1
|
Kim YL, Kim JH. Stereoselective Synthesis of Glycosides via Tsuji-Trost Type Glycosylation Using 3,4-Carbonate Galactals. CHEM REC 2024; 24:e202400067. [PMID: 39166700 DOI: 10.1002/tcr.202400067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/03/2024] [Indexed: 08/23/2024]
Abstract
Pd-catalyzed stereoselective glycosylations using unsaturated sugar derivatives, glycals, have been successfully achieved in recent years. This review focuses on approaches to control the stereoselectivities of glycosides via π-allyl intermediates that mimic the Tsuji-Trost asymmetric allylic alkylation reactions, enabling stereoselectivity control through rational design. In the reaction process, zwitterionic Pd-π-allyl complexes, formed after the oxidative addition and decarboxylation, play a crucial role in increasing reactivities and enhancing the stereoselectivities of α- and β-glycosides. We summarized recently developed Tsuji-Trost type glycosylations using 3,4-carbonate galactals, featuring high efficiency, exclusive stereoselectivities, and a broad reaction scope including O-, N-, S-, and C-glycosylations.
Collapse
Affiliation(s)
- Ye Lim Kim
- Department of Chemistry (BK21 Four), Gyeongsang National University, Jinju, 52828, Korea
| | - Ju Hyun Kim
- Department of Chemistry, Dongguk University, Seoul, 04620, Korea
| |
Collapse
|
2
|
Li G, Noguchi M, Ishihara M, Takagi Y, Nagaki M, Saito S, Saito M, Ye XS, Shoda SI. Stereoselective protecting-group-free synthesis of alkyl glycosides using dibenzyloxy triazine type glycosyl donors. Carbohydr Res 2023; 534:108940. [PMID: 37738819 DOI: 10.1016/j.carres.2023.108940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023]
Abstract
Chemical O-glycosylation is a key step for the synthesis of sugar-containing molecules such as glycolipids. However, traditional carbohydrate chemistry is characterized by extensive use of protective groups, resulting in laborious manipulations and poor atom economy. Here, we present a protecting-group-free glycosylation strategy employing dibenzyloxy-1,3,5-triazin-2-yl glycosides (DBT-glycosides) as glycosyl donors. The DBT-glycosyl donors could be prepared directly through an alkaline nucleophilic substitution from unprotected sugars in aqueous media. The O-glycosylation of alcohols by using DBT-glycosyl donors has been carried out under mild hydrogenolytic conditions, affording the corresponding alkyl glycosides stereo-selectively in good yields.
Collapse
Affiliation(s)
- Gefei Li
- College of Science, Nanjing Forestry University, Long Pan Road No.159, Nanjing, 210037, PR China; Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-07, Aoba, Aoba-ku, Sendai, 980-8579, Japan; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, PR China
| | - Masato Noguchi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-07, Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Masaki Ishihara
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-07, Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Yuka Takagi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-07, Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Marina Nagaki
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-07, Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Sachie Saito
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-07, Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Masashi Saito
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-07, Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, PR China.
| | - Shin-Ichiro Shoda
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-07, Aoba, Aoba-ku, Sendai, 980-8579, Japan.
| |
Collapse
|
3
|
Jdanova S, Taylor MS. Mechanistic Study of the Copper(II)-Mediated Site-Selective O-Arylation of Glycosides with Arylboronic Acids. J Org Chem 2023; 88:3487-3498. [PMID: 36888595 DOI: 10.1021/acs.joc.2c02693] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Glycosides having multiple free OH groups have been shown to undergo site-selective O-arylations in the presence of arylboronic acids and copper(II) acetate. Herein, a mechanistic analysis of these Chan-Evans-Lam-type couplings is presented based on reaction kinetics, mass spectrometric analysis of reaction mixtures, and substituent effect studies. The results establish that the formation of a substrate-derived boronic ester accelerates the rate-determining transmetalation step. Intramolecular transfer of the aryl group from the boronic ester is ruled out in favor of a pathway in which the key pre-transmetalation assembly is generated from a boronic ester, a copper complex, and a second equivalent of arylboronic acid.
Collapse
Affiliation(s)
- Sofia Jdanova
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6 Canada
| | - Mark S Taylor
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6 Canada
| |
Collapse
|
4
|
Liang Y, Laporte AG, Bodlenner A, Compain P. Stereoselective Synthesis of Glycosyl Cyanides by TMSOTf‐Mediated Ring Opening of 1,6‐Anhydro Sugars. European J Org Chem 2023. [DOI: 10.1002/ejoc.202201311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Yan Liang
- Laboratoire d'Innovation Moléculaire et Applications (LIMA) Univ. de Strasbourg
- Univ. de Haute-Alsace
- CNRS (UMR 7042) Equipe de Synthèse Organique et Molécules Bioactives (SYBIO) ECPM 25 Rue Becquerel 67000 Strasbourg France
| | - Adrien G. Laporte
- Laboratoire d'Innovation Moléculaire et Applications (LIMA) Univ. de Strasbourg
- Univ. de Haute-Alsace
- CNRS (UMR 7042) Equipe de Synthèse Organique et Molécules Bioactives (SYBIO) ECPM 25 Rue Becquerel 67000 Strasbourg France
| | - Anne Bodlenner
- Laboratoire d'Innovation Moléculaire et Applications (LIMA) Univ. de Strasbourg
- Univ. de Haute-Alsace
- CNRS (UMR 7042) Equipe de Synthèse Organique et Molécules Bioactives (SYBIO) ECPM 25 Rue Becquerel 67000 Strasbourg France
| | - Philippe Compain
- Laboratoire d'Innovation Moléculaire et Applications (LIMA) Univ. de Strasbourg
- Univ. de Haute-Alsace
- CNRS (UMR 7042) Equipe de Synthèse Organique et Molécules Bioactives (SYBIO) ECPM 25 Rue Becquerel 67000 Strasbourg France
| |
Collapse
|
5
|
Wang M, Zhang L, Li Y, Gu L. Imidazole Promoted Efficient Anomerization of β‐D‐Glucose Pentaacetate in Solid State and Reaction Mechanism. ChemistrySelect 2022. [DOI: 10.1002/slct.202202508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Meifeng Wang
- Department of Biomedical Engineering Jinan University; #601 Huangpu Avenue West Guangzhou China
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources Hunan University of Science and Engineering Yongzhou 425199 China
- Department of Chemistry Jinan University, #601, Huangpu Avenue West Guangzhou China
| | - Liyin Zhang
- Department of Biomedical Engineering Jinan University; #601 Huangpu Avenue West Guangzhou China
| | - Yiqun Li
- Department of Chemistry Jinan University, #601, Huangpu Avenue West Guangzhou China
| | - Liuqun Gu
- Department of Biomedical Engineering Jinan University; #601 Huangpu Avenue West Guangzhou China
| |
Collapse
|
6
|
Hamaya Y, Komura N, Imamura A, Ishida H, Ando H, Tanaka HN. Protecting-group- and microwave-free synthesis of β-glycosyl esters and aryl β-glycosides of N-acetyl-d-glucosamine. Bioorg Med Chem 2022; 67:116852. [PMID: 35649323 DOI: 10.1016/j.bmc.2022.116852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/26/2022]
Abstract
A protecting-group-free method for synthesis of β-glycosyl esters and aryl β-glycosides was developed by using latent chemical reactivity of N-acetyl-d-glucosamine (GlcNAc) oxazoline. The GlcNAc oxazoline was spontaneously reacted with carboxylic acids and phenol derivatives via the oxazoline ring opening without the use of a catalyst or heating conditions (i.e., microwave irradiation), affording the desired products in moderate to excellent yields with β-selectivity. This simple protecting-group-free method exhibits a wide substrate scope and good functional group tolerance, and it allows the efficient production of a novel class of GlcNAc-conjugated biomaterials and prodrug candidates.
