1
|
Pang Y, Li L, Lou Y, Wang X, Liu Z. Equilibrium and self-assembly of Janus particles at liquid-liquid interfaces for the film formation. Colloids Surf B Biointerfaces 2024; 244:114178. [PMID: 39216440 DOI: 10.1016/j.colsurfb.2024.114178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/10/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
This article investigates the equilibrium arrangement, self-assembly process, and subsequent curing of amphiphilic snowman-shaped Janus particles at the oil-water interface. The independent Janus particles are in vertical equilibrium state and the contact position of the oil-water interface is at the largest cross section of the particle's hydrophobic phase. Under the effect of the surface tension and the adsorption of materials, Janus particles may form particle combinations including the particle pairs and the particle triangle, whose inner and outer sides have the liquid surface exhibiting completely opposite contact angles. Particle combinations form stable parallel double-chain structures with diverse shapes after the self-assembly process. However, the single Janus particles attain a state of mechanical equilibrium under the influence of surrounding particles, enabling them to assemble into regular array structures. The relationship of interfacial tension coefficient between phases can be changed by adjusting the oil-water system, which leads to variations in the self-assembly speed and the final arrangement results. The thin-film with uniformly distributed vertical particles is achieved by replacing the underlying deionized water with a curing agent. Based on the understanding of the interactions between irregularly shaped Janus particles at the oil-water interface, it will be convenient to achieve the controllable self-assembly and widely applications of these particles.
Collapse
Affiliation(s)
- Yan Pang
- School of Mathematics, Statistics and Mechanics, Beijing University of Technology, Beijing 100124, China
| | - Lin Li
- College of Mechanical and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yi Lou
- College of Mechanical and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Xiang Wang
- School of Mathematics, Statistics and Mechanics, Beijing University of Technology, Beijing 100124, China.
| | - Zhaomiao Liu
- School of Mathematics, Statistics and Mechanics, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
2
|
Fei WL, Li SN, Xie JC, Li SM, Liu WZ, Zhang Q, Chen S, Wang YK, Liao LS. X-Type Ligands Effect on the Operational Stability of Heavy-Metal-Free Quantum Dot Light-Emitting Diodes. NANO LETTERS 2024; 24:14066-14072. [PMID: 39466907 DOI: 10.1021/acs.nanolett.4c04032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
ZnSeTe quantum dots (QDs) offer an efficient avenue for realizing heavy-metal-free light-emitting diodes (LEDs) that meet the Rec.2100 blue standard. Synthetic core-shell engineering has enabled big advances in the external quantum efficiency (EQE) of ZnSeTe QD-LEDs. However, the mechanisms behind the degradation of the operational stability of ZnSeTe QD-LEDs remain relatively unexplored. In this study, we explore the impact of ligand density and composition on both material and device stability. We developed a solid-film ligand exchange utilizing an inorganic X-type ligand (zinc chloride), revealing that the substitution of inorganic ligands for organic counterparts significantly influences the stability of both materials and devices.
Collapse
Affiliation(s)
- Wen-Long Fei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Sheng-Nan Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Jia-Chen Xie
- Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Sheng-Ming Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Wei-Zhi Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Qiao Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Song Chen
- Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Ya-Kun Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Liang-Sheng Liao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau SAR, China
| |
Collapse
|
3
|
Kim YC, Hoang S, Winey KI, Composto RJ. Size-Dependent Electrostatic Adsorption of Polymer-Grafted Gold Nanoparticles on Polyelectrolyte Brushes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61083-61095. [PMID: 39460750 DOI: 10.1021/acsami.4c14774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Designing a functional surface that selectively adsorbs nanoparticles based on their size and shape is essential for developing an advanced adsorption-based, postsynthesis nanoparticle separation device. We demonstrate selective adsorption of larger nanoparticles from solution onto a polyelectrolyte brush by tuning the salt concentration. Specifically, a positively charged polyelectrolyte brush is created by converting pyridine groups of poly(2-vinylpyridine) to n-methylpyridinium groups using methyl iodide. The adsorption kinetics and thermodynamics of poly(ethylene glycol)-grafted, negatively charged gold nanoparticles (diameters of 12 and 20 nm) were monitored as a function of salt concentration. In a salt-free solution, the polyelectrolyte brush adsorbs gold nanoparticles of both sizes. As the salinity increases, the areal number density of adsorbed nanoparticles monotonically decreases and becomes negligible at high salinity. Interestingly, there is an intermediate range of salt concentrations (i.e., 15-20 mM of NaCl) where the decrease in nanoparticle adsorption is more pronounced for smaller particles, leading to size-selective adsorption of the larger nanoparticles. As a further demonstration of selectivity, the polyelectrolyte brush is immersed in a binary mixture of 12 and 20 nm nanoparticles and found to selectively capture larger particles with ∼90% selectivity. In addition, the size distribution of as-synthesized gold nanoparticles, with an average diameter of 12 nm, was reduced by selectively removing larger particles by exposing the solution to polyelectrolyte brush surfaces. This study demonstrates the potential of a polyelectrolyte brush separation device to remove larger nanoparticles by controlling electrostatic interactions between polymer brushes and particles.
Collapse
Affiliation(s)
- Ye Chan Kim
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Son Hoang
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Karen I Winey
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Russell J Composto
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
4
|
Cho MG, Sytwu K, Rangel DaCosta L, Groschner C, Oh MH, Scott MC. Size-Resolved Shape Evolution in Inorganic Nanocrystals Captured via High-Throughput Deep Learning-Driven Statistical Characterization. ACS NANO 2024; 18:29736-29747. [PMID: 39425689 PMCID: PMC11526432 DOI: 10.1021/acsnano.4c09312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Precise size and shape control in nanocrystal synthesis is essential for utilizing nanocrystals in various industrial applications, such as catalysis, sensing, and energy conversion. However, traditional ensemble measurements often overlook the subtle size and shape distributions of individual nanocrystals, hindering the establishment of robust structure-property relationships. In this study, we uncover intricate shape evolutions and growth mechanisms in Co3O4 nanocrystal synthesis at a subnanometer scale, enabled by deep-learning-assisted statistical characterization. By first controlling synthetic parameters such as cobalt precursor concentration and water amount then using high resolution electron microscopy imaging to identify the geometric features of individual nanocrystals, this study provides insights into the interplay between synthesis conditions and the size-dependent shape evolution in colloidal nanocrystals. Utilizing population-wide imaging data encompassing over 441,067 nanocrystals, we analyze their characteristics and elucidate previously unobserved size-resolved shape evolution. This high-throughput statistical analysis is essential for representing the entire population accurately and enables the study of the size dependency of growth regimes in shaping nanocrystals. Our findings provide experimental quantification of the growth regime transition based on the size of the crystals, specifically (i) for faceting and (ii) from thermodynamic to kinetic, as evidenced by transitions from convex to concave polyhedral crystals. Additionally, we introduce the concept of an "onset radius," which describes the critical size thresholds at which these transitions occur. This discovery has implications beyond achieving nanocrystals with desired morphology; it enables finely tuned correlation between geometry and material properties, advancing the field of colloidal nanocrystal synthesis and its applications.
Collapse
Affiliation(s)
- Min Gee Cho
- National
Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California Berkeley, Berkeley, California 94720, United States
| | - Katherine Sytwu
- National
Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Luis Rangel DaCosta
- National
Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California Berkeley, Berkeley, California 94720, United States
| | - Catherine Groschner
- Department
of Materials Science and Engineering, University
of California Berkeley, Berkeley, California 94720, United States
| | - Myoung Hwan Oh
- Department
of Energy Engineering, KENTECH Institute for Environmental and Climate
Technology, Korea Institute of Energy Technology, Naju 58330, Republic of Korea
| | - Mary C. Scott
- National
Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
5
|
Chen S, Zu B, Wu L. Optical Applications of CuInSe 2 Colloidal Quantum Dots. ACS OMEGA 2024; 9:43288-43301. [PMID: 39494032 PMCID: PMC11525504 DOI: 10.1021/acsomega.4c03802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/22/2024] [Accepted: 07/09/2024] [Indexed: 11/05/2024]
Abstract
The distinctive chemical, physical, electrical, and optical properties of semiconductor quantum dots (QDs) make them a highly fascinating nanomaterial that has been extensively studied. The CuInSe2 (CIS) QDs demonstrates great potential as a nontoxic alternative to CdSe and PbSe QDs for realizing high-performance solution-processed semiconductor devices. The CIS QDs show strong light absorption and bright emission across the visible and infrared spectrum and have been designed to exhibit optical gain. The special characteristics of these properties are of great significance in the fields of solar energy conversion, display, and electronic devices. Here, we present a comprehensive overview of the potential applications of colloidal CIS QDs in various fields, with a particular focus on solar energy conversion (such as QD solar cells, QD-sensitized solar cells, and QD luminescence solar concentrators), solar-to-hydrogen production (such as photocatalytic and photoelectrochemical H2 production), and QD electronics (such as QD transistors, QD light-emitting diodes, and QD photodetectors). Furthermore, we offer our insights into the current challenges and future opportunities associated with CIS QDs for further research.
Collapse
Affiliation(s)
- Song Chen
- School of Chemistry and Materials
Science, Anhui Normal University, Wuhu 241002, People’s Republic of China
| | - Bingqian Zu
- School of Chemistry and Materials
Science, Anhui Normal University, Wuhu 241002, People’s Republic of China
| | - Liang Wu
- School of Chemistry and Materials
Science, Anhui Normal University, Wuhu 241002, People’s Republic of China
| |
Collapse
|
6
|
Tretiakov KV, Hyżorek K. Strong Impact of Particle Size Polydispersity on the Thermal Conductivity of Yukawa Crystals. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4955. [PMID: 39459660 PMCID: PMC11509527 DOI: 10.3390/ma17204955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
Control of thermal transport in colloidal crystals plays an important role in modern technologies. A deeper understanding of the governing heat transport processes in various systems, such as polydisperse colloidal crystals, is required. This study shows how strongly the particle size polydispersity of a model colloidal crystal influences the thermal conductivity. The thermal conductivity of model colloidal crystals has been calculated using molecular dynamics simulations. The model crystals created by particles interacting through Yukawa (screened-Coulomb) interaction are assumed to have a face-centered cubic structure. The influence of the Debye screening length, contact potential, and particle size polydispersity on the thermal conductivity of Yukawa crystals was investigated. It was found that an increase in particle size polydispersity causes a strong-almost fivefold-decrease in the thermal conductivity of Yukawa crystals. In addition, the obtained results showed that the effect of the particle size polydispersity on reducing the thermal conductivity of Yukawa crystals is stronger than changes in values of the Debye screening length or the contact potential.
Collapse
Affiliation(s)
- Konstantin V. Tretiakov
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
- Faculty of Technology, University of Kalisz, Nowy Świat 4, 62-800 Kalisz, Poland
| | - Krzysztof Hyżorek
- Game Physics Solutions—Krzysztof Hyżorek, Osiniec 33i, 62-200 Osiniec, Poland;
| |
Collapse
|
7
|
Bose P, Srikrishnarka P, Paatelainen M, Nonappa, Kini AR, Som A, Pradeep T. Nanocluster reaction-driven in situ transformation of colloidal nanoparticles to mesostructures. NANOSCALE 2024. [PMID: 39377419 DOI: 10.1039/d4nr02820a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Atomically precise noble metal nanoclusters (NCs) are molecular materials known for their precise composition, electronic structure, and unique optical properties, exhibiting chemical reactivity. Herein, we demonstrated a simple one-pot method for fabricating self-assembled Ag-Au bimetallic mesostructures using a reaction between 2-phenylethanethiol (PET)-protected atomically precise gold NCs and colloidal silver nanoparticles (Ag NPs) in a tunable reaction microenvironment. The reaction carried out in toluene at 45 °C with constant stirring at 250 revolutions per minute (RPM) yielded a thermally stable, micron-sized cuboidal mesocrystals of self-assembled AgAu@PET nanocrystals. However, the reaction in dichloromethane at room temperature with constant stirring at 250 RPM resulted in a self-assembled mesostructure of randomly close-packed AgAu@PET NPs. Using a host of experimental techniques, including optical and electron microscopy, optical absorption spectroscopy, and light scattering, we studied the nucleation and growth processes. Our findings highlight a strategy to utilize precision and plasmonic NP chemistry in tailored microenvironments, leading to customizable bimetallic hybrid three-dimensional nanomaterials with potential applications.
