1
|
Huang S, Xu X, Sarker JC, Pugh D, Hogarth G. A chemically induced, room temperature, single source precursor to CuS (covellite) nanomaterials: synthesis and reactivity of [Cu(S 2CNHBz)] n. Dalton Trans 2024; 53:17140-17145. [PMID: 39417363 DOI: 10.1039/d4dt02366h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Addition of two equivalents of NaS2CNHBz to CuSO4 affords the yellow diamagnetic coordination polymer [Cu(S2CNHBz)]n (1), resulting from intramolecular electron-transfer and concomitant formation of the thiourea, (BzNH)2CS. 1 reacts with PPh3 and 1,1'-bis(diphenylphosphino)ferrocene (dppf) in CH2Cl2 to give monomeric [Cu(κ2-S2CNHBz)(PPh3)2] (2) and [Cu(κ2-S2CNHBz)(κ2-dppf)] (3), respectively, both of which have been crystallographically characterised. While 1 is thermally stable in dimethylsulfoxide (DMSO) up to ca. 70 °C, addition of nBuNH2 to 1 leads to its rapid decomposition to afford CuS (covellite) nanomaterials; indeed in neat nBuNH2, covellite formation is rapid at room temperature. Thus, 1 serves as an effective low-temperature base-induced single source precursor to covellite nanomaterials.
Collapse
Affiliation(s)
- Siqiao Huang
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 IDB, UK.
| | - Xiang Xu
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 IDB, UK.
- Institute of Pharmaceutical Sciences, King's College London, Franklin Wilkins Building, Stamford Street, London SE1 9NH, UK
| | - Jagodish C Sarker
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 IDB, UK.
| | - David Pugh
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 IDB, UK.
| | - Graeme Hogarth
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 IDB, UK.
| |
Collapse
|
2
|
Choi H, Song YE, Park D, Park C, Park BK, Son SU, Lim J, Chung TM. Germanium and Tin Precursors for Chalcogenide Materials Containing N-Alkoxy Thioamide Ligands. ACS OMEGA 2024; 9:28707-28714. [PMID: 38973851 PMCID: PMC11223241 DOI: 10.1021/acsomega.4c03019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024]
Abstract
This study describes the synthesis of germanium and tin complexes Ge(mdpaS)2 (1), Ge(edpaS)2 (2), Ge(bdpaS)2 (3), Ge(empaS)2 (4), Sn(mdpaS)2 (5), Sn(edpaS)2 (6), Sn(bdpaS)2 (7), and Sn(empaS)2 (8) (mdpaSH = (Z)-N-methoxy-2,2-dimethylpropanimidothioic acid; edpaSH = (Z)-N-ethoxy-2,2-dimethylpropanimidothioic acid; bdpaSH = (Z)-N-(tert-butoxy)-2,2-dimethylpropanimidothioic acid; empaSH = (Z)-N-ethoxy-2-methylpropanimidothioic acid), using newly designed N-alkoxy thioamide ligands as precursors for metal chalcogenide materials. All complexes were characterized using various analytical techniques, and the single-crystal structures of complexes 5 and 7 revealed a distorted seesaw geometry in the monomeric SnL2 form. Thermogravimetric (TG) curves showed differences between Ge compounds, which exhibited single-step weight losses, and Sn compounds, which exhibited multistep weight losses. As a result, we suggest that the synthesized complexes 1-8 are potential precursors for group IV metal chalcogenide materials.
Collapse
Affiliation(s)
- Heenang Choi
- Thin
Film Materials Research Center, Korea Research
Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
- Department
of Chemistry, Sungkyunkwan University (SKKU), 2066 Seobu-ro,
Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic
of Korea
| | - Young Eun Song
- Thin
Film Materials Research Center, Korea Research
Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
- Department
of Chemical Convergence Materials, University
of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic
of Korea
| | - Dongseong Park
- Thin
Film Materials Research Center, Korea Research
Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Chanwoo Park
- Thin
Film Materials Research Center, Korea Research
Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Bo Keun Park
- Thin
Film Materials Research Center, Korea Research
Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
- Department
of Chemical Convergence Materials, University
of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic
of Korea
| | - Seung Uk Son
- Department
of Chemistry, Sungkyunkwan University (SKKU), 2066 Seobu-ro,
Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic
of Korea
| | - Jongsun Lim
- Thin
Film Materials Research Center, Korea Research
Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Taek-Mo Chung
- Thin
Film Materials Research Center, Korea Research
Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
- Department
of Chemical Convergence Materials, University
of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic
of Korea
| |
Collapse
|
3
|
Taeufer T, Dankert F, Michalik D, Pospech J, Bresien J, Hering-Junghans C. Photochemical formation and reversible base-induced cleavage of a phosphagallene. Chem Sci 2023; 14:3018-3023. [PMID: 36937589 PMCID: PMC10016425 DOI: 10.1039/d2sc06292e] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
The reactivity of Cp*Ga (Cp* = C5Me5) towards phosphanylidenephosphoranes of the type ArTerP(PMe3) (ArTer = DipTer 2,6-(2,6-iPr2C6H3)2C6H3), TipTer 2,6-(2,4,6-iPr3C6H2)2C6H3 was investigated. While no thermal reaction was observed (in line with DFT results), irradiation at 405 nm at low temperatures resulted in the formation of phosphagallenes DipTerP = GaCp* (1a) and TipTerP = GaCp* (1b) accompanied by release of PMe3. When warming the reaction mixture to ambient temperatures without irradiation, the clean re-formation of ArTerP(PMe3) and Cp*Ga in a second-order reaction was observed. Upon removal of PMe3, 1a and 1b were isolated and fully characterized. Both derivatives were found to be labile and decomposed to the phosphafluorenes 2a and 2b, indicating generation of the transient phosphinidene ArTerP along with Cp*Ga. First reactivity studies show that CO2 and H2O cleanly reacted with 1a, affording DipTerPCO (3) and DipTerPH2 (4), respectively.
Collapse
Affiliation(s)
- T Taeufer
- Leibniz Institut für Katalyse e.V. (LIKAT) A.-Einstein.-Str. 29a 18059 Rostock Germany https://www.catalysis.de/forschung/katalytische-funktionalisierungen https://www.catalysis.de/forschung/katalyse-mit-erneuerbaren-rohstoffen/bioinspirierte-katalyse
| | - F Dankert
- Leibniz Institut für Katalyse e.V. (LIKAT) A.-Einstein.-Str. 29a 18059 Rostock Germany https://www.catalysis.de/forschung/katalytische-funktionalisierungen https://www.catalysis.de/forschung/katalyse-mit-erneuerbaren-rohstoffen/bioinspirierte-katalyse
| | - D Michalik
- Leibniz Institut für Katalyse e.V. (LIKAT) A.-Einstein.-Str. 29a 18059 Rostock Germany https://www.catalysis.de/forschung/katalytische-funktionalisierungen https://www.catalysis.de/forschung/katalyse-mit-erneuerbaren-rohstoffen/bioinspirierte-katalyse
- Institute of Chemistry, University of Rostock A.-Einstein.-Str. 3a 18059 Rostock Germany https://www.chemie.uni-rostock.de/arbeitsgruppen/anorganische-chemie/dr-jonas-bresien/
| | - J Pospech
- Leibniz Institut für Katalyse e.V. (LIKAT) A.-Einstein.-Str. 29a 18059 Rostock Germany https://www.catalysis.de/forschung/katalytische-funktionalisierungen https://www.catalysis.de/forschung/katalyse-mit-erneuerbaren-rohstoffen/bioinspirierte-katalyse
| | - J Bresien
- Institute of Chemistry, University of Rostock A.-Einstein.-Str. 3a 18059 Rostock Germany https://www.chemie.uni-rostock.de/arbeitsgruppen/anorganische-chemie/dr-jonas-bresien/
| | - C Hering-Junghans
- Leibniz Institut für Katalyse e.V. (LIKAT) A.-Einstein.-Str. 29a 18059 Rostock Germany https://www.catalysis.de/forschung/katalytische-funktionalisierungen https://www.catalysis.de/forschung/katalyse-mit-erneuerbaren-rohstoffen/bioinspirierte-katalyse
| |
Collapse
|
4
|
Francis M, Roy S. Stabilisation and reactivity studies of donor-base ligand-supported gallium-phosphides with stronger binding energy: a theoretical approach. RSC Adv 2023; 13:7738-7751. [PMID: 36909773 PMCID: PMC9993238 DOI: 10.1039/d2ra06001a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/17/2023] [Indexed: 03/14/2023] Open
Abstract
Gallium phosphide is a three-dimensional polymeric material of the hetero-diatomic GaP unit, which has a wurtzite type structure, and captivating application as a light emitting diode (LED). As a result, there is a constant search for suitable precursors to synthesise GaP-based materials. However, the corresponding monomeric species is exotic in nature due to the expected Ga[triple bond, length as m-dash]P multiple bond. Herein, we report on the theoretical studies of stability, chemical bonding, and reactivity of the monomeric gallium phosphides with two donor base ligands having tuneable binding energies. We have performed detailed investigations using density functional theory at three different levels (BP86/def2-TZVPP, B3LYP/def2-TZVPP, M06-2X/def2-TZVPP), QTAIM and EDA-NOCV (BP86-D3(BJ)/TZ2P, M06-2X/TZ2P) to analyse various ligand-stabilised GaP monomers, which revealed the synthetic viability of such species in the presence of stable singlet carbenes, e.g., cAAC, and NHC as ligands [cAAC = cyclic alkyl(amino) carbene, NHC = N-heterocyclic carbene] due to the larger bond dissociation energy compared to a phosphine ligand (PMe3). The calculated bond dissociation energies between a pair of ligands and the monomeric GaP unit are found to be in the range of 87 to 137 kcal mol-1, predicting their possible syntheses in the laboratory. Further, the reactivity of such species with metal carbonyls [Fe(CO)4, and Ni(CO)3] have been theoretically investigated.
