1
|
Huang Q, Dai Y, Yang G, Zhuang L, Luo C, Li J, Zhang G. New insights into autochthonous fungal bioaugmentation mechanisms for recalcitrant petroleum hydrocarbon components using stable isotope probing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 958:178082. [PMID: 39700984 DOI: 10.1016/j.scitotenv.2024.178082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Autochthonous fungal bioaugmentation (AFB) is a promising strategy for the microbial remediation of petroleum hydrocarbon (PH)-contaminated soils. However, the mechanisms underlying AFB, particularly for degrading recalcitrant PH components, are not fully understood. This study employed stable isotope probing (SIP) and high-throughput sequencing to investigate the AFB mechanisms of two hydrocarbon-degrading fungi, Fusarium solani LJD-11 and Aspergillus fumigatus LJD-29, focusing on three challenging PH components: n-Hexadecane (n-Hex), Benzo[a]pyrene (BaP), and Dibenzothiophene (DBT). Our findings indicate that both fungal strains significantly enhanced pollutant removal rates, with combined application yielding optimal results. AFB treatment reduced the microbial diversity index and altered the soil microbial community, especially affecting fungal populations. A significant correlation between the microbial diversity index and degradation efficiency suggests that greater diversity enhances pollutant removal. SIP analysis showed that LJD-11 and LJD-29 could directly assimilate n-Hex and DBT, but not BaP. Correlation analyses between functional microorganisms and other biological indicators suggest that the removal of pollutants is also attributable to indigenous functional bacteria. Additionally, non-inoculated functional fungi present in the soil play a crucial role in BaP degradation. These findings reveal distinct degradation pathways for the three pollutants. The addition of carrier substrate reduced the complexity of the network, while AFB treatment restored it. In addition, the combined fungal treatment resulted in higher network parameters, leading to a more complex and stable network structure. These results provide insights into the mechanisms of AFB for degrading recalcitrant PH components, underscoring its potential for in situ bioremediation of petroleum-contaminated soils.
Collapse
Affiliation(s)
- Qihui Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, China; State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yeliang Dai
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Ningbo Research Institute of Ecological and Environmental Sciences, Ningbo 315000, China
| | - Guiqin Yang
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, China
| | - Li Zhuang
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, China.
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jibing Li
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
2
|
Marques HM. Electron transfer in biological systems. J Biol Inorg Chem 2024; 29:641-683. [PMID: 39424709 PMCID: PMC11638306 DOI: 10.1007/s00775-024-02076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/27/2024] [Indexed: 10/21/2024]
Abstract
Examples of how metalloproteins feature in electron transfer processes in biological systems are reviewed. Attention is focused on the electron transport chains of cellular respiration and photosynthesis, and on metalloproteins that directly couple electron transfer to a chemical reaction. Brief mention is also made of extracellular electron transport. While covering highlights of the recent and the current literature, this review is aimed primarily at introducing the senior undergraduate and the novice postgraduate student to this important aspect of bioinorganic chemistry.
Collapse
Affiliation(s)
- Helder M Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 2050, South Africa.
| |
Collapse
|
3
|
Kong D, Wang L, Yuan Y, Xia W, Liu Z, Shi M, Wu J. Review of key issues and potential strategies in bio-degradation of polyolefins. BIORESOURCE TECHNOLOGY 2024; 414:131557. [PMID: 39357608 DOI: 10.1016/j.biortech.2024.131557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/11/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
Polyolefins are the most widely used plastic product and a major contributor to white pollution. Currently, studies on polyolefin degradation systems are mainly focused on microorganisms and some redox enzymes, and there is a serious black-box phenomenon. The use of polyolefin-degrading enzymes is limited because of the small number of enzymes; in addition, the catalytic efficiency of these enzymes is poor and their catalytic mechanism is unclear, which leads to the incomplete degradation of polyolefins to produce microplastics. In this review, three questions are addressed: the generation and degradation of action targets that promote the degradation of polyolefins, the different modes by which enzymes bind substrates and their application scenarios, and possible multienzyme systems in a unified system. This review will be valuable for mining or modifying polyolefin degradation enzymes and constructing polyolefins degradation systems and may provide novel ideas and opportunities for polyolefin degradation.
Collapse
Affiliation(s)
- Demin Kong
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Lei Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yuan Yuan
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Wei Xia
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Zhanzhi Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Meng Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Jing Wu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
4
|
Yang CN, Liu W, Liu HT, Zhang JC, Long YT, Ying YL. Electrochemical kinetic fingerprinting of single-molecule coordinations in confined nanopores. Faraday Discuss 2024. [PMID: 39556019 DOI: 10.1039/d4fd00133h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Metal centers are essential for enzyme catalysis, stabilizing the active site, facilitating electron transfer, and maintaining the structure through coordination with amino acids. In this study, K238H-AeL nanopores with histidine sites were designed as single-molecule reactors for the measurement of single-molecule coordination reactions. The coordination mechanism of Au(III) with histidine and glutamate in biological nanopore confined space was explored. Specifically, Au(III) interacts with the nitrogen (N) atom in the histidine imidazole ring of the K238H-AeL nanopore and the oxygen (O) atom in glutamate to form a stable K238H-Au-Cl2 complex. The formation mechanism of this complex was further validated through single-molecule nanopore analysis, mass spectrometry, and molecular dynamics simulations. Introducing histidine and negative charge amino acids with carboxyl group into different positions within the nanopore revealed that the formation of the histidine-Au coordination bond in the confined space requires a suitable distance between the ligand and the central metal atom. By analyzing the association and dissociation rates of the single Au(III) ion under the applied voltages, it was found that a confined nanopore increased the bonding rate constant of Au(III)-histidine coordination reactions by around 10-100 times compared to that in the bulk solution and the optimal voltage for single-molecule. Therefore, nanopore techniques for tracking single-molecule reactions could offer valuable insights into designing metalloenzymes in metal-catalyzed organic reactions.
Collapse
Affiliation(s)
- Chao-Nan Yang
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, P. R. China.
| | - Wei Liu
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, P. R. China.
| | - Hao-Tian Liu
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, P. R. China.
| | - Ji-Chang Zhang
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, P. R. China.
| | - Yi-Tao Long
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, P. R. China.
| | - Yi-Lun Ying
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, P. R. China.
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, P. R. China
| |
Collapse
|
5
|
Ye Y, Jiang H, Xu R, Wang S, Zheng L, Guo J. The INSIGHT platform: Enhancing NAD(P)-dependent specificity prediction for co-factor specificity engineering. Int J Biol Macromol 2024; 278:135064. [PMID: 39182884 DOI: 10.1016/j.ijbiomac.2024.135064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
Enzyme specificity towards cofactors like NAD(P)H is crucial for applications in bioremediation and eco-friendly chemical synthesis. Despite their role in converting pollutants and creating sustainable products, predicting enzyme specificity faces challenges due to sparse data and inadequate models. To bridge this gap, we developed the cutting-edge INSIGHT platform to enhance the prediction of coenzyme specificity in NAD(P)-dependent enzymes. INSIGHT integrates extensive data from principal bioinformatics resources, concentrating on both NADH and NADPH specificities, and utilizes advanced protein language models to refine the predictions. This integration not only strengthens computational predictions but also meets the practical demands of high-throughput screening and optimization. Experimental validation confirms INSIGHT's effectiveness, boosting our ability to engineer enzymes for efficient, sustainable industrial and environmental processes. This work advances the practical use of computational tools in enzyme research, addressing industrial needs and offering scalable solutions for environmental challenges.
Collapse
Affiliation(s)
- Yilin Ye
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao
| | | | - Ran Xu
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao
| | - Sheng Wang
- Shanghai Zelixir Biotech Company Ltd., China
| | | | - Jingjing Guo
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao.
| |
Collapse
|
6
|
Tembeni B, Idowu OE, Benrkia R, Boutahiri S, Olatunji OJ. Biotransformation of selected secondary metabolites by Alternaria species and the pharmaceutical, food and agricultural application of biotransformation products. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:46. [PMID: 39158793 PMCID: PMC11333692 DOI: 10.1007/s13659-024-00469-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/04/2024] [Indexed: 08/20/2024]
Abstract
Biotransformation is a process in which molecules are modified in the presence of a biocatalyst or enzymes, as well as the metabolic alterations that occur in organisms from exposure to the molecules. Microbial biotransformation is an important process in natural product drug discovery as novel compounds are biosynthesised. Additionally, biotransformation products offer compounds with improved efficacy, solubility, reduced cytotoxic and allows for the understanding of structure activity relationships. One of the driving forces for these impeccable findings are associated with the presence of cytochrome P450 monooxygenases that is present in all organisms such as mammals, bacteria, and fungi. Numerous fungal strains have been used and reported for their ability to biotransform different compounds. This review focused on studies using Alternaria species as biocatalysts in the biotransformation of natural product compounds. Alternaria species facilitates reactions that favour stereoselectivity, regioselectivity under mild conditions. Additionally, microbial biotransformation products, their application in food, pharmaceutical and agricultural sector is discussed in this review.
Collapse
Affiliation(s)
- Babalwa Tembeni
- African Genome Center, Mohammed VI Polytechnic University, Benguerir, Morocco.
| | | | - Rachid Benrkia
- African Genome Center, Mohammed VI Polytechnic University, Benguerir, Morocco
| | - Salima Boutahiri
- African Genome Center, Mohammed VI Polytechnic University, Benguerir, Morocco
| | | |
Collapse
|
7
|
Zeng C, Xu S, Shen J, Zhao S, Xu X, Peng L. Hydroxysteroid Dehydrogenase-Catalyzed Highly Regio-, Chemo-, and Enantioselective Hydrogenation of 3-Keto in Steroids. Org Lett 2024; 26:127-131. [PMID: 38127069 DOI: 10.1021/acs.orglett.3c03557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
A highly selective hydrogenation of 3-keto in steroids to 3-hydroxyl steroids catalyzed by hydroxysteroid dehydrogenases (HSDHs) was demonstrated. The Ct3α-HSDH-catalyzed hydrogenation generated 3α-hydroxyl steroids as the main enantiopure isomers in high yields, while the Ss3β-HSDH catalytic system afforded 3β-hydroxyl steroids in excellent yields. In both catalytic systems, the hydrogenation proceeded regioselectively at 3-keto with 7-, 11-, 17-, and 20-keto almost unreacted, and chemoselectively with the C═C bond and ester group unattacked. Our HSDH-promoted hydrogenation showed advantages like high regio-, chemo-, and enantioselectivity, good yields, mild conditions, a wide substrate scope, and being suitable for gram-scale synthesis. Notably, bioactive molecules like dehydroepiandrosterone, brienolone, and alfaxalone were obtained facilely in high yields via our hydrogenation approach.
