1
|
Hu Y, Zhang S, Xu K, Zhuang X, Tang Y, Gong H, Pi Y, Tian T, Pang H. Nano-Metal-Organic Frameworks and Nano-Covalent-Organic Frameworks: Controllable Synthesis and Applications. Chem Asian J 2025; 20:e202400896. [PMID: 39384549 DOI: 10.1002/asia.202400896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/19/2024] [Accepted: 10/09/2024] [Indexed: 10/11/2024]
Abstract
Nanoscale framework materials have attracted extensive attention due to their diverse morphology and good properties, and synthesis methods of different size structures have been reported. Therefore, the relationship between different sizes and performance has become a research hotspot. This paper reviews the controllable synthesis strategies of nano-metal-organic frameworks (nano-MOFs) and nano-covalent-organic frameworks (nano-COFs). Firstly, the synthetic evolution of nano-frame materials is summarized. Due to their special surface area, regular pores and adjustable structural functions, nano-frame materials have attracted much attention. Then the preparation methods of nanostructures with different dimensions are introduced. These synthetic strategies provide the basis for the design of novel energy storage and catalytic materials. In addition, the latest advances in the field of energy storage and catalysis are reviewed, with emphasis on the application of nano-MOFs/COFs in zinc-, lithium-, and sodium-based batteries, as well as supercapacitors.
Collapse
Affiliation(s)
- Yaxun Hu
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Songtao Zhang
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Kun Xu
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Xiaoli Zhuang
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Yijian Tang
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Hao Gong
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Yecan Pi
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Tian Tian
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou, 225009, P. R. China
| |
Collapse
|
2
|
Liu XC, Wu G, Han X, Wang Y, Wu B, Wang G, Mu Y, Hong X. High-Entropy Metal Interstitials Activate TiO 2 for Robust Catalytic Oxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2416749. [PMID: 39743965 DOI: 10.1002/adma.202416749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/17/2024] [Indexed: 01/04/2025]
Abstract
Substitution metal doping strategies are crucial for developing catalysts capable of activating O2, but the leaching of metal dopants has greatly hindered their potential for extensive oxidation reactions under mild conditions. Here, the study develops an entropy-increase strategy to synthesize high-entropy metal (Mg, Ca, Mn, Fe, and Co) interstitial functionalized anatase TiO2 (HE-TiO2) nanosheets, demonstrating remarkable degradation efficiency across a wide pH range and exceptional stability in a flow-by electro-catalytic reactor. Relative to that of pristine TiO2, the intense lattice distortion on the (001) plane, an average lattice expansion of 2% on the (100) plane, and decrease of second shell peak of X-ray absorption spectra serve as compelling evidence for the formation of metal interstitials in HE-TiO2. Theoretical analysis and in situ synchrotron radiation Fourier transform infrared studies reveal that the electron of metal interstitials can populate the subgap states within the host TiO2, enabling a moderate adsorption band for robust and efficient O2 activation. This study introduces a universal strategy for synthesizing a novel class of high-entropy materials with integrated metal interstitials in metal oxides, promising to enhance the stability and efficiency of O2 activation catalysts and broaden their potential applications.
Collapse
Affiliation(s)
- Xiao-Cheng Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Applied Chemistry, Department of Environmental Science and Engineering, Center of Advanced Nanocatalysis (CAN), University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Geng Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Applied Chemistry, Department of Environmental Science and Engineering, Center of Advanced Nanocatalysis (CAN), University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiao Han
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Applied Chemistry, Department of Environmental Science and Engineering, Center of Advanced Nanocatalysis (CAN), University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yang Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Applied Chemistry, Department of Environmental Science and Engineering, Center of Advanced Nanocatalysis (CAN), University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Bei Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Applied Chemistry, Department of Environmental Science and Engineering, Center of Advanced Nanocatalysis (CAN), University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Gongming Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Applied Chemistry, Department of Environmental Science and Engineering, Center of Advanced Nanocatalysis (CAN), University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yang Mu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Applied Chemistry, Department of Environmental Science and Engineering, Center of Advanced Nanocatalysis (CAN), University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xun Hong
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Applied Chemistry, Department of Environmental Science and Engineering, Center of Advanced Nanocatalysis (CAN), University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
3
|
Kou Y, Liu M, Hou M, Zhao T, Chen L, Jia J, Zhan Y, Yan K, Wang B, Zhang F, Zhao D, Li X. Ternary Heteronanocrystals with Dual-Heterojunction for Boosting Near-Infrared-Triggered Photo-Chemodynamic Therapy. J Am Chem Soc 2024; 146:35493-35503. [PMID: 39663953 DOI: 10.1021/jacs.4c15819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Strongly coupled interfaces in the epitaxial growth heteronanocrystals (HNCs) provide advanced functionalities regarding interface connection, electron transfer, and carrier separation. However, the majority of current nanocomposites primarily focus on a single heterojunction involving only two subunits, which hinders the achievement of optimized synergy energy transfer among more than two components. Herein, ternary NaGdF4:Yb,Tm-TiO2:F-Fe3O4 HNCs with dual-heterojunction were synthesized based on the crystal plane epitaxial growth strategy for boosting near-infrared (NIR)-triggered photo-chemodynamic therapy (PCDT). Fluorine is doped into TiO2 (TiO2:F), which not only enhances the exposure of the (001) facet of TiO2 for Fe3O4 subunit growth but also promotes the growth of the NaGdF4:Yb,Tm upconversion nanocrystal (UCNC) subunit, enabling an epitaxial combination of all three components. Upon NIR irradiation, the UCNC subunit transfers the light energy of the absorbed NIR light to the TiO2:F subunit, thereby facilitating the generation of electron-hole pairs within TiO2:F. Due to different work functions between TiO2:F and Fe3O4 in the ternary HNCs, electrons tend to transfer from TiO2:F into Fe3O4, resulting in a reduction of inactive Fe3+ into active Fe2+ and further enhancing the Fenton-catalysis performance. Simultaneously, the efficient separation of electrons and holes improves the photocatalytic oxidation property induced by TiO2:F. Based on ternary UCNC-TiO2:F-Fe3O4 HNCs boosting Fenton catalysis and photocatalysis at the single particle level, as a proof of concept, we propose a NIR light-triggered PCDT (NIR-PCDT) synergistically enhanced tumor treatment strategy. In vitro and in vivo experiments demonstrate that this NIR-PCDT agent exhibits a pronounced ability to generate reactive oxygen species, effectively inducing apoptosis in tumor cells.
Collapse
Affiliation(s)
- Yufang Kou
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200433 Shanghai, China
| | - Minchao Liu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200433 Shanghai, China
| | - Mengmeng Hou
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200433 Shanghai, China
| | - Tiancong Zhao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200433 Shanghai, China
| | - Liang Chen
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200433 Shanghai, China
| | - Jia Jia
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200433 Shanghai, China
| | - Yating Zhan
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200433 Shanghai, China
| | - Kui Yan
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200433 Shanghai, China
| | - Boya Wang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200433 Shanghai, China
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200433 Shanghai, China
| | - Dongyuan Zhao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200433 Shanghai, China
| | - Xiaomin Li
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200433 Shanghai, China
| |
Collapse
|
4
|
Sun G, Wang Q, Liao YS, Cui Y, Tian L, Chou JP, Zhao Y, Peng YK. Manipulating the H 2O 2 Reactivity on Pristine Anatase TiO 2 with Various Surface Features and Implications in Oxidation Reactions. J Phys Chem Lett 2024; 15:11620-11628. [PMID: 39533860 DOI: 10.1021/acs.jpclett.4c02742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Anatase TiO2 is commonly used as a catalyst/support in reactions involving H2O2, yet the understanding of interactions between common TiO2 surfaces and H2O2 remains limited. Herein, we synthesized well-defined TiO2 crystallites with (101), (001), and fluorine-modified (001) [F-(001)] surfaces to examine how surface features, including the arrangement of five-coordinated Ti (Ti5c) sites and the presence of fluorine, influence H2O2 activation. Our findings reveal that these surface features significantly affect the physiochemical properties of adsorbed H2O2. Specifically, fluorine on the F-(001) surface introduces an additional hydrogen bond to the Ti5c-peroxo species, altering the electronic structure of H2O2 compared to those with the (101) and (001) surfaces. Using cyclohexene as a probe substrate, we successfully distinguished the reactivities of the Ti5c-peroxo species. The activity of those on the F-(001) surface was significantly higher than the activity of those on the (001) surface, while the (101) surface showed negligible oxidation activity. These insights can guide the design of TiO2-based catalysts for H2O2-related reactions.
Collapse
Affiliation(s)
- Guohan Sun
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, Hong Kong SAR, China
| | - Quan Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, Hong Kong SAR, China
| | - Yin-Song Liao
- Tsing Hua Interdisciplinary Program, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Yifan Cui
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, Hong Kong SAR, China
| | - Linyuan Tian
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, Hong Kong SAR, China
| | - Jyh-Pin Chou
- Graduate School of Advanced Technology, National Taiwan University, Taipei 106319, Taiwan
| | - Yufei Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yung-Kang Peng
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, Hong Kong SAR, China
| |
Collapse
|
5
|
Hussain S, Zhang L, Xie Z, Yang J, Li Q. Effects of surface oxygen vacancy on CO 2 adsorption and its activation towards C 2H 4 using metal (Cu, Pd, CuPd) cluster-loaded TiO 2 catalysts: a first principles study. Phys Chem Chem Phys 2024. [PMID: 39565595 DOI: 10.1039/d4cp03507k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The conversion of the highly selective CO2 reduction reaction (CO2RR) into desired value-added multicarbon compounds, like C2H4, is crucial, but it is mainly constrained by the high energy barrier for C-C coupling and the multi-electron transfer process. Herein, M/TiO2 and M/TiO2-VO (M = Cu, Pd, CuPd, and VO refers to the surface oxygen vacancy) catalysts were designed to study the CO2RR towards C2H4 by using density functional theory (DFT). We found that the surface oxygen vacancy enhances the adsorption ability of studied catalysts. The CO2 molecule is strongly adsorbed at the metal-surface interfaces of Cu/TiO2-VO, Pd/TiO2-VO and CuPd/TiO2-VO catalysts with adsorption energies of -1.79, -1.75 and -1.71 eV, respectively. Furthermore, the C-C coupling reaction does not occur on the Cu and PdCu cluster sites of the M/TiO2-VO catalysts, indicating the inactivity of these sites for C2 products. However, Pd/TiO2, CuPd/TiO2 and M/TiO2-VO interfaces favor the C-C coupling reaction and therefore have the potential to reduce CO2 to C2 products. Additionally, the Gibbs free energy calculations reveal that the surface oxygen vacancy improves the OCCO hydrogenation to C2H4 at the CuPd/TiO2-VO interface.
