1
|
Radoń M, Drabik G, Hodorowicz M, Szklarzewicz J. Performance of quantum chemistry methods for a benchmark set of spin-state energetics derived from experimental data of 17 transition metal complexes (SSE17). Chem Sci 2024; 15:20189-20204. [PMID: 39574537 PMCID: PMC11577268 DOI: 10.1039/d4sc05471g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/27/2024] [Indexed: 11/24/2024] Open
Abstract
Accurate prediction of spin-state energetics for transition metal (TM) complexes is a compelling problem in applied quantum chemistry, with enormous implications for modeling catalytic reaction mechanisms and computational discovery of materials. Computed spin-state energetics are strongly method-dependent and credible reference data are scarce, making it difficult to conduct conclusive computational studies of open-shell TM systems. Here, we present a novel benchmark set of first-row TM spin-state energetics, which is derived from experimental data of 17 complexes containing FeII, FeIII, CoII, CoIII, MnII, and NiII with chemically diverse ligands. The estimates of adiabatic or vertical spin-state splittings, which are obtained from spin crossover enthalpies or energies of spin-forbidden absorption bands, suitably back-corrected for the vibrational and environmental effects, are employed as reference values for benchmarking density functional theory (DFT) and wave function methods. The results demonstrate a high accuracy of the coupled-cluster CCSD(T) method, which features the mean absolute error (MAE) of 1.5 kcal mol-1 and maximum error of -3.5 kcal mol-1, and outperforms all the tested multireference methods: CASPT2, MRCI+Q, CASPT2/CC and CASPT2+δMRCI. Switching from Hartree-Fock to Kohn-Sham orbitals is not found to consistently improve the CCSD(T) accuracy. The best performing DFT methods are double-hybrids (PWPB95-D3(BJ), B2PLYP-D3(BJ)) with the MAEs below 3 kcal mol-1 and maximum errors within 6 kcal mol-1, whereas the DFT methods so far recommended for spin states (e.g., B3LYP*-D3(BJ) and TPSSh-D3(BJ)) are found to perform much worse with the MAEs of 5-7 kcal mol-1 and maximum errors beyond 10 kcal mol-1. This work is the first such extensive benchmark study of quantum chemistry methods for TM spin-state energetics making use of experimental reference data. The results are relevant for the proper choice of methods to characterize TM systems in computational catalysis and (bio)inorganic chemistry, and may also stimulate new developments in quantum-chemical or machine learning approaches.
Collapse
Affiliation(s)
- Mariusz Radoń
- Jagiellonian University, Faculty of Chemistry Gronostajowa 2 30-387 Kraków Poland +48 12 686 24 89
| | - Gabriela Drabik
- Jagiellonian University, Faculty of Chemistry Gronostajowa 2 30-387 Kraków Poland +48 12 686 24 89
- Jagiellonian University, Doctoral School of Exact and Natural Sciences Łojasiewicza 11 30-348 Kraków Poland
| | - Maciej Hodorowicz
- Jagiellonian University, Faculty of Chemistry Gronostajowa 2 30-387 Kraków Poland +48 12 686 24 89
| | - Janusz Szklarzewicz
- Jagiellonian University, Faculty of Chemistry Gronostajowa 2 30-387 Kraków Poland +48 12 686 24 89
| |
Collapse
|
2
|
Oliveira TA, Silva PV, de Vasconcelos FM, Meunier V, Girão EC. Electronic and magnetic properties of porphyrin nanoribbons with chelated metals. Phys Chem Chem Phys 2024; 26:26943-26957. [PMID: 39420674 DOI: 10.1039/d4cp02822h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Advances in surface-assisted synthesis routes now allow for precise control in the preparation and modification of low-dimensional structures. The choice of molecular precursors plays a fundamental role in these processes since the structural details and properties of the resulting nanostructures directly depend on the molecular block used. From this perspective, units based on porphyrins have proven to be promising candidates for the construction of nanosystems with nontrivial geometry. In particular, efforts have been made to synthesize different arrangements of π-conjugated porphyrins. With this motivation, we use computational simulations to investigate the electronic and magnetic properties of nanoribbons constructed from the concatenation of π-extended porphyrins hosting transition metal atoms. We show that the binding energy of these systems and the specific way the electrons populate the d-shells are strongly influenced by the type of the transition metal. Furthermore, it was observed that most systems with chelated metals (except Ni and Zn) feature magnetic properties. The systems considered in this work have analogs in finite structures recently synthesized in the laboratory so the nanomaterials proposed here have a high potential to be produced in the near future.
Collapse
Affiliation(s)
- Thainá Araújo Oliveira
- Departamento de Física, Universidade Federal do Piauí, CEP 64049-550, Teresina, Piauí, Brazil.
- Programa de Pós-Graduação em Ciência e Engenharia dos Materiais, Universidade Federal do Piauí, CEP 64049-550, Teresina, PI, Brazil
| | - Paloma Vieira Silva
- Programa de Pós-Graduação em Ciência e Engenharia dos Materiais, Universidade Federal do Piauí, CEP 64049-550, Teresina, PI, Brazil
- Coordenação do Curso de Licenciatura em Educação do Campo/Ciências da Natureza, Universidade Federal do Piauí, CEP 64808-605, Floriano, Piauí, Brazil
| | - Fabrício Morais de Vasconcelos
- Instituto Federal de Educação, Ciência e Tecnologia do Piauí - Campus São João do PI, CEP 64760-000, São João do PI, Piauí, Brazil
| | - Vincent Meunier
- Engineering Science and Mechanics Department, The Pennsylvania State University, University Parkl, PA, USA
| | - Eduardo Costa Girão
- Departamento de Física, Universidade Federal do Piauí, CEP 64049-550, Teresina, Piauí, Brazil.