Collapse
Affiliation(s)
- Maria Francis
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati Tirupati 517507 India
| | - Sudipta Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati Tirupati 517507 India
| |
Collapse
|
5
|
Amutha T, Rameshbabu M, Razia M, Bakri M, Florence SS, Muthupandi S, Prabha K. Structural, optical and antibacterial activity of pure and co-doped (Fe & Ni) tin oxide nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:121996. [PMID: 36327808 DOI: 10.1016/j.saa.2022.121996] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/24/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
In this investigation, ferric (Fe) and nickel (Ni) co-doped tin oxide (SnO2) nanoparticles structural, optical, morphological, and antibacterial characteristics were synthesised, characterised, and examined. By employing SnCl2·2H2O and the transition metal precursors FeCl3 and NiCl2·6H2O with various Fe/Ni molar ratios, thermal annealing was carried out at a high temperature (700 °C). X-ray diffraction (XRD), UV-Visible spectroscopy, Photoluminescence (PL), FT-IR, and scanning electron microscopy (SEM) with energy dispersive X-ray techniques (EDX) were used to examine the materials' structural, chemical, optical, morphological, and anti-microbial capabilities. The average particle size of pure and co-doped SnO2 nanoparticles was determined to be around 52 nm and 15 nm, and SnO2 crystallites were observed to present tetragonal rutile structure with space group P42/mmm (No.136). Metal ions were replaced in the Sn lattice, as shown by Fe and Ni co-doped SnO2 nanoparticles. Pure and co-doped samples have capsule and sphere-like features in their SEM morphology. Using UV-visible diffuse reflectance spectroscopy, the optical property was examined, and it was observed that the band gaps for pure and co-doped SnO2 were 3.73 eV and 3.53 eV, respectively. The functional groups and incorporation of Fe and Ni in the prepared powder were also validated by FT-IR and EDX studies. By utilising the agar well diffusion technique and Nutrient agar, the antibacterial properties of pure, Ni-Fe co-doped SnO2 nanoparticles annealed at 700 °C were assessed. They were evaluated against various Gram-positive bacteria (Staphylococcus pheumoniae) and Gram-negative bacteria (Shigella dysenteria). The zone of incubation was found against the Gram +Ve and Gram -Ve bacterial strains.
Collapse
Affiliation(s)
- T Amutha
- Department of Physics, Mother Teresa Women's University, Kodaikanal 624101, Tamil Nadu, India
| | - M Rameshbabu
- Department of Physics, Arulmigu Palaniandavar College of Arts and Culture, Palani 624601, Tamil Nadu, India
| | - M Razia
- Department of Biotechnology, Mother Teresa Women's University, Kodaikanal 624101, Tamil Nadu, India
| | - Marwah Bakri
- Department of Biology, Jazan University, Jizan 45142, Saudi Arabia
| | - S Sasi Florence
- Department of Physics, Jazan University, Jizan 45142, Saudi Arabia
| | - S Muthupandi
- Department of Physics, Loyola College, Affiliated to University of Madras, Chennai 600034, Tamil Nadu, India
| | - K Prabha
- Department of Physics, Mother Teresa Women's University, Kodaikanal 624101, Tamil Nadu, India.
| |
Collapse
|
6
|
Sperry B, Kukhta NA, Huang Y, Luscombe CK. Ligand Decomposition during Nanoparticle Synthesis: Influence of Ligand Structure and Precursor Selection. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:570-583. [PMID: 36711050 PMCID: PMC9879203 DOI: 10.1021/acs.chemmater.2c03006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/02/2022] [Indexed: 06/18/2023]
Abstract
Aliphatic amine and carboxylic acid ligands are widely used as organic solvents during the bottom-up synthesis of inorganic nanoparticles (NPs). Although the ligands' ability to alter final NP properties has been widely studied, side reactivity of these ligands is emerging as an important mechanism to consider. In this work, we study the thermal decomposition of common ligands with varying functional groups (amines and carboxylic acids) and bond saturations (from saturated to polyunsaturated). Here, we investigate how these ligand properties influence decomposition in the absence and presence of precursors used in NP synthesis. We show that during the synthesis of inorganic chalcogenide NPs (Cu2ZnSnS4, Cu x S, and SnS x ) with metal acetylacetonate precursors and elemental sulfur, the ligand pyrolyzes, producing alkylated graphitic species. Additionally, there was less to no ligand decomposition observed during the sulfur-free synthesis of ZnO and CuO with metal acetylacetonate precursors. These results will help guide ligand selection for NP syntheses and improve reaction purity, an important factor in many applications.
Collapse
Affiliation(s)
- Breena
M. Sperry
- Department
of Materials Science and Engineering, University
of Washington, Seattle, Washington 98195, United States
| | - Nadzeya A. Kukhta
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Yunping Huang
- Department
of Materials Science and Engineering, University
of Washington, Seattle, Washington 98195, United States
- University
of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Christine K. Luscombe
- Department
of Materials Science and Engineering, University
of Washington, Seattle, Washington 98195, United States
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
- Pi-Conjugated
Polymers Unit, Okinawa Institute of Science
and Technology, Okinawa 904-0495, Japan
| |
Collapse
|
7
|
van Embden J, Gross S, Kittilstved KR, Della Gaspera E. Colloidal Approaches to Zinc Oxide Nanocrystals. Chem Rev 2023; 123:271-326. [PMID: 36563316 DOI: 10.1021/acs.chemrev.2c00456] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Zinc oxide is an extensively studied semiconductor with a wide band gap in the near-UV. Its many interesting properties have found use in optics, electronics, catalysis, sensing, as well as biomedicine and microbiology. In the nanoscale regime the functional properties of ZnO can be precisely tuned by manipulating its size, shape, chemical composition (doping), and surface states. In this review, we focus on the colloidal synthesis of ZnO nanocrystals (NCs) and provide a critical analysis of the synthetic methods currently available for preparing ZnO colloids. First, we outline key thermodynamic considerations for the nucleation and growth of colloidal nanoparticles, including an analysis of different reaction methodologies and of the role of dopant ions on nanoparticle formation. We then comprehensively review and discuss the literature on ZnO NC systems, including reactions in polar solvents that traditionally occur at low temperatures upon addition of a base, and high temperature reactions in organic, nonpolar solvents. A specific section is dedicated to doped NCs, highlighting both synthetic aspects and structure-property relationships. The versatility of these methods to achieve morphological and compositional control in ZnO is explicated. We then showcase some of the key applications of ZnO NCs, both as suspended colloids and as deposited coatings on supporting substrates. Finally, a critical analysis of the current state of the art for ZnO colloidal NCs is presented along with existing challenges and future directions for the field.
Collapse
Affiliation(s)
- Joel van Embden
- School of Science, RMIT University, MelbourneVictoria, 3001, Australia
| | - Silvia Gross
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, 35131Padova, Italy.,Karlsruher Institut für Technologie (KIT), Institut für Technische Chemie und Polymerchemie (ITCP), Engesserstrasse 20, 76131Karlsruhe, Germany
| | - Kevin R Kittilstved
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts01003, United States
| | | |
Collapse
|
8
|
Heilmann A, Vasko P, Hicks J, Goicoechea JM, Aldridge S. An Aluminium Imide as a Transfer Agent for the [NR] 2- Function via Metathesis Chemistry. Chemistry 2023; 29:e202300018. [PMID: 36602941 DOI: 10.1002/chem.202300018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/06/2023]
Abstract
The reactions of a terminal aluminium imide with a range of oxygen-containing substrates have been probed with a view to developing its use as a novel main group transfer agent for the [NR]2- fragment. We demonstrate transfer of the imide moiety to [N2 ], [CO] and [Ph(H)C] units driven thermodynamically by Al-O bond formation. N2 O reacts rapidly to generate the organoazide DippN3 (Dipp=2,6-i Pr2 C6 H3 ), while CO2 (under dilute reaction conditions) yields the corresponding isocyanate, DippNCO. Mechanistic studies, using both experimental and quantum chemical techniques, identify a carbamate complex K2 [(NON)Al-{κ2 -(N,O)-N(Dipp)CO2 }]2 (formed via [2+2] cycloaddition) as an intermediate in the formation of DippNCO, and also in an alternative reaction leading to the generation of the amino-dicarboxylate complex K2 [(NON)Al{κ2 -(O,O')-(O2 C)2 N-(Dipp)}] (via the take-up of a second equivalent of CO2 ). In the case of benzaldehyde, a similar [2+2] cycloaddition process generates the metallacyclic hemi-aminal complex, Kn [(NON)Al{κ2 -(N,O)-(N(Dipp)C(Ph)(H)O}]n . Extrusion of the imine, PhC(H)NDipp, via cyclo-reversion is disfavoured thermally, due to the high energy of the putative aluminium oxide co-product, K2 [(NON)Al(O)]2 . However, addition of CO2 allows the imine to be released, driven by the formation of the thermodynamically more stable aluminium carbonate co-product, K2 [(NON)Al(κ2 -(O,O')-CO3 )]2 .
Collapse
Affiliation(s)
- Andreas Heilmann
- Inorganic Chemistry Laboratory Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Petra Vasko
- Department of Chemistry, University of Helsinki, A. I. Virtasen Aukio 1, PO Box 55, 00014, Helsinki, Finland
| | - Jamie Hicks
- Inorganic Chemistry Laboratory Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Jose M Goicoechea
- Inorganic Chemistry Laboratory Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Simon Aldridge
- Inorganic Chemistry Laboratory Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| |
Collapse
|
9
|
Ward-O’Brien B, McNaughter PD, Cai R, Chattopadhyay A, Flitcroft JM, Smith CT, Binks DJ, Skelton JM, Haigh SJ, Lewis DJ. Quantum Confined High-Entropy Lanthanide Oxysulfide Colloidal Nanocrystals. NANO LETTERS 2022; 22:8045-8051. [PMID: 36194549 PMCID: PMC9614967 DOI: 10.1021/acs.nanolett.2c01596] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/27/2022] [Indexed: 06/16/2023]
Abstract
We have synthesized the first reported example of quantum confined high-entropy (HE) nanoparticles, using the lanthanide oxysulfide, Ln2SO2, system as the host phase for an equimolar mixture of Pr, Nd, Gd, Dy, and Er. A uniform HE phase was achieved via the simultaneous thermolysis of a mixture of lanthanide dithiocarbamate precursors in solution. This was confirmed by powder X-ray diffraction and high-resolution scanning transmission electron microscopy, with energy dispersive X-ray spectroscopic mapping confirming the uniform distribution of the lanthanides throughout the particles. The nanoparticle dispersion displayed a significant blue shift in the absorption and photoluminescence spectra relative to our previously reported bulk sample with the same composition, with an absorption edge at 330 nm and a λmax at 410 nm compared to the absorption edge at 500 nm and a λmax at 450 nm in the bulk, which is indicative of quantum confinement. We support this postulate with experimental and theoretical analysis of the bandgap energy as a function of strain and surface effects (ligand binding) as well as calculation of the exciton Bohr radiii of the end member compounds.