Collapse
Affiliation(s)
- Chunling Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
- Hunan Norchem Pharmaceutical Company, Ltd., Changsha 410000, P. R. China
| | - Shitang Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Jie Shen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Saijie Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xinhua Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
- Hunan Norchem Pharmaceutical Company, Ltd., Changsha 410000, P. R. China
| | - Lifen Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
- Hunan Norchem Pharmaceutical Company, Ltd., Changsha 410000, P. R. China
| |
Collapse
|
8
|
Vetrano A, Gabriele F, Spreti N. Prevention of Swelling Phenomenon of Alginate Beads To Improve the Stability and Recyclability of Encapsulated Horse Liver Alcohol Dehydrogenase. Chembiochem 2023; 24:e202300456. [PMID: 37439603 DOI: 10.1002/cbic.202300456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/14/2023]
Abstract
Horse Liver Alcohol Dehydrogenase (HLADH) has been immobilized on calcium-alginate beads and used for both oxidation and reduction reactions. To avoid swelling of the beads and their subsequent breakage, calcium ions were added to both reaction and storage solutions, allowing the beads to maintain the initial structural features. The techniques used for this purpose revealed that 2 mM Ca2+ is the optimal concentration, which does not significantly change the weight of the beads, the amount of water in them, and their external and internal structure. The optimized experimental procedure has been used to verify the properties of the enzyme in terms of reusability, storage, and thermal stability. The addition of calcium ions allows the enzyme to retain more than 80 % of its initial activity for fourteen cycles and approximately 50 % at the twentieth cycle. Moreover, when the biocatalyst has been stored in a buffer solution containing 2 mM Ca2+ , the retention of enzyme activity after 30 days was 100 %, compared to that measured before incubation. The encapsulated enzyme exhibits greater thermal stability than free HLADH up to at least 60 °C, preventing dimer dissociation into the two subunits.
Collapse
Affiliation(s)
- Alice Vetrano
- Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio, Coppito, 67100 L'Aquila, Italy
| | - Francesco Gabriele
- Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio, Coppito, 67100 L'Aquila, Italy
| | - Nicoletta Spreti
- Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio, Coppito, 67100 L'Aquila, Italy
| |
Collapse
|
9
|
Cristobal J, Nagorski RW, Richard JP. Utilization of Cofactor Binding Energy for Enzyme Catalysis: Formate Dehydrogenase-Catalyzed Reactions of the Whole NAD Cofactor and Cofactor Pieces. Biochemistry 2023; 62:2314-2324. [PMID: 37463347 PMCID: PMC10399567 DOI: 10.1021/acs.biochem.3c00290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Indexed: 07/20/2023]
Abstract
The pressure to optimize enzymatic rate accelerations has driven the evolution of the induced-fit mechanism for enzyme catalysts where the binding interactions of nonreacting phosphodianion or adenosyl substrate pieces drive enzyme conformational changes to form protein substrate cages that are activated for catalysis. We report the results of experiments to test the hypothesis that utilization of the binding energy of the adenosine 5'-diphosphate ribose (ADP-ribose) fragment of the NAD cofactor to drive a protein conformational change activates Candida boidinii formate dehydrogenase (CbFDH) for catalysis of hydride transfer from formate to NAD+. The ADP-ribose fragment provides a >14 kcal/mol stabilization of the transition state for CbFDH-catalyzed hydride transfer from formate to NAD+. This is larger than the ca. 6 kcal/mol stabilization of the ground-state Michaelis complex between CbFDH and NAD+ (KNAD = 0.032 mM). The ADP, AMP, and ribose 5'-phosphate fragments of NAD+ activate CbFDH for catalysis of hydride transfer from formate to nicotinamide riboside (NR). At a 1.0 M standard state, these activators stabilize the hydride transfer transition states by ≈5.5 (ADP), 5.5 (AMP), and 4.4 (ribose 5'-phosphate) kcal/mol. We propose that activation by these cofactor fragments is partly or entirely due to the ion-pair interaction between the guanidino side chain cation of R174 and the activator phosphate anion. This substitutes for the interaction between the α-adenosyl pyrophosphate anion of the whole NAD+ cofactor that holds CbFDH in the catalytically active closed conformation.
Collapse
Affiliation(s)
- Judith
R. Cristobal
- Department
of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United
States
| | - Richard W. Nagorski
- Department
of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United
States
| | - John P. Richard
- Department
of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United
States
| |
Collapse
|
10
|
Dai Y, Li J, Yang X, Wang S, Zhao X, Wang Y, Zhang D, Luo C, Zhang G. New insight into the mechanisms of autochthonous fungal bioaugmentation of phenanthrene in petroleum contaminated soil by stable isotope probing. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131271. [PMID: 36989785 DOI: 10.1016/j.jhazmat.2023.131271] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 05/03/2023]
Abstract
Autochthonous fungal bioaugmentation (AFB) is considered a reliable bioremediation approach for polycyclic aromatic hydrocarbon (PAH) contamination, but little is known about its mechanisms in contaminated soils. Here, a microcosm experiment was performed to explore the AFB mechanisms associated with two highly efficient phenanthrene degrading agents of fungi (with laccase-producing Scedosporium aurantiacum GIG-3 and non-laccase-producing Aspergillus fumigatus LJD-29), using stable-isotope-probing (SIP) and high-throughput sequencing. The results showed that each fungus markedly improved phenanthrene removal, and microcosms with both fungi exhibited the best phenanthrene removal performance among all microcosms. Additionally, AFB markedly shifted the composition of the microbial community, particularly the phenanthrene-degrading bacterial taxa. Interestingly, based on SIP results, strains GIG-3 and LJD-29 did not assimilate phenanthrene directly during AFB, but instead played key roles in the preliminary decomposition of phenanthrene though secretion of different extracellular enzymes to oxidize the benzene ring (GIG-3 bioaugmentation with laccase, and LJD-29 bioaugmentation with manganese and lignin peroxidases). In addition, all functional degraders directly involved in phenanthrene assimilation were indigenous bacteria, while native fungi rarely participated in the direct phenanthrene mineralization. Our findings provide a new mechanism of AFB with multiple fungi, and support AFB as a promising strategy for the in situ bioremediation of PAH-contaminated soil.
Collapse
Affiliation(s)
- Yeliang Dai
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jibing Li
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Xiumin Yang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Shuang Wang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xuan Zhao
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yujie Wang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
11
|
Al-Shameri A, Siebert DL, Sutiono S, Lauterbach L, Sieber V. Hydrogenase-based oxidative biocatalysis without oxygen. Nat Commun 2023; 14:2693. [PMID: 37258512 DOI: 10.1038/s41467-023-38227-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 04/21/2023] [Indexed: 06/02/2023] Open
Abstract
Biocatalysis-based synthesis can provide a sustainable and clean platform for producing chemicals. Many oxidative biocatalytic routes require the cofactor NAD+ as an electron acceptor. To date, NADH oxidase (NOX) remains the most widely applied system for NAD+ regeneration. However, its dependence on O2 implies various technical challenges in terms of O2 supply, solubility, and mass transfer. Here, we present the suitability of a NAD+ regeneration system in vitro based on H2 evolution. The efficiency of the hydrogenase-based system is demonstrated by integrating it into a multi-enzymatic cascade to produce ketoacids from sugars. The total NAD+ recycled using the hydrogenase system outperforms NOX in all different setups reaching up to 44,000 mol per mol enzyme. This system proves to be scalable and superior to NOX in terms of technical simplicity, flexibility, and total output. Furthermore, the system produces only green H2 as a by-product even in the presence of O2.
Collapse
Affiliation(s)
- Ammar Al-Shameri
- Chair of Chemistry of Biogenic Resources, TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, 94315, Straubing, Germany
| | - Dominik L Siebert
- Chair of Chemistry of Biogenic Resources, TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, 94315, Straubing, Germany
| | - Samuel Sutiono
- Chair of Chemistry of Biogenic Resources, TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, 94315, Straubing, Germany
| | - Lars Lauterbach
- RWTH Universität Aachen, Institute of Applied Microbiology, Worringerweg 1, 52074, Aachen, Germany
| | - Volker Sieber
- Chair of Chemistry of Biogenic Resources, TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, 94315, Straubing, Germany.
- Catalytic Research Center, Technical University of Munich, Ernst-Otto-Fischer-Straße 1, 85748, Garching, Germany.
- SynBiofoundry@TUM, Technical University of Munich, Schulgasse 16, 94315, Straubing, Germany.