- Programa de Pós-Graduação em Ciência e Engenharia dos Materiais, Universidade Federal do Piauí, CEP 64049-550, Teresina, PI, Brazil
| |
Collapse
|
3
|
Nguyen DT, Mai HV, La HH, Nguyen AD, Nguyen AH. A comparative study on the interaction of M 3+(H 2O) 5-6 ions (M = Fe, Ru, and Os) with the hydroxy group. J Mol Model 2024; 30:386. [PMID: 39470856 DOI: 10.1007/s00894-024-06185-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/16/2024] [Indexed: 11/01/2024]
Abstract
CONTEXT The heavy metal ions are the typical carcinogenic agents. Up to now, the interaction mechanism of toxic metal ions with the biomolecules such as carbohyrate have not been elucidated and reported in the detail. In this research work, the adjacent dissociation Gibbs energy (EAB) of M3+(H2O)5(R-OH) complexes depended significantly on the molecular volume of primary alcohols and the inductive effects of substituent R in primary alcohols (R = CH3, CH3CH2, CH3CH2CH2, CH3CH2CH2CH2, Cl-CH2, F-CH2) as well as the length of linear cellulose. The affinity of M3+(H2O)5 ions with the sixth water molecule in gas phase reduced in the order as follows: Fe3+ > Ru3+ > Os3+, which were determined by the EAB values and bond lengths of M-O. The water solvent made the EAB values of Fe3+(H2O)6 ions and Fe3+(H2O)5(CH3OH) ions changed completely in the case of the polarizable continuum model, while the Onsager model gave the good agreement with the gas phase model. METHODS The nature of interaction between hydrated Fe3+(H2O)5 ion and the hydroxy groups of primary alcohols were investigated using density functional theory method at the B3LYP/6-311 + G** level, the PBEPBE/6-311 + G** level. The influence of water solvent was evaluated using the Onsager model and the polarizable continuum model. The two-layer ONIOM approach and the local softness analysis were employed for the hydroxy groups of linear cellulose at the B3LYP/6-311 + G**:HF/6-31G* level. The affinity of M3+(H2O)5 ions (M = Fe, Ru, and Os) with the sixth water molecule were probed at the B3LYP/QZVPP/6-311 + G** level (QZVPP basis set for the metal atoms).
Collapse
Affiliation(s)
- Dang T Nguyen
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 41 Dinh Tien Hoang, Ben Nghe Ward, District 1, Ho Chi Minh City, 700000, Vietnam.
| | - Hai V Mai
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 41 Dinh Tien Hoang, Ben Nghe Ward, District 1, Ho Chi Minh City, 700000, Vietnam
| | - Han H La
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 41 Dinh Tien Hoang, Ben Nghe Ward, District 1, Ho Chi Minh City, 700000, Vietnam
| | - Anh D Nguyen
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 41 Dinh Tien Hoang, Ben Nghe Ward, District 1, Ho Chi Minh City, 700000, Vietnam
| | - Anh H Nguyen
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 41 Dinh Tien Hoang, Ben Nghe Ward, District 1, Ho Chi Minh City, 700000, Vietnam
| |
Collapse
|
4
|
Paveliuc G, Lawson Daku LM. Improving the Accuracy in the Prediction of Transition-Metal Spin-State Energetics Using a Robust Variation-Based Approach: Density Functional Theory, CASPT2 and MC-PDFT Applied to the Case Study of Tris-Diimine Fe(II) Complexes. J Phys Chem A 2024; 128:8404-8420. [PMID: 39315737 DOI: 10.1021/acs.jpca.4c04148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Designing ligands for transition metal complexes with a specified low-spin, high-spin or spin-crossover behavior is challenging. A major advance was recently made by Phan et al. [J. Am. Chem. Soc. 2017, 139, 6437-6447] who showed that the spin state of a homoleptic tris-diimine Fe(II) complex can be predicted from the N-N distance in the free diimine. They could thus predict the change in magnetic behavior on passing from the complexes of 2,2'-bipyridine (bpy), 2,2'-biimidazole (bim) and 2,2'-bis-2-imidazoline (bimz) ligands to those obtained with the modified analogs 4,5-diazafluoren-9-one (dafo), 1,1'-(α,α'-o-xylyl)-2,2'-bisimidazole (xbim) and 2,3,5,6,8,9-hexahydrodiimidazo[1,2-a:2', 1'-c]pyrazine (etbimz), respectively. Theoretically, the challenge lies in the accurate determination of the HS-LS zero-point energy difference ΔEHL°. The issue can be circumvented by using a variation-based approach, wherein ΔEHL° is not directly evaluated but obtained from the estimate of its variation Δ(ΔEHL°) in series of related systems, which include one whose ΔEHL° is accurately known [Phys. Chem. Chem. Phys. 2013, 15, 3752-3763; J. Phys. Chem. A 2022, 126, 6221-6235]. In this study, density functional theory (DFT), second-order multireference perturbation theory in its CASPT2 formulation, multiconfigurational pair DFT (MC-PDFT) and its hybrid formulation (HMC-PDFT) have been applied to the determination of Δ(ΔEHL°) in the pairs of complexes ( [ F e ( b p y ) 3 ] 2 + , [ F e ( d a f o ) 3 ] 2 + ) , ( [ F e ( b i m ) 3 ] 2 + , [ F e ( x b i m ) 3 ] 2 + ) and ( [ F e ( b i m z ) 3 ] 2 + , [ F e ( e t b i m z ) 3 ] 2 + ) . In DFT, we used several semilocal functionals and their global hybrids, as well as their D2, D3, D3BJ and D4 dispersion-corrected forms; and in MC-PDFT, different translated and fully translated functionals. The results are consistent with one another and in very good agreement with experiments. They show small to vanishing dependence on key details of the methods used: namely, the exact-exchange contribution to global hybrids; the ionization potential-electron affinity shift and basis sets used in the CASPT2 calculations; and the active spaces employed for the CASSCF wave functions used in the MC-PDFT and HMC-PDFT calculations. Insights into the change in the spin-state energetics accompanying the ligand exchanges were gained through a complexation energy analysis. Using the accurate CCSD(T) estimate of the HS-LS adiabatic energy difference in [ F e ( N C H ) 6 ] 2 + [J. Chem. Theory Comput. 2012, 8, 4216-4231], the Δ(ΔEHL°)-approach has been applied to the determination of ΔEHL° in the diimine complexes. The CASPT2 and DFT-D2 methods only give results in agreement with experiments. This suggests for the other methods a limitation in their treatment of dispersion which prevents them from accurately describing the spin-state energetics change accompanying the passing from [ F e ( N C H ) 6 ] 2 + with the tetragonal arrangement of its nitrile ligands to the tris-diimine complexes with the trigonal packing of their bulkier ligands.