Collapse
Affiliation(s)
- Brendan Ward-O’Brien
- Department
of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Paul D. McNaughter
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Rongsheng Cai
- Department
of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Amrita Chattopadhyay
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Joseph M. Flitcroft
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Charles T. Smith
- Department
of Physics and Astronomy and the Photon Science Institute, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - David J. Binks
- Department
of Physics and Astronomy and the Photon Science Institute, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Jonathan M. Skelton
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Sarah J. Haigh
- Department
of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - David J. Lewis
- Department
of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
10
|
Mishra S. Ultra-mild synthesis of nanometric metal chalcogenides using organyl chalcogenide precursors. Chem Commun (Camb) 2022; 58:10136-10153. [PMID: 36004549 DOI: 10.1039/d2cc03458a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bis(trialkylsilyl) monochalcogenides and diorganyl dichalcogenides, (R3Si)2E and R2E2 (E = S, Se or Te and R = alkyl, aryl or allyl group), have emerged in the past decade as excellent reagents for the synthesis of metal chalcogenide nanoparticles (NPs) and clusters owing to their ability to transfer the chalcogenide anion (E2-) under ultra-mild conditions and versatility in reacting even with non-conventional metal reagents or being employed in a variety of synthetic methods. In comparison, the related non-silylated diorganyl monochalcogenides R2E have received attention only recently for the solution phase synthesis of metal chalcogenide NPs. In spite of sharing many similarities, these three families of organyl chalcogenides are different in their coordination ability and decomposition behavior, and therefore in reactivities towards metal reagents. This feature article provides a concise overview on the use of these three families as synthons for the ultralow-temperature synthesis of metal chalcogenide nanomaterials, deliberating their different decomposition mechanisms and critically assessing their advantages for certain applications. More specifically, it discusses their usefulness in (i) affording molecular precursors with different kinetic and thermal stabilities, (ii) isolating reactive intermediates for comprehending the mechanism of molecule-to-nanoparticle transformation and, therefore, achieving fine control over the synthesis, (iii) stabilizing isolable metastable or difficult-to-achieve phases, and (iv) yielding complex ternary nanoparticles with controlled stoichiometry or composites with sensitive materials without modifying the characteristics of the latter. Besides providing a perspective on the low-temperature synthesis of nanomaterials, this overview is expected to assist further progress, particularly in the field of R2E, leading to interesting materials including metastable ones for new applications.
Collapse
Affiliation(s)
- Shashank Mishra
- Université Claude Bernard Lyon 1, CNRS, UMR 5256, Institut de Recherches sur la Catalyse et l'Environnement de Lyon (IRCELYON), 2 Avenue Albert Einstein, 69626 Villeurbanne, France.
| |
Collapse
|
11
|
Muhammad S, Ferenczy ET, Germaine IM, Wagner JT, Jan MT, McElwee-White L. Molybdenum(IV) dithiocarboxylates as single-source precursors for AACVD of MoS 2 thin films. Dalton Trans 2022; 51:12540-12548. [PMID: 35913376 PMCID: PMC9426634 DOI: 10.1039/d2dt01852g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tetrakis(dithiocarboxylato)molybdenum(IV) complexes of the type Mo(S2CR)4 (R = Me, Et, iPr, Ph) were synthesized, characterized, and prescreened as precursors for aerosol assisted chemical vapor deposition (AACVD) of MoS2 thin films. The thermal behavior of the complexes as determined by TGA and GC-MS was appropriate for AACVD, although the complexes were not sufficiently volatile for conventional CVD bubbler systems. Thin films of MoS2 were grown by AACVD at 500 °C from solutions of Mo(S2CMe)4 in toluene. The films were characterized by GIXRD diffraction patterns which correspond to a 2H-MoS2 structure in the deposited film. Mo-S bonding in 2H-MoS2 was further confirmed by XPS and EDS. The film morphology, vertically oriented structure, and thickness (2.54 μm) were evaluated by FE-SEM. The Raman E12g and A1g vibrational modes of crystalline 2H-MoS2 were observed. These results demonstrate the use of dithiocarboxylato ligands for the chemical vapor deposition of metal sulfides.
Collapse
Affiliation(s)
- Saleh Muhammad
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA.
- Department of Chemistry, Islamia College Peshawar, 25120 Peshawar, Pakistan
| | - Erik T Ferenczy
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA.
| | - Ian M Germaine
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA.
| | - J Tyler Wagner
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA.
| | - Muhammad T Jan
- Department of Chemistry, Islamia College Peshawar, 25120 Peshawar, Pakistan
| | - Lisa McElwee-White
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA.
| |
Collapse
|
12
|
Thomas‐Hargreaves LR, Berthold C, Augustinov W, Müller M, Ivlev SI, Buchner MR. Reactivity of Diphenylberyllium as a Brønsted Base and Its Synthetic Application. Chemistry 2022; 28:e202200851. [PMID: 35389541 PMCID: PMC9322039 DOI: 10.1002/chem.202200851] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Indexed: 11/17/2022]
Abstract
Diphenylberyllium [Be3Ph6] is shown here to react cleanly as a Brønsted base with a vast variety of protic compounds. Through the addition of the simple molecules tBuOH, HNPh2 and HPPh2, as well as the more complex 1,3‐bis‐(2,6‐diisopropylphenyl)imidazolinium chloride, one or two phenyl groups in diphenylberyllium were protonated. As a result, the long‐postulated structures of [Be3(OtBu)6] and [Be(μ‐NPh2)Ph]2 have finally been verified and shown to be static in solution. Additionally [Be(μ‐PPh2)(HPPh2)Ph]2 was generated, which is only the second beryllium‐phospanide to be prepared; the stark differences between its behaviour and that of the analogous amide were also examined. The first crystalline example of a beryllium Grignard reagent with a non‐bulky aryl group has also been prepared; it is stabilised with an N‐heterocyclic carbene.
Collapse
Affiliation(s)
| | | | | | - Matthias Müller
- Fachbereich Chemie Philipps-Universität Marburg 35043 Marburg Germany
| | - Sergei I. Ivlev
- Fachbereich Chemie Philipps-Universität Marburg 35043 Marburg Germany
| | - Magnus R. Buchner
- Fachbereich Chemie Philipps-Universität Marburg 35043 Marburg Germany
| |
Collapse
|
13
|
The Effect of Solvent-Modification on the Physicochemical Properties of ZnO Nanoparticles Synthesized by Sol-Gel Method. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2022. [DOI: 10.9767/bcrec.17.1.12345.46-52] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study investigated the solvent effect on the synthesis of Zinc Oxide (ZnO) nanoparticle using sol-gel method. Zinc acetate dihydrate and oxalic acid were used as a chemical precursor for the synthesis of the ZnO nanoparticle considering the effects of various solvents. The effect of using water, propanol, or ethanol as solvent during the synthesis were examined. The resultant gel in the aqueous and organic moderate solvent was thermally cracked into ZnO nanoparticles at 450 °C under atmospheric pressure. The results showed that the solvent type has a significant effect on the morphology and particles size of the ZnO nanoparticles synthesized. Atomic Force Microscopy (AFM) was used to investigate the microstructure of the nanoparticles. The crystalline and chemical structure of the prepared ZnO nanoparticle were studied by X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FTIR). The average diameter of nano-size particles obtained for ethanol, propanol and water are 79.55 nm, 83.86 nm and 85.59 nm, respectively. ZnO particles showed higher degree of crystalline in water compared to other solvents under current investigation. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|
14
|
Dankert F, Hering-Junghans C. Heavier group 13/15 multiple bond systems: synthesis, structure and chemical bond activation. Chem Commun (Camb) 2022; 58:1242-1262. [PMID: 35014640 DOI: 10.1039/d1cc06518a] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Heavier group 13/15 multiple bonds have been under investigation since the late 80s and to date, several examples have been published, which shows the obsoleteness of the so-called double bond rule. Especially in the last few years, more and more group 13/15 multiple bonds became synthetically feasible and their application in terms of small molecule activation has been demonstrated. Our group has recently shown that the combination of the pnictinidene precursor DipTer-Pn(PMe3) (Pn = P, As) in combination with Al(I) synthons afforded the first examples of phospha- and arsaalumenes as isolable and thermally robust compounds. This feature article is intended to show the recent developments in the field, to outline early synthetic approaches and to discuss strategies to unlock the synthetic potential of these elusive chemical bonds.
Collapse
Affiliation(s)
- F Dankert
- Leibniz Institut für Katalyse e.V. (LIKAT), Albert-Einstein-Str. 29A, 18059 Rostock, Germany.
| | - C Hering-Junghans
- Leibniz Institut für Katalyse e.V. (LIKAT), Albert-Einstein-Str. 29A, 18059 Rostock, Germany.
| |
Collapse
|
15
|
Ward-O'Brien B, Pickering EJ, Ahumada-Lazo R, Smith C, Zhong XL, Aboura Y, Alam F, Binks DJ, Burnett TL, Lewis DJ. Synthesis of High Entropy Lanthanide Oxysulfides via the Thermolysis of a Molecular Precursor Cocktail. J Am Chem Soc 2021; 143:21560-21566. [PMID: 34923815 DOI: 10.1021/jacs.1c08995] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
High entropy (HE) materials have received significant attention in recent years, due to their intrinsically high levels of configurational entropy. While there has been significant work exploring HE alloys and oxides, new families of HE materials are still being revealed. In this work we present the synthesis of a novel family of HE materials based on lanthanide oxysulfides. Here, we implement lanthanide dithiocarbamates as versatile precursors that can be mixed at the molecular scale prior to thermolysis in order to produce the high entropy oxysulfide. The target of our synthesis is the HE Ln2SO2 phase, where Ln = Pr, Nd, Gd, Dy, Er and where Ln = Pr, Nd, Gd, Dy for 5 and 4 lanthanide samples, respectively. We confirmed the structure of samples produced by powder X-ray diffraction, electron microscopy, and high-resolution energy dispersive X-ray spectroscopy. Optical spectroscopy shows a broad emission feature centered around 450 nm as well as a peak in absorption at around 280 nm. From this data we calculate the band gap and Urbach energies of the materials produced.
