1
|
Deng C, Ma L, Liu J, Han X, Zhang Q, Jin J, Li Y, Huang S. Metal alkoxides: A new type of reversible anode materials for stable and high-rate lithium-ion batteries. J Colloid Interface Sci 2024; 675:806-814. [PMID: 39002231 DOI: 10.1016/j.jcis.2024.07.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Metal-organic compounds have attracted significant attention for lithium-ion battery (LIB) anodes. However, their practical application is severely hindered by the poor structural stability and sluggish Li+ reaction kinetics. Herein, we proposed a new type of metal-organic compound, metal alkoxides, for high-performance LIBs. A series of metal-alkoxide/graphene composites with different transition metal centers and alkoxide anions are prepared to investigate the structural stability, Li-storage ability, and Li+ diffusion kinetics. The results reveal that the metal centers and alkoxide anions have significant influence on the structural stability, molar mass, and electronic structures, which are highly related to the Li-storage performance. Among them, Co-EG/rGO (EG represents the ethylene glycol anion) delivers the best performance involving high specific capacity (975 mAh g-1 at 0.2 A g-1), excellent rate capability (400.8 mAh g-1 at 10 A g-1), and stable cycling performance (86.8 % capacity retention after 600 cycles) due to its stable structure, smaller molar mass, and favorable electronic structure. Moreover, the Li-storage mechanism and solid electrolyte interphase (SEI) evolution of the Co-EG/rGO electrode are studied in detail through multiple ex-situ/in-situ characterizations. This work provides a new type of metal alkoxide anode material for high-rate and long-life LIBs toward practical energy applications.
Collapse
Affiliation(s)
- Chengjiang Deng
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Liuyuan Ma
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Jiayan Liu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Xiaoyan Han
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Qing Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Jun Jin
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yu Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Shaozhuan Huang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China.
| |
Collapse
|
2
|
Zhou H, Li H, Feng S, Yan S, Zhou X, Zhang W, Guo Y, Jiang K, Wang K. Liquid Bi-Sb-Sn Electrodes with Synergistic Stabilization Mechanism for Long-Lifespan Sodium-Based Liquid Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58668-58676. [PMID: 39417354 DOI: 10.1021/acsami.4c12881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Sodium-based liquid metal batteries are well suited for stationary energy storage due to their long life, intrinsic safety, and ease of scale-up. However, the irreversible alloying reaction between the positive current collector (PCC) and the cathodes at high temperatures leads to severe capacity degradation of the battery, severely limiting its scale-up application. In this work, a Bi-Sb-Sn alloy cathode based on a synergistic stabilization mechanism was designed for the first time. Due to the density difference of Bi, Sb, and Sn and the compatibility difference of Bi and Sn with the PCC, a part of Bi and Sn is spontaneously distributed in the region close to the PCC. The protection of Sb is realized by blocking the contact of Sb with the PCC as well as removing the PCC material dissolved in the cathode to prevent the loss of active material. Based on such protection, the Na||Bi36Sb24Sn40 cell maintained 99% Coulombic efficiency for 450 cycles at a rate of 0.75 C, with a capacity retention of 99.56% and a capacity decay rate of 0.001% per cycle. In addition, the interaction of Bi, Sb, and Sn during discharge also promotes capacity release and energy efficiency. At 0.3 C, the Na||Bi36Sb24Sn40 cell achieved 89% capacity utilization and 82% energy efficiency. These results provide an idea for the design of other batteries based on liquid metal electrodes.
Collapse
Affiliation(s)
- Hao Zhou
- State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Haomiao Li
- State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shaoming Feng
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shuai Yan
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xianbo Zhou
- State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Weixin Zhang
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yewei Guo
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Kai Jiang
- State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Kangli Wang
- State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
3
|
Wang Z, Xiao H. Fleeting-Active-Site-Thrust Oxygen Evolution Reaction by Iron Cations from the Electrolyte. J Am Chem Soc 2024; 146:29540-29550. [PMID: 39411826 DOI: 10.1021/jacs.4c09585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Oxygen evolution reaction (OER) is key to sustainable energy and environmental engineering, thus necessitating rational design of high-performing electrocatalysts that requires understanding the structure-performance relationship with a possible dynamic nature under working conditions. Herein, we uncover a novel type of OER mechanisms thrust by the fleeting active sites (FASs) dynamically formed on Ni-based layered double hydroxides (Ni-LDHs) by Fe cations from the electrolyte under OER potentials. We employ grand-canonical ensemble methods and microkinetic modeling to elucidate the potential-dependent structures of FASs on Ni-LDHs and demonstrate that the fleeting-active-site-thrust (FAST) mechanism delivers superior OER activity via the FAST intramolecular oxygen coupling pathway, which also suppresses the lattice oxygen mechanism, leading to improved operando stability of Ni-LDHs. We further reveal that introducing only trace-level loadings (10-100 ppm) of FASs on Ni-LDHs can significantly boost and govern the catalytic performance for OER. This underscores the crucial importance of considering the novel FAST mechanism in OER and also suggests the electrolyte as a key part of the structure-performance relationship as well as an effective design strategy via engineering the electrolyte.
Collapse
Affiliation(s)
- Zeyu Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hai Xiao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Xu J, Wang Y, Yu X, Fang J, Yue X, Galvão BRL, Li J. Single-Atom Doped Fullerene (MN 4-C 54) as Bifunctional Catalysts for the Oxygen Reduction and Oxygen Evolution Reactions. J Phys Chem A 2024; 128:9167-9174. [PMID: 39395011 DOI: 10.1021/acs.jpca.4c03413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Development of high-performance oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) catalysts is crucial to realizing the electrolytic water cycle. C60 is an ideal substrate material for single atom catalysts (SACs) due to its unique electron-withdrawing properties and spherical structure. In this work, we screened for a novel single-atom catalyst based on C60, which anchored transition metal atoms in the C60 molecule by coordination with N atoms. Through first-principles calculations, we evaluated the stability and activity of MN4-C54 (M = Fe, Co, Ni, Cu, Rh, Ru, Pd, Ag, Pt, Ir, Au). The results indicate that CuN4-C54, which is based only on earth-abundant elements, exhibited low overpotentials of 0.46 and 0.47 V for the OER and ORR, respectively, and was considered a promising bifunctional catalyst, showing better performance than the noble-metal ones. In addition, according to the linear relationship of intermediates, we established volcano plots to describe the activity trends of the OER and ORR on MN4-C54. Finally, d-band center and crystal orbital Hamiltonian populations methods were used to explain the catalytic origin. Suitable d-band centers lead to moderate adsorption strength, further leading to good catalytic performances.
Collapse
Affiliation(s)
- Junkai Xu
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Yunhao Wang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Xiaoxue Yu
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Jianjun Fang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Xianfang Yue
- Department of Physics and Information Engineering, Jining University, Qufu 273155, China
| | - Breno R L Galvão
- Centro Federal de Educação Tecnológica de Minas Gerais, CEFET-MG, Av. Amazonas 5253, 30421-169 Belo Horizonte, Minas Gerais Brazil
| | - Jing Li
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| |
Collapse
|
5
|
Patel R, Huang Q, Li B, Crawford A, Sivakumar BM, Song C, Jiang Z, Platt A, Fatih K, Reed D. Reliability studies of vanadium redox flow batteries: upper limit voltage effect. RSC Adv 2024; 14:34381-34389. [PMID: 39469020 PMCID: PMC11515847 DOI: 10.1039/d4ra04713c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
All-vanadium redox flow batteries (VRFBs) show promise as a long-duration energy storage (LDES) technology in grid applications. However, the continual performance fading over time poses a significant obstacle for VRFBs. This study systematically investigates the impact of increased upper limit voltage (1.6 V, 1.7 V, and 1.8 V) in the reliability and degradation of a scaled VRFB cell (49 cm2) over long-term testing (500+ cycles). The findings indicate that higher upper voltages significantly decrease capacity and voltage efficiencies. Although electrolyte remixing can restore the majority of the capacity, it only partially recovers voltage efficiency at 1.7 V and 1.8 V, suggesting substantial cell degradation. Analysis reveals that the overpotential increase induced degradation is mainly contributed by the anode during charging and the cathode during discharging. Increased upper voltage amplifies degradation, with the anode being more affected. As confirmed by electrochemical impedance spectroscopy (EIS) and polarization curves, elevated voltages lead to significant resistance increases, driven by charge transfer resistance (mostly from the anode). Moreover, the morphological, surficial, and electrochemical characterization results of cycled electrodes suggest that the degree and mode of degradation were contingent upon the cutoff voltage. For instance, the cathode experienced severe surface degradation at the maximal upper voltage of 1.8 V. This work highlights the importance of optimizing voltage limits to improve the lifetime of VRFBs and offers valuable insights into the development of predictive models through using accelerated stressor lifetime testing (ASLT) protocols for VRFBs.
Collapse
Affiliation(s)
- Rajankumar Patel
- Battery Materials & Systems Group, Pacific Northwest National Laboratory Richland WA 99352 USA
| | - Qian Huang
- Battery Materials & Systems Group, Pacific Northwest National Laboratory Richland WA 99352 USA
| | - Bin Li
- Battery Materials & Systems Group, Pacific Northwest National Laboratory Richland WA 99352 USA
| | - Alasdair Crawford
- Battery Materials & Systems Group, Pacific Northwest National Laboratory Richland WA 99352 USA
| | | | - Chaojie Song
- Clean Energy Innovation, National Research Council Canada Vancouver BC V6T 1W5 Canada
| | - Zhengming Jiang
- Clean Energy Innovation, National Research Council Canada Vancouver BC V6T 1W5 Canada
| | - Alison Platt
- Clean Energy Innovation, National Research Council Canada Vancouver BC V6T 1W5 Canada
| | - Khalid Fatih
- Clean Energy Innovation, National Research Council Canada Vancouver BC V6T 1W5 Canada
| | - David Reed
- Battery Materials & Systems Group, Pacific Northwest National Laboratory Richland WA 99352 USA
| |
Collapse
|
6
|
Chen L, Cai Q, Liu Y, Xie X. Boosting the Charge Storage Capability of Bi 2TeO 5 Cathode Using Iodide Ions in Aqueous Zinc-Based Batteries System. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2408132. [PMID: 39434475 DOI: 10.1002/smll.202408132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/13/2024] [Indexed: 10/23/2024]
Abstract
As insertion-type cathode materials of aqueous Zn-based batteries (ABs), bismuth chalcogenides/oxychalcogenides exhibits relatively limited capacities in ZnSO4 baseline electrolyte. This work finds that Bi2TeO5 (BTO) cathode with pre-added I- electrolyte additive can simultaneously achieve conversion and insertion chemistries, which enables aqueous BTO-Zn batteries to deliver an extraordinary electrochemical performance. As shown in the experiment results, the BTO cathode showcases an ultrahigh specific capacity of 534.9 mA h g-1 at 0.5 A g-1, excellent rate capability (237.3 mA h g-1 at 10 A g-1). In the estimation of cyclic durability, the capacity of the BTO cathode decreases from 271.2 to 171.1 mA h g-1 during 2000 cycles at 10 A g-1.
Collapse
Affiliation(s)
- Liang Chen
- Hunan Collaborative Innovation Center of Environmental and Energy Photocatalysis, Hunan Key Laboratory of Applied Environmental Photocatalysis, Changsha University, Changsha, Hunan, 410022, P. R. China
| | - Quan Cai
- Hunan Collaborative Innovation Center of Environmental and Energy Photocatalysis, Hunan Key Laboratory of Applied Environmental Photocatalysis, Changsha University, Changsha, Hunan, 410022, P. R. China
| | - Yi Liu
- Hunan Collaborative Innovation Center of Environmental and Energy Photocatalysis, Hunan Key Laboratory of Applied Environmental Photocatalysis, Changsha University, Changsha, Hunan, 410022, P. R. China
| | - Xuehui Xie
- Hunan Collaborative Innovation Center of Environmental and Energy Photocatalysis, Hunan Key Laboratory of Applied Environmental Photocatalysis, Changsha University, Changsha, Hunan, 410022, P. R. China
| |
Collapse
|
7
|
Li B, Guo Y, Yang Z, Wang X, Feng Y, Tang W, Peng S, Su T. The correlation of the liquidus curves and valence electron structures of a ternary lithium halide molten-salt electrolyte for liquid metal batteries. Phys Chem Chem Phys 2024; 26:25819-25827. [PMID: 39355876 DOI: 10.1039/d4cp03135k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Liquid metal batteries have received considerable attention owing to their excellent properties. However, an electrolyte with low melting temperature is required to decrease operating temperature for the safety of liquid metal batteries and for saving energy. For revealing the mechanism of low liquefaction temperature, an empirical electron theory of solid molecules was used to study the thermal properties of pure lithium halides and their ternary-phase systems systematically. The theoretical bond lengths, melting points, liquefaction temperatures and mixed energies of pure lithium halides and their ternary phases match the experimental values well. The mechanism of liquefaction temperature for ternary lithium halides depends on their valence electron structures. The liquefaction temperature can be stabilized on a liquidus line or curve through the modulation of the constant number of covalent electrons (nc) and lattice electrons (nl). The liquefaction temperatures on various liquidus lines and curves are positively related to the linear density of valence electron pairs on the strong Li-X bond, bonding factor, and number of valence electrons in the s orbital but are negatively related to the number of valence electrons in the p orbital. With an increase in the linear density of the valence electron pair number and bonding factor, bond strength is enhanced, which increases the resistance of the strong Li-X bond against the break force induced by thermal phonon vibrations, and more thermal phonons with high vibrating energy are required for breaking the strongest Li-X bond at a higher temperature; therefore, the liquefaction temperature increases.