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| |
Collapse
|
12
|
Bachosz K, Zdarta J, Bilal M, Meyer AS, Jesionowski T. Enzymatic cofactor regeneration systems: A new perspective on efficiency assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161630. [PMID: 36657682 DOI: 10.1016/j.scitotenv.2023.161630] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Nowadays, the specificity of enzymatic processes makes them more and more important every year, and their usage on an industrial scale seems to be necessary. Enzymatic cofactors, however, play a crucial part in the prospective applications of enzymes, because they are indispensable for conducting highly effective biocatalytic activities. Due to the relatively high cost of these compounds and their consumption during the processes carried out, it has become crucial to develop systems for cofactor regeneration. Therefore, in this review, an attempt was made to summarize current knowledge on enzymatic regeneration methods, which are characterized by high specificity, non-toxicity and reported to be highly efficient. The regeneration of cofactors, such as nicotinamide dinucleotides, coenzyme A, adenosine 5'-triphosphate and flavin nucleotides, which are necessary for the proper functioning of a large number of enzymes, is discussed, as well as potential directions for further development of these systems are highlighted. This review discusses a range of highly effective cofactor regeneration systems along with the productive synthesis of many useful chemicals, including the simultaneous renewal of several cofactors at the same time. Additionally, the impact of the enzyme immobilization process on improving the stability and the potential for multiple uses of the developed cofactor regeneration systems was also presented. Moreover, an attempt was made to emphasize the importance of the presented research, as well as the identification of research gaps, which mainly result from the lack of available literature on this topic.
Collapse
Affiliation(s)
- Karolina Bachosz
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; Department of Biotechnology and Biomedicine, DTU Bioengineering, Technical University of Denmark, Soltofts Plads 227, DK-2800 Kgs. Lyngby, Denmark.
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| | - Anne S Meyer
- Department of Biotechnology and Biomedicine, DTU Bioengineering, Technical University of Denmark, Soltofts Plads 227, DK-2800 Kgs. Lyngby, Denmark.
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| |
Collapse
|
13
|
Song P, Zhang X, Feng W, Xu W, Wu C, Xie S, Yu S, Fu R. Biological synthesis of ursodeoxycholic acid. Front Microbiol 2023; 14:1140662. [PMID: 36910199 PMCID: PMC9998936 DOI: 10.3389/fmicb.2023.1140662] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/13/2023] [Indexed: 03/14/2023] Open
Abstract
Ursodeoxycholic acid (UDCA) is a fundamental treatment drug for numerous hepatobiliary diseases that also has adjuvant therapeutic effects on certain cancers and neurological diseases. Chemical UDCA synthesis is environmentally unfriendly with low yields. Biological UDCA synthesis by free-enzyme catalysis or whole-cell synthesis using inexpensive and readily available chenodeoxycholic acid (CDCA), cholic acid (CA), or lithocholic acid (LCA) as substrates is being developed. The free enzyme-catalyzed one-pot, one-step/two-step method uses hydroxysteroid dehydrogenase (HSDH); whole-cell synthesis, mainly uses engineered bacteria (mainly Escherichia coli) expressing the relevant HSDHs. To further develop these methods, HSDHs with specific coenzyme dependence, high enzyme activity, good stability, and high substrate loading concentration, P450 monooxygenase with C-7 hydroxylation activity and engineered strain harboring HSDHs must be exploited.
Collapse
Affiliation(s)
- Peng Song
- College of Life Sciences, Liaocheng University, Liaocheng, China
- Jiangxi Zymerck Biotechnology Co., Ltd., Nanchang, China
| | - Xue Zhang
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Wei Feng
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Wei Xu
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Chaoyun Wu
- Jiangxi Zymerck Biotechnology Co., Ltd., Nanchang, China
| | - Shaoqing Xie
- Jiangxi Zymerck Biotechnology Co., Ltd., Nanchang, China
| | - Sisi Yu
- Jiangxi Zymerck Biotechnology Co., Ltd., Nanchang, China
| | - Rongzhao Fu
- Jiangxi Zymerck Biotechnology Co., Ltd., Nanchang, China
| |
Collapse
|
14
|
Zhang N, Trépout S, Chen H, Li MH. AIE Polymer Micelle/Vesicle Photocatalysts Combined with Native Enzymes for Aerobic Photobiocatalysis. J Am Chem Soc 2023; 145:288-299. [PMID: 36562998 DOI: 10.1021/jacs.2c09933] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Biocatalytic transformation has attracted increasing attention in the green synthesis of chemicals due to the diversity of enzymes, their high catalytic activities and specificities, and environmentally benign conditions. Most redox enzymes in nature are dependent on nicotinamide cofactors like β-nicotinamide adenine dinucleotide (NAD+)/reduced nicotinamide adenine dinucleotide (NADH). The use of solar energy, especially visible light, in the regeneration of cofactors through the combination of photocatalysis and biocatalysis provides an extraordinary opportunity to make complete green processes. However, the combination of photocatalysts and enzymes has been challenged by the rapid degradation and deactivation of the enzymatic material by photogenerated reactive oxygen species (ROS). Here, we design core-shell structured polymer micelles and vesicles with aggregation-induced emission (AIE) as visible-light-mediated photocatalysts for highly stable and recyclable photobiocatalysis under aerobic conditions. NAD+ from NADH can be efficiently regenerated by the photoactive hydrophobic core of polymer micelles and the hydrophobic membrane of polymer vesicles, while the enzymatic material (glucose 1-dehydrogenase) is screened from the attack of photogenerated ROS by the hydrophilic surface layer of polymer colloids. After at least 10 regeneration cycles, the enzyme keeps its active state; meanwhile, polymer micelles and vesicles maintain their photocatalytic activity. These polymer colloids show the potential to be developed for the implementation of industrially relevant photobiocatalytic systems.
Collapse
Affiliation(s)
- Nian Zhang
- Institut de Recherche de Chimie Paris, UMR8247, CNRS, Chimie ParisTech, PSL Université Paris, 11 rue Pierre et Marie Curie, 75005 Paris, France
| | - Sylvain Trépout
- Institut Curie, Inserm US43, CNRS UMS2016, Université Paris-Saclay, Centre Universitaire, Bât. 101B-110-111-112, Rue Henri Becquerel, CS 90030, 91401 Orsay Cedex, France
| | - Hui Chen
- Institut de Recherche de Chimie Paris, UMR8247, CNRS, Chimie ParisTech, PSL Université Paris, 11 rue Pierre et Marie Curie, 75005 Paris, France
| | - Min-Hui Li
- Institut de Recherche de Chimie Paris, UMR8247, CNRS, Chimie ParisTech, PSL Université Paris, 11 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
15
|
Linke JA, Rayat A, Ward JM. Production of indigo by recombinant bacteria. BIORESOUR BIOPROCESS 2023; 10:20. [PMID: 36936720 PMCID: PMC10011309 DOI: 10.1186/s40643-023-00626-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/06/2023] [Indexed: 03/15/2023] Open
Abstract
Indigo is an economically important dye, especially for the textile industry and the dyeing of denim fabrics for jeans and garments. Around 80,000 tonnes of indigo are chemically produced each year with the use of non-renewable petrochemicals and the use and generation of toxic compounds. As many microorganisms and their enzymes are able to synthesise indigo after the expression of specific oxygenases and hydroxylases, microbial fermentation could offer a more sustainable and environmentally friendly manufacturing platform. Although multiple small-scale studies have been performed, several existing research gaps still hinder the effective translation of these biochemical approaches. No article has evaluated the feasibility and relevance of the current understanding and development of indigo biocatalysis for real-life industrial applications. There is no record of either established or practically tested large-scale bioprocess for the biosynthesis of indigo. To address this, upstream and downstream processing considerations were carried out for indigo biosynthesis. 5 classes of potential biocatalysts were identified, and 2 possible bioprocess flowsheets were designed that facilitate generating either a pre-reduced dye solution or a dry powder product. Furthermore, considering the publicly available data on the development of relevant technology and common bioprocess facilities, possible platform and process values were estimated, including titre, DSP yield, potential plant capacities, fermenter size and batch schedule. This allowed us to project the realistic annual output of a potential indigo biosynthesis platform as 540 tonnes. This was interpreted as an industrially relevant quantity, sufficient to provide an annual dye supply to a single industrial-size denim dyeing plant. The conducted sensitivity analysis showed that this anticipated output is most sensitive to changes in the reaction titer, which can bring a 27.8% increase or a 94.4% drop. Thus, although such a biological platform would require careful consideration, fine-tuning and optimization before real-life implementation, the recombinant indigo biosynthesis was found as already attractive for business exploitation for both, luxury segment customers and mass-producers of denim garments. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1186/s40643-023-00626-7.
Collapse
Affiliation(s)
- Julia A. Linke
- grid.83440.3b0000000121901201Chemical Engineering Department, University College London (UCL), Torrington Place, London, WC1E 7JE UK
- grid.83440.3b0000000121901201Division of Medicine, University College London (UCL), 5 University Street, London, WC1E 6JF UK
| | - Andrea Rayat
- grid.83440.3b0000000121901201Biochemical Engineering Department, University College London (UCL), Gower St., London, WC1E 6BT UK
| | - John M. Ward
- grid.83440.3b0000000121901201Biochemical Engineering Department, University College London (UCL), Gower St., London, WC1E 6BT UK
| |
Collapse
|
16
|
Stuhr R, Bayer P, von Wangelin AJ. The Diverse Modes of Oxygen Reactivity in Life & Chemistry. CHEMSUSCHEM 2022; 15:e202201323. [PMID: 36214486 PMCID: PMC10100308 DOI: 10.1002/cssc.202201323] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Oxygen is a molecule of utmost importance in our lives. Beside its vital role for the respiration and sustaining of organisms, oxygen is involved in numerous chemical and physical processes. Upon combination of the different forms of molecular oxygen species with various activation modes, substrates, and reaction conditions an extremely wide chemical space can be covered that enables rich applications of diverse oxygenation processes. This Review provides an instructive overview of the individual properties and reactivities of oxygen species and illustrates their importance in nature, everyday life, and in the context of chemical synthesis.