Collapse
Affiliation(s)
- Yu Hamaya
- Department of Applied Bioorganic Chemistry, Gifu University, Gifu 501-1193, Japan
| | - Naoko Komura
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Akihiro Imamura
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan; Department of Applied Bioorganic Chemistry, Gifu University, Gifu 501-1193, Japan
| | - Hideharu Ishida
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan; Department of Applied Bioorganic Chemistry, Gifu University, Gifu 501-1193, Japan; Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu 501-1193, Japan
| | - Hiromune Ando
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan.
| | - Hide-Nori Tanaka
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan; Oceanography Section, Science Research Center, Kochi University, Kochi 783-8502, Japan.
| |
Collapse
|
7
|
Obradors C, Mitschke B, Aukland MH, Leutzsch M, Grossmann O, Brunen S, Schwengers SA, List B. Direct and Catalytic C-Glycosylation of Arenes: Expeditious Synthesis of the Remdesivir Nucleoside. Angew Chem Int Ed Engl 2022; 61:e202114619. [PMID: 34856043 PMCID: PMC9305923 DOI: 10.1002/anie.202114619] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Indexed: 12/01/2022]
Abstract
Since early 2020, scientists have strived to find an effective solution to fight SARS-CoV-2, in particular by developing reliable vaccines that inhibit the spread of the disease and repurposing drugs for combatting its effects on the human body. The antiviral prodrug Remdesivir is still the most widely used therapeutic during the early stages of the infection. However, the current synthetic routes rely on the use of protecting groups, air-sensitive reagents, and cryogenic conditions, thus impeding a cost-efficient supply to patients. We have, therefore, focused on the development of a straightforward, direct addition of (hetero)arenes to unprotected sugars. Here we report a silylium-catalyzed and completely stereoselective C-glycosylation that initially yields the open-chain polyols, which can be selectively cyclized to provide either the kinetic α-furanose or the thermodynamically favored β-anomer. The method significantly expedites the synthesis of Remdesivir precursor GS-441524 after a subsequent Mn-catalyzed C-H oxidation and deoxycyanation.
Collapse
Affiliation(s)
- Carla Obradors
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Benjamin Mitschke
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Miles H. Aukland
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Markus Leutzsch
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Oleg Grossmann
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Sebastian Brunen
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Sebastian A. Schwengers
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Benjamin List
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| |
Collapse
|
8
|
Dey K, Jayaraman N. Anomeric alkylations and acylations of unprotected mono- and disaccharides mediated by pyridoneimine in aqueous solutions. Chem Commun (Camb) 2022; 58:2224-2227. [PMID: 35072677 DOI: 10.1039/d1cc07056h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A site-specific deprotonation followed by alkylations and acylations of sugar hemiacetals to the corresponding alkyl glycosides and acylated sugars in aqueous solutions is disclosed herein. Pyridoneimine as a new base is developed to mediate the deprotonation of readily available sugar hemiacetals and further reactions with alkylation and acylation agents.
Collapse
Affiliation(s)
- Kalyan Dey
- Indian Institute of Science, Bangalore 560012, India.
| | | |
Collapse
|
9
|
Wen P, Jia P, Fan Q, McCarty BJ, Tang W. Streamlined Iterative Assembly of Thio-Oligosaccharides by Aqueous S-Glycosylation of Diverse Deoxythio Sugars. CHEMSUSCHEM 2022; 15:e202102483. [PMID: 34911160 PMCID: PMC9100857 DOI: 10.1002/cssc.202102483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/13/2021] [Indexed: 06/14/2023]
Abstract
A streamlined iterative assembly of thio-oligosaccharides was developed by aqueous glycosylation. Facile syntheses of various deoxythio sugars with the sulfur on different positions from commercially available starting materials were described. These syntheses featured efficient chemical methods including our recently reported BTM-catalyzed site-selective acylation. The resulting deoxythio sugars could then be used for the Ca(OH)2 -promoted protecting group-free S-glycosylation in water at room temperature. The aqueous glycosylation reaction proceeded smoothly to afford the corresponding 1,2-trans S-glycosides in good yields with high chemo- and stereoselectivity. An appropriate choice of protecting groups for the thiol in the glycosyl donor was necessary for the development of iterative synthesis of thio-oligosaccharides. The aqueous glycosylation was then applied to the synthesis of a trimannoside moiety of N-linked glycans core region.
Collapse
Affiliation(s)
- Peng Wen
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Peijing Jia
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Qiuhua Fan
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Bethany J McCarty
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Weiping Tang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
10
|
Obradors C, Mitschke B, Aukland MH, Leutzsch M, Grossmann O, Brunen S, Schwengers SA, List B. Direkte Katalytische
C
‐Glykosylierung von Arenen: beschleunigte Synthese des Remdesivir‐Nucleosids**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Carla Obradors
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| | - Benjamin Mitschke
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| | - Miles H. Aukland
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| | - Markus Leutzsch
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| | - Oleg Grossmann
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| | - Sebastian Brunen
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| | - Sebastian A. Schwengers
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| | - Benjamin List
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| |
Collapse
|
11
|
Escopy S, Demchenko AV. Transition-Metal-Mediated Glycosylation with Thioglycosides. Chemistry 2021; 28:e202103747. [PMID: 34935219 DOI: 10.1002/chem.202103747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Indexed: 11/09/2022]
Abstract
Thioglycosides are among the most common glycosyl donors that find broad application in the synthesis of glycans and glycoconjugates. However, the requirement for toxic and/or large access of activators needed for common glycosylations with thioglycosides remains a notable drawback. Due to the increased awareness of the chemical waste impact on the environment, synthetic studies have been driven by the goal of finding non-toxic reagents. The main focus of this review is to highlight recent methods for thioglycoside activation that rely on transition metal catalysis.