Collapse
Affiliation(s)
- Sajjad Hussain
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475004, China.
| | - Lina Zhang
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475004, China.
| | - Zhengzheng Xie
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475004, China.
| | - Jianjun Yang
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475004, China.
| | - Qiuye Li
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475004, China.
| |
Collapse
|
6
|
Tee SY, Kong J, Koh JJ, Teng CP, Wang X, Wang X, Teo SL, Thitsartarn W, Han MY, Seh ZW. Structurally and surficially activated TiO 2 nanomaterials for photochemical reactions. NANOSCALE 2024; 16:18165-18212. [PMID: 39268929 DOI: 10.1039/d4nr02342k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Renewable fuels and environmental remediation are of paramount importance in today's world due to escalating concerns about climate change, pollution, and the finite nature of fossil fuels. Transitioning to sustainable energy sources and addressing environmental pollution has become an urgent necessity. Photocatalysis, particularly harnessing solar energy to drive chemical reactions for environmental remediation and clean fuel production, holds significant promise among emerging technologies. As a benchmark semiconductor in photocatalysis, TiO2 photocatalyst offers an excellent solution for environmental remediation and serves as a key tool in energy conversion and chemical synthesis. Despite its status as the default photocatalyst, TiO2 suffers from drawbacks such as a high recombination rate of charge carriers, low electrical conductivity, and limited absorption in the visible light spectrum. This review provides an in-depth exploration of the fundamental principles of photocatalytic reactions and presents recent advancements in the development of TiO2 photocatalysts. It specifically focuses on strategic approaches aimed at enhancing the performance of TiO2 photocatalysts, including improving visible light absorption for efficient solar energy harvesting, enhancing charge separation and transportation efficiency, and ensuring stability for robust photocatalysis. Additionally, the review delves into the application of photodegradation and photocatalysis, particularly in critical processes such as water splitting, carbon dioxide reduction, nitrogen fixation, hydrogen peroxide generation, and alcohol oxidation. It also highlights the novel use of TiO2 in plastic polymerization and degradation, showcasing its potential for converting plastic waste into valuable chemicals and fuels, thereby offering sustainable waste management solutions. By addressing these essential areas, the review offers valuable insights into the potential of TiO2 photocatalysis for addressing pressing environmental and energy challenges. Furthermore, the review encompasses the application of TiO2 photochromic systems, expanding its scope to include other innovative research and applications. Finally, it addresses the underlying challenges and provides perspectives on the future development of TiO2 photocatalysts. Through addressing these issues and implementing innovative strategies, TiO2 photocatalysis can continue to evolve and play a pivotal role in sustainable energy and environmental applications.
Collapse
Affiliation(s)
- Si Yin Tee
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Junhua Kong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Justin Junqiang Koh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Choon Peng Teng
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Xizu Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Xiaobai Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Siew Lang Teo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Warintorn Thitsartarn
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Ming-Yong Han
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, China.
| | - Zhi Wei Seh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| |
Collapse
|
7
|
Lee J, Kim J, Kim S, Kim T, Lee KM, Cho J, Choi JW, Kim JY, Jeong YW, Park HJ, Lee C. Enhanced virucidal activity of facet-engineered Cu-doped TiO 2 nanorods under visible light illumination. WATER RESEARCH 2024; 268:122579. [PMID: 39383801 DOI: 10.1016/j.watres.2024.122579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/02/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Crystal facet engineering has emerged as a promising approach to enhance photocatalytic activity of semiconductors by preferentially accumulating charge carriers (electrons and holes) on specific facets. This facilitates efficient electron and hole transfer across the semiconductor/cocatalyst interface, enabling their transport to the cocatalyst surface for redox reactions. In this study, three Cu-doped TiO2 nanorods with small, medium, and large ratios of reductive {110} to oxidative {111} facets were synthesized (namely Cu-TiO2-SR, Cu-TiO2-MR, and Cu-TiO2-LR, respectively). These materials were comparatively evaluated for the inactivation of phiX174 bacteriophage under visible light illumination. Notably, Cu-TiO2-LR demonstrated an outstanding inactivation rate of phiX174 (0.42 log inactivation/min), approximately 11.8 times higher than that of Cu-TiO2-SR. Photo- and electrochemical analyses revealed that Cu-TiO2-LR exhibited superior electron/hole separation efficiency, leading to enhanced Cu redox reactions. Various experiments, encompassing viral inactivation tests with different additives, protein oxidation assays, and DNA damage assessments, indicated that Cu(III) is the major virucidal species responsible for the phiX174 inactivation by illuminated Cu-TiO2-LR. Under visible light illumination, Cu-TiO2-LR also showed excellent reusability and minimal activity loss in the presence of humic acid and inorganic anions, as well as general microbicidal effects on other viral and bacterial species.
Collapse
Affiliation(s)
- Juri Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Joohyun Kim
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sungwon Kim
- Samsung Research, Samsung Electronics Co., Ltd., Seoul 06765, Republic of Korea
| | - Taewan Kim
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Ki-Myeong Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jiyoon Cho
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jae-Woo Choi
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jee Yeon Kim
- Samsung Research, Samsung Electronics Co., Ltd., Seoul 06765, Republic of Korea
| | - Yong Won Jeong
- Samsung Research, Samsung Electronics Co., Ltd., Seoul 06765, Republic of Korea
| | - Hee-Jin Park
- Samsung Research, Samsung Electronics Co., Ltd., Seoul 06765, Republic of Korea
| | - Changha Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
8
|
Kou Y, Liu M, Zhou Q, Lin R, Yu H, Hou M, Ming J, Tang Y, Elzatahry AA, Zhang F, Zhao D, Li X. Fluorine Doping Mediated Epitaxial Growth of NaREF 4 on TiO 2 for Boosting NIR Light Utilization in Bioimaging and Photodynamic Therapy. Angew Chem Int Ed Engl 2024; 63:e202405132. [PMID: 39223903 DOI: 10.1002/anie.202405132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Indexed: 09/04/2024]
Abstract
By integrating TiO2 with rare earth upconversion nanocrystals (NaREF4), efficient energy transfer can be achieved between the two subunits under near-infrared (NIR) excitation, which hold tremendous potential in the fields of photocatalysis, photodynamic therapy (PDT), etc. However, in the previous studies, the combination of TiO2 with NaREF4 is a non-epitaxial random blending mode, resulting in a diminished energy transfer efficiency between the NaREF4 and TiO2. Herein, we present a fluorine doping-mediated epitaxial growth strategy for the synthesis of TiO2-NaREF4 heteronanocrystals (HNCs). Due to the epitaxial growth connection, NaREF4 can transfer energy through phonon-assisted pathway to TiO2, which is more efficient than the traditional indirect secondary photon excitation. Additionally, F doping brings oxygen vacancies in the TiO2 subunit, which further introduces new impurity energy levels in the intrinsic band gap of TiO2 subunit, and facilitates the energy transfer through phonon-assisted method from NaREF4 to TiO2. As a proof of concept, TiO2-NaGdF4 : Yb,Tm@NaYF4@NaGdF4 : Nd@NaYF4 HNCs were rationally constructed. Taking advantage of the dual-model up- and downconversion luminescence of the delicately designed multi-shell structured NaREF4 subunit, highly efficient photo-response capability of the F-doped TiO2 subunit and the efficient phonon-assisted energy transfer between them, the prepared HNCs provide a distinctive nanoplatform for bioimaging-guided NIR-triggered PDT.
Collapse
Affiliation(s)
- Yufang Kou
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Minchao Liu
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Qiaoyu Zhou
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Runfeng Lin
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Hongyue Yu
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Mengmeng Hou
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Jiang Ming
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Yi Tang
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Ahmed A Elzatahry
- Materials Science and Technology Program, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, 2713, Qatar
| | - Fan Zhang
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Dongyuan Zhao
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Xiaomin Li
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| |
Collapse
|
9
|
Harito C, Khalil M, Nurdiwijayanto L, Septiani NLW, Abrori SA, Putra BR, Zaidi SZJ, Taniguchi T, Yuliarto B, Walsh FC. Facet-controlled growth and soft-chemical exfoliation of two-dimensional titanium dioxide nanosheets. NANOSCALE ADVANCES 2024; 6:4325-4345. [PMID: 39170976 PMCID: PMC11334985 DOI: 10.1039/d4na00442f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024]
Abstract
TiO2 remains one of the most popular materials used in catalysts, photovoltaics, coatings, and electronics due to its abundance, chemical stability, and excellent catalytic properties. The tailoring of the TiO2 structure into two-dimensional nanosheets prompted the successful isolation of graphene and MXenes. In this review, facet-controlled TiO2 and monolayer titanate are outlined, covering their synthesis route and formation mechanism. The reactive facet of TiO2 is usually controlled by a capping agent. In contrast, the monolayer titanate is achieved by ion-exchange and delamination of layered titanates. Each route leads to 2D structures with unique physical and chemical properties, which expands its utilisation into several niche applications. We elaborate the detailed outlook for the future use and research studies of facet-controlled TiO2 and monolayer titanates. Advantages and disadvantages of both structures are provided, along with suggested applications for each type of 2D TiO2 nanosheets.
Collapse
Affiliation(s)
- Christian Harito
- Industrial Engineering Department, BINUS Graduate Program - Master of Industrial Engineering, Bina Nusantara University Jakarta Indonesia
| | - Munawar Khalil
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia Kampus Baru UI Depok Jawa Barat Indonesia
| | - Leanddas Nurdiwijayanto
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Ni Luh Wulan Septiani
- Research Center for Advanced Materials, National Research and Innovation Agency Komplek PUSPIPTEK, Serpong South Tangerang 15314 Banten Indonesia
| | - Syauqi Abdurrahman Abrori
- Automotive & Robotics Program, Computer Engineering Department, BINUS ASO School of Engineering, Bina Nusantara University Jakarta 11480 Indonesia
| | - Budi Riza Putra
- Research Center for Metallurgy, National Research and Innovation Agency (BRIN) PUSPIPTEK Area, Building No. 470, Setu Regency South Tangerang Banten 15314 Indonesia
| | - Syed Z J Zaidi
- Institute of Chemical Engineering and Technology, University of the Punjab Lahore Pakistan
| | - Takaaki Taniguchi
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Brian Yuliarto
- Department of Engineering Physics, Advanced Functional Materials Laboratory, Institute of Technology Bandung (ITB) Bandung 40132 Indonesia
- Research Center for Nanosciences and Nanotechnology (RCNN), Institute of Technology Bandung (ITB) Bandung 40132 Indonesia
| | - Frank C Walsh
- Electrochemical Engineering Laboratory, Faculty of Engineering and Physical Sciences, University of Southampton Southampton UK
| |
Collapse
|
10
|
Liu Y, Li R, Lv Q, Yu B. Embracing heterogeneous photocatalysis: evolution of photocatalysts in annulation of dimethylanilines and maleimides. Chem Commun (Camb) 2024. [PMID: 39078307 DOI: 10.1039/d4cc02516d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Recent advances in visible-light-promoted construction of tetrahydroquinolines from dimethylanilines and maleimides are documented. Homogeneous and heterogeneous photocatalytic systems, as well as the reaction mechanism, are emphasized. The mechanism of this photocatalytic annulation reaction is quite clear, i.e., dimethylanilines and maleimides serve as the radical precursors and radical acceptors, respectively. This annulation reaction could serve as an excellent platform for evaluating novel oxidative heterogeneous photocatalytic systems, which could further inspire chemists in this field to develop more efficient photocatalytic systems. Significant opportunities are expected in the future for heterogeneous photocatalysis strategies.
Collapse
Affiliation(s)
- Yan Liu
- Henan International Joint Laboratory of Rare Earth Composite Material, College of Materials Engineering, Henan University of Engineering, Zhengzhou, Henan Province 451191, China
| | - Rui Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore.
| | - Qiyan Lv
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
- National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
| | - Bing Yu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
11
|
Naya SI, Morita Y, Sugime H, Soejima T, Fujishima M, Tada H. Efficient plasmonic water splitting by heteroepitaxial junction-induced faceting of gold nanoparticles on an anatase titanium(IV) oxide nanoplate array electrode. NANOSCALE 2024; 16:13435-13444. [PMID: 38919999 DOI: 10.1039/d4nr01013b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Plasmonic photocatalysts represented by gold nanoparticle (NP)-loaded titanium(IV) oxide (Au/TiO2) can be promising solar-to-fuel converters by virtue of their response to visible-to-near infrared light. Hitherto, Au/rutile (R)-TiO2 has been recognized as exhibiting photocatalytic activity higher than that of Au/anatase (A)-TiO2. Herein, we demonstrate that the high potential of A-TiO2 as the Au NP support can be brought out through atomic level interface control. Faceting of Au NPs is induced by a heteroepitaxial junction on an A-TiO2(001) nanoplate array (Au/A-TiO2 NPLA). Photoexcitation towards the Au/A-TiO2 NPLA electrode generates current for the water oxidation reaction at λ < 900 nm with a maximum efficiency of 0.39% at λ = 600 nm, which is much larger than the values reported so far for the usual electrodes. The striking activity of the Au/A-TiO2 NPLA electrode was rationalized using a potential-dependent Fowler model. This study presented a novel approach for developing solar-driven electrodes for green and sustainable fuel production.
