1
|
Wang CS, Chen JH, Zhang PK, Yuan C, Yu SY, Zhao WW, Xu JJ. 3D Z-scheme conjugated polymer/Cu 2O for organic photoelectrochemical transistor bioassay. Biosens Bioelectron 2025; 268:116877. [PMID: 39481299 DOI: 10.1016/j.bios.2024.116877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/29/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024]
Abstract
Organic photoelectrochemical transistor (OPECT) is an emerging technology studying photo-electric-biological recognition events. Here, this work reports the three-dimensional (3D) Z-scheme poly (1,4-diethynylbenzene) (pDEB)@Cu2O heterojunction as a high-efficacy photogating module and its application for OPECT bioassay. Specifically, 3D Z-scheme pDEB@Cu2O heterojunction enabled fast charge transport and ion diffusion in the system, achieving remarkable amplification capability with a current gain as high as ca. 9.6 × 103. By linking with GOx-labeled sandwich immunorecognition, the impact of GOx-generated H2O2 on the OPECT made possible the sensitive bioassay. Exemplified by carcinoembryonic antigen (CEA) as the model target, the OPECT device achieved a linear detection range spanning from 100 fg/mL to 100 ng/mL and coupled with a detection limit as low as 72 fg/mL. This work provided a generic and extensible platform for the designation of novel bioassay systems.
Collapse
Affiliation(s)
- Cheng-Shuang Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China; School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Jia-Hao Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China; School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Pan-Ke Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Cheng Yuan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Si-Yuan Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
2
|
Cai T, Zhang W, Lian L, Sun Y, Xia Z, Chen Y, Shuai J, Lin P, Zhang Q, Liu S. Shadow Effect-Triggered Photosensitive Gate of Organic Photoelectrochemical Transistor for Enhanced Biodetection. Anal Chem 2025; 97:526-534. [PMID: 39723967 DOI: 10.1021/acs.analchem.4c04755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
The integration of a photosensitive gate into an organic electrochemical transistor has currently emerged as a promising route for biological sensing. However, the modification of the photosensitive gate always involves complex processes, and the degradation of sensitivity of the functional materials under illumination will significantly decrease the stability of the devices. Herein, we designed an organic photoelectrochemical transistor (OPECT) biosensor employing horseradish peroxidase (HRP)@glucose oxidase (GOx)/Pt/n-Si as the photosensitive gate based on the "shadow effect". The glucose-dependent hydrogen peroxide with HRP/GOx was modified on the gate electrode, triggering a biocatalytic precipitation reaction, which induces the illumination contrast, resulting in a biologically gating effect on the corresponding channel current response. Thus, high sensitivity and selectivity in glucose detection of the OPECT devices will be realized. Given the easy fabrication and high stability of the Pt/n-Si electrode, it has great potential to become a superior selectivity as an OPECT gate electrode. This work provides conceptual validation for the study of the interaction between the photosensitive gate based on the "shadow effect" and biomolecular sensing, which can further expand the application of the OPECT biosensors under interior lighting and shadow surroundings.
Collapse
Affiliation(s)
- Ting Cai
- School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China
| | - Wenran Zhang
- School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China
| | - Lizhen Lian
- Songshan Lake Materials Laboratory, Songshan Lake Mat Lab, Dongguan 523808, China
| | - Yali Sun
- School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China
| | - Zihao Xia
- School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China
| | - Yuxuan Chen
- School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China
| | - Jing Shuai
- School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China
| | - Peng Lin
- Shenzhen Key Laboratory of Special Functional Materials & Guangdong, Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qian Zhang
- School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China
| | - Shenghua Liu
- School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China
| |
Collapse
|
3
|
Jin Y, Chen Y, Li X, Han S, Mou L, Li N. Enhanced detection of Cystatin C for predicting adverse outcomes in gestational diabetes mellitus using a point-of-care immunosensor. Bioelectrochemistry 2025; 163:108907. [PMID: 39823996 DOI: 10.1016/j.bioelechem.2025.108907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/08/2024] [Accepted: 01/11/2025] [Indexed: 01/20/2025]
Abstract
Cystatin C (Cys-C) is emerging as a critical biomarker for assess gestational diabetes mellitus (GDM), a condition that significantly impacts maternal and fetal health. In this study, we developed a novel label-free electrochemical immunosensor designed for point-of-care applications, offering lower reagent consumption and rapid detection of Cys-C in pregnant women with GDM. Compared to traditional enzyme-linked immunosorbent assays (ELISA), the sensor demonstrates enhanced sensitivity, reduced reagent usage, and faster detection. In a cohort study involving 150 pregnant women with GDM and 150 healthy controls, serum Cys-C levels were analyzed using the developed sensor. Serum samples were collected and analyzed for Cys-C levels using our immunosensor. Serum Cys-C levels were significantly elevated in GDM patients compared to controls (P < 0.05), and higher levels were observed in GDM complicated by pregnancy-induced hypertension (PIH) and fetal growth restriction (FGR). Furthermore, elevated Cys-C levels were positively correlated with adverse pregnancy outcomes, including premature birth, fetal distress, and cesarean section (P < 0.05). This study underscores the potential of Cys-C as a reliable biomarker for GDM and highlights the advantages of our novel sensor for quick, accurate, and scalable GDM diagnosis and management.
Collapse
Affiliation(s)
- Ya Jin
- Tongzhou Maternal & Child Health Hospital of Beijing, No. 124, Yuqiao Middle Road, Tongzhou District, Beijing 101101 PR China
| | - Yongmei Chen
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University; School of Biomedical Engineering, Guangzhou Medical University, Yanjiang Road, Yuexiu District, Guangzhou, Guangdong 510120, PR China
| | - Xiaoqin Li
- Tongzhou Maternal & Child Health Hospital of Beijing, No. 124, Yuqiao Middle Road, Tongzhou District, Beijing 101101 PR China
| | - Songjun Han
- Tongzhou Maternal & Child Health Hospital of Beijing, No. 124, Yuqiao Middle Road, Tongzhou District, Beijing 101101 PR China
| | - Lei Mou
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University; School of Biomedical Engineering, Guangzhou Medical University, Yanjiang Road, Yuexiu District, Guangzhou, Guangdong 510120, PR China.
| | - Nan Li
- Tongzhou Maternal & Child Health Hospital of Beijing, No. 124, Yuqiao Middle Road, Tongzhou District, Beijing 101101 PR China.
| |
Collapse
|
4
|
Hao Y, Yang Y, Wang W, Gu H, Chen W, Li C, Zhang P, Zeng R, Xu M, Chen S. Development of a Photoelectrochemical Microelectrode Using an Organic Probe for Monitoring Hydrogen Sulfide in Living Brains. Anal Chem 2024; 96:19822-19832. [PMID: 39576966 DOI: 10.1021/acs.analchem.4c05336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Hydrogen sulfide (H2S) is an important bioactive molecule that plays a significant role in various functions, particularly in the living brain, where it is closely linked to cognition, memory, and several neurological diseases. Consequently, developing effective detection methods for H2S is essential for studying brain functions and the underlying mechanisms of these diseases. This study aims to construct a novel photoelectrochemical (PEC) microelectrode Ti/TiO2@HSP for the quantitative monitoring of H2S levels in the living brain. The PEC microelectrode Ti/TiO2@HSP is formed by covalently bonding a specifically designed organic PEC probe HSP, which possesses a D-π-A structure, to the surface of TiO2 nanotubes generated via in situ anodic oxidation of titanium wire. The PEC probe HSP can effectively react with H2S and generate significant photocurrent response under long-wavelength excitation light (560 nm), thereby achieving quantitative detection of H2S. The sensor demonstrates high sensitivity and good selectivity. In vivo experiments utilizing the PEC microelectrode Ti/TiO2@HSP enable the monitoring of dynamic changes in H2S levels across various regions of the mouse brain. The findings reveal that in normal mice, the concentration of H2S in the hippocampus is significantly higher than in the striatum and cerebral cortex. Additionally, following propargylglycine drug stimulation, H2S concentrations in different brain regions were observed to decrease, with the most substantial reduction noted in the hippocampus. This suggests that cystathionine γ-lyase (CSE) is the primary enzyme responsible for H2S production in this area, while the striatum exhibits a less pronounced decrease in H2S concentration, indicating a reliance on alternative enzymatic pathways for H2S production. Therefore, this study not only successfully develops a high-performance H2S detection sensor but also provides new experimental tools and theoretical foundations for further exploring the roles of H2S in neurophysiological and pathological processes.
Collapse
Affiliation(s)
- Yuanqiang Hao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Yewen Yang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Wenhui Wang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Hui Gu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Wansong Chen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Chunlan Li
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, Henan Province 476000, China
| | - Peisheng Zhang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Rongjin Zeng
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, Henan Province 476000, China
| | - Shu Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| |
Collapse
|
5
|
Wu H, Yang X. Biofunctional photoelectrochemical/electrochemical immunosensor based on BiVO 4/BiOI-MWCNTs and Au@PdPt for alpha-fetoprotein detection. Bioelectrochemistry 2024; 160:108773. [PMID: 38972159 DOI: 10.1016/j.bioelechem.2024.108773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/13/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
A biofunctional immunosensor combining photoelectrochemical (PEC) and electrochemical (EC) was proposed for the quantitative detection of the liver cancer marker alpha-fetoprotein (AFP) in human blood. BiVO4/BiOI-MWCNTs photoactive materials were first prepared on conductive glass FTO, and the photoelectrode was functionalized by chitosan and glutaraldehyde. Then, the AFP capture antibody (Ab1) was successfully modified on the photoelectrode, and the label-free rapid detection of AFP antigen was achieved by PEC. In addition, Au@PdPt nanospheres were also used as a marker for binding to AFP detection antibody (Ab2). Due to the excellent catalytic properties of Au@PdPt in EC reaction, a signal increase in the EC response can be achieved when Ab2 binds to the AFP antigen, which ensures high sensitivity for the detection of AFP. The detection limits of PEC and EC are 0.050 pg/mL and 0.014 pg/mL, respectively. The sensor also possesses good specificity, stability and reproducibility, shows excellent performance in the detection of clinical samples and has good clinical applicability.
Collapse
Affiliation(s)
- Haotian Wu
- Department of Physics and Energy, Chongqing University of Technology, Chongqing 400054, China
| | - Xiaozhan Yang
- Department of Physics and Energy, Chongqing University of Technology, Chongqing 400054, China; Chongqing Key Laboratory of Quantum Information Chips and Devices, Chongqing 400060, China.
| |
Collapse
|
6
|
Kousar MU, Yaseen M, Yousouf M, Malik MA, Mushtaq A, Mukhtar T, Javaid R, Aijaz A, Jabeen A, Amin T. Aflatoxins in cereal based products-an overview of occurrence, detection and health implication. Toxicon 2024; 251:108148. [PMID: 39454764 DOI: 10.1016/j.toxicon.2024.108148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/12/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
Aflatoxins are naturally produced toxins by specific molds, namely Aspergillus flavus and Aspergillus parasiticus. These toxins can be found in various agricultural products, including crops like maize, peanuts, cottonseed, and tree nuts. They have the potential to contaminate the food supply during different stages of production, processing, and storage. Aflatoxin is a very poisonous substance that has been linked to adverse health effects in both humans and animals. It is essential to detect and monitor aflatoxins to ensure the safety of food. Efficient and precise analytical techniques, such as chromatography and immunoassays, have been used to accurately measure the levels of aflatoxins in different substances. Regulatory bodies and worldwide associations have determined maximum permissible limits for aflatoxins in food and nourishment products to protect the well-being of the general public. Effectively addressing aflatoxin contamination necessitates a comprehensive approach that encompasses various strategies in agriculture, post-harvest practices, and regulatory measures. Continuous research and collaborative endeavors are crucial in order to minimize aflatoxin exposure and mitigate the associated risks. This review offers a comprehensive examination of the presence, health consequences, and elimination techniques associated with aflatoxins.
