1
|
Monteiro LP, Gomes A, Silva C, Mendes RF, Almeida Paz FA, Chernyshov D, Rocha J, Martel F, Santos T, Ferreira BL. Towards targeted cancer therapy: Synthesis, characterization, and biological activity of a new Cu(II)-ibuprofen-2,2'-dipyridylamine metal complex. Heliyon 2025; 11:e41323. [PMID: 39811293 PMCID: PMC11731234 DOI: 10.1016/j.heliyon.2024.e41323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 11/27/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
This work reports the synthesis of a copper metal complex with the nonsteroidal anti-inflammatory drug (NSAID) ibuprofen, and 2,2'-dipyridylamine employing microwave-assisted synthesis (MWAS). To the best of authors knowledge, this is the first study reporting a NSAID-based complex achieved through MWAS. The coordination compound was characterised by elemental analysis, Fourier transform infrared spectroscopy, thermogravimetry, and ultraviolet-visible spectrophotometry. Additionally, the crystal structure of the copper metal complex was elucidated using single-crystal X-ray diffraction with synchrotron radiation. The compound's interaction with the biomolecules bovine serum albumin (BSA) and calf-thymus DNA (CT-DNA), was assessed through UV-Vis, circular dichroism, and fluorescence spectroscopy. Our findings demonstrate that the metal complex effectively binds to BSA, causing a reduction in its intrinsic fluorescence and α-helical content, and shows a capacity for intercalation between CT-DNA base pairs. Finally, the copper compound exhibited promising in vitro antitumoral activities against human breast cancer cell lines (MCF-7 and MDA-MB-231), as evaluated by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay (although a similar cytotoxic effect against a non-tumoral epithelial cancer cell line, MCF-12A, was found), and increased oxidative stress levels as assessed by the TBARS (thiobarbituric acid reactive substances) assay and by evaluating glutathione levels. The results suggest that the metal complex promotes lipid peroxidation by increasing oxidative stress levels, leading to a reduction in viability of the two breast cancer cell lines.
Collapse
Affiliation(s)
- Luís P.G. Monteiro
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - A. Gomes
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - C. Silva
- Biochemistry Unit, Biomedicine Department, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
- I3S—Institute of Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal
| | - Ricardo F. Mendes
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Filipe A. Almeida Paz
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Dmitry Chernyshov
- European Synchrotron Radiation Facility, SNBL, CS40220 38043 Grenoble CEDEX 9, France
| | - J. Rocha
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - F. Martel
- Biochemistry Unit, Biomedicine Department, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
- I3S—Institute of Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal
| | - T.M. Santos
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - B.J.M. Leite Ferreira
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
2
|
Wang Y, Cheng Y, Tao X, Yang W, Zhou Z, Dai Y. Palladium-Catalyzed Stereospecific Glycosylation Enables Divergent Synthesis of N-O-Linked Glycosides. Org Lett 2025. [PMID: 39787251 DOI: 10.1021/acs.orglett.4c04771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
We present a versatile palladium-catalyzed glycosylation platform that enables facile access to structurally diverse N-O-linked glycosides with constantly excellent regio- and stereoselectivities. Importantly, this approach offers a broad substrate scope, low catalyst loadings, and outstanding chemoselectivity, allowing for the selective reaction of oximes/hydroximic acids over hydroxyl groups that would otherwise pose challenges in conventional glycosylation methods. The synthetic utility of this method is further exemplified through a range of synthetic transformations and late-stage modification of bioactive molecules. Overall, our method provides an efficient toolkit for the synthesis of N-O-linked glycosides, which will facilitate their subsequent biological evaluations.
Collapse
Affiliation(s)
- Yujuan Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People's Republic of China
| | - Yiyang Cheng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People's Republic of China
| | - Xiaoxue Tao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People's Republic of China
| | - Wenjie Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People's Republic of China
| | - Zhen Zhou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People's Republic of China
| | - Yuanwei Dai
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People's Republic of China
| |
Collapse
|
3
|
Mabuchi M, Tsujikawa K, Tanaka A. Synergistic combination effect of the PCA-1/ALKBH3 inhibitor HUHS015 on prostate cancer drugs in vitro and in vivo. Anticancer Drugs 2025; 36:19-27. [PMID: 39259581 DOI: 10.1097/cad.0000000000001656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Prostate cancer antigen-1/ALKBH3, a DNA/RNA demethylase of 3-methylcytosine, 1-methyladenine (1-meA), and 6-meA, was found in prostate cancer as an important prognostic factor. Additionally, 1-meA has been associated with other cancers. The ALKBH3 inhibitor HUHS015 was found to be effective against prostate cancer both in vitro and in vivo . Herein, we investigated the effect of HUHS015 in combination with drugs for prostate cancer approved in Japan (including bicalutamide, cisplatin, mitoxantrone, prednisolone, ifosfamide, tegafur/uracil, docetaxel, dacarbazine, and estramustine) by treating DU145 cells with around IC 50 value concentrations of these drugs for 3 days. Additionally, the cells were observed for additional 9 days after drug removal. Combination treatment with dacarbazine, estramustine, tegafur/uracil, and HUHS015 showed a slight additive effect after 3 days. After drug washout of them and mitoxantrone, the combined effects and levels were enhanced and sustained, although the effects of each treatment alone declined. HUHS015 combined with cisplatin or docetaxel elicited synergistic and sustained effects. In vivo , combining HUHS015 and docetaxel, the first chemotherapeutic agent for castration-resistant prostate cancer, showed notable effects in the DU145 xenograft model. In conclusion, HUHS015 exhibited a synergistic effect with docetaxel and drugs acting on DNA in vitro , even after drug removal. Since cancer chemotherapy is typically administered during rest periods due to its high toxicity, combining it with an ALKBH3 inhibitor could be a promising strategy for enhancing cancer treatment, as it can elicit an additive effect during treatment, allowing dosage reduction, and synergistically sustain the effect after drug washout during rest periods.
Collapse
Affiliation(s)
- Miyuki Mabuchi
- Department of Pharmacy, Laboratory of Chemical Biology, Advanced Medicinal Research Center, Hyogo Medical University, Kobe
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Akito Tanaka
- Department of Pharmacy, Laboratory of Chemical Biology, Advanced Medicinal Research Center, Hyogo Medical University, Kobe
| |
Collapse
|
4
|
Bai B, Ma Y, Liu D, Zhang Y, Zhang W, Shi R, Zhou Q. DNA damage caused by chemotherapy has duality, and traditional Chinese medicine may be a better choice to reduce its toxicity. Front Pharmacol 2024; 15:1483160. [PMID: 39502534 PMCID: PMC11534686 DOI: 10.3389/fphar.2024.1483160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
Background DNA damage induced by chemotherapy has duality. It affects the efficacy of chemotherapy and constrains its application. An increasing number of studies have shown that traditional Chinese medicine (TCM) is highly effective in reducing side-effects induced by chemotherapy due to its natural, non-toxic and many sourced from food. Recent advancements have demonstrated survival rates are improved attributable to effective chemotherapy. DNA damage is the principal mechanism underlying chemotherapy. However, not all instances of DNA damage are beneficial. Chemotherapy induces DNA damage in normal cells, leading to side effects. It affects the efficacy of chemotherapy and constrains its application. Objectives This review aims to summarize the dual nature of DNA damage induced by chemotherapy and explore how TCM can mitigate chemotherapy-induced side effects. Results The review summarized the latest research progress in DNA damage caused by chemotherapy and the effect of alleviating side effects by TCM. It focused on advantages and disadvantages of chemotherapy, the mechanism of drugs and providing insights for rational and effective clinical treatment and serving as a basis for experiment. In this review, we described the mechanisms of DNA damage, associated chemotherapeutics, and their toxicity. Furthermore, we explored Chinese herb that can alleviate chemotherapy-induced side-effects. Conclusion We highlight key mechanisms of DNA damage caused by chemotherapeutics and discuss specific TCM herbs that have shown potential in reducing these side effects. It can provide reference for clinical and basic research.
Collapse
Affiliation(s)
- Bufan Bai
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yingrui Ma
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Deng Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifei Zhang
- Department of Intensive Care Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weihong Zhang
- Breast Surgery Department, Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Shi
- Department of Intensive Care Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qianmei Zhou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Dongfang Hospital Affiliated to Shanghai Tongji University, Shanghai, China
| |
Collapse
|
5
|
Yadav J, Patel A, Dolas AJ, Iype E, Rangan K, Kumar I. Organocatalytic Asymmetric Construction of 2,6-Diazabicyclo-[2.2.2]octanes by Harnessing the Potential of an 3-Oxindolium Ion Intermediate. Angew Chem Int Ed Engl 2024:e202416042. [PMID: 39404958 DOI: 10.1002/anie.202416042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Indexed: 11/14/2024]
Abstract
Due to its structural complexity and intrinsic sensitivity of bridged aminal junction, 2,6-diazabicyclo[2.2.2]octane (2,6-DABCO) has remained a highly desirable target in synthetic chemistry. However, the asymmetric access to this unit is still insufficient and hampered by the need for meticulously created functionalities for intricate double aza-cyclizations. Herein, we have developed a novel enantio- and diastereoselective protocol to access polycyclic chiral 2,6-DABCOs under metal-free conditions. This domino process involves the amine-catalyzed [4+2] annulation between glutaraldehyde and 2-arylindol-3-ones, followed by an acid-mediated Pictet-Spengler reaction/intramolecular aza-cyclization cascade sequence with tryptamine by trapping of in situ generated 3-oxindolium ion intermediate for the first time. Overall, 2,6-DABCOs fused with medicinally relevant scaffolds were isolated with good yield and excellent stereoselectivity by constructing five new bonds and four stereocenters in a one-pot operation.
Collapse
Affiliation(s)
- Jyothi Yadav
- Department of Chemistry, Birla Institute of Technology & Science, Pilani, Pilani, 333 031 (Rajasthan, India
| | - Arun Patel
- Department of Chemistry, Birla Institute of Technology & Science, Pilani, Pilani, 333 031 (Rajasthan, India
| | - Atul Jankiram Dolas
- Department of Chemistry, Birla Institute of Technology & Science, Pilani, Pilani, 333 031 (Rajasthan, India
| | - Eldhose Iype
- College of Engineering and Technology, American University of the Middle East, Egaila, 54200, Kuwait
| | - Krishnan Rangan
- Department of Chemistry, BITS Pilani, Hyderabad Campus, Hyderabad, 500078, India
| | - Indresh Kumar
- Department of Chemistry, Birla Institute of Technology & Science, Pilani, Pilani, 333 031 (Rajasthan, India
| |
Collapse
|
6
|
Welp LM, Sachsenberg T, Wulf A, Chernev A, Horokhovskyi Y, Neumann P, Pašen M, Siraj A, Raabe M, Johannsson S, Schmitzova J, Netz E, Pfeuffer J, He Y, Fritzemeier K, Delanghe B, Viner R, Vos SM, Cramer P, Ficner R, Liepe J, Kohlbacher O, Urlaub H. Chemical crosslinking extends and complements UV crosslinking in analysis of RNA/DNA nucleic acid-protein interaction sites by mass spectrometry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610268. [PMID: 39257782 PMCID: PMC11383681 DOI: 10.1101/2024.08.29.610268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
UV (ultra-violet) crosslinking with mass spectrometry (XL-MS) has been established for identifying RNA-and DNA-binding proteins along with their domains and amino acids involved. Here, we explore chemical XL-MS for RNA-protein, DNA-protein, and nucleotide-protein complexes in vitro and in vivo . We introduce a specialized nucleotide-protein-crosslink search engine, NuXL, for robust and fast identification of such crosslinks at amino acid resolution. Chemical XL-MS complements UV XL-MS by generating different crosslink species, increasing crosslinked protein yields in vivo almost four-fold and thus it expands the structural information accessible via XL-MS. Our workflow facilitates integrative structural modelling of nucleic acid-protein complexes and adds spatial information to the described RNA-binding properties of enzymes, for which crosslinking sites are often observed close to their cofactor-binding domains. In vivo UV and chemical XL-MS data from E. coli cells analysed by NuXL establish a comprehensive nucleic acid-protein crosslink inventory with crosslink sites at amino acid level for more than 1500 proteins. Our new workflow combined with the dedicated NuXL search engine identified RNA crosslinks that cover most RNA-binding proteins, with DNA and RNA crosslinks detected in transcriptional repressors and activators.