Collapse
Affiliation(s)
- Shin-Ichi Naya
- Environmental Research Laboratory, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Yoko Morita
- Graduate School of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Hisashi Sugime
- Graduate School of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Tetsuro Soejima
- Graduate School of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Musashi Fujishima
- Graduate School of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Hiroaki Tada
- Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan.
| |
Collapse
|
12
|
Zhou JF, Peng B, Ding M, Shan BQ, Zhu YS, Bonneviot L, Wu P, Zhang K. The nature of crystal facet effect of TiO 2-supported Pd/Pt catalysts on selective hydrogenation of cinnamaldehyde: electron transfer process promoted by interfacial oxygen species. Phys Chem Chem Phys 2024; 26:18854-18864. [PMID: 38946575 DOI: 10.1039/d4cp01406e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Supported noble metal nanocatalysts typically exhibit strong crystal plane dependent catalytic behavior, but their working mechanism is still unclear. Herein, using anatase TiO2 with well-exposed crystal facets of {101}, {100} and {001} as a prototype support, Pd- and Pt-based supported TiO2 nanocatalysts (TiO2-Pd and TiO2-Pt) were prepared by chemical reduction with NaBH4 as reducer, and they showed a distinct metal-dependent crystal facet effect in the selective hydrogenation of cinamaldehyde (CAL). For Pd-based nanocatalysts, most Pd species on the {100} plane of TiO2 are present in the oxidized form with positive charges and unexpectedly show higher reactivity than the Pd species in the zero-valence state on the {101} and {001} planes. On the contrary, Pt species on all three crystal planes of TiO2 show zero-valence state, with relatively low conversion, but much better selectivity for hydrogenation of a CO bond than Pd-based catalysts. Well-designed experiments manipulating the stability and type of surface oxygen species confirmed that the essence of the crystal facet effect of the catalyst support actually creates a unique nanoconfined interface at the molecular level to construct a surface p-band intermediate state (PBIS), which provides a new alternative channel for surface electron transfer and consequently accelerates the reaction kinetics.
Collapse
Affiliation(s)
- Jia-Feng Zhou
- State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Bo Peng
- State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Meng Ding
- State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Bing-Qian Shan
- State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yi-Song Zhu
- State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Laurent Bonneviot
- Laboratoire de Chimie, Ecole Normale Supérieure de Lyon, Institut de Chimie de Lyon, Université de Lyon, 46 Allée d'italie, Lyon 69364 CEDEX 07, France
| | - Peng Wu
- State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Institute of Eco-Chongming, Shanghai 202162, China
| | - Kun Zhang
- State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Institute of Eco-Chongming, Shanghai 202162, China
| |
Collapse
|
13
|
He CY, Li Y, Zhou ZH, Liu BH, Gao XH. High-Entropy Photothermal Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400920. [PMID: 38437805 DOI: 10.1002/adma.202400920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/28/2024] [Indexed: 03/06/2024]
Abstract
High-entropy (HE) materials, celebrated for their extraordinary chemical and physical properties, have garnered increasing attention for their broad applications across diverse disciplines. The expansive compositional range of these materials allows for nuanced tuning of their properties and innovative structural designs. Recent advances have been centered on their versatile photothermal conversion capabilities, effective across the full solar spectrum (300-2500 nm). The HE effect, coupled with hysteresis diffusion, imparts these materials with desirable thermal and chemical stability. These attributes position HE materials as a revolutionary alternative to traditional photothermal materials, signifying a transformative shift in photothermal technology. This review delivers a comprehensive summary of the current state of knowledge regarding HE photothermal materials, emphasizing the intricate relationship between their compositions, structures, light-absorbing mechanisms, and optical properties. Furthermore, the review outlines the notable advances in HE photothermal materials, emphasizing their contributions to areas, such as solar water evaporation, personal thermal management, solar thermoelectric generation, catalysis, and biomedical applications. The review culminates in presenting a roadmap that outlines prospective directions for future research in this burgeoning field, and also outlines fruitful ways to develop advanced HE photothermal materials and to expand their promising applications.
Collapse
Affiliation(s)
- Cheng-Yu He
- Laboratory of Clean Energy Chemistry and Materials, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhuo-Hao Zhou
- Laboratory of Clean Energy Chemistry and Materials, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Bao-Hua Liu
- Laboratory of Clean Energy Chemistry and Materials, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Xiang-Hu Gao
- Laboratory of Clean Energy Chemistry and Materials, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
14
|
Jain A, Kumar M. Sketching Precursor Evolution to Delineate Growth Pathways for Anatase (TiO 2) Crystal Design. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309100. [PMID: 38193261 DOI: 10.1002/smll.202309100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/18/2023] [Indexed: 01/10/2024]
Abstract
Engineering advanced functional materials such as Anatase crystals through the molecular tuning of crystal facets is the current enigma of interest pertinent to solving the structure-property-performance triad. Developing optimal shapes and sizes of crystallite necessitates exploring the nanoscopic growth mechanism via precursor tracking. Here, the tapestry of particles varying in dimensionality (0D-3D), sizes (8-3000 nm), and morphology (aggregated to highly faceted crystals) is generated. To decipher and subsequently modulate the crystallization pathways, high-resolution microscopy (high-resolution transmission electron microscopy(HRTEM) and field emission scanning electron microscopy(FESEM)) is used to sketch time-stamped particle evolution. Interestingly, the studies provide evidence for 4-distinct mechanisms where nanoparticles/nanosheets play direct and/or indirect roles in crystallization through multi-stage aggregation (primary, secondary, and tertiary) beginning with similar growth solutions. The four distinct pathways elucidate bulk particle formation via non-classical routes of crystallization including nanosheet alignment and aggregation, nanocrystallite formation and fusion, nanobeads formation and attachment, and direct nanosheet incorporation in bulk crystals. Notably, the direct evidence of flexible-partially-ordered nanosheets being subsumed along the contours of bulk crystals is captured. These novel syntheses generated uniquely faceted particles with high-indexed surface planes such as (004), (200), and (105), amenable to photocatalytic applications.
Collapse
Affiliation(s)
- Anusha Jain
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, Delhi, New Delhi, 110016, India
| | - Manjesh Kumar
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, Delhi, New Delhi, 110016, India
| |
Collapse
|
15
|
Zhang Y, Wu X, Wang ZH, Peng Y, Liu Y, Yang S, Sun C, Xu X, Zhang X, Kang J, Wei SH, Liu PF, Dai S, Yang HG. Crystal Facet Engineering on SrTiO 3 Enhances Photocatalytic Overall Water Splitting. J Am Chem Soc 2024; 146:6618-6627. [PMID: 38349322 DOI: 10.1021/jacs.3c12062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Single-crystal semiconductor-based photocatalysts exposing unique crystallographic facets show promising applications in energy and environmental technologies; however, crystal facet engineering through solid-state synthesis for photocatalytic overall water splitting is still challenging. Herein, we develop a novel crystal facet engineering strategy through solid-state recrystallization to synthesize uniform SrTiO3 single crystals exposing tailored {111} facets. The presynthesized low-crystalline SrTiO3 precursors enable the formation of well-defined single crystals through kinetically improved crystal structure transformation during solid-state recrystallization process. By employing subtle Al3+ ions as surface morphology modulators, the crystal surface orientation can be precisely tuned to a controlled percentage of {111} facets. The photocatalytic overall water splitting activity increases with the exposure percentage of {111} facets. Owing to the outstanding crystallinity and favorable anisotropic surface structure, the SrTiO3 single crystals with 36.6% of {111} facets lead to a 3-fold enhancement of photocatalytic hydrogen evolution rates up to 1.55 mmol·h-1 in a stoichiometric ratio of 2:1 than thermodynamically stable SrTiO3 enclosed with isotropic {100} facets.
Collapse
Affiliation(s)
- Yang Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuefeng Wu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhi-Hao Wang
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Yu Peng
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuanwei Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shuang Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chenghua Sun
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn 3122, Australia
| | - Xiaoxiang Xu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xie Zhang
- Beijing Computational Science Research Center, Beijing 100193, China
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jun Kang
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Su-Huai Wei
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Peng Fei Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hua Gui Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
16
|
Sohail M, Rauf S, Irfan M, Hayat A, Alghamdi MM, El-Zahhar AA, Ghernaout D, Al-Hadeethi Y, Lv W. Recent developments, advances and strategies in heterogeneous photocatalysts for water splitting. NANOSCALE ADVANCES 2024; 6:1286-1330. [PMID: 38419861 PMCID: PMC10898449 DOI: 10.1039/d3na00442b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/28/2023] [Indexed: 03/02/2024]
Abstract
Photocatalytic water splitting (PWS) is an up-and-coming technology for generating sustainable fuel using light energy. Significant progress has been made in the developing of PWS innovations over recent years. In addition to various water-splitting (WS) systems, the focus has primarily been on one- and two-steps-excitation WS systems. These systems utilize singular or composite photocatalysts for WS, which is a simple, feasible, and cost-effective method for efficiently converting prevalent green energy into sustainable H2 energy on a large commercial scale. The proposed principle of charge confinement and transformation should be implemented dynamically by conjugating and stimulating the photocatalytic process while ensuring no unintentional connection at the interface. This study focuses on overall water splitting (OWS) using one/two-steps excitation and various techniques. It also discusses the current advancements in the development of new light-absorbing materials and provides perspectives and approaches for isolating photoinduced charges. This article explores multiple aspects of advancement, encompassing both chemical and physical changes, environmental factors, different photocatalyst types, and distinct parameters affecting PWS. Significant factors for achieving an efficient photocatalytic process under detrimental conditions, (e.g., strong light absorption, and synthesis of structures with a nanometer scale. Future research will focus on developing novel materials, investigating potential synthesis techniques, and improving existing high-energy raw materials. The endeavors aim is to enhance the efficiency of energy conversion, the absorption of radiation, and the coherence of physiochemical processes.
Collapse
Affiliation(s)
- Muhammad Sohail
- Huzhou Key Laboratory of Smart and Clean Energy, Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China Huzhou 313001 P. R. China
| | - Sana Rauf
- College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen 518060 PR China
| | - Muhammad Irfan
- Department of Chemistry, Hazara University Mansehra 21300 Pakistan
| | - Asif Hayat
- College of Chemistry and Life Sciences, Zhejiang Normal University 321004 Jinhua Zhejiang P. R. China
| | - Majed M Alghamdi
- Department of Chemistry, College of Science, King Khalid University P. O. Box 9004 Abha 61413 Saudi Arabia
| | - Adel A El-Zahhar
- Department of Chemistry, College of Science, King Khalid University P. O. Box 9004 Abha 61413 Saudi Arabia
| | - Djamel Ghernaout
- Chemical Engineering Department, College of Engineering, University of Ha'il PO Box 2440 Ha'il 81441 Saudi Arabia
- Chemical Engineering Department, Faculty of Engineering, University of Blida PO Box 270 Blida 09000 Algeria
| | - Yas Al-Hadeethi
- Physics Department, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
- Lithography in Devices Fabrication and Development Research Group, Deanship of Scientific Research, King Abdulaziz University Jeddah 21589 Saudi Arabia
- King Fahd Medical Research Center (KFMRC), King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Weiqiang Lv
- Huzhou Key Laboratory of Smart and Clean Energy, Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China Huzhou 313001 P. R. China
| |
Collapse
|
17
|
Valero R, Morales-García Á, Illas F. Estimating Nonradiative Excited-State Lifetimes in Photoactive Semiconducting Nanostructures. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:2713-2721. [PMID: 38379918 PMCID: PMC10875665 DOI: 10.1021/acs.jpcc.3c08053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 02/22/2024]
Abstract
The time evolution of the exciton generated by light adsorption in a photocatalyst is an important feature that can be approached from full nonadiabatic molecular dynamics simulations. Here, a crucial parameter is the nonradiative recombination rate between the hole and the electron that form the exciton. In the present work, we explore the performance of a Fermi's golden rule-based approach on predicting the recombination rate in a set of photoactive titania nanostructures, relying solely on the coupling of the ground and first excited state. In this scheme the analysis of the first excited state is carried out by invoking Kasha's rule thus avoiding computationally expensive nonadiabatic molecular dynamics simulations and resulting in an affordable estimate of the recombination rate. Our results show that, compared to previous ones from nonadiabatic molecular dynamics simulations, semiquantitative recombination rates can be predicted for the smaller titania nanostructures, and qualitative values are obtained from the larger ones. The present scheme is expected to be useful in the field of computational heterogeneous photocatalysis whenever a complex and computationally expensive full nonadiabatic molecular dynamics cannot be carried out.
