1
|
Gupta J, Sharma VK, Hitaishi P, Srinivasan H, Kumar S, Ghosh SK, Mitra S. Structural Reorganizations and Nanodomain Emergence in Lipid Membranes Driven by Ionic Liquids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:79-90. [PMID: 39576754 DOI: 10.1021/acs.langmuir.4c02896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Ionic liquids (ILs) have promising applications in pharmaceuticals and green chemistry, but their use is limited by toxicity concerns, mainly due to their interactions with cell membranes. This study examines the effects of imidazolium-based ILs on the microscopic structure and phase behavior of a model cell membrane composed of zwitterionic dipalmitoylphosphatidylcholine (DPPC) lipids. Small-angle neutron scattering and dynamic light scattering reveal that the shorter-chain IL, 1-hexyl-3-methylimidazolium bromide (HMIM[Br]), induces the aggregation of DPPC unilamellar vesicles. In contrast, this aggregation is absent with the longer alkyl chain IL, 1-decyl-3-methylimidazolium bromide (DMIM[Br]). Instead, DMIM[Br] incorporation leads to the formation of distinct IL-poor and IL-rich nanodomains within the DPPC membrane, as evidenced by X-ray reflectivity, differential scanning calorimetry, and molecular dynamics simulations. The less evident nanodomain formation with HMIM[Br] underscores the role of hydrophobic interactions between lipid alkyl tails and ILs. Our findings demonstrate that longer alkyl chains in ILs significantly enhance their propensity to form membrane nanodomains, which is closely linked to enhanced membrane permeability, as shown by dye leakage measurements. This heightened permeability likely underlies the greater cytotoxicity of longer-chain ILs. This crucial link between nanodomains and toxicity provides valuable insights for designing safer, more environmentally friendly ILs, and promoting their use in biomedical applications and sustainable industrial processes.
Collapse
Affiliation(s)
- Jyoti Gupta
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Veerendra Kumar Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Prashant Hitaishi
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, Greater Noida 201314, Uttar Pradesh, India
| | - Harish Srinivasan
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Sugam Kumar
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Sajal Kumar Ghosh
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, Greater Noida 201314, Uttar Pradesh, India
| | - Subhankur Mitra
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|
2
|
Marques H, Lopes JNC, Freitas AAD, Shimizu K, Mendes PSF. Robust Method for Property Prediction via Artificial Neural Networks: Incorporating Key Structural Features for Carbon Dioxide-Ionic Liquid Mixtures. J Phys Chem B 2025; 129:286-304. [PMID: 39714362 DOI: 10.1021/acs.jpcb.4c04432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
This study addresses a critical gap in the existing literature on carbon dioxide and ionic liquid (IL) mixtures, where fragmented and incomplete data, particularly for flow properties, hinder practical applications. Therefore, this work aimed to establish a robust and efficient method for predicting the density of the CO2-IL mixtures across diverse operating conditions and IL families using novel validation techniques. Both linear and symbolic regression models provided relevant insights but failed to accurately capture the IL-CO2 interactions in a mixture that determine the molar volume of CO2 at infinite dilution when solubilized by a given IL. Therefore, more mathematically flexible artificial neural networks (ANN) were trained based on three different sets of features: (1) IL critical properties, (2) IL structural descriptors, and (3) a selective combination of (1) and (2). While all models showed relative deviations consistently below 3% for the testing data, combining critical and structural data significantly improved accuracy (R2 = 0.986, testing data set). A postprocessing outlier-handling method enhanced model performance, removing a minimal fraction (below 0.2%) of unphysical data points. Furthermore, molecular dynamics simulations validated the robust generalization of all ANN models, with the combined model exhibiting remarkable accuracy over operating conditions outside the training ranges for ILs in the training set and even for ILs that are not included in this data set. This computational approach provides a significantly faster and broader alternative to other thermodynamical tools, establishing a solid method for future machine learning (ML)-based property prediction augmented by external validation from cross-comparison tests and statistical thermodynamics models.
Collapse
Affiliation(s)
- Hugo Marques
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - José N Canongia Lopes
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Adilson Alves de Freitas
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Karina Shimizu
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Pedro S F Mendes
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
3
|
Kong Z, Zhao X, Li WC, Wang JY, Li S, Liu Z, Dong XY, Wang R, Huang RW, Zang SQ. Cluster Engineering in Water Catalytic Reactions: Synthesis, Structure-Activity Relationship and Mechanism. ACS APPLIED MATERIALS & INTERFACES 2025; 17:67-90. [PMID: 39718441 DOI: 10.1021/acsami.4c16063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Four fundamental reactions are essential to harnessing energy from water sustainably: oxidation reduction reaction (ORR), oxygen reduction reaction (OER), hydrogen oxidation reaction (HOR), and hydrogen evolution reaction (HER). This review summarizes the research advancements in the electrocatalytic reaction of metal nanoclusters for water splitting. It covers various types of nanoclusters, particularly those at the size level, that enhance these catalytic reactions. The synthesis of cluster-based catalysts and the elucidation of the structure-activity relationships and reaction mechanisms are discussed. Emphasis is placed on utilizing atomically precise cluster materials and the interplay between the carrier and cluster in water catalysis, especially for applying catalytic engineering principles (such as synergy, coordination, heterointerface, and lattice strain engineering) to understand structure-activity relationships and catalytic mechanisms for cluster-based catalysts. Finally, the field of cluster water catalysis is summarized and prospected. We believe that developing cluster-based catalysts with high activity, excellent stability, and high selectivity will significantly promote the development of renewable energy conversion reactions.
Collapse
Affiliation(s)
- Zhijie Kong
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xue Zhao
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Wu-Chu Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Jia-Yun Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Si Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhijuan Liu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xi-Yan Dong
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Rui Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ren-Wu Huang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
4
|
Waheed A, Akram S, Butt FW, Liaqat Z, Siddique M, Anwar F, Mushtaq M. Synthesis and applications of ionic liquids for chromatographic analysis. J Chromatogr A 2025; 1739:465503. [PMID: 39566285 DOI: 10.1016/j.chroma.2024.465503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024]
Abstract
Ionic liquids (ILs) have emerged as more desirable liquids than conventional solvents for chemistry, material science, engineering and environmental science. The scientific literature reveals an exponential increase in the number of research projects aimed at exploring the chromatographic features of ionic liquids. The review provides sound scientific data to examine the structural characteristics of ionic liquids that make them ideal for use in chromatography. This contribution is distinctive since it integrates the synthesis, benefits, drawbacks, and possible uses of ionic liquids in several chromatographic separation processes. Keeping the cation the same, the introduction of different anions is also possible, and this strategy leads to the synthesis of a series of different ionic liquids with varying properties. A detailed probe is given on the influence of ionic liquid structure and properties on their chromatographic behavior, both as stationary phase and mobile phase and/or mobile phase additives. Ionic liquid based immobilized stationary phases and their analyte retention mechanisms (hydrogen bonding, electrostatic forces of attraction, π-π stacking, ion exchange, and hydrophilic interactions, etc.) are critically discussed. Finally, a thorough analysis of the literature suggests that IL-based stationary phases may undergo multi-mode and more flexible retention mechanisms. Their dual polarity can facilitate interaction with both polar and non-polar compounds. Similarly, using IL as a mobile phase can offer more pragmatic and sustainable options for enantiomer separation.
Collapse
Affiliation(s)
- Ammara Waheed
- Department of Chemistry, Government College University Lahore, Lahore, Pakistan
| | - Sumia Akram
- Division of Science and Technology, University of Education Lahore, Lahore, Pakistan
| | - Faizan Waseem Butt
- Department of Chemistry, Government College University Lahore, Lahore, Pakistan
| | - Zainab Liaqat
- Department of Chemistry, Government College University Lahore, Lahore, Pakistan
| | - Maria Siddique
- Department of Chemistry, Government College University Lahore, Lahore, Pakistan
| | - Farooq Anwar
- Department of Food Science, Faculty of Food Science & Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan; Faculty of Health Sciences, Shinawatra University, 99 Moo 10, Bangtoey, Samkhok, Pathum Thani 12160, Thailand
| | - Muhammad Mushtaq
- Department of Chemistry, Government College University Lahore, Lahore, Pakistan.
| |
Collapse
|
5
|
Chakoli FA, Ghauri K, Shirini F. Designing of new functionalized imidazolium based ionic liquids attached to the antracene derivatives and investigation on the influence of intramolecular hydrogen bondings in anions on their intermolecular hydrogen bondings and some of the other properties: A DFT M06-2X-GD3 study. J Mol Graph Model 2025; 134:108885. [PMID: 39476629 DOI: 10.1016/j.jmgm.2024.108885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 12/07/2024]
Abstract
To promote the development of new functionalized ionic liquids, it is necessary to get a deeper insight into their features of physicochemical and electronic and molecular structure. In this study, the interaction energies and structural and vibrational frequencies parameters in accompanied with some of the physiochemical, electronic and optic attributes of ionic liquids designed by the covalently attachement of imidazolium to anthracene derivatives ([X-AnMIM][A2] and [X-AnMIM][A3], X: NH2, OH, OMe, H, Cl, CHO, CN and NO2) ILs have been evaluated. Two conjugate bases of acids 1,3,5-pentanetriol (A2) and 3-(2-hydroxyethyl)-1,3,5-pentanetriol (A3) are used as anions which have two and three intramolecular hydrogen bonds, respectively. Based on the results of calculations at M06-2X-GD3/6-311++(d,p) level of theory, the differences in these properties in addition to the structural type of anions and cations can be attributed to the cation-anion, intra and intermolecular hydrogen bonding, interactions in ionic liquids. The results depict that the ILs based on A2 anions form stronger hydrogen bonds with [X-AnMIM]+ cations. The potency of interaction between cations and anion reduces with the increasement in the number of intramolecular hydrogen bonds and also decreasement in the basic strength in the anionic part. A clear red shift is observed between [X-AnMIM][A2] and [X-AnMIM][A3] ILs and isolated anthracene, which is a clear manifestation of the effect of the imidazolium cation on the electronic energy levels of anthracene. It can be expected that the studied ILs are not electrochemically stable during the electrochemistry applications.
Collapse
Affiliation(s)
- Farzad Alijani Chakoli
- Department of Organic Chemistry, Faculty of Chemistry, University of Guilan, P.O. Box 41335-19141, Rasht, Iran
| | - Khatereh Ghauri
- Department of Organic Chemistry, Faculty of Chemistry, University of Guilan, P.O. Box 41335-19141, Rasht, Iran
| | - Farhad Shirini
- Department of Organic Chemistry, Faculty of Chemistry, University of Guilan, P.O. Box 41335-19141, Rasht, Iran.
| |
Collapse
|
6
|
Nesterova I, Evstigneev NM, Ryabkov OI, Gerke KM, Khlyupin A. Mechanism of overscreening breakdown by molecular-scale electrode surface morphology in asymmetric ionic liquids. J Colloid Interface Sci 2025; 677:396-405. [PMID: 39153243 DOI: 10.1016/j.jcis.2024.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/20/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
The interfacial nature of the electric double layer (EDL) assumes that electrode surface morphology significantly impacts the EDL properties. Since molecular-scale roughness modifies the structure of EDL, it is expected to disturb the overscreening effect and alter differential capacitance (DC). In this paper, we present a model that describes EDL near atomically rough electrodes with account for short-range electrostatic correlations. We provide numerical and analytical solutions for the analysis of conditions for the overscreening breakdown and DC shift estimation. Our findings reveal that electrode surface structure leads to DC decrease and can both break or enhance overscreening depending on the relation of surface roughness to electrostatic correlation length and ion size asymmetry.
Collapse
Affiliation(s)
- Irina Nesterova
- Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, Dolgoprudny, 141700, Moscow, Russia.
| | - Nikolay M Evstigneev
- Federal Research Center "Computer Science and Control", Institute for System Analysis, Russian Academy of Science, Vavilova str., 40, Moscow, 119333, Russia.
| | - Oleg I Ryabkov
- Federal Research Center "Computer Science and Control", Institute for System Analysis, Russian Academy of Science, Vavilova str., 40, Moscow, 119333, Russia.
| | - Kirill M Gerke
- Schmidt Institute of Physics of the Earth of Russian Academy of Sciences, Bolshaya Gruzinskaya 10, Moscow, 123242, Russia.
| | - Aleksey Khlyupin
- Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, Dolgoprudny, 141700, Moscow, Russia.
| |
Collapse
|
7
|
Saboury F, Azizi N, Mirjafari Z, Hashemi MM. Efficient synthesis of α-aminophosphonates using magnetically retrievable ionic nanocatalysts under ultrasound acceleration. Sci Rep 2024; 14:31145. [PMID: 39732790 DOI: 10.1038/s41598-024-82375-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 12/04/2024] [Indexed: 12/30/2024] Open
Abstract
Magnetic supported ionic liquids are a unique subclass of ionic liquids that possess the ability to respond to external magnetic fields, combining the advantageous properties of traditional ILs with this magnetic responsiveness. A novel magnetic ionic nanocatalyst of Fe3O4@SiO2@CPTMS-DTPA was prepared by anchoring an ionic liquid, CPTMS-DTPA, onto the surface of silica-modified Fe3O4. The morphology, chemical structure and magnetic property of the magnetic ionic nanocatalyst structure was characterized using scanning electron microscopy, X-ray powder diffraction, Fourier transformation infrared spectroscopy, vibrating sample magnetometer, and thermogravimetric analysis. The results confirmed the successful attachment of the ionic liquid to the magnetic substrate. Subsequently, the magnetic nanocatalyst was employed for the green synthesis of α-aminophosphonate derivatives. The synthesis was achieved via a one-pot, three-component reaction involving various aldehydes, amines, and different trialkyl(aryl) phosphite derivatives. The reactions were conducted under ultrasound conditions for a duration of 10-25 min, resulting in good to excellent product yields (64-97%). Its recyclability was tested for up to five cycles using magnetic separation which makes it a highly efficient method for quickly separating catalysts from the reaction medium without compromising catalytic activity.
Collapse
Affiliation(s)
- Farzaneh Saboury
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Najmedin Azizi
- Chemistry and Chemical Engineering Research Center of Iran, P.O. Box 14335-186, Tehran, Iran.
| | - Zohreh Mirjafari
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
8
|
Kristin Philipp J, Fumino K, Appelhagen A, Paschek D, Ludwig R. The Competition Between Cation-Anion and Cation-Triglyme Interaction in Solvate Ionic Liquids Probed by Far Infrared Spectroscopy and Molecular Dynamics Simulations. Chemphyschem 2024:e202400991. [PMID: 39714984 DOI: 10.1002/cphc.202400991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
Glyme-based electrolyte solutions provide new concepts for developing suitable lithium-ion batteries. The so-called solvate ionic liquids (SILs) are promising electrolytes. They are most efficient in equimolar mixtures of lithium bis(trifluoromethanesulfonyl)imide ([Li][NTf2]) and glyme, wherein the [Li]+ cation is supposedly fully solvated by glyme molecules. Here, we performed far (FIR) and mid (MIR) infrared spectroscopy for probing the solvation and local structures around the [Li]+ ions. In particular, we studied the competition between the triglyme molecule (G3) and the salt anions for the coordination to the lithium cations with increasing [Li][NTf2] concentration. The formation of nano structures in the [Li][NTf2]:G3 mixtures is discussed in terms of contact (CIP) and solvent-separated (SIP) ion pairs in solution. At low salt concentrations, the [Li]+ cations are solvated by two triglyme molecules resulting in SIPs only. With increasing salt concentration, [Li]+ is predominantly solvated by one triglyme molecule as [Li(triglyme)1]+ but still remains in contact to one of the four oxygen atoms of the [NTf2]- anion. Molecular dynamics (MD) simulations provide a molecular picture of the [Li][NTf2]:G3 mixtures that supports the conclusions drawn from the experimental findings.