Collapse
|
16
|
David M, Mitea R, Silvestru A. Silver(I) complexes based on diorganoselenium(II) ligands with amino or hydroxo functionalities. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Brune V, Raydan N, Sutorius A, Hartl F, Purohit B, Gahlot S, Bargiela P, Burel L, Wilhelm M, Hegemann C, Atamtürk U, Mathur S, Mishra S. Single source precursor route to nanometric tin chalcogenides. Dalton Trans 2021; 50:17346-17360. [PMID: 34788778 DOI: 10.1039/d1dt02964a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Low-temperature solution phase synthesis of nanomaterials using designed molecular precursors enjoys tremendous advantages over traditional high-temperature solid-state synthesis. These include atomic-level control over stoichiometry, homogeneous elemental dispersion and uniformly distributed nanoparticles. For exploiting these advantages, however, rationally designed molecular complexes having certain properties are usually required. We report here the synthesis and complete characterization of new molecular precursors containing direct Sn-E bonds (E = S or Se), which undergo facile decomposition under different conditions (solid/solution phase, thermal/microwave heating, single/mixed solvents, varying temperatures, etc.) to afford phase-pure or mixed-phase tin chalcogenide nanoflakes with defined ratios.
Collapse
Affiliation(s)
- Veronika Brune
- University of Cologne, Institute of Inorganic Chemisty, Greinstraße 6, 50939 Cologne, Germany.
| | - Nidal Raydan
- Université Lyon 1, IRCELYON, CNRS-UMR 5256, 2 Avenue A. Einstein, 69626 Villeurbanne, France.
| | - Anja Sutorius
- University of Cologne, Institute of Inorganic Chemisty, Greinstraße 6, 50939 Cologne, Germany.
| | - Fabian Hartl
- University of Cologne, Institute of Inorganic Chemisty, Greinstraße 6, 50939 Cologne, Germany.
| | - Bhagyesh Purohit
- Université Lyon 1, IRCELYON, CNRS-UMR 5256, 2 Avenue A. Einstein, 69626 Villeurbanne, France.
| | - Sweta Gahlot
- Université Lyon 1, IRCELYON, CNRS-UMR 5256, 2 Avenue A. Einstein, 69626 Villeurbanne, France.
| | - Pascal Bargiela
- Université Lyon 1, IRCELYON, CNRS-UMR 5256, 2 Avenue A. Einstein, 69626 Villeurbanne, France.
| | - Laurence Burel
- Université Lyon 1, IRCELYON, CNRS-UMR 5256, 2 Avenue A. Einstein, 69626 Villeurbanne, France.
| | - Michael Wilhelm
- University of Cologne, Institute of Inorganic Chemisty, Greinstraße 6, 50939 Cologne, Germany.
| | - Corinna Hegemann
- University of Cologne, Institute of Inorganic Chemisty, Greinstraße 6, 50939 Cologne, Germany.
| | - Ufuk Atamtürk
- University of Cologne, Institute of Inorganic Chemisty, Greinstraße 6, 50939 Cologne, Germany.
| | - Sanjay Mathur
- University of Cologne, Institute of Inorganic Chemisty, Greinstraße 6, 50939 Cologne, Germany.
| | - Shashank Mishra
- Université Lyon 1, IRCELYON, CNRS-UMR 5256, 2 Avenue A. Einstein, 69626 Villeurbanne, France.
| |
Collapse
|
18
|
Burns K, Bischoff B, Barr CM, Hattar K, Aitkaliyeva A. Photo-exfoliation of MoS 2quantum dots from nanosheets: an in situtransmission electron microscopy study. NANOTECHNOLOGY 2021; 33:085601. [PMID: 34727536 DOI: 10.1088/1361-6528/ac357c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Fabrication of transition metal dichalcogenide quantum dots (QDs) is complex and requires submerging powders in binary solvents and constant tuning of wavelength and pulsed frequency of light to achieve a desired reaction. Instead of liquid state photoexfoliation, we utilize infrared laser irradiation of free-standing MoS2flakes in transmission electron microscope (TEM) to achieve solid-state multi-level photoexfoliation of QDs. By investigating the steps involved in photochemical reaction between the surface of MoS2and the laser beam, we gain insight into each step of the photoexfoliation mechanism and observe high yield production of QDs, led by an inhomogeneous crystalline size distribution. Additionally, by using a laser with a lower energy than the indirect optical transition of bulk MoS2, we conclude that the underlying phenomena behind the photoexfoliation is from multi-photon absorption achieved at high optical outputs from the laser source. These findings provide an environmentally friendly synthesis method to fabricate QDs for potential applications in biomedicine, optoelectronics, and fluorescence sensing.
Collapse
Affiliation(s)
- Kory Burns
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, United States of America
- Sandia National Laboratories, PO Box 5800 Albuquerque, NM 87185, United States of America
| | - Benjamin Bischoff
- Sandia National Laboratories, PO Box 5800 Albuquerque, NM 87185, United States of America
- Department of Computer Science, University of Utah, Salt Lake City, UT 84112, United States of America
| | - Christopher M Barr
- Sandia National Laboratories, PO Box 5800 Albuquerque, NM 87185, United States of America
| | - Khalid Hattar
- Sandia National Laboratories, PO Box 5800 Albuquerque, NM 87185, United States of America
| | - Assel Aitkaliyeva
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, United States of America
| |
Collapse
|
19
|
Iram S, Mahmood A, Ehsan MF, Mumtaz A, Sohail M, Sitara E, Mushtaq S, Malik MA, Fatima SA, Shaheen R, Ahmad NM, Malik SN. Impedance Spectroscopy Analysis of PbSe Nanostructures Deposited by Aerosol Assisted Chemical Vapor Deposition Approach. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2817. [PMID: 34835581 PMCID: PMC8622599 DOI: 10.3390/nano11112817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 11/17/2022]
Abstract
This research endeavor aimed to synthesize the lead (II) diphenyldiselenophosphinate complex and its use to obtain lead selenide nanostructured depositions and further the impedance spectroscopic analysis of these obtained PbSe nanostructures, to determine their roles in the electronics industry. The aerosol-assisted chemical vapor deposition technique was used to provide lead selenide deposition by decomposition of the complex at different temperatures using the glass substrates. The obtained films were revealed to be a pure cubic phase PbSe, as confirmed by X-ray diffraction analysis. SEM and TEM micrographs demonstrated three-dimensionally grown interlocked or aggregated nanocubes of the obtained PbSe. Characteristic dielectric measurements and the impedance spectroscopy analysis at room temperature were executed to evaluate PbSe properties over the frequency range of 100 Hz-5 MHz. The dielectric constant and dielectric loss gave similar trends, along with altering frequency, which was well explained by the Koops theory and Maxwell-Wagner theory. The effective short-range translational carrier hopping gave rise to an overdue remarkable increase in ac conductivity (σac) on the frequency increase. Fitting of a complex impedance plot was carried out with an equivalent circuit model (Rg Cg) (Rgb Qgb Cgb), which proved that grains, as well as grain boundaries, are responsible for the relaxation processes. The asymmetric depressed semicircle with the center lower to the impedance real axis provided a clear explanation of non-Debye dielectric behavior.
Collapse
Affiliation(s)
- Sadia Iram
- School of Natural Sciences, National University of Sciences and Technology, Islamabad 44000, Pakistan; (S.I.); (M.F.E.); (A.M.); (M.S.); (E.S.); (S.M.)
- Department of Materials, University of Manchester, Manchester M13 9PL, UK;
| | - Azhar Mahmood
- School of Natural Sciences, National University of Sciences and Technology, Islamabad 44000, Pakistan; (S.I.); (M.F.E.); (A.M.); (M.S.); (E.S.); (S.M.)
| | - Muhammad Fahad Ehsan
- School of Natural Sciences, National University of Sciences and Technology, Islamabad 44000, Pakistan; (S.I.); (M.F.E.); (A.M.); (M.S.); (E.S.); (S.M.)
| | - Asad Mumtaz
- School of Natural Sciences, National University of Sciences and Technology, Islamabad 44000, Pakistan; (S.I.); (M.F.E.); (A.M.); (M.S.); (E.S.); (S.M.)
| | - Manzar Sohail
- School of Natural Sciences, National University of Sciences and Technology, Islamabad 44000, Pakistan; (S.I.); (M.F.E.); (A.M.); (M.S.); (E.S.); (S.M.)
| | - Effat Sitara
- School of Natural Sciences, National University of Sciences and Technology, Islamabad 44000, Pakistan; (S.I.); (M.F.E.); (A.M.); (M.S.); (E.S.); (S.M.)
| | - Shehla Mushtaq
- School of Natural Sciences, National University of Sciences and Technology, Islamabad 44000, Pakistan; (S.I.); (M.F.E.); (A.M.); (M.S.); (E.S.); (S.M.)
| | | | - Syeda Arooj Fatima
- Central Diagnostic Laboratory, Physics Division, PINSTECH, P.O. Nilore., Islamabad 45500, Pakistan; (S.A.F.); (R.S.)
| | - Rubina Shaheen
- Central Diagnostic Laboratory, Physics Division, PINSTECH, P.O. Nilore., Islamabad 45500, Pakistan; (S.A.F.); (R.S.)
| | - Nasir Mahmood Ahmad
- Department of Materials Engineering, School of Chemical and Materials Engineering (SCME)-National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan; (N.M.A.); (S.N.M.)
| | - Sajid Nawaz Malik
- Department of Materials Engineering, School of Chemical and Materials Engineering (SCME)-National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan; (N.M.A.); (S.N.M.)