Collapse
Affiliation(s)
- Mumtahin-Ul Kousar
- Division of Food Science and Technology, Faculty of Horticulture, Sher-e- Kashmir University of Science and Technology, Shalimar, Srinagar, J&K, 190025, India
| | - Mifftha Yaseen
- Division of Food Science and Technology, Faculty of Horticulture, Sher-e- Kashmir University of Science and Technology, Shalimar, Srinagar, J&K, 190025, India
| | - Monisa Yousouf
- Division of Food Science and Technology, Faculty of Horticulture, Sher-e- Kashmir University of Science and Technology, Shalimar, Srinagar, J&K, 190025, India
| | - Mudasir Ahmad Malik
- Department of Food Engineering and Technology, Ghani Khan Choudhury Institute of Engineering and Technology Malda, WB, 732141, India.
| | - Aarizoo Mushtaq
- Division of Food Science and Technology, Faculty of Horticulture, Sher-e- Kashmir University of Science and Technology, Shalimar, Srinagar, J&K, 190025, India
| | - Taha Mukhtar
- Division of Food Science and Technology, Faculty of Horticulture, Sher-e- Kashmir University of Science and Technology, Shalimar, Srinagar, J&K, 190025, India
| | - Rifat Javaid
- Division of Food Science and Technology, Faculty of Horticulture, Sher-e- Kashmir University of Science and Technology, Shalimar, Srinagar, J&K, 190025, India
| | - Anam Aijaz
- Division of Food Science and Technology, Faculty of Horticulture, Sher-e- Kashmir University of Science and Technology, Shalimar, Srinagar, J&K, 190025, India
| | - Abida Jabeen
- Division of Food Science and Technology, Faculty of Horticulture, Sher-e- Kashmir University of Science and Technology, Shalimar, Srinagar, J&K, 190025, India.
| | - Tawheed Amin
- Division of Food Science and Technology, Faculty of Horticulture, Sher-e- Kashmir University of Science and Technology, Shalimar, Srinagar, J&K, 190025, India
| |
Collapse
|
7
|
Chu M, Zhang Y, Ji C, Zhang Y, Yuan Q, Tan J. DNA Nanomaterial-Based Electrochemical Biosensors for Clinical Diagnosis. ACS NANO 2024; 18:31713-31736. [PMID: 39509537 DOI: 10.1021/acsnano.4c11857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Sensitive and quantitative detection of chemical and biological molecules for screening, diagnosis and monitoring diseases is essential to treatment planning and response monitoring. Electrochemical biosensors are fast, sensitive, and easy to miniaturize, which has led to rapid development in clinical diagnosis. Benefiting from their excellent molecular recognition ability and high programmability, DNA nanomaterials could overcome the Debye length of electrochemical biosensors by simple molecular design and are well suited as recognition elements for electrochemical biosensors. Therefore, to enhance the sensitivity and specificity of electrochemical biosensors, significant progress has been made in recent years by optimizing the DNA nanomaterials design. Here, the establishment of electrochemical sensing strategies based on DNA nanomaterials is reviewed in detail. First, the structural design of DNA nanomaterial is examined to enhance the sensitivity of electrochemical biosensors by improving recognition and overcoming Debye length. In addition, the strategies of electrical signal transduction and signal amplification based on DNA nanomaterials are reviewed, and the applications of DNA nanomaterial-based electrochemical biosensors and integrated devices in clinical diagnosis are further summarized. Finally, the main opportunities and challenges of DNA nanomaterial-based electrochemical biosensors in detecting disease biomarkers are presented in an aim to guide the design of DNA nanomaterial-based electrochemical devices with high sensitivity and specificity.
Collapse
Affiliation(s)
- Mengge Chu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yawen Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Cailing Ji
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yun Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jie Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
8
|
Wang X, Zang X, Deng L, Tan F, Liu X, Zhang Z, Cui B, Fang Y. Molecularly imprinted Photoelectrochemical sensor for Escherichia coli based on Cu:ZIF-8/KZ3TTz heterojunction. Food Chem 2024; 458:140495. [PMID: 39053393 DOI: 10.1016/j.foodchem.2024.140495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Herein, a signal stable molecularly imprinted photoelectrochemical (MIP-PEC) sensing platform was designed to sensitively detect Escherichia coli by incorporating polythiophene film with Cu: ZIF-8/KZ3TTz heterojunction. Attributed to the formation of a staggered type II heterostructure between KZ3TTz and Cu: ZIF-8 semiconductors, the Cu: ZIF-8/KZ3TTz heterojunction exhibited stable and significant cathode PEC response. Impressively, selective MIP film was grown on the surface of Cu: ZIF-8/KZ3TTz/GCE by electro-polymerization of 2,2-Dimethyl-5-(3-thienyl)-1,3-dioxane-4,6-dione (DTDD) in the presence of E. coli. After removing E. coli, more electrons were transferred to the electrolyte solution through the imprinting cavity on the MIP film, which was eliminated by O2 in the electrolyte, causing further enhancement of the cathode PEC response. On the contrary, when the imprinted cavity was filled with E. coli, the cathodic PEC response gradually decreased due to steric hindrance effect. The sensor showed excellent linearity in the range of 101 to 108 CFU/mL with a detection limit of 4.09 CFU/mL (S/N = 3). This strategy offered a novel approach for pathogenic bacteria detection in food safety and environmental monitoring.
Collapse
Affiliation(s)
- Xiaoqing Wang
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xufeng Zang
- Huzhou Key Laboratory of Materials for Energy Conversion and Storage, School of Science, Huzhou University, Zhejiang, Huzhou 313000, China
| | - Laiyi Deng
- Shandong Lurun ass hide glue Pharmaceutical Co., Ltd, Juye, Heze, 274900, China
| | - Fei Tan
- Shandong Xuanhong Biopharmaceutical Co., Ltd, Ji-nan, 250353, China
| | - Xingbo Liu
- Shandong Xuanhong Biopharmaceutical Co., Ltd, Ji-nan, 250353, China
| | - Zhiguo Zhang
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Bo Cui
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yishan Fang
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| |
Collapse
|
9
|
Zhang S, Sun J, Ju H. Z-Scheme Heterojunction of Hierarchical Cu 2S/CdIn 2S 4 Hollow Cubes to Boost Photoelectrochemical Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405712. [PMID: 39162109 DOI: 10.1002/smll.202405712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/10/2024] [Indexed: 08/21/2024]
Abstract
The exaltation of light-harvesting efficiency and the inhibition of fast charge recombination are pivotal to the improvement of photoelectrochemical (PEC) performance. Herein, a direct Z-scheme heterojunction is designed of Cu2S/CdIn2S4 by in situ growth of CdIn2S4 nanosheets on the surface of hollow CuS cubes and then annealing at 400 °C. The constructed Z-scheme heterojunction is demonstrated with electron paramagnetic resonance and redox couple (p-nitrophenol/p-aminophenol) measurements. Under illumination, it shows the photocurrent 6 times larger than that of hollow Cu2S cubes, and affords outstanding PEC performance over the known Cu2S and CdIn2S4-based photocatalysts. X-ray photoelectron spectroscopy and density functional theory results demonstrate a strong internal electric field formed in Cu2S/CdIn2S4 Z-scheme heterojunction, which accelerates the Z-scheme charge migration, thereby promoting electron-hole separation and enhancing their utilization efficiency. Moreover, the hollow structure of Cu2S is conducive to shortening the charge transport distance and improving light-harvesting capability. In proof-of-concept PEC application, a PEC detection method for miRNA-141 based on the sensitivity of benzo-4-chloro-hexadienone to light absorption on Cu2S/CdIn2S4 modified electrode is developed with good selectivity and a limit of detection of 32 aM. This work provides a simple approach for designing photoactive materials with highly efficient PEC performance.
Collapse
Affiliation(s)
- Si Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jiahui Sun
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
10
|
Wang HR, Hou EH, Xu N, Zhang YF, Wu JF, Yuan WJ, Kong ZG, Nie P, Chang LM, Zhang XL, Xie JW. Photoelectrochemical Solution Gated Graphene Field-Effect Transistor Functionalized by Enzymatic Cascade Reaction for Organophosphate Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402655. [PMID: 38949408 DOI: 10.1002/smll.202402655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/24/2024] [Indexed: 07/02/2024]
Abstract
Solution Gated Graphene Field-Effect Transistors (SGGT) are eagerly anticipated as an amplification platform for fabricating advanced ultra-sensitive sensors, allowing significant modulation of the drain current with minimal gate voltage. However, few studies have focused on light-matter interplay gating control for SGGT. Herein, this challenge is addressed by creating an innovative photoelectrochemical solution-gated graphene field-effect transistor (PEC-SGGT) functionalized with enzyme cascade reactions (ECR) for Organophosphorus (OPs) detection. The ECR system, consisting of acetylcholinesterase (AChE) and CuBTC nanomimetic enzymes, selectively recognizes OPs and forms o-phenylenediamine (oPD) oligomers sediment on the PEC electrode, with layer thickness related to the OPs concentration, demonstrating time-integrated amplification. Under light stimulation, the additional photovoltage generated on the PEC gate electrode is influenced by the oPD oligomers sediment layer, creating a differentiated voltage distribution along the gate path. PEC-SGGT, inherently equipped with built-in amplification circuits, sensitively captures gate voltage changes and delivers output with an impressive thousandfold current gain. The seamless integration of these three amplification modes in this advanced sensor allows a good linear range and highly sensitive detection of OPs, with a detection limit as low as 0.05 pm. This work provides a proof-of-concept for the feasibility of light-assisted functionalized gate-controlled PEC-SGGT for small molecule detection.
Collapse
Affiliation(s)
- Hai-Rui Wang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun, 130103, China
| | - En-Hui Hou
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun, 130103, China
| | - Na Xu
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun, 130103, China
| | - Yu-Feng Zhang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun, 130103, China
| | - Jian-Feng Wu
- State Key Laboratory of Toxicology and Medical Countermeasures and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Wei-Jian Yuan
- MEMS Center, School of Astronautics, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhi-Guo Kong
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun, 130103, China
| | - Ping Nie
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun, 130103, China
| | - Li-Min Chang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun, 130103, China
| | - Xue-Lin Zhang
- MEMS Center, School of Astronautics, Harbin Institute of Technology, Harbin, 150001, China
| | - Jian-Wei Xie
- State Key Laboratory of Toxicology and Medical Countermeasures and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China
| |
Collapse
|
11
|
Zhang XC, Hou L, Cai H, Zhang JM, Chen FZ, Peng J, Zhao WW. Synergetic Enzyme-Incorporated Metal-Organic Framework and Polyoxometalate Nanozyme: Achieving Stable Tandem Catalysis for Organic Photoelectrochemical Transistor Bioanalysis. Anal Chem 2024; 96:16355-16361. [PMID: 39370725 DOI: 10.1021/acs.analchem.4c03786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Organic photoelectrochemical transistor (OPECT) has emerged as a promising technique for biomolecule detection, yet its operational rationale remains limited due to its short development time. This study introduces a stable tandem catalysis protocol by synergizing the enzyme-incorporated metal-organic frameworks (E-MOFs) with polyoxometalate (POM) nanozyme for sensitive OPECT bioanalysis. The zeolitic imidazolate framework-8 (ZIF-8) acts as the skeleton to protect the encapsulated glucose oxidase (GOx), allowing the stable catalytic generation of H2O2. With peroxidase-like activity, a phosphotungstic acid hydrate (PW12) is then able to utilize the H2O2 to induce the biomimetic precipitation on the photogate, ultimately resulting in the altered device characteristics for quantitative detection. This work reveals the potential and versatility of an engineered enzymatic system as a key enabler to achieve novel OPECT bioanalysis, which is believed to offer a feasible framework to explore new operational rationale in optoelectronic and bioelectronic detection.
Collapse
Affiliation(s)
- Xiao-Cui Zhang
- College of Chemistry and Chemical Engineering, Guangxi Normal University for Nationalities, Chongzuo 532200, China
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lu Hou
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Huihui Cai
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Jin-Ming Zhang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Feng-Zao Chen
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Jinyun Peng
- College of Chemistry and Chemical Engineering, Guangxi Normal University for Nationalities, Chongzuo 532200, China
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
12
|
Xu X, Xu D, Lu S, Zhou X, Yang S, Zhang Z. Atomically dispersed recognition unit for selective in vivo photoelectrochemical medicine detection. Nat Commun 2024; 15:8827. [PMID: 39396084 PMCID: PMC11470939 DOI: 10.1038/s41467-024-53154-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/01/2024] [Indexed: 10/14/2024] Open
Abstract
Continuous and long-term therapeutic monitoring of medicine molecules in biological systems will revolutionize healthcare by offering personalized pharmacokinetic reports. However, the extremely complex biological environment brings great challenges for in vivo molecule detection in living organisms. Here we introduce an in vivo photoelectrochemical biosensor following a reverse design strategy with single atoms as molecular recognition units. Atomic dispersion of Cu single atoms on TiO2-x substrate create synergistic anchoring triple-site for efficiently and selectively capturing of dual-carbonyl group and neighboring dual-hydroxyl group of tetracycline molecules. The photoelectrode is encapsulated with antibiofouling layer and implanted into the vein of living mouse to enable long-term in vivo monitoring of tetracycline in real biological environments. It is important to note that our approach was exclusively tested in male mice, and therefore, the findings may not be generalizable to female mice or other species without further research. The rationally designed biological-components-free in vivo biosensor with excellent selectivity, robustness, and stability endows possibility for enabling personalized medicine guidance through real-time feedbacking information and providing direct and authentic medicine molecular analysis.