Collapse
Affiliation(s)
- Robin Stuhr
- Department of ChemistryUniversity of HamburgMartin-Luther-King Platz 620146HamburgGermany
| | - Patrick Bayer
- Pantheon AustriaThermo Fisher ScientificSt. Peter Str. 254020LinzAustria
| | | |
Collapse
|
17
|
Becker JM, Lielpetere A, Szczesny J, Junqueira JRC, Rodríguez-Maciá P, Birrell JA, Conzuelo F, Schuhmann W. Bioelectrocatalytic CO 2 Reduction by Redox Polymer-Wired Carbon Monoxide Dehydrogenase Gas Diffusion Electrodes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46421-46426. [PMID: 36194638 PMCID: PMC9585511 DOI: 10.1021/acsami.2c09547] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
The development of electrodes for efficient CO2 reduction while forming valuable compounds is critical. The use of enzymes as catalysts provides the advantage of high catalytic activity in combination with highly selective transformations. We describe the electrical wiring of a carbon monoxide dehydrogenase II from Carboxydothermus hydrogenoformans (ChCODH II) using a cobaltocene-based low-potential redox polymer for the selective reduction of CO2 to CO over gas diffusion electrodes. High catalytic current densities of up to -5.5 mA cm-2 are achieved, exceeding the performance of previously reported bioelectrodes for CO2 reduction based on either carbon monoxide dehydrogenases or formate dehydrogenases. The proposed bioelectrode reveals considerable stability with a half-life of more than 20 h of continuous operation. Product quantification using gas chromatography confirmed the selective transformation of CO2 into CO without any parasitic co-reactions at the applied potentials.
Collapse
Affiliation(s)
- Jana M. Becker
- Analytical
Chemistry—Center for Electrochemical Sciences (CES), Faculty
of Chemistry and Biochemistry, Ruhr-Universität
Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Anna Lielpetere
- Analytical
Chemistry—Center for Electrochemical Sciences (CES), Faculty
of Chemistry and Biochemistry, Ruhr-Universität
Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Julian Szczesny
- Analytical
Chemistry—Center for Electrochemical Sciences (CES), Faculty
of Chemistry and Biochemistry, Ruhr-Universität
Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - João R. C. Junqueira
- Analytical
Chemistry—Center for Electrochemical Sciences (CES), Faculty
of Chemistry and Biochemistry, Ruhr-Universität
Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Patricia Rodríguez-Maciá
- Department
of Inorganic Spectroscopy, Max Planck Institute
for Chemical Energy Conversion, Stiftstrasse 34−36, D-45470 Mülheim an der Ruhr, Germany
| | - James A. Birrell
- Department
of Inorganic Spectroscopy, Max Planck Institute
for Chemical Energy Conversion, Stiftstrasse 34−36, D-45470 Mülheim an der Ruhr, Germany
| | - Felipe Conzuelo
- Instituto
de Tecnologia Química e Biológica António Xavier,
Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Wolfgang Schuhmann
- Analytical
Chemistry—Center for Electrochemical Sciences (CES), Faculty
of Chemistry and Biochemistry, Ruhr-Universität
Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| |
Collapse
|
18
|
Functional Characterization and Synthetic Application of Is2-SDR, a Novel Thermostable and Promiscuous Ketoreductase from a Hot Spring Metagenome. Int J Mol Sci 2022; 23:ijms232012153. [PMID: 36293010 PMCID: PMC9603792 DOI: 10.3390/ijms232012153] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
In a metagenome mining-based search of novel thermostable hydroxysteroid dehydrogenases (HSDHs), enzymes that are able to selectively oxidize/reduce steroidal compounds, a novel short-chain dehydrogenase/reductase (SDR), named Is2-SDR, was recently discovered. This enzyme, found in an Icelandic hot spring metagenome, shared a high sequence similarity with HSDHs, but, unexpectedly, showed no activity in the oxidation of the tested steroid substrates, e.g., cholic acid. Despite that, Is2-SDR proved to be a very active and versatile ketoreductase, being able to regio- and stereoselectively reduce a diversified panel of carbonylic substrates, including bulky ketones, α- and β-ketoesters, and α-diketones of pharmaceutical relevance. Further investigations showed that Is2-SDR was indeed active in the regio- and stereoselective reduction of oxidized steroid derivatives, and this outcome was rationalized by docking analysis in the active site model. Moreover, Is2-SDR showed remarkable thermostability, with an apparent melting temperature (TM) around 75 °C, as determined by circular dichroism analysis, and no significant decrease in catalytic activity, even after 5 h at 80 °C. A broad tolerance to both water-miscible and water-immiscible organic solvents was demonstrated as well, thus, confirming the potential of this new biocatalyst for its synthetic application.
Collapse
|
19
|
Nasti R, Bassanini I, Ferrandi EE, Linguardo F, Bertuletti S, Vanoni M, Riva S, Verotta L, Monti D. Stereoselective Biocatalyzed Reductions of Ginger Active Components Recovered from Industrial Wastes. Chembiochem 2022; 23:e202200105. [PMID: 35188325 PMCID: PMC9314113 DOI: 10.1002/cbic.202200105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Indexed: 11/30/2022]
Abstract
Ginger is among the most widespread and widely consumed traditional medicinal plants around the world. Its beneficial effects, which comprise e. g. anticancer and anti-inflammatory activities as well as gastrointestinal regulatory effects, are generally attributed to a family of non-volatile compounds characterized by an arylalkyl long-chained alcohol, diol, or ketone moiety. In this work, ginger active components have been successfully recovered from industrial waste biomass of fermented ginger. Moreover, their recovery has been combined with the first systematic study of the stereoselective reduction of gingerol-like compounds by isolated alcohol dehydrogenases (ADHs), obtaining the enantioenriched sec-alcohol derivatives via a sustainable biocatalytic path in up to >99 % conversions and >99 % enantiomeric/diastereomeric excesses.
Collapse
Affiliation(s)
- Rita Nasti
- Department of Environmental Science and PolicyUniversità degli Studi di MilanoVia Celoria 2Milano20133Italy
| | - Ivan Bassanini
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”Consiglio Nazionale delle RicercheVia Mario Bianco 9Milano20131Italy
| | - Erica Elisa Ferrandi
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”Consiglio Nazionale delle RicercheVia Mario Bianco 9Milano20131Italy
| | - Federica Linguardo
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”Consiglio Nazionale delle RicercheVia Mario Bianco 9Milano20131Italy
| | - Susanna Bertuletti
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”Consiglio Nazionale delle RicercheVia Mario Bianco 9Milano20131Italy
| | - Marta Vanoni
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”Consiglio Nazionale delle RicercheVia Mario Bianco 9Milano20131Italy
| | - Sergio Riva
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”Consiglio Nazionale delle RicercheVia Mario Bianco 9Milano20131Italy
| | - Luisella Verotta
- Department of Environmental Science and PolicyUniversità degli Studi di MilanoVia Celoria 2Milano20133Italy
| | - Daniela Monti
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”Consiglio Nazionale delle RicercheVia Mario Bianco 9Milano20131Italy
| |
Collapse
|
20
|
Stewart KN, Domaille DW. A one-pot biocatalytic and organocatalytic cascade delivers high titers of 2-ethyl-2-hexenal from n-butanol. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00568e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Combining an organocatalyst with isolated alcohol oxidase or a whole-cell biocatalyst delivers 2-ethyl-2-hexenal in a one-pot, two-step biocatalytic/organocatalytic cascade.
Collapse
Affiliation(s)
- Kelsey N. Stewart
- Department of Chemistry, Colorado School of Mines, Golden, CO 80401, USA
| | - Dylan W. Domaille
- Department of Chemistry, Colorado School of Mines, Golden, CO 80401, USA
| |
Collapse
|
21
|
Wahart AJC, Staniland J, Miller GJ, Cosgrove SC. Oxidase enzymes as sustainable oxidation catalysts. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211572. [PMID: 35242351 PMCID: PMC8753158 DOI: 10.1098/rsos.211572] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/03/2021] [Indexed: 05/03/2023]
Abstract
Oxidation is one of the most important processes used by the chemical industry. However, many of the methods that are used pose significant sustainability and environmental issues. Biocatalytic oxidation offers an alternative to these methods, with a now significant enzymatic oxidation toolbox on offer to chemists. Oxidases are one of these options, and as they only depend on molecular oxygen as a terminal oxidant offer perfect atom economy alongside the selectivity benefits afforded by enzymes. This review will focus on examples of oxidase biocatalysts that have been used for the sustainable production of important molecules and highlight some important processes that have been significantly improved through the use of oxidases. It will also consider emerging classes of oxidases, and how they might fit in a future biorefinery approach for the sustainable production of important chemicals.
Collapse
Affiliation(s)
- Alice J. C. Wahart
- Lennard-Jones Laboratories, School of Chemical and Physical Sciences, Keele University, Staffordshire, ST5 5BG, UK
| | | | - Gavin J. Miller
- Lennard-Jones Laboratories, School of Chemical and Physical Sciences, Keele University, Staffordshire, ST5 5BG, UK
- The Keele Centre for Glycoscience Research and Training, Keele University, Staffordshire, ST5 5BG, UK
| | - Sebastian C. Cosgrove
- Lennard-Jones Laboratories, School of Chemical and Physical Sciences, Keele University, Staffordshire, ST5 5BG, UK
- The Keele Centre for Glycoscience Research and Training, Keele University, Staffordshire, ST5 5BG, UK
| |
Collapse
|
22
|
Mikolasch A, Hahn V. Laccase-Catalyzed Derivatization of Antibiotics with Sulfonamide or Sulfone Structures. Microorganisms 2021; 9:microorganisms9112199. [PMID: 34835324 PMCID: PMC8620746 DOI: 10.3390/microorganisms9112199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
Trametes spec. laccase (EC 1.10.3.2.) mediates the oxidative coupling of antibiotics with sulfonamide or sulfone structures with 2,5-dihydroxybenzene derivatives to form new heterodimers and heterotrimers. These heteromolecular hybrid products are formed by nuclear amination of the p-hydroquinones with the primary amino group of the sulfonamide or sulfone antibiotics, and they inhibited in vitro the growth of Staphylococcus species, including multidrug-resistant strains.