Collapse
Affiliation(s)
- Rosendo Valero
- Departament
de Ciència de Materials i Química Física &
Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona. c/Martí i Franquès 1-11, 08028 Barcelona, Spain
- Headquarters
Research Institute, Zhejiang Huayou Cobalt, 018 Wuzhen East Rd, 314599 Jiaxing, Zhejiang, China
| | - Ángel Morales-García
- Departament
de Ciència de Materials i Química Física &
Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona. c/Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Francesc Illas
- Departament
de Ciència de Materials i Química Física &
Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona. c/Martí i Franquès 1-11, 08028 Barcelona, Spain
| |
Collapse
|
18
|
Zang W, Lee J, Tieu P, Yan X, Graham GW, Tran IC, Wang P, Christopher P, Pan X. Distribution of Pt single atom coordination environments on anatase TiO 2 supports controls reactivity. Nat Commun 2024; 15:998. [PMID: 38307931 PMCID: PMC10837418 DOI: 10.1038/s41467-024-45367-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/18/2024] [Indexed: 02/04/2024] Open
Abstract
Single-atom catalysts (SACs) offer efficient metal utilization and distinct reactivity compared to supported metal nanoparticles. Structure-function relationships for SACs often assume that active sites have uniform coordination environments at particular binding sites on support surfaces. Here, we investigate the distribution of coordination environments of Pt SAs dispersed on shape-controlled anatase TiO2 supports specifically exposing (001) and (101) surfaces. Pt SAs on (101) are found on the surface, consistent with existing structural models, whereas those on (001) are beneath the surface after calcination. Pt SAs under (001) surfaces exhibit lower reactivity for CO oxidation than those on (101) surfaces due to their limited accessibility to gas phase species. Pt SAs deposited on commercial-TiO2 are found both at the surface and in the bulk, posing challenges to structure-function relationship development. This study highlights heterogeneity in SA coordination environments on oxide supports, emphasizing a previously overlooked consideration in the design of SACs.
Collapse
Affiliation(s)
- Wenjie Zang
- Department of Materials Science and Engineering, University of California, Irvine, CA, 92697, USA
| | - Jaeha Lee
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - Peter Tieu
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
| | - Xingxu Yan
- Department of Materials Science and Engineering, University of California, Irvine, CA, 92697, USA
| | - George W Graham
- Department of Materials Science and Engineering, University of California, Irvine, CA, 92697, USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ich C Tran
- Irvine Materials Research Institute, University of California, Irvine, CA, 92697, USA
| | - Peikui Wang
- Department of Chemistry, University of Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Phillip Christopher
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA.
| | - Xiaoqing Pan
- Department of Materials Science and Engineering, University of California, Irvine, CA, 92697, USA.
- Irvine Materials Research Institute, University of California, Irvine, CA, 92697, USA.
- Department of Physics and Astronomy, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
19
|
Du T, Meng R, Qian L, Wang Z, Li T, Wu L. Formation of extracellular polymeric substances corona on TiO 2 nanoparticles: Roles of crystalline phase and exposed facets. WATER RESEARCH 2024; 249:120990. [PMID: 38086209 DOI: 10.1016/j.watres.2023.120990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Nanoparticles (NPs) in the environment can interact with macromolecules in the surrounding environment to form eco-corona on their surfaces, which in turn affects the environmental fate and toxicity of nanoparticles. Wastewater treatment plants containing large amounts of microbial extracellular polymeric substances (EPS) are an important source of NPs into the environment, where the formation of EPS coronas on NPs is critical. However, it remains unclear how the crystalline phase and exposed facets, which are intrinsic properties of NPs, affect the formation of EPS coronas on NPs. This study investigated the formation of EPS corona on three TiO2 NPs (representing the most widely used engineered NPs) with different crystalline phases and exposed facets. The protein type and abundance in EPS coronas on TiO2 NPs varied depending on the crystalline phase and exposed facets. Anatase with {101} facets and {001} facets preferred to adsorb proteins with lower molecular weights and higher H-bonding relevant amino acids, respectively, while EPS corona on rutile with {110} facets had proteins with higher hydrophobicity. In addition, the selective adsorption of proteins was primarily determined by steric hindrance, hydrogen bonding, and hydrophobic interaction between TiO2 NPs and proteins, which were affected by changes in aggregation state, surface hydroxyl density, and hydrophobicity of TiO2 NPs induced by crystalline phase and exposed facets. Moreover, crystalline phase and exposed facets-induced EPS corona changes altered the aggregation state and oxidation potential of TiO2-EPS corona complexes. These findings emphasize the important role of crystalline phase and exposed facets in the environmental behavior of nanoparticles and may provide insights into the safe design of nanoparticles.
Collapse
Affiliation(s)
- Tingting Du
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
| | - Ru Meng
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Liwen Qian
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Ziyan Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Tong Li
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
| | - Lijun Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| |
Collapse
|
20
|
Xie Y, Chang J, Zheng P, Zhang L, Xie T, Jiang R, Zhang Z, Yang Y, Zou M, Yin L, Zhen C, Han F, Ba K, Xu G. Evidence for an Interface of Hybrid Cocatalysts Favoring Photocatalytic Hydrogen Evolution Kinetics. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59309-59318. [PMID: 37902621 DOI: 10.1021/acsami.3c10097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Hybrid cocatalysts have great application potential for improving the photocatalytic hydrogen evolution performance of semiconductors. The interfaces between components of hybrid cocatalysts make a great contribution to the improvement, but the associated mechanisms remain unclear. Herein, we prepared and tested three comparative CdS-based photocatalysts with NiS, NiS/Ni9S8, and Ni9S8 as the cocatalysts separately. The emphasis is placed on investigating the effect of the NiS/Ni9S8 interfaces on the photocatalytic hydrogen evolution performance of CdS. NiS/Ni9S8 exhibits a higher ability than NiS and Ni9S8 in making CdS a more active photocatalyst for water splitting. It shows that NiS, NiS/Ni9S8, and Ni9S8 perform similarly in terms of promoting the charge transfer and separation of CdS based on steady-state and time-resolved photoluminescence studies. At the same time, the linear sweep voltammetry and electrochemical impedance spectroscopy tests combined with the density functional theory calculations reveal that the component interfaces of NiS/Ni9S8 enable us to lower the water splitting activation energy, the charge-transfer resistance from the cocatalyst to sacrificial agent, and hydrogen adsorption Gibbs free energy. It is evidenced from this work that component interfaces of hybrid cocatalysts play a vital role in accelerating the dynamics of hydrogen evolution reactions.
Collapse
Affiliation(s)
- Yingpeng Xie
- Key Laboratory of Resources Chemicals and Materials (Shenyang University of Chemical Technology), Ministry of Education, Shenyang 110142, China
| | - Junhua Chang
- Key Laboratory of Resources Chemicals and Materials (Shenyang University of Chemical Technology), Ministry of Education, Shenyang 110142, China
| | - Peng Zheng
- Key Laboratory of Resources Chemicals and Materials (Shenyang University of Chemical Technology), Ministry of Education, Shenyang 110142, China
| | - Lili Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Tengfeng Xie
- State Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Renzheng Jiang
- Key Laboratory of Resources Chemicals and Materials (Shenyang University of Chemical Technology), Ministry of Education, Shenyang 110142, China
| | - Zhanguo Zhang
- Key Laboratory of Resources Chemicals and Materials (Shenyang University of Chemical Technology), Ministry of Education, Shenyang 110142, China
| | - Yongqiang Yang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Mengke Zou
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Lichang Yin
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Chao Zhen
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Fei Han
- Key Laboratory of Resources Chemicals and Materials (Shenyang University of Chemical Technology), Ministry of Education, Shenyang 110142, China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Kaikai Ba
- State Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Guangwen Xu
- Key Laboratory of Resources Chemicals and Materials (Shenyang University of Chemical Technology), Ministry of Education, Shenyang 110142, China
| |
Collapse
|
21
|
Chen JJ. Interfacial Electron Transfer in Chemical and Biological Transformation of Pollutants in Environmental Catalysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21540-21549. [PMID: 38086095 DOI: 10.1021/acs.est.3c05608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Interfacial electron transfer (IET) is essential for chemical and biological transformation of pollutants, operative across diverse lengths and time scales. This Perspective presents an array of multiscale molecular simulation methodologies, supplemented by in situ monitoring and imaging techniques, serving as robust tools to decode IET enhancement mechanisms such as interface molecular modification, catalyst coordination mode, and atomic composition regulation. In addition, three IET-based pollutant transformation systems, an electrocatalytic oxidation system, a bioelectrochemical spatial coupling system, and an enzyme-inspired electrocatalytic system, were developed, demonstrating a high effect in transforming and degrading pollutants. To improve the effectiveness and scalability of IET-based strategies, the refinement of these systems is necessitated through rigorous research and theoretical exploration, particularly in the context of practical wastewater treatment scenarios. Future endeavors aim to elucidate the synergy between biological and chemical modules, edit the environmental functional microorganisms, and harness machine learning for designing advanced environmental catalysts to boost efficiency. This Perspective highlights the powerful potential of IET-focused environmental remediation strategies, emphasizing the critical role of interdisciplinary research in addressing the urgent global challenge of water pollution.
Collapse
Affiliation(s)
- Jie-Jie Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
22
|
Parashar D, Achari G, Kumar M. Multi-antibiotics removal under UV-A light using sol-gel prepared TiO 2: Central composite design, effect of persulfate addition and degradation pathway study. CHEMOSPHERE 2023; 341:140025. [PMID: 37660792 DOI: 10.1016/j.chemosphere.2023.140025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
The removal of three antibiotics i.e., metronidazole (MNZ), ciprofloxacin (CIP) and tetracycline (TET), from aqueous system via TiO2 photocatalysis under UV-A light was investigated. Photocatalyst(s) were prepared using sol-gel method under different calcination temperatures (400-800 °C) and water-alcohol ratio. The spherical shaped catalyst (mean particle size ∼ 61 nm) was characterized via FTIR, XRD, BET, SEM, Raman, XPS, UV-DRS, and Fluorometry, and point of zero charge was also determined (pHPZC ∼ 6.6). Batch photo-catalytic degradation studies have shown complete degradation of MNZ, CIP and TET after 50, 75 and 20 min with a TOC removal of 37%, 44% and 31%, respectively. The activity of sol-gel prepared TiO2 was comparatively higher than commercially available pure anatase TiO2 nanoparticles due to lesser mean particle size. The ratio of water to alcohol in the preparation of TiO2 catalyst was found to have significant effect on antibiotic removal. Moreover, persulfate (PS) addition of 0.1 g/L amplified the pseudo-first-order removal-rate constant by 2.75, 3.3 and 1.6 times for MNZ, CIP and TET, respectively. The higher initial pH values (8 and 10) have shown the best removal efficiency for all antibiotics. Subsequently, central composite design (CCD) experiments were conducted under multi-antibiotic conditions. Near complete removal of all antibiotics were observed within 120 min. Scavenging studies revealed that hydroxyl and superoxide radicals play major roles in photo-catalytic degradation of MNZ, CIP and TET. During photocatalysis, MNZ degradation was initiated by hydroxylation reaction, CIP by piperazine ring opening by hydroxyl attack and TET by multiple hydroxylation process. Overall, TiO2 showed good efficiency at degrading multiple antibiotics and has the potential for practical application on a larger scale.