Collapse
Affiliation(s)
- Samira Escopy
- University of Missouri - St. Louis, Chemistry, UNITED STATES
| | - Alexei V Demchenko
- Saint Louis University, Chemistry, 3501 Laclede Ave, 63103, St. Louis, UNITED STATES
| |
Collapse
|
12
|
Li J, Wang M, Jiang X. Diastereoselective Synthesis of Thioglycosides via Pd-Catalyzed Allylic Rearrangement. Org Lett 2021; 23:9053-9057. [PMID: 34783571 DOI: 10.1021/acs.orglett.1c03302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stereoselective glycosylation is challenging in carbohydrate chemistry. Herein, stereoselective thioglycosylation of glycals via palladium-catalyzed allylic rearrangement yields various substituents on α-isomer thioglycosides. Two comprehensive series of aryl and benzyl thioglycosides were obtained via a combination of thiosulfates with glycals derived from glucose, arabinose, galactose, and rhamnose. Furthermore, diosgenyl α-l-rhamnoside and isoquercitrin achieved selectivity via stereospecific [2,3]-sigma rearrangements of α-sulfoxide-rhamnoside and α-sulfoxide-glucoside, respectively.
Collapse
Affiliation(s)
- Jiagen Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, People's Republic of China
| | - Ming Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, People's Republic of China
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, People's Republic of China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, People's Republic of China
| |
Collapse
|
13
|
Ospina F, Schülke KH, Hammer SC. Biocatalytic Alkylation Chemistry: Building Molecular Complexity with High Selectivity. Chempluschem 2021; 87:e202100454. [PMID: 34821073 DOI: 10.1002/cplu.202100454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/05/2021] [Indexed: 12/28/2022]
Abstract
Biocatalysis has traditionally been viewed as a field that primarily enables access to chiral centers. This includes the synthesis of chiral alcohols, amines and carbonyl compounds, often through functional group interconversion via hydrolytic or oxidation-reduction reactions. This limitation is partly being overcome by the design and evolution of new enzymes. Here, we provide an overview of a recently thriving research field that we summarize as biocatalytic alkylation chemistry. In the past 3-4 years, numerous new enzymes have been developed that catalyze sp3 C-C/N/O/S bond formations. These enzymes utilize different mechanisms to generate molecular complexity by coupling simple fragments with high activity and selectivity. In many cases, the engineered enzymes perform reactions that are difficult or impossible to achieve with current small-molecule catalysts such as organocatalysts and transition-metal complexes. This review further highlights that the design of new enzyme function is particularly successful when off-the-shelf synthetic reagents are utilized to access non-natural reactive intermediates. This underscores how biocatalysis is gradually moving to a field that build molecules through selective bond forming reactions.
Collapse
Affiliation(s)
- Felipe Ospina
- Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Kai H Schülke
- Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Stephan C Hammer
- Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| |
Collapse
|
14
|
Chen J, Tang Y, Yu B. A Mild Glycosylation Protocol with Glycosyl 1‐Methylimidazole‐2‐carboxylates as Donors. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jianpeng Chen
- School of Physical Science and Technology ShanghaiTech University 100 Haike Road Shanghai 201210 China
| | - Yu Tang
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
15
|
Ichikawa Y, Kaneno D, Saeki N, Minami T, Masuda T, Yoshida K, Kondo T, Ochi R. Protecting group-free method for synthesis of N-glycosyl carbamates and an assessment of the anomeric effect of nitrogen in the carbamate group. Carbohydr Res 2021; 505:108280. [PMID: 34023127 DOI: 10.1016/j.carres.2021.108280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 10/22/2022]
Abstract
The first protecting group-free synthesis of N-glycosyl carbamates has been developed through reaction of d-glucose with n-butyl carbamate in acidic aqueous media. The structures of the N-glucosyl carbamates were unambiguously determined by comparison with authentic samples, prepared using the isocyanide method. With this protective group-free method for synthesis of N-glycosyl carbamates in hand, an anomeric pair of N-xylopyranosyl carbamates were prepared and used to assess the anomeric effect of nitrogen in the carbamate group.
Collapse
Affiliation(s)
- Yoshiyasu Ichikawa
- Faculty of Science, Kochi University, Akebono-cho Kochi, 780-8520, Japan.
| | - Daisuke Kaneno
- Graduate School of Integrated Arts and Sciences, Kochi University, Monobe, Nankoku, 783-8502, Japan
| | - Nobuyoshi Saeki
- Faculty of Science, Kochi University, Akebono-cho Kochi, 780-8520, Japan
| | - Takahiro Minami
- Faculty of Science, Kochi University, Akebono-cho Kochi, 780-8520, Japan
| | - Toshiya Masuda
- Graduate School of Human Life Science, Osaka City University, Japan
| | - Kumi Yoshida
- Graduate School of Informatics, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Tadao Kondo
- Graduate School of Informatics, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Rika Ochi
- Faculty of Science, Kochi University, Akebono-cho Kochi, 780-8520, Japan
| |
Collapse
|
16
|
de Moliner F, Knox K, Gordon D, Lee M, Tipping WJ, Geddis A, Reinders A, Ward JM, Oparka K, Vendrell M. A Palette of Minimally Tagged Sucrose Analogues for Real-Time Raman Imaging of Intracellular Plant Metabolism. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:7715-7720. [PMID: 38505234 PMCID: PMC10946860 DOI: 10.1002/ange.202016802] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Indexed: 12/19/2022]
Abstract
Sucrose is the main saccharide used for long-distance transport in plants and plays an essential role in energy metabolism; however, there are no analogues for real-time imaging in live cells. We have optimised a synthetic approach to prepare sucrose analogues including very small (≈50 Da or less) Raman tags in the fructose moiety. Spectroscopic analysis identified the alkyne-tagged compound 6 as a sucrose analogue recognised by endogenous transporters in live cells and with higher Raman intensity than other sucrose derivatives. Herein, we demonstrate the application of compound 6 as the first optical probe to visualise real-time uptake and intracellular localisation of sucrose in live plant cells using Raman microscopy.