Collapse
Affiliation(s)
- Paulami Bose
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India.
| | - Pillalamarri Srikrishnarka
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India.
| | - Matias Paatelainen
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 3, FI-33720, Tampere, Finland
| | - Nonappa
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 3, FI-33720, Tampere, Finland
| | - Amoghavarsha Ramachandra Kini
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India.
| | - Anirban Som
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India.
| | - Thalappil Pradeep
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India.
| |
Collapse
|
8
|
Ding XX, Yang WZ, Yao SJ, Tong XY, Ling YX, Jiang ZG, Wang CF, Zhan CH. Au/Ag@polyoxometalate core-shell structures: from nanoparticles to atomically precise nanoclusters. Dalton Trans 2024; 53:15787-15794. [PMID: 39253864 DOI: 10.1039/d4dt02098g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
This review summarizes the progress in the research on polyoxometalate (POM)-decorated gold (Au) and silver (Ag) core-shell structures (Au/Ag@POMs), emphasizing their substantial application potential in catalysis, medicine, and biology. It outlines the central strategies for fabricating Au/Ag@POMs with diverse morphologies and dimensions, leveraging POMs as protective ligands and reducing agents as well as for ligand exchange. Of particular note is the focus on the analysis of the nanoparticle size, shape, and intricate architecture of POM shells using cryo-electron microscopy techniques. By integrating recent findings on atomically precise POM-stabilized nanoclusters, this review delves deeper into understanding surface interface structures, intrinsic atomic architectures, and electronic interactions between POM shells and metallic cores. Collectively, advancements in this field underscore significant strides in the controllable synthesis and precise structural manipulation of Au/Ag@POM architectures, thus paving the way for engineering high-performance metal catalysts.
Collapse
Affiliation(s)
- Xiu-Xia Ding
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, No.688, Yingbin Avenue, Jinhua, Zhejiang, 321004, China.
| | - Wen-Zhu Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, No.688, Yingbin Avenue, Jinhua, Zhejiang, 321004, China.
| | - Sheng-Jie Yao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, No.688, Yingbin Avenue, Jinhua, Zhejiang, 321004, China.
| | - Xin-Yu Tong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, No.688, Yingbin Avenue, Jinhua, Zhejiang, 321004, China.
| | - Yan-Xiang Ling
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, No.688, Yingbin Avenue, Jinhua, Zhejiang, 321004, China.
| | - Zhan-Guo Jiang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, No.688, Yingbin Avenue, Jinhua, Zhejiang, 321004, China.
| | - Chun-Feng Wang
- GuangDong Engineering Technology Research Center of Biomaterials, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China.
| | - Cai-Hong Zhan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, No.688, Yingbin Avenue, Jinhua, Zhejiang, 321004, China.
| |
Collapse
|
9
|
García-Lojo D, Rodal-Cedeira S, Núñez-Sánchez S, Arenas-Esteban D, Polavarapu L, Bals S, Pérez-Juste J, Pastoriza-Santos I. Pentatwinned AuAg Nanorattles with Tailored Plasmonic Properties for Near-Infrared Applications. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:8763-8772. [PMID: 39347470 PMCID: PMC11428089 DOI: 10.1021/acs.chemmater.4c01443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024]
Abstract
Noble metal nanoparticles, particularly gold and silver nanoparticles, have garnered significant attention due to their ability to manipulate light at the nanoscale through their localized surface plasmon resonance (LSPR). While their LSPRs below 1100 nm were extensively exploited in a wide range of applications, their potential in the near-infrared (NIR) region, crucial for optical communication and sensing, remains relatively underexplored. One primary reason is likely the limited strategies available to obtain highly stable plasmonic nanoparticles with tailored optical properties in the NIR region. Herein, we synthesized AuAg nanorattles (NRTs) with tailored and narrow plasmonic responses ranging from 1000 to 3000 nm. Additionally, we performed comprehensive characterization, employing advanced electron microscopy and various spectroscopic techniques, coupled with finite difference time domain (FDTD) simulations, to elucidate their optical properties. Notably, we unveiled the main external and internal LSPR modes by combining electron energy-loss spectroscopy (EELS) with surface-enhanced Raman scattering (SERS). Furthermore, we demonstrated through surface-enhanced infrared absorption spectroscopy (SEIRA) that the NRTs can significantly enhance the infrared signals of a model molecule. This study not only reports the synthesis of plasmonic NRTs with tunable LSPRs over the entire NIR range but also demonstrates their potential for NIR sensing and optical communication.
Collapse
Affiliation(s)
- Daniel García-Lojo
- CINBIO, Universidade de Vigo, Departamento de Química Física, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310 Vigo, Spain
| | - Sergio Rodal-Cedeira
- CINBIO, Universidade de Vigo, Departamento de Química Física, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310 Vigo, Spain
| | - Sara Núñez-Sánchez
- Centro de Física das Universidades do Minho e do Porto (CF-UM-UP), Universidade do Minho, 4710-057 Braga, Portugal
| | | | - Lakshminarayana Polavarapu
- CINBIO, Universidade de Vigo, Departamento de Química Física, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
| | - Sara Bals
- EMAT, University of Antwerp, Groenenborgerlaa 171, 2020 Antwerp, Belgium
| | - Jorge Pérez-Juste
- CINBIO, Universidade de Vigo, Departamento de Química Física, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310 Vigo, Spain
| | - Isabel Pastoriza-Santos
- CINBIO, Universidade de Vigo, Departamento de Química Física, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310 Vigo, Spain
| |
Collapse
|
10
|
Lach M, Rütten M, Beck T. Tunable crystalline assemblies using surface-engineered protein cages. Protein Sci 2024; 33:e5153. [PMID: 39167037 PMCID: PMC11337932 DOI: 10.1002/pro.5153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/04/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024]
Abstract
Assembly of nanoparticles into superlattices yields nanomaterials with novel properties. We have recently shown that engineered protein cages are excellent building blocks for the assembly of inorganic nanoparticles into highly structured hybrid materials, with unprecedented precision. In this study, we show that the protein matrix, composed of surface-charged protein cages, can be readily tuned to achieve a number of different crystalline assemblies. Simply by altering the assembly conditions, different types of crystalline structures were produced, without the need to further modify the cages. Future work can utilize these new protein scaffolds to create nanoparticle superlattices with various assembly geometries and thus tune the functionality of these hybrid materials.
Collapse
Affiliation(s)
- Marcel Lach
- Department of Chemistry, Institute of Physical ChemistryUniversity of HamburgHamburgGermany
| | - Michael Rütten
- Department of Chemistry, Institute of Physical ChemistryUniversity of HamburgHamburgGermany
| | - Tobias Beck
- Department of Chemistry, Institute of Physical ChemistryUniversity of HamburgHamburgGermany
- The Hamburg Centre for Ultrafast ImagingHamburgGermany
| |
Collapse
|
11
|
Lee DW, Oh S, Lee DHD, Woo HY, Ahn J, Kim SH, Jung BK, Choi Y, Kim D, Yu MY, Park CG, Yun H, Kim TH, Han MJ, Oh SJ, Paik T. Ultrathin, High-Aspect-Ratio Bismuth Sulfohalide Nanowire Bundles for Solution-Processed Flexible Photodetectors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403463. [PMID: 38962927 PMCID: PMC11434017 DOI: 10.1002/advs.202403463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/12/2024] [Indexed: 07/05/2024]
Abstract
In this study, a novel synthesis of ultrathin, highly uniform colloidal bismuth sulfohalide (BiSX where X = Cl, Br, I) nanowires (NWs) and NW bundles (NBs) for room-temperature and solution-processed flexible photodetectors are presented. High-aspect-ratio bismuth sulfobromide (BiSBr) NWs are synthesized via a heat-up method using bismuth bromide and elemental S as precursors and 1-dodecanethiol as a solvent. Bundling of the BiSBr NWs occurs upon the addition of 1-octadecene as a co-solvent. The morphologies of the BiSBr NBs are easily tailored from sheaf-like structures to spherulite nanostructures by changing the solvent ratio. The optical bandgaps are modulated from 1.91 (BiSCl) and 1.88 eV (BiSBr) to 1.53 eV (BiSI) by changing the halide compositions. The optical bandgap of the ultrathin BiSBr NWs and NBs exhibits blueshift, whose origin is investigated through density functional theory-based first-principles calculations. Visible-light photodetectors are fabricated using BiSBr NWs and NBs via solution-based deposition followed by solid-state ligand exchanges. High photo-responsivities and external quantum efficiencies (EQE) are obtained for BiSBr NW and NB films even under strain, which offer a unique opportunity for the application of the novel BiSX NWs and NBs in flexible and environmentally friendly optoelectronic devices.
Collapse
Affiliation(s)
- Da Won Lee
- Department of Intelligent Semiconductor Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Seongkeun Oh
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Dong Hyun David Lee
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Ho Young Woo
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Junhyuk Ahn
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Seung Hyeon Kim
- Department of Intelligent Semiconductor Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Byung Ku Jung
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Yoonjoo Choi
- Department of Intelligent Semiconductor Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Dagam Kim
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Mi Yeon Yu
- Department of Intelligent Semiconductor Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
| | - Hongseok Yun
- Department of Chemistry and Research Institute for Convergence of Basic Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Myung Joon Han
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Soong Ju Oh
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Taejong Paik
- Department of Intelligent Semiconductor Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| |
Collapse
|
12
|
Chen H, Xiao T, Xia Y, Song H, Xi X, Huang X, Yang D, Li T, Sun Z, Dong A. Quantifying Interface-Performance Relationships in Electrochemical CO 2 Reduction through Mixed-Dimensional Assembly of Nanocrystal-on-Nanowire Superstructures. Angew Chem Int Ed Engl 2024:e202410039. [PMID: 39205394 DOI: 10.1002/anie.202410039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Fine-tuning the interfacial sites within heterogeneous catalysts is pivotal for unravelling the intricate structure-property relationship and optimizing their catalytic performance. Herein, a simple and versatile mixed-dimensional assembly approach is proposed to create nanocrystal-on-nanowire superstructures with precisely adjustable numbers of biphasic interfaces. This method leverages an efficient self-assembly process in which colloidal nanocrystals spontaneously organize onto Ag nanowires, driven by the solvophobic effect. Importantly, varying the ratio of the two components during assembly allows for accurate control over both the quantity and contact perimeter of biphasic interfaces. As a proof-of-concept demonstration, a series of Au-on-Ag superstructures with varying numbers of Au/Ag interfaces are constructed and employed as electrocatalysts for electrochemical CO2-to-CO conversion. Experimental results reveal a logarithmic linear relationship between catalytic activity and the number of Au/Ag interfaces per unit mass of Au-on-Ag superstructures. This work presents a straightforward approach for precise interface engineering, paving the way for systematic exploration of interface-dependent catalytic behaviors in heterogeneous catalysts.
Collapse
Affiliation(s)
- Hushui Chen
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and iChEM, Fudan University, Shanghai, 200438, China
| | - Taishi Xiao
- School of Microelectronics and State Key Laboratory of ASIC and System, Fudan University, Shanghai, 200438, China
| | - Yan Xia
- State Key Laboratory of Molecule Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Hengyao Song
- State Key Laboratory of Molecule Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Xiangyun Xi
- State Key Laboratory of Molecule Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Xianwu Huang
- State Key Laboratory of Molecule Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Dong Yang
- State Key Laboratory of Molecule Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Tongtao Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and iChEM, Fudan University, Shanghai, 200438, China
| | - Zhengzong Sun
- School of Microelectronics and State Key Laboratory of ASIC and System, Fudan University, Shanghai, 200438, China
| | - Angang Dong
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and iChEM, Fudan University, Shanghai, 200438, China
| |
Collapse
|
13
|
Price EK, Tisdale WA. Predictive Modeling of Nanocrystal Orientation in Superlattices: Insights from Ligand Entropy. NANO LETTERS 2024; 24:9983-9989. [PMID: 39078514 DOI: 10.1021/acs.nanolett.4c02636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
The self-assembly of nanocrystals (NCs) into close-packed, ordered superlattices (SLs) is of broad, engineering interest. The coherent orientation of polyhedral nanocrystals within NC SLs enhances electronic, magnetic, and vibrational coupling, leading to a variety of emergent phenomena. Here, we show that coherent orientation of polyhedral NCs in many SLs can be understood simply by considering its effect on the conformational entropy of surface ligands. We report the predicted nanocrystal orientations and entropic driving force to orient for a broad range of nanocrystal shapes and superlattice unit cells, and we show that ligand entropy is sufficient to reproduce a host of reported experimental and computational observations. We additionally use this framework to predict the expected distribution of interstitial species such as solvent or unbound ligands in an oriented NC SL. This work offers intuition for understanding the orientation of NCs in superlattices and a future framework for analyzing multinary structures.
Collapse
Affiliation(s)
- Eliza K Price
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - William A Tisdale
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
14
|
Mawaddah FAN, Bisri SZ. Advancing Silver Bismuth Sulfide Quantum Dots for Practical Solar Cell Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1328. [PMID: 39195366 DOI: 10.3390/nano14161328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/29/2024]
Abstract
Colloidal quantum dots (CQDs) show unique properties that distinguish them from their bulk form, the so-called quantum confinement effects. This feature manifests in tunable size-dependent band gaps and discrete energy levels, resulting in distinct optical and electronic properties. The investigation direction of colloidal quantum dots (CQDs) materials has started switching from high-performing materials based on Pb and Cd, which raise concerns regarding their toxicity, to more environmentally friendly compounds, such as AgBiS2. After the first breakthrough in solar cell application in 2016, the development of AgBiS2 QDs has been relatively slow, and many of the fundamental physical and chemical properties of this material are still unknown. Investigating the growth of AgBiS2 QDs is essential to understanding the fundamental properties that can improve this material's performance. This review comprehensively summarizes the synthesis strategies, ligand choice, and solar cell fabrication of AgBiS2 QDs. The development of PbS QDs is also highlighted as the foundation for improving the quality and performance of AgBiS2 QD. Furthermore, we prospectively discuss the future direction of AgBiS2 QD and its use for solar cell applications.