Collapse
Affiliation(s)
- Annett Mikolasch
- Institute for Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany;
- Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Veronika Hahn
- Institute for Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany;
- Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Correspondence: ; Tel.: +49-3834-5543872
| |
Collapse
|
23
|
Lecourt M, Chietera G, Blerot B, Antoniotti S. Laccase-Catalyzed Oxidation of Allylbenzene Derivatives: Towards a Green Equivalent of Ozonolysis. Molecules 2021; 26:6053. [PMID: 34641596 PMCID: PMC8512103 DOI: 10.3390/molecules26196053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/16/2022] Open
Abstract
Laccase-based biocatalytic reactions have been tested with and without mediators and optimized in the oxidation of allylbenzene derivatives, such as methyl eugenol taken as a model substrate. The reaction primarily consisted in the hydroxylation of the propenyl side chain, either upon isomerization of the double bond or not. Two pathways were then observed; oxidation of both allylic alcohol intermediates could either lead to the corresponding α,β-unsaturated carbonyl compound, or the corresponding benzaldehyde derivative by oxidative cleavage. Such a process constitutes a green equivalent of ozonolysis or other dangerous or waste-generating oxidation reactions. The conversion rate was sensitive to the substitution patterns of the benzenic ring and subsequent electronic effects.
Collapse
Affiliation(s)
- Mathilde Lecourt
- Institut de Chimie de Nice, Université Côte d’Azur, CNRS, Parc Valrose, CEDEX 2, 06108 Nice, France;
| | - Giorgiana Chietera
- LMR Naturals by IFF, Parc d’Activité les Bois de Grasse, 18 Avenue Joseph Honoré Isnard, 06130 Grasse, France; (G.C.); (B.B.)
| | - Bernard Blerot
- LMR Naturals by IFF, Parc d’Activité les Bois de Grasse, 18 Avenue Joseph Honoré Isnard, 06130 Grasse, France; (G.C.); (B.B.)
| | - Sylvain Antoniotti
- Institut de Chimie de Nice, Université Côte d’Azur, CNRS, Parc Valrose, CEDEX 2, 06108 Nice, France;
| |
Collapse
|
24
|
Kim KH, Lee CW, Pardhe BD, Hwang J, Do H, Lee YM, Lee JH, Oh TJ. Crystal structure of an apo 7α-hydroxysteroid dehydrogenase reveals key structural changes induced by substrate and co-factor binding. J Steroid Biochem Mol Biol 2021; 212:105945. [PMID: 34171491 DOI: 10.1016/j.jsbmb.2021.105945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 11/23/2022]
Abstract
7α-Hydroxysteroid dehydrogenase (7α-HSDH) catalyzes the dehydrogenation of a hydroxyl group at the 7α position in steroid substrates using NAD+ or NADP+ as a co-factor. Although studies have determined the binary and ternary complex structures, detailed structural changes induced by ligand and co-factor binding remain unclear, because ligand-free structures are not yet available. Here, we present the crystal structure of apo 7α-HSDH from Escherichia coli (Eco-7α-HSDH) at 2.7 Å resolution. We found that the apo form undergoes substantial conformational changes in the β4-α4 loop, α7-α8 helices, and C-terminus loop among the four subunits comprising the tetramer. Furthermore, a comparison of the apo structure with the binary (NAD+)-complex and ternary (NADH and 7-oxoglycochenodeoxycholic acid)-complex Eco-7α-HSDH structures revealed that only the ternary-complex structure has a fully closed conformation, whereas the binary-complex and apo structures have a semi-closed or open conformation. This open-to-closed transition forces several catalytically important residues (S146, Y159, and K163) into correct positions for catalysis. To confirm the catalytic activity, we used alcohol dehydrogenase for NAD+ regeneration to allow efficient conversion of chenodeoxycholic acid to 7-ketolithocholic acid by Eco-7α-HSDH. These findings demonstrate that apo Eco-7α-HSDH exhibits intrinsically flexible characteristics with an open conformation. This structural information provides novel insight into the 7α-HSDH reaction mechanism.
Collapse
Affiliation(s)
- Ki-Hwa Kim
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan, 31460, Republic of Korea
| | - Chang Woo Lee
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Bashu Dev Pardhe
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan, 31460, Republic of Korea
| | - Jisub Hwang
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon, 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology, Incheon, 21990, Republic of Korea
| | - Hackwon Do
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Yung Mi Lee
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Jun Hyuck Lee
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon, 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology, Incheon, 21990, Republic of Korea.
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan, 31460, Republic of Korea; Genome-based BioIT Convergence Institute, Asan, 31460, Republic of Korea; Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan, 31460, Republic of Korea.
| |
Collapse
|
25
|
Yang N, Tian Y, Zhang M, Peng X, Li F, Li J, Li Y, Fan B, Wang F, Song H. Photocatalyst-enzyme hybrid systems for light-driven biotransformation. Biotechnol Adv 2021; 54:107808. [PMID: 34324993 DOI: 10.1016/j.biotechadv.2021.107808] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/26/2021] [Accepted: 07/21/2021] [Indexed: 11/02/2022]
Abstract
Enzymes catalyse target reactions under mild conditions with high efficiency, as well as excellent regional-, stereo-, and enantiomeric selectivity. Photocatalysis utilises sustainable and environment-friendly light power to realise efficient chemical conversion. By combining the interdisciplinary advantages of photo- and enzymatic catalysis, the photocatalyst-enzyme hybrid systems have proceeded various light-driven biotransformation with high efficiency under environmentally benign conditions, thus, attracting unparalleled focus during the last decades. It has also been regarded as a promising pathway towards green chemistry utilising ubiquitous solar energy. This systematic review gives insight into this research field by classifying the existing photocatalyst-enzyme hybrid systems into three sections based on different hybridizing modes between photo- and enzymatic catalysis. Furthermore, existing challenges and proposed strategies are discussed within this context. The first system summarised is the cofactor-mediated hybrid system, in which natural/artificial cofactors act as reducing equivalents that connect photocatalysts with enzymes for light-driven enzymatic biotransformation. Second, the direct contact-based photocatalyst-enzyme hybrid systems are described, including two different kinds of electron exchange sites on the enzyme molecules. Third, some cases where photocatalysts and enzymes are integrated into a reaction cascade with specific intermediates will be discussed in the following chapter. Finally, we provide perspective concerning the future of this field.
Collapse
Affiliation(s)
- Nan Yang
- Frontier Science Centre for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Yao Tian
- Frontier Science Centre for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Mai Zhang
- Frontier Science Centre for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Xiting Peng
- Frontier Science Centre for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Feng Li
- Frontier Science Centre for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Jianxun Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China
| | - Yi Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China.
| | - Hao Song
- Frontier Science Centre for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China.
| |
Collapse
|
26
|
Markel U, Sauer DF, Wittwer M, Schiffels J, Cui H, Davari MD, Kröckert KW, Herres-Pawlis S, Okuda J, Schwaneberg U. Chemogenetic Evolution of a Peroxidase-like Artificial Metalloenzyme. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00134] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ulrich Markel
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Daniel F. Sauer
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Malte Wittwer
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Johannes Schiffels
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Haiyang Cui
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Mehdi D. Davari
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Konstantin W. Kröckert
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| | - Sonja Herres-Pawlis
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| | - Jun Okuda
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
- DWI—Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany
| |
Collapse
|
27
|
Petrovičová T, Gyuranová D, Plž M, Myrtollari K, Smonou I, Rebroš M. Application of robust ketoreductase from Hansenula polymorpha for the reduction of carbonyl compounds. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2020.111364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Qiao Y, Wang C, Zeng Y, Wang T, Qiao J, Lu C, Wang Z, Ying X. Efficient whole-cell oxidation of α,β-unsaturated alcohols to α,β-unsaturated aldehydes through the cascade biocatalysis of alcohol dehydrogenase, NADPH oxidase and hemoglobin. Microb Cell Fact 2021; 20:17. [PMID: 33468136 PMCID: PMC7816460 DOI: 10.1186/s12934-021-01511-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
Background α,β-Unsaturated aldehydes are widely used in the organic synthesis of fine chemicals for application in products such as flavoring agents, fragrances and pharmaceuticals. In the selective oxidation of α,β-unsaturated alcohols to the corresponding α,β-unsaturated aldehydes, it remains challenging to overcome poor selectivity, overoxidation and a low atom efficiency in chemical routes. Results An E. coli strain coexpressing the NADP+-specific alcohol dehydrogenase YsADH and the oxygen-dependent NADPH oxidase TkNOX was constructed; these components enabled the NADP+ regeneration and catalyzed the oxidation of 100 mM 3-methyl-2-buten-1-ol to 3-methyl-2-butenal with a yield of 21.3%. The oxygen supply was strengthened by introducing the hemoglobin protein VsHGB into recombinant E. coli cells and replacing the atmosphere of the reactor with pure oxygen, which increased the yield to 51.3%. To further improve catalytic performance, the E. coli cells expressing the multifunctional fusion enzyme YsADH-(GSG)-TkNOX-(GSG)-VsHGB were generated, which completely converted 250 mM 3-methyl-2-buten-1-ol to 3-methyl-2-butenal after 8 h of whole-cell oxidation. The reaction conditions for the cascade biocatalysis were optimized, in which supplementation with 0.2 mM FAD and 0.4 mM NADP+ was essential for maintaining high catalytic activity. Finally, the established whole-cell system could serve as a platform for the synthesis of valuable α,β-unsaturated aldehydes through the selective oxidation of various α,β-unsaturated alcohols. Conclusions The construction of a strain expressing the fusion enzyme YsADH-(GSG)-TkNOX-(GSG)-VsHGB achieved efficient NADP+ regeneration and the selective oxidation of various α,β-unsaturated alcohols to the corresponding α,β-unsaturated aldehydes. Among the available redox enzymes, the fusion enzyme YsADH-(GSG)-TkNOX-(GSG)-VsHGB has become the most recent successful example to improve catalytic performance in comparison with its separate components.