Collapse
Affiliation(s)
- Boyang Li
- School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China.
| | - Yongquan Guo
- School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China.
| | - Zhenyu Yang
- School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China.
| | - Xinze Wang
- School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China.
| | - Yichen Feng
- School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China.
| | - Wei Tang
- School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China.
| | - Siqi Peng
- SPIC Central Research Institute, State Power Investment Corporation, Beijing 102209, China.
| | - Tong Su
- Hisense Group Co., Ltd, Shandong 266071, China.
| |
Collapse
|
8
|
Liu J, Shen Z, Lu CZ. Disodium Malate Electrolyte Additive Facilitates Dendrite-Free Zinc Anode: Deposition Kinetics and Interface Regulation. SMALL METHODS 2024:e2400719. [PMID: 39358958 DOI: 10.1002/smtd.202400719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/17/2024] [Indexed: 10/04/2024]
Abstract
Due to the presence of H2O within the solvated sheath of [Zn(H2O)6]2+ as well as reactive free water in the electrolyte bulk phase, the extended cycling of aqueous zinc-ion batteries (AZIBs) is significantly affected by detrimental side reactions and the growth of Zn dendrites. This study significantly enhances the long-term cycling stability of AZIBs by introducing a small amount of disodium malate (DM) into a 2 m ZnSO4 electrolyte solution. DM involvement in the solvation sheath of Zn2+ reduces the desolvation energy of Zn2+, thereby mitigating the corrosion and hydrogen evolution reaction (HER) of the negative electrode surface by [Zn(H2O)6]2+ ions. Additionally, DM adsorption on the zinc surface retards the reduction kinetics of Zn2+ at anode, promoting uniform distribution and predominant deposition on the flat (002) crystal plane, thus reducing dendrite formation. The assembled Zn||Zn symmetric cell exhibits stable cycling for over 500 h at 10 mA cm-2 and 5 mAh cm-2. The Zn||VO2 full cells with DM additive exhibits an ultralong cycling lifespan without capacity loss.
Collapse
Affiliation(s)
- Jiayi Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Zhongrong Shen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Can-Zhong Lu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, 361021, China
| |
Collapse
|
9
|
Zheng L, Li H, Gao M, Huang K, Wang J, Su L, Li L, Lin H, Gao X, Liu Z, Zhang H. Screening Ammonium-Based Cationic Additives to Regulate Interfacial Chemistry for Aqueous Ultra-Stable Zn Metal Anode. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2407102. [PMID: 39340834 DOI: 10.1002/advs.202407102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/18/2024] [Indexed: 09/30/2024]
Abstract
The interfacial dynamics and chemistry at the electrolyte/metal interface, particularly the formation of an adsorption interphase, is paramount in dictating the reversibility of Zn metal deposition and dissolution processes in battery systems. Herein, a series of different cationic ammonium-based electrolyte additives are screened that effectively modulate the interfacial chemistry of zinc anodes in aqueous electrolytes, significantly improving the reversibility of Zn metal plating/stripping processes. As initially comprehensive investigation by combining theoretical calculation and molecular dynamic simulation, the tetramethylammonium cation, with its specific molecular structure and charge distribution, is identified as pivotal in mediating the Zn(H2O)6 2+ solvation shell structure at the electrode/electrolyte interface and shows the strong resistance against electrolyte corrosion as revealed by X-ray and optical measurements. As a result, the Zn||Zn symmetric cell with optimal electrolyte lasts for over 4400 h of stable plating/stripping behaviors, and the Zn||Cu asymmetric cell stabilizes for 2100 cycles with an average Coulombic efficiency of 99.8%, which is much better than the-state-of-art progress. Consequently, full-cells coupled with various cathodes showcase improved electrochemical performance, displaying high capacity-retention and low self-discharge behaviors. These findings offer essential insights of cationic additives in ameliorating zinc anode performance.
Collapse
Affiliation(s)
- Leilei Zheng
- Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Huihua Li
- Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
| | - Mingbo Gao
- Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
| | - Keer Huang
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jian Wang
- i-lab & CAS Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
- Helmholtz Institute Ulm (HIU), D-89081, Ulm, Germany
- Karlsruhe Institute of Technology (KIT), D-76021, Karlsruhe, Germany
| | - Long Su
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan, 250100, P. R. China
| | - Lei Li
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Hongzhen Lin
- i-lab & CAS Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Xinpei Gao
- Key Laboratory of Advanced Materials in Tropical Island Resources (Ministry of Education), School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, P. R. China
| | - Zhengqing Liu
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Huang Zhang
- Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
10
|
Zhang Y, Liu M, Ding R, Li Y, Guo J, Fang Q, Yan M, Xie J. Unveiling the charge storage mechanisms of Co-based perovskite fluoride in a mild aqueous electrolyte. NANOSCALE 2024; 16:16852-16860. [PMID: 39212076 DOI: 10.1039/d4nr02522a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
This study is an in-depth exploration of the charge storage mechanisms of KCoF3 in 1 M Na2SO4 mild aqueous electrolytes via an array of ex situ/in situ physicochemical/electrochemical methods, especially the electrochemical quartz crystal microbalance (EQCM) technique, showing a combination of conversion, insertion/extraction and adsorption mechanisms. Specifically, during the first charge phase, Co(OH)2 is formed/oxidized into amorphous CoOOH and Co3O4, and then CoOOH undergoes partial proton extraction to yield CoO2, which is simultaneously accompanied by the transformation of Co3O4 into CoOOH and (hydrated) CoO2. During the first discharge process, the partial insertion of H+ into (hydrated) CoO2 leads to the formation of CoOOH and Co3O4, with the conversion of Co3O4 into CoOOH and both Co3O4 and CoOOH undergoing further transformations into (hydrated) Co(OH)2via the insertion of H+. This work offers valuable references for the development of aqueous energy storage.
Collapse
Affiliation(s)
- Yuzhen Zhang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P.R. China.
| | - Miao Liu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P.R. China.
| | - Rui Ding
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P.R. China.
| | - Yi Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P.R. China.
| | - Jian Guo
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P.R. China.
| | - Qi Fang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P.R. China.
| | - Miao Yan
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P.R. China.
| | - Jinmei Xie
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P.R. China.
| |
Collapse
|
11
|
Ju Z, Zheng T, Zhang B, Yu G. Interfacial chemistry in multivalent aqueous batteries: fundamentals, challenges, and advances. Chem Soc Rev 2024; 53:8980-9028. [PMID: 39158505 DOI: 10.1039/d4cs00474d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
As one of the most promising electrochemical energy storage systems, aqueous batteries are attracting great interest due to their advantages of high safety, high sustainability, and low costs when compared with commercial lithium-ion batteries, showing great promise for grid-scale energy storage. This invited tutorial review aims to provide universal design principles to address the critical challenges at the electrode-electrolyte interfaces faced by various multivalent aqueous battery systems. Specifically, deposition regulation, ion flux homogenization, and solvation chemistry modulation are proposed as the key principles to tune the inter-component interactions in aqueous batteries, with corresponding interfacial design strategies and their underlying working mechanisms illustrated. In the end, we present a critical analysis on the remaining obstacles necessitated to overcome for the use of aqueous batteries under different practical conditions and provide future prospects towards further advancement of sustainable aqueous energy storage systems with high energy and long durability.
Collapse
Affiliation(s)
- Zhengyu Ju
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Tianrui Zheng
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Bowen Zhang
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
12
|
Piracha S, Zhang Y, Raza A, Li G. Transition metal oxide clusters: advanced electrocatalysts for a sustainable energy future. Chem Commun (Camb) 2024; 60:9918-9929. [PMID: 39145411 DOI: 10.1039/d4cc02722a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
The comprehensive utilization of sustainable green energy is essential to face the global energy and environmental crisis. The oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and electrocatalytic urea synthesis (EUS) are the pivotal electrocatalytic processes, necessitating the development of low-cost electrocatalysts with high efficiency. Small-sized transition metal oxide (TMO) clusters have attracted a lot of attention because of their exceptional qualities, such as exhibiting a dense array of low-coordinated metal active sites (e.g. abundant metal cation defects and oxygen vacancy), amorphous structures with high surface energy, high atom utilization efficiency, and cost-effectiveness. Furthermore, the synergistic actions between metal clusters and TM-Nx single atom active sites remarkably boost up the electrocatalytic performances, corroborated by density functional theory (DFT). More efforts in this comprehensive feature article are expected to achieve insights into the fundamental understanding of electrocatalytic reaction mechanisms in our lab and serve as a guide for creating cutting-edge electrocatalysts of transition metal oxide clusters.
Collapse
Affiliation(s)
- Sanwal Piracha
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, Liaoning, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Yifei Zhang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, Liaoning, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Ali Raza
- Department of Physics "Ettore Pancini", University of Naples Federico II, Piazzale Tecchio, 80, 80125 Naples, Italy
| | - Gao Li
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, Liaoning, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
13
|
Li Y, Mei Y, Huang Y, Zhong X, Geng Z, He Z, Ding H, Deng W, Zou G, Liu T, Ji X, Amine K, Hou H. Demystifying In Situ Pyrolysis Chemistry for High-Performance Polyanionic Cathodes in Sodium-Ion Batteries. ACS NANO 2024; 18:25053-25068. [PMID: 39177338 DOI: 10.1021/acsnano.4c06571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The carbon coating strategy has emerged as an indispensable approach to improve the conductivity of polyanionic cathodes. However, owing to the complex reaction process between precursors of carbon and cathode, establishing a unified screening principle for carbonaceous precursors remains a technical challenge. Herein, we reveal that carbonaceous precursor pyrolysis chemistry undeniably influences the formation process and performance of Na3V2(PO4)3 (NVP) cathodes from in situ insights. By investigating three types of carbonaceous precursors, it is found that O/H-containing functional groups can provide more bonding sites for cathode precursors and generate a reducing atmosphere by pyrolysis, which is beneficial to the formation of polyanionic materials and a uniform carbon coating layer. Conversely, excessive pyrolysis of functional groups leads to a significant amount of gas, which is detrimental to the compactness of the carbon layer. Furthermore, the substantial presence of residual heteroatoms diminishes graphitization. In this case, it is demonstrated that carbon dots (CDs) precursors with suitable functional groups can comprehensively enhance the Na+ migration rate, reversibility, and interface stability of the cathode material. As a result, the NVP/CDs cathode displays outstanding capacity retention, maintaining 92% after 10,000 cycles at a high rate of 50 C. Altogether, these findings provide a valuable benchmark for carbon source selection for polyanionic cathodes.
Collapse
Affiliation(s)
- Yujin Li
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yu Mei
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont 60439, Illinois, United States
| | - Yujie Huang
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xue Zhong
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zhenglei Geng
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zidong He
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Hanrui Ding
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Wentao Deng
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Guoqiang Zou
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Tongchao Liu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont 60439, Illinois, United States
| | - Xiaobo Ji
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Khalil Amine
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont 60439, Illinois, United States
| | - Hongshuai Hou
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
14
|
Peng K, Zhang C, Fang J, Cai H, Ling R, Ma Y, Tang G, Zuo P, Yang Z, Xu T. Constructing Microporous Ion Exchange Membranes via Simple Hypercrosslinking for pH-Neutral Aqueous Organic Redox Flow Batteries. Angew Chem Int Ed Engl 2024; 63:e202407372. [PMID: 38895749 DOI: 10.1002/anie.202407372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/31/2024] [Accepted: 06/18/2024] [Indexed: 06/21/2024]
Abstract
Ion exchange membranes (IEMs) play a critical role in aqueous organic redox flow batteries (AORFBs). Traditional IEMs that feature microphase-separated microstructures are well-developed and easily available but suffer from the conductivity/selectivity tradeoff. The emerging charged microporous polymer membranes show the potential to overcome this tradeoff, yet their commercialization is still hindered by tedious syntheses and demanding conditions. We herein combine the advantages of these two types of membrane materials via simple in situ hypercrosslinking of conventional IEMs into microporous ones. Such a concept is exemplified by the very cheap commercial quaternized polyphenylene oxide membrane. The hypercrosslinking treatment turns poor-performance membranes into high-performance ones, as demonstrated by the above 10-fold selectivity enhancement and much-improved conductivities that more than doubled. This turn is also confirmed by the effective and stable pH-neutral AORFB with decreased membrane resistance and at least an order of magnitude lower capacity loss rate. This battery shows advantages over other reported AORFBs in terms of a low capacity loss rate (0.0017 % per cycle) at high current density. This work provides an economically feasible method for designing AORFB-oriented membranes with microporosity.