Collapse
Affiliation(s)
- Fidya Azahro Nur Mawaddah
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi 184-8588, Tokyo, Japan
| | - Satria Zulkarnaen Bisri
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi 184-8588, Tokyo, Japan
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako 351-0198, Saitama, Japan
| |
Collapse
|
15
|
Almutlaq J, Liu Y, Mir WJ, Sabatini RP, Englund D, Bakr OM, Sargent EH. Engineering colloidal semiconductor nanocrystals for quantum information processing. NATURE NANOTECHNOLOGY 2024; 19:1091-1100. [PMID: 38514820 DOI: 10.1038/s41565-024-01606-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/10/2024] [Indexed: 03/23/2024]
Abstract
Quantum information processing-which relies on spin defects or single-photon emission-has shown quantum advantage in proof-of-principle experiments including microscopic imaging of electromagnetic fields, strain and temperature in applications ranging from battery research to neuroscience. However, critical gaps remain on the path to wider applications, including a need for improved functionalization, deterministic placement, size homogeneity and greater programmability of multifunctional properties. Colloidal semiconductor nanocrystals can close these gaps in numerous application areas, following years of rapid advances in synthesis and functionalization. In this Review, we specifically focus on three key topics: optical interfaces to long-lived spin states, deterministic placement and delivery for sensing beyond the standard quantum limit, and extensions to multifunctional colloidal quantum circuits.
Collapse
Affiliation(s)
- Jawaher Almutlaq
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yuan Liu
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA
| | - Wasim J Mir
- KAUST Catalysis Center, Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Randy P Sabatini
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada.
| | - Dirk Englund
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Osman M Bakr
- KAUST Catalysis Center, Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada.
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
16
|
Yue L, Li J, Yao C, Chen J, Yan C, Wang X, Cao J. Nonequilibrium Lattice Dynamics of Individual and Attached PbSe Quantum Dots under Photoexcitation. J Phys Chem Lett 2024; 15:7667-7673. [PMID: 39037601 DOI: 10.1021/acs.jpclett.4c01541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Quantum dot (QD) solids are emerging materials for many optoelectronic applications. To enhance interdot coupling and charge transport, surface ligands can be removed, allowing individual QDs to be attached along specific crystal orientations (termed "oriented attachment"). Optimizing the electronic and optical properties of QD solids demands a comprehensive understanding of the nanoscale energy flow in individual and attached QDs under photoexcitation. In this work, we employed ultrafast electron diffraction to directly measure how oriented attachment along ⟨100⟩ directions affects the nonequilibrium lattice dynamics of lead selenide QDs. The oriented attachment anisotropically alters the ultrafast energy relaxation along specific crystal axes. Along the ⟨100⟩ directions, both the lattice deformation and atomistic random motions are suppressed in comparison with those of individual QDs. Conversely, the effects are enhanced along the unattached ⟨111⟩ directions due to ligand removal. The oriented attachment switches the major lattice thermalization pathways from ⟨100⟩ to ⟨111⟩ directions.
Collapse
Affiliation(s)
- Luye Yue
- Center for Ultrafast Science and Technology, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingjun Li
- Center for Ultrafast Science and Technology, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Changyuan Yao
- Center for Ultrafast Science and Technology, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Chen
- Center for Ultrafast Science and Technology, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chang Yan
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuan Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Jianming Cao
- Center for Ultrafast Science and Technology, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Physics Department and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| |
Collapse
|
17
|
Otsuka Y, Kondo H, Suzuki K. Facile Synthesis of Novel Short-Chain Ligand-Capped Colloidal Metal Oxide Nanoparticles for Printed Flexible Devices. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36567-36576. [PMID: 38950327 DOI: 10.1021/acsami.4c04975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Colloidal metal oxide nanoparticles are key materials for achieving cost-effective and large-scale production of flexible devices, as they enable the formation of functional oxide thin films at low temperatures (<400 °C) through printing techniques such as inkjet printing, gravure coating, and microcontact printing. The conventional solvothermal synthesis of colloidal metal oxide nanoparticles through the thermal decomposition of precursors results in particles with bulky, long-chain ligands on their surfaces, which hinder the formation of dense oxide films when depositing the colloidal metal oxide nanoparticles. Herein, we have developed a simple and versatile method for synthesizing colloidal metal oxide nanoparticles using base-induced hydrolysis and the condensation of metal acetates as precursors. Various binary and ternary colloidal metal oxide nanoparticles (CuO, Mn3O4, Co3O4, CeO2, In2O3, Co1.8Mn1.2O4) were synthesized using short-chain acetate ligands on their surfaces. The thin acetate ligand-containing colloidal Co1.8Mn1.2O4 nanoparticle film exhibited lower resistivity than the same with long-chain oleate ligands. The films coated onto a polyimide substrate formed a flexible negative temperature coefficient thermistor that exhibited the temperature dependence of resistance comparable to bulk materials with a bending durability of up to 5 mm radius. These findings highlight the effectiveness of utilizing colloidal metal oxide nanoparticles with short-chain ligands in flexible devices.
Collapse
Affiliation(s)
- Yusuke Otsuka
- Murata Manufacturing Co., Ltd., 1-10-1 Higashikotari, Nagaokakyo-shi, Kyoto 617-8555, Japan
| | - Hiroyuki Kondo
- Murata Manufacturing Co., Ltd., 1-10-1 Higashikotari, Nagaokakyo-shi, Kyoto 617-8555, Japan
| | - Keigo Suzuki
- Murata Manufacturing Co., Ltd., 1-10-1 Higashikotari, Nagaokakyo-shi, Kyoto 617-8555, Japan
| |
Collapse
|
18
|
Kusterer R, Krohn S, Wehrmeister M, Strelow C, Kipp T, Mews A. A closer look at the effects of oxygen on the photoluminescence properties of CdSe/CdS quantum dots. J Chem Phys 2024; 161:024706. [PMID: 38990119 DOI: 10.1063/5.0212160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/18/2024] [Indexed: 07/12/2024] Open
Abstract
We present a detailed study on the effects of oxygen on the photoluminescence properties of CdSe/CdS quantum dots (QDs). We investigated the role of oxygen by performing confocal measurements on thin films as well as on single particles while rapidly exchanging the gaseous environment between oxygen and an inert gas atmosphere. We found that the deionization of negatively charged particles by oxygen depends on both the excitation power and the shell thickness of the QDs. For QDs with thin shells, which exhibit strong photoluminescence blinking, we observed that the presence of oxygen affects both band-edge carrier blinking and hot-carrier blinking.
Collapse
Affiliation(s)
- Roman Kusterer
- Institut für Physikalische Chemie, Universität Hamburg, Grindelalle 117, 20146 Hamburg, Germany
| | - Sonja Krohn
- Institut für Physikalische Chemie, Universität Hamburg, Grindelalle 117, 20146 Hamburg, Germany
| | - Moritz Wehrmeister
- Institut für Physikalische Chemie, Universität Hamburg, Grindelalle 117, 20146 Hamburg, Germany
| | - Christian Strelow
- Institut für Physikalische Chemie, Universität Hamburg, Grindelalle 117, 20146 Hamburg, Germany
| | - Tobias Kipp
- Institut für Physikalische Chemie, Universität Hamburg, Grindelalle 117, 20146 Hamburg, Germany
| | - Alf Mews
- Institut für Physikalische Chemie, Universität Hamburg, Grindelalle 117, 20146 Hamburg, Germany
| |
Collapse
|
19
|
Li X, Zhao J, Xiao H, Zhang H, Zhou M, Zhang X, Yan X, Tang A, Chen L. Multiparticle Synergistic Electrophoretic Deposition Strategy for High-Efficiency and High-Resolution Displays. ACS NANO 2024; 18:17715-17724. [PMID: 38916440 DOI: 10.1021/acsnano.4c03005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Colloidal nanoparticles offer unique photoelectric properties, making them promising for functional applications. Multiparticle systems exhibit synergistic effects on the functional properties of their individual components. However, precisely controlled assembly of multiparticles to form patterned building blocks for solid-state devices remains challenging. Here, we demonstrate a versatile multiparticle synergistic electrophoretic deposition (EPD) strategy to achieve controlled assembly, high-efficiency, and high-resolution patterns. Through elaborate surface design and charge regulation of nanoparticles, we achieve precise control over the particle distribution (gradient or homogeneous structure) in multiparticle films using the EPD technique. The multiparticle system integrates silicon oxide and titanium oxide nanoparticles, synergistically enhancing the emission efficiency of quantum dots to a high level in the field. Furthermore, we demonstrate the superiority of our strategy to integrate multiparticle into large-area full-color display panels with a high resolution over 1000 pixels per inch. The results suggest great potential for developing multiparticle systems and expanding diverse functional applications.
Collapse
Affiliation(s)
- Xuefei Li
- Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd., Shenzhen 518107, China
| | - Jinyang Zhao
- Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd., Shenzhen 518107, China
| | - Hui Xiao
- Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd., Shenzhen 518107, China
| | - Hangchuan Zhang
- Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd., Shenzhen 518107, China
| | - Miao Zhou
- Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd., Shenzhen 518107, China
| | - Xin Zhang
- Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd., Shenzhen 518107, China
| | - Xiaolin Yan
- Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd., Shenzhen 518107, China
| | - Aiwei Tang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Lixuan Chen
- Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd., Shenzhen 518107, China
| |
Collapse
|
20
|
Khatoon N, Subedi B, Chrisey DB. Synthesis of Silicon and Germanium Oxide Nanostructures via Photonic Curing; a Facile Approach to Scale Up Fabrication. ChemistryOpen 2024; 13:e202300260. [PMID: 38308174 PMCID: PMC11230936 DOI: 10.1002/open.202300260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/24/2024] [Indexed: 02/04/2024] Open
Abstract
Silicon and Germanium oxide (SiOx and GeOx) nanostructures are promising materials for energy storage applications due to their potentially high energy density, large lithiation capacity (~10X carbon), low toxicity, low cost, and high thermal stability. This work reports a unique approach to achieving controlled synthesis of SiOx and GeOx nanostructures via photonic curing. Unlike conventional methods like rapid thermal annealing, quenching during pulsed photonic curing occurs rapidly (sub-millisecond), allowing the trapping of metastable states to form unique phases and nanostructures. We explored the possible underlying mechanism of photonic curing by incorporating laws of photophysics, photochemistry, and simulated temperature profile of thin film. The results show that photonic curing of spray coated 0.1 M molarity Si and Ge Acetyl Acetate precursor solution, at total fluence 80 J cm-2 can yield GeOx and SiOx nanostructures. The as-synthesized nanostructures are ester functionalized due to photoinitiated chemical reactions in thin film during photonic curing. Results also showed that nanoparticle size changes from ~48 nm to ~11 nm if overall fluence is increased by increasing the number of pulses. These results are an important contribution towards large-scale synthesis of the Ge and Si oxide nanostructured materials which is necessary for next-generation energy storage devices.
Collapse
Affiliation(s)
- Najma Khatoon
- Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118
| | - Binod Subedi
- Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118
| | - Douglas B Chrisey
- Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118
| |
Collapse
|
21
|
Çiçek Özkul SL, Kaba İ, Ozdemir Olgun FA. Unravelling the potential of magnetic nanoparticles: a comprehensive review of design and applications in analytical chemistry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3620-3640. [PMID: 38814019 DOI: 10.1039/d4ay00206g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The study of nanoparticles has emerged as a prominent research field, offering a wide range of applications across various disciplines. With their unique physical and chemical properties within the size range of 1-100 nm, nanoparticles have garnered significant attention. Among them, magnetic nanoparticles (MNPs) exemplify promising super-magnetic characteristics, especially in the 10-20 nm size range, making them ideal for swift responses to applied magnetic fields. In this comprehensive review, we focus on MNPs suitable for analytical purposes. We investigate and classify them based on their analytical applications, synthesis routes, and overall utility, providing a detailed literature summary. By exploring a diverse range of MNPs, this review offers valuable insights into their potential application in various analytical scenarios.