Collapse
Affiliation(s)
- Gheorghe Paveliuc
- Université de Genève, 30 Quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland
| | | |
Collapse
|
5
|
Navarro L, Garcia-Duran A, Cirera J. Tuning the spin-crossover properties of [Fe 2] metal-organic cages. Dalton Trans 2024; 53:14592-14601. [PMID: 39082965 DOI: 10.1039/d4dt01213e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
A computational study on the interplay between ligand functionalization and guest effects on the transition temperature (T1/2) in the [Fe2(L1R)3]@X (L1 = 1,3-bis-(3-(pyridin-2-yl)-1H-pyrazol-5-yl)benzene, X = H-, F-, Cl-, Br-, I- and [BF4]-, R = H, F, or CH3) family of metal-organic cages (MOCs) is presented. Our results indicate that ligand functionalization with electron-donating or electron-withdrawing groups can significantly impact the T1/2 as expected, while the guest effect in lowering the T1/2 has a linear correlation with the increasing guest size. More importantly, small guests can move away from the center of the cavity, thus enhancing the two-step characteristic of the transition. All the data can be understood by analyzing the underlying electronic structure of the studied systems in terms of the relevant d-based molecular orbitals. These results can help in the rational design of new MOCs that can operate as sensors at specific temperatures, thus accelerating the discovery of new SCO devices with tailored properties.
Collapse
Affiliation(s)
- Laia Navarro
- Departament de Química Inorgànica i Orgànica and Institut de Recerca de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, 08028, Barcelona, Spain.
| | - Arnau Garcia-Duran
- Departament de Química Inorgànica i Orgànica and Institut de Recerca de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, 08028, Barcelona, Spain.
| | - Jordi Cirera
- Departament de Química Inorgànica i Orgànica and Institut de Recerca de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, 08028, Barcelona, Spain.
| |
Collapse
|
6
|
Cho Y, Laplaza R, Vela S, Corminboeuf C. Automated prediction of ground state spin for transition metal complexes. DIGITAL DISCOVERY 2024; 3:1638-1647. [PMID: 39118977 PMCID: PMC11305380 DOI: 10.1039/d4dd00093e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024]
Abstract
Exploiting crystallographic data repositories for large-scale quantum chemical computations requires the rapid and accurate extraction of the molecular structure, charge and spin from the crystallographic information file. Here, we develop a general approach to assign the ground state spin of transition metal complexes, in complement to our previous efforts on determining metal oxidation states and bond order within the cell2mol software. Starting from a database of 31k transition metal complexes extracted from the Cambridge Structural Database with cell2mol, we construct the TM-GSspin dataset, which contains 2063 mononuclear first row transition metal complexes and their computed ground state spins. TM-GSspin is highly diverse in terms of metals, metal oxidation states, coordination geometries, and coordination sphere compositions. Based on TM-GSspin, we identify correlations between structural and electronic features of the complexes and their ground state spins to develop a rule-based spin state assignment model. Leveraging this knowledge, we construct interpretable descriptors and build a statistical model achieving 98% cross-validated accuracy in predicting the ground state spin across the board. Our approach provides a practical way to determine the ground state spin of transition metal complexes directly from crystal structures without additional computations, thus enabling the automated use of crystallographic data for large-scale computations involving transition metal complexes.
Collapse
Affiliation(s)
- Yuri Cho
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne Lausanne Switzerland
- National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne Lausanne Switzerland
| | - Ruben Laplaza
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne Lausanne Switzerland
- National Centre for Competence in Research-Catalysis (NCCR-Catalysis), École Polytechnique Fédérale de Lausanne Lausanne Switzerland
| | - Sergi Vela
- Departament de Ciència de Materials i Química Física and IQTCUB, Universitat de Barcelona Barcelona Spain
- Institut de Química Avançada de Catalunya (IQAC-CSIC) Barcelona Spain
| | - Clémence Corminboeuf
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne Lausanne Switzerland
- National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne Lausanne Switzerland
- National Centre for Competence in Research-Catalysis (NCCR-Catalysis), École Polytechnique Fédérale de Lausanne Lausanne Switzerland
| |
Collapse
|
7
|
Gómez-Coca S, Ruiz E. Benchmarking Periodic Density Functional Theory Calculations for Spin-State Energies in Spin-Crossover Systems. Inorg Chem 2024; 63:13338-13345. [PMID: 38976861 PMCID: PMC11270997 DOI: 10.1021/acs.inorgchem.4c01094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 07/10/2024]
Abstract
Spin energetics is one of the biggest challenges associated with energy calculations for electronic structure methods. The energy differences of the spin states in spin-crossover compounds are very small, making them one of the most difficult systems to calculate. Few methods provide accurate results for calculating these energy differences. In addition, studies have usually focused on calculating energetics of single molecules, while spin-crossover properties are usually experimentally studied in the solid phase. In this paper, we have used periodic boundary conditions employing methods based on density functional theory to calculate the high- and low-spin energy differences for a test case of 20 extended systems. Compounds with different metals and ligands have been selected, and the results indicate that a semiquantitative description of the energy differences can be obtained with the combination of geometry optimization using the PBE functional including many-body dispersion approach and the use of meta-GGA functionals, such as r2SCAN but especially KTBM24, for the energy calculation. Other hybrid functionals, such as TPSSh, give generally good results, but the calculation of the exact exchange with periodic boundary conditions involves a huge increase in computer time and computational resources. It makes the proposed nonhybrid functional approach (KTBM24//PBE+MB) a great advantage for the study of periodic systems.