Collapse
Affiliation(s)
- Kang Peng
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Chao Zhang
- Suqian Time Energy Storage Technology Co., Ltd., Suqian, 223800, P. R. China
| | - Junkai Fang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hongyun Cai
- Suqian Time Energy Storage Technology Co., Ltd., Suqian, 223800, P. R. China
| | - Rene Ling
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yunxin Ma
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Gonggen Tang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Peipei Zuo
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Zhengjin Yang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Tongwen Xu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
15
|
Das A, Samayoa-Oviedo HY, Mohapatra M, Basu S, Laskin J. Enhancing Energy Storage Capacity of 3D Carbon Electrodes Using Soft Landing of Molecular Redox Mediators. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311585. [PMID: 38576110 DOI: 10.1002/smll.202311585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/08/2024] [Indexed: 04/06/2024]
Abstract
The incorporation of redox-active species into the electric double layer is a powerful strategy for enhancing the energy density of supercapacitors. Polyoxometalates (POM) are a class of stable, redox-active species with multielectron activity, which is often used to tailor the properties of electrochemical interfaces. Traditional synthetic methods often result in interfaces containing a mixture of POM anions, unreactive counter ions, and neutral species. This leads to degradation in electrochemical performance due to aggregation and increased interfacial resistance. Another significant challenge is achieving the uniform and stable anchoring of POM anions on substrates to ensure the long-term stability of the electrochemical interface. These challenges are addressed by developing a mass spectrometry-based subambient deposition strategy for the selective deposition of POM anions onto engineered 3D porous carbon electrodes. Furthermore, positively charged functional groups are introduced on the electrode surface for efficient trapping of POM anions. This approach enables the deposition of purified POM anions uniformly through the pores of the 3D porous carbon electrode, resulting in unprecedented increase in the energy storage capacity of the electrodes. The study highlights the critical role of well-defined electrochemical interfaces in energy storage applications and offers a powerful method to achieve this through selective ion deposition.
Collapse
Affiliation(s)
- Arya Das
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha, 751013, India
- Department of Chemistry, Purdue University, West Lafayette, IN, 47906, USA
| | | | - Mamata Mohapatra
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha, 751013, India
| | - Suddhasatwa Basu
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha, 751013, India
| | - Julia Laskin
- Department of Chemistry, Purdue University, West Lafayette, IN, 47906, USA
| |
Collapse
|
16
|
Li Y, Wei Z, Sun Z, Zhai H, Li S, Chen W. Sulfur Modified Carbon-Based Single-Atom Catalysts for Electrocatalytic Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401900. [PMID: 38798155 DOI: 10.1002/smll.202401900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/05/2024] [Indexed: 05/29/2024]
Abstract
Efficient and sustainable energy development is a powerful tool for addressing the energy and environmental crises. Single-atom catalysts (SACs) have received high attention for their extremely high atom utilization efficiency and excellent catalytic activity, and have broad application prospects in energy development and chemical production. M-N4 is an active center model with clear catalytic activity, but its catalytic properties such as catalytic activity, selectivity, and durability need to be further improved. Adjustment of the coordination environment of the central metal by incorporating heteroatoms (e.g., sulfur) is an effective and feasible modification method. This paper describes the precise synthetic methods for introducing sulfur atoms into M-N4 and controlling whether they are directly coordinated with the central metal to form a specific coordination configuration, the application of sulfur-doped carbon-based single-atom catalysts in electrocatalytic reactions such as ORR, CO2RR, HER, OER, and other electrocatalytic reaction are systematically reviewed. Meanwhile, the effect of the tuning of the electronic structure and ligand configuration parameters of the active center due to doped sulfur atoms with the improvement of catalytic performance is introduced by combining different characterization and testing methods. Finally, several opinions on development of sulfur-doped carbon-based SACs are put forward.
Collapse
Affiliation(s)
- Yinqi Li
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Zihao Wei
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Zhiyi Sun
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Huazhang Zhai
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Shenghua Li
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Wenxing Chen
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
17
|
Gao Y, Yu Q, Yang H, Zhang J, Wang W. The Enormous Potential of Sodium/Potassium-Ion Batteries as the Mainstream Energy Storage Technology for Large-Scale Commercial Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405989. [PMID: 38943573 DOI: 10.1002/adma.202405989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/10/2024] [Indexed: 07/01/2024]
Abstract
Cost-effectiveness plays a decisive role in sustainable operating of rechargeable batteries. As such, the low cost-consumption of sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs) provides a promising direction for "how do SIBs/PIBs replace Li-ion batteries (LIBs) counterparts" based on their resource abundance and advanced electrochemical performance. To rationalize the SIBs/PIBs technologies as alternatives to LIBs from the unit energy cost perspective, this review gives the specific criteria for their energy density at possible electrode-price grades and various battery-longevity levels. The cost ($ kWh-1 cycle-1) advantage of SIBs/PIBs is ascertained by the cheap raw-material compensation for the cycle performance deficiency and the energy density gap with LIBs. Furthermore, the cost comparison between SIBs and PIBs, especially on cost per kWh and per cycle, is also involved. This review explicitly manifests the practicability and cost-effectiveness toward SIBs are superior to PIBs whose commercialization has so far been hindered by low energy density. Even so, the huge potential on sustainability of PIBs, to outperform SIBs, as the mainstream energy storage technology is revealed as long as PIBs achieve long cycle life or enhanced energy density, the related outlook of which is proceeded as the next development directions for commercial applications.
Collapse
Affiliation(s)
- Yanjun Gao
- State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing, 100081, China
| | - Qiyao Yu
- State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing, 100081, China
| | - Huize Yang
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jianguo Zhang
- State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing, 100081, China
| | - Wei Wang
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
18
|
Gao Y, Zhang D, Zhang S, Li L. Research Advances of Cathode Materials for Rechargeable Aluminum Batteries. CHEM REC 2024; 24:e202400085. [PMID: 39148161 DOI: 10.1002/tcr.202400085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/07/2024] [Indexed: 08/17/2024]
Abstract
Rechargeable aluminum ion batteries (AIBs) have recently gained widespread research concern as energy storage technologies because of their advantages of being safe, economical, environmentally friendly, sustainable, and displaying high performance. Nevertheless, the intense Coulombic interactions between the Al3+ ions with high charge density and the lattice of the electrode body lead to poor cathode kinetics and limited cycle life in AIBs. This paper reviews the recent advances in the cathode design of AIBs to gain a comprehensive understanding of the opportunities and challenges presented by current AIBs. In addition, the advantages, limitations, and possible solutions of each cathode material are discussed. Finally, the future development prospect of the cathode materials is presented.
Collapse
Affiliation(s)
- Yanhong Gao
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Dan Zhang
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, China
- School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| | - Shengrui Zhang
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Le Li
- Shaanxi Key Laboratory of Industrial Automation, School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong, 723001, China
| |
Collapse
|
19
|
Sikdar N. Electrochemical CO 2 Reduction Reaction: Comprehensive Strategic Approaches to Catalyst Design for Selective Liquid Products Formation. Chemistry 2024:e202402477. [PMID: 39115935 DOI: 10.1002/chem.202402477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/10/2024]
Abstract
The escalating concern regarding the release of CO2 into the atmosphere poses a significant threat to the contemporary efforts in mitigating climate change. Amidst a multitude of strategies for curtailing CO2 emissions, the electrochemical CO2 reduction presents a promising avenue for transforming CO2 molecules into a diverse array of valuable gaseous and liquid products, such as CO, CH3OH, CH4, HCO2H, C2H4, C2H5OH, CH3CO2H, 1-C3H7OH and others. The mechanistic investigations of gaseous products (e. g. CO, CH4, C2H4, C2H6 and others) broadly covered in the literature. There is a noticeable gap in the literature when it comes to a comprehensive summary exclusively dedicated to coherent roadmap for the designing principles for a selective catalyst all possible liquid products (such as CH3OH, C2H5OH, 1-C3H7OH, 2-C3H7OH, 1-C4H9OH, as well as other C3-C4 products like methylglyoxal and 2,3-furandiol, in addition to HCO2H, AcOH, oxalic acid and others), selectively converted by CO2 reduction. This entails a meticulous analysis to justify these approaches and a thorough exploration of the correlation between materials and their electrocatalytic properties. Furthermore, these insightful discussions illuminate the future prospects for practical applications, a facet not exhaustively examined in prior reviews.
Collapse
Affiliation(s)
- Nivedita Sikdar
- Department of Chemistry, GITAM (Gandhi Institute of Technology and Management) School of Science Hyderabad, Telengana, 502329, India
| |
Collapse
|
20
|
Chen L, Zhang W, Yu G, He Z, Tang W, Hu P, Yang W, Zhu J, Su Q, An Q, Mai L. Bilayered Vanadium Oxides Pillared by Strontium Ions and Water Molecules as Stable Cathodes for Rechargeable Zn-Metal Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404893. [PMID: 39105465 DOI: 10.1002/smll.202404893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/29/2024] [Indexed: 08/07/2024]
Abstract
Vanadium-based compounds have attracted significant attention as cathodes for aqueous zinc metal batteries (AZMBs) because of their remarkable advantages in specific capacities. However, their low diffusion coefficient for zinc ions and structural collapse problems lead to poor rate capability and cycle stability. In this work, bilayered Sr0.25V2O5·0.8H2O (SVOH) nanowires are first reported as a highly stable cathode material for rechargeable AZMBs. The synergistic pillaring effect of strontium ions and water molecules improves the structural stability and ion transport dynamics of vanadium-based compounds. Consequently, the SVOH cathode exhibits a high capacity of 325.6 mAh g-1 at 50 mA g-1, with a capacity retention rate of 72.6% relative to the maximum specific capacity at 3.0 A g-1 after 3000 cycles. Significantly, a unique single-nanowire device is utilized to demonstrate the excellent conductivity of the SVOH cathode directly. Additionally, the energy storage mechanism of zinc insertion and extraction is investigated using a variety of advanced in situ and ex situ analysis techniques. This method of ion intercalation to improve electrochemical performance will further promote the development of AZMBs in large-scale applications.
Collapse
Affiliation(s)
- Lineng Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Wenwei Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Gongtao Yu
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, 430068, P. R. China
| | - Ze He
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Wen Tang
- Department of Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ping Hu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Wei Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Jiexin Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Qin Su
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Qinyou An
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
21
|
Gupta D, Mao J, Guo Z. Bifunctional Catalysts for CO 2 Reduction and O 2 Evolution: A Pivotal for Aqueous Rechargeable Zn-CO 2 Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407099. [PMID: 38924576 DOI: 10.1002/adma.202407099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/16/2024] [Indexed: 06/28/2024]
Abstract
The quest for the advancement of green energy storage technologies and reduction of carbon footprint is determinedly rising toward carbon neutrality. Aqueous rechargeable Zn-CO2 batteries (ARZCBs) hold the great potential to encounter both the targets simultaneously, i.e., green energy storage and CO2 conversion to value-added chemicals/fuels. The major descriptor of ARZCBs efficiency is allied with the reactions occurring at cathode during discharging (CO2 reduction) and charging (O2 evolution) which own different fundamental mechanisms and hence mandate the employment of two different catalysts. This presents an overall complex and expensive battery system which requires a concrete solution, while the development and application of a bifunctional cathode catalyst toward both reactions could reduce the complexity and cost and thus can be a pivotal for ARZCBs. However, despite the increasing research interest and ongoing research, a systematic evaluation of bifunctional catalysts is rarely reported. In this review, the need of bifunctional cathode catalysts for ARZCBs and associated challenges with strategies have been critically assessed. A detailed progress examination and understanding toward designing of bifunctional catalyst for ARZCBs have been provided. This review will enlighten the future research approaching boosted performance of ARZCBs through the development of efficient bifunctional cathode catalysts.
Collapse
Affiliation(s)
- Divyani Gupta
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Jianfeng Mao
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Zaiping Guo
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
22
|
Liu Y, Xie C, Li X. Carbon Nanotube Network Induces Porous Deposited MnO 2 for High-Areal Capacity Zn/Mn Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402026. [PMID: 38659177 DOI: 10.1002/smll.202402026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/02/2024] [Indexed: 04/26/2024]
Abstract
Mn2+/MnO2 aqueous battery is a promising candidate for large-scale energy storage owing to its feature of low-cost and abundant crustal reserves. However, the inherent MnO2 shedding issue results in a limited areal capacity and poor cycling life, which prohibits its further commercialization. In this manuscript, it is revealed that the cause of shedding is the cracking of MnO2 layer due to stress. To circumvent this challenge, carbon nanotubes framework is introduced on pristine carbon felt, which provides more deposition sites and induces the formation of a porous deposition layer. Compared to the dense deposition layer on pristine carbon felt, the porous structure can effectively avoid cracking and subsequent shedding issue. Moreover, the porous deposited layer is conducive to proton diffusion and rich in defects, which facilitates the subsequent dissolution reaction. As results, the assembled Zn/Mn battery demonstrates more than 200 cycles with the areal capacity of 15 mAh cm-2 at 40 mA cm-2. Even with a high areal capacity of 40 mAh cm-2, it can still run for more than 60 cycles. This breakthrough paves a way toward practical manganese-based batteries, bringing us closer to achieve cost-effective batteries.