Collapse
Affiliation(s)
- Jule Kristin Philipp
- Universität Rostock, Institut für Chemie, Abteilung für Physikalische Chemie, Albert-Einstein-Str. 27, 18059, Rostock, Germany
| | - Koichi Fumino
- Universität Rostock, Institut für Chemie, Abteilung für Physikalische Chemie, Albert-Einstein-Str. 27, 18059, Rostock, Germany
| | - Andreas Appelhagen
- Universität Rostock, Institut für Chemie, Abteilung für Physikalische Chemie, Albert-Einstein-Str. 27, 18059, Rostock, Germany
| | - Dietmar Paschek
- Universität Rostock, Institut für Chemie, Abteilung für Physikalische Chemie, Albert-Einstein-Str. 27, 18059, Rostock, Germany
| | - Ralf Ludwig
- Universität Rostock, Institut für Chemie, Abteilung für Physikalische Chemie, Albert-Einstein-Str. 27, 18059, Rostock, Germany
- Department LL&M, University of Rostock, Albert-Einstein-Str. 25, 18059, Rostock, Germany
- Leibniz-Institut für Katalyse an der Universität Rostock e. V., Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| |
Collapse
|
9
|
Zhang X, Goodwin ZAH, Hoane AG, Deptula A, Markiewitz DM, Molinari N, Zheng Q, Li H, McEldrew M, Kozinsky B, Bazant MZ, Leal C, Atkin R, Gewirth AA, Rutland MW, Espinosa-Marzal RM. Long-Range Surface Forces in Salt-in-Ionic Liquids. ACS NANO 2024; 18:34007-34022. [PMID: 39641512 DOI: 10.1021/acsnano.4c09355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Ionic liquids (ILs) are a promising class of electrolytes with a unique combination of properties, such as extremely low vapor pressures and nonflammability. Doping ILs with alkali metal salts creates an electrolyte that is of interest for battery technology. These salt-in-ionic liquids (SiILs) are a class of superconcentrated, strongly correlated, and asymmetric electrolytes. Notably, the transference numbers of the alkali metal cations have been found to be negative. Here, we investigate Na-based SiILs with a surface force apparatus, X-ray scattering, and atomic force microscopy. We find evidence of confinement-induced structural changes, giving rise to long-range interactions. Force curves also reveal an electrolyte structure consistent with our predictions from theory and simulations. The long-range steric interactions in SiILs reflect the high aspect ratio of compressible aggregates at the interfaces rather than the purely electrostatic origin predicted by the classical electrolyte theory. This conclusion is supported by the reported anomalous negative transference numbers, which can be explained within the same aggregation framework. The interfacial nanostructure should impact the formation of the solid electrolyte interphase in SiILs.
Collapse
Affiliation(s)
- Xuhui Zhang
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zachary A H Goodwin
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Materials, Imperial College of London, South Kensington Campus, London SW7 2AZ, U.K
| | - Alexis G Hoane
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Alex Deptula
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Daniel M Markiewitz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Nicola Molinari
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Robert Bosch LLC, Research and Technology Center, Cambridge, Massachusetts 02142, United States
| | - Qianlu Zheng
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Hua Li
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Michael McEldrew
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Boris Kozinsky
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Robert Bosch LLC, Research and Technology Center, Cambridge, Massachusetts 02142, United States
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Cecilia Leal
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Rob Atkin
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Andrew A Gewirth
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mark W Rutland
- Department of Chemistry, KTH Royal Institute of Technology, Stockholm 100 44, Sweden
- School of Chemistry, University of New South Wales, Sydney 2052, Australia
- Laboratoire de Tribologie et Dynamique des Systèmes, École Centrale de Lyon, Lyon 69130, France
- Bioeconomy and Health, Materials and Surface Design, RISE Research Institutes of Sweden, Stockholm 114 28, Sweden
| | - Rosa M Espinosa-Marzal
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
10
|
Tóth Ugyonka H, Hantal G, Szilágyi I, Idrissi A, Jorge M, Jedlovszky P. Spatial organization of the ions at the free surface of imidazolium-based ionic liquids. J Colloid Interface Sci 2024; 676:989-1000. [PMID: 39068842 DOI: 10.1016/j.jcis.2024.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
HYPOTHESIS Experimental information on the molecular scale structure of ionic liquid interfaces is controversial, giving rise to two competing scenarios, namely the double layer-like and "chessboard"-like structures. This issue can be resolved by computer simulation methods, at least for the underlying molecular model. Systematically changing the anion type can elucidate the relative roles of electrostatic interactions, hydrophobic (or, strictly speaking, apolar) effects and steric restrictions on the interfacial properties. SIMULATIONS Molecular dynamics simulation is combined with intrinsic analysis methods both at the molecular and atomic levels, supplemented by Voronoi analysis of self-association. FINDINGS We see no evidence for the existence of a double-layer-type arrangement of the ions, or for their self-association at the surface of the liquid. Instead, our results show that cation chains associate into apolar domains that protrude into the vapour phase, while charged groups form domains that are embedded in this apolar environment at the surface. However, the apolar chains largely obscure the cation groups, to which they are bound, while the smaller and more mobile anions can more easily access the free surface, leading to a somewhat counterintuitive net excess of negative charge at the interface. Importantly, this excess charge could only be identified by applying intrinsic analysis.
Collapse
Affiliation(s)
- Helga Tóth Ugyonka
- Department of Chemistry, Eszterházy Károly Catholic University, Leányka utca 12, H-3300 Eger, Hungary
| | - György Hantal
- PULS Group, Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 3, D-91058 Erlangen, Germany
| | - István Szilágyi
- MTA-SZTE Lendület Biocolloids Research Group, Department of Physical Chemistry and Materials Science, Interdisciplinary Excellence Center, University of Szeged, H-6720 Szeged, Hungary
| | - Abdenacer Idrissi
- University of Lille, CNRS UMR 8516 -LASIRe - Laboratoire Avancé de Spectroscopie pour les Interactions la Réactivité et l'environnement, 59000 Lille, France
| | - Miguel Jorge
- Department of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow G1 1XJ, United Kingdom
| | - Pál Jedlovszky
- Department of Chemistry, Eszterházy Károly Catholic University, Leányka utca 12, H-3300 Eger, Hungary.
| |
Collapse
|
11
|
Sharma K, Kang TS. Ionic liquid-assisted sustainable preparation of photo-catalytically active nanomaterials and their composites with 2D materials. Chem Commun (Camb) 2024; 60:14717-14732. [PMID: 39582434 DOI: 10.1039/d4cc05001k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
The preparation of nanomaterials employing ionic liquids (ILs) and surface active ionic liquids (SAILs) in a relatively sustainable manner for different applications is reviewed. ILs offer structure directing and templating effects via inherent bi-continuous structures formed by the segregation of polar and non-polar domains. On the other hand, SAILs offer a structure-directing effect governed by their ability to lower the surface tension, self-assembling nature and interaction with precursors via ionic head groups. Binary mixtures of ILs with other relatively greener solvents or utilization of metal-based ILs (MILs), which act as precursors of metal ions, templates and stabilizing agents propose a new way to prepare a variety of nanomaterials. The introduction of SAILs that exfoliate 2D materials under low-energy bath sonication and also aid in photoreduction and stabilization of photocatalytically active nanomaterials at the surface of 2D materials poses a distinctive perspective in sustainable preparation and utilization of nanomaterials in different photocatalytic applications. The present feature article reviews the employment of distinctive properties of ILs in precise morphological control of nanomaterials, and their after-effects on their catalytic efficiencies.
Collapse
Affiliation(s)
- Kanica Sharma
- Department of Chemistry, UGC Centre for Advanced Studies (CAS-II), Guru Nanak dev University, Amritsar-143005, India.
| | - Tejwant Singh Kang
- Department of Chemistry, UGC Centre for Advanced Studies (CAS-II), Guru Nanak dev University, Amritsar-143005, India.
| |
Collapse
|
12
|
Chen J, Tian Z, Yu G, Zhang H, Gao Y, Sun X. A novel ternary hydrophobic deep eutectic solvent over a wide pH range for lithium recovery. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136398. [PMID: 39536358 DOI: 10.1016/j.jhazmat.2024.136398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/25/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Owing to the crucial role of lithium (Li) in green technology and energy storage, the global demand for Li is constantly increasing. This article provides a new strategy for recovering Li using ternary hydrophobic deep eutectic solvent (HDES). The novel HDES was composed of 2-thiophenyltrifluoroacetone (HTTA), trioctylphosphine oxide (TOPO), and N,N-diethyldecanamide (DDA), and exhibited high efficiency and selectivity for extracting Li from aqueous solutions. This study systematically evaluated the effect of the initial aqueous pH on the Li extraction efficiency, revealing the stable performance of HDES in the pH range 3-13. Compared to the highly alkaline environment required for Li extraction, the pH characteristics of the HDES provide a wider range of applications and a more environmentally friendly alternative. The HDES exhibited rapid extraction kinetics, achieving equilibrium within 10 min and maintaining phase stability without emulsification. The main mechanism of selective Li extraction is the electrostatic interaction between Li(I) and TTA. The interactions between Li(I) and both TOPO and DDA were confirmed by Fourier transform infrared (FT-IR) spectroscopy, thereby improving the selectivity and extraction efficiency. The countercurrent extraction process demonstrated an impressive Li extraction rate of 98.704 % and a Li(I)/Na(I) separation factor of 10643.14 with industrial Li2CO3 mother liquor, highlighting the application potential of the ternary HDES. The excellent performance of the HDES over a wide pH range provides more opportunities for its application, and its high efficiency, selectivity, and environmental characteristics may promote Li recovery.
Collapse
Affiliation(s)
- Jinglin Chen
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, PR China
| | - Zhong Tian
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, PR China; CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China; Fujian Research Center for Rare Earth Engineering Technology, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, Fujian 361021, PR China
| | - Guisu Yu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China; Fujian Research Center for Rare Earth Engineering Technology, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, Fujian 361021, PR China
| | - Hepeng Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China; Fujian Research Center for Rare Earth Engineering Technology, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, Fujian 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yun Gao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China; Fujian Research Center for Rare Earth Engineering Technology, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, Fujian 361021, PR China
| | - Xiaoqi Sun
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China; Fujian Research Center for Rare Earth Engineering Technology, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, Fujian 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, PR China.
| |
Collapse
|
13
|
Miao S, Sardharwalla A, Perkin S. Ion Diffusion Reveals Heterogeneous Viscosity in Nanostructured Ionic Liquids. J Phys Chem Lett 2024; 15:11855-11861. [PMID: 39565683 PMCID: PMC11613658 DOI: 10.1021/acs.jpclett.4c02996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
Many ionic liquids (ILs) are composed of interpenetrating polar and apolar networks. These nanoscale networks are sustained by different local intermolecular and electrostatic interactions and are predicted to differ in their physical properties by orders of magnitude. Nonetheless, it is commonplace for the physical properties of ILs to be described by bulk parameters, such as the bulk dynamic viscosity. This study addresses the limitations of using bulk parameter descriptions in nanostructured ILs by applying the Saffman-Delbrück model to interpret the self-diffusion coefficient of ions within the homologous series of [Cnmim][NTf2] ILs. We demonstrate that pulsed field gradient NMR spectroscopy can effectively probe the relative viscosities of polar/charged and apolar networks within these pure ILs. Our calculated polar viscosities show good agreement with literature simulations. Our approach provides valuable insights into the local viscoelastic environments within nanostructured media. This work not only contributes to the understanding of mass and charge transport in ILs but also offers a new experimental perspective for studying structured fluids more broadly.
Collapse
Affiliation(s)
| | | | - Susan Perkin
- Physical and Theoretical
Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 2JD, U.K.
| |
Collapse
|
14
|
Abafe Diejomaoh OT, Lavoratti A, Laverock J, Koev TT, Khimyak YZ, Kondo T, Eichhorn SJ. Surface modification of cellulose nanomaterials with amine functionalized fluorinated ionic liquids for hydrophobicity and high thermal stability. Carbohydr Polym 2024; 344:122519. [PMID: 39218544 DOI: 10.1016/j.carbpol.2024.122519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024]
Abstract
A highly hydrophobic fluorinated ionic liquid (IL), 3-aminopropyl-tributylphosphonium bis(trifluoromethylsolfonyl)imide ([aP4443][NTf2]), was synthesized, and applied for the surface modification of cellulose nanomaterials (CNMs) by reductive amination. The modified CNMs were fully characterized for their chemical structure, morphology, thermal stability, and surface hydrophobicity. Results obtained from Nuclear Magnetic Resonance spectroscopy (1H, 13C, 19F and 31P), Fourier Transform Infrared spectroscopy, X-ray Photoelectron Spectroscopy, and X-ray diffraction confirmed the successful grafting of [aP4443][NTf2] onto the surface of CNMs up to a degree of surface functionalization of 2.5 %. Transmission Electron Microscopy analysis confirmed the dimensions of the CNMs were retained after modification but with significant aggregation for modified cellulose nanocrystals (CNCs). Thermal Gravimetric Analysis demonstrated significant increases in the degradation temperatures of modified CNCs from ∼252 °C to ∼310 °C. Modified cellulose nanofibers (CNFs) did not show any increase in thermal stability. The modified CNM suspensions showed reduced affinity for water and the formation of aggregates in aqueous media. Furthermore, a water contact angle test demonstrated enhanced hydrophobicity for modified CNMs. This modification approach holds potential for the use of the [aP4443][NTf2] IL for functional materials to achieve novel hydrophobic CNMs suitable for aqueous processing with thermoplastics, for fabrication of thermally stable composite materials, and for polymer gel electrolytes for batteries.