Collapse
Affiliation(s)
- Dinkar Parashar
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| | - Gopal Achari
- Department of Civil Engineering, University of Calgary, ENF 262, 2500 University Drive NW, Calgary, T2N 1N4, Canada
| | - Mathava Kumar
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India.
| |
Collapse
|
23
|
Chen Y, Soler L, Cazorla C, Oliveras J, Bastús NG, Puntes VF, Llorca J. Facet-engineered TiO 2 drives photocatalytic activity and stability of supported noble metal clusters during H 2 evolution. Nat Commun 2023; 14:6165. [PMID: 37789037 PMCID: PMC10547715 DOI: 10.1038/s41467-023-41976-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 09/25/2023] [Indexed: 10/05/2023] Open
Abstract
Metal clusters supported on TiO2 are widely used in many photocatalytic applications, including pollution control and production of solar fuels. Besides high photoactivity, stability during the photoreaction is another essential quality of high-performance photocatalysts, however systematic studies on this attribute are absent for metal clusters supported on TiO2. Here we have studied, both experimentally and with first-principles simulation methods, the stability of Pt, Pd and Au clusters prepared by ball milling on nanoshaped anatase nanoparticles preferentially exposing {001} (plates) and {101} (bipyramids) facets during the photogeneration of hydrogen. It is found that Pt/TiO2 exhibits superior stability than Pd/TiO2 and Au/TiO2, and that {001} facet-based photocatalysts always are more stable than their {101} analogous regardless of the considered metal species. The loss of stability associated with cluster sintering, which is facilitated by the transfer of photoexcited carriers from the metal species to the neighbouring Ti and O atoms, most significantly and detrimentally affects the H2-evolution photoactivity.
Collapse
Affiliation(s)
- Yufen Chen
- Department of Chemical Engineering, Universitat Politècnica de Catalunya, Eduard Maristany 16, EEBE, Barcelona, 08019, Spain
- Institute of Energy Technologies and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Eduard Maristany 16, EEBE, Barcelona, 08019, Spain
| | - Lluís Soler
- Department of Chemical Engineering, Universitat Politècnica de Catalunya, Eduard Maristany 16, EEBE, Barcelona, 08019, Spain.
- Institute of Energy Technologies and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Eduard Maristany 16, EEBE, Barcelona, 08019, Spain.
| | - Claudio Cazorla
- Department of Physics, Universitat Politècnica de Catalunya, Campus Nord, B4-B5, Barcelona, E-08034, Spain
| | - Jana Oliveras
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, 08193, Barcelona, Spain
| | - Neus G Bastús
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, 08193, Barcelona, Spain
| | - Víctor F Puntes
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, 08193, Barcelona, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), 08010, Barcelona, Spain
- Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, Passeig de la Vall d'Hebron, 129, Barcelona, 08035, Spain
| | - Jordi Llorca
- Department of Chemical Engineering, Universitat Politècnica de Catalunya, Eduard Maristany 16, EEBE, Barcelona, 08019, Spain.
- Institute of Energy Technologies and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Eduard Maristany 16, EEBE, Barcelona, 08019, Spain.
| |
Collapse
|
24
|
Li X, Wei H, Song T, Lu H, Wang X. A review of the photocatalytic degradation of organic pollutants in water by modified TiO 2. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:1495-1507. [PMID: 37768751 PMCID: wst_2023_288 DOI: 10.2166/wst.2023.288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Organic pollutants in water bodies pose a serious environmental problem, and photocatalytic technology is an efficient and environmentally friendly water treatment method. Titanium dioxide (TiO2) is a widely used photocatalyst, but it suffers from some drawbacks such as a narrow light response range, fast charge recombination, and low photocatalytic activity. To improve the photocatalytic performance of TiO2, this article reviews the preparation methods, performance evaluation, and applications of modified TiO2 photocatalysts. Firstly, the article introduces the effects of doping modification, semiconductor composite modification, and other modification methods on the structure and properties of TiO2 photocatalysts, as well as the common characterization techniques and activity test methods of photocatalysts. Secondly, the article discusses the effects and mechanisms of modified TiO2 photocatalysts on degrading dye, pesticide, and other organic pollutants in water bodies, as well as the influencing factors. Finally, the article summarizes the main achievements and advantages of modified TiO2 photocatalysts in degrading organic pollutants in water bodies, points out the existing problems and challenges, and prospects for the development direction and future of this field.
Collapse
Affiliation(s)
- Xueqi Li
- Changchun University of Architecture and Civil Engineering, Changchun 130000, China E-mail:
| | - Hongyan Wei
- Changchun University of Architecture and Civil Engineering, Changchun 130000, China
| | - Tiehong Song
- Changchun University of Architecture and Civil Engineering, Changchun 130000, China
| | - Hai Lu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun City, Jilin Province, China
| | - Xiaoyan Wang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun City, Jilin Province, China
| |
Collapse
|
25
|
You R, Ou Y, Qi R, Yu J, Wang F, Jiang Y, Zou S, Han ZK, Yuan W, Yang H, Zhang Z, Wang Y. Revealing Temperature-Dependent Oxidation Dynamics of Ni Nanoparticles via Ambient Pressure Transmission Electron Microscopy. NANO LETTERS 2023; 23:7260-7266. [PMID: 37534944 DOI: 10.1021/acs.nanolett.3c00923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Understanding the oxidation mechanism of metal nanoparticles under ambient pressure is extremely important to make the best use of them in a variety of applications. Through ambient pressure transmission electron microscopy, we in situ investigated the dynamic oxidation processes of Ni nanoparticles at different temperatures under atmospheric pressure, and a temperature-dependent oxidation behavior was revealed. At a relatively low temperature (e.g., 600 °C), the oxidation of Ni nanoparticles underwent a classic Kirkendall process, accompanied by the formation of oxide shells. In contrast, at a higher temperature (e.g., 800 °C), the oxidation began with a single crystal nucleus at the metal surface and then proceeded along the metal/oxide interface without voids formed during the whole process. Through our experiments and density functional theory calculations, a temperature-dependent oxidation mechanism based on Ni nanoparticles was proposed, which was derived from the discrepancy of gas adsorption and diffusion rates under different temperatures.
Collapse
Affiliation(s)
- Ruiyang You
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yang Ou
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Rui Qi
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Jian Yu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Fei Wang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ying Jiang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shihui Zou
- Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Zhong-Kang Han
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wentao Yuan
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China
| | - Hangsheng Yang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China
| | - Ze Zhang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yong Wang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
26
|
Al-Attafi K, Mezher HA, Hammadi AF, Al-Keisy A, Hamzawy S, Qutaish H, Kim JH. Solvothermally Synthesized Hierarchical Aggregates of Anatase TiO 2 Nanoribbons/Nanosheets and Their Photocatalytic-Photocurrent Activities. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1940. [PMID: 37446456 DOI: 10.3390/nano13131940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023]
Abstract
Hierarchical aggregates of anatase TiO2 nanoribbons/nanosheets (TiO2-NR) and anatase TiO2 nanoparticles (TiO2-NP) were produced through a one-step solvothermal reaction using acetic acid or ethanol and titanium isopropoxide as solvothermal reaction systems. The crystalline structure, crystalline phase, and morphologies of synthesized materials were characterized using several techniques. According to our findings, both TiO2-NR and TiO2-NP were found to have polycrystalline structures, with pure anatase phases. TiO2-NR has a three-dimensional hierarchical structure made up of aggregates of TiO2 nanoribbons/nanosheets, while TiO2-NP has a nanoparticulate structure. The photocatalytic and photocurrent activities for TiO2-NR and TiO2-NP were investigated and compared with the widely used commercial TiO2 (P25), which consists of anatase/rutile TiO2 nanoparticles, as a reference material. Our findings showed that TiO2-NR has higher photocatalytic and photocurrent performance than TiO2-NP, which are both, in turn, higher than those of P25. Our developed solvothermal method was shown to produce a pure anatase TiO2 phase for both synthesized structures, without using any surfactants or any other assisted templates. This developed solvothermal approach, and its anatase TiO2 nanostructure output, has promising potential for a wide range of energy harvesting applications, such as water pollution treatment and solar cells.
Collapse
Affiliation(s)
- Kadhim Al-Attafi
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials (AIIM), University of Wollongong, North Wollongong, NSW 2500, Australia
- Department of Physics, College of Science, University of Kerbala, Karbala 56001, Iraq
| | - Hamza A Mezher
- Department of Physics, College of Science, University of Kerbala, Karbala 56001, Iraq
| | - Ali Faraj Hammadi
- Department of Mechanical Engineering, College of Engineering, Wasit University, Wasit 52001, Iraq
| | - Amar Al-Keisy
- Nanotechnology and Advanced Material Research Center, University of Technology-Iraq, Baghdad 10066, Iraq
| | - Sameh Hamzawy
- Intelligent Polymer Research Institute (IPRI), Australian Institute for Innovative Materials (AIIM), University of Wollongong, North Wollongong, NSW 2500, Australia
- Solar Research Laboratory, Solar and Space Research Department, National Research Institute of Astronomy and Geophysics, Helwan 11421, Cairo, Egypt
| | - Hamzeh Qutaish
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials (AIIM), University of Wollongong, North Wollongong, NSW 2500, Australia
| | - Jung Ho Kim
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials (AIIM), University of Wollongong, North Wollongong, NSW 2500, Australia
| |
Collapse
|
27
|
Si P, Zheng Z, Gu Y, Geng C, Guo Z, Qin J, Wen W. Nanostructured TiO 2 Arrays for Energy Storage. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103864. [PMID: 37241492 DOI: 10.3390/ma16103864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/14/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023]
Abstract
Because of their extensive specific surface area, excellent charge transfer rate, superior chemical stability, low cost, and Earth abundance, nanostructured titanium dioxide (TiO2) arrays have been thoroughly explored during the past few decades. The synthesis methods for TiO2 nanoarrays, which mainly include hydrothermal/solvothermal processes, vapor-based approaches, templated growth, and top-down fabrication techniques, are summarized, and the mechanisms are also discussed. In order to improve their electrochemical performance, several attempts have been conducted to produce TiO2 nanoarrays with morphologies and sizes that show tremendous promise for energy storage. This paper provides an overview of current developments in the research of TiO2 nanostructured arrays. Initially, the morphological engineering of TiO2 materials is discussed, with an emphasis on the various synthetic techniques and associated chemical and physical characteristics. We then give a brief overview of the most recent uses of TiO2 nanoarrays in the manufacture of batteries and supercapacitors. This paper also highlights the emerging tendencies and difficulties of TiO2 nanoarrays in different applications.
Collapse
Affiliation(s)
- Pingyun Si
- School of Mechanical and Electrical Engineering, Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou 570228, China
| | - Zhilong Zheng
- Zhanjiang Power Supply Bureau of Guangdong Power Grid Co., Ltd., Zhanjiang 524001, China
| | - Yijie Gu
- College of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Chao Geng
- School of Mechanical and Electrical Engineering, Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou 570228, China
| | - Zhizhong Guo
- School of Mechanical and Electrical Engineering, Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou 570228, China
| | - Jiayi Qin
- School of Mechanical and Electrical Engineering, Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou 570228, China
| | - Wei Wen
- School of Mechanical and Electrical Engineering, Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou 570228, China
| |
Collapse
|
28
|
Pu Y, Jia L, Huang Q, Tang X, Rodriguez P, Huang L. Investigation on the surface charge separation in Pt-supported morphology-related-TiO 2 and its effect on water splitting. J Colloid Interface Sci 2023; 646:815-823. [PMID: 37229999 DOI: 10.1016/j.jcis.2023.05.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Lowering Pt loading in the catalyst while maintaining its superior catalytic efficiency during hydrogen evolution reaction (HER) is essential for the large-scale application of water splitting. The utilization of strong metal-support interaction (SMSI) through morphology engineering has emerged as an effective strategy in fabricating Pt-supported catalysts. However, a simple and explicit routine to realize the rational design of morphology-related SMSI remains challenging. Here we report a protocol for the photochemical deposition of Pt, which benefits from the intrinsic difference in absorption capability of TiO2 to establish proper Pt+ species and charge separation domains on the surface. With a comprehensive investigation of the surface environment through experiments and Density functional theory (DFT) calculations, charge transfer from Pt to Ti, the separation of electron-hole pairs, and the enhanced electron transfer in the TiO2 matrix were confirmed. It is reported that H2O molecules can be spontaneously dissociated by the surface Ti and O, generating OH stabilized by adjacent Ti and Pt. Such adsorbed OH group induces changes in the electron density of Pt, consequently favours the H adsorption and enhances the HER. Benefiting from the preferable electronic state, the annealed Pt@TiO2-pH9 (PTO-pH9@A) exhibits an overpotential of 30 mV to reach 10 mA cm-2 geo and a mass activity of 3954 A g-1Pt, which is 17-fold higher than the commercial Pt/C. Our work provides a new strategy for the high-efficient catalyst design by the surface state- regulated SMSI.