Collapse
Affiliation(s)
- Yun Liu
- Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Congxin Xie
- Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xianfeng Li
- Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
23
|
Prabu S, Chiang KY. Natural bio-waste-derived 3D N/O self-doped heteroatom honeycomb-like porous carbon with tuned huge surface area for high-performance supercapacitor. CHEMOSPHERE 2024; 361:142400. [PMID: 38789052 DOI: 10.1016/j.chemosphere.2024.142400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Supercapacitor electrodes (SCs) of carbon-based materials with flexible structures and morphologies have demonstrated excellent electrical conductivity and chemical stability. Herein, a clean and cost-effective method for producing a 3D self-doped honeycomb-like carbonaceous material with KOH activation from bio-waste oyster shells (BWOSs) is described. A remarkable performance was achieved by the excellent hierarchical structured carbon (HSC-750), which has a large surface area and a reasonably high packing density. The enhanced BWOSs-derived HSC-750 shows an ultrahigh specific capacitance of 525 F/g at 0.5 A g-1 in 3 M KOH electrolyte, as well as high specific surface area (2377 m2 g-1), pore volume (1.35 cm3 g-1), nitrogen (4.70%), and oxygen (10.58%) doping contents. The SCs also exhibit exceptional cyclic stability, maintaining 98.5% of their capacitance after 10,000 charge/discharge cycles. The two-electrode approach provides a super high energy density of 28 Wh kg-1 at a power density of 250 W kg-1 in an alkaline solution, with remarkable cyclability after 10,000 cycles. The study demonstrates the innovative HSC synthesis from BWOSs precursor and cost-effective fabrication of 3D N/O self-doped heteroatom HSC for flexible energy storage.
Collapse
Affiliation(s)
- Samikannu Prabu
- Graduate Institute of Environmental Engineering, National Central University, Taiwan No. 300, Chung-Da Road., Chung-Li District, Tao-Yuan City, 32001, Taiwan
| | - Kung-Yuh Chiang
- Graduate Institute of Environmental Engineering, National Central University, Taiwan No. 300, Chung-Da Road., Chung-Li District, Tao-Yuan City, 32001, Taiwan.
| |
Collapse
|
24
|
Yeo MJ, Lee SG, Olidan S, Kim J, Cho KY, Yoon S. Strategy to Simultaneously Manipulate Direct Zn Nucleation and Hydrogen Evolution via Surface Modifier Hydrolysis for High-Performance Zn-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39069678 DOI: 10.1021/acsami.4c07236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The demand for safer batteries is growing rapidly due to fire incidents in electronic devices that use Li-ion batteries. Zn-ion batteries are among the most promising candidates to replace Li-ion batteries because they use a water-based electrolyte and are not explosive. However, Zn-ion batteries suffer from persistent corrosion and dendritic crystal formation during the charge-discharge process, which decrease their reversibility and hinder their commercial usage. Extensive research has been conducted to address these issues, but there are significant limitations due to high process and time costs. In this study, the modulation of the Zn-electrolyte interface to overcome these challenges is attempted using acetamide-derived thioacetamide (TAA), a surface modifier used in electroplating. TAA undergoes hydrolysis in an aqueous solution and produces weakly acidic byproducts and sulfide ions. These species are adsorbed onto the Zn metal surface, which induces uniform Zn2+ deposition, facilitates the formation of a stable interfacial layer, and inhibits side reactions due to the reduced water activity. Consequently, the symmetric cell with TAA achieves a low polarization of 50 mV and stable cycling for 700 h at 1 mA cm-2. Additionally, a Zn|V6O13 full cell exhibits electrochemical reversibility, maintaining a capacity retention of 64% over 300 cycles. Therefore, this study offers useful insights into the development of a simple manufacturing process to ensure the competitiveness of Zn-ion batteries for practical applications using functional electrolyte additives.
Collapse
Affiliation(s)
- Min Ji Yeo
- Division of Advanced Materials Engineering, Kongju National University, Chungnam 31080, Republic of Korea
| | - Seul Gi Lee
- Division of Advanced Materials Engineering, Kongju National University, Chungnam 31080, Republic of Korea
| | - Syryll Olidan
- Division of Advanced Materials Engineering, Kongju National University, Chungnam 31080, Republic of Korea
| | - Jihoon Kim
- Division of Advanced Materials Engineering, Kongju National University, Chungnam 31080, Republic of Korea
| | - Kuk Young Cho
- Department of Materials Science and Chemical Engineering, Hanyang University ERICA, Gyeonggi 15588, Republic of Korea
| | - Sukeun Yoon
- Division of Advanced Materials Engineering, Kongju National University, Chungnam 31080, Republic of Korea
| |
Collapse
|
25
|
Bonometti L, Daga LE, Rocca R, Marana NL, Casassa S, D’Amore M, Laasonen K, Petit M, Silveri F, Sgroi MF, Ferrari AM, Maschio L. Path ahead: Tackling the Challenge of Computationally Estimating Lithium Diffusion in Cathode Materials. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:11979-11988. [PMID: 39081560 PMCID: PMC11285369 DOI: 10.1021/acs.jpcc.4c00960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/09/2024] [Accepted: 05/31/2024] [Indexed: 08/02/2024]
Abstract
In the roadmap toward designing new and improved materials for Lithium ion batteries, the ability to estimate the diffusion coefficient of Li atoms in electrodes, and eventually solid-state electrolytes, is key. Nevertheless, as of today, accurate prediction through computational tools remains challenging. Its experimental measurement does not appear to be much easier. In this work, we devise a computational protocol for the determination of the Li-migration energy barrier and diffusion coefficient, focusing on a common cathode material such as LiNiO2, which represents a prototype of the widely adopted NMC (LiNi1-x-y Mn x Co y O2) class of materials. Different methodologies are exploited, combining ab initio metadynamics, path sampling, and density functional theory. Furthermore, we propose a novel, fast, and simple 1D approximation for the estimation of the effective frequency. The outlined computational protocol aims to be generally applicable to Lithium diffusion in other materials and components for batteries, including anodes and solid electrolytes.
Collapse
Affiliation(s)
- Laura Bonometti
- Dipartimento
di Chimica and NIS Centre, Università
di Torino, Via P. Giuria
5, Torino 10125, Italy
| | - Loredana E. Daga
- Dipartimento
di Chimica, Università di Torino, Via P. Giuria 5, Torino 10125, Italy
| | - Riccardo Rocca
- Dipartimento
di Chimica, Università di Torino, Via P. Giuria 5, Torino 10125, Italy
- FIAT
Research Center (CRF), Strada Torino 50, Orbassano, Torino 10043, Italy
| | - Naiara L. Marana
- Dipartimento
di Chimica, Università di Torino, Via P. Giuria 5, Torino 10125, Italy
| | - Silvia Casassa
- Dipartimento
di Chimica, Università di Torino, Via P. Giuria 5, Torino 10125, Italy
| | - Maddalena D’Amore
- Dipartimento
di Chimica, Università di Torino, Via P. Giuria 5, Torino 10125, Italy
| | - Kari Laasonen
- Department
of Chemistry, Aalto University, Espoo 00076, Finland
| | - Martin Petit
- IFP
Energies Nouvelles, Rond-point
de l’échangeur de Solaize—BP3, Solaize 69360, France
| | - Fabrizio Silveri
- Gemmate
Technologies SRL, Via
Reano 31, Buttigliera Alta 10090, Italy
| | - Mauro F. Sgroi
- Dipartimento
di Chimica and NIS Centre, Università
di Torino, Via P. Giuria
5, Torino 10125, Italy
| | - Anna M. Ferrari
- Dipartimento
di Chimica and NIS Centre, Università
di Torino, Via P. Giuria
5, Torino 10125, Italy
| | - Lorenzo Maschio
- Dipartimento
di Chimica and NIS Centre, Università
di Torino, Via P. Giuria
5, Torino 10125, Italy
| |
Collapse
|
26
|
Ren J, Yang D, Chen L, Yuan ZY. Two-dimensional architecture of N,S-codoped nanocarbon composites embedding few-layer MoS 2 for efficient lithium storage. RSC Adv 2024; 14:23004-23010. [PMID: 39040691 PMCID: PMC11261429 DOI: 10.1039/d4ra04251d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024] Open
Abstract
The exploration and advancement of highly efficient anode materials for lithium-ion batteries (LIBs) are critical to meet the growing demands of the energy storage market. In this study, we present an easily scalable synthesis method for the one-pot formation of few-layer MoS2 nanosheets on a N,S dual-doped carbon monolith with a two-dimensional (2D) architecture, termed MoS2/NSCS. Systematic electrochemical measurements demonstrate that MoS2/NSCS, when employed as the anode material in LIBs, exhibits a high capacity of 681 mA h g-1 at 0.2 A g-1 even after 110 cycles. The exceptional electrochemical performance of MoS2/NSCS can be attributed to its unique porous 2D architecture. The few-layer MoS2 sheets with a large interlayer distance reduce ion diffusion pathways and enhance ion mobility rates. Additionally, the N,S-doped porous carbon matrix not only preserves structural integrity but also facilitates electronic conductivity. These combined factors contribute to the reversible electrochemical activities observed in MoS2/NSCS, highlighting its potential as a promising anode material for high-performance LIBs.
Collapse
Affiliation(s)
- Jintao Ren
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University Tianjin 300350 China
| | - Dandan Yang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University Tianjin 300350 China
| | - Lei Chen
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University Tianjin 300350 China
| | - Zhong-Yong Yuan
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University Tianjin 300350 China
| |
Collapse
|
27
|
Varenikov A, Gandelman M, Sigman MS. Development of Modular Nitrenium Bipolar Electrolytes for Possible Applications in Symmetric Redox Flow Batteries. J Am Chem Soc 2024; 146:19474-19488. [PMID: 38963077 DOI: 10.1021/jacs.4c05799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Amid the escalating integration of renewable energy sources, the demand for grid energy storage solutions, including non-aqueous organic redox flow batteries (oRFBs), has become ever more pronounced. oRFBs face a primary challenge of irreversible capacity loss attributed to the crossover of redox-active materials between half-cells. A possible solution for the crossover challenge involves utilization of bipolar electrolytes that act as both the catholyte and anolyte. Identifying such molecules poses several challenges as it requires a delicate balance between the stability of both oxidation states and energy density, which is influenced by the separation between the two redox events. We report the development of a diaminotriazolium redox-active core capable of producing two electronically distinct persistent radical species with typically extreme reduction potentials (E1/2red < -2 V, E1/2ox > +1 V, vs Fc0/+) and up to 3.55 V separation between the two redox events. Structure-property optimization studies allowed us to identify factors responsible for fine-tuning of potentials for both redox events, as well as separation between them. Mechanistic studies revealed two primary decomposition pathways for the neutral radical charged species and one for the radical biscation. Additionally, statistical modeling provided evidence for the molecular descriptors to allow identification of the structural features responsible for stability of radical species and to propose more stable analogues.
Collapse
Affiliation(s)
- Andrii Varenikov
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Mark Gandelman
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| | - Matthew S Sigman
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
28
|
Martin DC, Elg DT, Delgado HE, Nguyen HM, Rumbach P, Bartels DM, Go DB. Optical and Chemical Measurements of Solvated Electrons Produced in Plasma Electrolysis with a Water Cathode. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14224-14232. [PMID: 38940536 DOI: 10.1021/acs.langmuir.4c00639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
It is known that glow discharges with a water anode inject and form solvated electrons at the plasma-liquid interface, driving a wide variety of reduction reactions. However, in systems with a water cathode, the production and role of solvated electrons are less clear. Here, we present evidence for the direct detection of solvated electrons produced at the interface of an argon plasma and a water cathode via absorption spectroscopy. We further quantify their yield using the dissociative electron attachment of chloroacetate, measuring a yield of 1.04 ± 0.59 electrons per incident ion, corresponding to approximately 100% faradaic efficiency. Additionally, we estimate a yield of 2.09 ± 0.93 hydroxyl radicals per incident ion. Comparison of this yield with other findings in the literature supports that these hydroxyl radicals are likely formed directly in the liquid phase rather than by diffusion from the vapor phase.
Collapse
Affiliation(s)
- Daniel C Martin
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Daniel T Elg
- Department of Engineering, University of Southern Indiana, Evansville, Indiana 47712, United States
| | - Hernan E Delgado
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Hoang M Nguyen
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Paul Rumbach
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - David M Bartels
- Notre Dame Radiation Laboratory and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - David B Go
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
29
|
Zhang M, Li S, Tang R, Sun C, Yang J, Chen G, Kang Y, Lv Z, Wen Z, Li CC, Zhao J, Yang Y. Stabilizing Zn/electrolyte Interphasial Chemistry by a Sustained-Release Drug Inspired Indium-Chelated Resin Protective Layer for High-Areal-Capacity Zn//V 2O 5 Batteries. Angew Chem Int Ed Engl 2024; 63:e202405593. [PMID: 38716660 DOI: 10.1002/anie.202405593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Indexed: 06/16/2024]
Abstract
For zinc-metal batteries, the instable chemistry at Zn/electrolyte interphasial region results in severe hydrogen evolution reaction (HER) and dendrite growth, significantly impairing Zn anode reversibility. Moreover, an often-overlooked aspect is this instability can be further exacerbated by the interaction with dissolved cathode species in full batteries. Here, inspired by sustained-release drug technology, an indium-chelated resin protective layer (Chelex-In), incorporating a sustained-release mechanism for indium, is developed on Zn surface, stabilizing the anode/electrolyte interphase to ensure reversible Zn plating/stripping performance throughout the entire lifespan of Zn//V2O5 batteries. The sustained-release indium onto Zn electrode promotes a persistent anticatalytic effect against HER and fosters uniform heterogeneous Zn nucleation. Meanwhile, on the electrolyte side, the residual resin matrix with immobilized iminodiacetates anions can also repel detrimental anions (SO4 2- and polyoxovanadate ions dissolved from V2O5 cathode) outside the electric double layer. This dual synergetic regulation on both electrode and electrolyte sides culminates a more stable interphasial environment, effectively enhancing Zn anode reversibility in practical high-areal-capacity full battery systems. Consequently, the bio-inspired Chelex-In protective layer enables an ultralong lifespan of Zn anode over 2800 h, which is also successfully demonstrated in ultrahigh areal capacity Zn//V2O5 full batteries (4.79 mAh cm-2).