Collapse
Affiliation(s)
- Silvia Gómez-Coca
- Departament de Química
Inorgànica i Orgànica and Institut de Recerca de Química
Teòrica i Computacional, Universitat
de Barcelona, Barcelona 08028, Spain
| | - Eliseo Ruiz
- Departament de Química
Inorgànica i Orgànica and Institut de Recerca de Química
Teòrica i Computacional, Universitat
de Barcelona, Barcelona 08028, Spain
| |
Collapse
|
8
|
Radoń M. Predicting spin states of iron porphyrins with DFT methods including crystal packing effects and thermodynamic corrections. Phys Chem Chem Phys 2024; 26:18182-18195. [PMID: 38899797 DOI: 10.1039/d4cp01327a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Accurate computational treatment of spin states for transition metal complexes, exemplified by iron porphyrins, lies at the heart of quantum bioinorganic chemistry, but at the same time represents a great challenge for approximate density functional theory (DFT) methods, which are predominantly used. Here, the accuracy of DFT methods for spin-state splittings in iron porphyrin is assessed by probing the ability to correctly predict the ground states for six FeIII or FeII complexes experimentally characterized in solid state. For each case, molecular and periodic DFT calculations are employed to quantify the effect of porphyrin side substituents and the crystal packing effect (CPE) on the spin-state splitting. It is proposed to partition the total CPE into additive components, the direct and structural one, the importance of which is shown to significantly vary from case to case. By knowing the substituent effect, the CPE, and the Gibbs free energy thermodynamic correction from calculations, one can employ the experimental ground-state information in order to derive a quantitative constraint on the electronic energy difference for a simplified (porphin) model of the experimentally characterized metalloporphyrin. The constraints derived in such a way-in the form of single or double inequalities-are used to assess the accuracy of dispersion-corrected DFT methods for 6 spin-state splittings of [FeIII(P)(2-MeIm)2]+, [FeIII(P)(2-MeIm)]+, [FeII(P)(THF)2] and [FeII(P)] models (where P is porphin, 2-MeIm is 2-methylimidazole, THF is tetrahydrofuran). These data constitute the new benchmark set of spin states for crystalline iron porphyrins (SSCIP6). The highest accuracy is obtained in the case of double-hybrid functionals (B2PLYP-D3, DSD-PBEB95-D3), whereas hybrid functionals, especially those with reduced admixture of the exact exchange (B3LYP*-D3, TPSSh-D3), are found to considerably overstabilize the intermediate spin state, leading to incorrect ground-state prediction in FeIII porphyrins. The present approach, which can be generalized to other transition metal complexes, is not only useful in method benchmarking, but also sheds light on the interpretations of experimental data for metalloporphyrins, which are important models to understand the electronic properties of heme proteins.
Collapse
Affiliation(s)
- Mariusz Radoń
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
9
|
Radoń M. Benchmarks for transition metal spin-state energetics: why and how to employ experimental reference data? Phys Chem Chem Phys 2023; 25:30800-30820. [PMID: 37938035 DOI: 10.1039/d3cp03537a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Accurate prediction of energy differences between alternative spin states of transition metal complexes is essential in computational (bio)inorganic chemistry-for example, in characterization of spin crossover materials and in the theoretical modeling of open-shell reaction mechanisms-but it remains one of the most compelling problems for quantum chemistry methods. A part of this challenge is to obtain reliable reference data for benchmark studies, as even the highest-level applicable methods are known to give divergent results. This Perspective discusses two possible approaches to method benchmarking for spin-state energetics: using either theoretically computed or experiment-derived reference data. With the focus on the latter approach, an extensive general review is provided for the available experimental data of spin-state energetics and their interpretations in the context of benchmark studies, targeting the possibility of back-correcting the vibrational effects and the influence of solvents or crystalline environments. With a growing amount of experience, these effects can be now not only qualitatively understood, but also quantitatively modeled, providing the way to derive nearly chemically accurate estimates of the electronic spin-state gaps to be used as benchmarks and advancing our understanding of the phenomena related to spin states in condensed phases.