Collapse
Affiliation(s)
| | - Kirsten Knox
- Institute of Molecular Plant SciencesThe University of EdinburghUK
| | - Doireann Gordon
- Centre for Inflammation ResearchThe University ofEdinburghUK
| | - Martin Lee
- Cancer Research (UK) Edinburgh CentreThe University of EdinburghUK
| | - William J. Tipping
- EaStCHEM School of ChemistryThe University of EdinburghUK
- Centre for Molecular NanometrologyUniversity of StrathclydeUK
| | - Ailsa Geddis
- Centre for Inflammation ResearchThe University ofEdinburghUK
- EaStCHEM School of ChemistryThe University of EdinburghUK
| | - Anke Reinders
- Department of Plant and Microbial BiologyUniversity of MinnesotaUSA
| | - John M. Ward
- Department of Plant and Microbial BiologyUniversity of MinnesotaUSA
| | - Karl Oparka
- Institute of Molecular Plant SciencesThe University of EdinburghUK
| | - Marc Vendrell
- Centre for Inflammation ResearchThe University ofEdinburghUK
| |
Collapse
|
17
|
de Moliner F, Knox K, Gordon D, Lee M, Tipping WJ, Geddis A, Reinders A, Ward JM, Oparka K, Vendrell M. A Palette of Minimally Tagged Sucrose Analogues for Real-Time Raman Imaging of Intracellular Plant Metabolism. Angew Chem Int Ed Engl 2021; 60:7637-7642. [PMID: 33491852 PMCID: PMC8048481 DOI: 10.1002/anie.202016802] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Indexed: 12/20/2022]
Abstract
Sucrose is the main saccharide used for long-distance transport in plants and plays an essential role in energy metabolism; however, there are no analogues for real-time imaging in live cells. We have optimised a synthetic approach to prepare sucrose analogues including very small (≈50 Da or less) Raman tags in the fructose moiety. Spectroscopic analysis identified the alkyne-tagged compound 6 as a sucrose analogue recognised by endogenous transporters in live cells and with higher Raman intensity than other sucrose derivatives. Herein, we demonstrate the application of compound 6 as the first optical probe to visualise real-time uptake and intracellular localisation of sucrose in live plant cells using Raman microscopy.
Collapse
Affiliation(s)
| | - Kirsten Knox
- Institute of Molecular Plant SciencesThe University of EdinburghUK
| | - Doireann Gordon
- Centre for Inflammation ResearchThe University ofEdinburghUK
| | - Martin Lee
- Cancer Research (UK) Edinburgh CentreThe University of EdinburghUK
| | - William J. Tipping
- EaStCHEM School of ChemistryThe University of EdinburghUK
- Centre for Molecular NanometrologyUniversity of StrathclydeUK
| | - Ailsa Geddis
- Centre for Inflammation ResearchThe University ofEdinburghUK
- EaStCHEM School of ChemistryThe University of EdinburghUK
| | - Anke Reinders
- Department of Plant and Microbial BiologyUniversity of MinnesotaUSA
| | - John M. Ward
- Department of Plant and Microbial BiologyUniversity of MinnesotaUSA
| | - Karl Oparka
- Institute of Molecular Plant SciencesThe University of EdinburghUK
| | - Marc Vendrell
- Centre for Inflammation ResearchThe University ofEdinburghUK
| |
Collapse
|
18
|
Dimakos V, Taylor MS. Recent advances in the direct O-arylation of carbohydrates. Org Biomol Chem 2021; 19:514-524. [PMID: 33331387 DOI: 10.1039/d0ob02009e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Methods for the O-arylation of hydroxyl and hemiacetal groups in carbohydrates via C(sp2)-O bond formation are discussed. Such methods provide an alternative disconnection to the traditional approach of nucleophilic substitution between a sugar-derived electrophile and a phenol or phenoxide nucleophile. They have led to new opportunities for stereoselectivity, site-selectivity and chemoselectivity in the preparation of O-aryl glycosides and carbohydrate-derived aryl ethers, compounds that are useful for a broad range of applications in medicinal chemistry, glycobiology and organic synthesis.
Collapse
Affiliation(s)
- Victoria Dimakos
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON M5S 3H6, Canada.
| | - Mark S Taylor
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON M5S 3H6, Canada.
| |
Collapse
|
19
|
Ye W, Stevens CM, Wen P, Simmons CJ, Tang W. Mild Cu(OTf) 2-Mediated C-Glycosylation with Chelation-Assisted Picolinate as a Leaving Group. J Org Chem 2020; 85:16218-16225. [PMID: 32691596 PMCID: PMC8138965 DOI: 10.1021/acs.joc.0c01041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
C-Glycosylation reactions of glycosyl picolinates with allyltrimethylsilane or silyl enol ethers were developed. Picolinate as a chelation-assisted leaving group could be activated by Cu(OTf)2 and avoided the use of harsh Lewis acids. The glycosylations were operated under mild neutral conditions and gave the corresponding C-glycosides in up to 95% yield with moderate to excellent stereoselectivities.
Collapse
Affiliation(s)
- Wenjing Ye
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Christopher M Stevens
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Peng Wen
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Christopher J Simmons
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Weiping Tang
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
20
|
Zuckerman DS, Woerpel KA. Synthesis of Enantiopure Triols from Racemic Baylis-Hillman Adducts Using a Diastereoselective Peroxidation Reaction. Org Lett 2020; 22:9075-9080. [PMID: 33141576 DOI: 10.1021/acs.orglett.0c03439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using a chiral (-)-menthone auxiliary, enantiopure cyclic derivatives of Baylis-Hillman adducts were synthesized. A diastereoselective peroxidation reaction was used to introduce an oxygen atom and establish another stereocenter. The resulting products could be elaborated by employing a one-flask reduction-acetylation protocol followed by a diastereoselective nucleophilic substitution reaction. Removal of the (-)-menthone auxiliary provided an enantiopure triol with a structure related to naturally occurring polyols.
Collapse
Affiliation(s)
- Dylan S Zuckerman
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - K A Woerpel
- Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
21
|
Wen P, Simmons CJ, Ma ZX, Blaszczyk SA, Balzer PG, Ye W, Duan X, Wang HY, Yin D, Stevens CM, Tang W. Synthesis of Glycosyl Chlorides and Bromides by Chelation Assisted Activation of Picolinic Esters under Mild Neutral Conditions. Org Lett 2020; 22:1495-1498. [PMID: 32026682 PMCID: PMC7050992 DOI: 10.1021/acs.orglett.0c00078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A general method has been developed for the formation of glycosyl chlorides and bromides from picolinic esters under mild and neutral conditions. Benchtop stable picolinic esters are activated by a copper(II) halide species to afford the corresponding products in high yields with a traceless leaving group. Rare β glycosyl chlorides are accessible via this route through neighboring group participation. Additionally, glycosyl chlorides with labile protecting groups previously not easily accessible can be prepared.