| |
Collapse
|
20
|
Tyagi A, Karmakar G, Mandal BP, Dutta Pathak D, Wadawale A, Kedarnath G, Srivastava AP, Jain VK. Di- tert-butyltin(IV) 2-pyridyl and 4,6-dimethyl-2-pyrimidyl thiolates: versatile single source precursors for the preparation of SnS nanoplatelets as anode material for lithium ion batteries. Dalton Trans 2021; 50:13073-13085. [PMID: 34581340 DOI: 10.1039/d1dt01142a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
New air and moisture stable di-tert-butyltin complexes derived from 2-mercaptopyridine (HSpy), [tBu2Sn(Spy)2], [tBu2Sn(Cl)(Spy)] and 4,6-dimethyl-2-mercaptopyrimidine (HSpymMe2) [tBu2Sn(Cl)(SpymMe2)], have been prepared and utilized as single-source molecular precursors for the preparation of orthorhombic SnS nanoplatelets by a hot injection method and thin films by aerosol assisted chemical vapour deposition (AACVD). The complexes were characterized by NMR (1H, 13C, 119Sn) and elemental analysis and their structures were unambiguously established by the single crystal X-ray diffraction technique. Thermolysis of these complexes in oleylamine (OAm) produced SnS nanoplatelets. The morphologies, elemental compositions, phase purity and crystal structures of the resulting Oam-capped nanoplatelets were determined by electron microscopy (SEM, TEM), energy dispersive X-ray spectroscopy (EDS) and pXRD, while the band gaps of the nanoplatelets were evaluated by diffuse reflectance spectroscopy (DRS) and were blue shifted relative to the bulk material. The morphology and preferential growth of the nanoplatelets were found to be significantly altered by the nature of the molecular precursor employed. The synthesized SnS nanoplatelets were evaluated for their performance as anode material for lithium ion batteries (LIBs). A cell comprised of an SnS electrode could be cycled for 50 cycles. The rate capability of SnS was investigated at different current densities in the range 0.1 to 0.7 A g-1 which revealed that the initial capacity could be regained.
Collapse
Affiliation(s)
- Adish Tyagi
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400 085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400 094, India
| | - Gourab Karmakar
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400 085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400 094, India
| | - B P Mandal
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400 085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400 094, India
| | - Dipa Dutta Pathak
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400 085, India.
| | - Amey Wadawale
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400 085, India.
| | - G Kedarnath
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400 085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400 094, India
| | - A P Srivastava
- Materials Science Division, Bhabha Atomic Research Centre, Mumbai-400 085, India
| | - Vimal K Jain
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400 085, India. .,UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Mumbai-400 098, India
| |
Collapse
|
21
|
Crystal structures of bis(2-methoxy-3-pyridyl) diselenide and bis(2-methoxy-3-pyridyl) ditelluride: an investigation by X-ray crystallography and DFT calculations. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Effect of solvent used for crystallization on structure: Synthesis and characterization of bis(N,N-di(4-fluorobenzyl)dithiocarbamato-S,S′)M(II) (M = Cd, Hg) and usage as precursor for CdS nanophotocatalyst. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
23
|
Abstract
The incorporation of dithiocarbamate ligands in the preparation of metal complexes is largely prompted by the versatility of this molecule. Fascinating coordination chemistry can be obtained from the study of such metal complexes ranging from their preparation, the solid-state properties, solution behavior as well as their applications as bioactive materials and luminescent compounds, to name a few. In this overview, the dithiocarbamate complexes of platinum-group elements form the focus of the discussion. The structural aspects of these complexes will be discussed based upon the intriguing findings obtained from their solid- (crystallographic) and solution-state (NMR) studies. At the end of this review, the applications of platinum-group metal complexes will be discussed.
Collapse
|
24
|
Gahlot S, Purohit B, Jeanneau E, Mishra S. Coinage Metal Complexes with Di‐tertiary‐butyl Sulfide as Precursors with Ultra‐Low Decomposition Temperature. Chemistry 2021; 27:10826-10832. [DOI: 10.1002/chem.202101471] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Sweta Gahlot
- Université Lyon 1 CNRS UMR 5256 IRCELYON Institut de recherches sur la catalyse et l'environnement de Lyon 2 avenue Albert Einstein 69626 Villeurbanne France
| | - Bhagyesh Purohit
- Université Lyon 1 CNRS UMR 5256 IRCELYON Institut de recherches sur la catalyse et l'environnement de Lyon 2 avenue Albert Einstein 69626 Villeurbanne France
| | - Erwann Jeanneau
- Université Lyon 1 Centre de Diffractométrie Henri Longchambon 5 rue de La Doua 69100 Villeurbanne France
| | - Shashank Mishra
- Université Lyon 1 CNRS UMR 5256 IRCELYON Institut de recherches sur la catalyse et l'environnement de Lyon 2 avenue Albert Einstein 69626 Villeurbanne France
| |
Collapse
|
25
|
Phipps CA, Rosenberger JM, Miller MM, Parkin SR, Brown JL. Synthetic route to vanadium(III) dichalcogenidophosphinate complexes, V(S
2
PPh
2
)
3
and V(Se
2
PPh
2
)
3
: A spectroscopic and structural comparative study with analogous complexes of chromium(III), Cr(E
2
PPh
2
)
3
(E=S, Se). Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202000396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Christine A. Phipps
- Department of Chemistry Transylvania University Lexington Kentucky 40508 USA
| | | | - McKenzie M. Miller
- Department of Chemistry Transylvania University Lexington Kentucky 40508 USA
| | - Sean R. Parkin
- Department of Chemistry University of Kentucky Lexington Kentucky 40506 USA
| | - Jessie L. Brown
- Department of Chemistry Transylvania University Lexington Kentucky 40508 USA
| |
Collapse
|
26
|
Sarker JC, Hogarth G. Dithiocarbamate Complexes as Single Source Precursors to Nanoscale Binary, Ternary and Quaternary Metal Sulfides. Chem Rev 2021; 121:6057-6123. [PMID: 33847480 DOI: 10.1021/acs.chemrev.0c01183] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nanodimensional metal sulfides are a developing class of low-cost materials with potential applications in areas as wide-ranging as energy storage, electrocatalysis, and imaging. An attractive synthetic strategy, which allows careful control over stoichiometry, is the single source precursor (SSP) approach in which well-defined molecular species containing preformed metal-sulfur bonds are heated to decomposition, either in the vapor or solution phase, resulting in facile loss of organics and formation of nanodimensional metal sulfides. By careful control of the precursor, the decomposition environment and addition of surfactants, this approach affords a range of nanocrystalline materials from a library of precursors. Dithiocarbamates (DTCs) are monoanionic chelating ligands that have been known for over a century and find applications in agriculture, medicine, and materials science. They are easily prepared from nontoxic secondary and primary amines and form stable complexes with all elements. Since pioneering work in the late 1980s, the use of DTC complexes as SSPs to a wide range of binary, ternary, and multinary sulfides has been extensively documented. This review maps these developments, from the formation of thin films, often comprised of embedded nanocrystals, to quantum dots coated with organic ligands or shelled by other metal sulfides that show high photoluminescence quantum yields, and a range of other nanomaterials in which both the phase and morphology of the nanocrystals can be engineered, allowing fine-tuning of technologically important physical properties, thus opening up a myriad of potential applications.
Collapse
Affiliation(s)
- Jagodish C Sarker
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.,Department of Chemistry, Jagannath University, Dhaka-1100, Bangladesh
| | - Graeme Hogarth
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| |
Collapse
|
27
|
Rund R, Bauer S, Stauber A, Seidl M, Ojo W, Ferrari F, Chaudret B, Nayral C, Delpech F, Scheer M. Examination of Indium Triphospholyls as Precursors for Nanoparticle Synthesis. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202001100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Reinhard Rund
- Institute of Inorganic Chemistry University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
| | - Susanne Bauer
- Institute of Inorganic Chemistry University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
| | - Andreas Stauber
- Institute of Inorganic Chemistry University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
| | - Michael Seidl
- Institute of Inorganic Chemistry University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
| | - Wilfried‐Solo Ojo
- Laboratoire de Physique et Chimie des Nano-Objets Université de Toulouse 135 avenue de Rangueil 31077 Toulouse France
| | - Fabio Ferrari
- Laboratoire de Physique et Chimie des Nano-Objets Université de Toulouse 135 avenue de Rangueil 31077 Toulouse France
| | - Bruno Chaudret
- Laboratoire de Physique et Chimie des Nano-Objets Université de Toulouse 135 avenue de Rangueil 31077 Toulouse France
| | - Céline Nayral
- Laboratoire de Physique et Chimie des Nano-Objets Université de Toulouse 135 avenue de Rangueil 31077 Toulouse France
| | - Fabien Delpech
- Laboratoire de Physique et Chimie des Nano-Objets Université de Toulouse 135 avenue de Rangueil 31077 Toulouse France
| | - Manfred Scheer
- Institute of Inorganic Chemistry University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
| |
Collapse
|
28
|
Cadmium Telluride Nanocomposite Films Formation from Thermal Decomposition of Cadmium Carboxylate Precursor and Their Photoluminescence Shift from Green to Red. CRYSTALS 2021. [DOI: 10.3390/cryst11030253] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study focuses on the investigation of a CdTe quantum dots (QDs) formation from a cadmium-carboxylate precursor, such as cadmium isostearate (Cd(ISA)2), to produce CdTe QDs with tunable photoluminescent (PL) properties. The CdTe QDs are obtained by the thermal decomposition of precursors directly in the polymer matrix (in situ method) or in solution and then encapsulated in the polymer matrix (ex situ method). In both approaches, the time course of the CdTe QDs formation is followed by means of optical absorption and PL spectroscopies focusing on viable emission in the spectral interval between 520 and 630 nm. In the polymeric matrix, the QDs formation is slower than in solution and the PL bands have a higher full width at half maximum (FWHM). These results can be explained on the basis of the limited mobility of atoms and QDs in a solid matrix with respect to the solution, inducing an inhomogeneous growth and the presence of surface defects. These achievements open the way to the exploitation of Cd(ISA)2 as suitable precursor for direct laser patterning (DPL) for the manufacturing of optoelectronic devices.