Collapse
|
7
|
Han X, Zhang N, Li Q, Zhang Y, Das S. The efficient synthesis of three-membered rings via photo- and electrochemical strategies. Chem Sci 2024:d4sc02512a. [PMID: 39156935 PMCID: PMC11325197 DOI: 10.1039/d4sc02512a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/31/2024] [Indexed: 08/20/2024] Open
Abstract
Three-membered rings, such as epoxides, aziridines, oxaziridines, cyclopropenes, vinyloxaziridines, and azirines, are recognized as crucial pharmacophores and building blocks in organic chemistry and drug discovery. Despite the significant advances in the synthesis of these rings through photo/electrochemical methods over the past decade, there has currently been no focused discussion and updated overviews on this topic. Therefore, we presented this review article on the efficient synthesis of three-membered rings using photo- and electrochemical strategies, covering the literature since 2015. In this study, a conceptual overview and detailed discussions were provided to illustrate the advancement of this field. Moreover, a brief discussion outlines the current challenges and opportunities in synthesizing the three-membered rings using these strategies.
Collapse
Affiliation(s)
- Xinyu Han
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine No. 1200, Cailun Road Shanghai 201203 China
| | - Na Zhang
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine Shanghai China
| | - Qiannan Li
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine No. 1200, Cailun Road Shanghai 201203 China
| | - Yu Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine No. 1200, Cailun Road Shanghai 201203 China
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 People's Republic of China
| | - Shoubhik Das
- Department of Chemistry, University of Bayreuth Bayreuth 95447 Germany
| |
Collapse
|
8
|
Mayorquín-Torres MC, Simoens A, Bonneure E, Stevens CV. Synthetic Methods for Azaheterocyclic Phosphonates and Their Biological Activity: An Update 2004-2024. Chem Rev 2024; 124:7907-7975. [PMID: 38809666 DOI: 10.1021/acs.chemrev.4c00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The increasing importance of azaheterocyclic phosphonates in the agrochemical, synthetic, and medicinal field has provoked an intense search in the development of synthetic routes for obtaining novel members of this family of compounds. This updated review covers methodologies established since 2004, focusing on the synthesis of azaheterocyclic phosphonates, of which the phosphonate moiety is directly substituted onto to the azaheterocyclic structure. Emphasizing recent advances, this review classifies newly developed synthetic approaches according to the ring size and providing information on biological activities whenever available. Furthermore, this review summarizes information on various methods for the formation of C-P bonds, examining sustainable approaches such as the Michaelis-Arbuzov reaction, the Michaelis-Becker reaction, the Pudovik reaction, the Hirao coupling, and the Kabachnik-Fields reaction. After analyzing the biological activities and applications of azaheterocyclic phosphonates investigated in recent years, a predominant focus on the evaluation of these compounds as anticancer agents is evident. Furthermore, emerging applications underline the versatility and potential of these compounds, highlighting the need for continued research on synthetic methods to expand this interesting family.
Collapse
Affiliation(s)
- Martha C Mayorquín-Torres
- SynBioC Research Group, Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Andreas Simoens
- SynBioC Research Group, Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Eli Bonneure
- SynBioC Research Group, Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Christian V Stevens
- SynBioC Research Group, Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| |
Collapse
|
9
|
Li Y. DNA Adducts in Cancer Chemotherapy. J Med Chem 2024; 67:5113-5143. [PMID: 38552031 DOI: 10.1021/acs.jmedchem.3c02476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
DNA adducting drugs, including alkylating agents and platinum-containing drugs, are prominent in cancer chemotherapy. Their mechanisms of action involve direct interaction with DNA, resulting in the formation of DNA addition products known as DNA adducts. While these adducts are well-accepted to induce cancer cell death, understanding of their specific chemotypes and their role in drug therapy response remain limited. This perspective aims to address this gap by investigating the metabolic activation and chemical characterization of DNA adducts formed by the U.S. FDA-approved drugs. Moreover, clinical studies on DNA adducts as potential biomarkers for predicting patient responses to drug efficacy are examined. The overarching goal is to engage the interest of medicinal chemists and stimulate further research into the use of DNA adducts as biomarkers for guiding personalized cancer treatment.
Collapse
|
10
|
Fang Q. The Versatile Attributes of MGMT: Its Repair Mechanism, Crosstalk with Other DNA Repair Pathways, and Its Role in Cancer. Cancers (Basel) 2024; 16:331. [PMID: 38254819 PMCID: PMC10814553 DOI: 10.3390/cancers16020331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
O6-methylguanine-DNA methyltransferase (MGMT or AGT) is a DNA repair protein with the capability to remove alkyl groups from O6-AlkylG adducts. Moreover, MGMT plays a crucial role in repairing DNA damage induced by methylating agents like temozolomide and chloroethylating agents such as carmustine, and thereby contributes to chemotherapeutic resistance when these agents are used. This review delves into the structural roles and repair mechanisms of MGMT, with emphasis on the potential structural and functional roles of the N-terminal domain of MGMT. It also explores the development of cancer therapeutic strategies that target MGMT. Finally, it discusses the intriguing crosstalk between MGMT and other DNA repair pathways.
Collapse
Affiliation(s)
- Qingming Fang
- Department of Biochemistry and Structural Biology, Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
11
|
Kariyawasam RJ, Zibaseresht R, Polson MIJ, Houlihan JCC, Wikaira JL, Hartshorn RM. Synthesis of nitrogen mustards on cobalt(III). Dalton Trans 2023; 52:16364-16375. [PMID: 37867442 DOI: 10.1039/d3dt01634j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Bis(bidentate) and bis(tridentate) Co(III) complexes of N-(2-hydroxyethyl)ethane-1,2-diamine (heen), 2-[(2-aminoethyl)amino]ethan-1-olate (heen-H), or N-(2-chloroethyl)ethane-1,2-diamine (ceen) ligands have been synthesised, and a range of reaction conditions established for their syntheses by different routes. They can all be ultimately derived from (OC-6-12')-[Co(heen)2(NO2)2]NO3 and provide access to the trans amine trans chloride nitrogen mustard complex, (OC-6-12')-[Co(ceen)2(Cl)2]Cl. Although complex isomeric mixtures were obtained from the reaction of (OC-6-12')-[Co(heen)2(NO2)2]NO3 under different reaction conditions, ultimately, the trans amine trans chlorido configuration around the Co(III) metal centre of the (OC-6-12')-[Co(ceen)2(Cl)2]Cl complex was favoured.
Collapse
Affiliation(s)
- Rasika J Kariyawasam
- School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand.
| | - Ramin Zibaseresht
- Department of Chemistry and Physics, Faculty of Sciences, Maritime University of Imam Khomeini, Noshahr, Iran
| | - Matthew I J Polson
- School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand.
| | - Joanna C C Houlihan
- School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand.
| | - Jan L Wikaira
- School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand.
| | - Richard M Hartshorn
- School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand.
| |
Collapse
|
12
|
Nong Y, Pang C, Teng K, Zhang S, Liu Q. NHC-Catalyzed Chemoselective Reactions of Enals and Cyclopropylcarbaldehydes for Access to Chiral Dihydropyranone Derivatives. J Org Chem 2023; 88:13535-13543. [PMID: 37682310 DOI: 10.1021/acs.joc.3c01171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
An N-heterocyclic carbene (NHC)-catalyzed chemoselective activation reaction of 1-cyclopropylcarbaldehydes and α-alkynyl enals is reported. NHC selectively catalyzes 1-cyclopropylaldehydes, followed by a [2 + 4] cycloaddition reaction with α-alkynyl enals. The target dihydropyranone derivatives bearing different substituents and substitution patterns can be obtained in good to excellent yields with excellent enantio- and diastereoselectivities under mild conditions.
Collapse
Affiliation(s)
- Yingling Nong
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Chen Pang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Kunpeng Teng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Sheng Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Qian Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
13
|
Cao S, Wang Y, Li D, Peng X. H 2 O 2 -Inducible DNA Cross-linking Agents Capable of Releasing Multiple DNA Alkylators as Anticancer Prodrugs. ChemMedChem 2023; 18:e202300273. [PMID: 37440359 DOI: 10.1002/cmdc.202300273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/15/2023]
Abstract
Three compounds with arylboronate esters conjugated with two equivalent nitrogen mustards [bis(2-chloroethyl)methylamine, HN2] have been synthesized and characterized. These inactive small molecules selectively react with H2 O2 to produce multiple DNA cross-linkers, such as two HN2 molecules alongside a bisquinone methide (bisQM), leading to efficient DNA ICL formation. In comparison to other amine functional groups, using HN2 as a leaving group greatly improves the DNA cross-linking efficiency of these arylboronate esters as well as cellular activity. The introduction of HN2 in these arylboronate ester analogues favored the generation of bisQM that can directly cross-link DNA. Two equivalents of HN2 are also generated from these compounds upon treatment with H2 O2 , which directly produces DNA ICL products. The cumulative effects of HN2 and bisQM on DNA cross-linking makes these molecules highly effective H2 O2 -inducible DNA ICL agents. The three compounds with HN2 as a leaving group showed greatly enhanced cytotoxicity towards cancer cells in comparison to those containing trimethyl amine as a leaving group. This provides an effective strategy for further design of novel potential ROS-activated anticancer prodrugs.