Collapse
Affiliation(s)
- Peng Wen
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Christopher J. Simmons
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Zhi-xiong Ma
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Stephanie A. Blaszczyk
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Paul G. Balzer
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Wenjing Ye
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Xiyan Duan
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Hao-Yuan Wang
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Dan Yin
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Christopher M. Stevens
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Weiping Tang
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| |
Collapse
|
22
|
Systematic synthesis and characterization of a series of different bromoalkylglycosides by Fischer glycosylation. Carbohydr Res 2019; 486:107841. [PMID: 31655420 DOI: 10.1016/j.carres.2019.107841] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/15/2019] [Accepted: 10/15/2019] [Indexed: 11/23/2022]
Abstract
In order to investigate the possibilities of Fischer glycosylation towards the synthesis of bromoalkylglycosides we performed a variety of different reactions resulting in a small library of 16 different glycosides. Using standardized reaction conditions we could gain a broad range of results from small to higher yields. Finally we randomly selected three reactions and performed them with higher amounts of bromoalcohol resulting in significantly better yields, showing the optimization potential of these basic research work.
Collapse
|
23
|
Ghosh T, Mukherji A, Srivastava HK, Kancharla PK. Secondary amine salt catalyzed controlled activation of 2-deoxy sugar lactols towards alpha-selective dehydrative glycosylation. Org Biomol Chem 2019; 16:2870-2875. [PMID: 29633773 DOI: 10.1039/c8ob00423d] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A new organocatalytic glycosylation method exploiting the lactol functionality has been disclosed. The catalytic generation of glycosyl oxacarbenium ions from lactols under forcible conditions via weakly Brønsted-acidic, readily available secondary amine salts affects the diastereoselective glycosylation of 2-deoxypyranoses and furanoses. This operationally simple iminium catalyzed activation of 2-deoxy hemi-acetals is a potential alternative to the existing cumbersome methods that need specialized handling. The mechanisms for this unique transformation and kinetic/thermodynamic effects have been discussed based on both experimental evidence and theoretical studies.
Collapse
Affiliation(s)
- Titli Ghosh
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| | | | | | | |
Collapse
|
24
|
Báti G, He JX, Pal KB, Liu XW. Stereo- and regioselective glycosylation with protection-less sugar derivatives: an alluring strategy to access glycans and natural products. Chem Soc Rev 2019; 48:4006-4018. [DOI: 10.1039/c8cs00905h] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This review delivers insights for dedicated chemists into the development of efficient methods in accessing carbohydrates at a lower cost.
Collapse
Affiliation(s)
- Gábor Báti
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore
| | - Jing-Xi He
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore
- School of Chemical and Biomedical Engineering
| | - Kumar Bhaskar Pal
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore
| | - Xue-Wei Liu
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore
| |
Collapse
|
25
|
Yoshimura Y, Wakamatsu H, Natori Y, Saito Y, Minakawa N. Glycosylation reactions mediated by hypervalent iodine: application to the synthesis of nucleosides and carbohydrates. Beilstein J Org Chem 2018; 14:1595-1618. [PMID: 30013687 PMCID: PMC6037013 DOI: 10.3762/bjoc.14.137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/15/2018] [Indexed: 12/23/2022] Open
Abstract
To synthesize nucleoside and oligosaccharide derivatives, we often use a glycosylation reaction to form a glycoside bond. Coupling reactions between a nucleobase and a sugar donor in the former case, and the reaction between an acceptor and a sugar donor of in the latter are carried out in the presence of an appropriate activator. As an activator of the glycosylation, a combination of a Lewis acid catalyst and a hypervalent iodine was developed for synthesizing 4'-thionucleosides, which could be applied for the synthesis of 4'-selenonucleosides as well. The extension of hypervalent iodine-mediated glycosylation allowed us to couple a nucleobase with cyclic allylsilanes and glycal derivatives to yield carbocyclic nucleosides and 2',3'-unsaturated nucleosides, respectively. In addition, the combination of hypervalent iodine and Lewis acid could be used for the glycosylation of glycals and thioglycosides to produce disaccharides. In this paper, we review the use of hypervalent iodine-mediated glycosylation reactions for the synthesis of nucleosides and oligosaccharide derivatives.
Collapse
Affiliation(s)
- Yuichi Yoshimura
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Komatsushima 4-4-1, Aoba-ku, Sendai, 981-8558, Japan
| | - Hideaki Wakamatsu
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Komatsushima 4-4-1, Aoba-ku, Sendai, 981-8558, Japan
| | - Yoshihiro Natori
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Komatsushima 4-4-1, Aoba-ku, Sendai, 981-8558, Japan
| | - Yukako Saito
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Komatsushima 4-4-1, Aoba-ku, Sendai, 981-8558, Japan
| | - Noriaki Minakawa
- Graduate School of Pharmaceutical Science, Tokushima University, Shomachi 1-78-1, Tokushima, 770-8505, Japan
| |
Collapse
|
26
|
Fujita H, Kakuyama S, Fukuyoshi S, Hayakawa N, Oda A, Kunishima M. Triazine-Based Cationic Leaving Group: Synergistic Driving Forces for Rapid Formation of Carbocation Species. J Org Chem 2018; 83:4568-4580. [PMID: 29616811 DOI: 10.1021/acs.joc.8b00331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new triazine-based cationic leaving group has been developed for the acid-catalyzed alkylation of O- and C-nucleophiles. There are two synergistic driving forces, namely, stable C═O bond formation and charge-charge repulsive effects, involved in the rapid generation of the carbocation species in the presence of trifluoromethanesulfonic acid (∼200 mol %). Considerable rate acceleration of benzylation, allylation, and p-nitrobenzylation was observed as compared to the reactions with less than 100 mol % of the acid catalyst. The triazine-based leaving group showed superior p-nitrobenzylation yield and stability in comparison to common leaving groups, trichloroacetimidate and bromide. A plausible reaction mechanism (the cationic leaving group pathway) was proposed on the basis of mechanistic and kinetic studies, NMR experiments, and calculations.