Collapse
|
29
|
Salloum S, Bendt G, Heidelmann M, Loza K, Bayesteh S, Sepideh Izadi M, Kawulok P, He R, Schlörb H, Perez N, Reith H, Nielsch K, Schierning G, Schulz S. Influence of Nanoparticle Processing on the Thermoelectric Properties of (Bi x Sb 1-X ) 2 Te 3 Ternary Alloys. ChemistryOpen 2021; 10:189-198. [PMID: 33492752 PMCID: PMC7874259 DOI: 10.1002/open.202000257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/12/2020] [Indexed: 01/09/2023] Open
Abstract
The synthesis of phase-pure ternary solutions of tetradymite-type materials (Bix Sb1-x )2 Te3 (x=0.25; 0.50; 0.75) in an ionic liquid approach has been carried out. The nanoparticles are characterized by means of energy-dispersive X-ray spectroscopy (EDX), powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), and transmission electron microscopy. In addition, the role of different processing approaches on the thermoelectric properties - Seebeck coefficient as well as electrical and thermal conductivity - is demonstrated.
Collapse
Affiliation(s)
- Sarah Salloum
- Institute for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (Cenide)University of Duisburg-EssenUniversitätsstraße 5–745117EssenGermany
| | - Georg Bendt
- Institute for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (Cenide)University of Duisburg-EssenUniversitätsstraße 5–745117EssenGermany
| | - Markus Heidelmann
- Interdisciplinary Center for Analytics on the Nanoscale (ICAN)NETZUniversity of Duisburg-EssenCarl-Benz-Str. 19947047DuisburgGermany
| | - Kateryna Loza
- Institute for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (Cenide)University of Duisburg-EssenUniversitätsstraße 5–745117EssenGermany
| | - Samaneh Bayesteh
- Institute for Metallic MaterialsLeibniz Institute for Solid State and Materials Research DresdenHelmholtzstrasse 2001069DresdenGermany
- Institute of Applied PhysicsDresden University of Technology01069DresdenGermany
| | - M. Sepideh Izadi
- Institute for Metallic MaterialsLeibniz Institute for Solid State and Materials Research DresdenHelmholtzstrasse 2001069DresdenGermany
- Institute of Applied PhysicsDresden University of Technology01069DresdenGermany
| | - Patrick Kawulok
- Institute for Metallic MaterialsLeibniz Institute for Solid State and Materials Research DresdenHelmholtzstrasse 2001069DresdenGermany
| | - Ran He
- Institute for Metallic MaterialsLeibniz Institute for Solid State and Materials Research DresdenHelmholtzstrasse 2001069DresdenGermany
| | - Heike Schlörb
- Institute for Metallic MaterialsLeibniz Institute for Solid State and Materials Research DresdenHelmholtzstrasse 2001069DresdenGermany
| | - Nicolas Perez
- Institute for Metallic MaterialsLeibniz Institute for Solid State and Materials Research DresdenHelmholtzstrasse 2001069DresdenGermany
| | - Heiko Reith
- Institute for Metallic MaterialsLeibniz Institute for Solid State and Materials Research DresdenHelmholtzstrasse 2001069DresdenGermany
| | - Kornelius Nielsch
- Institute for Metallic MaterialsLeibniz Institute for Solid State and Materials Research DresdenHelmholtzstrasse 2001069DresdenGermany
- Institute of Applied PhysicsDresden University of Technology01069DresdenGermany
- Institute of Materials ScienceDresden University of Technology01069DresdenGermany
| | | | - Stephan Schulz
- Institute for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (Cenide)University of Duisburg-EssenUniversitätsstraße 5–745117EssenGermany
| |
Collapse
|
30
|
Abstract
Since the discovery that the so-called "double-bond" rule could be broken, the field of molecular main group multiple bonds has expanded rapidly. With the majority of homodiatomic double and triple bonds realised within the p-block, along with many heterodiatomic combinations, this Minireview examines the reactivity of these compounds with a particular emphasis on small molecule activation. Furthermore, whilst their ability to act as transition metal mimics has been explored, their catalytic behaviour is somewhat limited. This Minireview aims to highlight the potential of these complexes towards catalytic application and their role as synthons in further functionalisations making them a versatile tool for the modern synthetic chemist.
Collapse
Affiliation(s)
- Catherine Weetman
- WestCHEMDepartment of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1XLUK
| |
Collapse
|
31
|
Tironi M, Dix S, Hopkinson MN. Deoxygenative nucleophilic difluoromethylselenylation of carboxylic acids and alcohols with BT-SeCF2H. Org Chem Front 2021. [DOI: 10.1039/d1qo01104a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BT-SeCF2H is introduced as a nucleophilic reagent for the deoxygenative difluoromethylselenylation of readily available carboxylic acid and alcohols.
Collapse
Affiliation(s)
- Matteo Tironi
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstrasse 34-36, 14195 Berlin, Germany
| | - Stefan Dix
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstrasse 34-36, 14195 Berlin, Germany
| | - Matthew N. Hopkinson
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstrasse 34-36, 14195 Berlin, Germany
| |
Collapse
|
32
|
Synthesis, crystal structure, antibacterial, antiproliferative and QSAR studies of new bismuth(III) complexes of pyrrolidineditiocarbamate of dithia-bismolane and bismane, oxodithia- and trithia-bismocane. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Oyetunde T, Omorogie MO, O'Brien P. Ferromagnetic FeSe 2 from a mixed sulphur-selenium complex of iron [Fe{(SePPh 2NPPh 2S) 2N} 3] through pyrolysis. Heliyon 2020; 6:e03763. [PMID: 32346632 PMCID: PMC7182788 DOI: 10.1016/j.heliyon.2020.e03763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/21/2020] [Accepted: 04/06/2020] [Indexed: 11/19/2022] Open
Abstract
Iron (III) thioselenoimidodiphosphinate complex, Fe{(SePPh2NPPh2S)2N}3], was synthesized from the ligand [Ph2P(S)HNP(Se)Ph2], and the complex employed as the combined source of the targeted elements (Fe and Se) to generate orthorhombic FeSe2. This was achieved by thermolysis using a quartz glass tube, under reduced pressure at 500 °C during 1 h 30 min. The crystalline product was revealed by X-ray diffraction (XRD), while the morphology consisted of polygonal crystallites according to the scanning electron microscopy (SEM) studies. Superconducting quantum interference device (SQUID) measurements on the material confirmed its ferromagnetism as observed from the magnetization curve, indicated by the field-cooled and zero field-cooled conditions under a magnetic field of 100 Oe. This ferromagnetic material, FeSe2 finds useful application in producing electrical semiconductors.
Collapse
Affiliation(s)
- Temidayo Oyetunde
- Centre for Chemical and Biochemical Research (CCBR), Department of Chemical Sciences, Redeemer's University, Ede, P.M.B. 230, Osun State, 232102, Nigeria
- School of Chemistry and School of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- Corresponding author.
| | - Martins O. Omorogie
- Centre for Chemical and Biochemical Research (CCBR), Department of Chemical Sciences, Redeemer's University, Ede, P.M.B. 230, Osun State, 232102, Nigeria
- Water Science and Technology Research Unit, African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, Ede, P.M.B. 230, Osun State, 232102, Nigeria
- Corresponding author.
| | - Paul O'Brien
- School of Chemistry and School of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
34
|
Daniels CL, Knobeloch M, Yox P, Adamson MAS, Chen Y, Dorn RW, Wu H, Zhou G, Fan H, Rossini AJ, Vela J. Intermetallic Nanocatalysts from Heterobimetallic Group 10–14 Pyridine-2-thiolate Precursors. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00803] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Carena L. Daniels
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Megan Knobeloch
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Philip Yox
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | | | - Yunhua Chen
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Rick W. Dorn
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- Ames Laboratory, Ames, Iowa 50011, United States
| | - Hao Wu
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, Zhejiang, People’s Republic of China
| | - Guoquan Zhou
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, Zhejiang, People’s Republic of China
| | - Huajun Fan
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan, People’s Republic of China
| | - Aaron J. Rossini
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- Ames Laboratory, Ames, Iowa 50011, United States
| | - Javier Vela
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- Ames Laboratory, Ames, Iowa 50011, United States
| |
Collapse
|
35
|
Alhasan R, Kharma A, Leroy P, Jacob C, Gaucher C. Selenium Donors at the Junction of Inflammatory Diseases. Curr Pharm Des 2020; 25:1707-1716. [PMID: 31267853 DOI: 10.2174/1381612825666190701153903] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/18/2019] [Indexed: 12/25/2022]
Abstract
Selenium is an essential non-metal trace element, and the imbalance in the bioavailability of selenium is associated with many diseases ranking from acute respiratory distress syndrome, myocardial infarction and renal failure (Se overloading) to diseases associated with chronic inflammation like inflammatory bowel diseases, rheumatoid arthritis, and atherosclerosis (Se unload). The only source of selenium is the diet (animal and cereal sources) and its intestinal absorption is limiting for selenocysteine and selenomethionine synthesis and incorporation in selenoproteins. In this review, after establishing the link between selenium and inflammatory diseases, we envisaged the potential of selenium nanoparticles and organic selenocompounds to compensate the deficit of selenium intake from the diet. With high selenium loading, nanoparticles offer a low dosage to restore selenium bioavailability whereas organic selenocompounds can play a role in the modulation of their antioxidant or antiinflammatory activities.