Collapse
Affiliation(s)
- Sheng Cao
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 North Cramer Street, 53211, Milwaukee, WI, USA
| | - Yibin Wang
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 North Cramer Street, 53211, Milwaukee, WI, USA
| | - Daniel Li
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 North Cramer Street, 53211, Milwaukee, WI, USA
| | - Xiaohua Peng
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 North Cramer Street, 53211, Milwaukee, WI, USA
| |
Collapse
|
14
|
Li D, Wang X, Han K, Sun Y, Ren T, Sun G, Zhang N, Zhao L, Zhong R. Hypoxia and CD44 receptors dual-targeted nano-micelles with AGT-inhibitory activity for the targeting delivery of carmustine. Int J Biol Macromol 2023; 246:125657. [PMID: 37399878 DOI: 10.1016/j.ijbiomac.2023.125657] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/17/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Carmustine (BCNU) is a typical chemotherapy used for treatment of cerebroma and other solid tumors, which exerts antitumor effect by inducing DNA damage at O6 position of guanine. However, the clinical application of BCNU was extremely limited due to the drug resistance mainly mediated by O6-alkylguanine-DNA alkyltransferase (AGT) and absence of tumor-targeting ability. To overcome these limitations, we developed a hypoxia-responsive nanomicelle with AGT inhibitory activity, which was successfully loaded with BCNU. In this nano-system, hyaluronic acid (HA) acts as an active tumor-targeting ligand to bind the overexpressing CD44 receptors on the surface of tumor cells. An azo bond selectively breaks in hypoxic tumor microenvironment to release O6-benzylguanine (BG) as AGT inhibitor and BCNU as DNA alkylating agent. The obtained HA-AZO-BG NPs with shell core structure had an average particle size of 176.98 ± 11.19 nm and exhibited good stability. Meanwhile, HA-AZO-BG NPs possessed a hypoxia-responsive drug release profile. After immobilizing BCNU into HA-AZO-BG NPs, the obtained HA-AZO-BG/BCNU NPs exhibited obvious hypoxia-selectivity and superior cytotoxicity in T98G, A549, MCF-7 and SMMC-7721 cells with IC50 at 189.0, 183.2, 90.1 and 100.1 μm, respectively, under hypoxic condition. Near-infrared imaging in HeLa tumor xenograft models showed that HA-AZO-BG/DiR NPs could effectively accumulate in tumor site at 4 h of post-injection, suggesting its good tumor-targetability. In addition, in vivo anti-tumor efficacy and toxicity evaluation indicated that HA-AZO-BG/BCNU NPs was more effective and less harmful compared to the other groups. After treatment, the tumor weight of HA-AZO-BG/BCNU NPs group was 58.46 % and 63.33 % of the control group and BCNU group, respectively. Overall, HA-AZO-BG/BCNU NPs was expected to be a promising candidate for targeted delivery of BCNU and elimination of chemoresistance.
Collapse
Affiliation(s)
- Duo Li
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Xiaoli Wang
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Kaishuo Han
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Yaqian Sun
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Ting Ren
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Na Zhang
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China.
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
15
|
Davletgildeeva AT, Tyugashev TE, Zhao M, Kuznetsov NA, Ishchenko AA, Saparbaev M, Kuznetsova AA. Individual Contributions of Amido Acid Residues Tyr122, Ile168, and Asp173 to the Activity and Substrate Specificity of Human DNA Dioxygenase ABH2. Cells 2023; 12:1839. [PMID: 37508504 PMCID: PMC10377887 DOI: 10.3390/cells12141839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Human Fe(II)/α-ketoglutarate-dependent dioxygenase ABH2 plays a crucial role in the direct reversal repair of nonbulky alkyl lesions in DNA nucleobases, e.g., N1-methyladenine (m1A), N3-methylcytosine (m3C), and some etheno derivatives. Moreover, ABH2 is capable of a less efficient oxidation of an epigenetic DNA mark called 5-methylcytosine (m5C), which typically is a specific target of DNA dioxygenases from the TET family. In this study, to elucidate the mechanism of the substrate specificity of ABH2, we investigated the role of several active-site amino acid residues. Functional mapping of the lesion-binding pocket was performed through the analysis of the functions of Tyr122, Ile168, and Asp173 in the damaged base recognition mechanism. Interactions of wild-type ABH2, or its mutants Y122A, I168A, or D173A, with damaged DNA containing the methylated base m1A or m3C or the epigenetic marker m5C were analyzed by molecular dynamics simulations and kinetic assays. Comparative analysis of the enzymes revealed an effect of the substitutions on DNA binding and on catalytic activity. Obtained data clearly demonstrate the effect of the tested amino acid residues on the catalytic activity of the enzymes rather than the DNA-binding ability. Taken together, these data shed light on the molecular and kinetic consequences of the substitution of active-site residues for the mechanism of the substrate recognition.
Collapse
Affiliation(s)
- Anastasiia T Davletgildeeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Timofey E Tyugashev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Mingxing Zhao
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Nikita A Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Alexander A Ishchenko
- Groupe Mechanisms of DNA Repair and Carcinogenesis, CNRS UMR9019, Gustave Roussy Cancer Campus, Université Paris-Saclay, CEDEX, F-94805 Villejuif, France
| | - Murat Saparbaev
- Groupe Mechanisms of DNA Repair and Carcinogenesis, CNRS UMR9019, Gustave Roussy Cancer Campus, Université Paris-Saclay, CEDEX, F-94805 Villejuif, France
| | - Aleksandra A Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
16
|
Xun C, Zhang Y, Zheng X, Qin S. A novel AKR1C3 specific prodrug AST-3424 and its combination therapy in hepatocellular carcinoma. J Pharmacol Sci 2023; 152:69-75. [PMID: 37169481 DOI: 10.1016/j.jphs.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/08/2023] [Accepted: 03/27/2023] [Indexed: 05/13/2023] Open
Abstract
OBJECTIVE AST-3424 is a novel specific aldo-keto reductase 1C3 (AKR1C3) prodrug that releases a DNA alkylating reagent upon reduction by AKR1C3. This study aimed to evaluate the efficacy and safety of AST-3424 in patient-derived tumor xenograft (PDTX) model and orthotopic model against hepatocellular carcinoma (HCC). MATERIALS AND METHOD PDTX models derived from three HCC patients and orthotopic mice models using HepG2 cells were developed. The mice were treated with AST-3424 alone or combined with other drugs (oxaliplatin, apatinib, sorafenib and elemene in PDTX models, oxaliplatin and 5- fluorouracil in orthotopic models). The tumor volume and weight, as well as the mice weight were assessed. The liver tumor and transplanted tumor were removed for histological, immunohistochemical and Western blot detection in orthotopic model experiments. RESULTS AST-3424 could inhibit tumor growth in HCC PDTX models and orthotopic models, with no difference in safety compared with other marketed drugs, and the drug combination did not increase toxicity. The inhibitory effect of combination treatment was more obvious than which used alone. The reduction of AKR1C3 expression was negatively correlated with AST-3424 dose. CONCLUSION AST-3424 had a promising effect against HCC in PDTX model and orthotopic model with good safety. It could promote the sensitivity of other drugs without increasing toxicity. Clinical trials are warranted to further certify its antitumor effect and safety.
Collapse
Affiliation(s)
- Chen Xun
- Department of Medical Oncology Center, Bayi Affiliated Hospital of Nanjing University of Chinese Medicine; Yanggongjing 34 Biao No. 34, Qinhuai Distrct, Nanjing City, Jiangsu Province, 210002, China
| | - Yu Zhang
- Nanjing University of Chinese Medicine; No. 138 Xianlin Road, Qixia District, Nanjing City, Jiangsu Province, 210023, China
| | - Xia Zheng
- Department of Oncology, Jiangsu Provincial Hospital of Chinese Medicine; No. 200 Xianlin Road, Qixia District, Nanjing City, Jiangsu Province, 210023, China
| | - Shukui Qin
- Department of Medical Oncology Center, Bayi Affiliated Hospital of Nanjing University of Chinese Medicine; Yanggongjing 34 Biao No. 34, Qinhuai Distrct, Nanjing City, Jiangsu Province, 210002, China.
| |
Collapse
|
17
|
Abd SS, Alkam HH, Al-Shemary RKR. Composition, depiction, antibacterial, antioxidant, and cytotoxicity activities studies of a new nano-sized binuclear metal (II) Schiff base complexes. INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING ICCMSE 2021 2023. [DOI: 10.1063/5.0121776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
18
|
Chen Y, Onizuka K, Hazemi ME, Nagatsugi F. Reactivity Modulation of Reactive OFF–ON Type G-Quadruplex Alkylating Agents. Bioconjug Chem 2022; 33:2097-2102. [DOI: 10.1021/acs.bioconjchem.2c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yutong Chen
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Kazumitsu Onizuka
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
- Division for the Establishment of Frontier Sciences of Organization for Advanced Studies, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Madoka E. Hazemi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Fumi Nagatsugi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
19
|
Abdelgawwad AMA, Monari A, Tuñón I, Francés-Monerris A. Spatial and Temporal Resolution of the Oxygen-Independent Photoinduced DNA Interstrand Cross-Linking by a Nitroimidazole Derivative. J Chem Inf Model 2022; 62:3239-3252. [PMID: 35771238 PMCID: PMC9277591 DOI: 10.1021/acs.jcim.2c00460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA damage is ubiquitous in nature and is at the basis of emergent treatments such as photodynamic therapy, which is based on the activation of highly oxidative reactive oxygen species by photosensitizing O2. However, hypoxia observed in solid tumors imposes the necessity to devise oxygen-independent modes of action able to induce DNA damage under a low oxygen concentration. The complexity of these DNA damage mechanisms in realistic environments grows exponentially when taking into account light absorption and subsequent excited-state population, photochemical and (photo)-redox reactions, the multiple species involved in different electronic states, noncovalent interactions, multiple reaction steps, and the large number of DNA reactive sites. This work tackles all the intricate reactivity of a photosensitizer based on a nitroimidazole derivative reacting toward DNA in solution under UV light exposition. This is performed through a combination of ground- and excited-state quantum chemistry, classical molecular dynamics, and hybrid QM/MM simulations to rationalize in detail the formation of DNA interstrand cross-links (ICLs) exerted by the noncanonical noncovalent photosensitizer. Unprecedented spatial and temporal resolution of these phenomena is achieved, revealing that the ICL is sequence-specific and that the fastest reactions take place at AT, GC, and GT steps involving either the opposite nucleobases or adjacent Watson-Crick base pairs. The N7 and O6 positions of guanine, the N7 and N3 sites of adenine, the N4 position of cytosine, and the O2 atom of thymine are deemed as the most nucleophile sites and are positively identified to participate in the ICL productions. This work provides a multiscale computational protocol to study DNA reactivity with noncovalent photosensitizers, and contributes to the understanding of therapies based on photoinduced DNA damage at molecular and electronic levels. In addition, we believe the depth understanding of these processes should assist the design of new photosensitizers considering their molecular size, electronic properties, and the observed regioselectivity toward nucleic acids.
Collapse
Affiliation(s)
| | - Antonio Monari
- Université Paris Cité, CNRS, ITODYS, F-75006 Paris, France.,Université de Lorraine and CNRS, UMR 7019 LPCT, F-5400 Nancy, France
| | - Iñaki Tuñón
- Departament de Química Física, Universitat de València, 46100 Burjassot, Spain
| | | |
Collapse
|
20
|
Xue L, Yu D, Wang L, Sun J, Song Y, Jia Y, Wu A, Zhang B, Mi W, Fan H, Sun H. Selective Antitumor Activity and Photocytotoxicity of Glutathione-Activated Abasic Site Trapping Agents. ACS Chem Biol 2022; 17:797-803. [PMID: 35297620 DOI: 10.1021/acschembio.2c00061] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abasic (AP) sites are one of the most common DNA lesions in cells. Aldehyde-reactive alkoxyamines capture AP sites and block the activity of APE1, the enzyme responsible for initiating their repair. Blocking the APE1 repair of AP sites leads to cell death, and it is an actively investigated approach for treating cancer. However, unselective AP site capture in different cells produces side effects and limits the application of alkoxyamines in chemotherapy. Herein we take advantage of the higher glutathione (GSH) concentration in cancer cells over normal cells to develop GSH-inducible agents that selectively kill cancer cells. 2,4-Dinitrobenzenesulfonamide caged coumarin-based alkoxyamines 1 and 2 are selectively revealed by GSH to release SO2 and fluorescent coumarin-based alkoxyamines 3 and 4 that trap AP sites in cells. GSH-directed AP site trapping and SO2 release result in selective cytotoxicity (defined as IC50WI38/IC50H1299) against H1299 lung cancer cells over normal WI38 lung cells, ranging from 1.8 to 2.8 for 1 and 2. The alkylating agent methylmethanesulfonate (MMS) promotes the formation of AP sites in cells and enhances the cytotoxicity of agent 1 in a dose-dependent way. Moreover, the comet assay and γH2AX assay suggest that AP adducts form a highly toxic DNA interstrand cross-link (ICL) upon photolysis, leading to further cell death. DNA flow cytometric analysis showed that 1 promoted cell apoptosis in the early stage and induced G2/M phase cell-cycle arrest. The 2,4-dinitrobenzenesulfonamide-caged alkoxyamines exhibited selective antitumor activity and photocytotoxicity in cancer cells, illuminating their potential as GSH-directed chemotherapeutic agents.