Collapse
Affiliation(s)
- Xiankui Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Dawei Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Shen Lu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Xue Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Shenbo Yang
- Hongzhiwei Technology (Shanghai) Co., Ltd., 1599 Xinjinqiao Road, Pudong, Shanghai, China
| | - Zhonghai Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China.
- State Key Laboratory of Petroleum Molecular and Process Engineering, SKLPMPE, Sinopec Research Institute of Petroleum Processing Co., Ltd., 100083, Beijing, China.
- East China Normal University, Shanghai, 200062, China.
- Institute of Eco-Chongming, East China Normal University, 20 Cuiniao Road, Chongming District, Shanghai, 202162, China.
| |
Collapse
|
13
|
Song P, Xu JJ, Ye JY, Shao RJ, Xu X, Wang AJ, Mei LP, Xue Y, Feng JJ. Self-shedding MOF-nanocarriers modulated CdS/MoSe 2 heterojunction activity through in-situ ion exchange: An enhanced split-type photoelectrochemical sensor for deoxynivalenol. Talanta 2024; 278:126464. [PMID: 38936106 DOI: 10.1016/j.talanta.2024.126464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
Deoxynivalenol (DON), a mycotoxin produced by Fusarium, poses a significant risk to human health and the environment. Therefore, the development of a highly sensitive and accurate detection method is essential to monitor the pollution situation. In response to this imperative, we have devised an advanced split-type photoelectrochemical (PEC) sensor for DON analysis, which leverages self-shedding MOF-nanocarriers to modulate the photoelectric response ability of PEC substrate. The PEC sensing interface was constructed using CdS/MoSe2 heterostructures, while the self-shedding copper peroxide nanodots@ZIF-8 (CPNs@ZIF-8) served as the Cu2+ source for the in-situ ion exchange reaction, which generated a target-related signal reduction. The constructed PEC sensor exhibited a broad linear range of 0.1 pg mL-1 to 500 ng mL-1 with a low detection limit of 0.038 pg mL-1, demonstrating high stability, selectivity, and proactivity. This work not only introduces innovative ideas for the design of photosensitive materials, but also presents novel sensing strategies for detecting various environmental pollutants.
Collapse
Affiliation(s)
- Pei Song
- Central Laboratory, Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, China; College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Jin-Jin Xu
- College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Jia-Yan Ye
- College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Rui-Jin Shao
- College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Xiaoping Xu
- Central Laboratory, Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, China
| | - Ai-Jun Wang
- College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Li-Ping Mei
- College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| | - Yadong Xue
- Central Laboratory, Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, China.
| | - Jiu-Ju Feng
- College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
14
|
Zhang Y, Chen Z, Wei S, Zhang Y, Fu H, Zhang H, Li D, Xie Z. Detection of biological loads in sewage using the automated robot-driven photoelectrochemical biosensing platform. EXPLORATION (BEIJING, CHINA) 2024; 4:20230128. [PMID: 39439495 PMCID: PMC11491307 DOI: 10.1002/exp.20230128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/07/2024] [Indexed: 10/25/2024]
Abstract
Real-time polymerase chain reaction (RT-PCR) remains the most prevalent molecular detection technology for sewage analysis but is plagued with numerous disadvantages, such as time consumption, high manpower requirements, and susceptibility to false negatives. In this study, an automated robot-driven photoelectrochemical (PEC) biosensing platform is constructed, that utilizes the CRISPR/Cas12a system to achieve fast, ultrasensitive, high specificity detection of biological loads in sewage. The Shennong-1 robot integrates several functional modules, involving sewage sampling and pretreatment to streamline the sewage monitoring. A screen-printed electrode is employed with a vertical graphene-based working electrode and enhanced with surface-deposited Au nanoparticles (NPs). CdTe/ZnS quantum dots (QDs) are further fabricated through the double-stranded DNA (dsDNA) anchored on Au NPs. Using the cDNA template of Omicron BA.5 spike gene as a model, the PEC biosensor demonstrates excellent analytical performance, with a lower detection limit of 2.93 × 102 zm and an outstanding selectivity at the level of single-base mutation recognition. Furthermore, the rapid, accurate detection of BA.5 in sewage demonstrates the feasibility of the PEC platform for sewage monitoring. In conclusion, this platform allows early detection and tracking of infectious disease outbreaks, providing timely data support for public health institutions to take appropriate prevention and control measures.
Collapse
Affiliation(s)
- Yiming Zhang
- Department of Laboratory MedicineShenzhen Children's HospitalShenzhenPeople's Republic of China
- Institute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenPeople's Republic of China
| | - Zhi Chen
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoelectronicsShenzhen UniversityShenzhenPeople's Republic of China
| | - Songrui Wei
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoelectronicsShenzhen UniversityShenzhenPeople's Republic of China
| | - Yujun Zhang
- Department of Laboratory MedicineShenzhen Children's HospitalShenzhenPeople's Republic of China
- Institute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenPeople's Republic of China
| | - Hai Fu
- Department of Laboratory MedicineShenzhen Children's HospitalShenzhenPeople's Republic of China
- Institute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenPeople's Republic of China
| | - Han Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoelectronicsShenzhen UniversityShenzhenPeople's Republic of China
| | - Defa Li
- Department of Laboratory MedicineShenzhen Children's HospitalShenzhenPeople's Republic of China
| | - Zhongjian Xie
- Department of Laboratory MedicineShenzhen Children's HospitalShenzhenPeople's Republic of China
- Shenzhen International Institute for Biomedical ResearchShenzhenPeople's Republic of China
| |
Collapse
|
15
|
Li M, Tang Q, Wan H, Zhu G, Yin D, Lei L, Li S. Functional inorganic nanoparticles in cancer: Biomarker detection, imaging, and therapy. APL MATERIALS 2024; 12. [DOI: 10.1063/5.0231279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Cancer poses a major global public health challenge. Developing more effective early diagnosis methods and efficient treatment techniques is crucial to enhance early detection sensitivity and treatment outcomes. Nanomaterials offer sensitive, accurate, rapid, and straightforward approaches for cancer detection, diagnosis, and treatment. Inorganic nanoparticles are widely used in medicine because of their high stability, large specific surface area, unique surface properties, and unique quantum size effects. Functional inorganic nanoparticles involve modifying inorganic nanoparticles to enhance their physical properties, enrichment capabilities, and drug-loading efficiency and to minimize toxicity. This Review provides an overview of various types of inorganic nanoparticles and their functionalization characteristics. We then discuss the progress of functional inorganic nanoparticles in cancer biomarker detection and imaging. Furthermore, we discuss the application of functional inorganic nanoparticles in radiotherapy, chemotherapy, gene therapy, immunotherapy, photothermal therapy, photodynamic therapy, sonodynamic therapy, and combination therapy, highlighting their characteristics and advantages. Finally, the toxicity and potential challenges of functional inorganic nanoparticles are analyzed. The purpose of this Review is to explore the application of functional inorganic nanoparticles in diagnosing and treating cancers, while also presenting a new avenue for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Mengmeng Li
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University 1 , Changsha 410011, Hunan,
| | - Qinglai Tang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University 1 , Changsha 410011, Hunan,
| | - Hua Wan
- Department of Otorhinolaryngology Head and Neck Surgery 2 , 331 Hospital of Zhuzhou, Zhuzhou 412002, Hunan,
| | - Gangcai Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University 1 , Changsha 410011, Hunan,
| | - Danhui Yin
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University 1 , Changsha 410011, Hunan,
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 3 , Hangzhou 310015, Zhejiang,
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University 1 , Changsha 410011, Hunan,
| |
Collapse
|
16
|
Monsalve Y, Cruz-Pacheco AF, Orozco J. Red and near-infrared light-activated photoelectrochemical nanobiosensors for biomedical target detection. Mikrochim Acta 2024; 191:535. [PMID: 39141139 PMCID: PMC11324696 DOI: 10.1007/s00604-024-06592-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/28/2024] [Indexed: 08/15/2024]
Abstract
Photoelectrochemical (PEC) nanobiosensors integrate molecular (bio)recognition elements with semiconductor/plasmonic photoactive nanomaterials to produce measurable signals after light-induced reactions. Recent advancements in PEC nanobiosensors, using light-matter interactions, have significantly improved sensitivity, specificity, and signal-to-noise ratio in detecting (bio)analytes. Tunable nanomaterials activated by a wide spectral radiation window coupled to electrochemical transduction platforms have further improved detection by stabilizing and amplifying electrical signals. This work reviews PEC biosensors based on nanomaterials like metal oxides, carbon nitrides, quantum dots, and transition metal chalcogenides (TMCs), showing their superior optoelectronic properties and analytical performance for the detection of clinically relevant biomarkers. Furthermore, it highlights the innovative role of red light and NIR-activated PEC nanobiosensors in enhancing charge transfer processes, protecting them from biomolecule photodamage in vitro and in vivo applications. Overall, advances in PEC detection systems have the potential to revolutionize rapid and accurate measurements in clinical diagnostic applications. Their integration into miniaturized devices also supports the development of portable, easy-to-use diagnostic tools, facilitating point-of-care (POC) testing solutions and real-time monitoring.
Collapse
Affiliation(s)
- Yeison Monsalve
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, 050010, Medellín, Colombia
| | - Andrés F Cruz-Pacheco
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, 050010, Medellín, Colombia
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, 050010, Medellín, Colombia.
| |
Collapse
|
17
|
Lu MJ, Zhao KH, Zhang SQ, Cai XB, Kandegama W, Chen MX, Sun Y, Li XY. Research Progress of Biosensor Based on Organic Photoelectrochemical Transistor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17746-17761. [PMID: 39079007 DOI: 10.1021/acs.jafc.4c04191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
In order to solve the food safety problem better, it is very important to develop a rapid and sensitive technology for detecting food contamination residues. Organic photoelectrochemical transistor (OPECT) biosensor rely on the photovoltage generated by a semiconductor upon excitation by light to regulate the conductivity of the polymer channels and realize biosensor analysis under zero gate bias. This technology integrates the excellent characteristics of photoelectrochemical (PEC) bioanalysis and the high sensitivity and inherent amplification ability of organic electrochemical transistor (OECT). Based on this, OPECT biosensor detection has been proven to be superior to traditional biosensor detection methods. In this review, we summarize the research status of OPECT biosensor in disease markers and food residue analysis, the basic principle, classification, and biosensing mechanism of OPECT biosensor analysis are briefly introduced, and the recent applications of biosensor analysis are discussed according to the signal strategy. We mainly introduced the OPECT biosensor analysis methods applied in different fields, including the detection of disease markers and food hazard residues such as prostate-specific antigen, heart-type fatty acid binding protein, T-2 toxin detection in milk samples, fat mass and objectivity related protein, ciprofloxacin in milk. The OPECT biosensor provides considerable development potential for the construction of safety analysis and detection platforms in many fields, such as agriculture and food, and hopes to provide some reference for the future development of biosensing analysis methods with higher selectivity, faster analysis speed and higher sensitivity.