Collapse
Affiliation(s)
- Onajite T Abafe Diejomaoh
- Bristol Composites Institute, School of Civil, Aerospace and Design Engineering, University of Bristol, University Walk, Bristol BS8 1TR, UK
| | - Alessandra Lavoratti
- Bristol Composites Institute, School of Civil, Aerospace and Design Engineering, University of Bristol, University Walk, Bristol BS8 1TR, UK
| | - Jude Laverock
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Todor T Koev
- School of Pharmacy, University of East Anglia, Norwich Research Park, NR4 7TJ, UK
| | - Yaroslav Z Khimyak
- School of Pharmacy, University of East Anglia, Norwich Research Park, NR4 7TJ, UK
| | - Tetsuo Kondo
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8538, Japan
| | - Stephen J Eichhorn
- Bristol Composites Institute, School of Civil, Aerospace and Design Engineering, University of Bristol, University Walk, Bristol BS8 1TR, UK.
| |
Collapse
|
15
|
Van Den Top M, Horvath A, Koutsoukos S, Philippi F, Rauber D, Welton T, Shaw SK. Increasing Cation Ion Symmetry Reduces Ionic Liquid Ordering in Thin Films. J Phys Chem B 2024; 128:11251-11257. [PMID: 39500513 PMCID: PMC11571225 DOI: 10.1021/acs.jpcb.4c04413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024]
Abstract
Ionic liquids have been shown to form extended ordered structures near surfaces and in bulk. Identifying fundamental driving force(s) for this organization has been elusive. In this paper, we test a hypothesis that the ionic liquid asymmetry, inherent in many of the IL formulations to frustrate crystallization, is a significant contributor to the observed ordering. We have carried out measurements to track the ordering of ionic liquids composed of "spherical" cations, namely, tetraoctylphosphonium ([P8888]) and tetra(propoxymethyl)phosphonium [P(3O1)4] paired with tetracyanoborate anion [B(CN)4]. Analysis of the infrared signatures for films of these ionic liquids shows very little evidence of ordered structures. These liquids instead remain in a more isotropic environment even when confined to volumes of few micrometer dimensions.
Collapse
Affiliation(s)
| | - Andrew Horvath
- Department
of Chemistry, University of Iowa, Iowa, Iowa 52242, United States
| | | | | | - Daniel Rauber
- Department
of Chemistry, Saarland University, Campus B 2.2, 66123 Saarbrücken, Germany
| | - Tom Welton
- Department
of Chemistry, Imperial College, London SW7 2AZ, U.K.
| | - Scott K. Shaw
- Department
of Chemistry, University of Iowa, Iowa, Iowa 52242, United States
| |
Collapse
|
16
|
Parisi F, Chen Y, Wippermann K, Korte C, Kowalski PM, Eikerling M, Rodenbücher C. Understanding the infrared spectrum of the protic ionic liquid [DEMA][TfO] by atomistic simulations. Phys Chem Chem Phys 2024; 26:28037-28045. [PMID: 39485329 DOI: 10.1039/d3cp06047k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Polymer-electrolyte fuel cells operating at a temperature above 100 °C would markedly reduce issues associated with water management in the cell and allow for a simplified system design. Available electrolytes such as fluoropolymers grafted with sulfonic acid groups or phosphoric acid either rely on the presence of water or they suffer from sluggish kinetics of the oxygen reduction reaction. Here, with experiments and atomistic simulations, we analysed vibrational spectra of the protic ionic liquid diethylmethylammonium triflate ([DEMA][TfO]) as an alternative electrolyte, with the aim to understand the statistical distribution of cations and anions in the electrolyte and the interaction of the H-bond with the surroundings. We present a comprehensive analysis of the infrared (IR) spectrum of [DEMA][TfO]. Special attention is given to understanding the high-frequency modes above 2500 cm-1, which exhibit a double peak feature in the experiment. While this feature can generally be attributed to the N-H vibrations of the cation, the precise mechanism behind the double peak was unclear. In this manuscript we managed to explain the nature of the double distribution, being influenced by different orientations between the DEMAs and TFOs. The correct assignment of observed vibrational modes is enabled by simulations of the ionic liquid as an infinitely extended fluid.
Collapse
Affiliation(s)
- Federico Parisi
- Institute of Energy Technologies Theory and Computation of Energy Materials (IET-3), Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute of Energy Technologies Electrochemical Process Engineering (IET-4), Forschungszentrum Jülich, 52425 Jülich, Germany.
- RWTH Aachen University, 52062 Aachen, Germany
- JARA Energy & Center for Simulation and Data Science (CSD), 52425 Jülich, Germany
| | - Yingzhen Chen
- Institute of Energy Technologies Electrochemical Process Engineering (IET-4), Forschungszentrum Jülich, 52425 Jülich, Germany.
- RWTH Aachen University, 52062 Aachen, Germany
| | - Klaus Wippermann
- Institute of Energy Technologies Electrochemical Process Engineering (IET-4), Forschungszentrum Jülich, 52425 Jülich, Germany.
| | - Carsten Korte
- Institute of Energy Technologies Electrochemical Process Engineering (IET-4), Forschungszentrum Jülich, 52425 Jülich, Germany.
- RWTH Aachen University, 52062 Aachen, Germany
| | - Piotr M Kowalski
- Institute of Energy Technologies Theory and Computation of Energy Materials (IET-3), Forschungszentrum Jülich, 52425 Jülich, Germany
- JARA Energy & Center for Simulation and Data Science (CSD), 52425 Jülich, Germany
| | - Michael Eikerling
- Institute of Energy Technologies Theory and Computation of Energy Materials (IET-3), Forschungszentrum Jülich, 52425 Jülich, Germany
- RWTH Aachen University, 52062 Aachen, Germany
- JARA Energy & Center for Simulation and Data Science (CSD), 52425 Jülich, Germany
| | - Christian Rodenbücher
- Institute of Energy Technologies Electrochemical Process Engineering (IET-4), Forschungszentrum Jülich, 52425 Jülich, Germany.
| |
Collapse
|
17
|
Kottsov SY, Kopitsa GP, Baranchikov AE, Pavlova AA, Khamova TV, Badulina AO, Gorshkova YE, Selivanov NA, Simonenko NP, Nikiforova ME, Ivanov VK. Structural Insight into Ionogels: A Case Study of 1-Methyl-3-octyl-imidazolium Tetrafluoroborate Confined in Aerosil. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23962-23972. [PMID: 39475052 DOI: 10.1021/acs.langmuir.4c03162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
Ionogels were obtained by impregnating Aerosil A380 with 1-methyl-3-octyl-imidazolium tetrafluoroborate (OMIM BF4) ionic liquid (IL). The IL content of the ionogels varied from 16.3 to 79.9 mol %. There was evidence of the confinement of the IL in silica in the shift and broadening of the BF4- 19F NMR signal and in the noticeable (∼50 °C) decrease in the temperature of IL decomposition. For both the ionogels and the pure IL, the frequencies of IR vibrations were different, providing further evidence of the confinement effect. An analysis of textural characteristics revealed that, upon its addition to Aerosil, the IL sequentially adsorbed in the micropores, mesopores and interparticle space. SAXS measurements showed that, in the confined IL, the size of nonpolar correlations substantially increased, from 21.5 Å in the bare IL to 25.6 Å in the ionogel containing 28.1 mol % IL. Unexpectedly, for the ionogel with the lowest IL content (16.3 mol %), no nonpolar correlations were observed, indicating the strong distortion of the structure of the confined ionic liquid. To the best of the authors' knowledge, this is the first report on regular changes in nonpolar correlations in ionic liquids upon confinement in a porous solid. These structural correlations can easily be tuned by simply changing the IL content in the ionogel material.
Collapse
Affiliation(s)
- Sergei Yu Kottsov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky Prospekt, 31, 119991 Moscow, Russia
| | - Gennady P Kopitsa
- Petersburg Nuclear Physics Institute NRC KI, Orlova rosha 1, 188300 Gatchina, Leningrad District, Russia
- Grebenshchikov Institute of Silicate Chemistry PNPI NRC KI, Adm. Makarova emb., 2, 199155 St. Petersburg, Russia
| | - Alexander E Baranchikov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky Prospekt, 31, 119991 Moscow, Russia
| | - Alina A Pavlova
- Petersburg Nuclear Physics Institute NRC KI, Orlova rosha 1, 188300 Gatchina, Leningrad District, Russia
| | - Tamara V Khamova
- Grebenshchikov Institute of Silicate Chemistry PNPI NRC KI, Adm. Makarova emb., 2, 199155 St. Petersburg, Russia
| | - Alexandra O Badulina
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky Prospekt, 31, 119991 Moscow, Russia
- Faculty of Materials Science, Lomonosov Moscow State University, Leninskye Gory, 1, building 73, 119991 Moscow, Russia
| | - Yulia E Gorshkova
- Joint Institute for Nuclear Research, Joliot-Curie Str. 6, 141980 Dubna, Russia
- Institute of Physics, Kazan Federal University, Kremlyovskaya Street 16a, 420008 Kazan, Russia
| | - Nikita A Selivanov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky Prospekt, 31, 119991 Moscow, Russia
| | - Nikolay P Simonenko
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky Prospekt, 31, 119991 Moscow, Russia
| | - Marina E Nikiforova
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky Prospekt, 31, 119991 Moscow, Russia
| | - Vladimir K Ivanov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky Prospekt, 31, 119991 Moscow, Russia
- Faculty of Chemistry, National Research University Higher School of Economics, Vavilova st., 7, 117312 Moscow, Russia
| |
Collapse
|
18
|
Lu J, Celuszak H, Paci I, Leitch DC. Interrogating Explicit Solvent Effects on the Mechanism and Site-Selectivity of Aryl Halide Oxidative Addition to L 2Pd(0). Chemistry 2024; 30:e202402283. [PMID: 39160135 DOI: 10.1002/chem.202402283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
We report a study of solvent effects on the rate, selectivity, and mechanism of (hetero)aryl (pseudo)halide oxidative addition to Pd(PCy3)2 as an exemplar of L2Pd(0) species. First, 2-chloro-3-aminopyridine is observed to undergo faster oxidative addition in toluene compared to more polar solvents, which is not consistent with the trend we observe with many other 2-halopyridines. We attribute this to solvent basicity hydrogen bonding between solvent and substrate. Greater hydrogen bond donation from the substrate leads to a more electron-rich aromatic system, and therefore slower oxidative addition. We demonstrate how this affects rate and site-selectivity for hydrogen bond donating substrates. Second, electron-deficient multihalogenated pyridines exhibit improved site-selectivity in polar solvents, which we attribute to different C-X sites undergoing oxidative addition by two different mechanisms. The C-X site that favours the more polar nucleophilic displacement transition state is preferred over the site that favours a less-polar 3-centered transition state. Finally, (hetero)aryl triflates consistently undergo faster oxidative addition in more polar solvents, which we attribute to highly polar nucleophilic displacement transition states. This leads to improved site-selectivity for C-OTf oxidative addition, even in the presence of highly reactive 2-pyridyl halides.
Collapse
Affiliation(s)
- Jingru Lu
- Department of Chemistry, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5 C2, Canada
| | - Holly Celuszak
- Department of Chemistry, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5 C2, Canada
| | - Irina Paci
- Department of Chemistry, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5 C2, Canada
| | - David C Leitch
- Department of Chemistry, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5 C2, Canada
| |
Collapse
|
19
|
Umebayashi Y, Otani E, Watanabe H, Han J. Speciation and dipole reorientation dynamics of glass-forming liquid electrolytes: Li[N(SO 2CF 3) 2] mixtures of 1,3-propane sultone or tetrahydrothiophene-1,1-dioxide. Faraday Discuss 2024; 253:42-54. [PMID: 39044546 DOI: 10.1039/d4fd00050a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Recently new ionic fluids such as super-concentrated electrolyte solutions, solvate ionic liquids and deep eutectic solvents have attracted much attention in the field of liquid electrolytes for next-generation electrochemical devices and processes. The basic composition of these new ionic fluids is similar among them; a solvent and a large/excess amount of salt mixtures, though the solvent is sometimes a solid at ambient temperatures. Here, we found and demonstrated that LiTFSA (TFSA = (CF3SO2)2N-) mixtures with 1,3-propane sultone (PS) or tetrahydrothiophene-1,1-dioxide (SL) yield a homogeneous liquid at room temperature within a wide range of compositions. In order to clarify the uniquely high Li+ transference number in these mixtures, speciation and dipole reorientation dynamics were studied to provide evidence of large-size aggregate formation in these mixtures.
Collapse
Affiliation(s)
- Yasuhiro Umebayashi
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi, 2-no-cho, Nishi-ku, Niigata, 950-2181, Japan.
| | - Erika Otani
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi, 2-no-cho, Nishi-ku, Niigata, 950-2181, Japan.
| | - Hikari Watanabe
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Jihae Han
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi, 2-no-cho, Nishi-ku, Niigata, 950-2181, Japan.
| |
Collapse
|
20
|
Markiewitz DM, Goodwin ZAH, McEldrew M, Pedro de Souza J, Zhang X, Espinosa-Marzal RM, Bazant MZ. Electric field induced associations in the double layer of salt-in-ionic-liquid electrolytes. Faraday Discuss 2024; 253:365-384. [PMID: 39176453 DOI: 10.1039/d4fd00021h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Ionic liquids (ILs) are an extremely exciting class of electrolytes for energy storage applications. Upon dissolving alkali metal salts, such as Li or Na based salts, with the same anion as the IL, an intrinsically asymmetric electrolyte can be created for use in batteries, known as a salt-in-ionic liquid (SiIL). These SiILs have been well studied in the bulk, where negative transference numbers of the alkali metal cation have been observed from the formation of small, negatively charged clusters. The properties of these SiILs at electrified interfaces, however, have received little to no attention. Here, we develop a theory for the electrical double layer (EDL) of SiILs where we consistently account for the thermoreversible association of ions into Cayley tree aggregates. The theory predicts that the IL cations first populate the EDL at negative voltages, as they are not strongly bound to the anions. However, at large negative voltages, which are strong enough to break the alkali metal cation-anion associations, these IL cations are exchanged for the alkali metal cation because of their higher charge density. At positive voltages, we find that the SiIL actually becomes more aggregated while screening the electrode charge from the formation of large, negatively charged aggregates. Therefore, in contrast to conventional intuition of associations in the EDL, SiILs appear to become more associated in certain electric fields. We present these theoretical predictions to be verified by molecular dynamics simulations and experimental measurements.
Collapse
Affiliation(s)
- Daniel M Markiewitz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | - Zachary A H Goodwin
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Michael McEldrew
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | - J Pedro de Souza
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, New Jersey 08544, USA
| | - Xuhui Zhang
- Department of Civil and Environmental Engineering, University of Illinois at Urbana - Champaign, Urbana, IL, 61801, USA
| | - Rosa M Espinosa-Marzal
- Department of Civil and Environmental Engineering, University of Illinois at Urbana - Champaign, Urbana, IL, 61801, USA
- Department of Materials Science and Engineering, University of Illinois at Urbana - Champaign, Urbana, IL, 61801, USA
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
21
|
Hsieh AY, Haines RS, Harper JB. Effects of Ionic Liquids on the Nucleofugality of Dimethyl Sulfide. J Org Chem 2024; 89:14929-14939. [PMID: 39387165 DOI: 10.1021/acs.joc.4c01685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The nucleofugality of dimethyl sulfide was measured in solvent mixtures containing ionic liquids. The first-order rate constants of the solvolysis of sulfonium salts were determined in mixtures containing different proportions of 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide in ethanol, representing the first report on the solvolysis of a charged species in an ionic liquid. Temperature-dependent kinetic studies allowed determination of activation parameters and rationalization of observed solvent effects in different ionic liquid mixtures. From the solvolysis data, the nucleofugality of dimethyl sulfide in different proportions of this ionic liquid in ethanol was determined. Further, the nucleofugality of dimethyl sulfide was determined in mixtures containing high proportions of each of seven other ionic liquids in ethanol. These data allowed quantification of the effects of varying both the amount of ionic liquid present and on changing the components of the ionic liquid on the nucleofugality of dimethyl sulfide. The ionic liquid mixtures were shown to affect the nucleofugality of this nucleofuge in a different manner to the previously studied monatomic charged nucleofuges, owing to different microscopic interactions in solution. This work highlighted the necessity of considering electrofuges with an appropriate range of electrofugality values along with the importance of the nucleofuge-specific sensitivity parameter.