Collapse
Affiliation(s)
- Mariusz Radoń
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Krakow, Poland.
| |
Collapse
|
10
|
de Mendonça JPA, Mariano LA, Devijver E, Jakse N, Poloni R. Artificial Neural Network-Based Density Functional Approach for Adiabatic Energy Differences in Transition Metal Complexes. J Chem Theory Comput 2023; 19:7555-7566. [PMID: 37843492 DOI: 10.1021/acs.jctc.3c00600] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
During the past decades, approximate Kohn-Sham density functional theory schemes have garnered many successes in computational chemistry and physics, yet the performance in the prediction of spin state energetics is often unsatisfactory. By means of a machine learning approach, an enhanced exchange and correlation functional is developed to describe adiabatic energy differences in transition metal complexes. The functional is based on the computationally efficient revision of the regularized, strongly constrained, and appropriately normed functional and improved by an artificial neural network correction trained over a small data set of electronic densities, atomization energies, and/or spin state energetics. The training process, performed using a bioinspired nongradient-based approach adapted for this work from the particle swarm optimization, is analyzed and discussed extensively. The resulting machine learned meta-generalized gradient approximation functional is shown to outperform most known density functionals in the prediction of adiabatic energy differences for a diverse set of transition metal complexes with varying local coordinations and metal choices.
Collapse
Affiliation(s)
| | | | - Emilie Devijver
- Université Grenoble Alpes, CNRS, Grenoble INP, LIG, 38000 Grenoble, France
| | - Noel Jakse
- Université Grenoble Alpes, CNRS, Grenoble INP, SIMaP, 38000 Grenoble, France
| | - Roberta Poloni
- Université Grenoble Alpes, CNRS, Grenoble INP, SIMaP, 38000 Grenoble, France
| |
Collapse
|
11
|
Deng Q, Zhu J. Adaptive σ aromaticity in the rhenacyclopropene rings. J Comput Chem 2023; 44:2294-2301. [PMID: 37466308 DOI: 10.1002/jcc.27192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/30/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023]
Abstract
Species generally exhibit one-state aromaticity either in the lowest singlet state (S0 ) or the lowest triplet state (T1 ) according to the Hückel's and Baird's rules. Hence, it is rare for species exhibit two-state aromaticity in both the S0 and T1 states (termed as adaptive aromaticity), let alone adaptive σ aromaticity. Here, we report adaptive σ aromaticity in unsaturated rhenacyclopropene rings via density functional theory (DFT) calculations. Various aromaticity indices including NICS, ACID, EDDB together with isodesmic reactions support the adaptive σ aromaticity in these rhenacyclopropene rings. As the T1 state of these species is formed by the ππ* excitation, the σ-aromaticity of these three-membered rings in the S0 state could hold in the T1 state. In addition, the aromaticity effect of the fused rings is also examined. Our findings expand the family of adaptive σ aromaticity, enriching the metallaaromatic chemistry.
Collapse
Affiliation(s)
- Qianqian Deng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| |
Collapse
|
12
|
Manukovsky N, Kamieniarz G, Kronik L. Spin state and magnetic coupling in polynuclear Ni(II) complexes from density functional theory: is there an optimal amount of Fock exchange? J Chem Phys 2023; 159:154103. [PMID: 37846951 DOI: 10.1063/5.0169105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/25/2023] [Indexed: 10/18/2023] Open
Abstract
Reliable prediction of the ground-state spin and magnetic coupling constants in transition-metal complexes is a well-known challenge for density functional theory (DFT). One popular strategy for addressing this long-standing issue involves the modification of the fraction of Fock exchange in a hybrid functional. Here we explore the viability of this approach using three polynuclear metal-organic complexes based on a Ni4O4 cubane motif, having different ground state spin values (S = 0, 2, 4) owing to the use of different ligands. We systematically search for an optimum fraction of Fock exchange, across various global, range-separated, and double hybrid functionals. We find that for all functionals tested, at best there only exists a very narrow range of Fock exchange fractions which results in a correct prediction of the ground-state spin for all three complexes. The useful range is functional dependent, but general trends can be identified. Typically, at least two similar systems must be used in order to determine both an upper and lower limit of the optimal range. This is likely owing to conflicting demands of minimizing delocalization errors, which typically requires a higher percentage of Fock exchange, and addressing static correlation, which typically requires a lower one. Furthermore, we find that within the optimal range of Fock exchange, the sign and relative magnitude of Ni-Ni magnetic coupling constants are reasonably well reproduced, but there is still room for quantitative improvement in the prediction. Thus, the prediction of spin state and magnetic coupling in polynuclear complexes remains an ongoing challenge for DFT.
Collapse
Affiliation(s)
- Nurit Manukovsky
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovoth 7610001, Israel
| | | | - Leeor Kronik
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovoth 7610001, Israel
| |
Collapse
|
13
|
Janetzki JT, Chegerev MG, Gransbury GK, Gable RW, Clegg JK, Mulder RJ, Jameson GNL, Starikova AA, Boskovic C. Controlling Spin Crossover in a Family of Dinuclear Fe(III) Complexes via the Bis(catecholate) Bridging Ligand. Inorg Chem 2023; 62:15719-15735. [PMID: 37691232 DOI: 10.1021/acs.inorgchem.3c02598] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Spin crossover (SCO) complexes can reversibly switch between low spin (LS) and high spin (HS) states, affording possible applications in sensing, displays, and molecular electronics. Dinuclear SCO complexes with access to [LS-LS], [LS-HS], and [HS-HS] states may offer increased levels of functionality. The nature of the SCO interconversion in dinuclear complexes is influenced by the local electronic environment. We report the synthesis and characterization of [{FeIII(tpa)}2spiro](PF6)2 (1), [{FeIII(tpa)}2Br4spiro](PF6)2 (2), and [{FeIII(tpa)}2thea](PF6)2 (3) (tpa = tris(2-pyridylmethyl)amine, spiroH4 = 3,3,3',3'-tetramethyl-1,1'-spirobi(indan)-5,5',6,6'-tetraol, Br4spiroH4 = 3,3,3',3'-tetramethyl-1,1'-spirobi(indan)-4,4',7,7'-tetrabromo-5,5',6,6'-tetraol, theaH4 = 2,3,6,7-tetrahydroxy-9,10-dimethyl-9,10-dihydro-9,10-ethanoanthracene), utilizing non-conjugated bis(catecholate) bridging ligands. In the solid state, magnetic and structural analysis shows that 1 remains in the [HS-HS] state, while 2 and 3 undergo a partial SCO interconversion upon cooling from room temperature involving the mixed [LS-HS] state. In solution, all complexes undergo SCO from [HS-HS] at room temperature, via [LS-HS] to mixtures including [LS-LS] at 77 K, with the extent of SCO increasing in the order 1 < 2 < 3. Gas phase density functional theory calculations suggest a [LS-LS] ground state for all complexes, with the [LS-HS] and [HS-HS] states successively destabilized. The relative energy separations indicate that ligand field strength increases following spiro4- < Br4spiro4- < thea4-, consistent with solid-state magnetic and EPR behavior. All three complexes show stabilization of the [LS-HS] state in relation to the midpoint energy between [LS-LS] and [HS-HS]. The relative stability of the [LS-HS] state increases with increasing ligand field strength of the bis(catecholate) bridging ligand in the order 1 < 2 < 3. The bromo substituents of Br4spiro4- increase the ligand field strength relative to spiro4-, while the stronger ligand field provided by thea4- arises from extension of the overlapping π-orbital system across the two catecholate units. This study highlights how SCO behavior in dinuclear complexes can be modulated by the bridging ligand, providing useful insights for the design of molecules that can be interconverted between more than two states.