Collapse
Affiliation(s)
- Li Xue
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, Department of Chemical Biology, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Dehao Yu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, Department of Chemical Biology, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Lingling Wang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Jing Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, Department of Chemical Biology, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Ying Song
- Institute of Biomedical Research, Yunnan University, Kunming 650500, P. R. China
| | - Yuanyuan Jia
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, Department of Chemical Biology, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Ang Wu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, Department of Chemical Biology, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Beibei Zhang
- Institute of Biomedical Research, Yunnan University, Kunming 650500, P. R. China
| | - Wenyi Mi
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, P. R. China
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Heli Fan
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, Department of Chemical Biology, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Huabing Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, Department of Chemical Biology, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, P. R. China
| |
Collapse
|
21
|
2-Deoxy-D-glucose increases the sensitivity of glioblastoma cells to BCNU through the regulation of glycolysis, ROS and ERS pathways: In vitro and in vivo validation. Biochem Pharmacol 2022; 199:115029. [PMID: 35381210 DOI: 10.1016/j.bcp.2022.115029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 11/23/2022]
Abstract
Chloroethylnitrosoureas (CENUs) exert antitumor activity via producing dG-dC interstrand crosslinks (ICLs). However, tumor resistance make it necessary to find novel strategies to improve the therapeutic effect of CENUs. 2-Deoxy-D-glucose (2-DG) is a well-known glycolytic inhibitor, which can reprogram tumor energy metabolism closely related to tumor resistance. Here, we investigated the chemosensitization effect of 2-DG on l,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) against glioblastoma cells and the underlying mechanisms. We found that 2-DG significantly increased the inhibitory effects of BCNU on tumor cells compared with BCNU alone, while 2-DG showed no obvious enhancing effect on the BCNU-induced cytotoxicity for normal HaCaT and HA1800 cells. Proliferation, migration and invasion determinations presented the same trend as survival on tumor cells. 2-DG plus BCNU increased the energy deficiency through a more effective inhibition of glycolytic pathway. Notably, the combination of 2-DG and BCNU aggravated oxidative stress in glioblastoma cells, along with a significant decrease in glutathione (GSH) levels, and an increase in intracellular reactive oxygen species (ROS). Subsequently, we demonstrated that the combination treatment led to increased apoptosis via activating mitochondria and endoplasmic reticulum stress (ERS) related apoptosis pathways. Finally, we found that the dG-dC level was significantly increased after 2-DG pretreatment compared to BCNU alone by HPLC-ESI-MS/MS analysis. Finally, in vivo, 2-DG plus BCNU significantly suppressed tumor growth with lower side effects compared with BCNU alone in tumor-bearing mice. In summary, we proposed that 2-DG may have potential to increase the sensitivity of glioblastoma cells to BCNU by regulating glycolysis, ROS and ERS pathways in clinical setting.
Collapse
|
22
|
Facile preparation of model DNA interstrand cross-link repair intermediates using ribonucleotide-containing DNA. DNA Repair (Amst) 2022; 111:103286. [PMID: 35124371 PMCID: PMC8939895 DOI: 10.1016/j.dnarep.2022.103286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/22/2021] [Accepted: 01/28/2022] [Indexed: 01/13/2023]
Abstract
DNA interstrand cross-links (ICLs) are lesions with a covalent bond formed between DNA strands. ICLs are extremely toxic to cells because they prevent the separation of the two strands, which are necessary for the genetic interpretation of DNA. ICLs are repaired via Fanconi anemia and replication-independent pathways. The formation of so-called unhooked repair intermediates via a dual strand incision flanking the ICL site on one strand is an essential step in nearly all ICL repair pathways. Recently, ICLs derived from endogenous sources, such as those from ubiquitous DNA lesions, abasic (AP) sites, have emerged as an important class of ICLs. Despite the earlier efforts in preparing AP-ICLs in high yield using nucleotide analogs, little information is available for preparing AP-ICL unhooked intermediates with varying lengths of overhangs. In this study, we devise a simple approach to prepare model ICL unhooked intermediates derived from AP sites. We exploited the alkaline lability of ribonucleotides (rNMPs) and the high cross-linking efficiency between an AP lesion and a nucleotide analog, 2-aminopurine, via reductive amination. We designed chimeric DNA/RNA substrates with rNMPs flanking the cross-linking residue (2-aminopurine) to facilitate subsequent strand cleavage under our optimized conditions. Mass spectrometric analysis and primer extension assays confirmed the structures of ICL substrates. The method is straightforward, requires no synthetic chemistry expertise, and should be broadly accessible to all researchers in the DNA repair community. For step-by-step descriptions of the method, please refer to the companion manuscript in MethodsX.
Collapse
|
23
|
Yu D, Fan H, Sun J, Xue L, Wang L, Jia Y, Tian J, Sun H. Phenyl Selenide-Based Precursors as Hydrogen Peroxide Inducible DNA Interstrand Cross-Linkers. Chembiochem 2022; 23:e202200086. [PMID: 35224848 DOI: 10.1002/cbic.202200086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/26/2022] [Indexed: 11/10/2022]
Abstract
DNA interstrand crosslinks (ICLs) are highly toxic DNA lesions, and induce cell death by blocking DNA strands separation. Most developed ICL agents, aiming to kill cancer cells, also generate adverse side effects to normal cells. H2O2-inducible DNA ICL agents are highly selective to target cancer cells, as the concentration of H2O2 is higher in cancer cells than normal cells. Previous studies focus on arylboronate-based precursors, reacting with H2O2 to generate reactive quinone methides (QMs) crosslinking DNA. Here we explore phenyl selenide-based precursors 1-3 as H2O2-inducible DNA ICL agents. The precursors 1-3 can be activated by H2O2 to generate the good benzylic leaving group and promote production of reactive QMs to crosslink DNA. Moreover, the DNA cross-linking ability is enhanced by the introduction of substituents in the para position of the phenolic hydroxyl group. From the substituents explored (H, OMe, F), the introduction of electron donating group (OMe) shows a pronounced elevating effect. Further mechanistic studies at the molecular and DNA levels confirm alkylation sites located mainly at dAs, dCs and dGs in DNA. Additionally, cellular experiments reveal that agents 1-3 exhibit higher cytotoxicity toward H1299 human lung cancer cells compared to clinically used drugs, by inducing cellular DNA damage, apoptosis and G0/G1 cell cycle arrest. This study provides a strategy to develop H2O2-inducible DNA interstrand cross-linkers.
Collapse
Affiliation(s)
- Dehao Yu
- Tianjin Medical University, Pharmacy, 22 Qixiangtai Road, Heping District, 300070, Tianjin, CHINA
| | - Heli Fan
- Tianjin Medical University, Pharmacy, 22 Qixiangtai Road, Heping District, 300070, Tianjin, CHINA
| | - Jing Sun
- Tianjin Medical University, Pharmacy, 22 Qixiangtai Road, Heping District, 300070, Tianjin, CHINA
| | - Li Xue
- Tianjin Medical University, Pharmacy, 22 Qixiangtai Road, Heping District, 300070, Tianjin, CHINA
| | - Luo Wang
- Tianjin Medical University, Pharmacy, 22 Qixiangtai Road, Heping District, 300070, Tianjin, CHINA
| | - Yuanyuan Jia
- Tianjin Medical University, Pharmacy, 22 Qixiangtai Road, Heping District, 300070, Tianjin, CHINA
| | - Junyu Tian
- Tianjin Medical University, Pharmacy, 22 Qixiangtai Road, Heping District, 300070, Tianjin, CHINA
| | - Huabing Sun
- Tianjin Medical University, Pharmacy, 22 Qixiangtai Road, 300070, Tianjin, CHINA
| |
Collapse
|
24
|
[Research progress of Fanconi anemia and DNA interstrand crosslink repair]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2022; 43:173-176. [PMID: 35381685 PMCID: PMC8980637 DOI: 10.3760/cma.j.issn.0253-2727.2022.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
25
|
Solivio MJ, Stornetta A, Gilissen J, Villalta PW, Deschoemaeker S, Heyerick A, Dubois L, Balbo S. In Vivo Identification of Adducts from the New Hypoxia-Activated Prodrug CP-506 Using DNA Adductomics. Chem Res Toxicol 2022; 35:275-282. [PMID: 35050609 DOI: 10.1021/acs.chemrestox.1c00329] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Many chemotherapeutic drugs exert their cytotoxicity through the formation of DNA modifications (adducts), which interfere with DNA replication, an overactive process in rapidly dividing cancer cells. Side effects from the therapy are common, however, because these drugs also affect rapidly dividing noncancerous cells. Hypoxia-activated prodrugs (HAPs) have been developed to reduce these side effects as they preferentially activate in hypoxic environments, a hallmark of solid tumors. CP-506 is a newly developed DNA-alkylating HAP designed to exert strong activity under hypoxia. The resulting CP-506-DNA adducts can be used to elucidate the cellular and molecular effects of CP-506 and its selectivity toward hypoxic conditions. In this study, we characterize the profile of adducts resulting from the reaction of CP-506 and its metabolites CP-506H and CP-506M with DNA. A total of 39 putative DNA adducts were detected in vitro using our high-resolution/accurate-mass (HRAM) liquid chromatography tandem mass spectrometry (LC-MS3) adductomics approach. Validation of these results was achieved using a novel strategy involving 15N-labeled DNA. A targeted MS/MS approach was then developed for the detection of the 39 DNA adducts in five cancer cell lines treated with CP-506 under normoxic and hypoxic conditions to evaluate the selectivity toward hypoxia. Out of the 39 DNA adducts initially identified, 15 were detected, with more adducts observed from the two reactive metabolites and in cancer cells treated under hypoxia. The presence of these adducts was then monitored in xenograft mouse models bearing MDA-MB-231, BT-474, or DMS114 tumors treated with CP-506, and a relative quantitation strategy was used to compare the adduct levels across samples. Eight adducts were detected in all xenograft models, and MDA-MB-231 showed the highest adduct levels. These results suggest that CP-506-DNA adducts can be used to better understand the mechanism of action and monitor the efficacy of CP-506 in vivo, as well as highlight a new role of DNA adductomics in supporting the clinical development of DNA-alkylating drugs.