Collapse
Affiliation(s)
- Andrew Y Hsieh
- School of Chemistry, University of New South Wales, UNSW Sydney, Sydney 2052, Australia
| | - Ronald S Haines
- School of Chemistry, University of New South Wales, UNSW Sydney, Sydney 2052, Australia
| | - Jason B Harper
- School of Chemistry, University of New South Wales, UNSW Sydney, Sydney 2052, Australia
| |
Collapse
|
22
|
Mishra R, Bhawnani R, Sartape R, Chauhan R, Thorat AS, Singh MR, Shah JK. Role of Intermolecular Interactions in Deep Eutectic Solvents for CO 2 Capture: Vibrational Spectroscopy and Quantum Chemical Studies. J Phys Chem B 2024; 128:10214-10229. [PMID: 39381893 PMCID: PMC11492266 DOI: 10.1021/acs.jpcb.4c04509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024]
Abstract
Recent research and reviews on CO2 capture methods, along with advancements in industry, have highlighted high costs and energy-intensive nature as the primary limitations of conventional direct air capture and storage (DACS) methods. In response to these challenges, deep eutectic solvents (DESs) have emerged as promising absorbents due to their scalability, selectivity, and lower environmental impact compared to other absorbents. However, the molecular origins of their enhanced thermal stability and selectivity for DAC applications have not been explored before. Therefore, the current study focuses on a comprehensive investigation into the molecular interactions within an alkaline DES composed of potassium hydroxide (KOH) and ethylene glycol (EG). Combining Fourier transform infrared (FT-IR) and quantum chemical calculations, the study reports structural changes and intermolecular interactions induced in EG upon addition of KOH and its implications on CO2 capture. Experimental and computational spectroscopic studies confirm the presence of noncovalent interactions (hydrogen bonds) within both EG and the KOH-EG system and point to the aggregation of ions at higher KOH concentrations. Additionally, molecular electrostatic potential (MESP) surface analysis, natural bond orbital (NBO) analysis, quantum theory of atoms-in-molecules (QTAIM) analysis, and reduced density gradient-noncovalent interaction (RDG-NCI) plot analysis elucidate changes in polarizability, charge distribution, hydrogen bond types, noncovalent interactions, and interaction strengths, respectively. Evaluation of explicit and hybrid models assesses their effectiveness in representing intermolecular interactions. This research enhances our understanding of molecular interactions in the KOH-EG system, which are essential for both the absorption and desorption of CO2. The study also aids in predicting and selecting DES components, optimizing their ratios with salts, and fine-tuning the properties of similar solvents and salts for enhanced CO2 capture efficiency.
Collapse
Affiliation(s)
- Rashmi Mishra
- School
of Chemical Engineering, Oklahoma State
University, 420 Engineering North, Stillwater, Oklahoma 74078, United States
| | - Rajan Bhawnani
- Department
of Chemical Engineering, University of Illinois
at Chicago, 929 W. Taylor St., Chicago, Illinois 60607, United States
| | - Rohan Sartape
- Department
of Chemical Engineering, University of Illinois
at Chicago, 929 W. Taylor St., Chicago, Illinois 60607, United States
| | - Rohit Chauhan
- Department
of Chemical Engineering, University of Illinois
at Chicago, 929 W. Taylor St., Chicago, Illinois 60607, United States
| | - Amey S. Thorat
- School
of Chemical Engineering, Oklahoma State
University, 420 Engineering North, Stillwater, Oklahoma 74078, United States
| | - Meenesh R. Singh
- Department
of Chemical Engineering, University of Illinois
at Chicago, 929 W. Taylor St., Chicago, Illinois 60607, United States
| | - Jindal K. Shah
- School
of Chemical Engineering, Oklahoma State
University, 420 Engineering North, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
23
|
Atashnezhad A, Scott J, Al Dushaishi MF. Environmental Implications of Ionic Liquid and Deep Eutectic Solvent in Geothermal Application: Comparing Traditional and New Approach Methods. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:14684-14693. [PMID: 39391093 PMCID: PMC11462603 DOI: 10.1021/acssuschemeng.4c04606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024]
Abstract
The significant surge of ionic liquids (ILs) research over the past decade has led to the formation of various novel ionic liquid compounds and their diverse applications. Enhanced geothermal systems (EGS) for geothermal power generation are an emerging IL application as a heat extraction fluid. The once widely held belief in the environmentally friendly characteristics of ionic liquids, mainly due to their insignificant vapor pressure, is now being scrutinized. It has become apparent that while ILs do not readily evaporate into the atmosphere, they are not guaranteed to remain entirely isolated from the environment. Recent attention has been directed toward toxicological studies, including ecotoxicity impacts, with the long-accepted assumption of ILs having low toxicity being invalid. This paper aims to shed light on the toxicity of hexylepyradinium bromide (HPyBr) IL and a deep eutectic solvent (DES) comprising choline chloride with magnesium chloride hexahydrate (ChCl:MgCl2·6H2O) to five test species, an algal species (Raphidocelis subcapitata), the water flea (Ceriodaphnia dubia and Daphina magna), the fathead minnow (Pimephales promelas), and the earthworm (Eisenia fetida), to measure acute and chronic toxicity. Additionally, new approach methods (NAMs) are presented using the fathead minnow embryo and the rainbow trout (Oncorhynchus mykiss) gill cell line and the RTgill-W1 assay to compare sensitivity across species. Overall, ChCl:MgCl2·6H2O displayed lower toxicity, while HPyBr demonstrated higher toxicity, highlighting the need for caution in handling it to prevent harm to aquatic ecosystems. Comparative analysis underscored the potential threat of ChCl:MgCl2·6H2O to aquatic life, highlighting the cumulative effects of the environmental components.
Collapse
Affiliation(s)
- Amin Atashnezhad
- School
of Chemical Engineering, Oklahoma State
University, Stillwater, Oklahoma 74078, United States
| | - Justin Scott
- Cove
Environmental LLC, Stillwater, Oklahoma 74075, United States
- School
of Civil and Environmental Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Mohammed F. Al Dushaishi
- School
of Chemical Engineering, Oklahoma State
University, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
24
|
El Mouat A, Abdallah W, Ternel J, Ferreira M, Bricout H, Vorholt AJ, Stieber H, Stoertte S, Monflier E, Lahcini M, Tilloy S. Rhodium/Trialkylamines Catalyzed Reductive Hydroformylation in Ionic Liquid/Heptane Medium: An Unexpected Concept for Catalyst Recycling in Batch and Continuous Flow Processes. CHEMSUSCHEM 2024:e202401384. [PMID: 39325655 DOI: 10.1002/cssc.202401384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 09/28/2024]
Abstract
We report here the rhodium catalyzed reductive hydroformylation of methyl 10-undecenoate. Our approach is based on an ionic liquid/heptane biphasic system associated with commercially available trialkylamines. The effects of various reaction parameters such as amine type, amine amount, temperature, syngas pressure and composition were studied in order to minimize the rhodium leaching and increase the production of primary alcohols. Although the amine is less soluble in the ionic liquid than in heptane, the catalytic system is efficiently maintained in the ionic liquid phase. For the optimized conditions, the catalytic ionic liquid layer can be recycled at least nine times by keeping an alcohol yield over 50 % and by limiting the rhodium leaching. As an extension of this system and to examine the long-term stability, this batch system was transferred to a miniplant for a continuous flow process. A pilot plant was operated for 45 h of total reaction time, reaching a TTON of 232 for alcohol production.
Collapse
Affiliation(s)
- Abdelghani El Mouat
- Univ. Artois, CNRS, Centrale Lille, Unité de Catalyse et Chimie du Solide (UCCS), Univ. Lille, UMR 8181, rue Jean Souvraz, SP 18, 62300, Lens, France
- IMED-Lab, Faculté des Sciences et Techniques Marrakech, Université Cadi Ayyad, Avenue Abdelkrim Elkhattabi, B.P. 549, Marrakech, 40000, Maroc
| | - Walid Abdallah
- Univ. Artois, CNRS, Centrale Lille, Unité de Catalyse et Chimie du Solide (UCCS), Univ. Lille, UMR 8181, rue Jean Souvraz, SP 18, 62300, Lens, France
| | - Jérémy Ternel
- Univ. Artois, CNRS, Centrale Lille, Unité de Catalyse et Chimie du Solide (UCCS), Univ. Lille, UMR 8181, rue Jean Souvraz, SP 18, 62300, Lens, France
| | - Michel Ferreira
- Univ. Artois, CNRS, Centrale Lille, Unité de Catalyse et Chimie du Solide (UCCS), Univ. Lille, UMR 8181, rue Jean Souvraz, SP 18, 62300, Lens, France
| | - Hervé Bricout
- Univ. Artois, CNRS, Centrale Lille, Unité de Catalyse et Chimie du Solide (UCCS), Univ. Lille, UMR 8181, rue Jean Souvraz, SP 18, 62300, Lens, France
| | - Andreas J Vorholt
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Hannah Stieber
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Sven Stoertte
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Eric Monflier
- Univ. Artois, CNRS, Centrale Lille, Unité de Catalyse et Chimie du Solide (UCCS), Univ. Lille, UMR 8181, rue Jean Souvraz, SP 18, 62300, Lens, France
| | - Mohammed Lahcini
- IMED-Lab, Faculté des Sciences et Techniques Marrakech, Université Cadi Ayyad, Avenue Abdelkrim Elkhattabi, B.P. 549, Marrakech, 40000, Maroc
- Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir, 43150, Maroc
| | - Sébastien Tilloy
- Univ. Artois, CNRS, Centrale Lille, Unité de Catalyse et Chimie du Solide (UCCS), Univ. Lille, UMR 8181, rue Jean Souvraz, SP 18, 62300, Lens, France
| |
Collapse
|
25
|
Pan Y, Zhao C, Wang R, Zhu M, Zhuang W, Li Q. Self-assembly of the imidazolium surfactant in aprotic ionic liquids. The anion effect of aprotic ionic liquids. SOFT MATTER 2024; 20:7420-7428. [PMID: 39258441 DOI: 10.1039/d4sm00699b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The structure of ionic liquids (ILs) has an influence on their physiochemical properties, determining their performance as self-assembly media. In this study, we focus on the anion effect of aprotic ionic liquids (AILs). The aggregation behaviours of the cationic surfactant 1-hexadecyl-3-methylimidazolium bromide (C16mimBr) have been investigated in the imidazolium AILs with the 1-ethyl-3-methyl imidazolium cation and different anions, including nitrate, ethylsulfate, bis(trifluoromethylsulfonyl) imide and tetrafluoroborate. Surface adsorption parameters of C16mimBr were determined using surface tension measurements, and the critical micellization concentration values in AILs vary for their different cohesive energy. The micellar and lamellar lyotropic liquid crystal phases emerge with the increase of C16mimBr concentrations. The structure and properties of aggregates were determined using small angle X-ray scattering, polarized optical microscopy, rheology and differential scanning calorimetry. The anion effects of AILs on the phase behaviours and structure and properties of aggregates were analysed and discussed. The lamellar lyotropic liquid crystals have shown good conductivity, as confirmed by electrochemical impedance spectroscopy characterization. Our results enhance the understanding of the structure effect of ILs as self-assembly media and contribute to the design of tailorable solvents.
Collapse
Affiliation(s)
- Yue Pan
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China.
| | - Chunhua Zhao
- State Key Laboratory of Offshore Oil and Gas Exploitation, Beijing 100028, P. R. China
- CNOOC Research Institute Ltd, Beijing 100028, P. R. China
| | - Ruirui Wang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China.
| | - Mingjie Zhu
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China.
| | - Wenchang Zhuang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China.
| | - Qintang Li
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China.
| |
Collapse
|
26
|
Santos AFM, Figueirinhas JL, Dionísio M, Godinho MH, Branco LC. Ionic Liquid Crystals as Chromogenic Materials. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4563. [PMID: 39336305 PMCID: PMC11432927 DOI: 10.3390/ma17184563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/30/2024]
Abstract
Ionic liquid crystals (ILCs), a class of soft matter materials whose properties can be tuned by the wise pairing of the cation and anion, have recently emerged as promising candidates for different applications, combining the characteristics of ionic liquids and liquid crystals. Among those potential uses, this review aims to cover chromogenic ILCs. In this context, examples of photo-, electro- and thermochromism based on ILCs are provided. Furthermore, thermotropic and lyotropic ionic liquid crystals are also summarised, including the most common chemical and phase structures, as well as the advantages of confining these materials. This manuscript also comprises the following main experimental techniques used to characterise ILCs: Differential Scanning Calorimetry (DSC), Polarised Optical Microscopy (POM) and X-Ray Powder Diffraction (XRD). Chromogenic ILCs can be interesting smart materials for energy and health purposes.
Collapse
Affiliation(s)
- Andreia F M Santos
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - João L Figueirinhas
- CeFEMA and Department of Physics, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
| | - Madalena Dionísio
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Maria H Godinho
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Luis C Branco
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
27
|
Shirota H, Liu X, Peng Y, Hossain F, Falcone RD. Comparison between Phosphonium Docusate Ionic Liquids and Their Equimolar Mixtures with Alkanes: Temperature-Dependent Viscosity, Glass Transition, and Fragility. ACS OMEGA 2024; 9:38769-38777. [PMID: 39310201 PMCID: PMC11411650 DOI: 10.1021/acsomega.4c04681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/26/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024]
Abstract
In this study, we determined the temperature-dependent viscosities, glass transition temperatures, and fragilities of tetraalkylphosphonium docusate ionic liquids (ILs) and their equimolar mixtures with alkanes to elucidate the effects of the alkyl groups on the phosphonium cation. The target ILs were the docusate salts with tributylheptylphosphonium ([P4447][doc]), tributyltetradecylphosphonium ([P444,14][doc]), butyltrihexylphosphonium ([P4666][doc]), trihexylheptylphosphonium ([P6667][doc]), and trihexyltetradecylphosphonium cations ([P666,14][doc]). The comparable IL/alkane mixtures were equimolar mixtures of IL and alkane with the same carbon numbers of the target ILs: [P4447][doc]/hexane to [P6667][doc]; [P4447][doc]/heptane to [P444,14][doc]; [P444,14][doc]/hexane to [P666,14][doc]; [P4666][doc]/decane to [P666,14][doc]; and [P6667][doc]/heptane to [P666,14][doc]. The viscosities and glass transition temperatures of the neat ILs were higher than those of their respective IL/alkane mixtures. Based on the analysis of temperature-dependent viscosities, including a viscosity value of 1013 mPa·s at the glass transition temperature using the Vogel-Fulcher-Tammann equation, the neat ILs were stronger liquids than the corresponding IL/alkane mixtures. By comparing several combinations of the neat ILs and IL/alkane mixtures, we found that the larger the alkane, the more fragile the mixture.