Collapse
Affiliation(s)
- Serra Lale Çiçek Özkul
- Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, Maslak Campus, Sariyer, Istanbul, Turkey
| | - İbrahim Kaba
- Marmara University, Faculty of Engineering, Department of Chemical Engineering, Maltepe, Istanbul, Turkey
| | - Fatos Ayca Ozdemir Olgun
- Istanbul Health and Technology University, Faculty of Engineering and Natural Sciences, Department of Chemical Engineering, Sutluce, Beyoglu, Istanbul, Turkey.
| |
Collapse
|
22
|
Bassani CL, van Anders G, Banin U, Baranov D, Chen Q, Dijkstra M, Dimitriyev MS, Efrati E, Faraudo J, Gang O, Gaston N, Golestanian R, Guerrero-Garcia GI, Gruenwald M, Haji-Akbari A, Ibáñez M, Karg M, Kraus T, Lee B, Van Lehn RC, Macfarlane RJ, Mognetti BM, Nikoubashman A, Osat S, Prezhdo OV, Rotskoff GM, Saiz L, Shi AC, Skrabalak S, Smalyukh II, Tagliazucchi M, Talapin DV, Tkachenko AV, Tretiak S, Vaknin D, Widmer-Cooper A, Wong GCL, Ye X, Zhou S, Rabani E, Engel M, Travesset A. Nanocrystal Assemblies: Current Advances and Open Problems. ACS NANO 2024; 18:14791-14840. [PMID: 38814908 DOI: 10.1021/acsnano.3c10201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
We explore the potential of nanocrystals (a term used equivalently to nanoparticles) as building blocks for nanomaterials, and the current advances and open challenges for fundamental science developments and applications. Nanocrystal assemblies are inherently multiscale, and the generation of revolutionary material properties requires a precise understanding of the relationship between structure and function, the former being determined by classical effects and the latter often by quantum effects. With an emphasis on theory and computation, we discuss challenges that hamper current assembly strategies and to what extent nanocrystal assemblies represent thermodynamic equilibrium or kinetically trapped metastable states. We also examine dynamic effects and optimization of assembly protocols. Finally, we discuss promising material functions and examples of their realization with nanocrystal assemblies.
Collapse
Affiliation(s)
- Carlos L Bassani
- Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Greg van Anders
- Department of Physics, Engineering Physics, and Astronomy, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Uri Banin
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Dmitry Baranov
- Division of Chemical Physics, Department of Chemistry, Lund University, SE-221 00 Lund, Sweden
| | - Qian Chen
- University of Illinois, Urbana, Illinois 61801, USA
| | - Marjolein Dijkstra
- Soft Condensed Matter & Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - Michael S Dimitriyev
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Efi Efrati
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jordi Faraudo
- Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, E-08193 Bellaterra, Barcelona, Spain
| | - Oleg Gang
- Department of Chemical Engineering, Columbia University, New York, New York 10027, USA
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Nicola Gaston
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Physics, The University of Auckland, Auckland 1142, New Zealand
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), 37077 Göttingen, Germany
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, UK
| | - G Ivan Guerrero-Garcia
- Facultad de Ciencias de la Universidad Autónoma de San Luis Potosí, 78295 San Luis Potosí, México
| | - Michael Gruenwald
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Amir Haji-Akbari
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, USA
| | - Maria Ibáñez
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Matthias Karg
- Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Tobias Kraus
- INM - Leibniz-Institute for New Materials, 66123 Saarbrücken, Germany
- Saarland University, Colloid and Interface Chemistry, 66123 Saarbrücken, Germany
| | - Byeongdu Lee
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Reid C Van Lehn
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53717, USA
| | - Robert J Macfarlane
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Bortolo M Mognetti
- Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Arash Nikoubashman
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany
- Institut für Theoretische Physik, Technische Universität Dresden, 01069 Dresden, Germany
| | - Saeed Osat
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), 37077 Göttingen, Germany
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA
| | - Grant M Rotskoff
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Leonor Saiz
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA
| | - An-Chang Shi
- Department of Physics & Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Sara Skrabalak
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - Ivan I Smalyukh
- Department of Physics and Chemical Physics Program, University of Colorado, Boulder, Colorado 80309, USA
- International Institute for Sustainability with Knotted Chiral Meta Matter, Hiroshima University, Higashi-Hiroshima City 739-0046, Japan
| | - Mario Tagliazucchi
- Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Ciudad Autónoma de Buenos Aires, Buenos Aires 1428 Argentina
| | - Dmitri V Talapin
- Department of Chemistry, James Franck Institute and Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Alexei V Tkachenko
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Sergei Tretiak
- Theoretical Division and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - David Vaknin
- Iowa State University and Ames Lab, Ames, Iowa 50011, USA
| | - Asaph Widmer-Cooper
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Xingchen Ye
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - Shan Zhou
- Department of Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701, USA
| | - Eran Rabani
- Department of Chemistry, University of California and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- The Raymond and Beverly Sackler Center of Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Michael Engel
- Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Alex Travesset
- Iowa State University and Ames Lab, Ames, Iowa 50011, USA
| |
Collapse
|
23
|
Jin G, Zeng Y, Liu X, Wang Q, Wei J, Liu F, Li H. Synthesis and Optical Properties of CdSeTe/CdZnS/ZnS Core/Shell Nanorods. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:989. [PMID: 38869614 PMCID: PMC11173580 DOI: 10.3390/nano14110989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
Semiconductor nanorods (NRs) have great potential in optoelectronic devices for their unique linearly polarized luminescence which can break the external quantum efficiency limit of light-emitting diodes (LEDs) based on spherical quantum dots. Significant progress has been made for developing red, green, and blue light-emitting NRs. However, the synthesis of NRs emitting in the deep red region, which can be used for accurate red LED displays and promoting plant growth, is currently less explored. Here, we report the synthesis of deep red CdSeTe/CdZnS/ZnS dot-in-rod core/shell NRs via a seeded growth method, where the doping of Te in the CdSe core can extend the NR emission to the deep red region. The rod-shaped CdZnS shell is grown over CdSeTe seeds. By growing a ZnS passivation shell, the CdSeTe/CdZnS/ZnS NRs exhibit a photoluminescence emission peak at 670 nm, a full width at a half maximum of 61 nm and a photoluminescence quantum yield of 45%. The development of deep red NRs can greatly extend the applications of anisotropic nanocrystals.
Collapse
Affiliation(s)
- Geyu Jin
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; (G.J.); (Y.Z.); (X.L.); (J.W.)
| | - Yicheng Zeng
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; (G.J.); (Y.Z.); (X.L.); (J.W.)
| | - Xiao Liu
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; (G.J.); (Y.Z.); (X.L.); (J.W.)
| | - Qingya Wang
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Zhuhai 519088, China; (Q.W.); (F.L.)
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing 100081, China
| | - Jing Wei
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; (G.J.); (Y.Z.); (X.L.); (J.W.)
| | - Fangze Liu
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Zhuhai 519088, China; (Q.W.); (F.L.)
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing 100081, China
| | - Hongbo Li
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; (G.J.); (Y.Z.); (X.L.); (J.W.)
| |
Collapse
|
24
|
Xu W, Chen Y, Niederberger M, Tervoort E, Mei J, Peng DL. Self-Assembled Preparation of Porous Nickel Phosphide Superparticles with Tunable Phase and Porosity for Efficient Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309435. [PMID: 38229146 DOI: 10.1002/smll.202309435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/19/2023] [Indexed: 01/18/2024]
Abstract
Self-assembly of colloidal nanoparticles enables the easy building of assembly units into higher-order structures and the bottom-up preparation of functional materials. Nickel phosphides represent an important group of catalysts for hydrogen evolution reaction (HER) from water splitting. In this paper, the preparation of porous nickel phosphide superparticles and their HER efficiencies are reported. Ni and Ni2P nanoparticles are self-assembled into binary superparticles via an oil-in-water emulsion method. After annealing and acid etching, the as-prepared Ni-Ni2P binary superparticles change into porous nickel phosphide superparticles. The porosity and crystalline phase of the superparticles can be tuned by adjusting the ratio of Ni and Ni2P nanoparticles. The resulting porous superparticles are effective in driving HER under acidic conditions, and the modulation of porosity and phase further optimize the electrochemical performance. The prepared Ni3P porous superparticles not only possess a significantly enhanced specific surface area compared to solid Ni-Ni2P superparticles but also exhibit an excellent HER efficiency. The calculations based on the density functional theories show that the (110) crystal facet exhibits a relatively lower Gibbs free energy of hydrogen adsorption. This work provides a self-assembly approach for the construction of porous metal phosphide nanomaterials with tunable crystalline phase and porosity.
Collapse
Affiliation(s)
- Wanjie Xu
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Yuanzhi Chen
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Markus Niederberger
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zürich, 8093, Switzerland
| | - Elena Tervoort
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zürich, 8093, Switzerland
| | - Jie Mei
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Dong-Liang Peng
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
25
|
Ayisha Naziba T, Praveen Kumar D, Karthikeyan S, Sriramajayam S, Djanaguiraman M, Sundaram S, Ghamari M, Prasada Rao R, Ramakrishna S, Ramesh D. Biomass Derived Biofluorescent Carbon Dots for Energy Applications: Current Progress and Prospects. CHEM REC 2024; 24:e202400030. [PMID: 38837295 DOI: 10.1002/tcr.202400030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/23/2024] [Indexed: 06/07/2024]
Abstract
Biomass resources are often disposed of inefficiently and it causes environmental degradation. These wastes can be turned into bio-products using effective conversion techniques. The synthesis of high-value bio-products from biomass adheres to the principles of a sustainable circular economy in a variety of industries, including agriculture. Recently, fluorescent carbon dots (C-dots) derived from biowastes have emerged as a breakthrough in the field, showcasing outstanding fluorescence properties and biocompatibility. The C-dots exhibit unique quantum confinement properties due to their small size, contributing to their exceptional fluorescence. The significance of their fluorescent properties lies in their versatile applications, particularly in bio-imaging and energy devices. Their rapid and straight-forward production using green/chemical precursors has further accelerated their adoption in diverse applications. The use of green precursors for C-dot not only addresses the biomass disposal issue through a scientific approach, but also establishes a path for a circular economy. This approach not only minimizes biowaste, which also harnesses the potential of fluorescent C-dots to contribute to sustainable practices in agriculture. This review explores recent developments and challenges in synthesizing high-quality C-dots from agro-residues, shedding light on their crucial role in advancing technologies for a cleaner and more sustainable future.
Collapse
Affiliation(s)
- T Ayisha Naziba
- Department of Renewable Energy Engineering, Centre for Post-Harvest Technology, Agricultural Engineering College and Research Institute, Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
| | - D Praveen Kumar
- Bannari Amman Institute of Technology, Sathya Mangalam, 638 401, Tamil Nadu, India
| | - S Karthikeyan
- Department of Renewable Energy Engineering, Centre for Post-Harvest Technology, Agricultural Engineering College and Research Institute, Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
| | - S Sriramajayam
- Department of Agricultural Engineering, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Killikulam, 628 252., Tamil Nadu, India
| | - M Djanaguiraman
- Department of Renewable Energy Engineering, Centre for Post-Harvest Technology, Agricultural Engineering College and Research Institute, Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
| | - Senthilarasu Sundaram
- School of Computing, Engineering and Digital Technologies, Teesside University Tees Valley, Middlesbrough, TS1 3BX, UK
| | - Mehrdad Ghamari
- School of Computing, Engineering and Digital Technologies, Teesside University Tees Valley, Middlesbrough, TS1 3BX, UK
| | - R Prasada Rao
- Center for Nanotechnology & Sustainability, Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering, Drive 1, 117576, Singapore
| | - Seeram Ramakrishna
- Center for Nanotechnology & Sustainability, Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering, Drive 1, 117576, Singapore
| | - D Ramesh
- Department of Renewable Energy Engineering, Centre for Post-Harvest Technology, Agricultural Engineering College and Research Institute, Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
| |
Collapse
|
26
|
Scholtz L, Eckert JG, Graf RT, Kunst A, Wegner KD, Bigall NC, Resch-Genger U. Correlating semiconductor nanoparticle architecture and applicability for the controlled encoding of luminescent polymer microparticles. Sci Rep 2024; 14:11904. [PMID: 38789603 PMCID: PMC11126414 DOI: 10.1038/s41598-024-62591-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024] Open
Abstract
Luminophore stained micro- and nanobeads made from organic polymers like polystyrene (PS) are broadly used in the life and material sciences as luminescent reporters, for bead-based assays, sensor arrays, printable barcodes, security inks, and the calibration of fluorescence microscopes and flow cytometers. Initially mostly prepared with organic dyes, meanwhile luminescent core/shell nanoparticles (NPs) like spherical semiconductor quantum dots (QDs) are increasingly employed for bead encoding. This is related to their narrower emission spectra, tuneability of emission color, broad wavelength excitability, and better photostability. However, correlations between particle architecture, morphology, and photoluminescence (PL) of the luminescent nanocrystals used for encoding and the optical properties of the NP-stained beads have been rarely explored. This encouraged us to perform a screening study on the incorporation of different types of luminescent core/shell semiconductor nanocrystals into polymer microparticles (PMPs) by a radical-induced polymerization reaction. Nanocrystals explored include CdSe/CdS QDs of varying CdS shell thickness, a CdSe/ZnS core/shell QD, CdSe/CdS quantum rods (QRs), and CdSe/CdS nanoplatelets (NPLs). Thereby, we focused on the applicability of these NPs for the polymerization synthesis approach used and quantified the preservation of the initial NP luminescence. The spectroscopic characterization of the resulting PMPs revealed the successful staining of the PMPs with luminescent CdSe/CdS QDs and CdSe/CdS NPLs. In contrast, usage of CdSe/CdS QRs and CdSe QDs with a ZnS shell did not yield luminescent PMPs. The results of this study provide new insights into structure-property relationships between NP stained PMPs and the initial luminescent NPs applied for staining and underline the importance of such studies for the performance optimization of NP-stained beads.