Collapse
Affiliation(s)
- Jett T Janetzki
- School of Chemistry, University of Melbourne, Victoria 3010, Australia
| | - Maxim G Chegerev
- Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don 344090, Russian Federation
| | - Gemma K Gransbury
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
| | - Robert W Gable
- School of Chemistry, University of Melbourne, Victoria 3010, Australia
| | - Jack K Clegg
- University of Queensland, St Lucia, Queensland 4072, Australia
| | | | - Guy N L Jameson
- School of Chemistry, University of Melbourne, Victoria 3010, Australia
| | - Alyona A Starikova
- Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don 344090, Russian Federation
| | - Colette Boskovic
- School of Chemistry, University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
14
|
Schratzberger H, Himmelbauer D, Eder W, Weiser M, Stöger B, Kirchner K. Solvothermal synthesis of cobalt PCP pincer complexes from [Co 2(CO) 8]. MONATSHEFTE FUR CHEMIE 2023; 154:1253-1262. [PMID: 37927400 PMCID: PMC10620272 DOI: 10.1007/s00706-023-03123-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/23/2023] [Indexed: 11/07/2023]
Abstract
Treatment of [Co2(CO)8] with the ipso-substituted P(C-X)PY ligands (X = Br, Cl; R = iPr, tBu) bearing Y = NH and CH2 linkers under solvothermal conditions affords the five-coordinate Co(I) and Co(III) complexes [CoI(PCPY-R)(CO)2] and [CoIII(PCPY-R)X2]. The later are paramagnetic exhibiting a solution magnetic moment in the range of 3.0-3.3 μB which is consistent with a d6 intermediate spin system corresponding to two unpaired electrons. In the case of P(C-X)PY ligands (X = Br, Cl; R = tBu; Y = NH) the formation of the square planar Co(II) complex [Co(PCPNH-tBu)X] was favored. This complex gives rise to a magnetic moment of 1.8 μB being consistent with a d7 low spin system corresponding to one unpaired electron. All complexes are characterized by means of spectroscopic techniques (NMR, IR), HR-MS. Representative complexes were also characterized by X-ray crystallography. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s00706-023-03123-x.
Collapse
Affiliation(s)
- Heiko Schratzberger
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-AC, 1060 Vienna, Austria
| | - Daniel Himmelbauer
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-AC, 1060 Vienna, Austria
| | - Wolfgang Eder
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-AC, 1060 Vienna, Austria
| | - Michael Weiser
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-AC, 1060 Vienna, Austria
| | - Berthold Stöger
- X-Ray Center, TU Vienna, Getreidemarkt 9/163-AC, 1060 Wien, Austria
| | - Karl Kirchner
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-AC, 1060 Vienna, Austria
| |
Collapse
|
15
|
Joshi S, Roy Chowdhury S, Mishra S. Spin-state energetics and magnetic anisotropy in penta-coordinated Fe(III) complexes with different axial and equatorial ligand environments. Phys Chem Chem Phys 2023. [PMID: 37367302 DOI: 10.1039/d3cp02182c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The penta-coordinated trigonal-bi-pyramidal (TBP) Fe(III) complex (PMe2Ph)2FeCl3 shows a reduced magnetic anisotropy in its intermediate-spin (IS) state as compared to its methyl-analog (PMe3)2Fe(III)Cl3. In this work, the ligand environment in (PMe2Ph)2FeCl3 is systematically altered by replacing the axial -P with -N and -As, the equatorial -Cl with other halides, and the axial methyl group with an acetyl group. This has resulted in a series of Fe(III) TBP complexes modelled in their IS and high-spin (HS) states. Lighter ligands -N and -F stabilize the complex in the HS state, while the magnetically anisotropic IS state is stabilized by -P and -As at the axial site, and -Cl, -Br, and -I at the equatorial site. Larger magnetic anisotropies appear for complexes with nearly degenerate ground electronic states that are well separated from the higher excited states. This requirement, largely controlled by the d-orbital splitting pattern due to the changing ligand field, is achieved with a certain combination of axial and equatorial ligands, such as -P and -Br, -As and -Br, and -As and -I. In most cases, the acetyl group at the axial site enhances the magnetic anisotropy compared to its methyl counterpart. In contrast, the presence of -I at the equatorial site compromises the uniaxial type of anisotropy of the Fe(III) complex leading to an enhanced rate of quantum tunneling of magnetization.