Collapse
Affiliation(s)
- Hikaru Fujita
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences , Kanazawa University , Kakuma-machi, Kanazawa 920-1192 , Japan
| | - Satoshi Kakuyama
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences , Kanazawa University , Kakuma-machi, Kanazawa 920-1192 , Japan
| | - Shuichi Fukuyoshi
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences , Kanazawa University , Kakuma-machi, Kanazawa 920-1192 , Japan
| | - Naoko Hayakawa
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences , Kanazawa University , Kakuma-machi, Kanazawa 920-1192 , Japan
| | - Akifumi Oda
- Graduate School of Pharmacy , Meijo University , 150 Yagotoyama , Tempaku-ku, Nagoya , Aichi 468-8503 , Japan
| | - Munetaka Kunishima
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences , Kanazawa University , Kakuma-machi, Kanazawa 920-1192 , Japan
| |
Collapse
|
27
|
Dyapa R, Dockery LT, Walczak MA. Dehydrative glycosylation with cyclic phosphonium anhydrides. Org Biomol Chem 2018; 15:51-55. [PMID: 27722396 DOI: 10.1039/c6ob01812b] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclic phosphonium anhydrides generated from bis-phosphine oxides and trifluoromethanesulfonic anhydride are shown as general coupling reagents in a dehydrative glycosylation reaction of C1-hemiacetals. This reaction protocol is characterized by a broad substrate scope and high yields, including reactions of O-, C-, N-, and S-based nucleophiles with furanose, pyranose, and deoxysugar donors.
Collapse
Affiliation(s)
- Rajendar Dyapa
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA.
| | - Lance T Dockery
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA.
| | - Maciej A Walczak
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA.
| |
Collapse
|
28
|
Manhas S, Taylor MS. Boronic Acids as Phase-Transfer Reagents for Fischer Glycosidations in Low-Polarity Solvents. J Org Chem 2017; 82:11406-11417. [DOI: 10.1021/acs.joc.7b01880] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Sanjay Manhas
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Mark S. Taylor
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
29
|
Yang W, Yang B, Ramadan S, Huang X. Preactivation-based chemoselective glycosylations: A powerful strategy for oligosaccharide assembly. Beilstein J Org Chem 2017; 13:2094-2114. [PMID: 29062430 PMCID: PMC5647719 DOI: 10.3762/bjoc.13.207] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 09/14/2017] [Indexed: 12/14/2022] Open
Abstract
Most glycosylation reactions are performed by mixing the glycosyl donor and acceptor together followed by the addition of a promoter. While many oligosaccharides have been synthesized successfully using this premixed strategy, extensive protective group manipulation and aglycon adjustment often need to be performed on oligosaccharide intermediates, which lower the overall synthetic efficiency. Preactivation-based glycosylation refers to strategies where the glycosyl donor is activated by a promoter in the absence of an acceptor. The subsequent acceptor addition then leads to the formation of the glycoside product. As donor activation and glycosylation are carried out in two distinct steps, unique chemoselectivities can be obtained. Successful glycosylation can be performed independent of anomeric reactivities of the building blocks. In addition, one-pot protocols have been developed that have enabled multiple-step glycosylations in the same reaction flask without the need for intermediate purification. Complex glycans containing both 1,2-cis and 1,2-trans linkages, branched oligosaccharides, uronic acids, sialic acids, modifications such as sulfate esters and deoxy glycosides have been successfully synthesized. The preactivation-based chemoselective glycosylation is a powerful strategy for oligosaccharide assembly complementing the more traditional premixed method.
Collapse
Affiliation(s)
- Weizhun Yang
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, MI 48824, USA
| | - Bo Yang
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, MI 48824, USA
| | - Sherif Ramadan
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, MI 48824, USA
- Chemistry Department, Faculty of Science, Benha University, Benha, Qaliobiya 13518, Egypt
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, MI 48824, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
30
|
Abstract
The application of small molecules as catalysts for the diversification of natural product scaffolds is reviewed. Specifically, principles that relate to the selectivity challenges intrinsic to complex molecular scaffolds are summarized. The synthesis of analogues of natural products by this approach is then described as a quintessential "late-stage functionalization" exercise wherein natural products serve as the lead scaffolds. Given the historical application of enzymatic catalysts to the site-selective alteration of complex molecules, the focus of this Review is on the recent studies of nonenzymatic catalysts. Reactions involving hydroxyl group derivatization with a variety of electrophilic reagents are discussed. C-H bond functionalizations that lead to oxidations, aminations, and halogenations are also presented. Several examples of site-selective olefin functionalizations and C-C bond formations are also included. Numerous classes of natural products have been subjected to these studies of site-selective alteration including polyketides, glycopeptides, terpenoids, macrolides, alkaloids, carbohydrates, and others. What emerges is a platform for chemical remodeling of naturally occurring scaffolds that targets virtually all known chemical functionalities and microenvironments. However, challenges for the design of very broad classes of catalysts, with even broader selectivity demands (e.g., stereoselectivity, functional group selectivity, and site-selectivity) persist. Yet, a significant spectrum of powerful, catalytic alterations of complex natural products now exists such that expansion of scope seems inevitable. Several instances of biological activity assays of remodeled natural product derivatives are also presented. These reports may foreshadow further interdisciplinary impacts for catalytic remodeling of natural products, including contributions to SAR development, mode of action studies, and eventually medicinal chemistry.
Collapse
Affiliation(s)
- Christopher R. Shugrue
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Scott J. Miller
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
31
|
Affiliation(s)
- You Yang
- Shanghai
Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Biao Yu
- State
Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
32
|
Hu Y, Yu K, Shi LL, Liu L, Sui JJ, Liu DY, Xiong B, Sun JS. o-(p-Methoxyphenylethynyl)phenyl Glycosides: Versatile New Glycosylation Donors for the Highly Efficient Construction of Glycosidic Linkages. J Am Chem Soc 2017; 139:12736-12744. [DOI: 10.1021/jacs.7b07020] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yang Hu
- The National Research Centre
for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang
Avenue, Nanchang 330022, China
| | - Ke Yu
- The National Research Centre
for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang
Avenue, Nanchang 330022, China
| | - Li-Li Shi
- The National Research Centre
for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang
Avenue, Nanchang 330022, China
| | - Lei Liu
- The National Research Centre
for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang
Avenue, Nanchang 330022, China
| | - Jing-Jing Sui
- The National Research Centre
for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang
Avenue, Nanchang 330022, China
| | - De-Yong Liu
- The National Research Centre
for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang
Avenue, Nanchang 330022, China
| | - Bin Xiong
- The National Research Centre
for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang
Avenue, Nanchang 330022, China
| | - Jian-Song Sun
- The National Research Centre
for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang
Avenue, Nanchang 330022, China
| |
Collapse
|
33
|
Downey AM, Hocek M. Strategies toward protecting group-free glycosylation through selective activation of the anomeric center. Beilstein J Org Chem 2017; 13:1239-1279. [PMID: 28694870 PMCID: PMC5496566 DOI: 10.3762/bjoc.13.123] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/01/2017] [Indexed: 12/13/2022] Open
Abstract
Glycosylation is an immensely important biological process and one that is highly controlled and very efficient in nature. However, in a chemical laboratory the process is much more challenging and usually requires the extensive use of protecting groups to squelch reactivity at undesired reactive moieties. Nonetheless, by taking advantage of the differential reactivity of the anomeric center, a selective activation at this position is possible. As a result, protecting group-free strategies to effect glycosylations are available thanks to the tremendous efforts of many research groups. In this review, we showcase the methods available for the selective activation of the anomeric center on the glycosyl donor and the mechanisms by which the glycosylation reactions take place to illustrate the power these techniques.