Collapse
Affiliation(s)
- Lena Scholtz
- Federal Institute for Materials Research and Testing (BAM), Division 1.2 Biophotonics, Richard-Willstätter-Str. 11, 12489, Berlin, Germany
- Institute for Chemistry and Biochemistry, Free University Berlin, Takustraße 3, 14195, Berlin, Germany
| | - J Gerrit Eckert
- Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Callinstraße 3A, 30167, Hannover, Germany
- Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering - Innovation Across Disciplines), 30167, Hannover, Germany
| | - Rebecca T Graf
- Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Callinstraße 3A, 30167, Hannover, Germany
- Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering - Innovation Across Disciplines), 30167, Hannover, Germany
- Laboratory of Nano- and Quantum Engineering, Leibniz University Hannover, Schneiderberg 39, 30167, Hanover, Germany
| | - Alexandra Kunst
- Federal Institute for Materials Research and Testing (BAM), Division 1.2 Biophotonics, Richard-Willstätter-Str. 11, 12489, Berlin, Germany
- Institute for Chemistry and Biochemistry, Free University Berlin, Takustraße 3, 14195, Berlin, Germany
| | - K David Wegner
- Federal Institute for Materials Research and Testing (BAM), Division 1.2 Biophotonics, Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Nadja C Bigall
- Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Callinstraße 3A, 30167, Hannover, Germany
- Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering - Innovation Across Disciplines), 30167, Hannover, Germany
- Laboratory of Nano- and Quantum Engineering, Leibniz University Hannover, Schneiderberg 39, 30167, Hanover, Germany
- Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Ute Resch-Genger
- Federal Institute for Materials Research and Testing (BAM), Division 1.2 Biophotonics, Richard-Willstätter-Str. 11, 12489, Berlin, Germany.
| |
Collapse
|
27
|
Chen M, Hao Q. Colloidal Quantum Dots for Nanophotonic Devices. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2471. [PMID: 38893735 PMCID: PMC11172753 DOI: 10.3390/ma17112471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Colloidal quantum dots (CQDs) have unique advantages in the wide tunability of visible-to-infrared emission wavelength and low-cost solution processibility [...].
Collapse
Affiliation(s)
- Menglu Chen
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China;
| | - Qun Hao
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China;
- Physics Department, Changchun University of Science and Technology, Changchun 130022, China
| |
Collapse
|
28
|
Guzelturk B, Diroll BT, Cassidy JP, Harankahage D, Hua M, Lin XM, Iyer V, Schaller RD, Lawrie BJ, Zamkov M. Bright and durable scintillation from colloidal quantum shells. Nat Commun 2024; 15:4274. [PMID: 38769114 PMCID: PMC11106345 DOI: 10.1038/s41467-024-48351-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024] Open
Abstract
Efficient, fast, and robust scintillators for ionizing radiation detection are crucial in various fields, including medical diagnostics, defense, and particle physics. However, traditional scintillator technologies face challenges in simultaneously achieving optimal performance and high-speed operation. Herein we introduce colloidal quantum shell heterostructures as X-ray and electron scintillators, combining efficiency, speed, and durability. Quantum shells exhibit light yields up to 70,000 photons MeV-1 at room temperature, enabled by their high multiexciton radiative efficiency thanks to long Auger-Meitner lifetimes (>10 ns). Radioluminescence is fast, with lifetimes of 2.5 ns and sub-100 ps rise times. Additionally, quantum shells do not exhibit afterglow and maintain stable scintillation even under high X-ray doses (>109 Gy). Furthermore, we showcase quantum shells for X-ray imaging achieving a spatial resolution as high as 28 line pairs per millimeter. Overall, efficient, fast, and durable scintillation make quantum shells appealing in applications ranging from ultrafast radiation detection to high-resolution imaging.
Collapse
Affiliation(s)
- Burak Guzelturk
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, USA.
| | - Benjamin T Diroll
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA.
| | - James P Cassidy
- Department of Physics, Bowling Green State University, Bowling Green, OH, USA
| | | | - Muchuan Hua
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA
| | - Xiao-Min Lin
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA
| | - Vasudevan Iyer
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Richard D Schaller
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Benjamin J Lawrie
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Mikhail Zamkov
- Department of Physics, Bowling Green State University, Bowling Green, OH, USA.
| |
Collapse
|
29
|
Valleix R, Zhang W, Jordan AJ, Guillemeney L, Castro LG, Zekarias BL, Park SV, Wang O, Owen JS. Metal Fluorides Passivate II-VI and III-V Quantum Dots. NANO LETTERS 2024; 24:5722-5728. [PMID: 38712788 DOI: 10.1021/acs.nanolett.4c00610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Quantum dots (QDs) with metal fluoride surface ligands were prepared via reaction with anhydrous oleylammonium fluoride. Carboxylate terminated II-VI QDs underwent carboxylate for fluoride exchange, while InP QDs underwent photochemical acidolysis yielding oleylamine, PH3, and InF3. The final photoluminescence quantum yield (PLQY) reached 83% for InP and near unity for core-shell QDs. Core-only CdS QDs showed dramatic improvements in PLQY, but only after exposure to air. Following etching, the InP QDs were bound by oleylamine ligands that were characterized by the frequency and breadth of the corresponding ν(N-H) bands in the infrared absorption spectrum. The fluoride content (1.6-9.2 nm-2) was measured by titration with chlorotrimethylsilane and compared with the oleylamine content (2.3-5.1 nm-2) supporting the formation of densely covered surfaces. The influence of metal fluoride adsorption on the air stability of QDs is discussed.
Collapse
Affiliation(s)
- Rodolphe Valleix
- Department of Chemistry, Columbia University, New York, New York 10027, United States
- Univ. Lyon, ENS de Lyon, CNRS, Laboratoire de Chimie, Lyon, 69342, France
| | - William Zhang
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Abraham J Jordan
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Lilian Guillemeney
- Univ. Lyon, ENS de Lyon, CNRS, Laboratoire de Chimie, Lyon, 69342, France
| | - Leslie G Castro
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Bereket L Zekarias
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Sungho V Park
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Oliver Wang
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Jonathan S Owen
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
30
|
Dai Y, He Q, Huang Y, Duan X, Lin Z. Solution-Processable and Printable Two-Dimensional Transition Metal Dichalcogenide Inks. Chem Rev 2024; 124:5795-5845. [PMID: 38639932 DOI: 10.1021/acs.chemrev.3c00791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs) with layered crystal structures have been attracting enormous research interest for their atomic thickness, mechanical flexibility, and excellent electronic/optoelectronic properties for applications in diverse technological areas. Solution-processable 2D TMD inks are promising for large-scale production of functional thin films at an affordable cost, using high-throughput solution-based processing techniques such as printing and roll-to-roll fabrications. This paper provides a comprehensive review of the chemical synthesis of solution-processable and printable 2D TMD ink materials and the subsequent assembly into thin films for diverse applications. We start with the chemical principles and protocols of various synthesis methods for 2D TMD nanosheet crystals in the solution phase. The solution-based techniques for depositing ink materials into solid-state thin films are discussed. Then, we review the applications of these solution-processable thin films in diverse technological areas including electronics, optoelectronics, and others. To conclude, a summary of the key scientific/technical challenges and future research opportunities of solution-processable TMD inks is provided.
Collapse
Affiliation(s)
- Yongping Dai
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 99907, China
| | - Yu Huang
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Zhaoyang Lin
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing 100084, China
| |
Collapse
|
31
|
Kim S, Lee K, Gwak N, Shin S, Seo J, Noh SH, Kim D, Lee Y, Kong H, Yeo D, Kim TA, Lee SY, Jang J, Oh N. Colloidal Synthesis of P-Type Zn 3As 2 Nanocrystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310671. [PMID: 38279779 DOI: 10.1002/adma.202310671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/11/2024] [Indexed: 01/28/2024]
Abstract
Zinc pnictides, particularly Zn3As2, hold significant promise for optoelectronic applications owing to their intrinsic p-type behavior and appropriate bandgaps. However, despite the outstanding properties of colloidal Zn3As2 nanocrystals, research in this area is lacking because of the absence of suitable precursors, occurrence of surface oxidation, and intricacy of the crystal structures. In this study, a novel and facile solution-based synthetic approach is presented for obtaining highly crystalline p-type Zn3As2 nanocrystals with accurate stoichiometry. By carefully controlling the feed ratio and reaction temperature, colloidal Zn3As2 nanocrystals are successfully obtained. Moreover, the mechanism underlying the conversion of As precursors in the initial phases of Zn3As2 synthesis is elucidated. Furthermore, these nanocrystals are employed as active layers in field-effect transistors that exhibit inherent p-type characteristics with native surface ligands. To enhance the charge transport properties, a dual passivation strategy is introduced via phase-transfer ligand exchange, leading to enhanced hole mobilities as high as 0.089 cm2 V-1 s-1. This study not only contributes to the advancement of nanocrystal synthesis, but also opens up new possibilities for previously underexplored p-type nanocrystal research.
Collapse
Affiliation(s)
- Seongchan Kim
- Division of Materials Science and Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Kyumin Lee
- Department of Energy Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Namyoung Gwak
- Division of Materials Science and Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Seungki Shin
- Division of Materials Science and Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Jaeyoung Seo
- Division of Materials Science and Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Sung Hoon Noh
- Department of Energy Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Doyeon Kim
- Department of Energy Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Yunseo Lee
- Division of Materials Science and Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Hyein Kong
- Division of Materials Science and Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Dongjoon Yeo
- Division of Materials Science and Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Tae Ann Kim
- Convergence Research Center for Solutions to Electromagnetic Interference in Future-Mobility, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Seung-Yong Lee
- Division of Materials Science and Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Jaeyoung Jang
- Department of Energy Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Nuri Oh
- Division of Materials Science and Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| |
Collapse
|
32
|
Yadav HOS. Three-body interaction of gold nanoparticles: the role of solvent density and ligand shell orientation. Phys Chem Chem Phys 2024; 26:11558-11569. [PMID: 38533797 DOI: 10.1039/d3cp06334h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Molecular dynamics simulations are used to study the effective interactions of alkanethiol passivated gold nanoparticles in supercritical ethane at two- and three-particle levels with different solvent densities. Effective interaction is calculated as the potential of mean force (PMF) between two nanoparticles, and the three-body effect is estimated as the difference in PMFs calculated at the two- and three-particle levels. The variation in the three-body effect is examined as a function of solvent density. It is found that effective interaction, which is completely repulsive at very high solvent concentrations, progressively turns attractive as solvent density declines. On the other hand, the three-body effect turns out to be repulsive and increases exponentially with decreasing solvent density. Further, the structure of the ligand shell is analyzed as a function of nanoparticle separation, and its relationship with the three-body effect is investigated. It is observed that the three-body effect arises when the ligand shell begins to deform due to van der Waals repulsion between ligand shells. The study provides a deep insight into good understanding of the solvent evaporation-assisted nanoparticle self-assembly and can aid in experiments.
Collapse
Affiliation(s)
- Hari O S Yadav
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
33
|
Wei Y, Ding C, Shi G, Bi H, Li Y, Li H, Liu D, Yang Y, Wang D, Chen S, Wang R, Hayase S, Masuda T, Shen Q. Stronger Coupling of Quantum Dots in Hole Transport Layer Through Intermediate Ligand Exchange to Enhance the Efficiency of PbS Quantum Dot Solar Cells. SMALL METHODS 2024:e2400015. [PMID: 38607951 DOI: 10.1002/smtd.202400015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/18/2024] [Indexed: 04/14/2024]
Abstract
Nowadays, the extensively used lead sulfide (PbS) quantum dot (QD) hole transport layer (HTL) relies on layer-by-layer method to replace long chain oleic acid (OA) ligands with short 1,2-ethanedithiol (EDT) ligands for preparation. However, the inevitable significant volume shrinkage caused by this traditional method will result in undesired cracks and disordered QD arrangement in the film, along with adverse increased defect density and inhomogeneous energy landscape. To solve the problem, a novel method for EDT passivated PbS QD (PbS-EDT) HTL preparation using small-sized benzoic acid (BA) as intermediate ligands is proposed in this work. BA is substituted for OA ligands in solution followed by ligand exchange with EDT layer by layer. With the new method, smoother PbS-EDT films with more ordered and closer QD packing are gained. It is demonstrated stronger coupling between QDs and reduced defects in the QD HTL owing to the intermediate BA ligand exchange. As a result, the suppressed nonradiative recombination and enhanced carrier mobility are achieved, contributing to ≈20% growth in short circuit current density (Jsc) and a 23.4% higher power conversion efficiency (PCE) of 13.2%. This work provides a general framework for layer-by-layer QD film manufacturing optimization.