Collapse
Affiliation(s)
- Yan Qiao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Can Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yin Zeng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Tairan Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jingjing Qiao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Chenze Lu
- College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Zhao Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiangxian Ying
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
29
|
Yu J, Wang Y, Xiao Y, Li X, Xu X, Zhao H, Wu L, Li J. Effects of chronic nitrate exposure on the intestinal morphology, immune status, barrier function, and microbiota of juvenile turbot (Scophthalmus maximus). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111287. [PMID: 32931967 DOI: 10.1016/j.ecoenv.2020.111287] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
Coming along with high water reuse in sustainable and intensive recirculating aquaculture systems (RASs), the waste products of fish in rearing water is continuously accumulated. Nitrate, the final product of biological nitrification processes, which may cause aquatic toxicity to fish in different degrees when exposed for a long time. Therefore, the present study was conducted to evaluate the impact of chronic nitrate exposure on intestinal morphology, immune status, barrier function, and microbiota of juvenile turbot. For that, groups of juvenile turbot were exposed to 0 (control check, CK), 50 (low nitrate, L), 200 (medium nitrate, M), and 400 (high nitrate, H) mg L-1 nitrate-N in small-sized recirculating aquaculture systems. After the 60-day experiment period, we found that exposure to a high concentration of nitrate-N caused obvious pathological damages to the intestine; for instance, atrophy of intestinal microvilli and necrosis in the lamina propria. Quantitative real-time PCR analysis revealed a significant downregulation of the barrier forming tight junction genes like occludin, claudin-like etc. under H treatment (P < 0.05). Intestinal MUC-2 expression also decreased significantly in the nitrate treatment groups compared to that in the control (P < 0.05). Additionally, the expression of HSP70 and HSP90 heat-shock proteins, toll-like receptor-3 (TLR-3), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) significantly increased (P < 0.05), whereas that of transforming growth factor-β (TGF-β), lysozyme (LYS), and insulin-like growth factor-I (IGF-I) significantly decreased with H treatment (P < 0.05). The results also revealed that intestinal microbial community was changed following nitrate exposure and could alter the α-diversity and β-diversity. Specifically, the proportion of intrinsic flora decreased, whereas that of the potential pathogens significantly increased with M and H treatments (P < 0.05). In conclusion, chronic nitrate exposure could weaken the barrier function and disturb the composition of intestinal microbiota in marine teleosts, thereby harming their health condition.
Collapse
Affiliation(s)
- Jiachen Yu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao, 266071, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, PR China; University of Chinese Academy of Sciences, Beijing, China
| | - Yanfeng Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao, 266071, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, PR China
| | - Yongshuang Xiao
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao, 266071, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, PR China
| | - Xian Li
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao, 266071, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, PR China
| | - Xiaojie Xu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao, 266071, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, PR China; University of Chinese Academy of Sciences, Beijing, China
| | - Haixia Zhao
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao, 266071, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, PR China; University of Chinese Academy of Sciences, Beijing, China
| | - Lele Wu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao, 266071, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, PR China; University of Chinese Academy of Sciences, Beijing, China
| | - Jun Li
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao, 266071, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, PR China.
| |
Collapse
|
30
|
Abstract
Laccases are multicopper oxidases, which have been widely investigated in recent decades thanks to their ability to oxidize organic substrates to the corresponding radicals while producing water at the expense of molecular oxygen. Besides their successful (bio)technological applications, for example, in textile, petrochemical, and detoxifications/bioremediations industrial processes, their synthetic potentialities for the mild and green preparation or selective modification of fine chemicals are of outstanding value in biocatalyzed organic synthesis. Accordingly, this review is focused on reporting and rationalizing some of the most recent and interesting synthetic exploitations of laccases. Applications of the so-called laccase-mediator system (LMS) for alcohol oxidation are discussed with a focus on carbohydrate chemistry and natural products modification as well as on bio- and chemo-integrated processes. The laccase-catalyzed Csp2-H bonds activation via monoelectronic oxidation is also discussed by reporting examples of enzymatic C-C and C-O radical homo- and hetero-couplings, as well as of aromatic nucleophilic substitutions of hydroquinones or quinoids. Finally, the laccase-initiated domino/cascade synthesis of valuable aromatic (hetero)cycles, elegant strategies widely documented in the literature across more than three decades, is also presented.
Collapse
|
31
|
Burmistrova D, Smolyaninov I, Berberova N, Eremenko I. New One‐Pot Synthesis of Catechol Thioethers Based on H
2
S and Unsaturated Hydrocarbons. ChemistrySelect 2020. [DOI: 10.1002/slct.202003961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Daria Burmistrova
- Department of Chemistry Astrakhan State Technical University Tatischeva st. 16 414056 Astrakhan Russia
| | - Ivan Smolyaninov
- Department of Chemistry Astrakhan State Technical University Tatischeva st. 16 414056 Astrakhan Russia
| | - Nadezhda Berberova
- Department of Chemistry Astrakhan State Technical University Tatischeva st. 16 414056 Astrakhan Russia
| | - Igor Eremenko
- Laboratory of Polynuclear Coordination Compounds N. S. Kurnakov Institute of General and Inorganic Chemistry Russian Academy of Sciences Leninsky Prospect 31 119991 Moscow Russia
| |
Collapse
|
32
|
Lecourt M, Antoniotti S. Chemistry, Sustainability and Naturality of Perfumery Biotech Ingredients. CHEMSUSCHEM 2020; 13:5600-5610. [PMID: 32853474 DOI: 10.1002/cssc.202001661] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/18/2020] [Indexed: 06/11/2023]
Abstract
White biotechnology has emerged in biochemical manufacturing processes to deliver perfumery ingredients satisfying interests of the society for natural, eco-responsible, and sustainable materials. As a result, an intense R&D activity has taken place on these subjects, resulting in both scientific publications and patent applications reporting combinations of state-of-the-art approaches in biocatalysis, metabolic engineering, synthetic biology, biosynthesis elucidation, gene edition and cloning, and analytical chemistry. In this Minireview, a smelly selection of novel biotechnological processes and ingredients from a scientific articles and patents survey covering the last 6 years is presented and analysed in terms of chemistry, sustainability and naturality. Classification has been made between metabolic engineering on one side, allowing either biotechnological synthesis of essential oil surrogates or single molecule ingredients, and on the other side the optimisation of properties of natural complex substances by specific and selective enzymatic modifications of their chemical composition.
Collapse
Affiliation(s)
- Mathilde Lecourt
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, Parc Valrose, 06108, Nice cedex 2, France
| | - Sylvain Antoniotti
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, Parc Valrose, 06108, Nice cedex 2, France
| |
Collapse
|
33
|
Alfieri ML, Moccia F, D’Errico G, Panzella L, d’Ischia M, Napolitano A. Acid Treatment Enhances the Antioxidant Activity of Enzymatically Synthesized Phenolic Polymers. Polymers (Basel) 2020; 12:E2544. [PMID: 33143251 PMCID: PMC7692195 DOI: 10.3390/polym12112544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 12/20/2022] Open
Abstract
Phenolic polymers produced by enzymatic oxidation under biomimetic and eco-friendly reaction conditions are usually endowed with potent antioxidant properties. These properties, coupled with the higher biocompatibility, stability and processability compared to low-molecular weight phenolic compounds, open important perspectives for various applications. Herein, we report the marked boosting effect of acid treatment on the antioxidant properties of a series of polymers obtained by peroxidase-catalyzed oxidation of natural phenolic compounds. Both 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing/antioxidant power (FRAP) assays indicated a remarkable increase in the antioxidant properties for most phenolic polymers further to the acid treatment. In particular, up to a ca. 60% decrease in the EC50 value in the DPPH assay and a 5-fold increase in the Trolox equivalents were observed. Nitric oxide- and superoxide-scavenging assays also indicated highly specific boosting effects of the acid treatment. Spectroscopic evidence suggested, in most cases, that the occurrence of structural modifications induced by the acid treatment led to more extended π-electron-conjugated species endowed with more efficient electron transfer properties. These results open new perspectives toward the design of new bioinspired antioxidants for application in food, biomedicine and material sciences.
Collapse
Affiliation(s)
| | | | | | - Lucia Panzella
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, I-80126 Naples, Italy; (M.L.A.); (F.M.); (G.D.); (M.d.); (A.N.)
| | | | | |
Collapse
|
34
|
Contente ML, Fiore N, Cannazza P, Roura Padrosa D, Molinari F, Gourlay L, Paradisi F. Uncommon overoxidative catalytic activity in a new halo‐tolerant alcohol dehydrogenase. ChemCatChem 2020. [DOI: 10.1002/cctc.202001112] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
| | - Noemi Fiore
- Department of Food, Environmental and Nutritional Sciences (DeFENS) University of Milan via Mangiagalli 25 20133 Milan Italy
| | - Pietro Cannazza
- Department of Food, Environmental and Nutritional Sciences (DeFENS) University of Milan via Mangiagalli 25 20133 Milan Italy
| | - David Roura Padrosa
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Francesco Molinari
- Department of Food, Environmental and Nutritional Sciences (DeFENS) University of Milan via Mangiagalli 25 20133 Milan Italy
| | - Louise Gourlay
- Department of Biosciences (DBS) University of Milan via Celoria 26 20133 Milan Italy
| | - Francesca Paradisi
- University of Nottingham University Park Nottingham NG7 2RD UK
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 3012 Bern Switzerland
| |
Collapse
|
35
|
VanArsdale E, Pitzer J, Payne GF, Bentley WE. Redox Electrochemistry to Interrogate and Control Biomolecular Communication. iScience 2020; 23:101545. [PMID: 33083771 PMCID: PMC7516135 DOI: 10.1016/j.isci.2020.101545] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cells often communicate by the secretion, transport, and perception of molecules. Information conveyed by molecules is encoded, transmitted, and decoded by cells within the context of the prevailing microenvironments. Conversely, in electronics, transmission reliability and message validation are predictable, robust, and less context dependent. In turn, many transformative advances have resulted by the formal consideration of information transfer. One way to explore this potential for biological systems is to create bio-device interfaces that facilitate bidirectional information transfer between biology and electronics. Redox reactions enable this linkage because reduction and oxidation mediate communication within biology and can be coupled with electronics. By manipulating redox reactions, one is able to combine the programmable features of electronics with the ability to interrogate and modulate biological function. In this review, we examine methods to electrochemically interrogate the various components of molecular communication using redox chemistry and to electronically control cell communication using redox electrogenetics.