Collapse
Affiliation(s)
- Shalini Joshi
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India.
| | | | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
16
|
Stojičkov M, Zlatar M, Pio Mazzeo P, Bacchi A, Radovanović D, Stevanović N, Jevtović M, Novaković I, Anđelković K, Sladić D, Čobeljić B, Gruden M. The interplay between spin states, geometries and biological activity of Fe(III) and Mn(II) complexes with thiosemicarbazone. Polyhedron 2023. [DOI: 10.1016/j.poly.2023.116389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
17
|
Colley JE, Dynak NJ, Blais JRC, Duncan MA. Photodissociation Spectroscopy and Photofragment Imaging of the Fe +(Acetylene) Complex. J Phys Chem A 2023; 127:1244-1251. [PMID: 36701377 DOI: 10.1021/acs.jpca.2c08456] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Tunable laser photodissociation spectroscopy in the 700-400 nm region and photofragment imaging experiments are employed to investigate the Fe+(acetylene) ion-molecule complex. At energies above a threshold at 679 nm, continuous dissociation is detected throughout the visible wavelength region, with regions of broad structure. Comparison to the spectrum predicted by time-dependent density functional theory (TD-DFT) indicates that the complex has a quartet ground state. The dissociation threshold for Fe+(acetylene) at 679 nm provides the dissociation energy on the quartet potential energy surface. Correction for the atomic quartet-sextet spin state energy difference provides an adiabatic dissociation energy of 36.8 ± 0.2 kcal/mol. Photofragment imaging of the Fe+ photoproduct produced at 603.5 nm produces significant kinetic energy release (KER). The photon energy and the maximum value of the KER provide an upper limit on the dissociation energy of D0 ≤ 34.6 ± 3.2 kcal/mol. The dissociation energies determined from the spectroscopy and photofragment imaging experiments agree nicely with the value determined previously by collision-induced dissociation (38.0 ± 2.6 kcal/mol). However, both values are significantly lower than those produced by computational chemistry at the DFT level using different functionals recommended for transition-metal chemistry.
Collapse
Affiliation(s)
- Jason E Colley
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Nathan J Dynak
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - John R C Blais
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Michael A Duncan
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
18
|
Romero S, Baruah T, Zope RR. Spin-state gaps and self-interaction-corrected density functional approximations: Octahedral Fe(II) complexes as case study. J Chem Phys 2023; 158:054305. [PMID: 36754787 DOI: 10.1063/5.0133999] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Accurate prediction of a spin-state energy difference is crucial for understanding the spin crossover phenomena and is very challenging for density functional approximations, especially for local and semi-local approximations due to delocalization errors. Here, we investigate the effect of the self-interaction error removal from the local spin density approximation (LSDA) and Perdew-Burke-Ernzerhof generalized gradient approximation on the spin-state gaps of Fe(II) complexes with various ligands using recently developed locally scaled self-interaction correction (LSIC) by Zope et al. [J. Chem. Phys. 151, 214108 (2019)]. The LSIC method is exact for one-electron density, recovers the uniform electron gas limit of the underlying functional, and approaches the well-known Perdew-Zunger self-interaction correction (PZSIC) as a particular case when the scaling factor is set to unity. Our results, when compared with reference diffusion Monte Carlo results, show that the PZSIC method significantly overestimates spin-state gaps favoring low spin states for all ligands and does not improve upon density functional approximations. The perturbative LSIC-LSDA using PZSIC densities significantly improves the gaps with a mean absolute error of 0.51 eV but slightly overcorrects for the stronger CO ligands. The quasi-self-consistent LSIC-LSDA, such as coupled-cluster single double and perturbative triple [CCSD(T)], gives a correct sign of spin-state gaps for all ligands with a mean absolute error of 0.56 eV, comparable to that of CCSD(T) (0.49 eV).
Collapse
Affiliation(s)
- Selim Romero
- Computational Science Program, The University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Tunna Baruah
- Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Rajendra R Zope
- Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, USA
| |
Collapse
|
19
|
Lonsdale DR, Goerigk L. One-electron self-interaction error and its relationship to geometry and higher orbital occupation. J Chem Phys 2023; 158:044102. [PMID: 36725505 DOI: 10.1063/5.0129820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Density Functional Theory (DFT) sees prominent use in computational chemistry and physics; however, problems due to the self-interaction error (SIE) pose additional challenges to obtaining qualitatively correct results. As an unphysical energy an electron exerts on itself, the SIE impacts most practical DFT calculations. We conduct an in-depth analysis of the one-electron SIE in which we replicate delocalization effects for simple geometries. We present a simple visualization of such effects, which may help in future qualitative analysis of the one-electron SIE. By increasing the number of nuclei in a linear arrangement, the SIE increases dramatically. We also show how molecular shape impacts the SIE. Two- and three-dimensional shapes show an even greater SIE stemming mainly from the exchange functional with some error compensation from the one-electron error, which we previously defined [D. R. Lonsdale and L. Goerigk, Phys. Chem. Chem. Phys. 22, 15805 (2020)]. Most tested geometries are affected by the functional error, while some suffer from the density error. For the latter, we establish a potential connection with electrons being unequally delocalized by the DFT methods. We also show how the SIE increases if electrons occupy higher-lying atomic orbitals; seemingly one-electron SIE free methods in a ground are no longer SIE free in excited states, which is an important insight for some popular, non-empirical density functional approximations (DFAs). We conclude that the erratic behavior of the SIE in even the simplest geometries shows that robust DFAs are needed. Our test systems can be used as a future benchmark or contribute toward DFT development.