Collapse
Affiliation(s)
- Meng-Jiao Lu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Kun-Hong Zhao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Shan-Qi Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xiao-Bo Cai
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Wishwajith Kandegama
- Department of Horticulture and Landscape Gardening, Faculty of Agriculture and Plantation Management, Wayamba University of Sri Lanka, Makandura, Gonawila 60170 Sri Lanka
| | - Mo-Xian Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical Biology Ministry of Education, College of Chemistry Central China Normal University, Wuhan 430079, China
| | - Xiang-Yang Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
18
|
Hou L, Gao Y, Kong FY, Wang ZC, Lin L, Han DM, Chen FZ. Reticular Heterojunction for Organic Photoelectrochemical Transistor Detection of Neuron-Specific Enolase. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400033. [PMID: 38431941 DOI: 10.1002/smll.202400033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/15/2024] [Indexed: 03/05/2024]
Abstract
Reticular heterojunctions on the basis of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) have sparked considerable interest in recent research endeavors, which nevertheless have seldom been studied in optoelectronic biosensing. In this work, its utilization for organic photoelectrochemical transistor (OPECT) detection of the important cancer biomarker of neuron-specific enolase (NSE) is reported. A MOF@COF@CdS quantum dots (QDs) heterojunction is rationally designed to serve as the photogating module against the polymeric channel. Linking with a sandwich complexing event, target-dependent alternation of the photogate is achieved, leading to the changed photoelectric conversion efficiency as indicated by the amplified OPECT signals. The proposed assay demonstrates good analytical performance in detecting NSE, featuring a linear detection range from 0.1 pg mL-1 to 100 ng mL-1, with a detection limit of 0.033 pg mL-1.
Collapse
Affiliation(s)
- Lu Hou
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Yuan Gao
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, 318000, China
| | - Fen-Ying Kong
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Ze-Chen Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Lang Lin
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, 318000, China
| | - De-Man Han
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, 318000, China
| | - Feng-Zao Chen
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, 318000, China
| |
Collapse
|
19
|
Zhang JB, Tian YB, Gu ZG, Zhang J. Metal-Organic Framework-Based Photodetectors. NANO-MICRO LETTERS 2024; 16:253. [PMID: 39048856 PMCID: PMC11269560 DOI: 10.1007/s40820-024-01465-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/16/2024] [Indexed: 07/27/2024]
Abstract
The unique and interesting physical and chemical properties of metal-organic framework (MOF) materials have recently attracted extensive attention in a new generation of photoelectric applications. In this review, we summarized and discussed the research progress on MOF-based photodetectors. The methods of preparing MOF-based photodetectors and various types of MOF single crystals and thin film as well as MOF composites are introduced in details. Additionally, the photodetectors applications for X-ray, ultraviolet and infrared light, biological detectors, and circularly polarized light photodetectors are discussed. Furthermore, summaries and challenges are provided for this important research field.
Collapse
Affiliation(s)
- Jin-Biao Zhang
- State Key Laboratory of Structural Chemistry, Structure of Matter, Fujian Institute of Research, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, People's Republic of China
- University of Chinese Academy of Science, Beijing, 100049, People's Republic of China
| | - Yi-Bo Tian
- State Key Laboratory of Structural Chemistry, Structure of Matter, Fujian Institute of Research, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, People's Republic of China
| | - Zhi-Gang Gu
- State Key Laboratory of Structural Chemistry, Structure of Matter, Fujian Institute of Research, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, People's Republic of China.
- College of Chemistry and Materials Science, Fujian Nornal University, Fuzhou, 350007, Fujian, People's Republic of China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, Fujian, People's Republic of China.
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Structure of Matter, Fujian Institute of Research, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, People's Republic of China
- College of Chemistry and Materials Science, Fujian Nornal University, Fuzhou, 350007, Fujian, People's Republic of China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, Fujian, People's Republic of China
| |
Collapse
|
20
|
Zhang N, Guo S, Wang Y, Zhu C, Hu P, Yang H. Three-dimensional polymer phenylethnylcopper/nitrogen doped graphene aerogel electrode coupled with Fe 3O 4 NPs nanozyme: Toward sensitive and robust photoelectrochemical detection of glyphosate in agricultural matrix. Anal Chim Acta 2024; 1308:342647. [PMID: 38740456 DOI: 10.1016/j.aca.2024.342647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/14/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Presently, glyphosate (Gly) is the most extensively used herbicide globally, Nevertheless, its excessive usage has increased its accumulation in off-target locations, and aroused concerns for food and environmental safety. Commonly used detection methods, such as high-performance liquid chromatography and gas chromatography, have limitations due to expensive instruments, complex pre-processing steps, and inadequate sensitivity. Therefore, a facile, sensitive, and reliable Gly detection method should be developed. RESULTS A photoelectrochemical (PEC) sensor consisting of a three-dimensional polymer phenylethnylcopper/nitrogen-doped graphene aerogel (PPhECu/3DNGA) electrode coupled with Fe3O4 NPs nanozyme was constructed for sensitive detection of Gly. The microscopic 3D network of electrodes offered fast transfer routes for photo-generated electrons and a large surface area for nanozyme loading, allowing high signal output and analytical sensitivity. Furthermore, the use of peroxidase-mimicking Fe3O4 NPs instead of natural enzyme improved the stability of the sensor against ambient temperature changes. Based on the inhibitory effect of Gly on the catalytic activity Fe3O4 NPs, the protocol achieved Gly detection in the range of 5 × 10-10 to 1 × 10-4 mol L-1. Additionally, feasibility of the detection was confirmed in real agricultural matrix including tea, maize seedlings, maize seeds and soil. SIGNIFICANCE This work achieved facile, sensitive and reliable analysis towards Gly, and it was expected to inspire the design and utilization of 3D architectures in monitoring agricultural chemicals in food and environmental matrix.
Collapse
Affiliation(s)
- Nan Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuangming Guo
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yaxiling Wang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunyuan Zhu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing, 210042, China
| | - Peiwen Hu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
21
|
Xu X, Zhou X, Huang J, Liu Y, Zhang Z. High-Throughput Multitarget Molecular Detection in an Automatic Light-Addressable Photoelectrochemical Sensing Platform. Anal Chem 2024; 96:9185-9191. [PMID: 38773762 DOI: 10.1021/acs.analchem.4c01076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Successively emerged high-throughput multitarget molecular detection methods bring significant development tides in chemical, biological, and environmental fields. However, several persistent challenges of intricate sample preparation, expensive instruments, and tedious and skilled operations still need to be further addressed. Here, we propose an automatic light-addressable photoelectrochemical (ALA-PEC) sensing platform for sensitive and selective detection of multitarget molecules. With Au nanoparticle-decorated TiO2 nanotube photonic crystals (Au-TiO2 NTPCs) as a photoelectrode and 8 kinds of antibiotics as target molecules, the ALA-PEC sensing system implements automatic detection of multimolecules in a short time with high sensitivity and good selectivity. Random samples with different amounts of antibiotics have been well-distinguished in the ALA-PEC system, and both the chemical components and concentrations have been well-illustrated in a pattern recognition model. It is worth noting that 8 samples are not the limit of the ALA-PEC sensing platform, which can be easily expanded to more complex detection arrays based on practical needs. The emerging ALA-PEC sensing platform provides a new solution for rapid screening and detection of multitarget and high-throughput substances and potentially brings the automatic, portable, sensitive, high-throughput, and cost-effective detection technique to an entire new realm.
Collapse
Affiliation(s)
- Xiankui Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Xue Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Jing Huang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yibin Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Zhonghai Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
- State Key Laboratory of Petroleum Molecular and Process engineering, SKLPMPE, Sinopec Research Institute of Petroleum Processing Co., Ltd., Beijing 100083, China
| |
Collapse
|
22
|
Zhong Z, Ding L, Man Z, Zeng Y, Pan B, Zhu JJ, Zhang M, Cheng F. Versatile Metal-Organic Framework Incorporating Ag 2S for Constructing a Photoelectrochemical Immunosensor for Two Breast Cancer Markers. Anal Chem 2024; 96:8837-8843. [PMID: 38757510 DOI: 10.1021/acs.analchem.4c02091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Breast cancer poses the significance of early diagnosis and treatment. Here, we developed an innovative photoelectrochemical (PEC) immunosensor characterized by high-level dual photocurrent signals and exceptional sensitivity. The PEC sensor, denoted as MIL&Ag2S, was constructed by incorporating Ag2S into a metal-organic framework of MIL-101(Cr). This composite not only enhanced electron-hole separation and conductivity but also yielded robust and stable dual photocurrent signals. Through the implementation of signal switching, we achieved the combined detection of cancer antigen 15-3 (CA15-3) and carcinoembryonic antigen (CEA) with outstanding stability, reproducibility, and specificity. The results revealed a linear range for CEA detection spanning 0.01-32 ng/mL, with a remarkably low detection limit of 0.0023 ng/mL. Similarly, for CA15-3 detection, the linear range extended from 0.1 to 320 U/mL, with a low detection limit of 0.014 U/mL. The proposed strategy introduces new avenues for the development of highly efficient, cost-effective, and user-friendly PEC sensors. Furthermore, it holds promising prospects for early clinical diagnosis, contributing to potential breakthroughs in medical detection and ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Zhaoxiang Zhong
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, Dongguan University of Technology, Dongguan 523808, P. R. China
| | - Lei Ding
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, Dongguan University of Technology, Dongguan 523808, P. R. China
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Zu Man
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, Dongguan University of Technology, Dongguan 523808, P. R. China
| | - Yinan Zeng
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, Dongguan University of Technology, Dongguan 523808, P. R. China
| | - Bochi Pan
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, Dongguan University of Technology, Dongguan 523808, P. R. China
| | - Jun-Jie Zhu
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, Dongguan University of Technology, Dongguan 523808, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Min Zhang
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, Dongguan University of Technology, Dongguan 523808, P. R. China
| | - Faliang Cheng
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, Dongguan University of Technology, Dongguan 523808, P. R. China
| |
Collapse
|
23
|
Jiang XW, Ju P, Li Z, Kou BH, Zhai X, Chen FZ, Zhu YC, Xu YT, Lu Z, Zhao WW. Dual Engine Boosts Organic Photoelectrochemical Transistor for Enhanced Modulation and Bioanalysis. Anal Chem 2024; 96:6847-6852. [PMID: 38639290 DOI: 10.1021/acs.analchem.4c01369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Organic photoelectrochemical transistor (OPECT) has shown substantial potential in the development of next-generation bioanalysis yet is limited by the either-or situation between the photoelectrode types and the channel types. Inspired by the dual-photoelectrode systems, we propose a new architecture of dual-engine OPECT for enhanced signal modulation and its biosensing application. Exemplified by incorporating the CdS/Bi2S3 photoanode and Cu2O photocathode within the gate-source circuit of Ag/AgCl-gated poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) channel, the device shows enhanced modulation capability and larger transconductance (gm) against the single-photoelectrode ones. Moreover, the light irritation upon the device effectively shifts the peak value of gm to zero gate voltage without degradation and generates larger current steps that are advantageous for the sensitive bioanalysis. Based on the as-developed dual-photoelectrode OPECT, target-mediated recycling and etching reactions are designed upon the CdS/Bi2S3, which could result in dual signal amplification and realize the sensitive microRNA-155 biodetection with a linear range from 1 fM to 100 pM and a lower detection limit of 0.12 fM.
Collapse
Affiliation(s)
- Xing-Wu Jiang
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Peng Ju
- Key Laboratory of Marine Eco-Environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, No. 6 Xianxialing Road, Qingdao 266061, PR China
| | - Zheng Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Bo-Han Kou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Xiaofan Zhai
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao 266071, PR China
| | - Feng-Zao Chen
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, PR China
| | - Yuan-Cheng Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Yi-Tong Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Zhaoxia Lu
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
- Institute of Marine corrosion and protection, Guangxi Academy of Sciences, No. 98 Dalin Road, Nanning 530007, PR China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| |
Collapse
|
24
|
Li L, Bo Y, Miao P, Chang J, Zhang Y, Ding B, Lv Y, Yang X, Zhang J, Yan M. Self-powered photoelectrochemical immunosensing platform for sensitive CEA detection using dual-photoelectrode synergistic signal amplification. Biosens Bioelectron 2024; 250:116075. [PMID: 38301545 DOI: 10.1016/j.bios.2024.116075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024]
Abstract
Self-powered photoelectrochemical (PEC) sensing, as an emerging sensing mode, can effectively solve the problems such as weak anti-interference ability and poor signal response of individual photoanode or photocathode sensing. In this work, an ITO/Co-CuInS2 photocathode and ITO/WO3@CdS photoanode based self-powered cathodic PEC immunosensor was developed, which integrated dual-photoelectrode to synergistic amplify the signal for highly sensitive and specific detection of carcinoembryonic antigen (CEA). The self-powered PEC sensor could drive electrons transfer through the difference in Fermi levels between the two photoelectrodes without an external bias voltage. The photoanode was introduced to amplify the photoelectric signal, and the photocathode was only designed for the construction of sensing interfaces. The proposed sensor quantitatively determined the target CEA with the detection limit of 0.23 pg/mL and a linear correlation confine of 0.1 pg/mL ∼100 ng/mL. The constructed immunosensing platform exhibited high sensitivity, satisfactory stability and great biological detection selectivity, providing a feasible and effective strategy for the manufacture of new self-powered sensors in high-performance PEC bioanalytical applications.