Collapse
Affiliation(s)
- Eric VanArsdale
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall 8278 Paint Branch Drive, College Park, MD 20742, USA.,Institute of Bioscience and Biotechnology Research, University of Maryland, 5115 Plant Sciences Building, College Park, MD 20742, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, Room 5102, A. James Clark Hall, College Park, MD 20742, USA
| | - Juliana Pitzer
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall 8278 Paint Branch Drive, College Park, MD 20742, USA
| | - Gregory F Payne
- Institute of Bioscience and Biotechnology Research, University of Maryland, 5115 Plant Sciences Building, College Park, MD 20742, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, Room 5102, A. James Clark Hall, College Park, MD 20742, USA
| | - William E Bentley
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall 8278 Paint Branch Drive, College Park, MD 20742, USA.,Institute of Bioscience and Biotechnology Research, University of Maryland, 5115 Plant Sciences Building, College Park, MD 20742, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, Room 5102, A. James Clark Hall, College Park, MD 20742, USA
| |
Collapse
|
36
|
Deep Eutectic Solvents as Smart Cosubstrate in Alcohol Dehydrogenase-Catalyzed Reductions. Catalysts 2020. [DOI: 10.3390/catal10091013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Alcohol dehydrogenase (ADH) catalyzed reductions in deep eutectic solvents (DESs) may become efficient and sustainable alternatives to afford alcohols. This paper successfully explores the ADH-catalyzed reduction of ketones and aldehydes in a DES composed of choline chloride and 1,4-butanediol, in combination with buffer (Tris-HCl, 20% v/v). 1,4-butanediol (a DES component), acts as a smart cosubstrate for the enzymatic cofactor regeneration, shifting the thermodynamic equilibrium to the product side. By means of the novel DES media, cyclohexanone reduction was optimized to yield maximum productivity with low enzyme amounts (in the range of 10 g L−1 d−1). Notably, with the herein developed reaction media, cinnamaldehyde was reduced to cinnamyl alcohol, an important compound for the fragrance industry, with promising high productivities of ~75 g L−1 d−1.
Collapse
|
37
|
Efficient Oxidation of Methyl Glycolate to Methyl Glyoxylate Using a Fusion Enzyme of Glycolate Oxidase, Catalase and Hemoglobin. Catalysts 2020. [DOI: 10.3390/catal10080943] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Possessing aldehyde and carboxyl groups, glyoxylic acid and its ester derivatives serve as platform chemicals for the synthesis of vanillin, (R)-pantolactone, antibiotics or agrochemicals. Methyl glycolate is one of the by-products in the coal-to-glycol industry, and we attempted its value-added use through enzymatic oxidation of methyl glycolate to methyl glyoxylate. The cascade catalysis of glycolate oxidase from Spinacia oleracea (SoGOX), catalase from Helicobacter pylori (HpCAT) and hemoglobin from Vitreoscilla stercoraria (VsHGB) was firstly constructed, despite poor catalytic performance. To enable efficient oxidation of methyl glycolate, eight fusion enzymes of SoGOX, HpCAT and VsHGB were constructed by varying the orientation and the linker length. The fusion enzyme VsHGB-GSG-SoGOX-GGGGS-HpCAT was proved to be best, which reaction yield was 2.9 times higher than that of separated enzymes. The enzyme SoGOX was further subjected to directed evolution and site-saturation mutagenesis. The reaction yield of the resulting variant M267T/S362G was 1.9 times higher than that of the wild type. Then, the double substitution M267T/S362G was integrated with fusion expression to give the fusion enzyme VsHGB-GSG-SoGOXmut-GGGGS-HpCAT, which crude enzyme was used as biocatalyst. The use of crude enzyme virtually eliminated side reactions and simplified the preparation of biocatalysts. Under the optimized conditions, the crude enzyme VsHGB-GSG-SoGOXmut-GGGGS-HpCAT catalyzed the oxidation of 200 mM methyl glycolate for 6 h, giving a yield of 95.3%. The development of efficient fusion enzyme and the use of its crude enzyme paved the way for preparative scale application on enzymatic oxidation of methyl glycolate to methyl glyoxylate.
Collapse
|
38
|
Co-Immobilization and Co-Localization of Oxidases and Catalases: Catalase from Bordetella Pertussis Fused with the Zbasic Domain. Catalysts 2020. [DOI: 10.3390/catal10070810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Oxidases catalyze selective oxidations by using molecular oxygen as an oxidizing agent. This process promotes the release of hydrogen peroxide, an undesirable byproduct. The instantaneous elimination of hydrogen peroxide can be achieved by co-immobilization and co-localization of the oxidase and an auxiliary catalase inside the porous structure of solid support. In this paper, we proposed that catalase from Bordetella pertussis fused with a small domain (Zbasic) as an excellent auxiliary enzyme. The enzyme had a specific activity of 23 U/mg, and this was almost six-fold higher than the one of the commercially available catalases from bovine liver. The Zbasic domain was fused to the four amino termini of this tetrameric enzyme. Two domains were close in one hemisphere of the enzyme molecule, and the other two were close in the opposite hemisphere. In this way, each hemisphere contained 24 residues with a positive charge that was very useful for the purification of the enzyme via cationic exchange chromatography. In addition to this, each hemisphere contained 10 Lys residues that were very useful for a rapid and intense multipoint covalent attachment on highly activated glyoxyl supports. In fact, 190 mg of the enzyme was immobilized on one gram of glyoxyl-10% agarose gel. The ratio catalase/oxidase able to instantaneously remove more than 93% of the released hydrogen peroxide was around 5–6 mg of catalase per mg of oxidase. Thirty milligrams of amine oxidase and 160 mg of catalase were co-immobilized and co-localized per gram of glyoxyl-agarose 10BCL (10% beads cross-linked) support. This biocatalyst eliminated biogenic amines (putrescine) 80-fold faster than a biocatalyst of the same oxidase co-localized with the commercial catalase from bovine liver.
Collapse
|
39
|
Abstract
This chapter represents a journey through flavoprotein oxidases. The purpose is to excite the reader curiosity regarding this class of enzymes by showing their diverse applications. We start with a brief overview on oxidases to then introduce flavoprotein oxidases and elaborate on the flavin cofactors, their redox and spectroscopic characteristics, and their role in the catalytic mechanism. The six major flavoprotein oxidase families will be described, giving examples of their importance in biology and their biotechnological uses. Specific attention will be given to a few selected flavoprotein oxidases that are not extensively discussed in other chapters of this book. Glucose oxidase, cholesterol oxidase, 5-(hydroxymethyl)furfural (HMF) oxidase and methanol oxidase are four examples of oxidases belonging to the GMC-like flavoprotein oxidase family and that have been shown to be valuable biocatalysts. Their structural and mechanistic features and recent enzyme engineering will be discussed in details. Finally we give a look at the current trend in research and conclude with a future outlook.
Collapse
Affiliation(s)
- Caterina Martin
- Molecular Enzymology Group, University of Groningen, Groningen, The Netherlands
| | - Claudia Binda
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Marco W Fraaije
- Molecular Enzymology Group, University of Groningen, Groningen, The Netherlands.
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| |
Collapse
|
40
|
Troiano D, Orsat V, Dumont MJ. Status of Biocatalysis in the Production of 2,5-Furandicarboxylic Acid. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02378] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Derek Troiano
- Bioresource Engineering Department, McGill University, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Valérie Orsat
- Bioresource Engineering Department, McGill University, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Marie-Josée Dumont
- Bioresource Engineering Department, McGill University, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| |
Collapse
|
41
|
Shokri Z, Azimi N, Moradi S, Rostami A. A novel magnetically separable laccase‐mediator catalyst system for the aerobic oxidation of alcohols and 2‐substituted‐2,3‐dihydroquinazolin‐4(1
H
)‐ones under mild conditions. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zahra Shokri
- Department of Chemistry, Faculty of Science University of Kurdistan Zip Code 66177‐15175 Sanandaj Iran
| | - Nahid Azimi
- Department of Chemistry, Faculty of Science University of Kurdistan Zip Code 66177‐15175 Sanandaj Iran
| | - Sirvan Moradi
- Department of Chemistry, Faculty of Science University of Kurdistan Zip Code 66177‐15175 Sanandaj Iran
| | - Amin Rostami
- Department of Chemistry, Faculty of Science University of Kurdistan Zip Code 66177‐15175 Sanandaj Iran
| |
Collapse
|
42
|
Tensi L, Macchioni A. Extremely Fast NADH-Regeneration Using Phosphonic Acid as Hydride Source and Iridium-pyridine-2-sulfonamidate Catalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02261] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Leonardo Tensi
- Dipartimento di Chimica, Biologia e Biotecnologie and CIRCC, Università degli Studi di Perugia, Via Elce di Sotto, 8-06123 Perugia, Italy
| | - Alceo Macchioni
- Dipartimento di Chimica, Biologia e Biotecnologie and CIRCC, Università degli Studi di Perugia, Via Elce di Sotto, 8-06123 Perugia, Italy
| |
Collapse
|
43
|
Abstract
Nitrogenase is the only enzyme capable of reducing N2 to NH3. This challenging reaction requires the coordinated transfer of multiple electrons from the reductase, Fe-protein, to the catalytic component, MoFe-protein, in an ATP-dependent fashion. In the last two decades, there have been significant advances in our understanding of how nitrogenase orchestrates electron transfer (ET) from the Fe-protein to the catalytic site of MoFe-protein and how energy from ATP hydrolysis transduces the ET processes. In this review, we summarize these advances, with focus on the structural and thermodynamic redox properties of nitrogenase component proteins and their complexes, as well as on new insights regarding the mechanism of ET reactions during catalysis and how they are coupled to ATP hydrolysis. We also discuss recently developed chemical, photochemical, and electrochemical methods for uncoupling substrate reduction from ATP hydrolysis, which may provide new avenues for studying the catalytic mechanism of nitrogenase.