Collapse
Affiliation(s)
- A Michael Downey
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610 Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, 12843 Prague 2, Czech Republic
| |
Collapse
|
34
|
Wang SY, Laborda P, Lu AM, Wang M, Duan XC, Liu L, Voglmeir J. Chemo-enzymatic approach to access diastereopure α-substituted GlcNAc derivatives. J Carbohydr Chem 2017. [DOI: 10.1080/07328303.2017.1321116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Su-Yan Wang
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Pedro Laborda
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Ai-Min Lu
- College of Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Meng Wang
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Xu-Chu Duan
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Li Liu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
- Qlyco Ltd., Nanjing, People's Republic of China
| | - Josef Voglmeir
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| |
Collapse
|
35
|
Villadsen K, Martos-Maldonado MC, Jensen KJ, Thygesen MB. Chemoselective Reactions for the Synthesis of Glycoconjugates from Unprotected Carbohydrates. Chembiochem 2017; 18:574-612. [DOI: 10.1002/cbic.201600582] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Klaus Villadsen
- Department of Chemistry; University of Copenhagen; Faculty of Science; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Manuel C. Martos-Maldonado
- Department of Chemistry; University of Copenhagen; Faculty of Science; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Knud J. Jensen
- Department of Chemistry; University of Copenhagen; Faculty of Science; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Mikkel B. Thygesen
- Department of Chemistry; University of Copenhagen; Faculty of Science; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| |
Collapse
|
36
|
Morita S, Matsuo JI. Synthesis of various 6-substituted 1,4,5,6-tetrahydropyridazines by substitution of a 1,4,5,6-tetrahydro-6-tosylhydrazinopyridazines. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.01.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
37
|
Hafinium (IV) promoted synthesis of 2,3-unsaturated N- and C-pseudoglycosides via Type I Ferrier Rearrangement. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2016.12.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Abstract
The development of glycobiology relies on the sources of particular oligosaccharides in their purest forms. As the isolation of the oligosaccharide structures from natural sources is not a reliable option for providing samples with homogeneity, chemical means become pertinent. The growing demand for diverse oligosaccharide structures has prompted the advancement of chemical strategies to stitch sugar molecules with precise stereo- and regioselectivity through the formation of glycosidic bonds. This Review will focus on the key developments towards chemical O-glycosylations in the current century. Synthesis of novel glycosyl donors and acceptors and their unique activation for successful glycosylation are discussed. This Review concludes with a summary of recent developments and comments on future prospects.
Collapse
Affiliation(s)
- Rituparna Das
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) KolkataMohanpurNadia741246India
| | - Balaram Mukhopadhyay
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) KolkataMohanpurNadia741246India
| |
Collapse
|
39
|
|
40
|
St-Pierre G, Hanessian S. Solution and Solid-Phase Stereocontrolled Synthesis of 1,2-cis-Glycopyranosides with Minimally Protected Glycopyranosyl Donors Catalyzed by BF3-N,N-Dimethylformamide Complex. Org Lett 2016; 18:3106-9. [PMID: 27301355 DOI: 10.1021/acs.orglett.6b01263] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Methods are described for the stereoselective synthesis of 1,2-cis glycopyranosides in the d-galacto, d-gluco, and 2-azido-2-deoxy-d-glucopyranoside series utilizing minimally protected (3-bromo-2-pyridyloxy) β-d-glycopyranosyl donors in the presence of BF3-N,N-dimethylformamide (DMF) as a catalyst and a variety of alcohol acceptors relying on the "remote activation concept". Precursors to antifreeze glycopeptide components are synthesized in excellent yields and high α/β ratios. The method is adaptable to one-pot sequential glycosidation as well as to solid-supported synthesis giving access to diverse sets of minimally protected α-d-glycopyranosides as major products.
Collapse
Affiliation(s)
| | - Stephen Hanessian
- Department of Chemistry, Université de Montréal , P.O. Box 6128, Succ., Centre-ville, Montréal, Québec, Canada , H3C 3J7
| |
Collapse
|
41
|
Pelletier G, Zwicker A, Allen CL, Schepartz A, Miller SJ. Aqueous Glycosylation of Unprotected Sucrose Employing Glycosyl Fluorides in the Presence of Calcium Ion and Trimethylamine. J Am Chem Soc 2016; 138:3175-82. [PMID: 26859619 PMCID: PMC4817112 DOI: 10.1021/jacs.5b13384] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We report a synthetic glycosylation reaction between sucrosyl acceptors and glycosyl fluoride donors to yield the derived trisaccharides. This reaction proceeds at room temperature in an aqueous solvent mixture. Calcium salts and a tertiary amine base promote the reaction with high site-selectivity for either the 3'-position or 1'-position of the fructofuranoside unit. Because nonenzymatic aqueous oligosaccharide syntheses are underdeveloped, mechanistic studies were carried out in order to identify the origin of the selectivity, which we hypothesized was related to the structure of the hydroxyl group array in sucrose. The solution conformation of various monodeoxysucrose analogs revealed the co-operative nature of the hydroxyl groups in mediating both this aqueous glycosyl bond-forming reaction and the site-selectivity at the same time.