Collapse
Affiliation(s)
- Linrong Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Yiran Bo
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Pei Miao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Jing Chang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Yang Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Biyan Ding
- School of Materials Science and Engineering, Qilu University of Technology, Jinan, 250353, China
| | - Yanfeng Lv
- Department of Colorectal & Anal Surgery, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Xiaofeng Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Jing Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China; Zhejiang Sitaili Pharmaceutical Co., Ltd, Taizhou, 317300, China.
| | - Mei Yan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
25
|
Yi J, Dong J, Zheng Y, Liu L, Zhu J, Tang H. A label-free and immobilization-free approach for constructing photoelectrochemical nucleic acid sensors utilizing DNA-silver nanoparticle affinity interactions. Analyst 2024; 149:2272-2280. [PMID: 38487962 DOI: 10.1039/d4an00098f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Efficient and affordable nucleic acid detection methods play a pivotal role in various applications. Herein, we developed an immobilization-free and label-free strategy to construct a photoelectrochemical nucleic acid biosensing platform based on interactions between silver nanoparticles and DNA. First, CRISPR-Cas12a exhibited a trans-cleavage effect on adenine nucleotide sequences upon recognizing the target DNA. The resulting adenine nucleotide sequences of varying lengths then engaged in interactions with silver nanoparticles, leading to a solution characterized by distinct light transmittance. Subsequently, the solution was positioned between the light source and the photoelectrode, strategically impacting the photon absorption step within the photoelectrochemical process. Consequently, the detection of nucleic acid was accomplished through the analysis of the resultant photocurrent signal. The developed platform exhibits a detection limit of 0.06 nM (S/N = 3) with commendable selectivity. The innovative use of adenine nucleotide sequences as cost-effective probes interacting with silver nanoparticles eliminates the need for complex interfacial immobilization processes, significantly simplifying the fabrication of DNA sensors. The outcomes of our research present a promising pathway for advancing the development of economically feasible miniature DNA sensors.
Collapse
Affiliation(s)
- Jing Yi
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| | - Jiayao Dong
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| | - Yawen Zheng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| | - Liu Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| | - Ji Zhu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| | - Hongwu Tang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
26
|
Wu SH, Zhang SC, Kang YH, Wang YF, Duan ZM, Jing MJ, Zhao WW, Chen HY, Xu JJ. Aggregation-Enabled Electrochemistry in Confined Nanopore Capable of Complementary Faradaic and Non-Faradaic Detection. NANO LETTERS 2024; 24:4241-4247. [PMID: 38546270 DOI: 10.1021/acs.nanolett.4c00563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Electrochemistry that empowers innovative nanoscopic analysis has long been pursued. Here, the concept of aggregation-enabled electrochemistry (AEE) in a confined nanopore is proposed and devised by reactive oxygen species (ROS)-responsive aggregation of CdS quantum dots (QDs) within a functional nanopipette. Complementary Faradaic and non-Faradaic operations of the CdS QDs aggregate could be conducted to simultaneously induce the signal-on of the photocurrents and the signal-off of the ionic signals. Such a rationale permits the cross-checking of the mutually corroborated signals and thus delivers more reliable results for single-cell ROS analysis. Combined with the rich biomatter-light interplay, the concept of AEE can be extended to other stimuli-responsive aggregations for electrochemical innovations.
Collapse
Affiliation(s)
- Si-Hao Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shuang-Chen Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yu-Han Kang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi-Feng Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zu-Ming Duan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ming-Jian Jing
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
27
|
Zong C, Kong L, Li C, Xv H, Lv M, Chen X, Li C. Light-harvesting iridium (III) complex-sensitized NiO photocathode for photoelectrochemical bioanalysis. Mikrochim Acta 2024; 191:223. [PMID: 38556564 DOI: 10.1007/s00604-024-06321-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024]
Abstract
A novel iridium (III) complex bearing boron dipyrromethene (Bodipy) as the light-harvesting antenna has been synthesized and is firstly employed as photosensitizer to assemble a dye-sensitized NiO photocathode. The assembled photocathode exhibits significantly improved photoelectrochemical (PEC) performance. Integrating the prepared photocathode with hybridization chain reaction (HCR)--based signal amplification strategy, a cathodic PEC biosensor is proposed for the detection of microRNA-133a (miRNA-133a). In the presence of the target, HCR is triggered to form long duplex concatamers on the photocathode, which allows numerous manganese porphyrins (MnPP) to bind in the dsDNA groove. With the help of H2O2, MnPP with peroxidase-like activity catalyzes 4--chloro-1-naphthol (4-CN) to produce benzo--4--chlorohexadienone (4-CD) precipitate on the electrode, leading to a significant decrease of photocurrent signal. The decreased photocurrent correlates linearly with the target concentration from 0.1 fM to 1 nM with a detection limit of 66.2 aM (S/N = 3). The proposed PEC strategy exhibits delightful selectivity, reproducibility and stability.
Collapse
Affiliation(s)
- Chengxue Zong
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Linghui Kong
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Can Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Huijuan Xv
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Mengwei Lv
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Xiaodong Chen
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Chunxiang Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China.
| |
Collapse
|
28
|
Li J, Hou L, Jiang Y, Wei MJ, Wang CS, Li HY, Kong FY, Wang W. Photoelectrochemical detection of copper ions based on a covalent organic framework with tunable properties. Analyst 2024; 149:2045-2050. [PMID: 38407274 DOI: 10.1039/d4an00026a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Copper ions (Cu2+) play an essential role in various cellular functions, including respiration, nerve conduction, tissue maturation, oxidative stress defense, and iron metabolism. Covalent organic frameworks (COFs) are a class of porous crystalline materials with directed structural designability and high stability due to the combination of different monomers through covalent bonds. In this study, we synthesized a porphyrin-tetrathiazole COF (TT-COF(Zn)) with Zn-porphyrin and tetrathiafulvalene (TTF) as monomers and used it as a photoactive material. The strong light absorption of metalloporphyrin and the electron-rich properties of supplied TTF contribute to its photoelectrochemical performance. Additionally, the sulfur (S) in the TTF can coordinate with Cu2+. Based on these properties, we constructed a highly sensitive photoelectrochemical sensor for detecting Cu2+. The sensor exhibited a linear range from 0.5 nM to 500 nM (R2 = 0.9983) and a detection limit of 0.15 nM for Cu2+. Notably, the sensor performed well when detecting Cu2+ in water samples.
Collapse
Affiliation(s)
- Jing Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Lu Hou
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Yue Jiang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Mei-Jie Wei
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Cheng-Shuang Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Heng-Ye Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Fen-Ying Kong
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Wei Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| |
Collapse
|
29
|
He W, Liu X, Na J, Bian H, Zhong L, Li G. Application of CRISPR/Cas13a-based biosensors in serum marker detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1426-1438. [PMID: 38385279 DOI: 10.1039/d3ay01927f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The detection of serum markers is important for the early diagnosis and monitoring of diseases, but conventional detection methods have the problem of low specificity or sensitivity. CRISPR/Cas13a-based biosensors have the characteristics of simple detection methods and high sensitivity, which have a certain potential to solve the problems of conventional detection. This paper focuses on the research progress of CRISPR/Cas13a-based biosensors in serum marker detection, introduces the principles and applications of fluorescence, electrochemistry, colorimetric, and other biosensors based on CRISPR/Cas13a in the detection of serum markers, compares and analyzes the differences between the above CRISPR/Cas13a-based biosensors, and looks forward to the future development direction of CRISPR/Cas13a-based biosensors.
Collapse
Affiliation(s)
- Wei He
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China.
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China.
| | - Jintong Na
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China.
| | - Huimin Bian
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China.
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China.
| | - Guiyin Li
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China.
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming, Guangdong 525000, China
| |
Collapse
|
30
|
Fattahi N, Gorgannezhad L, Masoule SF, Babanejad N, Ramazani A, Raoufi M, Sharifikolouei E, Foroumadi A, Khoobi M. PEI-based functional materials: Fabrication techniques, properties, and biomedical applications. Adv Colloid Interface Sci 2024; 325:103119. [PMID: 38447243 DOI: 10.1016/j.cis.2024.103119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/15/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024]
Abstract
Cationic polymers have recently attracted considerable interest as research breakthroughs for various industrial and biomedical applications. They are particularly interesting due to their highly positive charges, acceptable physicochemical properties, and ability to undergo further modifications, making them attractive candidates for biomedical applications. Polyethyleneimines (PEIs), as the most extensively utilized polymers, are one of the valuable and prominent classes of polycations. Owing to their flexible polymeric chains, broad molecular weight (MW) distribution, and repetitive structural units, their customization for functional composites is more feasible. The specific beneficial attributes of PEIs could be introduced by purposeful functionalization or modification, long service life, biocompatibility, and distinct geometry. Therefore, PEIs have significant potential in biotechnology, medicine, and bioscience. In this review, we present the advances in PEI-based nanomaterials, their transfection efficiency, and their toxicity over the past few years. Furthermore, the potential and suitability of PEIs for various applications are highlighted and discussed in detail. This review aims to inspire readers to investigate innovative approaches for the design and development of next-generation PEI-based nanomaterials possessing cutting-edge functionalities and appealing characteristics.
Collapse
Affiliation(s)
- Nadia Fattahi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran
| | - Lena Gorgannezhad
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia
| | - Shabnam Farkhonde Masoule
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Niloofar Babanejad
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Ali Ramazani
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran.
| | - Mohammad Raoufi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran
| | - Elham Sharifikolouei
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Turin (TO), Italy
| | - Alireza Foroumadi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Mehdi Khoobi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
31
|
Navitski I, Ramanaviciute A, Ramanavicius S, Pogorielov M, Ramanavicius A. MXene-Based Chemo-Sensors and Other Sensing Devices. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:447. [PMID: 38470777 DOI: 10.3390/nano14050447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/15/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024]
Abstract
MXenes have received worldwide attention across various scientific and technological fields since the first report of the synthesis of Ti3C2 nanostructures in 2011. The unique characteristics of MXenes, such as superior mechanical strength and flexibility, liquid-phase processability, tunable surface functionality, high electrical conductivity, and the ability to customize their properties, have led to the widespread development and exploration of their applications in energy storage, electronics, biomedicine, catalysis, and environmental technologies. The significant growth in publications related to MXenes over the past decade highlights the extensive research interest in this material. One area that has a great potential for improvement through the integration of MXenes is sensor design. Strain sensors, temperature sensors, pressure sensors, biosensors (both optical and electrochemical), gas sensors, and environmental pollution sensors targeted at volatile organic compounds (VOCs) could all gain numerous improvements from the inclusion of MXenes. This report delves into the current research landscape, exploring the advancements in MXene-based chemo-sensor technologies and examining potential future applications across diverse sensor types.
Collapse
Affiliation(s)
- Ilya Navitski
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Agne Ramanaviciute
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Simonas Ramanavicius
- Department of Organic Chemistry, State Research Institute Center for Physical Sciences and Technology, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania
| | - Maksym Pogorielov
- Biomedical Research Centre, Sumy State University, 2, Kharkivska Str., 40007 Sumy, Ukraine
- Institute of Atomic Physics and Spectroscopy, University of Latvia, 3 Jelgavas St., LV-1004 Riga, Latvia
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| |
Collapse
|
32
|
Shi XM, Wang Z, Chen MH, Wu QQ, Chen FZ, Fan GC, Zhao WW. Highly Light-Harvesting MOF-on-MOF Heterostructure: Cascading Functionality to Flexible Photogating of Organic Photoelectrochemical Transistor and Bienzyme Cascade Detection. Anal Chem 2024; 96:3679-3685. [PMID: 38353671 DOI: 10.1021/acs.analchem.4c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Recently, organic photoelectrochemical transistor (OPECT) bioanalysis has become a prominent technique for the high-performance detection of biomolecules. However, as a sensitive index of the OPECT, the dynamic regulation transconductance (gm) is still severely deficient. Herein, this work reports a new photosensitive metal-organic framework (MOF-on-MOF) heterostructure for the effective modulation of maximum gm and natural bienzyme interfacing toward choline detection. Specifically, the bidentate ligand MOF (b-MOF) was assembled onto the UiO-66 MOF (u-MOF) by a modular assembly method, which could facilitate the charge separation and generate enhanced photocurrents and offer a biophilic environment for the immobilization of choline oxidase (ChOx) and horseradish peroxidase (HRP) through hydrogen-bonded bridges. The transconductance of the OPECT could be flexibly altered by increased light intensity to maximal value at zero gate bias, and sensitive choline detection was achieved with a detection limit of 0.2 μM. This work reveals the potential of MOF-on-MOF heterostructures for futuristic optobioelectronics.