Collapse
Affiliation(s)
- Yayun Pu
- School of Optoelectronic Engineering, Chongqing University of Post and Telecommunication, No. 2, Chongwen Road, Chongqing 400065, China; Department of Chemistry, Southern University of Science and Technology, No. 1088, Xueyuan Blvd, Shenzhen, Guangdong 518055, China; School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Lu Jia
- Department of Chemistry, Southern University of Science and Technology, No. 1088, Xueyuan Blvd, Shenzhen, Guangdong 518055, China
| | - Qiang Huang
- School of Optoelectronic Engineering, Chongqing University of Post and Telecommunication, No. 2, Chongwen Road, Chongqing 400065, China
| | - Xiaosheng Tang
- School of Optoelectronic Engineering, Chongqing University of Post and Telecommunication, No. 2, Chongwen Road, Chongqing 400065, China
| | - Paramaconi Rodriguez
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Centre for Cooperative Research on Alternative Energies (CICenergiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, 01510 Vitoria-Gasteiz, Spain; IKERBASQUE, Basque Foundation for Science, Plaza de Euskadi 5, 48009 Bilbao, Spain.
| | - Limin Huang
- Department of Chemistry, Southern University of Science and Technology, No. 1088, Xueyuan Blvd, Shenzhen, Guangdong 518055, China; Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
29
|
Lei W, Wang H, Khan S, Suzuki N, Takagi K, Katsumata KI, Teshima K, Terashima C, Fujishima A. Interfacial molecular regulation of TiO 2 for enhanced and stable cocatalyst-free photocatalytic hydrogen production. J Colloid Interface Sci 2023; 645:219-226. [PMID: 37149996 DOI: 10.1016/j.jcis.2023.04.118] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/11/2023] [Accepted: 04/23/2023] [Indexed: 05/09/2023]
Abstract
On the basis of the inherent property limitations of commercial P25-TiO2, many surface interface modification methods have attracted substantial attention for further improving the photocatalytic properties. However, current strategies for designing and modifying efficient photocatalysts (which exhibit complicated manufacturing processes and harsh conditions) are not efficient for production that is low cost, is nontoxic, and exhibits good stability; and therefore restrict practical applications. Herein, a facile and reliable method is reported for in situ amine-containing silane coupling agent functionalization of commercial P25-TiO2 by covalent surface modification for constructing a highly efficient photocatalyst. As a consequence, a high efficiency of H2 evolution was achieved for TiO2-SDA with 0.95 mmol h-1 g-1 (AQE ∼45.6 % at 365 nm) under solar light irradiation without a co-catalyst. The amination modification broadens the light absorption range of the photocatalyst, inhibits the binding of photogenerated carriers, and improves the photocatalytic efficiency; which was verified by photochemical properties and DFT theoretical calculations. This covalent modification method ensures the stability of the photocatalytic reaction. This work provides an approach for molecularly modified photocatalysts to improve photocatalytic performance by covalently modifying small molecules containing amine groups on the photocatalyst surface.
Collapse
Affiliation(s)
- Wenwei Lei
- Hebei Key Laboratory of Nano-Biotechnology, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, Hebei, China.
| | - Hongji Wang
- Hebei Key Laboratory of Nano-Biotechnology, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, Hebei, China
| | - Sovann Khan
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Norihiro Suzuki
- Hebei Key Laboratory of Nano-Biotechnology, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, Hebei, China
| | - Kai Takagi
- Research Center for Space System Innovation, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Ken-Ichi Katsumata
- Department of Materials Science and Technology, Faculty of Advanced Engineering Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Katsuya Teshima
- Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Chiaki Terashima
- Research Center for Space System Innovation, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan.
| | - Akira Fujishima
- Research Center for Space System Innovation, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
30
|
Wu L, Liao M, Zhao B, Li Q, Liu B, Zhang Y. Tuning the water-splitting mechanism on titanium dioxide surfaces through hydroxylation. Phys Chem Chem Phys 2023; 25:9264-9272. [PMID: 36919693 DOI: 10.1039/d2cp05457d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Experimental research demonstrates that surface hydroxyl groups can boost TiO2's ability to split water but the water splitting mechanism and roles of hydroxyl groups are still not clear. The hydroxyl groups formed by H2O or H2 cracking on pure TiO2 surfaces are represented by types I (OH1) and II (OH2), respectively. Six types of hydroxylated TiO2 surfaces of anatase (101), rutile (110), and brookite (210) with OH1 and OH2 hydroxyl groups were constructed. The mechanism of the water oxidation process on the hydroxylated TiO2 surfaces was systematically investigated through density functional theory calculations. The variation and significant roles of hydroxyl groups in the mechanism of the oxygen evolution reaction (OER) and product selectivity were discussed. All hydroxylated TiO2 surfaces eventually tend to produce oxygen through a four-electron/proton process, which is fundamentally different from the OER process on pure Ti2O surfaces from a thermodynamic standpoint. The lowest surface overpotential of R-110-OH1 is 0.53 V, the highest surface overpotential of B-210-OH2 is 1.49 V, and the surface overpotentials of other hydroxylated TiO2 are between 0.5 and 1.5 V. Rutile (110) and brookite (210) have hydroxyl groups of the OH1-type that are more conducive to the OER process. This study investigates the mechanism of water splitting on the surface of hydroxylated TiO2, allowing for a deeper understanding of the function of surface hydroxyl groups in the OER process as well as providing instructions for future research into the development of effective water-splitting catalysts based on hydroxylated TiO2 surfaces.
Collapse
Affiliation(s)
- Lu Wu
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, Shandong Universities Engineering Research Center of Integrated Circuits Functional Materials and Expanded Applications, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China. .,Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Meijing Liao
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Bing Zhao
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Qianni Li
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Bin Liu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Yuexing Zhang
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, Shandong Universities Engineering Research Center of Integrated Circuits Functional Materials and Expanded Applications, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China. .,Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| |
Collapse
|
31
|
Tai Y, Sun J, Tian H, Liu F, Han B, Fu W, Liu Z, Yang X, Liu Q. Efficient degradation of organic pollutants by S-NaTaO 3/biochar under visible light and the photocatalytic performance of a permonosulfate-based dual-effect catalytic system. J Environ Sci (China) 2023; 125:388-400. [PMID: 36375924 DOI: 10.1016/j.jes.2022.01.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 06/16/2023]
Abstract
Removing large concentrations of organic pollutants from water efficiently and quickly under visible light is essential to developing photocatalytic technology and improving solar energy efficiency. This study used a simple hydrothermal method to prepare a non-metallic, S-doped NaTaO3 (S-NTO) photocatalyst, which was then loaded onto biochar (BC) to form a S-NTO/BC composite photocatalyst. After uniform loading onto BC, the S-NTO particles transformed from cubic to spherical. The photogenerated electron-hole pair recombination probability of the composite photocatalyst was significantly lower than those of the NTO particles. The light absorption range of the catalyst was effectively widened from 310 nm UV region to visible region. In addition, a dual-effect catalytic system was constructed by introducing peroxymonosulfate (PMS) into the environment of the pollution to be degraded. The Rhodamine B, Methyl Orange, Acid Orange 7, tetracycline, and ciprofloxacin degradation efficiency at 40 mg/L reached 99.6%, 99.2%, 84.5%, 67.1%, and 70.7%, respectively, after irradiation by a 40 W lamps for 90 min. The high-efficiency visible-light catalytic activity of the dual-effect catalytic system was attributed to doping with non-metallic sulfur and loading of catalysts onto BC. The development of this dual-effect catalytic system provides new ideas for quickly and efficiently solving the problem of high-concentration organic pollution in aqueous environments, rationally and fully utilizing solar energy, and expanding the application of photocatalytic technology to practice.
Collapse
Affiliation(s)
- Yuehui Tai
- The School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Jinlong Sun
- China National Offshore Oil Corporation, Centre Tech Tianjin Chemical Research and Design Institute Co., Ltd, Tianjin 300131, China
| | - Haoran Tian
- The School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Fuyue Liu
- The School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Boyu Han
- The School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Wei Fu
- The School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zhangpei Liu
- The School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Xiuye Yang
- The School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Qifeng Liu
- The School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Inner Mongolia Coal Chemical Wastewater Treatment and Resource Utilization Engineering Technology Research Center, Hohhot 010021, China.
| |
Collapse
|
32
|
Park YJ, Jeon YI, Yang IS, Choo H, Suh WS, Ju SY, Kim HS, Pan JH, Lee WI. Selective Control of Novel TiO 2 Nanorods: Excellent Building Blocks for the Electron Transport Layer of Mesoscopic Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9447-9456. [PMID: 36752619 DOI: 10.1021/acsami.2c21731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Novel TiO2 nanorods (NRs) with various lengths of 70-200 nm and uniform widths of 46-48 nm are selectively synthesized by a solvothermal reaction under a basic environment. The length of TiO2 NRs is reproducibly tuned by varying the concentration of tetramethylammonium hydroxide (TMAH), while the NRs in the pure anatase phase are grown in the [001] direction, caused by the preferential binding affinity of TMAH to the TiO2 (101) facet. TiO2 NRs of various lengths are then applied to form the electron transporting layer (ETL) of mesoscopic perovskite solar cells (PSCs). We found that PSC devices with NRs exhibit superior photovoltaic (PV) performance to those with conventional 46 nm-sized TiO2 nanoparticles (NP46). Particularly, the PSC with TiO2 NRs of 110 nm length (NR110) exhibits the optimum PV conversion efficiency (PCE): the average PCE is 22.64% with a VOC of 1.137 V, a JSC of 24.60 mA·cm-2, and a FF of 80.96%, while the champion PCE is 23.18%. In addition, the PSC with NR110 (PSC-NR110) reveals significantly improved long-term stability in air with a relative humidity of 40-50%. In 1000 h, its PCE is reduced by only 9% whereas that of PSC with NP46 decreases by 25%. The PSC properties analyzed by impedance spectroscopy and J-V curve measurements under dark conditions and at various light intensities provide evidence that PSC-NR110 has fewer defects and shows significantly reduced charge recombination. We discuss the advantages of NR structures in preparing the ETL of PSC devices and also explain why the charge recombination is suppressed.
Collapse
Affiliation(s)
- You Jin Park
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Korea
| | - Young In Jeon
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Korea
| | - In Seok Yang
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Korea
| | - Hyunsue Choo
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Korea
| | - Woo Seok Suh
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Korea
| | - So-Yeon Ju
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Korea
| | - Hui-Seon Kim
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Korea
| | - Jia Hong Pan
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Wan In Lee
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Korea
| |
Collapse
|
33
|
Tai Y, Han B, Liu Z, Yang X, Fu W, Gao R, Niu B, Liu X, Zhang Y, Liu Q. Novel core–shell heterojunction photocatalytic wire mesh for efficient ciprofloxacin degradation under visible light. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Fabrication and Photocatalytic Activity of Single Crystalline TiO2 Hierarchically Structured Microspheres. Catalysts 2023. [DOI: 10.3390/catal13010201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Single crystalline anatase TiO2 microspheres with co-exposed {001}/{101} facets were prepared by a facile one-pot hydrothermal method using NaF as a morphology controlling agent. The influences of the NaF amount on the morphology and also on the photocatalytic activity were investigated systematically. The obtained microspheres possessed better morphology when the concentration of NaF was chosen at 0.1 mol/L, and the experimental results indicated that the crystal structure and morphology played important roles on the photocatalytic activity, based on the experimental results it was found that the photocatalytic degradation efficiency of TiO2 microspheres on Tetracycline hydrochloride could reach 76.4% in 2 h. Finally, a growth mechanism was proposed by investigating the growth process, i.e., a synergistic effect of F ions modified Ostwald ripening and oriented attachment.