Collapse
Affiliation(s)
- Hideaki Shirota
- Department
of Chemistry, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522, Japan
| | - Xeuchen Liu
- Department
of Chemistry, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522, Japan
| | - Yue Peng
- Department
of Chemistry, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522, Japan
| | - Faruk Hossain
- Department
of Chemistry, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522, Japan
| | - R. Dario Falcone
- Department
of Chemistry, National University of Rio
Cuarto, Ruta 36 Km 601, Rio Cuarto X5804BYA, Argentina
| |
Collapse
|
28
|
Han Q, Veríssimo NVP, Bryant SJ, Martin AV, Huang Y, Pereira JFB, Santos-Ebinuma VC, Zhai J, Bryant G, Drummond CJ, Greaves TL. Scattering approaches to unravel protein solution behaviors in ionic liquids and deep eutectic solvents: From basic principles to recent developments. Adv Colloid Interface Sci 2024; 331:103242. [PMID: 38964196 DOI: 10.1016/j.cis.2024.103242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024]
Abstract
Proteins in ionic liquids (ILs) and deep eutectic solvents (DESs) have gained significant attention due to their potential applications in various fields, including biocatalysis, bioseparation, biomolecular delivery, and structural biology. Scattering approaches including dynamic light scattering (DLS) and small-angle X-ray and neutron scattering (SAXS and SANS) have been used to understand the solution behavior of proteins at the nanoscale and microscale. This review provides a thorough exploration of the application of these scattering techniques to elucidate protein properties in ILs and DESs. Specifically, the review begins with the theoretical foundations of the relevant scattering approaches and describes the essential solvent properties of ILs and DESs linked to scattering such as refractive index, scattering length density, ion-pairs, liquid nanostructure, solvent aggregation, and specific ion effects. Next, a detailed introduction is provided on protein properties such as type, concentration, size, flexibility and structure as observed through scattering methodologies. This is followed by a review of the literature on the use of scattering for proteins in ILs and DESs. It is highlighted that enhanced data analysis and modeling tools are necessary for assessing protein flexibility and structure, and for understanding protein hydration, aggregation and specific ion effects. It is also noted that complementary approaches are recommended for comprehensively understanding the behavior of proteins in solution due to the complex interplay of factors, including ion-binding, dynamic hydration, intermolecular interactions, and specific ion effects. Finally, the challenges and potential research directions for this field are proposed, including experimental design, data analysis approaches, and supporting methods to obtain fundamental understandings of complex protein behavior and protein systems in solution. We envisage that this review will support further studies of protein interface science, and in particular studies on solvent and ion effects on proteins.
Collapse
Affiliation(s)
- Qi Han
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| | - Nathalia V P Veríssimo
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto 14040-020, Brazil
| | - Saffron J Bryant
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Andrew V Martin
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Yuhong Huang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jorge F B Pereira
- Univ Coimbra, CERES, Department of Chemical Engineering, Pólo II - Pinhal de Marrocos, Coimbra 3030-790, Portugal
| | - Valéria C Santos-Ebinuma
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto 14040-020, Brazil
| | - Jiali Zhai
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Gary Bryant
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Calum J Drummond
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Tamar L Greaves
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| |
Collapse
|
29
|
Garg M, Sharma D, Kaur G, Rawat J, Goyal B, Kumar S, Kumar R. Factor defining the effects of tetraalkylammonium chloride on stability, folding, and dynamics of horse cytochrome c. Int J Biol Macromol 2024; 276:133713. [PMID: 38986993 DOI: 10.1016/j.ijbiomac.2024.133713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
This article describes the molecular mechanism by which tetraalkylammonium chloride ([R4N]Cl: R- = methyl (Me), ethyl (Et), propyl (Pr),butyl (Bu)) modulates the stability, folding, and dynamics of cytochrome c (Cyt c). Analysis of [R4N]Cl effects on thermal/chemical denaturations, millisecond refolding/unfolding kinetics, and slow CO-association kinetics of Cyt c without and with denaturant providing some significant results: (i) [R4N]Cl decreasing the unfolding free energy estimated by thermodynamic and kinetic analysis of thermal/chemical denaturation curves and kinetic chevrons (Log kobs-[GdmCl]) of Cyt c, respectively (ii) hydrophobicity of R-group of [R4N]Cl, preferential inclusion of [R4N]Cl at the protein surface, and destabilizing enthalpic attractive interactions of [Me4N]Cl and steric entropic interactions of [Et4N]Cl,[Pr4N]Cl and [Bu4N]Cl with protein contribute to [R4N]Cl-induced decrease thermodynamic stability of Cyt c (iii) [R4N]Cl exhibits an additive effect with denaturant to decrease thermodynamic stability and refolding rates of Cyt c (iv) low concentrations of [R4N]Cl (≤ 0.5 M) constrain the motional dynamics while the higher concentrations (>0.75 M [R4N]Cl) enhance the structural-fluctuations that denture protein (v) hydrophobicity of R-group of [R4N]Cl alters the [denaturant]-dependent conformational stability, refolding-unfolding kinetics, and CO-association kinetics of Cyt c. Furthermore, the MD simulations depicted that the addition of 1.0 M of [R4N]Cl increased the conformational fluctuations in Cyt c leading to decreased structural stability in the order [Me4N]Cl < [Et4N]Cl < [Pr4N]Cl < [Bu4N]Cl consistent with the experimental results.
Collapse
Affiliation(s)
- Mansi Garg
- Department of Chemistry, Central University of Punjab, Bathinda 151001, India
| | - Deepak Sharma
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Sector 39A, Academy of Scientific & Innovative Research, Chandigarh, India
| | - Gurmeet Kaur
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Jayanti Rawat
- Department of Chemistry, Central University of Punjab, Bathinda 151001, India
| | - Bhupesh Goyal
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Sumit Kumar
- Department of Chemistry, Central University of Punjab, Bathinda 151001, India
| | - Rajesh Kumar
- Department of Chemistry, Central University of Punjab, Bathinda 151001, India.
| |
Collapse
|
30
|
Dongare S, Zeeshan M, Aydogdu AS, Dikki R, Kurtoğlu-Öztulum SF, Coskun OK, Muñoz M, Banerjee A, Gautam M, Ross RD, Stanley JS, Brower RS, Muchharla B, Sacci RL, Velázquez JM, Kumar B, Yang JY, Hahn C, Keskin S, Morales-Guio CG, Uzun A, Spurgeon JM, Gurkan B. Reactive capture and electrochemical conversion of CO 2 with ionic liquids and deep eutectic solvents. Chem Soc Rev 2024; 53:8563-8631. [PMID: 38912871 DOI: 10.1039/d4cs00390j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Ionic liquids (ILs) and deep eutectic solvents (DESs) have tremendous potential for reactive capture and conversion (RCC) of CO2 due to their wide electrochemical stability window, low volatility, and high CO2 solubility. There is environmental and economic interest in the direct utilization of the captured CO2 using electrified and modular processes that forgo the thermal- or pressure-swing regeneration steps to concentrate CO2, eliminating the need to compress, transport, or store the gas. The conventional electrochemical conversion of CO2 with aqueous electrolytes presents limited CO2 solubility and high energy requirement to achieve industrially relevant products. Additionally, aqueous systems have competitive hydrogen evolution. In the past decade, there has been significant progress toward the design of ILs and DESs, and their composites to separate CO2 from dilute streams. In parallel, but not necessarily in synergy, there have been studies focused on a few select ILs and DESs for electrochemical reduction of CO2, often diluting them with aqueous or non-aqueous solvents. The resulting electrode-electrolyte interfaces present a complex speciation for RCC. In this review, we describe how the ILs and DESs are tuned for RCC and specifically address the CO2 chemisorption and electroreduction mechanisms. Critical bulk and interfacial properties of ILs and DESs are discussed in the context of RCC, and the potential of these electrolytes are presented through a techno-economic evaluation.
Collapse
Affiliation(s)
- Saudagar Dongare
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Muhammad Zeeshan
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Ahmet Safa Aydogdu
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Ruth Dikki
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Samira F Kurtoğlu-Öztulum
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Department of Materials Science and Technology, Faculty of Science, Turkish-German University, Sahinkaya Cad., Beykoz, 34820 Istanbul, Turkey
| | - Oguz Kagan Coskun
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Miguel Muñoz
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Avishek Banerjee
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Manu Gautam
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, KY 40292, USA
| | - R Dominic Ross
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Jared S Stanley
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Rowan S Brower
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Baleeswaraiah Muchharla
- Department of Mathematics, Computer Science, & Engineering Technology, Elizabeth City State University, 1704 Weeksville Road, Elizabeth City, NC 27909, USA
| | - Robert L Sacci
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - Jesús M Velázquez
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Bijandra Kumar
- Department of Mathematics, Computer Science, & Engineering Technology, Elizabeth City State University, 1704 Weeksville Road, Elizabeth City, NC 27909, USA
| | - Jenny Y Yang
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Christopher Hahn
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Seda Keskin
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Carlos G Morales-Guio
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alper Uzun
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University Surface Science and Technology Center (KUYTAM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Joshua M Spurgeon
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, KY 40292, USA
| | - Burcu Gurkan
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
31
|
Banjare MK, Barman B, Behera K, Khan JM, Banjare RK, Pandey S, Ghosh KK. Molecular interaction between three novel amino acid based deep eutectic solvents with surface active ionic liquid: A comparative study. Heliyon 2024; 10:e35598. [PMID: 39170157 PMCID: PMC11336992 DOI: 10.1016/j.heliyon.2024.e35598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
Interaction between a surface active ionic liquid (IL) viz. 1-decyl-3-methylimidazolium chloride [Dmim][Cl] with three novel amino acid-based deep eutectic solvents (DES, consisting of choline chloride and l-methionine (DES1), l-phenylalanine (DES2), and l-glutamine (DES3) in a 1: 2 mol ratio) is studied. Several techniques, including surface tension, fluorescence, UV-visible spectroscopy, and Fourier transform infrared (FTIR), were used to investigate the key micellar properties and intermolecular interactions between the IL and DESs. All the DESs studied here facilitate the micellization process successfully lowering the critical micelle concentrations (CMC) of [Dmim][Cl] with addition of 5 wt% and 10 wt% of DESs. In decreasing order of DES2 > DES1 > DES3, the affinity to promote IL [Dmim][Cl] aggregation within aqueous DES solutions. Additionally, the CMC values as well as the surface tension at CMC are both noticeably reduced significantly by DES2. The surface tension method determines how three amino acid-based DESs affect the CMC, Гmax, πCMC, Amin and pC20 of micellization. When IL [Dmim][Cl] forms micelles within DES solutions, the solvophobic effect predominates, and the intermolecular hydrogen-bond interaction helps to form micelles. FTIR was used to examine the molecular interactions and structural changes of the ionic liquid self-assemblies in aqueous DESs. The results show that the presence of DESs greatly aids in the micellization of [Dmim][Cl], and to a greater extent for DES2 than for DES1/DES3. The colloidal properties of DES and their mixtures are advantageous for the solubility, micellization, and other features of ionic liquids; further details on this positive observation are provided in the results and discussion. In the areas of micellization, CMC, synthesis, catalysis, and environmental, biological, and pharmaceutical applications, among others, DESs are extremely useful.
Collapse
Affiliation(s)
- Manoj Kumar Banjare
- Department of Chemistry (MSS), MATS University, Pagaria Complex, Pandri, Raipur, Chhattisgarh, 492004, India
| | - Benvikram Barman
- Department of Chemistry (MSS), MATS University, Pagaria Complex, Pandri, Raipur, Chhattisgarh, 492004, India
| | - Kamalakanta Behera
- Department of Chemistry, University of Allahabad, Prayagraj, Uttar Pradesh, 211002, India
| | - Javed Masood Khan
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ramesh Kumar Banjare
- Department of Chemistry(MSET), MATS University, Gullu Campus, Arang, Raipur, C.G., 493441, India
| | - Siddharth Pandey
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Kallol Kumar Ghosh
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492010, India
| |
Collapse
|
32
|
Komori T, Hachisu A, Ninomiya K, Takahashi K, Kuroda K. Phosphate-type zwitterionic liquid. Chem Commun (Camb) 2024; 60:8557-8560. [PMID: 39041338 DOI: 10.1039/d4cc02284j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The imidazolium/phosphate zwitterionic liquid synthesised in this study dissolved cellulose and satisfies all other properties required for efficient cellulosic bioethanol production such as liquid at room temperature and low toxicity.
Collapse
Affiliation(s)
- Tetsuo Komori
- Faculty of Biologiacal Science and Technology, Institute of Science and Engineering, Kanazawa University, Kanazawa 920-1192, Japan.
| | - Ayumi Hachisu
- Faculty of Biologiacal Science and Technology, Institute of Science and Engineering, Kanazawa University, Kanazawa 920-1192, Japan.
| | - Kazuaki Ninomiya
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Kenji Takahashi
- Faculty of Biologiacal Science and Technology, Institute of Science and Engineering, Kanazawa University, Kanazawa 920-1192, Japan.
| | - Kosuke Kuroda
- Faculty of Biologiacal Science and Technology, Institute of Science and Engineering, Kanazawa University, Kanazawa 920-1192, Japan.
- NanoMaterials Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
33
|
Goodwin ZAH, Wenny MB, Yang JH, Cepellotti A, Ding J, Bystrom K, Duschatko BR, Johansson A, Sun L, Batzner S, Musaelian A, Mason JA, Kozinsky B, Molinari N. Transferability and Accuracy of Ionic Liquid Simulations with Equivariant Machine Learning Interatomic Potentials. J Phys Chem Lett 2024; 15:7539-7547. [PMID: 39023916 DOI: 10.1021/acs.jpclett.4c01942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Ionic liquids (ILs) are an exciting class of electrolytes finding applications in many areas from energy storage to solvents, where they have been touted as "designer solvents" as they can be mixed to precisely tailor the physiochemical properties. As using machine learning interatomic potentials (MLIPs) to simulate ILs is still relatively unexplored, several questions need to be answered to see if MLIPs can be transformative for ILs. Since ILs are often not pure, but are either mixed together or contain additives, we first demonstrate that a MLIP can be trained to be compositionally transferable; i.e., the MLIP can be applied to mixtures of ions not directly trained on, while only being trained on a few mixtures of the same ions. We also investigated the accuracy of MLIPs for a novel IL, which we experimentally synthesize and characterize. Our MLIP trained on ∼200 DFT frames is in reasonable agreement with our experiments and DFT.