Collapse
Affiliation(s)
- Morwena J Solivio
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Alessia Stornetta
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Peter W Villalta
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | | | - Ludwig Dubois
- Convert Pharmaceuticals SA, Liège 4000, Belgium.,The D-Lab and The M-Lab, Department of Precision Medicine, GROW─School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University Medical Centre, Maastricht 6229 ER, The Netherlands
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
26
|
Pham TC, Nguyen VN, Choi Y, Lee S, Yoon J. Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chem Rev 2021; 121:13454-13619. [PMID: 34582186 DOI: 10.1021/acs.chemrev.1c00381] [Citation(s) in RCA: 702] [Impact Index Per Article: 175.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review presents a robust strategy to design photosensitizers (PSs) for various species. Photodynamic therapy (PDT) is a photochemical-based treatment approach that involves the use of light combined with a light-activated chemical, referred to as a PS. Attractively, PDT is one of the alternatives to conventional cancer treatment due to its noninvasive nature, high cure rates, and low side effects. PSs play an important factor in photoinduced reactive oxygen species (ROS) generation. Although the concept of photosensitizer-based photodynamic therapy has been widely adopted for clinical trials and bioimaging, until now, to our surprise, there has been no relevant review article on rational designs of organic PSs for PDT. Furthermore, most of published review articles in PDT focused on nanomaterials and nanotechnology based on traditional PSs. Therefore, this review aimed at reporting recent strategies to develop innovative organic photosensitizers for enhanced photodynamic therapy, with each example described in detail instead of providing only a general overview, as is typically done in previous reviews of PDT, to provide intuitive, vivid, and specific insights to the readers.
Collapse
Affiliation(s)
- Thanh Chung Pham
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Van-Nghia Nguyen
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Yeonghwan Choi
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Songyi Lee
- Department of Chemistry, Pukyong National University, Busan 48513, Korea.,Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
27
|
van der Westhuizen D, Bezuidenhout DI, Munro OQ. Cancer molecular biology and strategies for the design of cytotoxic gold(I) and gold(III) complexes: a tutorial review. Dalton Trans 2021; 50:17413-17437. [PMID: 34693422 DOI: 10.1039/d1dt02783b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This tutorial review highlights key principles underpinning the design of selected metallodrugs to target specific biological macromolecules (DNA and proteins). The review commences with a descriptive overview of the eukaryotic cell cycle and the molecular biology of cancer, particularly apoptosis, which is provided as a necessary foundation for the discovery, design, and targeting of metal-based anticancer agents. Drugs which target DNA have been highlighted and clinically approved metallodrugs discussed. A brief history of the development of mainly gold-based metallodrugs is presented prior to addressing ligand systems for stabilizing and adding functionality to bio-active gold(I) and gold(III) complexes, particularly in the burgeoning field of anticancer metallodrugs. Concepts such as multi-modal and selective cytotoxic agents are covered where necessary for selected compounds. The emerging role of carbenes as the ligand system of choice to achieve these goals for gold-based metallodrug candidates is highlighted prior to closing the review with comments on some future directions that this research field might follow. The latter section ultimately emphasizes the importance of understanding the fate of metal complexes in cells to garner key mechanistic insights.
Collapse
Affiliation(s)
- Danielle van der Westhuizen
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| | - Daniela I Bezuidenhout
- Laboratory of Inorganic Chemistry, Environmental and Chemical Engineering, University of Oulu, P. O. Box 3000, 90014 Oulu, Finland.
| | - Orde Q Munro
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| |
Collapse
|
28
|
Liu Q, Wang X, Li J, Wang J, Sun G, Zhang N, Ren T, Zhao L, Zhong R. Development and biological evaluation of AzoBGNU: A novel hypoxia-activated DNA crosslinking prodrug with AGT-inhibitory activity. Biomed Pharmacother 2021; 144:112338. [PMID: 34678728 DOI: 10.1016/j.biopha.2021.112338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 11/24/2022] Open
Abstract
Chloroethylnitrosoureas (CENUs) are an important family of chemotherapies in clinical treatment of cancers, which exert antitumor activity by inducing the formation of DNA interstrand crosslinks (dG-dC ICLs). However, the drug resistance mediated by O6-alkylguanine-DNA alkyltransferase (AGT) and absence of tumor-targeting ability largely decrease the antitumor efficacy of CENUs. In this study, we synthesized an azobenzene-based hypoxia-activated combi-nitrosourea prodrug, AzoBGNU, and evaluated its hypoxic selectivity and antitumor activity. The prodrug was composed of a CENU pharmacophore and an O6-benzylguanine (O6-BG) analog moiety masked by a N,N-dimethyl-4-(phenyldiazenyl)aniline segment as a hypoxia-activated trigger, which was designed to be selectively reduced via azo bond break in hypoxic tumor microenvironment, accompanied with releasing of an O6-BG analog to inhibit AGT and a chloroethylating agent to induce dG-dC ICLs. AzoBGNU exhibited significantly increased cytotoxicity and apoptosis-inducing ability toward DU145 cells under hypoxia compared with normoxia, indicating the hypoxia-responsiveness as expected. Predominant higher cytotoxicity was observed in the cells treated by AzoBGNU than those by traditional CENU chemotherapy ACNU and its combination with O6-BG. The levels of dG-dC ICLs in DU145 cells induced by AzoBGNU was remarkably enhanced under hypoxia, which was approximately 6-fold higher than those in the AzoBGNU-treated groups under normoxia and those in the ACNU-treated groups. The results demonstrated that azobenzene-based combi-nitrosourea prodrug possessed desirable tumor-hypoxia targeting ability and eliminated chemoresistance compared with the conventional CENUs.
Collapse
Affiliation(s)
- Qi Liu
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Xiaoli Wang
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Jun Li
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Jiaojiao Wang
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Na Zhang
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Ting Ren
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China.
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
29
|
Saxon E, Peng X. Recent Advances in Hydrogen Peroxide Responsive Organoborons for Biological and Biomedical Applications. Chembiochem 2021; 23:e202100366. [PMID: 34636113 DOI: 10.1002/cbic.202100366] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/10/2021] [Indexed: 12/26/2022]
Abstract
Hydrogen peroxide is the most stable reactive oxygen species generated endogenously, participating in numerous physiological processes and abnormal pathological conditions. Mounting evidence suggests that a higher level of H2 O2 exists in various disease conditions. Thus, H2 O2 functions as an ideal target for site-specific bioimaging and therapeutic targeting. The unique reactivity of organoborons with H2 O2 provides a method for developing chemoselective molecules for biological and biomedical applications. This review highlights the design and application of boron-derived molecules for H2 O2 detection, and the utility of boron moieties toward masking reactive compounds leading to the development of metal prochelators and prodrugs for selectively delivering an active species at the target sites with elevated H2 O2 levels. Additionally, the emergence of H2 O2 -responsive theranostic agents consisting of both therapeutic and diagnostic moieties in one integrated system are discussed. The purpose of this review is to provide a better understanding of the role of boron-derived molecules toward biological and pharmacological applications.
Collapse
Affiliation(s)
- Eron Saxon
- University of Wisconsin-Milwaukee, Milwaukee, USA
| | - Xiaohua Peng
- University of Wisconsin-Milwaukee, Milwaukee, USA
| |
Collapse
|
30
|
Gabelica V. Native Mass Spectrometry and Nucleic Acid G-Quadruplex Biophysics: Advancing Hand in Hand. Acc Chem Res 2021; 54:3691-3699. [PMID: 34546031 DOI: 10.1021/acs.accounts.1c00396] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
While studying nucleic acids to reveal the weak interactions responsible for their three-dimensional structure and for their interactions with drugs, we also contributed to the field of biomolecular mass spectrometry, both in terms of fundamental understanding and with new methodological developments. A first goal was to develop mass spectrometry approaches to detect noncovalent interactions between antitumor drugs and their DNA target. Twenty years ago, our attention turned toward specific DNA structures such as the G-quadruplex (a structure formed by guanine-rich strands). Mass spectrometry allows one to discern which molecules interact with one another by measuring the masses of the complexes, and quantify the affinities by measuring their abundance. The most important findings came from unexpected masses. For example, we showed the formation of higher- or lower-order structures by G-quadruplexes used in traditional biophysical assays. We also derived complete thermodynamic and kinetic description of G-quadruplex folding pathways by measuring cation binding, one at a time. Getting quantitative information requires accounting for nonspecific adduct formation and for the response factors of the different molecular forms. With these caveats in mind, the approach is now mature enough for routine biophysical characterization of nucleic acids. A second goal is to obtain more detailed structural information on each of the complexes separated by the mass spectrometer. One such approach is ion mobility spectrometry, and even today the challenge lies in the structural interpretation of the measurements. We showed that, although structures such as G-quadruplexes are well-preserved in the MS conditions, double helices actually get more compact in the gas phase. These major rearrangements forced us to challenge comfortable assumptions. Further work is still needed to generalize how to deduce structures in solution from ion mobility spectrometry data and, in particular, how to account for the electrospray charging mechanisms and for ion internal energy effects. These studies also called for complementary approaches to ion mobility spectrometry. Recently, we applied isotope exchange labeling mass spectrometry to characterize nucleic acid structures for the first time, and we reported the first ever circular dichroism ion spectroscopy measurement on mass-selected trapped ions. Circular dichroism plays a key role in assigning the stacking topology, and our new method now opens the door to characterizing a wide variety of chiral molecules by mass spectrometry. In summary, advanced mass spectrometry approaches to characterize gas-phase structures work well for G-quadruplexes because they are stiffened by inner cations. The next objective will be to generalize these methodologies to a wider range of nucleic acid structures.
Collapse
Affiliation(s)
- Valérie Gabelica
- Université de Bordeaux, CNRS, INSERM,
ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| |
Collapse
|
31
|
Erber L, Goodman S, Jokipii Krueger CC, Rusyn I, Tretyakova N. Quantitative NanoLC/NSI +-HRMS Method for 1,3-Butadiene Induced bis-N7-guanine DNA-DNA Cross-Links in Urine. TOXICS 2021; 9:247. [PMID: 34678943 PMCID: PMC8540193 DOI: 10.3390/toxics9100247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/13/2021] [Accepted: 09/28/2021] [Indexed: 01/16/2023]
Abstract
1,3-Butadiene (BD) is a common environmental and industrial chemical widely used in plastic and rubber manufacturing and also present in cigarette smoke and automobile exhaust. BD is classified as a known human carcinogen based on evidence of carcinogenicity in laboratory animals treated with BD by inhalation and epidemiological studies revealing an increased risk of leukemia and lymphohematopoietic cancers in workers occupationally exposed to BD. Upon exposure via inhalation, BD is bioactivated to several toxic epoxides including 3,4-epoxy-1-butene (EB), 3,4-epoxy-1,2-butanediol (EBD), and 1,2,3,4-diepoxybutane (DEB); these are conjugated with glutathione and excreted as 2-(N-acetyl-L-cystein-S-yl)-1-hydroxybut-3-ene/1-(N-acetyl-L-cystein-S-yl)-2-hydroxybut-3-ene (MHBMA), 4-(N-acetyl-L-cystein-S-yl)-1,2-dihydroxybutane (DHBMA), and 1,4-bis-(N-acetyl-L-cystein-S-yl)butane-2,3-diol (bis-BDMA). Exposure to DEB generates monoalkylated DNA adducts, DNA-DNA crosslinks, and DNA-protein crosslinks, which can cause base substitutions, genomic rearrangements, and large genomic deletions. In this study, we developed a quantitative nanoLC/NSI+-HRMS methodology for 1,4-bis-(gua-7-yl)-2,3-butanediol (bis-N7G-BD) adducts in urine (LOD: 0.1 fmol/mL urine, LOQ: 1.0 fmol/mL urine). This novel method was used to quantify bis-N7G-BD in urine of mice treated with 590 ± 150 ppm BD for 2 weeks (6 h/day, 5 days/week). Bis-N7G-BD was detected in urine of male and female BD-exposed mice (574.6 ± 206.0 and 571.1 ± 163.4 pg/mg of creatinine, respectively). In addition, major urinary metabolites of BD, bis-BDMA, MHBMA and DHBMA, were measured in the same samples. Urinary bis-N7G-BD adduct levels correlated with DEB-derived metabolite bis-BDMA (r = 0.80, Pearson correlation), but not with the EB-derived DNA adducts (EB-GII) or EB-derived metabolites MHBMA and DHBMA (r = 0.24, r = 0.14, r = 0.18, respectively, Pearson correlations). Urinary bis-N7G-BD could be employed as a novel non-invasive biomarker of exposure to BD and bioactivation to its most mutagenic metabolite, DEB. This method will be useful for future studies of 1,3-butadiene exposure and metabolism.