Collapse
|
35
|
Zhang P, Gu X, Qin N, Hu Y, Wang X, Zhang YN. Enhanced photoelectrocatalytic performance for degradation of dimethyl phthalate over well-designed 3D hierarchical TiO 2/Ti photoelectrode coupled dual heterojunctions. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129896. [PMID: 36096059 DOI: 10.1016/j.jhazmat.2022.129896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/16/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
A novel A/R-TiO2 NSs/NRs photoelectrode was constructed through electrodeposition of anatase TiO2 nanosheets (A-TiO2 NSs) with highly exposed {001} facet onto the 1D upright rutile TiO2 nanorods (R-TiO2 NRs). At first, A/R-TiO2 NSs/NRs exhibited enhanced adsorption of dimethyl phthalate (DMP) due to the specific recognition between Lewis acid sites of {001} facet and Lewis basic DMP. NH3-TPD and Py-IR revealed that the Lewis acidity on the {001} facet of A-TiO2 NSs was much stronger than that of R-TiO2 NRs, demonstrating superior adsorption capacity to DMP. DFT theoretical calculations coupled with in-situ ATR-FTIR spectra were performed to investigate the binding adsorption behavior of DMP on A/R-TiO2 NSs/NRs. Secondly, the rapid separation of excited charges and strong oxidation of h+ were achieved by the synergistic effect of dual heterojunctions (A/R "phase heterojunction" and {111}/{110} "facet heterojunction"). The A/R-TiO2 NSs/NRs exhibited 100% degradation efficiency for the target pollutant DMP within 3 h, whose rate constant (k) was 18.02 × 10-3 min-1, 2.16 times that of pure R-TiO2 NRs. In real wastewater application, A/R-TiO2 NSs/NRs achieved 93.8% elimination of DMP during 4 h and preserved excellent stability after 5 cycles, promising a wide-range of applications in water environment remediation.
Collapse
Affiliation(s)
- Pan Zhang
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, PR China
| | - Xiaotong Gu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, PR China
| | - Ning Qin
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, PR China; Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Yiqiong Hu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, PR China
| | - Xuejiang Wang
- College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| | - Ya-Nan Zhang
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, PR China.
| |
Collapse
|
36
|
Gys N, An R, Pawlak B, Vogelsang D, Wyns K, Baert K, Vansant A, Blockhuys F, Adriaensens P, Hauffman T, Michielsen B, Mullens S, Meynen V. Amino-Alkylphosphonate-Grafted TiO 2: How the Alkyl Chain Length Impacts the Surface Properties and the Adsorption Efficiency for Pd. ACS OMEGA 2022; 7:45409-45421. [PMID: 36530305 PMCID: PMC9753204 DOI: 10.1021/acsomega.2c06020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Amino-alkylphosphonic acid-grafted TiO2 materials are of increasing interest in a variety of applications such as metal sorption, heterogeneous catalysis, CO2 capture, and enzyme immobilization. To date, systematic insights into the synthesis-properties-performance correlation are missing for such materials, albeit giving important know-how towards their applicability and limitations. In this work, the impact of the chain length and modification conditions (concentration and temperature) of amino-alkylphosphonic acid-grafted TiO2 on the surface properties and adsorption performance of palladium is studied. Via grafting with aminomethyl-, 3-aminopropyl-, and 6-aminohexylphosphonic acid, combined with the spectroscopic techniques (DRIFT, 31P NMR, XPS) and zeta potential measurements, differences in surface properties between the C1, C3, and C6 chains are revealed. The modification degree decreases with increasing chain length under the same synthesis conditions, indicative of folded grafted groups that sterically shield an increasing area of binding sites with increasing chain length. Next, all techniques confirm the different surface interactions of a C1 chain compared to a C3 or C6 chain. This is in line with palladium adsorption experiments, where only for a C1 chain, the adsorption efficiency is affected by the precursor concentration used for modification. The absence of a straightforward correlation between the number of free NH2 groups and the adsorption capacity for the different chain lengths indicates that other chain-length-specific surface interactions are controlling the adsorption performance. The increasing pH stability in the order of C1 < C3 < C6 can possibly be associated to a higher fraction of inaccessible hydrophilic sites due to the presence of folded structures. Lastly, the comparison of adsorption performance and pH stability with 3-aminopropyl(triethoxysilane)-grafted TiO2 reveals the applicability of both grafting methods depending on the envisaged pH during sorption.
Collapse
Affiliation(s)
- Nick Gys
- Sustainable
Materials, Flemish Institute for Technological
Research (VITO NV), Boeretang
200, 2400Mol, Belgium
- Laboratory
of Adsorption and Catalysis (LADCA), Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610Wilrijk, Belgium
| | - Rui An
- Laboratory
of Adsorption and Catalysis (LADCA), Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610Wilrijk, Belgium
| | - Bram Pawlak
- Analytical
and Circular Chemistry (ACC), Institute for Materials Research (IMO), Hasselt University, Agoralaan 1, 3590Diepenbeek, Belgium
| | - David Vogelsang
- Sustainable
Materials, Flemish Institute for Technological
Research (VITO NV), Boeretang
200, 2400Mol, Belgium
| | - Kenny Wyns
- Sustainable
Materials, Flemish Institute for Technological
Research (VITO NV), Boeretang
200, 2400Mol, Belgium
| | - Kitty Baert
- Research
Group Electrochemical and Surface Engineering (SURF), Department Materials
and Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050Brussels, Belgium
| | - Alexander Vansant
- Sustainable
Materials, Flemish Institute for Technological
Research (VITO NV), Boeretang
200, 2400Mol, Belgium
| | - Frank Blockhuys
- Structural
Chemistry Group, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020Antwerp, Belgium
| | - Peter Adriaensens
- Analytical
and Circular Chemistry (ACC), Institute for Materials Research (IMO), Hasselt University, Agoralaan 1, 3590Diepenbeek, Belgium
| | - Tom Hauffman
- Research
Group Electrochemical and Surface Engineering (SURF), Department Materials
and Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050Brussels, Belgium
| | - Bart Michielsen
- Sustainable
Materials, Flemish Institute for Technological
Research (VITO NV), Boeretang
200, 2400Mol, Belgium
| | - Steven Mullens
- Sustainable
Materials, Flemish Institute for Technological
Research (VITO NV), Boeretang
200, 2400Mol, Belgium
| | - Vera Meynen
- Sustainable
Materials, Flemish Institute for Technological
Research (VITO NV), Boeretang
200, 2400Mol, Belgium
- Laboratory
of Adsorption and Catalysis (LADCA), Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610Wilrijk, Belgium
| |
Collapse
|
37
|
Weon S. Photocatalytic Oxidation of Carbon Monoxide Using Synergy of Redox-Separated Photocatalyst and Ozone. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238482. [PMID: 36500569 PMCID: PMC9738433 DOI: 10.3390/molecules27238482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022]
Abstract
Separating the redox centers of photocatalysts is the most promising strategy to enhance photocatalytic oxidation efficiency. Herein, I investigate a site-selective loading of Pt on facet-engineered TiO2 to achieve carbon monoxide (CO) oxidation at room temperature. Spatially loaded Pt on {101} facets of TiO2 attracts photoinduced electrons efficiently. Thereby, oxygen dissociation is facilitated on the Pt surface, which is confirmed by enhanced oxidation of CO by 2.4 times compared to the benchmark of Pt/TiO2. The remaining holes on TiO2 can be utilized for the oxidation of various gaseous pollutants. Specifically, gaseous ozone, which is present in indoor and ambient air, is converted to a hydroxyl radical by reacting with the hole; thus, the poisoned Pt surface is continuously cleaned during the CO oxidation, as confirmed by in situ diffuse reflectance infrared transform spectroscopy. While randomly loaded Pt can act as recombination center, reducing photocatalytic activity, redox-separated photocatalyst enhances charge separation, boosting CO oxidation and catalyst regeneration via simultaneous ozone decomposition.
Collapse
Affiliation(s)
- Seunghyun Weon
- School of Health and Environmental Science, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
38
|
Liu X, Zhang X, Chen W. Pd Nanoparticles Supported on N-Doped TiO 2 Nanosheets: Crystal Facets, Defective Sites, and Metal-Support Interactions Boost Reforming of Formaldehyde Solution for Hydrogen Production. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13532-13542. [PMID: 36300888 DOI: 10.1021/acs.langmuir.2c02111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
To produce H2 from formaldehyde (HCHO), dehydrogenation offers an alternative approach to future hydrogen-based energy sources, but the unsatisfactory efficiency hinders its practical application. Here, ultrafine Pd nanoparticle (NP) decorated N-doped TiO2 nanosheets exposed with (001) facet catalysts (denoted as Pd/TiO2-x) have been prepared and exhibit superior H2 production performance from alkaline HCHO aqueous solution. Under our current conditions, the Pd/TiO2-x catalyst with a Pd loading of 1 wt % exhibits a H2 production rate of 183.77 mL/min/g, which is 1.75 and 3.66 times that of Pd/TiO2 and Pd NPs, respectively. Based on the results of Fourier transform infrared spectroscopy (FTIR), Raman, and liquid-phase electron paramagnetic resonance (EPR) spin-trapping experiments, the excellent H2 generation of Pd/TiO2-x can be attributed to the synergistic contribution among the reactive crystal facets, defective sites, and metal-support interactions in boosting the breakage of C-H bonds in HCHO, dissociation of H2O, and ultimately the formation of H2. This work is expected to provide a paradigm of an efficient catalyst to produce H2 from HCHO/H2O solution.
Collapse
Affiliation(s)
- Xiaogang Liu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan464000, China
- Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang, Henan464000, China
- Xinyang Key Laboratory of Low-Carbon Energy Materials, Xinyang Normal University, Xinyang464000, China
| | - Xin Zhang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan464000, China
| | - Wenjie Chen
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan464000, China
| |
Collapse
|
39
|
Liu C, Zuo J, Su X, Guo H, Pei Y, Zhang J, Chen S. Nanoetching TiO 2 nanorod photoanodes to induce high-energy facet exposure for enhanced photoelectrochemical performance. NANOSCALE 2022; 14:15918-15927. [PMID: 36268828 DOI: 10.1039/d2nr04031j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Crystal facet engineering is considered as an effective way to improve photoelectrochemical (PEC) performance. Here, we have developed a nanoetching technology (TiO2 → TiO2/Bi4Ti3O12 → TiO2/BiVO4 → etching-TiO2) to treat rutile TiO2 nanorod films. Interestingly, the technology can induce the exposure of a large number of high energy (101) faces, and the etching-TiO2 film (E-TiO2) showed a significantly enhanced PEC performance. A dynamic study indicates that charge separation and transfer have been obviously improved by such a nanoetching technology. In particular, the charge transfer efficiency (ηtrans) of E-TiO2 reaches 93.4% at 1.23 V vs. RHE without any loaded cocatalyst. The mechanism of PEC performance enhanced by the strategy is experimentally and theoretically unraveled. The improvement of PEC performance is mainly attributed to the shorter distance between H and the neighboring O-b for the HO* intermediates of the rutile (101) facet, which can reduce the energy barrier for the OER. Besides, the driving force for spatial charge separation between the (110) and (101) facets can promote charge separation. This work offers a new and versatile nanotechnology to induce the exposure of the high energy crystal facets and improve the PEC performance.