Collapse
Affiliation(s)
- Zachary A H Goodwin
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Malia B Wenny
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Julia H Yang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Harvard University Center for the Environment, 26 Oxford St., Cambridge, Massachusetts 02138, United States
| | - Andrea Cepellotti
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Jingxuan Ding
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Kyle Bystrom
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Blake R Duschatko
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Anders Johansson
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Lixin Sun
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Simon Batzner
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Albert Musaelian
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Jarad A Mason
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Boris Kozinsky
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Research and Technology Center, Robert Bosch LLC, Cambridge, Massachusetts 02142, United States
| | - Nicola Molinari
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Research and Technology Center, Robert Bosch LLC, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
34
|
Kaur S, D'Souza RM, Kelly TL, Williams VE, Kaake LG. Electrostatic Correlations Lead to High Capacitance in Zwitterion-Containing Thin Films. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38290-38299. [PMID: 38990772 DOI: 10.1021/acsami.4c01045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
A novel zwitterion composed of an imidazolium tethered to an anionic sulfonyl(trifluoromethane sulfonyl)imide group was prepared as an alternative dielectric material to traditional ionic liquids. The zwitterion not only melted below 100 °C but also proved to be nonhygroscopic. High-capacitance organic dielectric materials were obtained by blending this compound with poly(methyl methacrylate) over a range of concentrations and thicknesses. Above a specific temperature and concentration, films exhibit a capacitance nearly equivalent to that of an electrostatic double layer, approximately 10 μF/cm2, regardless of their thickness. Grazing-incidence wide-angle X-ray scattering experiments suggest that the zwitterions adopt a lamellar ordering at their surface above a critical concentration. The observed ordering is correlated with a 1000-fold increase in capacitance. The behavior suggests that the zwitterions exhibit strong electrostatic correlations throughout the film bulk, pointing the way toward a novel class of organic dielectric materials.
Collapse
Affiliation(s)
- Simranjeet Kaur
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Renita M D'Souza
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Timothy L Kelly
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Vance E Williams
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Loren G Kaake
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
35
|
Zhao W, Zhu Q, Wu X, Zhao D. The development of catalysts and auxiliaries for the synthesis of covalent organic frameworks. Chem Soc Rev 2024; 53:7531-7565. [PMID: 38895859 DOI: 10.1039/d3cs00908d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Covalent organic frameworks (COFs) have recently seen significant advancements. Large quantities of structurally & functionally oriented COFs with a wide range of applications, such as gas adsorption, catalysis, separation, and drug delivery, have been explored. Recent achievements in this field are primarily focused on advancing synthetic methodologies, with catalysts playing a crucial role in achieving highly crystalline COF materials, particularly those featuring novel linkages and chemistry. A series of reviews have already been published over the last decade, covering the fundamentals, synthesis, and applications of COFs. However, despite the pivotal role that catalysts and auxiliaries play in forming COF materials and adjusting their properties (e.g., crystallinity, porosity, stability, and morphology), limited attention has been devoted to these essential components. In this Critical Review, we mainly focus on the state-of-the-art progress of catalysts and auxiliaries applied to the synthesis of COFs. The catalysts include four categories: acid catalysts, base catalysts, transition-metal catalysts, and other catalysts. The auxiliaries, such as modulators, oxygen, and surfactants, are discussed as well. This is then followed by the description of several specific applications derived from the utilization of catalysts and auxiliaries. Lastly, a perspective on the major challenges and opportunities associated with catalysts and auxiliaries is provided.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Qiang Zhu
- Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Xiaofeng Wu
- Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| |
Collapse
|
36
|
Jia H, Jia H, Wang Q, Xu Y, Wang B, Wang Q, Li X, Wang Z, Lv K, Huang P. Imidazolium-Based Polymeric Ionic Liquids with Short Alkyl Chains as Green Corrosion Inhibitors for Mild Steel in 1 M HCl: Experimental and Theoretical Investigations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14141-14152. [PMID: 38932615 DOI: 10.1021/acs.langmuir.4c01633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
A novel polymeric ionic liquid (PDBA-IL-NH2) using imidazolium ionic liquids with short alkyl chains as monomers and two control ionic liquids (PDBA-IL-OH and PIL-NH2) were synthesized. Their inhibition properties and mechanisms were explored via surface analysis, weight loss tests, electrochemical studies, and adsorption isotherm analysis. The corrosion inhibition efficiency (CIE) of PDBA-IL-NH2 gradually increased with increasing concentration, and the largest efficiency was 94.67% at 100 ppm. At the same concentration (50 ppm), the corrosion inhibition abilities of inhibitors were in the order of PDBA-IL-NH2 > PDBA-IL-OH > PIL-NH2 > IL-NH2. Based on the experimental investigation, the synergistic effect of electrostatic interaction, protonation, and electron donor-acceptor interaction facilitated the intensive entanglement and coverage of PDBA-IL-NH2 with the reticulated form on the metal, and the generated densest films protected the metal from the corrosive media. Ultimately, the theoretical results of molecular dynamics simulations and quantum chemical study were in high agreement with the experimental data, which confirmed the proposed inhibition mechanisms on the microscopic scale. This study contributed valuable perspectives to the design of efficient and ecofriendly corrosion inhibitors.
Collapse
Affiliation(s)
- Haidong Jia
- Shandong Key Laboratory of Oilfield Chemistry, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Han Jia
- Shandong Key Laboratory of Oilfield Chemistry, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Qiuxia Wang
- Bohai Oilfield Research Institute, Tianjin Branch, CNOOC China Limited, Tianjin 300459, China
| | - Yingbiao Xu
- Technology Inspection Center, Shengli Oilfield Company, SINOPEC, Dongying 257000, China
| | - Bowen Wang
- Shandong Key Laboratory of Oilfield Chemistry, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Qiang Wang
- Shandong Key Laboratory of Oilfield Chemistry, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xu Li
- Shandong Key Laboratory of Oilfield Chemistry, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Zhe Wang
- Shandong Key Laboratory of Oilfield Chemistry, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Kaihe Lv
- Shandong Key Laboratory of Oilfield Chemistry, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Pan Huang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
37
|
Guelfo JL, Ferguson PL, Beck J, Chernick M, Doria-Manzur A, Faught PW, Flug T, Gray EP, Jayasundara N, Knappe DRU, Joyce AS, Meng P, Shojaei M. Lithium-ion battery components are at the nexus of sustainable energy and environmental release of per- and polyfluoroalkyl substances. Nat Commun 2024; 15:5548. [PMID: 38977667 PMCID: PMC11231300 DOI: 10.1038/s41467-024-49753-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 06/18/2024] [Indexed: 07/10/2024] Open
Abstract
Lithium-ion batteries (LiBs) are used globally as a key component of clean and sustainable energy infrastructure, and emerging LiB technologies have incorporated a class of per- and polyfluoroalkyl substances (PFAS) known as bis-perfluoroalkyl sulfonimides (bis-FASIs). PFAS are recognized internationally as recalcitrant contaminants, a subset of which are known to be mobile and toxic, but little is known about environmental impacts of bis-FASIs released during LiB manufacture, use, and disposal. Here we demonstrate that environmental concentrations proximal to manufacturers, ecotoxicity, and treatability of bis-FASIs are comparable to PFAS such as perfluorooctanoic acid that are now prohibited and highly regulated worldwide, and we confirm the clean energy sector as an unrecognized and potentially growing source of international PFAS release. Results underscore that environmental impacts of clean energy infrastructure merit scrutiny to ensure that reduced CO2 emissions are not achieved at the expense of increasing global releases of persistent organic pollutants.
Collapse
Affiliation(s)
- Jennifer L Guelfo
- Department of Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, TX, USA.
| | - P Lee Ferguson
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA.
- Nicholas School of the Environment, Duke University, Durham, NC, USA.
| | | | - Melissa Chernick
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Alonso Doria-Manzur
- Department of Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, TX, USA
| | - Patrick W Faught
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA
| | | | - Evan P Gray
- Department of Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, TX, USA
| | | | - Detlef R U Knappe
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC, USA
| | - Abigail S Joyce
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA
| | - Pingping Meng
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC, USA
- Department of Chemistry, Eastern Carolina University, Greenville, NC, USA
| | - Marzieh Shojaei
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
38
|
Kato Y, Uto T, Ishizaki T, Tanaka D, Ishibashi K, Matsuda Y, Onoda I, Kobayashi A, Hazawa M, Wong RW, Takahashi K, Hirata E, Kuroda K. Optimization of Zwitterionic Polymers for Cell Cryopreservation. Macromol Biosci 2024; 24:e2300499. [PMID: 38329319 DOI: 10.1002/mabi.202300499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/24/2024] [Indexed: 02/09/2024]
Abstract
Cryopreservation techniques are valuable for the preservation of genetic properties in cells, and the development of this technology contributes to various fields. In a previous study, an isotonic freezing medium composed of poly(zwitterion) (polyZI) has been reported, which alleviates osmotic shock, unlike typical hypertonic freezing media. In this study, the primitive freezing medium composed of emerging polyZI is optimized. Imidazolium/carboxylate-type polyZI (VimC3C) is the optimal chemical structure. The molecular weight and degree of ion substitution (DSion) are not significant factors. There is an impediment with the primitive polyZI freezing media. While the polyZI forms a matrix around the cell membrane to protect cells, the matrix is difficult to remove after thawing, resulting in low cell proliferation. Unexpectedly, increasing the poly(VimC3C) concentration from 10% to 20% (w/v) improves cell proliferation. The optimized freezing medium, 20% (w/v) poly(VimC3C)_DSion(100%)/1% (w/v) NaCl aqueous solution, exhibited a better cryoprotective effect.
Collapse
Affiliation(s)
- Yui Kato
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Takuya Uto
- University of Miyazaki, Faculty of Engineering, Nishi 1-1 Gakuen Kibanadai, Miyazaki, 889-2192, Japan
| | - Takeru Ishizaki
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Daisuke Tanaka
- Research Center of Genetic Resources, National Agriculture and Food Research Organization, Kannondai, Tsukuba, 305-8602, Japan
| | - Kojiro Ishibashi
- Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Yuya Matsuda
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Issei Onoda
- University of Miyazaki, Faculty of Engineering, Nishi 1-1 Gakuen Kibanadai, Miyazaki, 889-2192, Japan
| | - Akiko Kobayashi
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative & WPI-Nano Life Science Institute, Kanazawa University, Kanazawa, Kanazawa, Ishikawa, 920-1192, Japan
| | - Masaharu Hazawa
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative & WPI-Nano Life Science Institute, Kanazawa University, Kanazawa, Kanazawa, Ishikawa, 920-1192, Japan
| | - Richard W Wong
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative & WPI-Nano Life Science Institute, Kanazawa University, Kanazawa, Kanazawa, Ishikawa, 920-1192, Japan
| | - Kenji Takahashi
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Eishu Hirata
- Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
- Nano Life Science Institute of Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Kosuke Kuroda
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
39
|
Tzialla O, Theodorakopoulos GV, Beltsios KG, Pilatos G, Reddy KSK, Srinivasakannan C, Tuci G, Giambastiani G, Karanikolos GN, Katsaros FK, Kouvelos E, Romanos GE. Utilizing Carbonaceous Materials Derived from [BMIM][TCM] Ionic Liquid Precursor: Dual Role as Catalysts for Oxygen Reduction Reaction and Adsorbents for Aromatics and CO 2. Chempluschem 2024; 89:e202300785. [PMID: 38436555 DOI: 10.1002/cplu.202300785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/05/2024]
Abstract
This work presents the synthesis of N-doped nanoporous carbon materials using the Ionic Liquid (IL) 1-butyl-3-methylimidazolium tricyanomethanide [BMIM][TCM] as a fluidic carbon precursor, employing two carbonization pathways: templated precursor and pyrolysis/activation. Operando monitoring of mass loss during pyrolytic and activation treatments provides insights into chemical processes, including IL decomposition, polycondensation reactions and pore formation. Comparatively low mass reduction rates were observed at all stages. Heat treatments indicated stable pore size and increasing volume/surface area over time. The resulting N-doped carbon structures were evaluated as electrocatalysts for the oxygen reduction reaction (ORR) and adsorbents for gases and organic vapors. Materials from the templated precursor pathway exhibited high electrocatalytic performance in ORR, analyzed using Rotating Ring-Disk electrode (RRDE). Enhanced adsorption of m-xylene was attributed to wide micropores, while satisfactory CO2 adsorption efficiency was linked to specific morphological features and a relatively high content of N-sites within the C-networks. This research contributes valuable insights into the synthesis and applications of N-doped nanoporous carbon materials, highlighting their potential in electrocatalysis and adsorption processes.
Collapse
Affiliation(s)
- Ourania Tzialla
- Department of Materials Science and Engineering, University of Ioannina, 45110, Ioannina, Greece
| | - George V Theodorakopoulos
- School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 9, Iroon Polytechniou Str., Athens, Zografou, 15780, Greece
- Institute of Nanoscience and Nanotechnology, N.C.S.R. "Demokritos", Ag. Paraskevi, Athens, 15310, Greece
| | - Konstantinos G Beltsios
- School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 9, Iroon Polytechniou Str., Athens, Zografou, 15780, Greece
| | - George Pilatos
- Institute of Nanoscience and Nanotechnology, N.C.S.R. "Demokritos", Ag. Paraskevi, Athens, 15310, Greece
| | - K Suresh Kumar Reddy
- Renewable and Sustainable Energy Research Center, Technology Innovation Institute (TII), P.O. Box 9639, Masdar City, Abu Dhabi, United Arab Emirates
| | | | - Giulia Tuci
- Institute of Chemistry of OrganoMetallic Compounds, ICCOM-CNR and Consorzio INSTM, Via Madonna del Piano, 10 - 50019, Sesto F. no, Florence, Italy
| | - Giuliano Giambastiani
- Institute of Chemistry of OrganoMetallic Compounds, ICCOM-CNR and Consorzio INSTM, Via Madonna del Piano, 10 - 50019, Sesto F. no, Florence, Italy
- University of Florence, Department of Chemistry U. "Schiff" - DICUS - and INSTM Research Unit, Via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy
| | - Georgios N Karanikolos
- Department of Chemical Engineering, University of Patras, Patras, 26504, Greece
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ICE-HT), 26504, Patras, Greece
| | - Fotios K Katsaros
- Institute of Nanoscience and Nanotechnology, N.C.S.R. "Demokritos", Ag. Paraskevi, Athens, 15310, Greece
| | - Evangelos Kouvelos
- Institute of Nanoscience and Nanotechnology, N.C.S.R. "Demokritos", Ag. Paraskevi, Athens, 15310, Greece
| | - George Em Romanos
- Institute of Nanoscience and Nanotechnology, N.C.S.R. "Demokritos", Ag. Paraskevi, Athens, 15310, Greece
| |
Collapse
|
40
|
Bello TO, Alvim RS, Bresciani AE, Nascimento CAO, Alves RMB. A mechanistic study on conversion of carbon dioxide into formic acid promoted by 1-ethyl-2, 3-dimethyl-imidazolium nitrite. J Mol Model 2024; 30:231. [PMID: 38935147 DOI: 10.1007/s00894-024-06013-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
CONTEXT The conversion of carbon dioxide (CO2) to formic acid (FA) through hydrogenation using 1-ethyl-2,3- dimethyl imidazolium nitrite (EDIN) ionic liquid was studied to understand the catalytic roles within EDIN. CO2 hydrogenation in various solvents has been explored, but achieving high efficiency and selectivity remains challenging due to the thermodynamic stability and kinetic inertness of CO2. This study explored two mechanistic pathways through theoretical calculations, revealing that the nitrite (NO2-) group is the most active site. The oxygen site on nitrite favorably activates H2, while the nitrogen site shows a minor activation barrier of 108.90 kJ/mol. The Gibbs energy variation indicates stable FA formation via EDIN, suggesting effective hydrogen (H2) activation and subsequent CO2 conversion. These insights are crucial for developing improved catalytic sites and processes in ionic liquid catalysts for CO2 hydrogenation. METHODS Quantum chemical calculations were conducted using the ORCA software package at the Restricted Hartree-Fock (RHF) and density functional theory (DFT) levels. The RHF method, known for its predictive abilities in simpler systems, provided a baseline description of electronic structures. In contrast, DFT was employed for its effectiveness in complex interactions involving significant electron correlation. A valence triple-zeta polarization (def2-TZVPP) basis set was employed for both RHF and DFT, ensuring accurate and correlated calculations. The B3LYP functional was utilized for its rapid convergence and cost-efficiency in larger molecules. Dispersion corrected functionals (DFT-D) addressed significant dispersion forces in ionic liquids, incorporating Grimme's D2, D3, and D4 corrections. Geometry optimizations, kinetics, and thermodynamic calculations were performed in the gas phase. The Nudged Elastic Band Transition State (NEB-TS) approach, combining Climbing Image-NEB (CINEB) and Eigenvector-Following (EF) methods, was used to find the minimum energy path (MEP) between reactants and products. Thermochemical analyses based on vibrational frequency calculations evaluated properties such as Enthalpy, Entropy, and Gibbs energy using ideal gas statistical mechanics.