Collapse
Affiliation(s)
- Minghao Zhang
- State Key Lab of Physical Chemistry of Solid Surfaces, State-Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Siyang Li
- State Key Lab of Physical Chemistry of Solid Surfaces, State-Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Rong Tang
- State Key Lab of Physical Chemistry of Solid Surfaces, State-Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Chenxi Sun
- State Key Lab of Physical Chemistry of Solid Surfaces, State-Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Jin Yang
- State Key Lab of Physical Chemistry of Solid Surfaces, State-Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Guanhong Chen
- State Key Lab of Physical Chemistry of Solid Surfaces, State-Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Yuanhong Kang
- State Key Lab of Physical Chemistry of Solid Surfaces, State-Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Zeheng Lv
- State Key Lab of Physical Chemistry of Solid Surfaces, State-Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Zhipeng Wen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Cheng Chao Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Jinbao Zhao
- State Key Lab of Physical Chemistry of Solid Surfaces, State-Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Yang Yang
- State Key Lab of Physical Chemistry of Solid Surfaces, State-Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
30
|
Aziz SB, Murad AR, Abdulwahid RT, Aziz DM, Abdalrahman AA, Abdullah RM, Kadir MFZ, Abdullah OG, Halim NA, Hassan J. Plasticised chitosan: Dextran polymer blend electrolyte for energy harvesting application: Tuning the ion transport and EDLC charge storage capacity through TiO 2 dispersion. Int J Biol Macromol 2024; 273:133203. [PMID: 38885860 DOI: 10.1016/j.ijbiomac.2024.133203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/17/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
This study investigates the performance of biopolymer electrolytes based on chitosan and dextran for energy storage applications. The optimization of ion transport and performance of electric double-layer capacitors EDCL using these electrolytes, incorporating different concentrations of glycerol as a plasticizer and TiO2 as nanoparticles, is explored. Impedance measurements indicate a notable reduction in charge transfer resistance with the addition of TiO2. DC conductivity estimates from AC spectra plateau regions reach up to 5.6 × 10-4 S/cm. The electric bulk resistance Rb obtained from the Nyquist plots exhibits a substantial decrease with increasing plasticizer concentration, further enhanced by the addition of the nanoparticles. Specifically, Rb decreases from ∼20 kΩ to 287 Ω when glycerol concentration increases from 10 % to 40 % and further drops to 30 Ω with the introduction of TiO2. Specific capacitance obtained from cyclic voltammetry shows a notable increase as the scan rate decreases, indicating improved efficiency and stability of ion transport. The TiO2-enriched EDCL achieves 12.3 F/g specific capacitance at 20 mV/s scan rate, with high ion conductivity and extended electrochemical stability. These results suggest the great potential of plasticizer and TiO2 with biopolymers in improving the performance of energy storage systems.
Collapse
Affiliation(s)
- Shujahadeen B Aziz
- Reserach and Development Center, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Kurdistan Regional Government, Iraq.
| | - Ary R Murad
- Department of Chemistry, College of Science, Charmo University, Chamchamal, Sulaymaniyah 46023, Iraq
| | - Rebar T Abdulwahid
- Department of Physics, College of Education, University of Sulaimani, Sulaymaniyah 46001, Kurdistan Region, Iraq
| | - Dara M Aziz
- Department of Chemistry, College of Science, University of Raparin, Kurdistan Region 46012, Ranya, Iraq
| | - Ari A Abdalrahman
- Hameed Majid Advanced Polymeric Materials Research Lab., Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq
| | - Ranjdar M Abdullah
- Hameed Majid Advanced Polymeric Materials Research Lab., Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq
| | - M F Z Kadir
- Centre for Ionic Universiti Malaya (CIUM), Department of Physics, Faculty of Science, Universiti Malaya, Malaysia; Department of Physics, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Omed Gh Abdullah
- Hameed Majid Advanced Polymeric Materials Research Lab., Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq
| | - Norhana Abdul Halim
- Department of Physics, Centre for Defence Foundation Studies, National Defence University of Malaysia, Sungai Besi Camp, Kuala Lumpur 57000, Malaysia
| | - Jamal Hassan
- Department of Physics, Khalifa University, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
31
|
Liu F, Zhang Y, Liu H, Zhang S, Yang J, Li Z, Huang Y, Ren Y. Advances of Nanomaterials for High-Efficiency Zn Metal Anodes in Aqueous Zinc-Ion Batteries. ACS NANO 2024; 18:16063-16090. [PMID: 38868937 DOI: 10.1021/acsnano.4c06008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Aqueous zinc-ion batteries (AZIBs) have emerged as one of the most promising candidates for next-generation energy storage devices due to their outstanding safety, cost-effectiveness, and environmental friendliness. However, the practical application of zinc metal anodes (ZMAs) faces significant challenges, such as dendrite growth, hydrogen evolution reaction, corrosion, and passivation. Fortunately, the rapid rise of nanomaterials has inspired solutions for addressing these issues associated with ZMAs. Nanomaterials with unique structural features and multifunctionality can be employed to modify ZMAs, effectively enhancing their interfacial stability and cycling reversibility. Herein, an overview of the failure mechanisms of ZMAs is presented, and the latest research progress of nanomaterials in protecting ZMAs is comprehensively summarized, including electrode structures, interfacial layers, electrolytes, and separators. Finally, a brief summary and optimistic perspective are given on the development of nanomaterials for ZMAs. This review provides a valuable reference for the rational design of efficient ZMAs and the promotion of large-scale application of AZIBs.
Collapse
Affiliation(s)
- Fangyan Liu
- Department of Physics, City University of Hong Kong, Hong Kong 999077, China
| | - Yangqian Zhang
- Department of Physics, City University of Hong Kong, Hong Kong 999077, China
| | - Han Liu
- Department of Physics, City University of Hong Kong, Hong Kong 999077, China
| | - Shuoxiao Zhang
- Department of Physics, City University of Hong Kong, Hong Kong 999077, China
| | - Jiayi Yang
- Department of Physics, City University of Hong Kong, Hong Kong 999077, China
| | - Zhen Li
- State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yunhui Huang
- State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yang Ren
- Department of Physics, City University of Hong Kong, Hong Kong 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
- Centre for Neutron Scattering, City University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
32
|
Liu B, Wei W, Wang Y, Song M, Chen Y, Chen H, Chen L, Dai Q, Yao S, Xu J, Jia G, Zhao T. Design and synthesis of low-potential and cycling-stable cobalt dicarboxylate bipyridine complexes for high-voltage aqueous organic redox flow batteries. Sci Bull (Beijing) 2024; 69:1632-1636. [PMID: 38503649 DOI: 10.1016/j.scib.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/30/2024] [Accepted: 03/04/2024] [Indexed: 03/21/2024]
Affiliation(s)
- Bin Liu
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Wei Wei
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Yu Wang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Manrong Song
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Joint Research Center on Energy Storage Technology in Salt Caverns, Shenzhen 518055, China
| | - Youke Chen
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Joint Research Center on Energy Storage Technology in Salt Caverns, Shenzhen 518055, China
| | - Honglin Chen
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Joint Research Center on Energy Storage Technology in Salt Caverns, Shenzhen 518055, China
| | - Liuping Chen
- Jiangsu Engineering Research Center for Comprehensive Utilization of Well and Rocks Salt, Chinasalt Jintan Co., Ltd., Changzhou 213200, China; China Salt Cavern Comprehensive Utilization Co., Ltd., Changzhou 213200, China; Joint Research Center on Energy Storage Technology in Salt Caverns, Shenzhen 518055, China
| | - Qiuxia Dai
- Jiangsu Engineering Research Center for Comprehensive Utilization of Well and Rocks Salt, Chinasalt Jintan Co., Ltd., Changzhou 213200, China; China Salt Cavern Comprehensive Utilization Co., Ltd., Changzhou 213200, China; Joint Research Center on Energy Storage Technology in Salt Caverns, Shenzhen 518055, China
| | - Shengxin Yao
- Jiangsu Engineering Research Center for Comprehensive Utilization of Well and Rocks Salt, Chinasalt Jintan Co., Ltd., Changzhou 213200, China; China Salt Cavern Comprehensive Utilization Co., Ltd., Changzhou 213200, China; Joint Research Center on Energy Storage Technology in Salt Caverns, Shenzhen 518055, China
| | - Junhui Xu
- Jiangsu Engineering Research Center for Comprehensive Utilization of Well and Rocks Salt, Chinasalt Jintan Co., Ltd., Changzhou 213200, China; China Salt Cavern Comprehensive Utilization Co., Ltd., Changzhou 213200, China; Joint Research Center on Energy Storage Technology in Salt Caverns, Shenzhen 518055, China
| | - Guochen Jia
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Tianshou Zhao
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong 999077, China; Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Joint Research Center on Energy Storage Technology in Salt Caverns, Shenzhen 518055, China.
| |
Collapse
|
33
|
Tao H, Li S, Zhao Z, He Z, Wang K, Jiang K, Hu H. Low-Surface-Area Nitrogen-Doped Carbon Submicrospheres as High-Coulombic-Efficiency and High-Capacity Anodes for Practical Sodium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28673-28682. [PMID: 38780466 DOI: 10.1021/acsami.4c04795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Nitrogen-doped carbon submicrospheres (NCSMs) are synthesized via an efficient and environmentally friendly one-pot polymerization reaction at room temperature, in which dopamine hydrochloride serves as the source for both carbon and nitrogen. Through leverage of its distinctive structure characterized by minimal surface area, fewer oxygen-containing functional groups, and a heightened presence of active nitrogen-doping sites, the synthesized NCSM showcases a noteworthy initial Coulombic efficiency (ICE) of 84.8%, a remarkable sodium storage capacity of 384 mAh g-1, an impressive rate capability of 215 mAh g-1 at 10 A g-1, and a superior cyclic performance, maintaining 83.0% of its capacity after 2000 cycles. The submicron spherical structure, with its limited surface area and scarce oxygen-containing moieties, effectively curtails the irreversible sodium-ion loss in solid-electrolyte interphase film formation, resulting in heightened ICE. The abundant nitrogen doping can expand carbon-layer spacing as well as improve the electron/ion-transport dynamics, guaranteeing a high sodium storage capacity and a strong rate capability. Crucially, the synthesis method presented here is straightforward, effective, and amenable to scaling, offering a novel avenue for the commercialization of sodium-ion batteries.
Collapse
Affiliation(s)
- Hongwei Tao
- Institute of Smart City and Intelligent Transportation, Southwest Jiaotong University, Chengdu 611756, P. R. China
| | - Sha Li
- Institute of Smart City and Intelligent Transportation, Southwest Jiaotong University, Chengdu 611756, P. R. China
| | - Zhijun Zhao
- Institute of Smart City and Intelligent Transportation, Southwest Jiaotong University, Chengdu 611756, P. R. China
| | - Zhengyou He
- Institute of Smart City and Intelligent Transportation, Southwest Jiaotong University, Chengdu 611756, P. R. China
| | - Kangli Wang
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Kai Jiang
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Haitao Hu
- Institute of Smart City and Intelligent Transportation, Southwest Jiaotong University, Chengdu 611756, P. R. China
| |
Collapse
|
34
|
Hwang S, Oh M, Lee KJ, Jin CS, Park SK, Seo C, Yeon SH, Kim DH, Gueon D, Han YK, Shin KH. Integration of Functional Groups to Enhance the Solubility and Stability of Viologen in Aqueous Organic Redox Flow Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28645-28654. [PMID: 38787734 DOI: 10.1021/acsami.4c04528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
The chemical stability and energy density of redox couples are crucial factors in enhancing the durability and cost competitiveness of aqueous flow batteries. This study proposed integrating functional groups to viologen anolyte to increase its solubility and, consequently, energy density and stability for prolonged performance. Specifically, sulfonate and ester groups were selectively incorporated at the nitrogen sites of viologen to enhance solubility, leveraging their asymmetry and double hydrophilicity. Furthermore, an alpha-methyl group was introduced between the bipyridine and ester groups to enhance the chemical stability by preventing stacking and dimerization that can lead to irreversible degradation. The modified viologen demonstrated a remarkable solubility of 3.0 M in deionized water, corresponding to a volumetric capacity of 80.404 Ah L-1. Additionally, the designed viologen exhibits outstanding retention of 92.4% after 200 cycles with a minimal capacity fading rate of 0.055% per cycle in a 0.1 M flow cell test.