Collapse
Affiliation(s)
- Xiao-Mei Shi
- School of Medical and Health Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164, China
| | - Zhen Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Miao-Hua Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qing-Qing Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Feng-Zao Chen
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Gao-Chao Fan
- School of Medical and Health Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164, China
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
33
|
Dong H, Wang HY, Xu YT, Zhang X, Chen HY, Xu JJ, Zhao WW. Iontronic Photoelectrochemical Biorecognition Probing. ACS Sens 2024; 9:988-994. [PMID: 38258286 DOI: 10.1021/acssensors.3c02544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Herein, the first iontronic photoelectrochemical (PEC) biorecognition probing is devised by rational engineering of a dual-functional bioconjugate, i.e., a light-sensitive intercalated structural DNA, as a smart gating module confined within a nanotip, which could respond to both the incident light and biotargets of interest. Light stimulation of the bioconjugate could intensify the negative charge at the nano-orifice to sustain enhanced ionic current. The presence of proteins (e.g., acetylcholinesterase, AChE) or nucleic acids (e.g., microRNA (miR)-10b) could lead to bioconjugate release with altered ionic signaling. The practical applicability of the methodology is confirmed by AChE detection in human serum and miR-10b detection in single cells.
Collapse
Affiliation(s)
- Hang Dong
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Hai-Yan Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yi-Tong Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xian Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
34
|
Yin P, Li Z, Wu Q, Hu J, Chen FZ, Chen G, Lin P, Han DM, Zhao WW. Photoresponsive Hydrogen-Bonded Organic Frameworks-Enabled Organic Photoelectrochemical Transistors for Sensitive Bioanalysis. Anal Chem 2024; 96:2135-2141. [PMID: 38252409 DOI: 10.1021/acs.analchem.3c04875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
A facile route for exponential magnification of transconductance (gm) in an organic photoelectrochemical transistor (OPECT) is still lacking. Herein, photoresponsive hydrogen-bonded organic frameworks (PR-HOFs) have been shown to be efficient for gm magnification in a typical poly(ethylene dioxythiophene):poly(styrenesulfonate) OPECT. Specifically, 450 nm light stimulation of 1,3,6,8-tetrakis (p-benzoic acid) pyrene (H4TBAPy)-based HOF could efficiently modulate the device characteristics, leading to the considerable gm magnification over 78 times from 0.114 to 8.96 mS at zero Vg. In linkage with a DNA nanomachine-assisted steric hindrance amplification strategy, the system was then interfaced with the microRNA-triggered structural DNA evolution toward the sensitive detection of a model target microRNA down to 0.1 fM. This study first reveals HOFs-enabled efficient gm magnification in organic electronics and its application for sensitive biomolecular detection.
Collapse
Affiliation(s)
- Peiying Yin
- College of Science, Hebei Agricultural University, Baoding 071001, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zheng Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qiuhua Wu
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Jin Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Feng-Zao Chen
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Guangxu Chen
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510006, China
| | - Peng Lin
- Shenzhen Key Laboratory of Special Functional Materials & Guangdong, Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - De-Man Han
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
35
|
Wang B, Zhang N, Wang Y, Chen D, Qi J, Tu J. S-induced Phase Change Forming In 2 O 3 /In 2 S 3 Heterostructure for Photoelectrochemical Glucose Sensor. Chemistry 2024; 30:e202303514. [PMID: 38081143 DOI: 10.1002/chem.202303514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Indexed: 02/03/2024]
Abstract
In the past several decades, Photoelectrochemical (PEC) sensing still remains a great challenge to design highly-efficient semiconductor photocatalysts via a facile method. It is of much importance to design and synthesize various novel nanostructured sensing materials for further improving the response performance. Herein, we present an In2 O3 /In2 S3 heterostructure obtained by combining microwave assisted hydrothermal method with S-induced phase change, whose energy band and electronic structure could be adjusted by changing the S content. Combining theoretical calculation and spectroscopic techniques, the introduction of sulfur was proved to produce multifunctional interfaces, inducing the change of phase, oxygen vacancies and band gap, which accelerates the separation of photoexcited carriers and reduces their recombination, improving the electronic injection efficiency around the interface of In2 O3 /In2 S3 . As anticipated, an enhanced glucose response performance with a photocurrent of 0.6 mA cm-2 , a linear range of 0.1-1 mM and a detection limit as low as 14.5 μM has been achieved based on the In2 O3 /In2 S3 heterostructure, which is significant superior over its pure In2 O3 and S-doped In2 O3 counterparts. This efficient interfacial strategy may open a new route to manipulate the electrical structure, and energy band structure regulation of sensing material to improve the performance of photoelectrodes for PEC.
Collapse
Affiliation(s)
- Bingrong Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, P. R. China
| | - Nan Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, P. R. China
| | - Yifeng Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, P. R. China
| | - Delun Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, P. R. China
| | - Junlei Qi
- State Key Laboratory of Advanced Welding and, Joining Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Jinchun Tu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, P. R. China
| |
Collapse
|
36
|
Liu H, Wei W, Song J, Hu J, Wang Z, Lin P. Upconversion-Powered Photoelectrochemical Bioanalysis for DNA Sensing. SENSORS (BASEL, SWITZERLAND) 2024; 24:773. [PMID: 38339489 PMCID: PMC10856881 DOI: 10.3390/s24030773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
In this work, we report a new concept of upconversion-powered photoelectrochemical (PEC) bioanalysis. The proof-of-concept involves a PEC bionanosystem comprising a NaYF4:Yb,Tm@NaYF4 upconversion nanoparticles (UCNPs) reporter, which is confined by DNA hybridization on a CdS quantum dots (QDs)/indium tin oxide (ITO) photoelectrode. The CdS QD-modified ITO electrode was powered by upconversion absorption together with energy transfer effect through UCNPs for a stable photocurrent generation. By measuring the photocurrent change, the target DNA could be detected in a specific and sensitive way with a wide linear range from 10 pM to 1 μM and a low detection limit of 0.1 pM. This work exploited the use of UCNPs as signal reporters and realized upconversion-powered PEC bioanalysis. Given the diversity of UCNPs, we believe it will offer a new perspective for the development of advanced upconversion-powered PEC bioanalysis.
Collapse
Affiliation(s)
- Hong Liu
- Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China; (H.L.); (J.S.); (J.H.)
| | - Weiwei Wei
- Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China; (H.L.); (J.S.); (J.H.)
| | - Jiajun Song
- Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China; (H.L.); (J.S.); (J.H.)
| | - Jin Hu
- Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China; (H.L.); (J.S.); (J.H.)
| | - Zhezhe Wang
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China;
| | - Peng Lin
- Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China; (H.L.); (J.S.); (J.H.)
| |
Collapse
|
37
|
Cheng J, Luo Y, Hao Y, Han H, Hu X, Yang Y, Long X, He J, Zhang P, Zeng R, Xu M, Chen S. A responsive organic probe based photoelectrochemical sensor for hydrazine detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123463. [PMID: 37778175 DOI: 10.1016/j.saa.2023.123463] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/10/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
This study developed a new photoelectrochemical (PEC) sensor for the detection of the hydrazine (N2H4, HZ) based on a donor-π-bridge-acceptor (D-π-A) configuration organic photoactive dye (Dye-HZ). The dye was covalently immobilized on an FTO/TiO2 (FTO: fluorine-doped tin oxide) substrate, resulting in a photoanode FTO/TiO2/Dye-HZ that exhibits a specific PEC response to N2H4. Hydrazine reacts with the acetyl group in the Dye-HZ molecule, leading to its removal and the formation of a hydroxy group. The hydroxy group dissociates a hydrogen ion, forming a phenoxide anion with strong electron-donating characteristics. As a result, the dye molecule exhibits a strong intramolecular charge transfer effect, significantly enhancing absorbance and photoelectric response under visible light irradiation, leading to a remarkable increase in photocurrent and enabling highly sensitive detection of hydrazine. Furthermore, the PEC sensor demonstrates excellent selectivity and can be applied for the detection of hydrazine in real water samples. This study presents an innovative PEC sensing approach for hydrazine based on responsive photoactive molecules, providing new insights for PEC detection of other environmental pollutants.
Collapse
Affiliation(s)
- Jiayuan Cheng
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yuanjian Luo
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yuanqiang Hao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China.
| | - Huabo Han
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Xiaoyu Hu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yuxuan Yang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Xiangkun Long
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Jing He
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Peisheng Zhang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Rongjin Zeng
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Shu Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| |
Collapse
|
38
|
Gorla FA, Santana Dos Santos C, de Matos R, Antigo Medeiros R, do Prado Ferreira M, Pereira Camargo L, Henrique Dall'Antonia L, Tarley CRT. Development of novel nanocomposite-modified photoelectrochemical sensor based on the association of bismuth vanadate and MWCNT-grafted-molecularly imprinted poly(acrylic acid) for dopamine determination at nanomolar level. Talanta 2024; 266:125044. [PMID: 37586281 DOI: 10.1016/j.talanta.2023.125044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/18/2023]
Abstract
This study proposes the development of a new photoelectrochemical (PEC) sensor for the determination of dopamine (DA) at nanomolar levels. The PEC sensor was based on a physical mixture of bismuth vanadate (BiVO4) with nanocomposite molecularly imprinted poly(acrylic acid) (MIP-AA) grafted onto MWCNTox by using the surface-controlled radical polymerization strategy with an INIFERTER reagent. XRD, diffuse reflectance spectroscopy (DRE), SEM, TEM, and TGA were employed to characterize the materials. Photoelectrochemical analyses were carried out with GCE/BiVO4/MIP-AA sensor under visible light using a potential of 0.6 V, phosphate buffer (0.1 mol L-1) at pH 7.0, and modifying the GCE with a film composed of monoclinic BiVO4 at 3.5 mg mL-1 and nanocomposite MIP prepared with acrylic acid (MIP-AA) at 0.1 mg mL-1. The proposed method using the GCE/BiVO4/MIP-AA sensor presented a limit of detection (LOD) of 2.9 nmol L-1, a linear range from 9.7 to 150 nmol L-1 and it was successfully applied for analysis of DA in urine samples using external calibration curve yielding recovery values of 90-105%. Additionally, the proposed PEC sensor allowed DA determination without interference from uric acid, ascorbic acid, epinephrine, norepinephrine, and other unwanted interferences.