Collapse
Affiliation(s)
- T O Bello
- Department of Chemical Engineering, Escola Politécnica, Universidade de São Paulo, São Paulo, Brazil
| | - R S Alvim
- Department of Chemical Engineering, Escola Politécnica, Universidade de São Paulo, São Paulo, Brazil
| | - A E Bresciani
- Department of Chemical Engineering, Escola Politécnica, Universidade de São Paulo, São Paulo, Brazil
| | - C A O Nascimento
- Department of Chemical Engineering, Escola Politécnica, Universidade de São Paulo, São Paulo, Brazil
| | - R M B Alves
- Department of Chemical Engineering, Escola Politécnica, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
41
|
Itoh T, Kamada K, Nokami T, Ikawa T, Yagi K, Ikegami S, Inoue R, DeYoung AD, Kim HJ. On the Moisture Absorption Capability of Ionic Liquids. J Phys Chem B 2024; 128:6134-6150. [PMID: 38874477 PMCID: PMC11215776 DOI: 10.1021/acs.jpcb.4c02289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024]
Abstract
Due to their many attractive physicochemical properties, ionic liquids (ILs) have received extensive attention with numerous applications proposed in various fields of science and technology. Despite this, the molecular origins of many of their properties, such as the moisture absorption capability, are still not well understood. For insight into this, we systematically synthesized 24 types of ILs by the combination of the dimethyl phosphate anion with various types of alkyl group-substituted cyclic cations─imidazolium, pyrazolium, 1,2,3-triazolium, and 1,2,4-triazolium cations─and performed a detailed analysis of the dehumidification properties of these ILs and their aqueous solutions. It was found that these IL systems have a high dehumidification capability (DC). Among the monocationic ILs, the best performance was obtained with 1-cyclohexylmethyl-4-methyl-1,2,4-triazolium dimethyl phosphate, whose DC (per mol) value is 14 times higher than that of popular solid desiccants like CaCl2 and silica gel. Dicationic ILs, such as 1,1'-(propane-1,3-diyl)bis(4-methyl-1,2,4-triazolium) bis(dimethyl phosphate), showed an even better moisture absorption, with a DC (per mol) value about 20 times higher than that of CaCl2. Small- and wide-angle X-ray scattering measurements of eight types of 1,2,4-triazolium dimethyl phosphate ILs were performed and revealed that the majority of these ILs form nanostructures. Such nanostructures, which vary with the identity of the IL and the water content, fall into three main categories: bicontinuous microemulsions, hexagonal cylinders, and micelle-like structures. Water in the solutions exists primarily in polar regions in the nanostructures; these spaces function as water pockets at relatively low water concentrations. Since the structure and stability of the aggregated forms of the ILs are mainly governed by the interactions of nonpolar groups, the alkyl side chains of the cations play an important role in the DC and temperature-dependent equilibrium water vapor pressure of the IL solutions. Our experimental findings and molecular dynamics simulation results shed light on the moisture absorption mechanism of the IL aqueous solutions from a molecular perspective.
Collapse
Affiliation(s)
- Toshiyuki Itoh
- Toyota
Physical and Chemical Research Institute, 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan
| | - Kentaro Kamada
- Department
of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552, Japan
| | - Toshiki Nokami
- Department
of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552, Japan
| | - Taiji Ikawa
- Toyota
Central R&D Laboratories, Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan
| | - Kenichi Yagi
- Toyota
Central R&D Laboratories, Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan
| | - Shuji Ikegami
- Technology
and Innovation Center, Daikin Industries,
Ltd., 1-1 Nishi-Hitotsuya, Settsu, Osaka 566-8585, Japan
| | - Ryo Inoue
- Technology
and Innovation Center, Daikin Industries,
Ltd., 1-1 Nishi-Hitotsuya, Settsu, Osaka 566-8585, Japan
| | - Andrew D. DeYoung
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Hyung J. Kim
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
42
|
Kumar S, Kaur N, Hitaishi P, Ghosh SK, Mithu VS, Scheidt HA. Role of Cholesterol in Interaction of Ionic Liquids with Model Lipid Membranes and Associated Permeability. J Phys Chem B 2024; 128:5407-5418. [PMID: 38795045 PMCID: PMC11163423 DOI: 10.1021/acs.jpcb.4c01531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/27/2024]
Abstract
In this work, we explored how the amount of cholesterol in the lipid membrane composed of phosphatidylcholine (POPC) or phosphatidylglycerol (POPG) affects the interaction with 1-dodecyl-3-methylimidazolium bromide ([C12MIM]+Br-) ionic liquids using various biophysical techniques. On interacting with the membrane, [C12MIM]+Br- leads to enhanced membrane permeability and induces membrane fusion, leading to an increase in vesicle size. The 2H-based solid-state NMR investigations of cholesterol-containing lipid membranes reveal that [C12MIM]+Br- decreases the lipid chain order parameters and counteracts the lipid condensation effect of cholesterol to some extent. Therefore, as the amount of cholesterol in the membrane increases, the membrane effect of [C12MIM]+Br- decreases. The effect of [C12MIM]+Br- on the membrane properties is more pronounced for POPC compared to that of POPG membranes. This suggests a dependence of these effects on the electrostatic interactions, indicating that the influence of [C12MIM]+Br- varies based on the lipid composition. The findings suggest that the presence of cholesterol can modulate the effect of [C12MIM]+Br- on membrane properties, with variations observed between POPC and POPG membranes, highlighting the importance of lipid composition. In short, this study provides insights into the intricate interplay between cholesterol, the lipid membrane, and the ionic liquid [C12MIM]+Br-.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department
of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Navleen Kaur
- Department
of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Prashant Hitaishi
- Department
of Physics, School of Natural Sciences, Shiv Nadar Institute of Eminence, NH91, Tehsil Dadri, G. B. Nagar, Greater Noida 201314, Uttar Pradesh, India
| | - Sajal Kumar Ghosh
- Department
of Physics, School of Natural Sciences, Shiv Nadar Institute of Eminence, NH91, Tehsil Dadri, G. B. Nagar, Greater Noida 201314, Uttar Pradesh, India
| | - Venus Singh Mithu
- Department
of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Holger A. Scheidt
- Institute
for Medical Physics and Biophysics, Leipzig
University, Leipzig 04107, Germany
| |
Collapse
|
43
|
Ueki T, Uto K, Yamamoto S, Tamate R, Kamiyama Y, Jia X, Noguchi H, Minami K, Ariga K, Wang H, Nakanishi J. Ionic Liquid Interface as a Cell Scaffold. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310105. [PMID: 38234135 DOI: 10.1002/adma.202310105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/07/2024] [Indexed: 01/19/2024]
Abstract
In sharp contrast to conventional solid/hydrogel platforms, water-immiscible liquids, such as perfluorocarbons and silicones, allow the adhesion of mammalian cells via protein nanolayers (PNLs) formed at the interface. However, fluorocarbons and silicones, which are typically used for liquid cell culture, possess only narrow ranges of physicochemical parameters and have not allowed for a wide variety of cell culturing environments. In this paper, it is proposed that water-immiscible ionic liquids (ILs) are a new family of liquid substrates with tunable physicochemical properties and high solvation capabilities. Tetraalkylphosphonium-based ILs are identified as non-cytotoxic ILs, whereon human mesenchymal stem cells are successfully cultured. By reducing the cation charge distribution, or ionicity, via alkyl chain elongation, the interface allows cell spreading with matured focal contacts. High-speed atomic force microscopy observations of the PNL formation process suggest that the cation charge distribution significantly altered the protein adsorption dynamics, which are associated with the degree of protein denaturation and the PNL mechanics. Moreover, by exploiting dissolution capability of ILs, an ion-gel cell scaffold is fabricated. This enables to further identify the significant contribution of bulk subphase mechanics to cellular mechanosensing in liquid-based culture scaffolds.
Collapse
Affiliation(s)
- Takeshi Ueki
- Research Center for Macromolecules & Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku Sapporo, 060-0810, Japan
| | - Koichiro Uto
- Research Center for Macromolecules & Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Shota Yamamoto
- Research Center for Macromolecules & Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Ryota Tamate
- Research Center for Macromolecules & Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Yuji Kamiyama
- Research Center for Macromolecules & Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku Sapporo, 060-0810, Japan
| | - Xiaofang Jia
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Hidenori Noguchi
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku Sapporo, 060-0810, Japan
- Research Center for Energy and Environmental Materials (GREEN), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Kosuke Minami
- Research Center for Macromolecules & Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Chiba, 277-0882, Japan
| | - Hongxin Wang
- Research Center for Macromolecules & Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Jun Nakanishi
- Research Center for Macromolecules & Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Tokyo, Shinjuku-ku, 169-8555, Japan
- Graduate School of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Tokyo, Katsushika-ku, 125-8585, Japan
| |
Collapse
|
44
|
López-Escalante MC, Martínez de Yuso MV, Cuevas AL, Benavente J. Optical Modification of a Nanoporous Alumina Structure Associated with Surface Coverage by the Ionic Liquid AliquatCl. MICROMACHINES 2024; 15:739. [PMID: 38930709 PMCID: PMC11206012 DOI: 10.3390/mi15060739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
This manuscript analyses changes in the optical parameters of a commercial alumina nanoporous structure (AnodiscTM or AND support) due to surface coverage by the ionic liquid (IL) AliquatCl (AlqCl). XPS measurements were performed for chemical characterization of the composite AND/AlqCl and the AND support, but XPS resolved angle analysis (from 15° to 75°) was carried out for the homogeneity estimation of the top surface of the ANDAlqCl sample. Optical characterization of both the composite AND/AlqCl and the AND support was performed by three non-destructive and non-invasive techniques: ellipsometry spectroscopy (SE), light transmittance/reflection, and photoluminescence. SE measurements (wavelength ranging from 250 nm to 1250 nm) allow for the determination of the refraction index of the AND/AlqCl sample, which hardly differs from that corresponding to the IL, confirming the XPS results. The presence of the IL significantly increases the light transmission of the alumina support in the visible region and reduces reflection, affecting also the maximum position of this latter curve, as well as the photoluminescence spectra. Due to these results, illuminated I-V curves for both the composite AND/AlqCl film and the AND support were also measured to estimate its possible application as a solar cell. The optical behaviour exhibited by the AND/AlqCl thin film in the visible region could be of interest for different applications.
Collapse
Affiliation(s)
- María Cruz López-Escalante
- The Nanotech Unit, Laboratorio de Materiales y Superficies, Departamento de Ingeniería Química, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain;
| | - Mª Valle Martínez de Yuso
- Laboratorio de Espectroscopía de Rayos X, Servicios Centrales de Apoyo a la Investigación (SCAI), Universidad de Málaga, 29071 Málaga, Spain;
| | - Ana L. Cuevas
- Unidad de Nanotecnología, Servicios Centrales de Apoyo a la Investigación (SCAI), Universidad de Málaga, 29071 Málaga, Spain;
| | - Juana Benavente
- Departamento de Física Aplicada I, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| |
Collapse
|
45
|
Zhu G, Zhang H, Han L, Wang H, Zhu A, Li L. Solvent-Driven Room-Temperature Curtius Rearrangements to Access Nucleotides Bearing Substituted Fused Pyridones. Org Lett 2024; 26:4356-4360. [PMID: 38739349 DOI: 10.1021/acs.orglett.4c01403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The intramolecular Curtius rearrangement suffers from a high reaction temperature, low yields, tedious product isolation, and difficult scale up. This study presents a room-temperature Curtius rearrangement that can be novelly driven by the HFIP solvent, followed by light-illuminated intramolecular cyclization. Such a mild reaction allows for the preparation of various fused pyridone derivatives with diverse substituent groups that have rarely been incorporated by previous methods. The roles of HFIP and light are investigated by a set of control experiments through a combination of IR and NMR titration. Furthermore, using the substituted fused pyridones as unnatural bases, we can obtain a panel of new nucleotides.
Collapse
Affiliation(s)
- Gongming Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, China
| | - Haiyang Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, China
| | - Liyang Han
- School of Chemistry and Chemical Engineering, State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, China
| | - Honglei Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, China
| | - Anlian Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, China
| | - Lingjun Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
46
|
Mousavi-Ebadi M, Safaei-Ghomi J. Melamine phosphate-modified magnetic chitosan: a novel biocompatible catalyst for the synthesis of biological tetrahydrodipyrazolopyridine and pyrazolopyranopyrimidine derivatives. Front Chem 2024; 12:1395008. [PMID: 38812613 PMCID: PMC11134575 DOI: 10.3389/fchem.2024.1395008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/17/2024] [Indexed: 05/31/2024] Open
Abstract
A novel biocompatible composite was fabricated by the functionalization of magnetic chitosan with the melamine phosphate (MP) ionic compound to serve as a recoverable and bifunctional catalyst, aiming at the diversity-oriented generation of biological tetrahydropyrazolopyridine and pyrazolopyrimidine derivatives. This involved a meticulously orchestrated reaction, exploiting the in situ generated pyrazole alongside aromatic aldehydes, ammonium acetate, and (thio) barbituric acid. The present work manifests outstanding advantages, offering a novel and great method for the optimal synthesis of two valuable heterocyclic series especially five new derivatives. The resulting novel biocompatible composite was comprehensively characterized through a range of analytical techniques, including FT-IR, NH3 and CO2-TPD, XRD, TEM, FE-SEM, VSM, EDX, elemental CHNS analysis, ICP-MS, and NMR spectroscopy. Notably, the study represents a critical step in the preparation of advanced materials from accessible and cost-effective precursors.