Collapse
Affiliation(s)
- Seunghae Hwang
- Energy Storage Research Department, Korea Institute of Energy Research, Daejeon 34129, South Korea
| | - Minsung Oh
- Energy Storage Research Department, Korea Institute of Energy Research, Daejeon 34129, South Korea
| | - Keon-Joon Lee
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, South Korea
| | - Chang-Soo Jin
- Energy Storage Research Department, Korea Institute of Energy Research, Daejeon 34129, South Korea
| | - Se-Kook Park
- Energy Storage Research Department, Korea Institute of Energy Research, Daejeon 34129, South Korea
| | - Chaerin Seo
- Energy Storage Research Department, Korea Institute of Energy Research, Daejeon 34129, South Korea
| | - Sun-Hwa Yeon
- Energy Storage Research Department, Korea Institute of Energy Research, Daejeon 34129, South Korea
| | - Dong Ha Kim
- Energy Storage Research Department, Korea Institute of Energy Research, Daejeon 34129, South Korea
| | - Donghee Gueon
- Energy Storage Research Department, Korea Institute of Energy Research, Daejeon 34129, South Korea
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, South Korea
| | - Kyung-Hee Shin
- Energy Storage Research Department, Korea Institute of Energy Research, Daejeon 34129, South Korea
| |
Collapse
|
35
|
Jiang Y, Lao J, Dai G, Ye Z. Advanced Insights on MXenes: Categories, Properties, Synthesis, and Applications in Alkali Metal Ion Batteries. ACS NANO 2024; 18:14050-14084. [PMID: 38781048 DOI: 10.1021/acsnano.3c12543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The development and optimization of promising anode material for next-generation alkali metal ion batteries are significant for clean energy evolution. 2D MXenes have drawn extensive attention in electrochemical energy storage applications, due to their multiple advantages including excellent conductivity, robust mechanical properties, hydrophilicity of its functional terminations, and outstanding electrochemical storage capability. In this review, the categories, properties, and synthesis methods of MXenes are first outlined. Furthermore, the latest research and progress of MXenes and their composites in alkali metal ion storage are also summarized comprehensively. A special emphasis is placed on MXenes and their hybrids, ranging from material design and fabrication to fundamental understanding of the alkali ion storage mechanisms to battery performance optimization strategies. Lastly, the challenges and personal perspectives of the future research of MXenes and their composites for energy storage are presented.
Collapse
Affiliation(s)
- Ying Jiang
- School of Material Science and Engineering, Tianjin Key Lab of Photoelectric Materials & Devices, Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin University of Technology, Tianjin 300384, P.R. China
| | - Junchao Lao
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, P.R. China
| | - Guangfu Dai
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Material Science and Engineering, Hebei University of Technology, Tianjin 300401, P.R. China
| | - Zhengqing Ye
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Material Science and Engineering, Hebei University of Technology, Tianjin 300401, P.R. China
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR 999078, P.R. China
| |
Collapse
|
36
|
Fu Q, Zhao L, Luo X, Hobich J, Döpping D, Rehnlund D, Mutlu H, Dsoke S. Electrochemical Investigations of Sulfur-Decorated Organic Materials as Cathodes for Alkali Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311800. [PMID: 38164806 DOI: 10.1002/smll.202311800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Alkali metal-sulfur batteries (particularly, lithium/sodium- sulfur (Li/Na-S)) have attracted much attention because of their high energy density, the natural abundance of sulfur, and environmental friendliness. However, Li/Na-S batteries still face big challenges, such as limited cycle life, poor conductivity, large volume changes, and the "shuttle effect" caused by the high solubility of Li/Na-polysulfides. Herein, novel organosulfur-containing materials, i.e., bis(4-hydroxy-2,2,6,6-tetramethylpiperidin-1-yl)disulfide (BiTEMPS-OH) and 2,4-thiophene/arene copolymer (TAC) are proposed as cathode materials for Li and Na batteries. BiTEMPS-OH shows an initial discharge/charge capacity of 353/192 mAh g-1 and a capacity of 62 mAh g-1 after 200 cycles at 100 mA g-1 in ether-based Li-ion electrolyte. Meanwhile, TAC has an initial discharge/charge capacity of 270/248 mAh g-1 and better cycling performance (106 mAh g-1 after 200 cycles) than BiTEMPS-OH in the same electrolyte. However, the rate capability of TAC is limited by the slow diffusion of Li-ions. Both materials show inferior electrochemical performances in Na battery cells compared to the Li analogs. X-ray powder diffraction reveals that BiTEMPS-OH loses its crystalline structure permanently upon cycling in Li battery cells. X-ray photoelectron spectroscopy demonstrates the cleavage and partially reversible formation of S-S bonds in BiTEMPS-OH and the formation/decomposition of thick solid electrolyte interphase on the electrode surface of TAC.
Collapse
Affiliation(s)
- Qiang Fu
- Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D, 76344, Eggenstein-Leopoldshafen, Germany
- Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lei Zhao
- Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D, 76344, Eggenstein-Leopoldshafen, Germany
| | - Xianlin Luo
- Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D, 76344, Eggenstein-Leopoldshafen, Germany
| | - Jan Hobich
- Institute for Biological Interfaces 3 (IBG 3), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D, 76344, Germany, Eggenstein-Leopoldshafen
| | - Daniel Döpping
- Institute for Biological Interfaces 3 (IBG 3), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D, 76344, Germany, Eggenstein-Leopoldshafen
| | - David Rehnlund
- Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D, 76344, Eggenstein-Leopoldshafen, Germany
| | - Hatice Mutlu
- Institute for Biological Interfaces 3 (IBG 3), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D, 76344, Germany, Eggenstein-Leopoldshafen
- Institut de Science des Matériaux de Mulhouse, UMR 7361 CNRS/ Université de Haute Alsace, 15 rue Jean Starcky, Mulhouse Cedex, 68057, France
| | - Sonia Dsoke
- Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D, 76344, Eggenstein-Leopoldshafen, Germany
- Fraunhofer Institute for Solar Energy Systems, Heidenhofstr. 2, 79110, Freiburg, Germany
- Department of Sustainable Systems Engineering (INATECH), University of Freiburg, 79110, Freiburg, Germany
| |
Collapse
|
37
|
Feng Y, Bazzar M, Hernaez M, Barreda D, Mayes AG, González Z, Melendi-Espina S. Unveiling the potential of cellulose, chitosan and polylactic acid as precursors for the production of green carbon nanofibers with controlled morphology and diameter. Int J Biol Macromol 2024; 269:132152. [PMID: 38723811 DOI: 10.1016/j.ijbiomac.2024.132152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/22/2024] [Accepted: 05/05/2024] [Indexed: 05/30/2024]
Abstract
Carbon nanofibers (CNFs) are very promising materials with application in many fields, such as sensors, filtration systems, and energy storage devices. This study aims to explore the use of eco-friendly biopolymers for CNF production, finding novel, suitable and sustainable precursors and thus prioritising environmentally conscious processes and ecological compatibility. Polymeric nanofibers (PNFs) using cellulose acetate, polylactic acid, and chitosan as precursors were successfully prepared via electrospinning. Rheological testing was performed to determine suitable solution concentrations for the production of PNFs with controlled diameter and appropriate morphology. Their dimensions and structure were found to be significantly influenced by the solution concentration and electrospinning flow rate. Subsequently, the electrospun green nanofibers were subject to stabilisation and carbonisation to convert them into CNFs. Thermal behaviour and chemical/structural changes of the nanofibers during stabilisation were investigated by means of thermogravimetric analysis and Fourier-transform infrared spectroscopy, while the final morphology of the fibers after stabilisation and carbonisation was examined through scanning electron microscopy to determine the optimal stabilisation parameters. The optimal fabrication parameters for cellulose and chitosan-based CNFs with excellent morphology and thermal stability were successfully established, providing valuable insight and methods for the sustainable and environmentally friendly synthesis of these promising materials.
Collapse
Affiliation(s)
- Yifan Feng
- School of Engineering, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, UK
| | - Masoomeh Bazzar
- School of Chemistry, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, UK
| | - Miguel Hernaez
- School of Engineering, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, UK
| | - Daniel Barreda
- Instituto de Ciencia y Tecnología del Carbono (INCAR), CSIC, Francisco Pintado Fe 26, Oviedo 33011, Spain
| | - Andrew G Mayes
- School of Chemistry, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, UK
| | - Zoraida González
- Instituto de Ciencia y Tecnología del Carbono (INCAR), CSIC, Francisco Pintado Fe 26, Oviedo 33011, Spain
| | - Sonia Melendi-Espina
- School of Engineering, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, UK.
| |
Collapse
|
38
|
Wang D, Jung HD, Liu S, Chen J, Yang H, He Q, Xi S, Back S, Wang L. Revealing the structural evolution of CuAg composites during electrochemical carbon monoxide reduction. Nat Commun 2024; 15:4692. [PMID: 38824127 PMCID: PMC11144262 DOI: 10.1038/s41467-024-49158-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/23/2024] [Indexed: 06/03/2024] Open
Abstract
Comprehending the catalyst structural evolution during the electrocatalytic process is crucial for establishing robust structure/performance correlations for future catalysts design. Herein, we interrogate the structural evolution of a promising Cu-Ag oxide catalyst precursor during electrochemical carbon monoxide reduction. By using extensive in situ and ex situ characterization techniques, we reveal that the homogenous oxide precursors undergo a transformation to a bimetallic composite consisting of small Ag nanoparticles enveloped by thin layers of amorphous Cu. We believe that the amorphous Cu layer with undercoordinated nature is responsible for the enhanced catalytic performance of the current catalyst composite. By tuning the Cu/Ag ratio in the oxide precursor, we find that increasing the Ag concentration greatly promotes liquid products formation while suppressing the byproduct hydrogen. CO2/CO co-feeding electrolysis and isotopic labelling experiments suggest that high CO concentrations in the feed favor the formation of multi-carbon products. Overall, we anticipate the insights obtained for Cu-Ag bimetallic systems for CO electroreduction in this study may guide future catalyst design with improved performance.
Collapse
Affiliation(s)
- Di Wang
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Hyun Dong Jung
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul, Republic of Korea
| | - Shikai Liu
- Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Jiayi Chen
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Haozhou Yang
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Qian He
- Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore.
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| | - Seoin Back
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul, Republic of Korea.
| | - Lei Wang
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore.
- Centre for Hydrogen Innovations, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
39
|
Wang F, Ma Z, Cheng J. Accelerating Computation of Acidity Constants and Redox Potentials for Aqueous Organic Redox Flow Batteries by Machine Learning Potential-Based Molecular Dynamics. J Am Chem Soc 2024; 146:14566-14575. [PMID: 38659097 DOI: 10.1021/jacs.4c01221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Due to the increased concern about energy and environmental issues, significant attention has been paid to the development of large-scale energy storage devices to facilitate the utilization of clean energy sources. The redox flow battery (RFB) is one of the most promising systems. Recently, the high cost of transition-metal complex-based RFB has promoted the development of aqueous RFBs with redox-active organic molecules. To expand the working voltage, computational chemistry has been applied to search for organic molecules with lower or higher redox potentials. However, redox potential computation based on implicit solvation models would be challenging due to difficulty in parametrization when considering the complex solvation of supporting electrolytes. Besides, although ab initio molecular dynamics (AIMD) describes the supporting electrolytes with the same level of electronic structure theory as the redox couple, the application is impeded by the high computation costs. Recently, machine learning molecular dynamics (MLMD) has been illustrated to accelerate AIMD by several orders of magnitude without sacrificing the accuracy. It has been established that redox potentials can be computed by MLMD with two separated machine learning potentials (MLPs) for reactant and product states, which is redundant and inefficient. In this work, an automated workflow is developed to construct a universal MLP for both states, which can compute the redox potentials or acidity constants of redox-active organic molecules more efficiently. Furthermore, the predicted redox potentials can be evaluated at the hybrid functional level with much lower costs, which would facilitate the design of aqueous organic RFBs.
Collapse
Affiliation(s)
- Feng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zebing Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jun Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Laboratory of AI for Electrochemistry (AI4EC), IKKEM, Xiamen 361005, China
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China
| |
Collapse
|
40
|
Zhu Q, Fu D, Ji Q, Yang Z. A Review of Macrocycles Applied in Electrochemical Energy Storge and Conversion. Molecules 2024; 29:2522. [PMID: 38893398 PMCID: PMC11173979 DOI: 10.3390/molecules29112522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Macrocycles composed of diverse aromatic or nonaromatic structures, such as cyclodextrins (CDs), calixarenes (CAs), cucurbiturils (CBs), and pillararenes (PAs), have garnered significant attention due to their inherent advantages of possessing cavity structures, unique functional groups, and facile modification. Due to these distinctive features enabling them to facilitate ion insertion and extraction, form crosslinked porous structures, offer multiple redox-active sites, and engage in host-guest interactions, macrocycles have made huge contributions to electrochemical energy storage and conversion (EES/EEC). Here, we have summarized the recent advancements and challenges in the utilization of CDs, CAs, CBs, and PAs as well as other novel macrocycles applied in EES/EEC devices. The molecular structure, properties, and modification strategies are discussed along with the corresponding energy density, specific capacity, and cycling life properties in detail. Finally, crucial limitations and future research directions pertaining to these macrocycles in electrochemical energy storage and conversion are addressed. It is hoped that this review is able to inspire interest and enthusiasm in researchers to investigate macrocycles and promote their applications in EES/EEC.