Collapse
Affiliation(s)
- Hannah L Rutledge
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - F Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| |
Collapse
|
44
|
Bertuletti S, Ferrandi EE, Marzorati S, Vanoni M, Riva S, Monti D. Insights into the Substrate Promiscuity of Novel Hydroxysteroid Dehydrogenases. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Susanna Bertuletti
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC), CNR Via Mario Bianco 9 20131 Milano Italy
- Università degli Studi di Milano Via Giuseppe Colombo 60 20133 Milano Italy
| | - Erica Elisa Ferrandi
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC), CNR Via Mario Bianco 9 20131 Milano Italy
| | - Stefano Marzorati
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC), CNR Via Mario Bianco 9 20131 Milano Italy
| | - Marta Vanoni
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC), CNR Via Mario Bianco 9 20131 Milano Italy
| | - Sergio Riva
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC), CNR Via Mario Bianco 9 20131 Milano Italy
| | - Daniela Monti
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC), CNR Via Mario Bianco 9 20131 Milano Italy
| |
Collapse
|
45
|
Gold-coated magnetic nanocatalyst containing wired oxidoreductases for mediatorless catalysis of carbohydrate oxidation by oxygen. CATAL COMMUN 2020. [DOI: 10.1016/j.catcom.2019.105848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
46
|
Faria CB, de Castro FF, Martim DB, Abe CAL, Prates KV, de Oliveira MAS, Barbosa-Tessmann IP. Production of Galactose Oxidase Inside the Fusarium fujikuroi Species Complex and Recombinant Expression and Characterization of the Galactose Oxidase GaoA Protein from Fusarium subglutinans. Mol Biotechnol 2020; 61:633-649. [PMID: 31177409 DOI: 10.1007/s12033-019-00190-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Galactose oxidase catalyzes a two-electron oxidation, mainly from the C6 hydroxyl group of D-galactose, with the concomitant reduction of water to hydrogen peroxide. This enzyme is secreted by Fusarium species and has several biotechnological applications. In this study, a screening of galactose oxidase production among species of the Fusarium fujikuroi species complex demonstrated Fusarium subglutinans to be the main producer. The truncated F. subglutinans gaoA gene coding for the mature galactose oxidase was expressed from the prokaryotic vector pTrcHis2B in the E. coli Rosetta™ (DE3) strain. The purified recombinant enzyme presented temperature and pH optima of 30 °C and 7.0, respectively, KM of 132.6 ± 18.18 mM, Vmax of 3.2 ± 0.18 µmol of H2O2/min, kcat of 12,243 s-1, and a catalytic efficiency (kcat/KM) of 9.2 × 104 M-1 s-1. In the presence of 50% glycerol, the enzyme showed a T50 of 59.77 °C and was stable for several hours at pH 8.0 and 4 °C. Besides D-(+)-galactose, the purified enzyme also acted against D-(+)-raffinose, α-D-(+)-melibiose, and methyl-α-D-galactopyranoside, and was strongly inhibited by SDS. Although the F. subglutinans gaoA gene was successfully expressed in E. coli, its endogenous transcription was not confirmed by RT-PCR.
Collapse
Affiliation(s)
- Carla Bertechini Faria
- Department of Biochemistry, Universidade Estadual de Maringá, Av. Colombo, 5790, Maringá, PR, 87020-900, Brazil
| | - Fausto Fernandes de Castro
- Department of Biochemistry, Universidade Estadual de Maringá, Av. Colombo, 5790, Maringá, PR, 87020-900, Brazil
| | - Damaris Batistão Martim
- Department of Biochemistry, Universidade Estadual de Maringá, Av. Colombo, 5790, Maringá, PR, 87020-900, Brazil
| | - Camila Agnes Lumi Abe
- Department of Biochemistry, Universidade Estadual de Maringá, Av. Colombo, 5790, Maringá, PR, 87020-900, Brazil
| | - Kelly Valério Prates
- Department of Biochemistry, Universidade Estadual de Maringá, Av. Colombo, 5790, Maringá, PR, 87020-900, Brazil
| | | | - Ione Parra Barbosa-Tessmann
- Department of Biochemistry, Universidade Estadual de Maringá, Av. Colombo, 5790, Maringá, PR, 87020-900, Brazil.
| |
Collapse
|
47
|
Kurayama F, Mohammed Bahadur N, Furusawa T, Sato M, Suzuki N. Facile preparation of aminosilane-alginate hybrid beads for enzyme immobilization: Kinetics and equilibrium studies. Int J Biol Macromol 2019; 150:1203-1212. [PMID: 31751729 DOI: 10.1016/j.ijbiomac.2019.10.130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 10/25/2022]
Abstract
A simple, facile and potential platform for enzyme immobilization using alginate-based beads has been demonstrated by simultaneous gelation and modification of alginate using calcium chloride (CaCl2) and 3-aminopropyltriethoxysilane (APTES). In this method, sodium alginate solution containing enzyme was simply dripped into a crosslinker solution containing CaCl2 and APTES, leading to the formation of APTES-alginate hybrid beads (AP-beads). The optical observation, FT-IR analysis and amino group measurements provided evidence that APTES was successfully adsorbed to the alginate chain via electrostatic interaction. On the assumption that the binding of Ca2+ ion to polymannuronate residues of alginate via bidentate bridging coordination is competitive with APTES, the equilibrium isotherm and kinetics for the adsorption of APTES to AP-beads was found to follow extended Langmuir isotherm in binary system. Formate dehydrogenase (FDH) as a model enzyme was successfully immobilized in AP-beads and the immobilization yield of ca. 100% could be achieved under optimal conditions of CaCl2 and APTES concentrations in crosslinker solution. Furthermore, the AP-beads were reused efficiently for 9 cycles without loss of FDH activity. The above results demonstrated that AP-beads were effective support for enzyme immobilization.
Collapse
Affiliation(s)
- Fumio Kurayama
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Newaz Mohammed Bahadur
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Takeshi Furusawa
- Department of Material and Environmental Chemistry, Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585, Japan
| | - Masahide Sato
- Department of Material and Environmental Chemistry, Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585, Japan
| | - Noboru Suzuki
- Department of Material and Environmental Chemistry, Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585, Japan
| |
Collapse
|
48
|
Bio-removal of phenanthrene, 9-fluorenone and anthracene-9,10-dione by laccase from Aspergillus niger in waste cooking oils. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.06.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
49
|
Guo Y, Shi W, Yang H, He Q, Zeng Z, Ye JY, He X, Huang R, Wang C, Lin W. Cooperative Stabilization of the [Pyridinium-CO 2-Co] Adduct on a Metal-Organic Layer Enhances Electrocatalytic CO 2 Reduction. J Am Chem Soc 2019; 141:17875-17883. [PMID: 31603671 DOI: 10.1021/jacs.9b09227] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pyridinium has been shown to be a cocatalyst for the electrochemical reduction of CO2 on metal and semiconductor electrodes, but its exact role has been difficult to elucidate. In this work, we create cooperative cobalt-protoporphyrin (CoPP) and pyridine/pyridinium (py/pyH+) catalytic sites on metal-organic layers (MOLs) for an electrocatalytic CO2 reduction reaction (CO2RR). Constructed from [Hf6(μ3-O)4(μ3-OH)4(HCO2)6] secondary building units (SBUs) and terpyridine-based tricarboxylate ligands, the MOL was postsynthetically functionalized with CoPP via carboxylate exchange with formate capping groups. The CoPP group and the pyridinium (pyH+) moiety on the MOL coactivate CO2 by forming the [pyH+--O2C-CoPP] adduct, which enhances the CO2RR and suppresses hydrogen evolution to afford a high CO/H2 selectivity of 11.8. Cooperative stabilization of the [pyH+--O2C-CoPP] intermediate led to a catalytic current density of 1314 mA/mgCo for CO production at -0.86 VRHE, which corresponds to a turnover frequency of 0.4 s-1.
Collapse
Affiliation(s)
- Ying Guo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iCHEM, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P.R. China
| | - Wenjie Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iCHEM, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P.R. China
| | - Huijuan Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iCHEM, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P.R. China
| | - Quanfeng He
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iCHEM, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P.R. China
| | - Zhongming Zeng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iCHEM, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P.R. China
| | - Jin-Yu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iCHEM, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P.R. China
| | - Xinru He
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iCHEM, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P.R. China
| | - Ruiyun Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iCHEM, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P.R. China
| | - Cheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iCHEM, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P.R. China
| | - Wenbin Lin
- Department of Chemistry , The University of Chicago , 929 East 57th Street , Chicago , Illinois 60637 , United States
| |
Collapse
|
50
|
Barik R, Halder J, Nanda S. Biocatalytic dynamic kinetic reductive resolution with ketoreductase from Klebsiella pneumoniae: the asymmetric synthesis of functionalized tetrahydropyrans. Org Biomol Chem 2019; 17:8571-8588. [PMID: 31517368 DOI: 10.1039/c9ob01681c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ketoreductase from growing cells of Klebsiella pneumoniae (NBRC 3319) acts as an efficient reagent for converting racemic α-benzyl/cinnamyl substituted-β-ketoesters to the corresponding β-hydroxy esters with excellent yields and stereoselectivities (ee and de >99 %). The reactions described herein followed a biocatalytic dynamic kinetic reductive resolution (DKRR) pathway, which is reported for the first time with such substrates. It was found that the enzyme system can accept substituted mono-aryl rings with different electronic natures. In addition, it also accepts a substituted naphthyl ring and heteroaryl ring in the α-position of the parent β-ketoester. The synthesized enantiopure β-hydroxy esters were then synthetically manipulated to valuable tetrahydropyran building blocks.
Collapse
Affiliation(s)
- Rasmita Barik
- Department of Chemistry, IIT Kharagpur, Kharagpur, 721302, India.
| | | | | |
Collapse
|