Collapse
Affiliation(s)
- Yuyao Wei
- Faculty of Informatics and Engineering, The University of Electro Communications, Tokyo, 1828585, Japan
| | - Chao Ding
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, 610065, P. R. China
| | - Guozheng Shi
- Faculty of Informatics and Engineering, The University of Electro Communications, Tokyo, 1828585, Japan
- Institution of Functional Nano and Soft Materials, Soochow university, Suzhou, Jiangsu, 215123, P. R. China
| | - Huan Bi
- Faculty of Informatics and Engineering, The University of Electro Communications, Tokyo, 1828585, Japan
| | - Yusheng Li
- Faculty of Informatics and Engineering, The University of Electro Communications, Tokyo, 1828585, Japan
| | - Hua Li
- Faculty of Informatics and Engineering, The University of Electro Communications, Tokyo, 1828585, Japan
| | - Dong Liu
- Faculty of Informatics and Engineering, The University of Electro Communications, Tokyo, 1828585, Japan
| | - Yongge Yang
- Faculty of Informatics and Engineering, The University of Electro Communications, Tokyo, 1828585, Japan
| | - Dandan Wang
- Faculty of Informatics and Engineering, The University of Electro Communications, Tokyo, 1828585, Japan
| | - Shikai Chen
- Faculty of Informatics and Engineering, The University of Electro Communications, Tokyo, 1828585, Japan
| | - Ruixiang Wang
- Beijing Engineering Research Centre of Sustainable Energy and Buildings, Beijing University of Civil Engineering and Architecture, Beijing, 102616, P. R. China
| | - Shuzi Hayase
- Faculty of Informatics and Engineering, The University of Electro Communications, Tokyo, 1828585, Japan
| | - Taizo Masuda
- Faculty of Informatics and Engineering, The University of Electro Communications, Tokyo, 1828585, Japan
- CN development division, Toyota Motor Corporation, Susono, Shizuoka, 410-1193, Japan
| | - Qing Shen
- Faculty of Informatics and Engineering, The University of Electro Communications, Tokyo, 1828585, Japan
| |
Collapse
|
34
|
Xue X, Hao Q, Chen M. Very long wave infrared quantum dot photodetector up to 18 μm. LIGHT, SCIENCE & APPLICATIONS 2024; 13:89. [PMID: 38609412 PMCID: PMC11014860 DOI: 10.1038/s41377-024-01436-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024]
Abstract
Colloidal quantum dots (CQDs) are of interest for optoelectronic devices because of the possibility of high-throughput solution processing and the wide energy gap tunability from ultraviolet to infrared wavelengths. People may question about the upper limit on the CQD wavelength region. To date, although the CQD absorption already reaches terahertz, the practical photodetection wavelength is limited within mid-wave infrared. To figure out challenges on CQD photoresponse in longer wavelength, would reveal the ultimate property on these nanomaterials. What's more, it motivates interest in bottom-up infrared photodetection with less than 10% cost compared with epitaxial growth semiconductor bulk. In this work, developing a re-growth method and ionic doping modification, we demonstrate photodetection up to 18 μm wavelength on HgTe CQD. At liquid nitrogen temperature, the responsivity reaches 0.3 A/W and 0.13 A/W, with specific detectivity 6.6 × 108 Jones and 2.3 × 109 Jones for 18 μm and 10 μm CQD photoconductors, respectively. This work is a step toward answering the general question on the CQD photodetection wavelength limitation.
Collapse
Affiliation(s)
- Xiaomeng Xue
- School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
- Westlake Institute for Optoelectronics, Fuyang, Hangzhou, 311421, China
| | - Qun Hao
- School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
- Physics Department, Changchun University of Science and Technology, Changchun, 130022, China
| | - Menglu Chen
- School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China.
- Westlake Institute for Optoelectronics, Fuyang, Hangzhou, 311421, China.
- Physics Department, Changchun University of Science and Technology, Changchun, 130022, China.
| |
Collapse
|
35
|
Wang K, Li H, Yu W, Ma T. Insights into structural and functional regulation of chalcopyrite and enhanced mechanism of reactive oxygen species (ROS) generation in advanced oxidation process (AOP): A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170530. [PMID: 38311081 DOI: 10.1016/j.scitotenv.2024.170530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/06/2024]
Abstract
Chalcopyrite, renowned for its distinctive mixed redox-couple characteristics, exhibits excellent electron transfer properties both on its surface and within its crystal structure. This unique characteristic has attracted significant attention in various fields, including optics, electronics, and magnetism, as well as demonstrated remarkable catalytic efficacy in the environmental field. The rapid and effective electron transfer capability of a catalyst is crucial for advanced oxidation processes (AOPs). However, the performance of CuFeS2 in AOPs is hindered by its low electron transfer efficacy. This review aims to summarize the key steps and mechanisms of chalcopyrite-induced AOPs and provide strategies for enhancing effective electron transfer efficacies by controlling the structure and function of synthetic/natural chalcopyrite. These strategies include enhancing the catalytic performance of chalcopyrite and constructing composites to enhance catalytic activity (e.g., chelating agents, heterojunctions). Additionally, the factors influencing the generation of reactive oxygen species in chalcopyrite-induced AOPs are investigated, such as the types and properties of oxidants (e.g., H2O2, peroxymonocarbonate), the microstructure of catalysts, and reaction conditions in catalytic systems (e.g., pH values, dosage, temperature). Future perspectives on the applications of chalcopyrite are presented at the end of this paper. Overall, this review assists in narrowing the scope of chalcopyrite studies in AOPs and aids researchers in optimizing synthetic/natural catalysts for contaminant treatment.
Collapse
Affiliation(s)
- Kaixuan Wang
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Haibo Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Wei Yu
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Ting Ma
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| |
Collapse
|
36
|
Chen S, Al-Hilfi SH, Chen G, Zhang H, Zheng W, Virgilio LD, Geuchies JJ, Wang J, Feng X, Riedinger A, Bonn M, Wang HI. Tuning the Inter-Nanoplatelet Distance and Coupling Strength by Thermally Induced Ligand Decomposition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308951. [PMID: 38010120 DOI: 10.1002/smll.202308951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Indexed: 11/29/2023]
Abstract
CdSe nanoplatelets (NPLs) are promising 2D semiconductors for optoelectronic applications, in which efficient charge transport properties are desirable. It is reported that thermal annealing constitutes an effective strategy to control the optical absorption and electrical properties of CdSe NPLs by tuning the inter-NPL distance. Combining optical absorption, transmission electron microscopy, and thermogravimetric analysis, it is revealed that the thermal decomposition of ligands (e.g., cadmium myristate) governs the inter-NPL distance and thus the inter-NPL electronic coupling strength. Employing ultrafast terahertz spectroscopy, it is shown that this enhanced electronic coupling increases both the free carrier generation efficiency and the short-range mobility in NPL solids. The results show a straightforward method of controlling the interfacial electronic coupling strength for developing functional optoelectronic devices through thermal treatments.
Collapse
Affiliation(s)
- Shuai Chen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Samir H Al-Hilfi
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Guangbo Chen
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstr. 4, 01062, Dresden, Germany
| | - Heng Zhang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Wenhao Zheng
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Lucia Di Virgilio
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Jaco J Geuchies
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Junren Wang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstr. 4, 01062, Dresden, Germany
- Max Planck Institute of Microstructure Physics, D-06120, Halle (Saale), Germany
| | - Andreas Riedinger
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Hai I Wang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Nanophotonics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, Utrecht, 3584 CC, The Netherlands
| |
Collapse
|
37
|
Gahlot K, Meijer J, Protesescu L. Structural and optical control through anion and cation exchange processes for Sn-halide perovskite nanostructures. NANOSCALE 2024; 16:5177-5187. [PMID: 38385551 PMCID: PMC10918525 DOI: 10.1039/d3nr06075f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/29/2024] [Indexed: 02/23/2024]
Abstract
Metal halide perovskite nanostructures, characterized by their ionic nature, present a compelling avenue for the tunability of dimensions and band gaps through facile compositional transformations involving both cationic and anionic exchange reactions. While post-synthetic ion-exchange processes have been extensively explored in Pb-halide perovskite nanocrystals, the inherent instability of Sn2+ has limited the exploration of such processes in Sn-halide perovskite nanostructures. In this study, we present a straightforward cation exchange process wherein 2D [R-NH3]2SnX4 Ruddlesden-Popper (RP) nanostructures with n = 1 transition to 3D ASnX3 nanocrystals at room temperature with the addition of A-cation oleate. In addition, anion exchange processes have been demonstrated for both 2D [R-NH3]2SnX4 RP nanostructures and 3D nanocrystals, showcasing transitions between iodide and bromide counterparts. Furthermore, we have fabricated a thin film of 2D [R-NH3]2SnX4 RP nanostructures for cation exchange, wherein A-cation diffusion through a liquid-solid interface facilitates the transformation into a 3D ASnX3 crystal. This investigation underscores the versatility of ion exchange processes in engineering the composition of Sn-halide perovskite nanostructures and, consequently, modulating their optical properties.
Collapse
Affiliation(s)
- Kushagra Gahlot
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747AG, The Netherlands.
| | - Julius Meijer
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747AG, The Netherlands.
| | - Loredana Protesescu
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747AG, The Netherlands.
| |
Collapse
|
38
|
Queiroz JDS, Moura IMR, Pereira GAL, Fontes A, Pereira G, Santos BS. UV Light as an Efficient Tool for Reducing Surface Defects of ZnSe-MSA Quantum Dots. J Fluoresc 2024; 34:667-673. [PMID: 37341927 DOI: 10.1007/s10895-023-03306-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/12/2023] [Indexed: 06/22/2023]
Abstract
Defects in ZnSe quantum dots are responsible for increasing the trap states, which can lead to the drastic reduction of their fluorescence output, being one of the major drawbacks of these materials. As surface atoms become more relevant in these nanoscale structures, energy traps due to surface vacancies, play a very definite role in the final emission quantum yield. In the present study, we report the use of photoactivation procedures to decrease surface defects of ZnSe QDs stabilized with mercaptosuccinic acid (MSA), in order to improve the radiative pathways. We applied the colloidal precipitation procedure in a hydrophilic medium and evaluated the role of Zn/Se molar ratios as well as the Zn2+ precursors (nitrate and chloride salts) on their optical properties. Best results (i.e. increment of 400% of the final fluorescence intensity) were obtained for nitrate precursor and a Zn/Se = 1.2 ratio. Thus, we suggest that the chloride ions may compete more efficiently than nitrate ions with MSA molecules decreasing the passivation capability of this molecule. The improvement in ZnSe QDs fluorescence can potentialize their use for biomedical applications.
Collapse
Affiliation(s)
- Jéssica D S Queiroz
- Materials Science Graduate Program, Federal University of Pernambuco, Recife, PE, Brazil
| | - Igor M R Moura
- Department of Fundamental Chemistry, Federal University of Pernambuco, Recife, PE, Brazil
| | - Giovannia A L Pereira
- Materials Science Graduate Program, Federal University of Pernambuco, Recife, PE, Brazil
- Department of Fundamental Chemistry, Federal University of Pernambuco, Recife, PE, Brazil
| | - Adriana Fontes
- Department of Biophysics and Radiobiology, Federal University of Pernambuco, Recife, PE, Brazil
| | - Goreti Pereira
- Materials Science Graduate Program, Federal University of Pernambuco, Recife, PE, Brazil.
- Department of Fundamental Chemistry, Federal University of Pernambuco, Recife, PE, Brazil.
- Department Chemistry & CESAM, University of Aveiro, Aveiro, 3810-193, Portugal.
| | - Beate S Santos
- Materials Science Graduate Program, Federal University of Pernambuco, Recife, PE, Brazil.
- Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, 50740-520, Brazil.
| |
Collapse
|
39
|
Rhoda JC, Chellammal S, Albert HM, Ravichandran K, Gonsago CA. Synthesis, Spectroscopic, and Antibacterial Characterizations of Cadmium-Based Nanoparticles. J Fluoresc 2024; 34:587-598. [PMID: 37326926 DOI: 10.1007/s10895-023-03290-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 05/27/2023] [Indexed: 06/17/2023]
Abstract
In the current study, the co-precipitation technique was employed for the synthesis of Cadmium oxide (CdO) and Copper‒doped Cadmium oxide (Cu‒CdO) nanoparticles. The synthesized samples were subjected to powder X-Ray diffraction (P-XRD), Field emission scanning electron microscopy (FE-SEM), Energy-dispersive X-ray (EDX), Fourier transforms Infrared (FT-IR), UV-Vis spectroscopy, photoluminescence (PL), laser-induced fluorescence spectroscopy and antibacterial investigations. According to the P-XRD analysis, both the samples were simple cubic in structure and have average grain sizes of 54 and 28 nm, respectively. FE-SEM was deployed to explore the surface textures of the samples. EDX technique was used to look at the elemental compositions of the samples. The technique of FT-IR was employed to identify the vibrational modes. UV-Vis spectra in diffuse reflectance mode were obtained and the optical bandgaps of the CdO and Cu‒CdO samples were obtained as 4.52 eV and 2.83 eV, respectively. The photoluminescence studies were conducted at an excitation wavelength of 300 nm and emission peaks were red-shifted in both samples. Fluorescence spectroscopy was applied to explore the lifetimes of synthesized nanoparticles. The technique of Agar-well diffusion was applied to assess the antibacterial performance of the generated nanoparticles against Micrococcus Luteus (gram-positive) and Escherichia coli (gram-negative) bacterium at variable concentrations. Both samples in the current study are significantly effective against both bacterial strains.