Collapse
Affiliation(s)
| | - Javad Safaei-Ghomi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| |
Collapse
|
47
|
Novello E, Scalzo G, D’Agata G, Raucci MG, Ambrosio L, Soriente A, Tomasello B, Restuccia C, Parafati L, Consoli GML, Ferreri L, Rescifina A, Zagni C, Zampino DC. Synthesis, Characterisation, and In Vitro Evaluation of Biocompatibility, Antibacterial and Antitumor Activity of Imidazolium Ionic Liquids. Pharmaceutics 2024; 16:642. [PMID: 38794304 PMCID: PMC11125126 DOI: 10.3390/pharmaceutics16050642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
In recent decades, ionic liquids (ILs) have garnered research interest for their noteworthy properties, such as thermal stability, low or no flammability, and negligible vapour pressure. Moreover, their tunability offers limitless opportunities to design ILs with properties suitable for applications in many industrial fields. This study aims to synthetise two series of methylimidazolium ILs bearing long alkyl chain in their cations (C9, C10, C12, C14, C16, C18, C20) and with tetrafluoroborate (BF4) and the 1,3-dimethyl-5-sulfoisophthalate (DMSIP) as counter ions. The ILs were characterised using 1H-NMR and MALDI-TOF, and their thermal behaviour was investigated through DSC and TGA. Additionally, the antimicrobial, anticancer, and cytotoxic activities of the ILs were analysed. Moreover, the most promising ILs were incorporated at different concentrations (0.5, 1, 5 wt%) into polyvinyl chloride (PVC) by solvent casting to obtain antimicrobial blend films. The thermal properties and stability of the resulting PVC/IL films, along with their hydrophobicity/hydrophilicity, IL surface distribution, and release, were studied using DSC and TGA, contact angle (CA), SEM, and UV-vis spectrometry, respectively. Furthermore, the antimicrobial and cytotoxic properties of blends were analysed. The in vitro results demonstrated that the antimicrobial and antitumor activities of pure ILs against t Listeria monocytogenes, Escherichia coli, Pseudomonas fluorescens strains, and the breast cancer cell line (MCF7), respectively, were mainly dependent on their structure. These activities were higher in the series containing the BF4 anion and increased with the increase in the methylimidazolium cation alkyl chain length. However, the elongation of the alkyl chain beyond C16 induced a decrease in antimicrobial activity, indicating a cut-off effect. A similar trend was also observed in terms of in vitro biocompatibility. The loading of both the series of ILs into the PVC matrix did not affect the thermal stability of PVC blend films. However, their Tonset decreased with increased IL concentration and alkyl chain length. Similarly, both the series of PVC/IL films became more hydrophilic with increasing IL concentration and alkyl chain. The loading of ILs at 5% concentration led to considerable IL accumulation on the blend film surfaces (as observed in SEM images) and, subsequently, their higher release. The biocompatibility assessment with healthy human dermal fibroblast (HDF) cells and the investigation of antitumoral properties unveiled promising pharmacological characteristics. These findings provide strong support for the potential utilisation of ILs in biomedical applications, especially in the context of cancer therapy and as antibacterial agents to address the challenge of antibiotic resistance. Furthermore, the unique properties of the PVC/IL films make them versatile materials for advancing healthcare technologies, from drug delivery to tissue engineering and antimicrobial coatings to diagnostic devices.
Collapse
Affiliation(s)
- Elisabetta Novello
- Institute of Polymers, Composites and Biomaterials (IPCB)—CNR, Section of Catania, Via Paolo Gaifami, 18, 95126 Catania, Italy; (E.N.); (G.S.); (G.D.); (D.C.Z.)
| | - Giuseppina Scalzo
- Institute of Polymers, Composites and Biomaterials (IPCB)—CNR, Section of Catania, Via Paolo Gaifami, 18, 95126 Catania, Italy; (E.N.); (G.S.); (G.D.); (D.C.Z.)
| | - Giovanni D’Agata
- Institute of Polymers, Composites and Biomaterials (IPCB)—CNR, Section of Catania, Via Paolo Gaifami, 18, 95126 Catania, Italy; (E.N.); (G.S.); (G.D.); (D.C.Z.)
| | - Maria G. Raucci
- Institute of Polymers, Composites and Biomaterials (IPCB)—CNR, Section of Napoli, Viale J.F. Kennedy n.54, Pad.20, 80125 Napoli, Italy; (L.A.); (A.S.)
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials (IPCB)—CNR, Section of Napoli, Viale J.F. Kennedy n.54, Pad.20, 80125 Napoli, Italy; (L.A.); (A.S.)
| | - Alessandra Soriente
- Institute of Polymers, Composites and Biomaterials (IPCB)—CNR, Section of Napoli, Viale J.F. Kennedy n.54, Pad.20, 80125 Napoli, Italy; (L.A.); (A.S.)
| | - Barbara Tomasello
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (B.T.); (A.R.)
| | - Cristina Restuccia
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, 95123 Catania, Italy; (C.R.); (L.P.)
| | - Lucia Parafati
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, 95123 Catania, Italy; (C.R.); (L.P.)
| | - Grazia M. L. Consoli
- Institute of Biomolecular Chemistry (ICB)-CNR, via Paolo Gaifami 18, 95126 Catania, Italy; (G.M.L.C.); (L.F.)
| | - Loredana Ferreri
- Institute of Biomolecular Chemistry (ICB)-CNR, via Paolo Gaifami 18, 95126 Catania, Italy; (G.M.L.C.); (L.F.)
| | - Antonio Rescifina
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (B.T.); (A.R.)
| | - Chiara Zagni
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (B.T.); (A.R.)
| | - Daniela C. Zampino
- Institute of Polymers, Composites and Biomaterials (IPCB)—CNR, Section of Catania, Via Paolo Gaifami, 18, 95126 Catania, Italy; (E.N.); (G.S.); (G.D.); (D.C.Z.)
| |
Collapse
|
48
|
Baca KR, Al-Barghouti K, Wang N, Bennett MG, Matamoros Valenciano L, May TL, Xu IV, Cordry M, Haggard DM, Haas AG, Heimann A, Harders AN, Uhl HG, Melfi DT, Yancey AD, Kore R, Maginn EJ, Scurto AM, Shiflett MB. Ionic Liquids for the Separation of Fluorocarbon Refrigerant Mixtures. Chem Rev 2024; 124:5167-5226. [PMID: 38683680 DOI: 10.1021/acs.chemrev.3c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
This review discusses the research being performed on ionic liquids for the separation of fluorocarbon refrigerant mixtures. Fluorocarbon refrigerants, invented in 1928 by Thomas Midgley Jr., are a unique class of working fluids that are used in a variety of applications including refrigeration. Fluorocarbon refrigerants can be categorized into four generations: chlorofluorocarbons, hydrochlorofluorocarbons, hydrofluorocarbons, and hydrofluoroolefins. Each generation of refrigerants solved a key problem from the previous generation; however, each new generation has relied on more complex mixtures that are often zeotropic, near azeotropic, or azeotropic. The complexity of the refrigerants used and the fact that many refrigerants form azeotropes when mixed makes handling the refrigerants at end of life extremely difficult. Today, less than 3% of refrigerants that enter the market are recycled. This is due to a lack of technology in the refrigerant reclaim market that would allow for these complex, azeotropic refrigerant mixtures to be separated into their components in order to be effectively reused, recycled, and if needed repurposed. As the market for recovering and reclaiming refrigerants continues to grow, there is a strong need for separation technology. Ionic liquids show promise for separating azeotropic refrigerant mixtures as an entrainer in extractive distillation process. Ionic liquids have been investigated with refrigerants for this application since the early 2000s. This review will provide a comprehensive summary of the physical property measurements, equations of state modeling, molecular simulations, separation techniques, and unique materials unitizing ionic liquids for the development of an ionic-liquid-based separation process for azeotropic refrigerant mixtures.
Collapse
Affiliation(s)
- Kalin R Baca
- Wonderful Institute for Sustainable Engineering, 1536 West 15th Street, Lawrence, Kansas 66045, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, 1530 West 15th Street, Lawrence, Kansas 66045, United States
| | - Karim Al-Barghouti
- Wonderful Institute for Sustainable Engineering, 1536 West 15th Street, Lawrence, Kansas 66045, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, 1530 West 15th Street, Lawrence, Kansas 66045, United States
| | - Ning Wang
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Madelyn G Bennett
- Wonderful Institute for Sustainable Engineering, 1536 West 15th Street, Lawrence, Kansas 66045, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, 1530 West 15th Street, Lawrence, Kansas 66045, United States
| | - Lucia Matamoros Valenciano
- Wonderful Institute for Sustainable Engineering, 1536 West 15th Street, Lawrence, Kansas 66045, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, 1530 West 15th Street, Lawrence, Kansas 66045, United States
| | - Tessie L May
- Wonderful Institute for Sustainable Engineering, 1536 West 15th Street, Lawrence, Kansas 66045, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, 1530 West 15th Street, Lawrence, Kansas 66045, United States
| | - Irene V Xu
- Wonderful Institute for Sustainable Engineering, 1536 West 15th Street, Lawrence, Kansas 66045, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, 1530 West 15th Street, Lawrence, Kansas 66045, United States
| | - Max Cordry
- Wonderful Institute for Sustainable Engineering, 1536 West 15th Street, Lawrence, Kansas 66045, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, 1530 West 15th Street, Lawrence, Kansas 66045, United States
| | - Dorothy M Haggard
- Wonderful Institute for Sustainable Engineering, 1536 West 15th Street, Lawrence, Kansas 66045, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, 1530 West 15th Street, Lawrence, Kansas 66045, United States
| | - Abigail G Haas
- Wonderful Institute for Sustainable Engineering, 1536 West 15th Street, Lawrence, Kansas 66045, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, 1530 West 15th Street, Lawrence, Kansas 66045, United States
| | - Ashley Heimann
- Wonderful Institute for Sustainable Engineering, 1536 West 15th Street, Lawrence, Kansas 66045, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, 1530 West 15th Street, Lawrence, Kansas 66045, United States
| | - Abby N Harders
- Wonderful Institute for Sustainable Engineering, 1536 West 15th Street, Lawrence, Kansas 66045, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, 1530 West 15th Street, Lawrence, Kansas 66045, United States
| | - Hannah G Uhl
- Wonderful Institute for Sustainable Engineering, 1536 West 15th Street, Lawrence, Kansas 66045, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, 1530 West 15th Street, Lawrence, Kansas 66045, United States
| | - Diego T Melfi
- Wonderful Institute for Sustainable Engineering, 1536 West 15th Street, Lawrence, Kansas 66045, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, 1530 West 15th Street, Lawrence, Kansas 66045, United States
| | - Andrew D Yancey
- Wonderful Institute for Sustainable Engineering, 1536 West 15th Street, Lawrence, Kansas 66045, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, 1530 West 15th Street, Lawrence, Kansas 66045, United States
| | - Rajkumar Kore
- Wonderful Institute for Sustainable Engineering, 1536 West 15th Street, Lawrence, Kansas 66045, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, 1530 West 15th Street, Lawrence, Kansas 66045, United States
| | - Edward J Maginn
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Aaron M Scurto
- Wonderful Institute for Sustainable Engineering, 1536 West 15th Street, Lawrence, Kansas 66045, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, 1530 West 15th Street, Lawrence, Kansas 66045, United States
| | - Mark B Shiflett
- Wonderful Institute for Sustainable Engineering, 1536 West 15th Street, Lawrence, Kansas 66045, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, 1530 West 15th Street, Lawrence, Kansas 66045, United States
| |
Collapse
|
49
|
Dupont J, Leal BC, Lozano P, Monteiro AL, Migowski P, Scholten JD. Ionic Liquids in Metal, Photo-, Electro-, and (Bio) Catalysis. Chem Rev 2024; 124:5227-5420. [PMID: 38661578 DOI: 10.1021/acs.chemrev.3c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Ionic liquids (ILs) have unique physicochemical properties that make them advantageous for catalysis, such as low vapor pressure, non-flammability, high thermal and chemical stabilities, and the ability to enhance the activity and stability of (bio)catalysts. ILs can improve the efficiency, selectivity, and sustainability of bio(transformations) by acting as activators of enzymes, selectively dissolving substrates and products, and reducing toxicity. They can also be recycled and reused multiple times without losing their effectiveness. ILs based on imidazolium cation are preferred for structural organization aspects, with a semiorganized layer surrounding the catalyst. ILs act as a container, providing a confined space that allows modulation of electronic and geometric effects, miscibility of reactants and products, and residence time of species. ILs can stabilize ionic and radical species and control the catalytic activity of dynamic processes. Supported IL phase (SILP) derivatives and polymeric ILs (PILs) are good options for molecular engineering of greener catalytic processes. The major factors governing metal, photo-, electro-, and biocatalysts in ILs are discussed in detail based on the vast literature available over the past two and a half decades. Catalytic reactions, ranging from hydrogenation and cross-coupling to oxidations, promoted by homogeneous and heterogeneous catalysts in both single and multiphase conditions, are extensively reviewed and discussed considering the knowledge accumulated until now.
Collapse
Affiliation(s)
- Jairton Dupont
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Bárbara C Leal
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Adriano L Monteiro
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Migowski
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Jackson D Scholten
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| |
Collapse
|
50
|
Hsieh AY, Haines RS, Harper JB. Effects of Ionic Liquids on the Nucleofugality of Bromide. J Org Chem 2024; 89:6247-6256. [PMID: 38655582 DOI: 10.1021/acs.joc.4c00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The nucleofugality of bromide was measured in solvent mixtures containing ionic liquids. The solvolysis rate constants of the bromides of well-defined electrofuges were determined in mixtures containing different proportions of 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide in ethanol. Temperature-dependent kinetic studies allowed an explanation of the observed solvent effects in different mixtures in terms of interactions in solution. Using the solvolysis data, the nucleofugality of bromide in these systems was determined. Likewise, nucleofugality data for bromide were determined in mixtures containing high proportions of seven further ionic liquids. These data allowed quantification of the effects of both varying the amount of ionic liquid and the nature of ionic liquid components on the nucleofugality of bromide. Importantly, ionic liquid mixtures were shown to affect the nucleofugality in a manner similar to chloride, providing a method for predicting the effects of ionic liquids on other electrofuges. Further, the ionic liquids were shown to move the transition state earlier along the reaction coordinate, meaning that there is less charge development in the transition state.
Collapse
Affiliation(s)
- Andrew Y Hsieh
- School of Chemistry, University of New South Wales, UNSW, Sydney, NSW 2052, Australia
| | - Ronald S Haines
- School of Chemistry, University of New South Wales, UNSW, Sydney, NSW 2052, Australia
| | - Jason B Harper
- School of Chemistry, University of New South Wales, UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|