Collapse
Affiliation(s)
- Guillaume Pelletier
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520-8107
| | - Aaron Zwicker
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520-8107
| | - C. Liana Allen
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520-8107
| | - Alanna Schepartz
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520-8107
| | - Scott J. Miller
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520-8107
| |
Collapse
|
42
|
Thombal RS, Jadhav VH. Sulfonated graphene oxide as highly efficient catalyst for glycosylation. J Carbohydr Chem 2016. [DOI: 10.1080/07328303.2015.1120874] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
43
|
Nikseresht A. SnCl4: An efficient and inexpensive promoter for synthesis of ω-functionalized alkyl 1,2-trans-glycosides from 1-O-pivaloyl donor. RUSS J GEN CHEM+ 2016. [DOI: 10.1134/s1070363216010266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Ichikawa Y, Matsukawa A, Tomita Y, Mimura R, Kitamori A, Kotsuki H, Masuda T, Maeda M, Nakano K. Synthesis of β-Glycosyl Formamides Through N-Glycosylation of Unprotected Carbohydrates. HETEROCYCLES 2016. [DOI: 10.3987/com-16-13584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
Tatina MB, Hussain A, Dhas AK, Mukherjee D. Advances in C-alkynylation of sugars and its application in organic synthesis. RSC Adv 2016. [DOI: 10.1039/c6ra11672h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
C-Glycosidation plays a significant role in the synthesis of optically active scaffolds.
Collapse
Affiliation(s)
- Madhu Babu Tatina
- Academy of Scientific and Innovative Research (AcSIR)
- New Delhi, India
- Indian Institute of Integrative Medicine (CSIR-IIIM)
- , India
| | - Altaf Hussain
- Academy of Scientific and Innovative Research (AcSIR)
- New Delhi, India
- Indian Institute of Integrative Medicine (CSIR-IIIM)
- , India
| | | | - Debaraj Mukherjee
- Academy of Scientific and Innovative Research (AcSIR)
- New Delhi, India
- Indian Institute of Integrative Medicine (CSIR-IIIM)
- , India
| |
Collapse
|
46
|
Jäger M, Minnaard AJ. Regioselective modification of unprotected glycosides. Chem Commun (Camb) 2016; 52:656-64. [DOI: 10.1039/c5cc08199h] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The regioselective modification of unprotected glycosides represents shortcuts in carbohydrate chemistry and enables efficient routes to complex derivatives.
Collapse
Affiliation(s)
- Manuel Jäger
- Stratingh Institute for Chemistry
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| | - Adriaan J. Minnaard
- Stratingh Institute for Chemistry
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| |
Collapse
|
47
|
Thorsheim K, Siegbahn A, Johnsson RE, Stålbrand H, Manner S, Widmalm G, Ellervik U. Chemistry of xylopyranosides. Carbohydr Res 2015; 418:65-88. [PMID: 26580709 DOI: 10.1016/j.carres.2015.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/09/2015] [Accepted: 10/10/2015] [Indexed: 12/22/2022]
Abstract
Xylose is one of the few monosaccharidic building blocks that are used by mammalian cells. In comparison with other monosaccharides, xylose is rather unusual and, so far, only found in two different mammalian structures, i.e. in the Notch receptor and as the linker between protein and glycosaminoglycan (GAG) chains in proteoglycans. Interestingly, simple soluble xylopyranosides can not only initiate the biosynthesis of soluble GAG chains but also function as inhibitors of important enzymes in the biosynthesis of proteoglycans. Furthermore, xylose is a major constituent of hemicellulosic xylans and thus one of the most abundant carbohydrates on Earth. Altogether, this has spurred a strong interest in xylose chemistry. The scope of this review is to describe synthesis of xylopyranosyl donors, as well as protective group chemistry, modifications, and conformational analysis of xylose.
Collapse
Affiliation(s)
- Karin Thorsheim
- Centre for Analysis and Synthesis, Centre for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Anna Siegbahn
- Centre for Analysis and Synthesis, Centre for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Richard E Johnsson
- Centre for Analysis and Synthesis, Centre for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Henrik Stålbrand
- Centre for Molecular Protein Science, Centre for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Sophie Manner
- Centre for Analysis and Synthesis, Centre for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ulf Ellervik
- Centre for Analysis and Synthesis, Centre for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| |
Collapse
|
48
|
Chen C, Van der Borght J, De Vreese R, D'hooghe M, Soetaert W, Desmet T. Engineering the specificity of trehalose phosphorylase as a general strategy for the production of glycosyl phosphates. Chem Commun (Camb) 2015; 50:7834-6. [PMID: 24909572 DOI: 10.1039/c4cc02202e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A two-step process is reported for the anomeric phosphorylation of galactose, using trehalose phosphorylase as biocatalyst. The monosaccharide enters this process as acceptor but can subsequently be released from the donor side, thanks to the non-reducing nature of the disaccharide intermediate. A key development was the creation of an optimized enzyme variant that displays a strict specificity (99%) for β-galactose 1-phosphate as product.
Collapse
Affiliation(s)
- Chao Chen
- Centre for Industrial Biotechnology and Biocatalysis Department of Biochemical and Microbial Technology, Ghent University, 9000 Ghent, Belgium.
| | | | | | | | | | | |
Collapse
|
49
|
Farrán A, Cai C, Sandoval M, Xu Y, Liu J, Hernáiz MJ, Linhardt RJ. Green solvents in carbohydrate chemistry: from raw materials to fine chemicals. Chem Rev 2015; 115:6811-53. [PMID: 26121409 DOI: 10.1021/cr500719h] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Angeles Farrán
- †Departamento de Química Orgánica y Bio-Orgánica, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, Paseo Senda del Rey 4, 28040 Madrid, Spain
| | - Chao Cai
- ‡Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Manuel Sandoval
- §Escuela de Química, Universidad Nacional of Costa Rica, Post Office Box 86, 3000 Heredia, Costa Rica
| | - Yongmei Xu
- ∥Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Jian Liu
- ∥Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - María J Hernáiz
- ▽Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad Complutense de Madrid, Pz/Ramón y Cajal s/n, 28040 Madrid, Spain
| | | |
Collapse
|
50
|
Meng B, Zhu Z, Baker DC. 1,2-cis Alkyl glycosides: straightforward glycosylation from unprotected 1-thioglycosyl donors. Org Biomol Chem 2015; 12:5182-91. [PMID: 24915049 DOI: 10.1039/c4ob00626g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A 1,2-cis-alkyl glycosidation protocol that makes use of unprotected phenyl 1-thioglycosyl donors is reported. Glycosylation of various functionalized alcohols was accomplished in moderate to high yield and selectivity to give the 1,2-cis-glycosides. In order to quickly develop optimum glycosylation conditions, an FIA (flow injection analysis)-ESI-TOF-MS method was developed that enabled rapid and quantitative evaluation of yield on small scale. This methodology, coupled with NMR spectroscopy, allowed for rapid evaluation of the overall reactions.
Collapse
Affiliation(s)
- Bo Meng
- Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996-1600, USA.
| | | | | |
Collapse
|