Collapse
Affiliation(s)
- Canjun Liu
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China.
- School of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Jian Zuo
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China.
| | - Xin Su
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China.
| | - Huili Guo
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China.
| | - Yong Pei
- School of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Jie Zhang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China.
| | - Shu Chen
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China.
| |
Collapse
|
40
|
Progress and challenges in full spectrum photocatalysts: Mechanism and photocatalytic applications. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Perota G, Zahraie N, Vais RD, Zare M, Sattarahmady N. Au/TiO2 nanocomposite as a triple-sensitizer for 808 and 650 nm phototherapy and sonotherapy: Synergistic therapy of melanoma cancer in vitro. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
42
|
Xi J, Zhang X, Zhou X, Wu X, Wang S, Yu W, Yan N, Loh KP, Xu QH. Titanium dioxide hierarchical microspheres decorated with atomically dispersed platinum as an efficient photocatalyst for hydrogen evolution. J Colloid Interface Sci 2022; 623:799-807. [DOI: 10.1016/j.jcis.2022.05.108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/17/2022]
|
43
|
Gao C, Wang D, Liu Y, Zhang G, Liu C, Said A, Niu H, Wang G, Tung CH, Wang Y. New picolinate-functionalized titanium-oxide clusters: syntheses, structures and photocatalytic H 2 evolution. Dalton Trans 2022; 51:15385-15392. [PMID: 36149342 DOI: 10.1039/d2dt01882a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two nanosized titanium-oxide clusters (TOCs), Ti12(μ2-O)14(μ3-O)4PA16 (1; PA = 2-picolinate) and Ti12(μ2-O)18PA18 (2) were synthesized by using 2-picolinic acid and Ti(OiPr)4 in one-pot reactions. Their structures were determined using single-crystal X-ray diffractometry. Although both have the same core composition of Ti12O18, 1 exhibited superior H2 evolution activity of up to 180 μmol h-1 g-1, which is nearly eight times faster than 2. Mechanism studies revealed that 1 could induce the assembly of 2.3 nm PtNPs into 10-30 nm supra-nanoparticle structures, which contributed to the increased H2 evolution rate.
Collapse
Affiliation(s)
- Chang Gao
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Dexin Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Yanshu Liu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Guanyun Zhang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Caiyun Liu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Amir Said
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Huihui Niu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Guo Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Chen-Ho Tung
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Yifeng Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China. .,State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
44
|
Jiang W, Ni C, Zhang L, Shi M, Qu J, Zhou H, Zhang C, Chen R, Wang X, Li C, Li R. Tuning the Anisotropic Facet of Lead Chromate Photocatalysts to Promote Spatial Charge Separation. Angew Chem Int Ed Engl 2022; 61:e202207161. [DOI: 10.1002/anie.202207161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 02/05/2023]
Affiliation(s)
- Wenchao Jiang
- School of Chemistry and Materials Science University of Science and Technology of China Hefei 230026 China
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Chenwei Ni
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Lingcong Zhang
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Ming Shi
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Jiangshan Qu
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Hongpeng Zhou
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Chengbo Zhang
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Ruotian Chen
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Xiuli Wang
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Can Li
- School of Chemistry and Materials Science University of Science and Technology of China Hefei 230026 China
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Rengui Li
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
45
|
Qu J, Wang Y, Mu X, Hu J, Zeng B, Lu Y, Sui M, Li R, Li C. Determination of Crystallographic Orientation and Exposed Facets of Titanium Oxide Nanocrystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203320. [PMID: 35916758 DOI: 10.1002/adma.202203320] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Titanium dioxide (TiO2 ) nanocrystals have attracted great attention in heterogeneous photocatalysis and photoelectricity fields for decades. However, contradicting conclusions on the crystallographic orientation and exposed facets of TiO2 nanocrystals frequently appear in the literature. Herein, using anatase TiO2 nanocrystals with highly exposed {001} facets as a model, the misleading conclusions that exist on anatase nanocrystals are clarified. Although TiO2 -001 nanocrystals are recognized to be dominated by {001} facets, in fact, anatase nanocrystals with both dominant {001} and {111} facets always co-exist due to the similarities in the lattice fringes and intersection angles between the two types of facets (0.38 nm and 90° in the [001] direction, 0.35 nm and 82° in the [111] direction). A paradigm for determining the crystallographic orientation and exposed facets based on transmission electron microscopy (TEM) analysis, which provides a universal methodology to nanomaterials for determining the orientation and exposed facets, is also given.
Collapse
Affiliation(s)
- Jiangshan Qu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yueshuai Wang
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Xulin Mu
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Jingcong Hu
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Bin Zeng
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yue Lu
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Manling Sui
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Rengui Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
46
|
Díaz-Sánchez M, Hernández-Benítez I, Díaz-García D, Prashar S, Gómez-Ruiz S. Nanohybrids based on F-doped titanium dioxides and carbon species with enhanced dual adsorption-photodegradation activity for water decontamination. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
47
|
Li L, Xia Y, Zeng M, Fu L. Facet engineering of ultrathin two-dimensional materials. Chem Soc Rev 2022; 51:7327-7343. [PMID: 35924550 DOI: 10.1039/d2cs00067a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ultrathin two-dimensional (2D) materials exhibit broad application prospects in many fields due to the enhanced specific surface area to volume ratio and quantum confinement effect. Because of the atomic thickness and various orientations, ultrathin 2D materials exposing specific facets have drawn great attention for various applications in catalysis, batteries, optoelectronics, magnetism, epitaxial template for material growth, etc. Though maintaining the atomic thickness of 2D materials while controlling crystal facets is an enormous challenge, breakthroughs are being made. This review provides a comprehensive overview of the recent advances in the facet engineering of 2D materials, ranging from a basic understanding of facets and the corresponding approaches and the significance of facet engineering. We also propose current challenges and forecast future development directions including the establishment of a facet database, the fabrication of new 2D materials, the design of specific substrates, and the introduction of theoretical calculations and in situ characterization techniques. This review can guide researchers to design ultrathin 2D materials with unique and distinct facets and provide an insight into the applications of energy, magnetism, optics, biomedicine, and other fields.
Collapse
Affiliation(s)
- Linyang Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Yabei Xia
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Mengqi Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Lei Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China. .,The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, China.
| |
Collapse
|
48
|
Yuniar G, Saputera WH, Sasongko D, Mukti RR, Rizkiana J, Devianto H. Recent Advances in Photocatalytic Oxidation of Methane to Methanol. Molecules 2022; 27:molecules27175496. [PMID: 36080265 PMCID: PMC9457830 DOI: 10.3390/molecules27175496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/28/2022] Open
Abstract
Methane is one of the promising alternatives to non-renewable petroleum resources since it can be transformed into added-value hydrocarbon feedstocks through suitable reactions. The conversion of methane to methanol with a higher chemical value has recently attracted much attention. The selective oxidation of methane to methanol is often considered a “holy grail” reaction in catalysis. However, methanol production through the thermal catalytic process is thermodynamically and economically unfavorable due to its high energy consumption, low catalyst stability, and complex reactor maintenance. Photocatalytic technology offers great potential to carry out unfavorable reactions under mild conditions. Many in-depth studies have been carried out on the photocatalytic conversion of methane to methanol. This review will comprehensively provide recent progress in the photocatalytic oxidation of methane to methanol based on materials and engineering perspectives. Several aspects are considered, such as the type of semiconductor-based photocatalyst (tungsten, titania, zinc, etc.), structure modification of photocatalyst (doping, heterojunction, surface modification, crystal facet re-arrangement, and electron scavenger), factors affecting the reaction process (physiochemical characteristic of photocatalyst, operational condition, and reactor configuration), and briefly proposed reaction mechanism. Analysis of existing challenges and recommendations for the future development of photocatalytic technology for methane to methanol conversion is also highlighted.
Collapse
Affiliation(s)
- Gita Yuniar
- Research Group on Energy and Chemical Engineering Processing System, Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
| | - Wibawa Hendra Saputera
- Research Group on Energy and Chemical Engineering Processing System, Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
- Center for Catalysis and Reaction Engineering, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
- Research Center for New and Renewable Energy, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
- Correspondence: ; Tel.: +62-821-1768-6235
| | - Dwiwahju Sasongko
- Research Group on Energy and Chemical Engineering Processing System, Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
- Research Center for New and Renewable Energy, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
| | - Rino R. Mukti
- Center for Catalysis and Reaction Engineering, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
- Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
- Research Center for Nanoscience and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
| | - Jenny Rizkiana
- Research Group on Energy and Chemical Engineering Processing System, Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
- Center for Catalysis and Reaction Engineering, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
| | - Hary Devianto
- Research Group on Energy and Chemical Engineering Processing System, Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
- Research Center for New and Renewable Energy, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
| |
Collapse
|
49
|
Wang Y, Zeng C, Liu Y, Yang D, Zhang Y, Ren Z, Li Q, Hao J, Hu W, Wu Y, Yang R. Constructing Heterogeneous Photocatalysts Based on Carbon Nitride Nanosheets and Graphene Quantum Dots for Highly Efficient Photocatalytic Hydrogen Generation. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15155390. [PMID: 35955325 PMCID: PMC9369747 DOI: 10.3390/ma15155390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/24/2022] [Accepted: 08/03/2022] [Indexed: 05/14/2023]
Abstract
Although graphitic carbon nitride nanosheets (CNs) with atomic thickness are considered as promising materials for hydrogen production, the wide band gap (3.06 eV) and rapid recombination of the photogenerated electron-hole pairs impede their applications. To address the above challenges, we synergized atomically thin CNs and graphene quantum dots (GQDs), which were fabricated as 2D/0D Van der Waals heterojunctions, for H2 generation in this study. The experimental characterizations indicated that the addition of GQDs to the π-conjugated system of CNs can expand the visible light absorption band. Additionally, the surface photovoltage spectroscopy (SPV) confirmed that introducing GQDs into CNs can facilitate the transport of photoinduced carriers in the melon chain, thus suppressing the recombination of charge carriers in body. As a result, the H2 production activity of the Van der Waals heterojunctions was 9.62 times higher than CNs. This study provides an effective strategy for designing metal-free Van der Waals hetero-structured photocatalysts with high photocatalytic activity.
Collapse
Affiliation(s)
- Yong Wang
- Academy of Advanced Interdisciplinary Research, School of Advanced Materials and Nanotechnology, Xidian University, Xi’an 710126, China
| | - Chengxin Zeng
- Academy of Advanced Interdisciplinary Research, School of Advanced Materials and Nanotechnology, Xidian University, Xi’an 710126, China
| | - Yichen Liu
- Academy of Advanced Interdisciplinary Research, School of Advanced Materials and Nanotechnology, Xidian University, Xi’an 710126, China
| | - Dingyi Yang
- Academy of Advanced Interdisciplinary Research, School of Advanced Materials and Nanotechnology, Xidian University, Xi’an 710126, China
| | - Yu Zhang
- Department of Physics, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Zewei Ren
- Academy of Advanced Interdisciplinary Research, School of Advanced Materials and Nanotechnology, Xidian University, Xi’an 710126, China
| | - Qikun Li
- Academy of Advanced Interdisciplinary Research, School of Advanced Materials and Nanotechnology, Xidian University, Xi’an 710126, China
| | - Jian Hao
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Wen Hu
- Academy of Advanced Interdisciplinary Research, School of Advanced Materials and Nanotechnology, Xidian University, Xi’an 710126, China
- Correspondence: (W.H.); (Y.W.); (R.Y.)
| | - Yizhang Wu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210093, China
- Correspondence: (W.H.); (Y.W.); (R.Y.)
| | - Rusen Yang
- Academy of Advanced Interdisciplinary Research, School of Advanced Materials and Nanotechnology, Xidian University, Xi’an 710126, China
- Correspondence: (W.H.); (Y.W.); (R.Y.)
| |
Collapse
|
50
|
Lian X, Duan H, Zeng W, Yu B, Guo W, Lou Q. Kinetics investigation of the oxygen evolution reaction on the characteristic facets of γ-Cu3V2O8. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|