Collapse
Affiliation(s)
- J Christina Rhoda
- Department of Physics, Dr. M.G.R. Educational & Research Institute, Chennai, India
| | - S Chellammal
- Department of Physics, Dr. M.G.R. Educational & Research Institute, Chennai, India
| | - Helen Merina Albert
- Department of Physics, Sathyabama Institute of Science & Technology, Chennai, India
| | - K Ravichandran
- Department of Nuclear Physics, University of Madras (Guindy Campus), Chennai, India
| | - C Alosious Gonsago
- Department of Electronics Science, Mohamed Sathak College of Arts & Science, Chennai, India.
| |
Collapse
|
40
|
Lin O, Wang L, Xie X, Wang S, Feng Y, Xiao J, Zhang Y, Tang A. Seed-mediated growth synthesis and tunable narrow-band luminescence of quaternary Ag-In-Ga-S alloyed nanocrystals. NANOSCALE 2024; 16:4591-4599. [PMID: 38356393 DOI: 10.1039/d3nr06037c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Silver-based I-III-VI-type semiconductor nanocrystals have received extensive attention due to their narrow-band luminescence properties. Herein, we demonstrated a seed-mediated growth of quaternary Ag-In-Ga-S (AIGS) nanocrystals (NCs) with narrow-band luminescence. By conducting partial cation exchange with In3+ and Ga3+ based on Ag2S NCs and controlling the Ag/In feeding ratios (0.25 to 2) of Ag-In-S seeds as well as the inventory of 1-dodecanethiol, we achieved optimized luminescence performance in the synthesized AIGS NCs, characterized by a narrow full width at half maximum of less than 40 nm. Meanwhile, narrow-band luminescent AIGS NCs exhibit a tetragonal AgGaS2 crystal structure and a gradient alloy structure, rather than a core-shell structure. Most importantly, the kinetics decay curves of time-resolved photoluminescence and the ground state bleaching in transient absorption generally agree with each other regarding the lifetime of the second decay component, which indicates that the narrow-band luminescence is due to the slow radiative recombination between trapped electrons and trapped holes located at the edge of the conduction band and the deep silver-related trap states (e.g., silver vacancy), respectively. This study provides new insights into the correlation between the narrow-band luminescence properties and the structural characteristics of AIGS NCs.
Collapse
Affiliation(s)
- Ouyang Lin
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China.
| | - Lijin Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China.
| | - Xiulin Xie
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China.
| | - Shuaibing Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China.
| | - Yibo Feng
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Beijing Key Laboratory of Microstructure and Property of Advanced Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Jiawen Xiao
- Beijing Key Laboratory of Microstructure and Property of Advanced Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Yu Zhang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China.
| | - Aiwei Tang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China.
| |
Collapse
|
41
|
Petix CL, Fakhraei M, Kieslich CA, Howard MP. Surrogate Modeling of the Relative Entropy for Inverse Design Using Smolyak Sparse Grids. J Chem Theory Comput 2024; 20:1538-1546. [PMID: 37703086 DOI: 10.1021/acs.jctc.3c00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Relative entropy minimization, a statistical-mechanics approach for finding potential energy functions that produce target structural ensembles, has proven to be a powerful strategy for the inverse design of nanoparticle self-assembly. For a given target structure, the gradient of the relative entropy with respect to the adjustable parameters of the potential energy function is computed by performing a simulation, and then these parameters are updated using iterative gradient-based optimization. Small parameter updates per iteration and many iterations can be required for numerical stability, but this incurs considerable computational expense because a new simulation must be performed to reevaluate the gradient at each iteration. Here, we investigate the use of surrogate modeling to decouple the process of minimizing the relative entropy from the computationally demanding process of determining its gradient. We approximate the relative-entropy gradient using Chebyshev polynomial interpolation on Smolyak sparse grids. Our approach potentially increases the robustness and computational efficiency of using the relative entropy for inverse design, primarily for physically informed potential energy functions that have a small number of adjustable parameters.
Collapse
Affiliation(s)
- C Levi Petix
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Mohammadreza Fakhraei
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Chris A Kieslich
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Michael P Howard
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
42
|
Chon B, Lee HJ, Kang Y, Kim HW, Kim CH, Son HJ. Investigation of Interface Characteristics and Physisorption Mechanism in Quantum Dots/TiO 2 Composite for Efficient and Sustainable Photoinduced Interfacial Electron Transfer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9414-9427. [PMID: 38334708 DOI: 10.1021/acsami.3c16086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Owing to their superior stability compared to those of conventional molecular dyes, as well as their high UV-visible absorption capacity, which can be tuned to cover the majority of the solar spectrum through size adjustment, quantum dot (QD)/TiO2 composites are being actively investigated as photosensitizing components for diverse solar energy conversion systems. However, the conversion efficiencies and durabilities of QD/TiO2-based solar cells and photocatalytic systems are still inferior to those of conventional systems that employ organic/inorganic components as photosensitizers. This is because of the poor adsorption of QDs onto the TiO2 surface, resulting in insufficient interfacial interactions between the two. The mechanism underlying QD adsorption on the TiO2 surface and its relationship to the photosensitization process remain unclear. In this study, we established that the surface characteristics of the TiO2 semiconductor and the QDs (i.e., surface defects of the metal oxide and the surface structure of the QD core) directly affect the QD adsorption capacity by TiO2 and the interfacial interactions between the QDs and TiO2, which relates to the photosensitization process from the photoexcited QDs to TiO2 (QD* → TiO2). The interfacial interaction between the QDs and TiO2 is maximized when the shape/thickness-modulated triangular QDs are composited with defect-rich anatase TiO2. Comprehensive investigations through photodynamic analyses and surface evaluation using X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and photocatalysis experiments collectively validate that tuning the surface properties of QDs and modulating the TiO2 defect concentration can synergistically amplify the interfacial interaction between the QDs and TiO2. This augmentation markedly improved the efficiency of photoinduced electron transfer from the photoexcited QDs to TiO2, resulting in significantly increased photocatalytic activity of the QD/TiO2 composite. This study provides the first in-depth characterization of the physical adhesion of QDs dispersed on a heterogeneous metal-oxide surface. Furthermore, the prepared QD/TiO2 composite exhibits exceptional adsorption stability, resisting QD detachment from the TiO2 surface over a wide pH range (pH = 2-12) in aqueous media as well as in nonaqueous solvents during two months of immersion. These findings can aid the development of practical QD-sensitized solar energy conversion systems that require the long-term stability of the photosensitizing unit.
Collapse
Affiliation(s)
- Bumsoo Chon
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Hyung Joo Lee
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Yun Kang
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Hyun Woo Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Chul Hoon Kim
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Ho-Jin Son
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
43
|
Jambhulkar S, Ravichandran D, Zhu Y, Thippanna V, Ramanathan A, Patil D, Fonseca N, Thummalapalli SV, Sundaravadivelan B, Sun A, Xu W, Yang S, Kannan AM, Golan Y, Lancaster J, Chen L, Joyee EB, Song K. Nanoparticle Assembly: From Self-Organization to Controlled Micropatterning for Enhanced Functionalities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306394. [PMID: 37775949 DOI: 10.1002/smll.202306394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/02/2023] [Indexed: 10/01/2023]
Abstract
Nanoparticles form long-range micropatterns via self-assembly or directed self-assembly with superior mechanical, electrical, optical, magnetic, chemical, and other functional properties for broad applications, such as structural supports, thermal exchangers, optoelectronics, microelectronics, and robotics. The precisely defined particle assembly at the nanoscale with simultaneously scalable patterning at the microscale is indispensable for enabling functionality and improving the performance of devices. This article provides a comprehensive review of nanoparticle assembly formed primarily via the balance of forces at the nanoscale (e.g., van der Waals, colloidal, capillary, convection, and chemical forces) and nanoparticle-template interactions (e.g., physical confinement, chemical functionalization, additive layer-upon-layer). The review commences with a general overview of nanoparticle self-assembly, with the state-of-the-art literature review and motivation. It subsequently reviews the recent progress in nanoparticle assembly without the presence of surface templates. Manufacturing techniques for surface template fabrication and their influence on nanoparticle assembly efficiency and effectiveness are then explored. The primary focus is the spatial organization and orientational preference of nanoparticles on non-templated and pre-templated surfaces in a controlled manner. Moreover, the article discusses broad applications of micropatterned surfaces, encompassing various fields. Finally, the review concludes with a summary of manufacturing methods, their limitations, and future trends in nanoparticle assembly.
Collapse
Affiliation(s)
- Sayli Jambhulkar
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Dharneedar Ravichandran
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Yuxiang Zhu
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Varunkumar Thippanna
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Arunachalam Ramanathan
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Dhanush Patil
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Nathan Fonseca
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Sri Vaishnavi Thummalapalli
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Barath Sundaravadivelan
- Department of Mechanical and Aerospace Engineering, School for Engineering of Matter, Transport & Energy, Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Tempe, AZ, 85281, USA
| | - Allen Sun
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Weiheng Xu
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Sui Yang
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy (SEMTE), Arizona State University (ASU), Tempe, AZ, 85287, USA
| | - Arunachala Mada Kannan
- The Polytechnic School (TPS), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Yuval Golan
- Department of Materials Engineering and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Jessica Lancaster
- Department of Immunology, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ, 85259, USA
| | - Lei Chen
- Mechanical Engineering, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI, 48128, USA
| | - Erina B Joyee
- Mechanical Engineering and Engineering Science, University of North Carolina, Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA
| | - Kenan Song
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of Engineering, University of Georgia (UGA), Athens, GA, 30602, USA
- Adjunct Professor of School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| |
Collapse
|
44
|
Ra HS, Lee SH, Jeong SJ, Cho S, Lee JS. Advances in Heterostructures for Optoelectronic Devices: Materials, Properties, Conduction Mechanisms, Device Applications. SMALL METHODS 2024; 8:e2300245. [PMID: 37330655 DOI: 10.1002/smtd.202300245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/20/2023] [Indexed: 06/19/2023]
Abstract
Atomically thin 2D transition metal dichalcogenides (TMDs) have recently been spotlighted for next-generation electronic and photoelectric device applications. TMD materials with high carrier mobility have superior electronic properties different from bulk semiconductor materials. 0D quantum dots (QDs) possess the ability to tune their bandgap by composition, diameter, and morphology, which allows for a control of their light absorbance and emission wavelength. However, QDs exhibit a low charge carrier mobility and the presence of surface trap states, making it difficult to apply them to electronic and optoelectronic devices. Accordingly, 0D/2D hybrid structures are considered as functional materials with complementary advantages that may not be realized with a single component. Such advantages allow them to be used as both transport and active layers in next-generation optoelectronic applications such as photodetectors, image sensors, solar cells, and light-emitting diodes. Here, recent discoveries related to multicomponent hybrid materials are highlighted. Research trends in electronic and optoelectronic devices based on hybrid heterogeneous materials are also introduced and the issues to be solved from the perspective of the materials and devices are discussed.
Collapse
Affiliation(s)
- Hyun-Soo Ra
- Department of Energy Science and Engineering and Energy Science and Engineering Research Center, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, 42988, Republic of Korea
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, 08860, Barcelona, Spain
| | - Sang-Hyeon Lee
- Department of Energy Science and Engineering and Energy Science and Engineering Research Center, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Seock-Jin Jeong
- Department of Energy Science and Engineering and Energy Science and Engineering Research Center, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Sinyoung Cho
- Department of Energy Science and Engineering and Energy Science and Engineering Research Center, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Jong-Soo Lee
- Department of Energy Science and Engineering and Energy Science and Engineering Research Center, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, 42988, Republic of Korea
| |
Collapse
|
45
|
Stroyuk O, Raievska O, Zahn DRT, Brabec CJ. Exploring Highly Efficient Broadband Self-Trapped-Exciton Luminophors: from 0D to 3D Materials. CHEM REC 2024; 24:e202300241. [PMID: 37728189 DOI: 10.1002/tcr.202300241] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/08/2023] [Indexed: 09/21/2023]
Abstract
The review summarizes our recent reports on brightly-emitting materials with varied dimensionality (3D, 2D, 0D) synthesized using "green" chemistry and exhibiting highly efficient photoluminescence (PL) originating from self-trapped exciton (STE) states. The discussion starts with 0D emitters, in particular, ternary indium-based colloidal quantum dots, continues with 2D materials, focusing on single-layer polyheptazine carbon nitride, and further evolves to 3D luminophores, the latter exemplified by lead-free double halide perovskites. The review shows the broadband STE PL to be an inherent feature of many materials produced in mild conditions by "green" chemistry, outlining PL features general for these STE emitters and differences in their photophysical properties. The review is concluded with an outlook on the challenges in the field of STE PL emission and the most promising venues for future research.