Collapse
Affiliation(s)
- Luke Erber
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; (L.E.); (C.C.J.K.)
| | - Samantha Goodman
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA;
| | - Caitlin C. Jokipii Krueger
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; (L.E.); (C.C.J.K.)
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA;
| | - Natalia Tretyakova
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; (L.E.); (C.C.J.K.)
| |
Collapse
|
32
|
Wernke KM, Tirla A, Xue M, Surovtseva YV, Menges FS, Herzon SB. Probing Microbiome Genotoxicity: A Stable Colibactin Provides Insight into Structure-Activity Relationships and Facilitates Mechanism of Action Studies. J Am Chem Soc 2021; 143:15824-15833. [PMID: 34524796 DOI: 10.1021/jacs.1c07559] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Colibactin is a genotoxic metabolite produced by commensal-pathogenic members of the human microbiome that possess the clb (aka pks) biosynthetic gene cluster. clb+ bacteria induce tumorigenesis in models of intestinal inflammation and have been causally linked to oncogenesis in humans. While colibactin is believed underlie these effects, it has not been possible to study the molecule directly due to its instability. Herein, we report the synthesis and biological studies of colibactin 742 (4), a stable colibactin derivative. We show that colibactin 742 (4) induces DNA interstrand-cross-links, activation of the Fanconi Anemia DNA repair pathway, and G2/M arrest in a manner similar to clb+E. coli. The linear precursor 9, which mimics the biosynthetic precursor to colibactin, also recapitulates the bacterial phenotype. In the course of this work, we discovered a novel cyclization pathway that was previously undetected in MS-based studies of colibactin, suggesting a refinement to the natural product structure and its mode of DNA binding. Colibactin 742 (4) and its precursor 9 will allow researchers to study colibactin's genotoxic effects independent of the producing organism for the first time.
Collapse
Affiliation(s)
- Kevin M Wernke
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Alina Tirla
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Mengzhao Xue
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Yulia V Surovtseva
- Yale Center for Molecular Discovery, Yale University, West Haven, Connecticut 06516, United States
| | - Fabian S Menges
- Chemical and Biophysical Instrumentation Center, Yale University, New Haven, Connecticut 06511, United States
| | - Seth B Herzon
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.,Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520, United States
| |
Collapse
|
33
|
Behl T, Rachamalla M, Najda A, Sehgal A, Singh S, Sharma N, Bhatia S, Al-Harrasi A, Chigurupati S, Vargas-De-La-Cruz C, Hobani YH, Mohan S, Goyal A, Katyal T, Solarska E, Bungau S. Applications of Adductomics in Chemically Induced Adverse Outcomes and Major Emphasis on DNA Adductomics: A Pathbreaking Tool in Biomedical Research. Int J Mol Sci 2021; 22:10141. [PMID: 34576304 PMCID: PMC8467560 DOI: 10.3390/ijms221810141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/04/2021] [Accepted: 09/13/2021] [Indexed: 01/06/2023] Open
Abstract
Adductomics novel and emerging discipline in the toxicological research emphasizes on adducts formed by reactive chemical agents with biological molecules in living organisms. Development in analytical methods propelled the application and utility of adductomics in interdisciplinary sciences. This review endeavors to add a new dimension where comprehensive insights into diverse applications of adductomics in addressing some of society's pressing challenges are provided. Also focuses on diverse applications of adductomics include: forecasting risk of chronic diseases triggered by reactive agents and predicting carcinogenesis induced by tobacco smoking; assessing chemical agents' toxicity and supplementing genotoxicity studies; designing personalized medication and precision treatment in cancer chemotherapy; appraising environmental quality or extent of pollution using biological systems; crafting tools and techniques for diagnosis of diseases and detecting food contaminants; furnishing exposure profile of the individual to electrophiles; and assisting regulatory agencies in risk assessment of reactive chemical agents. Characterizing adducts that are present in extremely low concentrations is an exigent task and more over absence of dedicated database to identify adducts is further exacerbating the problem of adduct diagnosis. In addition, there is scope of improvement in sample preparation methods and data processing software and algorithms for accurate assessment of adducts.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; (T.B.); (A.S.); (S.S.); (N.S.)
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada;
| | - Agnieszka Najda
- Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; (T.B.); (A.S.); (S.S.); (N.S.)
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; (T.B.); (A.S.); (S.S.); (N.S.)
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; (T.B.); (A.S.); (S.S.); (N.S.)
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa 33, Oman; (S.B.); (A.A.-H.)
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa 33, Oman; (S.B.); (A.A.-H.)
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Celia Vargas-De-La-Cruz
- Faculty of Pharmacy and Biochemistry, Academic Department of Pharmacology, Bromatology and Toxicology, Centro Latinoamericano de Enseñanza e Investigación en Bacteriología Alimentaria, Universidad Nacional Mayor de San Marcos, Lima 15001, Peru;
- E-Health Research Center, Universidad de Ciencias y Humanidades, Lima 15001, Peru
| | - Yahya Hasan Hobani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan 114, Saudi Arabia;
| | - Syam Mohan
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan 114, Saudi Arabia;
| | - Amit Goyal
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana 141104, India;
| | - Taruna Katyal
- RBMCH Division, ICMR Head Quarters, Ramalingaswami Bhawan, Ansari Nagar, New Delhi 110029, India;
| | - Ewa Solarska
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland;
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| |
Collapse
|
34
|
de Souza ICA, Santana SDS, Gómez JG, Guedes GP, Madureira J, Quintal SMDO, Lanznaster M. Investigation of cobalt(III)-phenylalanine complexes for hypoxia-activated drug delivery. Dalton Trans 2021; 49:16425-16439. [PMID: 32692333 DOI: 10.1039/d0dt01389g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Four cobalt(iii)-phenylalanine complexes, [Co(Phe)(py2en)](ClO4)2·H2O (1), [Co(Phe)(TPA)](ClO4)2·H2O (2), [Co(Phe)(py2enMe2)](ClO4)2·H2O (3) and [Co(bipy)2(Phe)](ClO4)2·H2O (4), were investigated as prototype models for hypoxia-activated delivery of melphalan - a phenylalanine derivative anticancer drug of the class of nitrogen mustards. Single crystal X-ray diffraction analysis provided the molecular structures of 1-4, as a single isomer/conformer. According with NMR and theoretical calculations, the solid-state structures of 2 and 4 are maintained in solutions. For complexes 1 and 3, though, a mixture of isomers was found in DMSO solutions: Λ-cisα(exo,exo) and Δ-cisβ1(exo,exo) for 1 (3 : 2 ratio), and Λ-cisα(exo,exo) and Δ-cisα(exo,exo) for 3 (5 : 1 ratio). Theoretical calculations point to a re-equilibration reaction of the solid-state Λ-cisβ1 isomer of 1 in solution. Electrochemical analysis revealed a correlation between the electron-donor capacity of the ancillary ligands and the redox potentials of the complexes. The potentials varied from +0.01 for 1 to +0.31 V vs. SHE for 4 in aqueous media and indicate that reduction should be achieved in biological media. The integrity of the complexes in pH 5.5 and 7.4 buffered solutions was confirmed by UV-Vis monitoring up to 24 h at 25 °C. Reduction by ascorbic acid (AA) shows an O2-dependent dissociation of the l-Phe for complexes 1-3, with higher conversion rates at pH 7.4. For complex 4, a fast dissociation of l-Phe was observed, with conversion rates unaffected by the pH and presence of O2.
Collapse
|
35
|
Sosic A, Göttlich R, Fabris D, Gatto B. B-CePs as cross-linking probes for the investigation of RNA higher-order structure. Nucleic Acids Res 2021; 49:6660-6672. [PMID: 34125908 PMCID: PMC8266612 DOI: 10.1093/nar/gkab468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 11/12/2022] Open
Abstract
Elucidating the structure of RNA and RNA ensembles is essential to understand biological functions. In this work, we explored the previously uncharted reactivity of bis-chloropiperidines (B-CePs) towards RNA. We characterized at the molecular level the different adducts induced by the fast reacting compound B-CeP 1 with RNA. Following an approach based on solution thermal melting coupled with ESI mass spectrometry (STHEM-ESI), we proved the ability of B-CePs to induce inter-molecular cross-links between guanines in double stranded RNA. These results open the possibility of using B-CePs as structural probes for investigating higher-order structures, such as the kissing loop complex established by the dimerization initiation site (DIS) of the HIV-1 genome. We confirmed the potential of B-CePs to reveal the identity of RNA structures involved in long-range interactions, expecting to benefit the characterization of samples that are not readily amenable to traditional high-resolution techniques, and thus promoting the elucidation of pertinent RNA systems associated with old and new diseases.
Collapse
Affiliation(s)
- Alice Sosic
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Richard Göttlich
- Institute of Organic Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Dan Fabris
- Departments of Chemistry and Biological Sciences, University at Albany-SUNY, Albany, NY, 12222, USA
| | - Barbara Gatto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
36
|
Cao J, Liu Z, Wang C, Wang J, Pan B, Qie S. Cell Models for Birth Defects Caused by Chloroethyl Nitrosourea-Induced DNA Lesions. J Craniofac Surg 2021; 32:778-782. [PMID: 33705035 DOI: 10.1097/scs.0000000000006850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
ABSTRACT Birth defects have been linked to administration of alkylating agents during pregnancy. The anti-tumor efficacy of alkylating agents correlate with their ability to induce DNA lesions, especially interstrand crosslinks (ICLs). Yet the role of DNA damages in birth defects remains to be clarified, owing, in part, to a lack of cell models. Here we generate DNA lesions in NIH/3T3 cells to mimic defects in fetus triggered by 3-Bis(2-chloroethyl)-1-nitrosourea (BCNU, carmustine). CCK-8 assay suggests that BCNU-induced cell death was dose-dependent. Alkaline comet tests and γ-H2AX staining confirm DNA ICLs and other forms of DNA damages caused by BCNUs. The cell cycle analysis shows cells arrest in G2/M phase until crosslinks repair is complete. Taken together, all these experiments demonstrate we have successfully established normal cell models for birth defects caused by BCNU-mediated DNA damages. The model can not only guide the development of effective and low-toxicity anticancer drugs, but also be of great significance for the study of neonatal malformation triggered by BCNUs.