Collapse
Affiliation(s)
- Felipe Augusto Gorla
- Federal Institute of Parana (IFPR), Campus Assis Chateaubriand, Avenida Cívica 475, Centro Cívico, Assis Chateaubriand, Parana, 85935-000, Brazil; State University of Londrina (UEL), Department of Chemistry, Rodovia Celso Garcia Cid, PR 445 Km 380, Londrina, Parana, 86050-482, Brazil
| | - Caroline Santana Dos Santos
- State University of Londrina (UEL), Department of Chemistry, Rodovia Celso Garcia Cid, PR 445 Km 380, Londrina, Parana, 86050-482, Brazil
| | - Roberto de Matos
- State University of Londrina (UEL), Department of Chemistry, Rodovia Celso Garcia Cid, PR 445 Km 380, Londrina, Parana, 86050-482, Brazil
| | - Roberta Antigo Medeiros
- State University of Londrina (UEL), Department of Chemistry, Rodovia Celso Garcia Cid, PR 445 Km 380, Londrina, Parana, 86050-482, Brazil
| | - Milena do Prado Ferreira
- State University of Londrina (UEL), Department of Chemistry, Rodovia Celso Garcia Cid, PR 445 Km 380, Londrina, Parana, 86050-482, Brazil
| | - Luan Pereira Camargo
- State University of Londrina (UEL), Department of Chemistry, Rodovia Celso Garcia Cid, PR 445 Km 380, Londrina, Parana, 86050-482, Brazil
| | - Luiz Henrique Dall'Antonia
- State University of Londrina (UEL), Department of Chemistry, Rodovia Celso Garcia Cid, PR 445 Km 380, Londrina, Parana, 86050-482, Brazil; National Institute of Science and Technology in Bioanalysis (INCTBio), State University of Campinas (UNICAMP), Department of Analytical Chemistry, Cidade Universitária Vaz S/n, Campinas, Sao Paulo 13083-970, Brazil
| | - César Ricardo Teixeira Tarley
- State University of Londrina (UEL), Department of Chemistry, Rodovia Celso Garcia Cid, PR 445 Km 380, Londrina, Parana, 86050-482, Brazil; National Institute of Science and Technology in Bioanalysis (INCTBio), State University of Campinas (UNICAMP), Department of Analytical Chemistry, Cidade Universitária Vaz S/n, Campinas, Sao Paulo 13083-970, Brazil.
| |
Collapse
|
39
|
Kong Y, Cai Z, Chen S, Ye X, Liu Z. Small molecule probes as versatile energy acceptors: A breakthrough in photoelectrochemical sensing for sulfur dioxide recording in rat brain. Biosens Bioelectron 2024; 243:115760. [PMID: 37866324 DOI: 10.1016/j.bios.2023.115760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
Microelectrode-based photoelectrochemical (PEC) sensing is a newly developed and promising analytical technique for in vivo analysis. However, the inadequate specificity in complex environment of living bodies restricted its further in vivo application. Herein, we utilized a small molecule probe as the energy acceptor to quench the photocurrent of CdTe quantum dots through energy transfer. The efficiency of energy transfer was modulated by the concentration of target SO2, resulting in changes in photocurrent. The chemical recognition reaction between small molecule probes and SO2 enhanced the specificity of PEC sensing, thus guaranteeing its in vivo applications. Furthermore, with the use of light addressing strategy, simultaneous detection in the multiple brain regions was implemented. The energy transfer based light addressable PEC microsensor achieved monitoring fluctuations of SO2 levels in multiple brain regions of rats with epilepsy.
Collapse
Affiliation(s)
- Yao Kong
- College of Health Science and Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, China
| | - Zirui Cai
- College of Health Science and Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, China
| | - Shizhen Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Science, Wuhan, 430071, China
| | - Xiaoxue Ye
- College of Health Science and Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, China.
| | - Zhihong Liu
- College of Health Science and Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, China
| |
Collapse
|
40
|
Pal S, Mahamiya V, Ray P, Sarkar A, Sultana F, Adhikary B, Chakraborty B, Show B. β-Bi 2O 3-Bi 2WO 6 Nanocomposite Ornated with meso-Tetraphenylporphyrin: Interfacial Electrochemistry and Photoresponsive Detection of Nanomolar Hexavalent Cr. Inorg Chem 2023; 62:21201-21223. [PMID: 38078695 DOI: 10.1021/acs.inorgchem.3c03213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Hexavalent chromium exposure via inhalation, ingestion, or both has been proven to adversely affect internal organs, induce toxic effects, cause allergies, and contribute to the development of cancer. It requires a substantial and challenging effort to detect several heavy metal ions conveniently, sensitively, and reliably by using materials that are easy to synthesize and have a high yield. The impact of light on the electrocatalytic oxidation/reduction process proves an environmentally friendly methodology with numerous applications in pollution control. The extensive use of photoactive materials in photoelectrochemical (PEC) sensors necessitates the development of stable and highly effective photoactive materials. Hence, the solvothermal synthesis of the organic-inorganic hybrid nanocomposite β-Bi2O3-Bi2WO6/H2TPP with varying weight percentages of meso-tetraphenylporphyrin (H2TPP) resulted in a selective electrode for electrocatalytic and photoelectrocatalytic reduction of Cr6+ on fluorine-doped tin oxide (FTO) by an adsorption-reduction mechanism. H2TPP increases the active site density and provides an effective surface area for efficient adsorption by providing both pyridinic- and pyrrolic-N atoms to β-Bi2O3-Bi2WO6/H2TPP. H2TPP could effectively adsorb Cr6+ in the β-Bi2O3-Bi2WO6/H2TPP composite system through electrostatic interaction, and the adsorbed Cr6+ ions were reduced to trivalent chromium Cr3+, resulting in promising Cr6+ sensing. The projected density of states and Bader charge calculations result in the electrostatic attraction among the N-2p orbital of H2TPP and the 3d and 4s orbitals of the Cr atom, resulting in the adsorption of the hexavalent Cr atom onto the active center of H2TPP. Moreover, the addition of H2TPP results in the development of a mesoporous surface that offers strong electrical conductivity, a substantial surface area, improved charge-mass transport, intimate contact between the electrolyte and catalyst, an extended fluorescence lifetime, and increased stability. The role of pH values was thoroughly investigated. All electrochemical and photoelectrochemical studies were carried out on 5 wt % H2TPP-ornated β-Bi2O3-Bi2WO6. Nanocomposite β-Bi2O3-Bi2WO6/5 wt % H2TPP demonstrated reliable cyclic stability, reproducibility, good sensitivity (8.005 μA mM cm-2), and a low limit of detection (LOD) (8.0 nM) toward photoelectrocatalytic reduction of Cr6+. The interference study in the presence of a few inorganic entities exhibited excellent selectivity. This tale amplification approach for developing a β-Bi2O3-Bi2WO6/5 wt % H2TPP nanocomposite system suggests a deeper understanding of the application of photoelectrocatalytic reduction of Cr6+ in environmental remediation with real samples under light irradiation.
Collapse
Affiliation(s)
- Sunanda Pal
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Vikram Mahamiya
- National Institute for Materials Science, Namiki1-1, Tsukuba, Ibaraki 305-0044, Japan
- Karpagam Academy of Higher Education, Pollachi Main Road, Eachanari Post, Coimbatore 641 021, Tamil Nadu, India
| | - Purbali Ray
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Abhimanyu Sarkar
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Farhin Sultana
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Bibhutosh Adhikary
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711 103, West Bengal, India
| | - Brahmananda Chakraborty
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | | |
Collapse
|
41
|
Hlaváčová T, Skládal P. Photoelectrochemical Enzyme Biosensor for Malate Using Quantum Dots on Indium Tin Oxide/Plastics as a Sensing Surface. BIOSENSORS 2023; 14:11. [PMID: 38248388 PMCID: PMC10813686 DOI: 10.3390/bios14010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/19/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024]
Abstract
A photoelectrochemical biosensor for malate was developed using an indium tin oxide (ITO) layer deposited on a poly(ethylene terephthalate) plastic sheet as a transparent electrode material for the immobilization of malate dehydrogenase together with CdTe quantum dots. Different approaches were compared for the construction of the bioactive layer; the highest response was achieved by depositing malate dehydrogenase together with CdTe nanoparticles and covering it with a Nafion/water (1:1) mixture. The amperometric signal of this biosensor was recorded during irradiation with a near-UV LED in the flow-through mode. The limit of detection was 0.28 mmol/L, which is adequate for analyzing malic acid levels in drinks such as white wines and fruit juices. The results confirm that the cheap ITO layer deposited on the plastic sheet after cutting into rectangular electrodes allows for the economic production of photoelectrochemical (bio)sensors. The combination of NAD+-dependent malate dehydrogenase with quantum dots was also compatible with such an ITO surface.
Collapse
Affiliation(s)
| | - Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic;
| |
Collapse
|
42
|
Huang YT, Xu KX, Liu XS, Li Z, Hu J, Zhang L, Zhu YC, Zhao WW, Chen HY, Xu JJ. Chemical Redox Cycling in an Organic Photoelectrochemical Transistor: Toward Dual Chemical and Electronic Amplification for Bioanalysis. Anal Chem 2023; 95:17912-17919. [PMID: 37972240 DOI: 10.1021/acs.analchem.3c04263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The organic photoelectrochemical transistor (OPECT) has been proven to be a promising platform to study the rich light-matter-bio interplay toward advanced biomolecular detection, yet current OPECT is highly restrained to its intrinsic electronic amplification. Herein, this work first combines chemical amplification with electronic amplification in OPECT for dual-amplified bioanalytics with high current gain, which is exemplified by human immunoglobulin G (HIgG)-dependent sandwich immunorecognition and subsequent alkaline phosphatase (ALP)-mediated chemical redox cycling (CRC) on a metal-organic framework (MOF)-derived BiVO4/WO3 gate. The target-dependent redox cycling of ascorbic acid (AA) acting as an effective electron donor could lead to an amplified modulation against the polymer channel, as indicated by the channel current. The as-developed bioanalysis could achieve sensitive HIgG detection with a good analytical performance. This work features the dual chemical and electronic amplification for OPECT bioanalysis and is expected to stimulate further interest in the design of CRC-assisted OPECT bioassays.
Collapse
Affiliation(s)
- Yu-Ting Huang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ke-Xin Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xing-Shi Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zheng Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jin Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ling Zhang
- School of Electronic and Information Engineering, Jinling Institute of Technology, Nanjing 211169, China
| | - Yuan-Cheng Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
43
|
Zheng YW, Yu SY, Li Z, Xu YT, Zhao WW, Jiang D, Chen HY, Xu JJ. High-Precision Single-Cell microRNA Therapy by a Functional Nanopipette with Sensitive Photoelectrochemical Feedback. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2307067. [PMID: 37972263 DOI: 10.1002/smll.202307067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/15/2023] [Indexed: 11/19/2023]
Abstract
This work proposes the concept of single-cell microRNA (miR) therapy and proof-of-concept by engineering a nanopipette for high-precision miR-21-targeted therapy in a single HeLa cell with sensitive photoelectrochemical (PEC) feedback. Targeting the representative oncogenic miR-21, the as-functionalized nanopipette permits direct intracellular drug administration with precisely controllable dosages, and the corresponding therapeutic effects can be sensitively transduced by a PEC sensing interface that selectively responds to the indicator level of cytosolic caspase-3. The experimental results reveal that injection of ca. 4.4 × 10-20 mol miR-21 inhibitor, i.e., 26488 copies, can cause the obvious therapeutic action in the targeted cell. This work features a solution to obtain the accurate knowledge of how a certain miR-drug with specific dosages treats the cells and thus provides an insight into futuristic high-precision clinical miR therapy using personalized medicine, provided that the prerequisite single-cell experiments are courses of personalized customization.
Collapse
Affiliation(s)
- You-Wei Zheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Si-Yuan Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zheng Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yi-Tong Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
44
|
Wang C, Song X, Wang Y, Xu R, Gao X, Shang C, Lei P, Zeng Q, Zhou Y, Chen B, Li P. A Solution-Processable Porphyrin-Based Hydrogen-Bonded Organic Framework for Photoelectrochemical Sensing of Carbon Dioxide. Angew Chem Int Ed Engl 2023; 62:e202311482. [PMID: 37675976 DOI: 10.1002/anie.202311482] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/08/2023]
Abstract
Detecting CO2 in complex gas mixtures is challenging due to the presence of competitive gases in the ambient atmosphere. Photoelectrochemical (PEC) techniques offer a solution, but material selection and specificity remain limiting. Here, we constructed a hydrogen-bonded organic framework material based on a porphyrin tecton decorated with diaminotriazine (DAT) moieties. The DAT moieties on the porphyrin molecules not only facilitate the formation of complementary hydrogen bonds between the tectons but also function as recognition sites in the resulting porous HOF materials for the selective adsorption of CO2 . In addition, the in-plane growth of FDU-HOF-2 into anisotropic molecular sheets with large areas of up to 23000 μm2 and controllable thickness between 0.298 and 2.407 μm were realized in yields of over 89 % by a simple solution-processing method. The FDU-HOF-2 can be directly grown and deposited onto different substrates including silica, carbon, and metal oxides by self-assembly in situ in formic acid. As a proof of concept, a screen-printing electrode deposited with FDU-HOF-2 was fabricate as a label-free photoelectrochemical (PEC) sensor for CO2 detection. Such a signal-off PEC sensor exhibits low detection limit for CO2 (2.3 ppm), reusability (at least 30 cycles), and long-term working stability (at least 30 days).