Collapse
Affiliation(s)
- Oleksandr Stroyuk
- Helmholtz-Institut Erlangen Nürnberg für Erneuerbare Energien (HI ERN), Forschungszentrum Jülich GmbH, 91058, Erlangen, Germany
| | - Oleksandra Raievska
- Helmholtz-Institut Erlangen Nürnberg für Erneuerbare Energien (HI ERN), Forschungszentrum Jülich GmbH, 91058, Erlangen, Germany
| | - Dietrich R T Zahn
- Semiconductor Physics, Chemnitz University of Technology, 09107, Chemnitz, Germany
- Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09107, Chemnitz, Germany
| | - Christoph J Brabec
- Helmholtz-Institut Erlangen Nürnberg für Erneuerbare Energien (HI ERN), Forschungszentrum Jülich GmbH, 91058, Erlangen, Germany
- Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| |
Collapse
|
46
|
Sung Y, Kim HB, Kim JH, Noh Y, Yu J, Yang J, Kim TH, Oh J. Facile Ligand Exchange of Ionic Ligand-Capped Amphiphilic Ag 2S Nanocrystals for High Conductive Thin Films. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3853-3861. [PMID: 38207283 DOI: 10.1021/acsami.3c15472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
A surface ligand modification of colloidal nanocrystals (NCs) is one of the crucial issues for their practical applications because of the highly insulating nature of native long-chain ligands. Herein, we present straightforward methods for phase transfer and ligand exchange of amphiphilic Ag2S NCs and the fabrication of highly conductive films. S-terminated Ag2S (S-Ag2S) NCs are capped with ionic octylammonium (OctAH+) ligands to compensate for surface anionic charge, S2-, of the NC core. An injection of polar solvent, formamide (FA), into S-Ag2S NCs dispersed in toluene leads to an additional envelopment of the charged S-Ag2S NC core by FA due to electrostatic stabilization, which allows its amphiphilic nature and results in a rapid and effective phase transfer without any ligand addition. Because the solvation by FA involves a dissociation equilibrium of the ionic OctAH+ ligands, controlling a concentration of OctAH+ enables this phase transfer to show reversibility. This underlying chemistry allows S-Ag2S NCs in FA to exhibit a complete ligand exchange to Na+ ligands. The S-Ag2S NCs with Na+ ligands show a close interparticle distance and compatibility for uniformly deposited thin films by a simple spin-coating method. In photoelectrochemical measurements with stacked Ag2S NCs on ITO electrodes, a 3-fold enhanced current response was observed for the ligand passivation of Na+ compared to OctAH+, indicating a significantly enhanced charge transport in the Ag2S NC film by a drastically reduced interparticle distance due to the Na+ ligands.
Collapse
Affiliation(s)
- Yunmo Sung
- Department of Chemistry, Soonchunhyang University, Asan, Chungnam 31538, South Korea
- Reality Display Research Section, Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Republic of Korea
| | - Hyun Beom Kim
- Department of Chemistry, Soonchunhyang University, Asan, Chungnam 31538, South Korea
| | - Ji Heon Kim
- Department of Chemistry, Soonchunhyang University, Asan, Chungnam 31538, South Korea
| | - Yoona Noh
- Department of Chemistry, Soonchunhyang University, Asan, Chungnam 31538, South Korea
| | - Jaesang Yu
- Department of Chemistry, Yonsei University, Wonju, Gangwon 26493, South Korea
| | - Jaesung Yang
- Department of Chemistry, Yonsei University, Wonju, Gangwon 26493, South Korea
| | - Tae Hyun Kim
- Department of Chemistry, Soonchunhyang University, Asan, Chungnam 31538, South Korea
| | - Juwon Oh
- Department of Chemistry, Soonchunhyang University, Asan, Chungnam 31538, South Korea
| |
Collapse
|
47
|
Sarabamoun ES, Bietsch JM, Aryal P, Reid AG, Curran M, Johnson G, Tsai EHR, Machan CW, Wang G, Choi JJ. Photoluminescence switching in quantum dots connected with fluorinated and hydrogenated photochromic molecules. RSC Adv 2024; 14:424-432. [PMID: 38173584 PMCID: PMC10759204 DOI: 10.1039/d3ra07539g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
We investigate switching of photoluminescence (PL) from PbS quantum dots (QDs) crosslinked with two different types of photochromic diarylethene molecules, 4,4'-(1-cyclopentene-1,2-diyl)bis[5-methyl-2-thiophenecarboxylic acid] (1H) and 4,4'-(1-perfluorocyclopentene-1,2-diyl)bis[5-methyl-2-thiophenecarboxylic acid] (2F). Our results show that the QDs crosslinked with the hydrogenated molecule (1H) exhibit a greater amount of switching in photoluminescence intensity compared to QDs crosslinked with the fluorinated molecule (2F). With a combination of differential pulse voltammetry and density functional theory, we attribute the different amount of PL switching to the different energy levels between 1H and 2F molecules which result in different potential barrier heights across adjacent QDs. Our findings provide a deeper understanding of how the energy levels of bridge molecules influence charge tunneling and PL switching performance in QD systems and offer deeper insights for the future design and development of QD based photo-switches.
Collapse
Affiliation(s)
| | - Jonathan M Bietsch
- Department of Chemistry and Biochemistry, Old Dominion University Norfolk VA 23529 USA
| | - Pramod Aryal
- Department of Chemistry and Biochemistry, Old Dominion University Norfolk VA 23529 USA
| | - Amelia G Reid
- Department of Chemistry, University of Virginia PO Box 400319 Charlottesville VA 22904 USA
| | - Maurice Curran
- Department of Chemical Engineering, University of Virginia Charlottesville VA 22904 USA
| | - Grayson Johnson
- Department of Chemical Engineering, University of Virginia Charlottesville VA 22904 USA
| | - Esther H R Tsai
- Center for Functional Nanomaterials, Brookhaven National Laboratory Upton NY 11973 USA
| | - Charles W Machan
- Department of Chemistry, University of Virginia PO Box 400319 Charlottesville VA 22904 USA
| | - Guijun Wang
- Department of Chemistry and Biochemistry, Old Dominion University Norfolk VA 23529 USA
| | - Joshua J Choi
- Department of Chemical Engineering, University of Virginia Charlottesville VA 22904 USA
| |
Collapse
|
48
|
Yamauchi M, Nakatsukasa K, Kubo N, Yamada H, Masuo S. One-Dimensionally Arranged Quantum-Dot Superstructures Guided by a Supramolecular Polymer Template. Angew Chem Int Ed Engl 2024; 63:e202314329. [PMID: 37985221 DOI: 10.1002/anie.202314329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/01/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
Colloidal quantum dots (QDs) exhibit important photophysical properties, such as long-range energy diffusion, miniband formation, and collective photoluminescence, when aggregated into well-defined superstructures, such as three-dimensional (3D) and two-dimensional (2D) superlattices. However, the construction of one-dimensional (1D) QD superstructures, which have a simpler arrangement, is challenging; therefore, the photophysical properties of 1D-arranged QDs have not been studied previously. Herein, we report a versatile strategy to obtain 1D-arranged QDs using a supramolecular polymer (SP) template. The SP is composed of self-assembling cholesterol derivatives containing two amide groups for hydrogen bonding and a carboxyl group as an adhesion moiety on the QDs. Upon mixing the SP and dispersed QDs in low-polarity solvents, the QDs self-adhered to the SP and self-arranged into 1D superstructures through van der Waals interactions between the surface organic ligands of the QDs, as confirmed by transmission electron microscopy. Furthermore, we revealed efficient photoinduced fluorescence resonance energy transfer between the 1D-arranged QDs by an in-depth analysis of the emission spectra and decay curves.
Collapse
Affiliation(s)
- Mitsuaki Yamauchi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Kanako Nakatsukasa
- Department of Applied Chemistry for Environment, Kwansei Gakuin University, 1 Gakuen, Uegahara, Sanda, Hyogo, 669-1330, Japan
| | - Naoki Kubo
- Department of Applied Chemistry for Environment, Kwansei Gakuin University, 1 Gakuen, Uegahara, Sanda, Hyogo, 669-1330, Japan
| | - Hiroko Yamada
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Sadahiro Masuo
- Department of Applied Chemistry for Environment, Kwansei Gakuin University, 1 Gakuen, Uegahara, Sanda, Hyogo, 669-1330, Japan
| |
Collapse
|
49
|
Ghorbani A, Chen J, Chun P, Lyu Q, Cotella G, Aziz H. Changes in Hole and Electron Injection under Electrical Stress and the Rapid Electroluminescence Loss in Blue Quantum-Dot Light-Emitting Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304580. [PMID: 37653596 DOI: 10.1002/smll.202304580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/17/2023] [Indexed: 09/02/2023]
Abstract
Blue quantum dot light-emitting devices (QLEDs) suffer from fast electroluminescence (EL) loss when under electrical bias. Here, it is identified that the fast EL loss in blue QLEDs is not due to a deterioration in the photoluminescence quantum yield of the quantum dots (QDs), contrary to what is commonly believed, but rather arises primarily from changes in charge injection overtime under the bias that leads to a deterioration in charge balance. Measurements on hole-only and electron-only devices show that hole injection into blue QDs increases over time whereas electron injection decreases. Results also show that the changes are associated with changes in hole and electron trap densities. The results are further verified using QLEDs with blue and red QDs combinations, capacitance versus voltage, and versus time characteristics of the blue QLEDs. The changes in charge injection are also observed to be partially reversible, and therefore using pulsed current instead of constant current bias for driving the blue QLEDs leads to an almost 2.5× longer lifetime at the same initial luminance. This work systematically investigates the origin of blue QLEDs EL loss and provides insights for designing improved blue QDs paving the way for QLEDs technology commercialization.
Collapse
Affiliation(s)
- Atefeh Ghorbani
- Department of Electrical and Computer Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Junfei Chen
- Department of Electrical and Computer Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
- Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Peter Chun
- Ottawa IC Laboratory, Huawei Canada, 19 Allstate Parkway, Markham, Ontario, L3R 5B4, Canada
| | - Quan Lyu
- Ipswich Research Centre, Huawei Technologies Research & Development (UK) Ltd., Phoenix House (B55), Adastral Park, Ipswich, IP5 3RE, UK
| | - Giovanni Cotella
- Ipswich Research Centre, Huawei Technologies Research & Development (UK) Ltd., Phoenix House (B55), Adastral Park, Ipswich, IP5 3RE, UK
| | - Hany Aziz
- Department of Electrical and Computer Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
50
|
Liao L, Kovalska E, Regner J, Song Q, Sofer Z. Two-Dimensional Van Der Waals Thin Film and Device. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303638. [PMID: 37731156 DOI: 10.1002/smll.202303638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/07/2023] [Indexed: 09/22/2023]
Abstract
In the rapidly evolving field of thin-film electronics, the emergence of large-area flexible and wearable devices has been a significant milestone. Although organic semiconductor thin films, which can be manufactured through solution processing, have been identified, their utility is often undermined by their poor stability and low carrier mobility under ambient conditions. However, inorganic nanomaterials can be solution-processed and demonstrate outstanding intrinsic properties and structural stability. In particular, a series of two-dimensional (2D) nanosheet/nanoparticle materials have been shown to form stable colloids in their respective solvents. However, the integration of these 2D nanomaterials into continuous large-area thin with precise control of layer thickness and lattice orientation still remains a significant challenge. This review paper undertakes a detailed analysis of van der Waals thin films, derived from 2D materials, in the advancement of thin-film electronics and optoelectronic devices. The superior intrinsic properties and structural stability of inorganic nanomaterials are highlighted, which can be solution-processed and underscor the importance of solution-based processing, establishing it as a cornerstone strategy for scalable electronic and optoelectronic applications. A comprehensive exploration of the challenges and opportunities associated with the utilization of 2D materials for the next generation of thin-film electronics and optoelectronic devices is presented.
Collapse
Affiliation(s)
- Liping Liao
- Department of Inorganic Chemistry, University of Chemistry and Technology, Technicka 5, Prague, 166 28, Czech Republic
| | - Evgeniya Kovalska
- Faculty of Environment, Science and Economy, Department of Engineering, Exeter, EX4 4QF, UK
| | - Jakub Regner
- Department of Inorganic Chemistry, University of Chemistry and Technology, Technicka 5, Prague, 166 28, Czech Republic
| | - Qunliang Song
- School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology, Technicka 5, Prague, 166 28, Czech Republic
| |
Collapse
|