Collapse
Affiliation(s)
- Rama Alhasan
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbrucken, Germany
| | - Ammar Kharma
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbrucken, Germany
| | - Pierre Leroy
- Universite de Lorraine, CITHEFOR, F-54000 Nancy, France
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbrucken, Germany
| | | |
Collapse
|
36
|
Park JH, Kang SG, Lee YK, Chung TM, Park BK, Kim CG. Tin(II) Aminothiolate and Tin(IV) Aminothiolate Selenide Compounds as Single-Source Precursors for Tin Chalcogenide Materials. Inorg Chem 2020; 59:3513-3517. [PMID: 32091216 DOI: 10.1021/acs.inorgchem.9b03369] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tin aminothiolate compounds SnII(dmampS)2 (1) and SnIV(dmampS)2Se (2), where dmampS = 1-(dimethylamino)-2-methylpropane-2-thiolate, were synthesized. The molecular structures of 1 and 2 reveal a seesaw and distorted trigonal-bipyramidal geometry, respectively. The 1H NMR spectrum of 1 shows two types of resonances for the methyl groups of the α-carbon, methyl groups of the amino groups, and methylene groups at room temperature. On the other hand, the 1H NMR spectrum of 2 exhibits a single resonance for each of these groups. According to variable-temperature 1H NMR analysis, each of these two types of resonances occurring at relatively low temperatures (under 223 K for 1 and under 333 K for 2) are merged as a single resonance with increasing temperature. By using thermogravimetric and thermal decomposition analyses, the residual materials of compounds 1 and 2 are confirmed to be SnS and SnSSe, respectively. Compound 1 was subjected to a metal-organic chemical vapor deposition process, which allowed for the deposition of a dense and well-faceted orthorhombic phase SnS thin film on a SiO2/Si substrate with ∼200 nm thickness.
Collapse
Affiliation(s)
- Joo-Hyun Park
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), P.O. Box 107, 141 Gajeong-Ro, Yuseong-Gu, Daejeon 34114, Republic of Korea
| | - Seong Gu Kang
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), P.O. Box 107, 141 Gajeong-Ro, Yuseong-Gu, Daejeon 34114, Republic of Korea
| | - Young Kuk Lee
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), P.O. Box 107, 141 Gajeong-Ro, Yuseong-Gu, Daejeon 34114, Republic of Korea.,Department of Chemical Convergence Materials, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Deajeon 34113, Republic of Korea
| | - Taek-Mo Chung
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), P.O. Box 107, 141 Gajeong-Ro, Yuseong-Gu, Daejeon 34114, Republic of Korea.,Department of Chemical Convergence Materials, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Deajeon 34113, Republic of Korea
| | - Bo Keun Park
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), P.O. Box 107, 141 Gajeong-Ro, Yuseong-Gu, Daejeon 34114, Republic of Korea.,Department of Chemical Convergence Materials, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Deajeon 34113, Republic of Korea
| | - Chang Gyoun Kim
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), P.O. Box 107, 141 Gajeong-Ro, Yuseong-Gu, Daejeon 34114, Republic of Korea.,Department of Chemical Convergence Materials, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Deajeon 34113, Republic of Korea
| |
Collapse
|
37
|
Islam HU, Roffey A, Hollingsworth N, Bras W, Sankar G, De Leeuw NH, Hogarth G. Understanding the role of zinc dithiocarbamate complexes as single source precursors to ZnS nanomaterials. NANOSCALE ADVANCES 2020; 2:798-807. [PMID: 36133240 PMCID: PMC9419409 DOI: 10.1039/c9na00665f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/06/2020] [Indexed: 05/02/2023]
Abstract
Zinc sulfide is an important wide-band gap semi-conductor and dithiocarbamate complexes [Zn(S2CNR2)2] find widespread use as single-source precursors for the controlled synthesis of ZnS nanoparticulate modifications. Decomposition of [Zn(S2CNiBu2)2] in oleylamine gives high aspect ratio wurtzite nanowires, the average length of which was increased upon addition of thiuram disulfide to the decomposition mixture. To provide further insight into the decomposition process, X-ray absorption spectroscopy (XAS) of [Zn(S2CNMe2)2] was performed in the solid-state, in non-coordinating xylene and in oleylamine. In the solid-state, dimeric [Zn(S2CNMe2)2]2 was characterised in accord with the single crystal X-ray structure, while in xylene this breaks down into tetrahedral monomers. In situ XAS in oleylamine (RNH2) shows that the coordination sphere is further modified, amine binding to give five-coordinate [Zn(S2CNMe2)2(RNH2)]. This species is stable to ca. 70 °C, above which amine dissociates and at ca. 90 °C decomposition occurs to generate ZnS. The relatively low temperature onset of nanoparticle formation is associated with amine-exchange leading to the in situ formation of [Zn(S2CNMe2)(S2CNHR)] which has a low temperature decomposition pathway. Combining these observations with the previous work of others allows us to propose a detailed mechanistic scheme for the overall process.
Collapse
Affiliation(s)
- Husn-Ubayda Islam
- Department of Chemistry, University College London 20 Gordon Street London WC1H OAJ UK
- Netherlands Organisation for Scientific Research DUBBLE@ESRF 38043 Grenoble France
| | - Anna Roffey
- Department of Chemistry, University College London 20 Gordon Street London WC1H OAJ UK
| | - Nathan Hollingsworth
- Department of Chemistry, University College London 20 Gordon Street London WC1H OAJ UK
| | - Wim Bras
- Netherlands Organisation for Scientific Research DUBBLE@ESRF 38043 Grenoble France
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge Tennessee 37831 USA
| | - Gopinathan Sankar
- Department of Chemistry, University College London 20 Gordon Street London WC1H OAJ UK
| | - Nora H De Leeuw
- School of Chemistry, Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| | - Graeme Hogarth
- Department of Chemistry, King's College London Britannia House, 7 Trinity Street London SE1 1DB UK
| |
Collapse
|
38
|
Santra A, Brandao P, Mondal G, Bera P, Jana A, Bhattacharyya I, Pramanik C, Bera P. Monomeric and dimeric cadmium(II) complexes of S-alkyl/aryl dithiocarbazate as single-source precursors for cadmium sulfide nanoparticles: An experimental, theoretical interpretation in the stability of precursor and visible light dye degradation study. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
39
|
Flores-Romero V, García-Guzmán OL, Aguirre-Bautista A, Rojas-Montoya ID, García-Montalvo V, Rivera M, Jiménez-Sandoval O, Muñoz-Hernández MÁ, Hernández-Ortega S. Zinc( ii) and cadmium( ii) complexes, [M( iPr 2P(X)NC(Y)NC 5H 10-κ 2-X,Y) 2] (X and Y = O, S), as single source precursors for metal sulfide thin films. NEW J CHEM 2020. [DOI: 10.1039/d0nj01465f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structural, morphological and optical studies of zinc and cadmium sulfide thin films with different contents of phosphorus.
Collapse
Affiliation(s)
- Víctor Flores-Romero
- Instituto de Química
- Universidad Nacional Autónoma de México
- Circuito Exterior
- Ciudad Universitaria
- Cd Mex
| | - Oscar L. García-Guzmán
- Instituto de Química
- Universidad Nacional Autónoma de México
- Circuito Exterior
- Ciudad Universitaria
- Cd Mex
| | | | - Iván D. Rojas-Montoya
- Instituto de Química
- Universidad Nacional Autónoma de México
- Circuito Exterior
- Ciudad Universitaria
- Cd Mex
| | - Verónica García-Montalvo
- Instituto de Química
- Universidad Nacional Autónoma de México
- Circuito Exterior
- Ciudad Universitaria
- Cd Mex
| | - Margarita Rivera
- Instituto de Física
- Dpto. Materia Condensada
- Universidad Nacional Autónoma de México
- Ciudad Universitaria
- Mexico
| | - Omar Jiménez-Sandoval
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional
- Unidad Querétaro
- Apartado Postal 1-798
- Querétaro
- Mexico
| | | | - Simón Hernández-Ortega
- Instituto de Química
- Universidad Nacional Autónoma de México
- Circuito Exterior
- Ciudad Universitaria
- Cd Mex
| |
Collapse
|
40
|
Anker MD, Schwamm RJ, Coles MP. Synthesis and reactivity of a terminal aluminium–imide bond. Chem Commun (Camb) 2020; 56:2288-2291. [DOI: 10.1039/c9cc09214e] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Al–Nimide bond in a new anionic aluminium imide complex reacts via a [2+2] cycloaddition with CO2 to afford the dianionic carbamate ligand.
Collapse
Affiliation(s)
- Mathew D. Anker
- School of Chemical and Physical Sciences
- Victoria University of Wellington
- Wellington 6012
- New Zealand
| | - Ryan J. Schwamm
- School of Chemical and Physical Sciences
- Victoria University of Wellington
- Wellington 6012
- New Zealand
| | - Martyn P. Coles
- School of Chemical and Physical Sciences
- Victoria University of Wellington
- Wellington 6012
- New Zealand
| |
Collapse
|
41
|
Boadi NO, Saah SA, Helliwell M, Awudza JAM. Hot‐Injection Synthesis of PbE (E= S, Se) Nanoparticles from Dichalcogenoimidophosphinato Lead (II) Complexes. ChemistrySelect 2019. [DOI: 10.1002/slct.201903649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nathaniel O. Boadi
- Department of ChemistryKwame Nkrumah University of Science and Technology Kumasi Ghana
| | - Selina A. Saah
- Department of Chemical SciencesUniversity of Energy and Natural Resources Sunyani Ghana
| | - Madeleine Helliwell
- School of ChemistryUniversity of Manchester Manchester M13 9PL United Kingdom
| | - Johannes A. M. Awudza
- Department of ChemistryKwame Nkrumah University of Science and Technology Kumasi Ghana
| |
Collapse
|
42
|
Lee K, Huang Y, Corrigan JF. Synthesis and Reaction Chemistry of Zinc‐Diarylphosphido Clusters with Phosphorus Precursors. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201901124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kyungseop Lee
- Department of Chemistry The University of Western Ontario N6A 5B7 London ON Canada
| | - Yining Huang
- Department of Chemistry The University of Western Ontario N6A 5B7 London ON Canada
- Centre for Advanced Materials and Biomaterials Research The University of Western Ontario N6A 3K7 London ON Canada
| | - John F. Corrigan
- Department of Chemistry The University of Western Ontario N6A 5B7 London ON Canada
- Centre for Advanced Materials and Biomaterials Research The University of Western Ontario N6A 3K7 London ON Canada
| |
Collapse
|
43
|
Meyer EL, Mbese JZ, Agoro MA. The Frontiers of Nanomaterials (SnS, PbS and CuS) for Dye-Sensitized Solar Cell Applications: An Exciting New Infrared Material. Molecules 2019; 24:E4223. [PMID: 31757087 PMCID: PMC6930557 DOI: 10.3390/molecules24234223] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 11/16/2022] Open
Abstract
To date, extensive studies have been done on solar cells on how to harness the unpleasant climatic condition for the binary benefits of renewable energy sources and potential energy solutions. Photovoltaic (PV) is considered as, not only as the future of humanity's source of green energy, but also as a reliable solution to the energy crisis due to its sustainability, abundance, easy fabrication, cost-friendly and environmentally hazard-free nature. PV is grouped into first, second and third-generation cells. Dye-sensitized solar cells (DSSCs), classified as third-generation PV, have gained more ground in recent times. This is linked to their transparency, high efficiency, shape, being cost-friendly and flexibility of colour. However, further improvement of DSSCs by quantum dot sensitized solar cells (QDSSCs) has increased their efficiency through the use of semiconducting materials, such as quantum dots (QDs), as sensitizers. This has paved way for the fabrication of semiconducting QDs to replace the ideal DSSCs with quantum dot sensitized solar cells (QDSSCs). Moreover, there are no absolute photosensitizers that can cover all the infrared spectrum, the infusion of QD metal sulphides with better absorption could serve as a breakthrough. Metal sulphides, such as PbS, SnS and CuS QDs could be used as photosensitizers due to their strong near infrared (NIR) absorption properties. A few great dependable and reproducible routes to synthesize better QD size have attained much ground in the past and of late. The injection of these QD materials, which display (NIR) absorption with localized surface plasmon resonances (SPR), due to self-doped p-type carriers and photocatalytic activity could enhance the performance of the solar cell. This review will be focused on QDs in solar cell applications, the recent advances in the synthesis method, their stability, and long term prospects of QDSSCs efficiency.
