/Baldiri Reixac 4-8, Tower R, 08028 Barcelona, Catalonia, Spain.
| | - Marina Moliner-Culubret
- Proteolysis Laboratory; Department of Structural and Molecular Biology; Molecular Biology Institute of Barcelona (IBMB), Higher Scientific Research Council (CSIC); Barcelona Science Park; c/Baldiri Reixac 4-8, Tower R, 08028 Barcelona, Catalonia, Spain.
| | - Soraia R Mendes
- Proteolysis Laboratory; Department of Structural and Molecular Biology; Molecular Biology Institute of Barcelona (IBMB), Higher Scientific Research Council (CSIC); Barcelona Science Park; c/Baldiri Reixac 4-8, Tower R, 08028 Barcelona, Catalonia, Spain.
| | - Tibisay Guevara
- Proteolysis Laboratory; Department of Structural and Molecular Biology; Molecular Biology Institute of Barcelona (IBMB), Higher Scientific Research Council (CSIC); Barcelona Science Park; c/Baldiri Reixac 4-8, Tower R, 08028 Barcelona, Catalonia, Spain.
| | - Ulrich Eckhard
- Proteolysis Laboratory; Department of Structural and Molecular Biology; Molecular Biology Institute of Barcelona (IBMB), Higher Scientific Research Council (CSIC); Barcelona Science Park; c/Baldiri Reixac 4-8, Tower R, 08028 Barcelona, Catalonia, Spain.
| | - F Xavier Gomis-Rüth
- Proteolysis Laboratory; Department of Structural and Molecular Biology; Molecular Biology Institute of Barcelona (IBMB), Higher Scientific Research Council (CSIC); Barcelona Science Park; c/Baldiri Reixac 4-8, Tower R, 08028 Barcelona, Catalonia, Spain.
| |
Collapse
|
50
|
Fang B, Chen X, Zhou X, Hu X, Luo Y, Xu Z, Zhou CH, Meng JP, Chen ZZ, Hu C. Highly potent Platinum(IV) complexes with multiple-bond ligands targeting mitochondria to overcome cisplatin resistance. Eur J Med Chem 2023; 250:115235. [PMID: 36863226 DOI: 10.1016/j.ejmech.2023.115235] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023]
Abstract
The efficacy and resistance of cisplatin-based compounds are very intractable problems at present. This study reports a series of platinum(IV) compounds containing multiple-bond ligands, which exhibited better tumor cell inhibitory activity and antiproliferative and anti-metastasis activities than cisplatin. The meta-substituted compounds 2 and 5 were particularly excellent. Further research showed that compounds 2 and 5 possessed appropriate reduction potential and performed significantly better than cisplatin in cellular uptake, reactive oxygen species response, the up-regulation of apoptosis and DNA lesion-related genes, and drug-resistant cell activity. The title compounds exhibited better antitumor potential and fewer side effects than cisplatin in vivo. Multiple-bond ligands were introduced into cisplatin to form the title compounds in this study, which not only enhanced their absorption and overcame drug resistance but also demonstrated the potential to target mitochondria and inhibit the detoxification of tumor cells.
Collapse
Affiliation(s)
- Bo Fang
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, International Academy of Targeted Therapeutics and Innovation, College of Pharmacy, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Xue Chen
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, International Academy of Targeted Therapeutics and Innovation, College of Pharmacy, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Xingui Zhou
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, International Academy of Targeted Therapeutics and Innovation, College of Pharmacy, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Xindan Hu
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, International Academy of Targeted Therapeutics and Innovation, College of Pharmacy, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Yan Luo
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, International Academy of Targeted Therapeutics and Innovation, College of Pharmacy, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Zhigang Xu
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, International Academy of Targeted Therapeutics and Innovation, College of Pharmacy, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Jiang-Ping Meng
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, International Academy of Targeted Therapeutics and Innovation, College of Pharmacy, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Zhong-Zhu Chen
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, International Academy of Targeted Therapeutics and Innovation, College of Pharmacy, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Chunsheng Hu
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, International Academy of Targeted Therapeutics and Innovation, College of Pharmacy, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| |
Collapse
|