Collapse
Affiliation(s)
- Jiankun Cao
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Zongjian Liu
- Department of Rehabilitation, Beijing Rehabilitation Hospital affiliated to Capital Medical University, Beijing, China
| | - Congxiao Wang
- Department of Rehabilitation, Beijing Rehabilitation Hospital affiliated to Capital Medical University, Beijing, China
| | - Jie Wang
- Department of Rehabilitation, Beijing Rehabilitation Hospital affiliated to Capital Medical University, Beijing, China
| | - Bo Pan
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Shuyan Qie
- Department of Rehabilitation, Beijing Rehabilitation Hospital affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
37
|
Zlatić K, Cindrić M, Antol I, Uzelac L, Mihaljević B, Kralj M, Basarić N. Wavelength dependent photochemistry of BODIPY-phenols and their applications in the fluorescent labeling of proteins. Org Biomol Chem 2021; 19:4891-4903. [PMID: 34106112 DOI: 10.1039/d1ob00278c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A series of BODIPY dyes were synthesized, that were at the 3, or 3 and 5 positions, substituted by photochemically reactive quinone methide (QM) precursor moieties. Fluorescence properties of the molecules were investigated and we demonstrated that the molecules undergo wavelength dependent photochemistry. Photodeamination to deliver QMs takes place only upon excitation to higher excited singlet states, showing unusual anti-Kasha photochemical reactivity. The findings were corroborated by TD-DFT computations. Laser flash photolysis experiments could not reveal QMs due to the low efficiency of their formation, but enabled the detection of phenoxyl radicals. The applicability of the molecules for the fluorescent labeling of bovine serum albumin as a model protein upon photoexcitation at 350 nm was demonstrated.
Collapse
Affiliation(s)
- Katarina Zlatić
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia.
| | - Matej Cindrić
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia.
| | - Ivana Antol
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia.
| | - Lidija Uzelac
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia.
| | - Branka Mihaljević
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - Marijeta Kralj
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia.
| | - Nikola Basarić
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia.
| |
Collapse
|
38
|
Photochemical Reactivity of Naphthol-Naphthalimide Conjugates and Their Biological Activity. Molecules 2021; 26:molecules26113355. [PMID: 34199541 PMCID: PMC8199699 DOI: 10.3390/molecules26113355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/21/2021] [Accepted: 05/28/2021] [Indexed: 11/17/2022] Open
Abstract
Quinone methide precursors 1a–e, with different alkyl linkers between the naphthol and the naphthalimide chromophore, were synthesized. Their photophysical properties and photochemical reactivity were investigated and connected with biological activity. Upon excitation of the naphthol, Förster resonance energy transfer (FRET) to the naphthalimide takes place and the quantum yields of fluorescence are low (ΦF ≈ 10−2). Due to FRET, photodehydration of naphthols to QMs takes place inefficiently (ΦR ≈ 10−5). However, the formation of QMs can also be initiated upon excitation of naphthalimide, the lower energy chromophore, in a process that involves photoinduced electron transfer (PET) from the naphthol to the naphthalimide. Fluorescence titrations revealed that 1a and 1e form complexes with ct-DNA with moderate association constants Ka ≈ 105–106 M−1, as well as with bovine serum albumin (BSA) Ka ≈ 105 M−1 (1:1 complex). The irradiation of the complex 1e@BSA resulted in the alkylation of the protein, probably via QM. The antiproliferative activity of 1a–e against two human cancer cell lines (H460 and MCF 7) was investigated with the cells kept in the dark or irradiated at 350 nm, whereupon cytotoxicity increased, particularly for 1e (>100 times). Although the enhancement of this activity upon UV irradiation has no imminent therapeutic application, the results presented have importance in the rational design of new generations of anticancer phototherapeutics that absorb visible light.
Collapse
|
39
|
Tripathi P, Bruner SD. Structural Basis for the Interactions of the Colibactin Resistance Gene Product ClbS with DNA. Biochemistry 2021; 60:1619-1625. [PMID: 33945270 DOI: 10.1021/acs.biochem.1c00201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The natural product colibactin, along with its associated biosynthetic gene cluster, is an example system for the role microbially derived small molecules play in the human microbiome. This is particularly relevant in the human gut, where host microbiota is involved in various disorders, including colorectal cancer pathogenesis. Bacteria harboring the colibactin gene cluster induce alkylation of nucleobases in host DNA, forming interstrand cross-links both in vivo and in vitro. These lesions can lead to deleterious double-strand breaks and have been identified as the primary mechanism of colibactin-induced cytotoxicity. The gene product ClbS is one of several mechanisms utilized by the producing bacteria to maintain genome integrity. ClbS catalyzes hydrolytic inactivation of colibactin and has been shown to bind DNA, incurring self-resistance. Presented is the molecular basis for ClbS bound to a DNA oligonucleotide. The structure shows the interaction of the protein with the ends of a DNA duplex with terminal nucleotides flipped to the enzyme active site. The structure suggests an additional function for ClbS, the binding to damaged DNA followed by repair. Additionally, our study provides general insight into the function of the widely distributed and largely uncharacterized DUF1706 protein family.
Collapse
Affiliation(s)
- Prabhanshu Tripathi
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Steven D Bruner
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
40
|
Fan H, Zaman MAU, Chen W, Ali T, Campbell A, Zhang Q, Setu NI, Saxon E, Zahn NM, Benko AM, Arnold LA, Peng X. Assessment of Phenylboronic Acid Nitrogen Mustards as Potent and Selective Drug Candidates for Triple-Negative Breast Cancer. ACS Pharmacol Transl Sci 2021; 4:687-702. [PMID: 33860194 PMCID: PMC8033613 DOI: 10.1021/acsptsci.0c00092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Indexed: 12/18/2022]
Abstract
Triple-negative breast cancer (TNBC) has limited treatment options and the worst prognosis among all types of breast cancer. We describe two prodrugs, namely, CWB-20145 (1) and its methyl analogue FAN-NM-CH3 (2) that reduced the size of TNBC-derived tumors. The DNA cross-linking of nitrogen mustard prodrugs 1 and 2 was superior to that of chlorambucil and melphalan once activated in the presence of H2O2. The cellular toxicity of 1 and 2 was demonstrated in seven human cancer cell lines. The TNBC cell line MDA-MB-468 was particularly sensitive toward 1 and 2. Compound 2 was 10 times more cytotoxic than chlorambucil and 16 times more active than melphalan. An evaluation of the gene expression demonstrated an upregulation of the tumor suppressor genes p53 and p21 supporting a transcriptional mechanism of a reduced tumor growth. Pharmacokinetic studies with 1 showed a rapid conversion of the prodrug. The introduction of a methyl group generated 2 with an increased half-life. An in vivo toxicity study in mice demonstrated that both prodrugs were less toxic than chlorambucil. Compounds 1 and 2 reduced tumor growth with an inhibition rate of more than 90% in athymic nude mice xenografted with MDA-MB-468 cells. Together, the in vivo investigations demonstrated that treatment with 1 and 2 suppressed tumor growth without affecting normal tissues in mice. These phenylboronic acid nitrogen mustard prodrugs represent promising drug candidates for the treatment of TNBC. However, the mechanisms underlying their superior in vivo activity and selectivity as well as the correlation between H2O2 level and in vivo efficacy are not yet fully understood.
Collapse
Affiliation(s)
| | | | | | - Taufeeque Ali
- Department of Chemistry and
Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Anahit Campbell
- Department of Chemistry and
Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Qi Zhang
- Department of Chemistry and
Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Nurul Islam Setu
- Department of Chemistry and
Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Eron Saxon
- Department of Chemistry and
Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Nicolas M. Zahn
- Department of Chemistry and
Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Anna M. Benko
- Department of Chemistry and
Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Leggy A. Arnold
- Department of Chemistry and
Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Xiaohua Peng
- Department of Chemistry and
Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, Wisconsin 53211, United States
| |
Collapse
|
41
|
El-Sayed YS, Gaber M, El-Nahass MN. Structural elucidation, spectroscopic, and metallochromic studies of 2-(2-hydroxy phenyl)-1-H–benzimidazole complexes: Metal ions sensing, DNA binding, and antimicrobial activity evaluation. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
42
|
Hirose Y, Hashiya K, Bando T, Sugiyama H. Evaluation of the DNA Alkylation Properties of a Chlorambucil-Conjugated Cyclic Pyrrole-Imidazole Polyamide. Chemistry 2021; 27:2782-2788. [PMID: 33145851 DOI: 10.1002/chem.202004421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/30/2020] [Indexed: 01/31/2023]
Abstract
Hairpin pyrrole-imidazole polyamides (hPIPs) and their chlorambucil (Chb) conjugates (hPIP-Chbs) can alkylate DNA in a sequence-specific manner, and have been studied as anticancer drugs. Here, we conjugated Chb to a cyclic PIP (cPIP), which is known to have a higher binding affinity than the corresponding hPIP, and investigated the DNA alkylation properties of the resulting cPIP-Chb using the optimized capillary electrophoresis method and conventional HPLC product analysis. cPIP-Chb conjugate 3 showed higher alkylation activity at its binding sites than did hPIP-Chb conjugates 1 and 2. Subsequent HPLC analysis revealed that the alkylation site of conjugate 3, which was identified by capillary electrophoresis, was reliable and that conjugate 3 alkylates the N3 position of adenine as do hPIP-Chbs. Moreover, conjugate 3 showed higher cytotoxicity against LNCaP prostate cancer cells than did conjugate 1 and cytotoxicity comparable to that of conjugate 2. These results suggest that cPIP-Chbs could be novel DNA alkylating anticancer drugs.
Collapse
Affiliation(s)
- Yuki Hirose
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Kaori Hashiya
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan.,Institute for Integrated Cell-Material Science (iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
43
|
Adams M, Sullivan MP, Tong KKH, Goldstone DC, Hanif M, Jamieson SMF, Hartinger CG. Mustards-Derived Terpyridine-Platinum Complexes as Anticancer Agents: DNA Alkylation vs Coordination. Inorg Chem 2021; 60:2414-2424. [PMID: 33497565 DOI: 10.1021/acs.inorgchem.0c03317] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of bifunctional platinum complexes with the ability to interact with DNA via different binding modes is of interest in anticancer metallodrug research. Therefore, we report platinum(II) terpyridine complexes to target DNA by coordination and/or through a tethered alkylating moiety. The platinum complexes were evaluated for their in vitro antiproliferative properties against the human cancer cell lines HCT116 (colorectal), SW480 (colon), NCI-H460 (non-small cell lung), and SiHa (cervix) and generally exhibited potent antiproliferative activity although lower than their respective terpyridine ligands. 1H NMR spectroscopy and/or ESI-MS studies on the aqueous stability and reactivity with various small biomolecules, acting as protein and DNA model compounds, were used to establish potential modes of action for these complexes. These investigations indicated rapid binding of complex PtL3 to the biomolecules through coordination to the Pt center, while PtL4 in addition alkylated 9-ethylguanine. PtL3 was investigated for its reactivity to the model protein hen egg white lysozyme (HEWL) by protein crystallography which allowed identification of the Nδ1 atom of His15 as the binding site.