Collapse
Affiliation(s)
- Edson L. Meyer
- Department of Chemistry, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa;
| | - Johannes Z. Mbese
- Fort Hare Institute of Technology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| | - Mojeed A. Agoro
- Department of Chemistry, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa;
- Fort Hare Institute of Technology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| |
Collapse
|
44
|
Alderhami SA, Collison D, Lewis DJ, McNaughter PD, O'Brien P, Spencer BF, Vitorica-Yrezabal I, Whitehead G. Accessing γ-Ga 2S 3 by solventless thermolysis of gallium xanthates: a low-temperature limit for crystalline products. Dalton Trans 2019; 48:15605-15612. [PMID: 31389451 DOI: 10.1039/c9dt02061f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Alkyl-xanthato gallium(iii) complexes of the form [Ga(S2COR)3], where R = Me (1), Et (2), iPr (3), nPr (4), nBu (5), sBu (6) and iBu (7), have been synthesized and fully characterised. The crystal structures for 1 and 3-7 have been solved and examined to elucidate if these structures are related to their decomposition. Thermogravimetric analysis was used to gain insight into the decomposition temperatures for each complex. Unlike previously explored metal xanthate complexes which break down at low temperatures (<250 °C), to form crystalline metal chalcogenides, powder X-ray diffraction measurements suggest that when R ≥ Et these complexes did not produce crystalline gallium sulfides until heated to 500 °C, where γ-Ga2S3 was the sole product formed. In the case of R = Me, Chugaev elimination did not occur and amorphous GaxSy products were formed. We conclude therefore that the low-temperature synthesis route offered by the thermal decomposition of metal xanthate precursors, which has been reported for many metal sulfide systems prior to this, may not be appropriate in the case of gallium sulfides.
Collapse
Affiliation(s)
- Suliman A Alderhami
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK and Chemistry Department, Faculty of Science and Arts, Al-Baha University, Al Makhwah, Saudi Arabia
| | - David Collison
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - David J Lewis
- School of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Paul D McNaughter
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Paul O'Brien
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK and School of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Ben F Spencer
- School of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | | | - George Whitehead
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
45
|
A Facile Green Synthesis of Ultranarrow PbS Nanorods. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01185-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
46
|
Saah SA, Boadi NO, Adu-Poku D, Wilkins C. Lead ethyl dithiocarbamates: efficient single-source precursors to PbS nanocubes. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190943. [PMID: 31824708 PMCID: PMC6837187 DOI: 10.1098/rsos.190943] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/23/2019] [Indexed: 05/16/2023]
Abstract
Lead ethyl dithiocarbamates have been successfully used as single-source precursors for the deposition of PbS using spin coating followed by annealing at moderate temperatures. The thin films were characterized using a powder X-ray diffractometer and were found to be face-centred cubic with the (200) plane being the most preferred orientation. Scanning electron microscopy images showed the formation of well-defined cubes. Optical band gaps of PbS thin films were estimated using Tauc plots as 0.72, 0.73 and 0.77 eV at annealing temperatures of 250, 300 and 400°C. These band gaps were all blue shifted from the bulk value of 0.41 eV. Energy-dispersive X-ray analysis was used to determine the composition of the thin films which showed an approximately 1 : 1 Pb to S ratio.
Collapse
Affiliation(s)
- S. A. Saah
- Department of Chemical Sciences, University of Energy and Natural Resources, Sunyani, Ghana
- Author for correspondence: S. A. Saah e-mail:
| | - N. O. Boadi
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - D. Adu-Poku
- Department of Chemical Sciences, University of Energy and Natural Resources, Sunyani, Ghana
| | - C. Wilkins
- School of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|
47
|
Roffey A, Hollingsworth N, Hogarth G. Synthesis of ternary sulfide nanomaterials using dithiocarbamate complexes as single source precursors. NANOSCALE ADVANCES 2019; 1:3056-3066. [PMID: 36133587 PMCID: PMC9418161 DOI: 10.1039/c9na00275h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/13/2019] [Indexed: 05/05/2023]
Abstract
We report the use of cheap, readily accessible and easy to handle di-isobutyl-dithiocarbamate complexes, [M(S2CNiBu2) n ], as single source precursors (SSPs) to ternary sulfides of iron-nickel, iron-copper and nickel-cobalt. Varying decomposition temperature and precursor concentrations has a significant effect on both the phase and size of the nanomaterials, and in some instances meta-stable phases are accessible. Decomposition of [Fe(S2CNiBu2)3]/[Ni(S2CNiBu2)2] at ca. 210-230 °C affords metastable FeNi2S4 (violarite) nanoparticles, while at higher temperatures the thermodynamic product (Fe,Ni)9S8 (pentlandite) results. Addition of tetra-isobutyl-thiuram disulfide to the decomposition mixture can significantly affect the nature of the product at any particular temperature-concentration, being attributed to suppression of the intramolecular Fe(iii) to Fe(ii) reduction. Attempts to replicate this simple approach to ternary metal sulfides of iron-indium and iron-zinc were unsuccessful, mixtures of binary metal sulfides resulting. Oleylamine is non-innocent in these transformations, and we propose that SSP decomposition occurs via primary-secondary backbone amide-exchange with primary dithiocarbamate complexes, [M(S2CNHoleyl) n ], being the active decomposition precursors.
Collapse
Affiliation(s)
- Anna Roffey
- Department of Chemistry, King's College London Britannia House, 7 Trinity Street London SE1 1DB UK
- Department of Chemistry, University College London 20 Gordon Street London WC1H OAJ UK
| | - Nathan Hollingsworth
- Department of Chemistry, University College London 20 Gordon Street London WC1H OAJ UK
| | - Graeme Hogarth
- Department of Chemistry, King's College London Britannia House, 7 Trinity Street London SE1 1DB UK
| |
Collapse
|
48
|
Progress in selenium based metal-organic precursors for main group and transition metal selenide thin films and nanomaterials. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.02.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
49
|
Hua G, Woollins JD. Organophosphorus-selenium/tellurium reagents: from synthesis to applications. PHYSICAL SCIENCES REVIEWS 2019. [DOI: 10.1515/psr-2017-0132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abstract
Organic selenium- and tellurium-phosphorus compounds have found wide application as reagents in synthetic inorganic and organic chemistry, such as oxygen/chalcogen exchange, oxidation/reduction, nucleophilic/electrophilic substitution, nucleophilic addition, free radical addition, Diels–Alder reaction, cycloadditions, coordination, and so on. This chapter covers the main classes of phosphorus-selenium/tellurium reagents, including binary phosphorus-selenium/tellurium species, organophosphorus(III)-selenium/tellurium compounds, phosphorus(V)-selenides/tellurides, diselenophosphinates/ditellurophopshinates, diselenaphosphetane diselenides, Woollins’ reagent, phosphorus-selenium/tellurium amides, and imides. Given the huge amount of literature up to mid-2017, this overview is inevitably selective and will focus particularly on their synthesis, reactivity, and applications in synthetic and coordination chemistry.
Collapse
|
50
|
Antolini F, Orazi L. Quantum Dots Synthesis Through Direct Laser Patterning: A Review. Front Chem 2019; 7:252. [PMID: 31058137 PMCID: PMC6478899 DOI: 10.3389/fchem.2019.00252] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/29/2019] [Indexed: 11/24/2022] Open
Abstract
In this brief review the advances on Direct Laser Patterning (DLP) for the synthesis of photo-luminescent semiconductor quantum dots (QDs) belonging to II-VI groups, especially in solid state using laser-assisted conversion are reported and commented. The chemistry of the precursor synthesis is illustrated because it is a crucial step for the development of the direct laser patterning of QDs. In particular, the analysis of cadmium (bis)thiolate and cadmium xanthates precursors after thermal and laser treatment is examined, with a special focus on the optical properties of the formed QDs. The second part of the review examines how the laser parameters such as the wavelength and pulse duration may regulate the properties of the patterned QDs. The DLP technique does not require complex laser systems or the use of dangerous chemical post treatments, so it can be introduced as a potential method for the patterning of pixels in quantum dot light emitting diodes (QD-LEDs) for display manufacturing.
Collapse
Affiliation(s)
- Francesco Antolini
- Photonics Micro and Nanostructures Laboratory, Physical Technologies for Safety and Health Division, Fusion and Technologies for Nuclear Safety and Security Department, ENEA, Frascati, Italy
| | - Leonardo Orazi
- Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|