Collapse
Affiliation(s)
- Chen Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Xiyu Song
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Yao Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Rui Xu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Xiangyu Gao
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Cheng Shang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Peng Lei
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, Department of Chemistry and International Institute of Nanotechnology, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Qingdao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, Department of Chemistry and International Institute of Nanotechnology, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Yaming Zhou
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Banglin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Peng Li
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| |
Collapse
|
45
|
Ju P, Zhu YY, Jiang TT, Gao G, Wang SL, Jiang XW, Xu YT, Zhai XF, Zhou H, Zhao WW. DNA intercalation makes possible superior-gain organic photoelectrochemical transistor detection. Biosens Bioelectron 2023; 237:115543. [PMID: 37499378 DOI: 10.1016/j.bios.2023.115543] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/06/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
DNA intercalation has increasingly been studied for various scenario implementations due to the diverse functions of DNA/intercalators. Nascent organic photoelectrochemical transistor (OPECT) biosensing taking place in organic electronics and photoelectrochemical bioanalysis represents a promising technological frontier in the arena. In this work, we first devise DNA intercalation-enabled OPECT for miRNA detection with a superior gain up to 17100. Intercalation of [Ru(bpy)2dppz]2+ within the miRNA-initiated hybrid chain reaction (HCR)-derived duplex DNA is realized for producing anodic photocurrent upon light stimulation, causing the corresponding target-dependent alternation in gate voltage (VG) and hence the modulated channel current (IDS) of poly (3,4-ethylenedioxythiophene) doped with poly (styrene sulfonate) (PEDOT:PSS) under specific drain voltage (VDS) for quantitative miRNA-21 analysis, which shows a wide linear relationship and a low detection limit of 5.5 × 10-15 mol L-1. This study features the DNA intercalation-enabled organic electronics with superior gain and is envisaged to attract more attention to explore DNA adducts for innovative bioelectronics and biosensing, given the diverse DNA binders with multiple functions.
Collapse
Affiliation(s)
- Peng Ju
- Key Laboratory of Marine Eco-Environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, No. 6 Xianxialing Road, Qingdao, 266061, China; Shandong Key Laboratory of Marine Ecological Environment and Disaster Prevention and Mitigation, Qingdao, 266061, China; College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China
| | - Yu-Yue Zhu
- Key Laboratory of Marine Eco-Environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, No. 6 Xianxialing Road, Qingdao, 266061, China; State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China; College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Tian-Tong Jiang
- Key Laboratory of Marine Eco-Environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, No. 6 Xianxialing Road, Qingdao, 266061, China
| | - Ge Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China; Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Shi-Liang Wang
- Key Laboratory of Marine Eco-Environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, No. 6 Xianxialing Road, Qingdao, 266061, China; College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China
| | - Xing-Wu Jiang
- Key Laboratory of Marine Eco-Environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, No. 6 Xianxialing Road, Qingdao, 266061, China; State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China; Shandong Key Laboratory of Marine Ecological Environment and Disaster Prevention and Mitigation, Qingdao, 266061, China
| | - Yi-Tong Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xiao-Fan Zhai
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao, 266071, China.
| | - Hong Zhou
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
46
|
Dong X, Wang H, Ren X, Ma H, Fan D, Wu D, Wei Q, Ju H. Type-I heterojunction destruction by In situ formation of Bi 2S 3 for split-type photoelectrochemical aptasensor. Anal Chim Acta 2023; 1274:341541. [PMID: 37455074 DOI: 10.1016/j.aca.2023.341541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/07/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023]
Abstract
Development of new strategies in photoelectrochemical (PEC) sensors is an important way to realize sensitive detection of biomolecule. In this study, mesoporous silica nanospheres (MSNs)-assisted split-type PEC aptasensor with in situ generation of Bi2S3 was proposed to achieve reliable detection of prostate-specific antigen (PSA). To be more specific, this bioresponsive release system will release large amounts of Na2S by the reaction between PSA and aptamer that capped Na2S-loading MSNs. Next, the Na2S reacts with Bi to yield BiOI/BiOBr/Bi2S3 composite, which leads to an alteration in the electron-hole transfer pathway of the photoelectric material and a decrease in the response. As the PSA concentration increases, more Na2S can be released and lower photocurrent is obtained. The linear range under the optimal experimental conditions is 10 pg·mL-1-1 μg⋅mL-1, and the detection limit is 1.23 pg⋅mL-1, which has satisfactory stability and anti-interference.
Collapse
Affiliation(s)
- Xue Dong
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Hanyu Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Hongmin Ma
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Dawei Fan
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Huangxian Ju
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; State Key Laboratory of Analytical Chemistry for Life Science, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| |
Collapse
|
47
|
Li J, Liu S, Dong H, Li Y, Liu Q, Wang S, Wang P, Li Y, Li Y, Wei Q. A ZnIn 2S 4/Ag 2CO 3 Z-scheme heterostructure-based photoelectrochemical biosensor for neuron-specific enolase. Anal Bioanal Chem 2023; 415:5551-5562. [PMID: 37401964 DOI: 10.1007/s00216-023-04830-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/05/2023]
Abstract
An efficient photo-to-electrical signal is pivotal to photoelectrochemical (PEC) biosensors. In our work, a novel PEC biosensor was fabricated for the detection of neuron-specific enolase (NSE) based on a ZnIn2S4/Ag2CO3 Z-scheme heterostructure. Due to the overlapping band potentials of the ZnIn2S4 and Ag2CO3, the formed Z-scheme heterostructure can promote the charge separation and photoelectric conversion efficiency. And the concomitant Ag nanoparticles in Ag2CO3 provided multiple functions to enhance the PEC response of the Z-scheme heterostructure. It acts not only as a bridge for the transfer of carriers between ZnIn2S4 and Ag2CO3, promoting the constructed Z-scheme heterostructure, but also as electron mediators to accelerate the transfer of photogenerated carriers and improve the capture of visible light of the Z-scheme heterostructure by surface plasmon resonance (SPR). Compared with single Ag2CO3 and ZnIn2S4, the photocurrent of the designed Z-scheme heterostructure increased more than 20 and 60 times respectively. The fabricated PEC biosensor based on a ZnIn2S4/Ag2CO3 Z-scheme heterostructure exhibits sensitive detection to NSE, and presents a linear range of 50 fg·mL-1 ~ 200 ng·mL-1 with a limit of detection of 4.86 fg·mL-1. The proposed PEC biosensor provides a potential approach for clinical diagnosis.
Collapse
Affiliation(s)
- Jun Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, People's Republic of China
| | - Shanghua Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, People's Republic of China
| | - Hui Dong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, People's Republic of China
| | - Yueyuan Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, People's Republic of China.
| | - Qing Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, People's Republic of China
| | - Shujun Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, People's Republic of China
| | - Ping Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, People's Republic of China
| | - Yang Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, People's Republic of China
| | - Yueyun Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, People's Republic of China.
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| |
Collapse
|
48
|
Chi KN, Liu JW, Guan Y, Li QX, Yang T, Hu R, Yang YH. Effect of perylene assembly shapes on photoelectrochemical properties and ultrasensitive biosensing behaviors toward dopamine. Anal Bioanal Chem 2023; 415:5845-5854. [PMID: 37528268 DOI: 10.1007/s00216-023-04865-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 08/03/2023]
Abstract
In this study, a photoelectrochemical (PEC) sensor based on perylene diimide derivatives (PDIs) was developed for the ultrasensitive quantification of dopamine (DA). PDIs were able to form self-assembled semiconductor nanostructures by strong π-π stacking, suitable for photoactive substances. Moreover, the shape of the PDI significantly affected the PEC properties of these nanostructures. The results showed that amino PDI with two-dimensional (2D) wrinkled layered nanostructures exhibited superior PEC properties relative to one-dimensional (1D) nanorods and fiber-based nanostructures (methyl and carboxyl PDIs). Based on these results, a mechanism for PEC sensor action was then proposed. The presence of 2D amino-PDI resulted in accelerated charge separation and transport. Furthermore, dopamine acted as effective electron donor to cause an increase in photocurrent. The as-obtained sensor was then used to detect small molecules like DA. A blue light optimized sensor at an applied potential of 0.7 V showed a detection limit of 1.67 nM with a wide linear range of 5 nM to 10 μM. On the other hand, the sensor presented acceptable reliability in determining DA in real samples. A recovery rate between 97.99 and 101.0% was obtained. Overall, controlling the morphology of semiconductors can influence PEC performance, which is a useful finding for the future development of PEC sensors.
Collapse
Affiliation(s)
- Kuan-Neng Chi
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, People's Republic of China
| | - Jia-Wen Liu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, People's Republic of China
| | - Yan Guan
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, People's Republic of China
| | - Qiu-Xia Li
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, People's Republic of China.
| | - Tong Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, People's Republic of China
| | - Rong Hu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, People's Republic of China.
| | - Yun-Hui Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, People's Republic of China
| |
Collapse
|
49
|
Lv M, Zong C, Chen X, Lin X, Kong L, Li C. A cathodic photoelectrochemical biosensor based on CRISPR/Cas12a trans-cleavage mediated p-n heterojunction quenching mode for microRNA determination. Anal Chim Acta 2023; 1268:341399. [PMID: 37268340 DOI: 10.1016/j.aca.2023.341399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/04/2023]
Abstract
In this study, a cathodic photoelectrochemical (PEC) bioanalysis for sensitive determination of microRNA (miRNA) has been constructed based on CRISPR/Cas12a trans-cleavage mediated [(C6)2Ir(dcbpy)]+PF6- (C6 represents coumarin-6 and dcbpy represents 4,4'-dicarboxyl-2,2'-bipyridine)-sensitized NiO photocathode and p-n heterojunction quenching mode. The [(C6)2Ir(dcbpy)]+PF6--sensitized NiO photocathode exhibits a stable and dramatically improved photocurrent signal due to highly effective photosensitization of [(C6)2Ir(dcbpy)]+ PF6-. Then Bi2S3 quantum dots (Bi2S3 QDs) is captured on the photocathode, resulting in markedly quenching of the photocurrent. When target miRNA is specifically recognized by the hairpin DNA to stimulate the trans-cleavage activity of CRISPR/Cas12a, leading to the leave of the Bi2S3 QDs. The photocurrent is gradually recovered with the increasing target concentration. Thus, the quantitative signal response to target is achieved. Benefiting from excellent performance of NiO photocathode, intense quenching effect of p-n heterojunction and accurate recognition ability of CRISPR/Cas12a, the cathodic PEC biosensor shows a wider linear range over 0.1 fM-10 nM, with a low detection limit of 36 aM. Also, the biosensor exhibits satisfying stability and selectivity.
Collapse
Affiliation(s)
- Mengwei Lv
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Chengxue Zong
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Xiaodong Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Xiaojia Lin
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Linghui Kong
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Chunxiang Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
50
|
Wu X, Li Z, Hu J, Wang S, Wang Y, Lin P, Zhou H, Zhao WW. Metallointercalated-DNA Nanotubes as Functional Light Antenna for Organic Photoelectrochemical Transistor Biosensor with Minimum Background. Anal Chem 2023; 95:11800-11806. [PMID: 37506318 DOI: 10.1021/acs.analchem.3c02258] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Organic photoelectrochemical transistor (OPECT) biosensor with a removed background is desired but remains challenging. So far, scientists still lack a solution to this issue. The light-matter interplay is expected to achieve an advanced OPECT with unknown possibilities. Here, we address this challenge by tailoring a unique heterogeneous light antenna as the functional gating module and its cascade interaction with a proper channel, which is exemplified by bioinduced [Ru(bpy)2dppz]2+-intercalated DNA nanotubes (NTs)/NiO heterojunction and its modulation against a diethylenetriamine-treated poly(ethylene dioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) channel. Light stimulation of the antenna can generate the obvious cathodic photocurrent and, hence, modulate the channel, accomplishing OPECT with a minimal background and the hitherto highest current gain of 19 000. Linking with nucleic acid hybridization using microRNA-155 as the representative target, the device achieves sensitive biosensing down to 5.0 fM.
Collapse
Affiliation(s)
- Xiaodi Wu
- Key Laboratory of Optical-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zheng Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jin Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shumin Wang
- Key Laboratory of Optical-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yichao Wang
- School of Engineering, Design and Built Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Peng Lin
- Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hong Zhou
- Key Laboratory of Optical-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|