Collapse
Affiliation(s)
- Qijian Zhu
- Department of Resources and Environment, Moutai Institute, Renhuai 564500, China;
| | - Danfei Fu
- School of Chemistry and Materials, Guizhou Normal University, Guiyang 550025, China;
| | - Qing Ji
- Department of Resources and Environment, Moutai Institute, Renhuai 564500, China;
| | - Zhongjie Yang
- School of Chemistry and Materials, Guizhou Normal University, Guiyang 550025, China;
| |
Collapse
|
41
|
Liao Y, Yang C, Bai J, He Q, Wang H, Chen H, Zhang Q, Chen L. Insights into the cycling stability of manganese-based zinc-ion batteries: from energy storage mechanisms to capacity fluctuation and optimization strategies. Chem Sci 2024; 15:7441-7473. [PMID: 38784725 PMCID: PMC11110161 DOI: 10.1039/d4sc00510d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/18/2024] [Indexed: 05/25/2024] Open
Abstract
Manganese-based materials are considered as one of the most promising cathodes in zinc-ion batteries (ZIBs) for large-scale energy storage applications owing to their cost-effectiveness, natural availability, low toxicity, multivalent states, high operation voltage, and satisfactory capacity. However, their intricate energy storage mechanisms coupled with unsatisfactory cycling stability hinder their commercial applications. Previous reviews have primarily focused on optimization strategies for achieving high capacity and fast reaction kinetics, while overlooking capacity fluctuation and lacking a systematic discussion on strategies to enhance the cycling stability of these materials. Thus, in this review, the energy storage mechanisms of manganese-based ZIBs with different structures are systematically elucidated and summarized. Next, the capacity fluctuation in manganese-based ZIBs, including capacity activation, degradation, and dynamic evolution in the whole cycle calendar are comprehensively analyzed. Finally, the constructive optimization strategies based on the reaction chemistry of one-electron and two-electron transfers for achieving durable cycling performance in manganese-based ZIBs are proposed.
Collapse
Affiliation(s)
- Yanxin Liao
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 China
| | - Chun Yang
- Institute of Materials for Energy and Environment, School of Materials Science and Engineering, Qingdao University Qingdao 266071 China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hong Kong SAR 999077 China
| | - Jie Bai
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 China
| | - Qingqing He
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 China
| | - Huayu Wang
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 China
| | - Haichao Chen
- Institute of Materials for Energy and Environment, School of Materials Science and Engineering, Qingdao University Qingdao 266071 China
| | - Qichun Zhang
- Department Materials Science and Engineering, Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong Kowloon Hong Kong SAR 999077 China
| | - Lingyun Chen
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 China
| |
Collapse
|
42
|
Nayak B, Arattu Thodika AR, Kumar H, Thimmappa R, Ottakam Thotiyl M. Directional molecular transport in iron redox flow batteries by interfacial electrostatic forces. J Colloid Interface Sci 2024; 662:289-297. [PMID: 38354556 DOI: 10.1016/j.jcis.2024.02.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/25/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
The mounting global energy demand urges surplus electricity generation. Due to dwindling fossil resources and environmental concerns, shifting from carbon-based fuels to renewables is vital. Though renewables are affordable, their intermittent nature poses supply challenges. In these contexts, aqueous flow batteries (AFBs), are a viable energy storage solution. This study tackles AFBs' energy density and efficiency challenges. Conventional strategies focus on altering molecule's solubility but overlook interface's transport kinetics. We show that triggering electrostatic forces at the interface can significantly enhance the mass transport kinetics of redox active molecules by introducing a powerful electrostatic flux over the diffusional flux, thereby exerting a precise directionality on the molecular transport. This approach of controlling the directionality of molecular flux in an all iron redox flow battery amplifies the current and power rating with approximately 140 % enhancement in the energy density.
Collapse
Affiliation(s)
- Bhojkumar Nayak
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Abdul Raafik Arattu Thodika
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India; Department of Chemistry and Biochemistry, University of Texas at Arlington, TX 76019, USA
| | - Hitesh Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Ravikumar Thimmappa
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Musthafa Ottakam Thotiyl
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India.
| |
Collapse
|
43
|
Conti DM, Urru C, Bruni G, Galinetto P, Albini B, Berbenni V, Girella A, Capsoni D. Na 3MnTi(PO 4) 3/C Nanofiber Free-Standing Electrode for Long-Cycling-Life Sodium-Ion Batteries. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:804. [PMID: 38727398 PMCID: PMC11085064 DOI: 10.3390/nano14090804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Self-standing Na3MnTi(PO4)3/carbon nanofiber (CNF) electrodes are successfully synthesized by electrospinning. A pre-synthesized Na3MnTi(PO4)3 is dispersed in a polymeric solution, and the electrospun product is heat-treated at 750 °C in nitrogen flow to obtain active material/CNF electrodes. The active material loading is 10 wt%. SEM, TEM, and EDS analyses demonstrate that the Na3MnTi(PO4)3 particles are homogeneously spread into and within CNFs. The loaded Na3MnTi(PO4)3 displays the NASICON structure; compared to the pre-synthesized material, the higher sintering temperature (750 °C) used to obtain conductive CNFs leads to cell shrinkage along the a axis. The electrochemical performances are appealing compared to a tape-casted electrode appositely prepared. The self-standing electrode displays an initial discharge capacity of 124.38 mAh/g at 0.05C, completely recovered after cycling at an increasing C-rate and a coulombic efficiency ≥98%. The capacity value at 20C is 77.60 mAh/g, and the self-standing electrode exhibits good cycling performance and a capacity retention of 59.6% after 1000 cycles at 1C. Specific capacities of 33.6, 22.6, and 17.3 mAh/g are obtained by further cycling at 5C, 10C, and 20C, and the initial capacity is completely recovered after 1350 cycles. The promising capacity values and cycling performance are due to the easy electrolyte diffusion and contact with the active material, offered by the porous nature of non-woven nanofibers.
Collapse
Affiliation(s)
- Debora Maria Conti
- Department of Chemistry, Physical Chemistry Section & C.S.G.I. (Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase), University of Pavia, Via Taramelli 16, 27100 Pavia, Italy; (D.M.C.); (C.U.); (G.B.); (V.B.); (A.G.)
| | - Claudia Urru
- Department of Chemistry, Physical Chemistry Section & C.S.G.I. (Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase), University of Pavia, Via Taramelli 16, 27100 Pavia, Italy; (D.M.C.); (C.U.); (G.B.); (V.B.); (A.G.)
| | - Giovanna Bruni
- Department of Chemistry, Physical Chemistry Section & C.S.G.I. (Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase), University of Pavia, Via Taramelli 16, 27100 Pavia, Italy; (D.M.C.); (C.U.); (G.B.); (V.B.); (A.G.)
| | - Pietro Galinetto
- Department of Physics, University of Pavia, Via Bassi 6, 27100 Pavia, Italy; (P.G.); (B.A.)
| | - Benedetta Albini
- Department of Physics, University of Pavia, Via Bassi 6, 27100 Pavia, Italy; (P.G.); (B.A.)
| | - Vittorio Berbenni
- Department of Chemistry, Physical Chemistry Section & C.S.G.I. (Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase), University of Pavia, Via Taramelli 16, 27100 Pavia, Italy; (D.M.C.); (C.U.); (G.B.); (V.B.); (A.G.)
| | - Alessandro Girella
- Department of Chemistry, Physical Chemistry Section & C.S.G.I. (Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase), University of Pavia, Via Taramelli 16, 27100 Pavia, Italy; (D.M.C.); (C.U.); (G.B.); (V.B.); (A.G.)
| | - Doretta Capsoni
- Department of Chemistry, Physical Chemistry Section & C.S.G.I. (Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase), University of Pavia, Via Taramelli 16, 27100 Pavia, Italy; (D.M.C.); (C.U.); (G.B.); (V.B.); (A.G.)
| |
Collapse
|
44
|
Tang T, Utomo NW, Zheng JXK, Archer LA. A nonsolvolytic fluorine/LiNO 3-containing electrolyte for stabilizing dynamic interfaces in Li||LiMn 2O 4 batteries. RSC Adv 2024; 14:14964-14972. [PMID: 38737648 PMCID: PMC11086053 DOI: 10.1039/d3ra08016a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
Mn-based high voltage cathodes, e.g., spinel LiMn2O4, are considered among the most promising materials for cost-effective, next generation energy storage. When paired with a Li metal anode, secondary batteries based on Li||LiMn2O4 in principle offer a straightforward, scalable approach for achieving cost-effective and high energy density storage demanded in applications. In practice, however, such batteries fail to live up to their promise. Rapid capacity fading caused by irreversible Mn dissolution at the cathode coupled with mossy/dendritic Li deposition at the anode limit their useful life. In this study, we report on the design of electrolytes based on a binary blend of two widely available salts, LiNO3 and LiTFSI, in ethylene carbonate (EC), which simultaneously overcome failure modes at both the cathode and anode of Li||LiMn2O4 batteries. The electrolyte design is motivated by a recent finding that compared with their linear counterparts (e.g., dimethyl carbonate), cyclic carbonates like EC dissolve considerably larger amount of LiNO3, which markedly improves anode reversibility. On the other hand, it is known that nonsolvolytic fluorine-containing Li salts like LiTFSI, lowers the electrolyte's susceptibility to solvolysis, which generates HF species responsible for Mn leaching at the cathode. In particular, we report instead that fluorine groups in the TFSI salt, promote formation of a favorable, fluorine-rich interphase on the Li metal anode. Electrochemical measurements show that the electrolytes enable remarkably improved charge-discharge cycling stability (>1000 charge-discharge cycles) of Li||LiMn2O4 batteries. In-depth atomic-resolution electron microscopy and X-ray/synchrotron diffraction experiments reveal the fundamental source of the improvements. The measurements show that crystallographic degradation of Mn-based cathodes (e.g., surface Mn leaching and bulk defect generation) upon cycling in conventional electrolytes is dramatically lowered in the LiNO3 + LiTFSI/EC electrolyte system. It is shown further that the reduction of Mn dissolution not only improves the cathode stability but improves the reversibility of the Li metal anode via a unique re-deposition mechanism in which Li and Mn co-deposit on the anode. Taken together, our findings show that the LiNO3 + LiTFSI/EC electrolyte system holds promise for accelerating progress towards practical Li||LiMn2O4 batteries because it stabilizes the dynamic interfaces required for long-term stability at both the Li anode and the LiMn2O4 cathode.
Collapse
Affiliation(s)
- Tian Tang
- Department of Materials Science and Engineering, Cornell University Ithaca NY 14853 USA
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University Ithaca NY 14853 USA
| | - Nyalaliska W Utomo
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University Ithaca NY 14853 USA
| | - J X Kent Zheng
- McKetta Department of Chemical Engineering, The University of Texas at Austin Austin Texas 78712 USA
| | - Lynden A Archer
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University Ithaca NY 14853 USA
| |
Collapse
|
45
|
Niu S, Wang Y, Zhang J, Wang Y, Tian Y, Ju N, Wang H, Zhao S, Zhang X, Zhang W, Li C, Sun HB. Engineering Low-Cost Organic Cathode for Aqueous Rechargeable Battery and Demonstrating the Proton Intercalation Mechanism for Pyrazine Energy Storage Unit. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309022. [PMID: 38084449 DOI: 10.1002/smll.202309022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/27/2023] [Indexed: 05/25/2024]
Abstract
Seeking organic cathode materials with low cost and long cycle life that can be employed for large-scale energy storage remains a significant challenge. This work has synthesized an organic compound, triphenazino[2,3-b](1,4,5,8,9,12-hexaazatriphenylene) (TPHATP), with as high as 87.16% yield. This compound has a highly π-conjugated and rigid molecular structure, which is synthesized by capping hexaketocyclohexane with three molecules of 2,3-diaminophenazine derived from low-cost o-phenylenediamine, and is used as a cathode material for assembling aqueous rechargeable zinc ion batteries. Both experiments and DFT calculations demonstrate that the redox mechanism of TPHATP is predominantly governed by H+ storage. The Zn-intercalation product of nitride-type compound, is too unstable to form in water. Moreover, the TPHATP cathode exhibits a capacity of as high as 318.3 mAh g-1 at 0.1 A g-1, and maintained a stable capacity of 111.9 mAh g-1 at a large current density of 10 A g-1 for 5000 cycles with only a decay of 0.000512% per cycle. This study provides new insights into understanding pyrazine as an active redox group and offers a potential affordable aqueous battery system for grid-scale energy storage.