Collapse
Affiliation(s)
- Muneebah Adams
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Matthew P Sullivan
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.,School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Kelvin K H Tong
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - David C Goldstone
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Muhammad Hanif
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Stephen M F Jamieson
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Christian G Hartinger
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
44
|
Fan H, Peng X. Photoinduced DNA Interstrand Cross-Linking by Benzene Derivatives: Leaving Groups Determine the Efficiency of the Cross-Linker. J Org Chem 2021; 86:493-506. [PMID: 33253574 DOI: 10.1021/acs.joc.0c02234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We have synthesized and characterized two small libraries of 2-OMe or 2-NO2-benzene analogues 2a-i and 3a-i containing a wide variety of leaving groups. Irradiation of these compounds at 350 nm generated benzyl radicals that were spontaneously oxidized to benzyl cations directly producing DNA interstrand cross-links (ICLs). Compounds with a 2-methoxy substituent showed a faster cross-linking reaction rate and higher ICL efficiency than the corresponding 2-nitro analogues. Apart from the aromatic substituent, the benzylic leaving groups greatly affected DNA cross-linking efficiency. Higher ICL yields were observed for compounds with OCH3 (3b), OCH2Ph (3d), or Ph3P+ (3i) as leaving groups than those containing OAc (3a), NMe2 (3e), morpholine (3f), OCH2CH═CH2 (3c), SPh (3g), or SePh (3h). The heat stability study of the isolated ICL products indicated that dGs were the preferred alkylation sites in DNA for the benzyl cations produced from 2a-i, 3c, and 3e-i while 3a (L = OAc), 3b (L = OMe), and 3d (L = OCH2Ph) showed a similar photoreactivity toward dGs and dAs. Although the photogenerated benzyl cations alkylated dG, dC, and dA, ICL assay with variation of DNA sequences showed that the ICL reaction occurred with opposing dG/dC but not with staggered dA/dA.
Collapse
Affiliation(s)
- Heli Fan
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin Milwaukee, 3210 N. Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Xiaohua Peng
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin Milwaukee, 3210 N. Cramer Street, Milwaukee, Wisconsin 53211, United States
| |
Collapse
|
45
|
Kellum AH, Qiu DY, Voehler MW, Martin W, Gates KS, Stone MP. Structure of a Stable Interstrand DNA Cross-Link Involving a β- N-Glycosyl Linkage Between an N6-dA Amino Group and an Abasic Site. Biochemistry 2020; 60:41-52. [PMID: 33382597 DOI: 10.1021/acs.biochem.0c00596] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Abasic (AP) sites are one of the most common forms of DNA damage. The deoxyribose ring of AP sites undergoes anomerization between α and β configurations, via an electrophilic aldehyde intermediate. In sequences where an adenine residue is located on the opposing strand and offset 1 nt to the 3' side of the AP site, the nucleophilic N6-dA amino group can react with the AP aldehyde residue to form an interstrand cross-link (ICL). Here, we present an experimentally determined structure of the dA-AP ICL by NMR spectroscopy. The ICL was constructed in the oligodeoxynucleotide 5'-d(T1A2T3G4T5C6T7A8A9G10T11T12C13A14T15C16T17A18)-3':5'-d(T19A20G21A22T23G24A25A26C27X28T29A30G31A32C33A34T35A36)-3' (X=AP site), with the dA-AP ICL forming between A8 and X28. The NMR spectra indicated an ordered structure for the cross-linked DNA duplex and afforded detailed spectroscopic resonance assignments. Structural refinement, using molecular dynamics calculations restrained by NOE data (rMD), revealed the structure of the ICL. In the dA-AP ICL, the 2'-deoxyribosyl ring of the AP site was ring-closed and in the β configuration. Juxtapositioning the N6-dA amino group and the aldehydic C1 of the AP site within bonding distance while simultaneously maintaining two flanking unpaired A9 and T29 bases stacked within the DNA is accomplished by the unwinding of the DNA at the ICL. The structural data is discussed in the context of recent studies describing the replication-dependent unhooking of the dA-AP ICL by the base excision repair glycosylase NEIL3.
Collapse
Affiliation(s)
- Andrew H Kellum
- Department of Chemistry, Vanderbilt University Center for Structural Biology, and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - David Y Qiu
- Department of Chemistry, Vanderbilt University Center for Structural Biology, and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Markus W Voehler
- Department of Chemistry, Vanderbilt University Center for Structural Biology, and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - William Martin
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Kent S Gates
- Departments of Chemistry and Biochemistry, University of Missouri, Columbia, Missouri 65221, United States
| | - Michael P Stone
- Department of Chemistry, Vanderbilt University Center for Structural Biology, and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
46
|
Williams PC, Wernke KM, Tirla A, Herzon SB. Employing chemical synthesis to study the structure and function of colibactin, a "dark matter" metabolite. Nat Prod Rep 2020; 37:1532-1548. [PMID: 33174565 PMCID: PMC7700718 DOI: 10.1039/d0np00072h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Covering: 2015 to 2020 The field of natural products is dominated by a discovery paradigm that follows the sequence: isolation, structure elucidation, chemical synthesis, and then elucidation of mechanism of action and structure-activity relationships. Although this discovery paradigm has proven successful in the past, researchers have amassed enough evidence to conclude that the vast majority of nature's secondary metabolites - biosynthetic "dark matter" - cannot be identified and studied by this approach. Many biosynthetic gene clusters (BGCs) are expressed at low levels, or not at all, and in some instances a molecule's instability to fermentation or isolation prevents detection entirely. Here, we discuss an alternative approach to natural product identification that addresses these challenges by enlisting synthetic chemistry to prepare putative natural product fragments and structures as guided by biosynthetic insight. We demonstrate the utility of this approach through our structure elucidation of colibactin, an unisolable genotoxin produced by pathogenic bacteria in the human gut.
Collapse
Affiliation(s)
- Peyton C Williams
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA.
| | - Kevin M Wernke
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA.
| | - Alina Tirla
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA.
| | - Seth B Herzon
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA. and Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
47
|
The Potential of Lonidamine in Combination with Chemotherapy and Physical Therapy in Cancer Treatment. Cancers (Basel) 2020; 12:cancers12113332. [PMID: 33187214 PMCID: PMC7696079 DOI: 10.3390/cancers12113332] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The unique characteristics of tumor energy metabolism (highly dependent on aerobic glycolysis, namely, the Warburg effect) make it an interesting and attractive target for drug discovery. Radio- and chemoresistance are closely associated with the Warburg effect. Lonidamine (LND), as a glycolytic inhibitor, although having low anticancer activity when used alone, exhibits selectivity to various tumors, and its adverse effects do not overlap when combined with other chemotherapeutic drugs. Therefore, LND may be very promising as a sensitizer of tumors to chemotherapeutic agents and physical therapies. This review summarizes the advance of LND in combination with chemotherapy and physical therapy over the past several decades, as well as the promising LND derivative adjudin (ADD). The underlying sensitizing mechanisms were also analyzed and discussed, which may contribute to an improved therapeutic effect in future clinical cancer treatment. Abstract Lonidamine (LND) has the ability to resist spermatogenesis and was first used as an anti-spermatogenic agent. Later, it was found that LND has a degree of anticancer activity. Currently, LND is known to target energy metabolism, mainly involving the inhibition of monocarboxylate transporter (MCT), mitochondrial pyruvate carrier (MPC), respiratory chain complex I/II, mitochondrial permeability transition (PT) pore, and hexokinase II (HK-II). However, phase II clinical studies showed that LND alone had a weak therapeutic effect, and the effect was short and reversible. Interestingly, LND does not have the common side effects of traditional chemotherapeutic drugs, such as alopecia and myelosuppression. In addition, LND has selective activity toward various tumors, and its toxic and side effects do not overlap when combined with other chemotherapeutic drugs. Therefore, LND is commonly used as a chemosensitizer to enhance the antitumor effects of chemotherapeutic drugs based on its disruption of energy metabolism relating to chemo- or radioresistance. In this review, we summarized the combination treatments of LND with several typical chemotherapeutic drugs and several common physical therapies, such as radiotherapy (RT), hyperthermia (HT), and photodynamic therapy (PDT), and discussed the underlying mechanisms of action. Meanwhile, the development of novel formulations of LND in recent years and the research progress of LND derivative adjudin (ADD) as an anticancer drug were also discussed.
Collapse
|
48
|
Mao Y, Soni K, Sangani C, Yao Y. An Overview of Privileged Scaffold: Quinolines and Isoquinolines in Medicinal Chemistry as Anticancer Agents. Curr Top Med Chem 2020; 20:2599-2633. [PMID: 32942976 DOI: 10.2174/1568026620999200917154225] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/01/2020] [Accepted: 06/11/2020] [Indexed: 12/31/2022]
Abstract
Cancer is one of the most difficult diseases and causes of death for many decades. Many pieces of research are continuously going on to get a solution for cancer. Quinoline and isoquinoline derivatives have shown their possibilities to work as an antitumor agent in anticancer treatment. The members of this privileged scaffold quinoline and isoquinoline have shown their controlling impacts on cancer treatment through various modes. In particular, this review suggests the current scenario of quinoline and isoquinoline derivatives as antitumor agents and refine the path of these derivatives to find and develop new drugs against an evil known as cancer.
Collapse
Affiliation(s)
- Yanna Mao
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Zhengzhou Children's Hospital,
Zhengzhou University, Zhengzhou 450018, China
| | - Kunjal Soni
- Shri Maneklal M. Patel Institute of Sciences and Research, Kadi Sarva Vishwavidyalaya University, Gandhinagar, Gujarat 362024, India
| | - Chetan Sangani
- Shri Maneklal M. Patel Institute of Sciences and Research, Kadi Sarva Vishwavidyalaya University, Gandhinagar, Gujarat 362024, India
| | - Yongfang Yao
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Zhengzhou Children's Hospital,
Zhengzhou University, Zhengzhou 450018, China,School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
49
|
Du K, Xia Q, Heng H, Feng F. Temozolomide-Doxorubicin Conjugate as a Double Intercalating Agent and Delivery by Apoferritin for Glioblastoma Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34599-34609. [PMID: 32648735 DOI: 10.1021/acsami.0c08531] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We designed a conjugated compound by coupling temozolomide (TMZ) with doxorubicin (DOX) via an acylhydrazone linkage as a potential prodrug used for glioblastoma multiforme (GBM) treatment. Viscosity and spectroscopic studies revealed that the drug conjugate could act as a nonclassical double intercalating agent. Although free TMZ is an inefficient DNA binder in comparison to DOX, the TMZ moiety interacted with DNA as an induced intercalator, arising from the synergistic effect of DOX moiety that mediated conformational changes of the DNA helix. Two binding modes were proposed to interpret the double intercalating effect of the drug conjugate on intra- and inter-DNA interactions that could cause DNA cross-linking and fibril aggregates. We also developed a delivery nanoplatform with a loading efficiency of 83% using copper-bound apoferritin as a nanocarrier. In sharp contrast to the short half-life of free TMZ, the nanocomposite was stable under physiological conditions without detectable drug decomposition after a 2 week storage, and drug release was activatable in the presence of glutathione at millimolar levels. The antitumor effect of the drug conjugate and nanocomposite against GBM cells was reported to demonstrate the potential therapeutic applications of double intercalating materials.
Collapse
Affiliation(s)
- Ke Du
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qiuyu Xia
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hao Heng
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fude Feng
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
50
|
Chen L, Xie YZ, Luo ZY, Liu LJ, Zou ZZ, Liu HD, Kong FR, Hao Y, Gao JL, Wang LL, Ma DY, Liu SY. Synthesis and biological evaluation of novel isothiazoloquinoline quinone analogues. Bioorg Med Chem Lett 2020; 30:127286. [DOI: 10.1016/j.bmcl.2020.127286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/11/2020] [Accepted: 05/23/2020] [Indexed: 11/16/2022]
|