Collapse
Affiliation(s)
- Suyan Niu
- Department of Chemistry, Northeastern University, Shenyang, 110819, P. R. China
| | - Yao Wang
- Department of Chemistry, Northeastern University, Shenyang, 110819, P. R. China
| | - Jianwen Zhang
- Department of Chemistry, Northeastern University, Shenyang, 110819, P. R. China
- Department of Chemistry, Shanghai University, Shanghai, 200444, P. R. China
| | - Yiming Wang
- Department of Chemistry, Northeastern University, Shenyang, 110819, P. R. China
| | - Yaxiong Tian
- Department of Chemistry, Northeastern University, Shenyang, 110819, P. R. China
- College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China
| | - Na Ju
- Department of Chemistry, Northeastern University, Shenyang, 110819, P. R. China
| | - Haipeng Wang
- Department of Chemistry, Northeastern University, Shenyang, 110819, P. R. China
| | - Shuya Zhao
- Department of Chemistry, Northeastern University, Shenyang, 110819, P. R. China
| | - Xinyue Zhang
- Department of Chemistry, Northeastern University, Shenyang, 110819, P. R. China
- Research Center for Environmental Materials and Technology, Foshan (Southern China) Institute for New Materials, Foshan, 528200, P. R. China
| | - Wenlong Zhang
- Department of Chemistry, Northeastern University, Shenyang, 110819, P. R. China
| | - Chengrui Li
- Department of Chemistry, Northeastern University, Shenyang, 110819, P. R. China
| | - Hong-Bin Sun
- Department of Chemistry, Northeastern University, Shenyang, 110819, P. R. China
| |
Collapse
|
46
|
Gong S, Chao Y, Yang F, Wu S, Wang Y, Chao D, Jia X. Bifunctional Potential Structure Design Breaks Electrolyte Limitations of Zinc Ion Battery. Angew Chem Int Ed Engl 2024; 63:e202401629. [PMID: 38385954 DOI: 10.1002/anie.202401629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 02/23/2024]
Abstract
Aqueous zinc-ion batteries (ZIBs) are safe and economical for grid applications. However, current ZIBs have limitations in terms of inferior capacity and low output voltage, which are hampered by the electrolyte applicability of the Zn2+ hosts. In this study, we propose a novel organic cathode design strategy with a bifunctional potential region. This polymeric Zn2+ host combines the conjugated polyaniline backbone to tune the molecular surface pH and [Fe(CN)6]3-/4- redox couple for high output voltage and capacity. The polyaniline doped with ferricyanide (PAF) electrode exhibits two forms of charge storage in ZIBs: proton-assisted Zn2+ doping below 1.2 V (mechanism I), and [Fe(CN)6]3-/4- redox pair above 1.8 V (mechanism II). Density functional theory calculations and in situ pH experiments demonstrated that the H+ doping process of mechanism I forms a localized pH regulation on the molecular chain surface, providing a favorable reaction environment for mechanism II. The Zn-polymer battery delivered an outstanding discharge capacity (405.2 mAh g-1) and high output voltage (1.8 V) in the Zn(CF3SO3)2 electrolyte. This study provides a new route for enhancing the structural stability of electrodes and overcoming the electrolyte limitations of ferricyanide in weakly acidic electrolytes.
Collapse
Affiliation(s)
- Shengen Gong
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yunfeng Chao
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450003, China
| | - Fang Yang
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Shuangyu Wu
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yifan Wang
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Danming Chao
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiaoteng Jia
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| |
Collapse
|
47
|
Skorupa M, Karoń K, Marchini E, Caramori S, Pluczyk-Małek S, Krukiewicz K, Carli S. PEDOT:Nafion for Highly Efficient Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2024; 16. [PMID: 38652052 PMCID: PMC11082849 DOI: 10.1021/acsami.4c01085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
Supercapacitors offer notable properties as energy storage devices, providing high power density and fast charging and discharging while maintaining a long cycling lifetime. Although poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate) (PEDOT/PSS) has become a gold standard among organic electronics materials, researchers are still investigating ways to further improve its capacitive characteristics. In this work, we introduced Nafion as an alternative polymeric counterion to PSS to form highly capacitive PEDOT/Nafion; its advantageous supercapacitive properties were further improved by treatment with either dimethyl sulfoxide or ethylene glycol. Accordingly, electrochemical characterization of PEDOT/Nafion films revealed their high areal capacitance (22 mF cm-2 at 10 mV/s) and low charge transfer resistance (∼380 Ω), together with excellent volumetric capacitance (74 F cm-3), Coulombic efficiency (99%), and an energy density of 23.1 ± 1.5 mWh cm-3 at a power density of 0.5 W cm-3, resulting from a more effective ion diffusion inside the conductive film, as confirmed by the results of spectroscopic studies. A proof-of-concept symmetric supercapacitor based on PEDOT/Nafion was characterized with a specific capacitance of approximately 15.7 F g-1 and impressive long-term stability (Coulombic efficiency ∼99% and capacitance ∼98.7% after 1000 charging/discharging cycles), overperforming the device based on PEDOT/PSS.
Collapse
Affiliation(s)
- Małgorzata Skorupa
- Department
of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, Gliwice 44-100, Poland
- Joint
Doctoral School, Silesian University of
Technology, Akademicka
2A, Gliwice 44-100, Poland
| | - Krzysztof Karoń
- Department
of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, Gliwice 44-100, Poland
- Centre
for Organic and Nanohybrid Electronics, Silesian University of Technology, S. Konarskiego 22B, Gliwice 44-100, Poland
| | - Edoardo Marchini
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Stefano Caramori
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Sandra Pluczyk-Małek
- Department
of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, Gliwice 44-100, Poland
- Centre
for Organic and Nanohybrid Electronics, Silesian University of Technology, S. Konarskiego 22B, Gliwice 44-100, Poland
| | - Katarzyna Krukiewicz
- Department
of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, Gliwice 44-100, Poland
- Centre
for Organic and Nanohybrid Electronics, Silesian University of Technology, S. Konarskiego 22B, Gliwice 44-100, Poland
| | - Stefano Carli
- Department
of Environmental and Prevention Sciences, University of Ferrara, Ferrara 44121, Italy
| |
Collapse
|
48
|
Bhadra A, Swathilakshmi S, Mittal U, Sharma N, Sai Gautam G, Kundu D. Averting H +-Mediated Charge Storage Chemistry Stabilizes the High Output Voltage of LiMn 2O 4-Based Aqueous Battery. SMALL METHODS 2024:e2400070. [PMID: 38639028 DOI: 10.1002/smtd.202400070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/01/2024] [Indexed: 04/20/2024]
Abstract
H+ co-intercalation chemistry of the cathode is perceived to have damaging consequences on the low-rate and long-term cycling of aqueous zinc batteries, which is a critical hindrance to their promise for stationary storage applications. Herein, the thermodynamically competitive H+ storage chemistry of an attractive high-voltage cathode LiMn2O4 is revealed by employing operando and ex-situ analytical techniques together with density functional theory-based calculations. The H+ electrochemistry leads to the previously unforeseen voltage decay with cycling, impacting the available energy density, particularly at lower currents. Based on an in-depth investigation of the effect of the Li+ to Zn2+ ratio in the electrolyte on the charge storage mechanism, a purely aqueous and low-salt concentration electrolyte with a tuned Li+/Zn2+ ratio is introduced to subdue the H+-mediated charge storage kinetically, resulting in a stable voltage output and improved cycling stability at both low and high cathode loadings. Synchrotron X-ray diffraction analysis reveals that repeated H+ intercalation triggers an irreversible phase transformation leading to voltage decay, which is averted by shutting down H+ storage. These findings unveiling the origin and impact of the deleterious H+-storage, coupled with the practical strategy for its inhibition, will inspire further work toward this under-explored realm of aqueous battery chemistry.
Collapse
Affiliation(s)
- Abhirup Bhadra
- School of Chemical Engineering, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - S Swathilakshmi
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, 560012, India
| | - Uttam Mittal
- School of Chemistry, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Neeraj Sharma
- School of Chemistry, UNSW Sydney, Kensington, NSW, 2052, Australia
| | | | - Dipan Kundu
- School of Chemical Engineering, UNSW Sydney, Kensington, NSW, 2052, Australia
- School of Mechanical and Manufacturing Engineering, UNSW Sydney, Kensington, NSW, 2052, Australia
| |
Collapse
|
49
|
Molina-Serrano A, Luque-Centeno JM, Sebastián D, Arenas LF, Turek T, Vela I, Carrasco-Marín F, Lázaro MJ, Alegre C. Comparison of the Influence of Oxygen Groups Introduced by Graphene Oxide on the Activity of Carbon Felt in Vanadium and Anthraquinone Flow Batteries. ACS APPLIED ENERGY MATERIALS 2024; 7:2779-2790. [PMID: 38606034 PMCID: PMC11005476 DOI: 10.1021/acsaem.3c03223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/09/2024] [Accepted: 02/18/2024] [Indexed: 04/13/2024]
Abstract
An increasing number of studies focus on organic flow batteries (OFBs) as possible substitutes for the vanadium flow battery (VFB), featuring anthraquinone derivatives, such as anthraquinone-2,7-disulfonic acid (2,7-AQDS). VFBs have been postulated as a promising energy storage technology. However, the fluctuating cost of vanadium minerals and risky supply chains have hampered their implementation, while OFBs could be prepared from renewable raw materials. A critical component of flow batteries is the electrode material, which can determine the power density and energy efficiency. Yet, and in contrast to VFBs, studies on electrodes tailored for OFBs are scarce. Hence, in this work, we propose the modification of commercial carbon felts with reduced graphene oxide (rGO) and poly(ethylene glycol) for the 2,7-AQDS redox couple and to preliminarily assess its effects on the efficiency of a 2,7-AQDS/ferrocyanide flow battery. Results are compared to those of a VFB to evaluate if the benefits of the modification are transferable to OFBs. The modification of carbon felts with surface oxygen groups introduced by the presence of rGO enhanced both its hydrophilicity and surface area, favoring the catalytic activity toward VFB and OFB reactions. The results are promising, given the improved behavior of the modified electrodes. Parallels are established between the electrodes of both FB technologies.
Collapse
Affiliation(s)
- Antonio
J. Molina-Serrano
- Instituto
de Carboquímica, Consejo Superior
de Investigaciones Científicas-CSIC. C/Miguel Luesma Castán, 4, 50018 Zaragoza, Spain
| | - José M. Luque-Centeno
- Instituto
de Carboquímica, Consejo Superior
de Investigaciones Científicas-CSIC. C/Miguel Luesma Castán, 4, 50018 Zaragoza, Spain
| | - David Sebastián
- Instituto
de Carboquímica, Consejo Superior
de Investigaciones Científicas-CSIC. C/Miguel Luesma Castán, 4, 50018 Zaragoza, Spain
| | - Luis F. Arenas
- Institute
of Chemical and Electrochemical Process Engineering, Clausthal University of Technology, Leibnizstraße 17, 38678 Clausthal-Zellerfeld, Germany
- Research
Center for Energy Storage Technologies, Clausthal University of Technology. Am Stollen 19 A, 38640 Goslar, Germany
| | - Thomas Turek
- Institute
of Chemical and Electrochemical Process Engineering, Clausthal University of Technology, Leibnizstraße 17, 38678 Clausthal-Zellerfeld, Germany
- Research
Center for Energy Storage Technologies, Clausthal University of Technology. Am Stollen 19 A, 38640 Goslar, Germany
| | - Irene Vela
- Instituto
de Carboquímica, Consejo Superior
de Investigaciones Científicas-CSIC. C/Miguel Luesma Castán, 4, 50018 Zaragoza, Spain
| | | | - María J. Lázaro
- Instituto
de Carboquímica, Consejo Superior
de Investigaciones Científicas-CSIC. C/Miguel Luesma Castán, 4, 50018 Zaragoza, Spain
| | - Cinthia Alegre
- Instituto
de Carboquímica, Consejo Superior
de Investigaciones Científicas-CSIC. C/Miguel Luesma Castán, 4, 50018 Zaragoza, Spain
| |
Collapse
|
50
|
Ahammed B, Ertekin E. Configurational Disorder, Strong Anharmonicity, and Coupled Host Dynamics Lead to Superionic Transport in Li 3YCl 6 (LYC). ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310537. [PMID: 38279784 DOI: 10.1002/adma.202310537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/30/2023] [Indexed: 01/28/2024]
Abstract
In superionic crystals, liquid-like ionic diffusivities often come hand-in-hand with ultra-low thermal conductivity and soft vibrational dynamics. However, generalized relationships between ion transport and vibrational dynamics remain elusive due to the diversity of superionic materials and complex underlying mechanisms. Here, the links between vibrational dynamics and ion transport in close-packed lithium halide ion conductor Li3YCl6 (LYC) are examined using a suite of atomistic first-principles methods. It is shown that configurational disorder, lattice anharmonicity, and coupled host-mobile ion vibrational dynamics together induce a transition to the superionic state. Statistical correlations between ionic hops and activation of the distribution of vibrational modes are found. However, typical phenomena associated with superionic conductors such as selective breakdown of zone-boundary soft phonons, or long wavelength transverse acoustic modes as in the 'phonon-liquid-electron crystal' concept, are not present. Instead, anharmonic zone-boundary modes aiding Li diffusion are found to broaden and soften selectively but persist across the superionic transition. These anharmonic modes couple Li ion motion with the vibrations of the flexible close-packed anion framework, which remains stable and facilitates ionic hopping. The results provide insights into how configurational disorder and soft-yet-resilient vibrational modes enable ionic hopping, particularly in 3D close-packed crystals.
Collapse
Affiliation(s)
- Ballal Ahammed
- Department of Mechanical Science & Engineering, University of Illinois at Urbana-Champaign, Illinois, 61801, USA
| | - Elif Ertekin
- Department of Mechanical Science & Engineering, University of Illinois at Urbana-Champaign, Illinois, 61801, USA
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Illinois, 61801, USA
| |
Collapse
|