Collapse
Affiliation(s)
- Dale R Lonsdale
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| | - Lars Goerigk
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
20
|
Brathwaite AD, Marks JH, Webster IJ, Batchelor AG, Ward TD, Duncan MA. Coordination and Spin States in Fe +(C 2H 2) n Complexes Studied with Selected-Ion Infrared Spectroscopy. J Phys Chem A 2022; 126:9680-9690. [PMID: 36517042 DOI: 10.1021/acs.jpca.2c07556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fe+(acetylene)n ion-molecule complexes are produced in a supersonic molecular beam with pulsed laser vaporization. These ions are mass selected and studied with infrared photodissociation spectroscopy in the C-H stretching region, complemented by computational chemistry calculations. All C-H stretch vibrations are shifted to frequencies lower than the vibrations of isolated acetylene because of the charge transfer that occurs between the metal ion and the molecules. Complexes in the size range of n = 1-4 are found to have structures with individual acetylene molecules bound to the core metal ion via cation-π interactions. The coordination is completed with four ligands in a structure close to a distorted tetrahedron. Larger complexes in the range of n = 5-8 have external acetylene molecules solvating this n = 4 core ion via CH-π bonding to inner-shell ligands. DFT computations predict that quartet spin states are more stable for all complex sizes, but infrared spectra for quartet and doublet spin states are quite similar, precluding definitive determination of the spin states. There is no evidence for any of these complexes having acetylenes coupled into reacted structures. This is consistent with computed thermochemistry, which finds significant activation barriers to such reactions.
Collapse
Affiliation(s)
- Antonio D Brathwaite
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Joshua H Marks
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Ian J Webster
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Anna G Batchelor
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Timothy D Ward
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Michael A Duncan
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
21
|
Grau BW, Neuhauser A, Aghazada S, Meyer K, Tsogoeva SB. Iron-Catalyzed Olefin Metathesis: Recent Theoretical and Experimental Advances. Chemistry 2022; 28:e202201414. [PMID: 35770829 PMCID: PMC9826008 DOI: 10.1002/chem.202201414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Indexed: 01/11/2023]
Abstract
The "metathesis reaction" is a straightforward and often metal-catalyzed chemical reaction that transforms two hydrocarbon molecules to two new hydrocarbons by exchange of molecular fragments. Alkane, alkene and alkyne metathesis have become an important tool in synthetic chemistry and have provided access to complex organic structures. Since the discovery of industrial olefin metathesis in the 1960s, many modifications have been reported; thus, increasing scope and improving reaction selectivity. Olefin metathesis catalysts based on high-valent group six elements or Ru(IV) have been developed and improved through ligand modifications. In addition, significant effort was invested to realize olefin metathesis with a non-toxic, bio-compatible and one of the most abundant elements in the earth's crust; namely, iron. First evidences suggest that low-valent Fe(II) complexes are active in olefin metathesis. Although the latter has not been unambiguously established, this review summarizes the key advances in the field and aims to guide through the challenges.
Collapse
Affiliation(s)
- Benedikt W. Grau
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM)Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Nikolaus-Fiebiger-Straße, 1091058ErlangenGermany
| | - Alexander Neuhauser
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM)Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Nikolaus-Fiebiger-Straße, 1091058ErlangenGermany
| | - Sadig Aghazada
- Inorganic ChemistryFriedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Egerlandstrasse 191058ErlangenGermany
- Department of Chemistry and Applied BiosciencesETH ZurichVladimir-Prelog-Weg 1–58093ZürichSwitzerland
| | - Karsten Meyer
- Inorganic ChemistryFriedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Egerlandstrasse 191058ErlangenGermany
| | - Svetlana B. Tsogoeva
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM)Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Nikolaus-Fiebiger-Straße, 1091058ErlangenGermany
| |
Collapse
|
22
|
Khademloo E, Kadhodaeian HA, Jameie SB, Farhadi M, Saeidian H. A detailed density functional theory investigation on physicochemical properties of ciclopirox derivatives: A potential candidate for prevention of age-related macular degeneration. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Ngo TC, Truong DH, Nguyen TTN, Quang DT, Dao DQ. On the free radical scavenging and metallic ion chelating activities of pyridoxal - Could the pro-oxidant risk be competitive? PHYTOCHEMISTRY 2022; 199:113176. [PMID: 35390394 DOI: 10.1016/j.phytochem.2022.113176] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/14/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Primary and secondary antioxidant activities of pyridoxal have been investigated by using density functional theory (DFT) at the M05-2X level combined with 6-311++G(d,p) basis set for non-metallic atoms and LanL2DZ for metallic ions. The former has been examined by its free radical scavenging activity towards HOO●, HO●, and NO2●via different mechanisms including formal hydrogen transfer (FHT), proton transfer (PT), single electron transfer (SET), and radical adduct formation (RAF). The latter has been accomplished through its transition metal-chelating ability with Fe(III)/Fe(II) and Cu(II)/Cu(I) ions. The results show that pyridoxal illustrates as an efficient radical scavenger, especially, for HO● and NO2● in water. The overall rate constants (koverall) for the reactions with HOO●, HO●, and NO2● radicals are 1.30 × 104, 5.76 × 109, and 1.43 × 109 M-1s-1, respectively. The SET from the anionic state is the most dominant for the HOO● and NO2● scavenging reactions, while both RAF and SET contribute largely to the reaction with highly reactive HO● radicals. Moreover, the anionic form of pyridoxal demonstrates a better role as a metal chelator than the neutral. However, the pro-oxidant risks of the formed complexes could be observed if there are superoxide radical anion (O2●-) and ascorbate (Asc-) in aqueous media.
Collapse
Affiliation(s)
- Thi Chinh Ngo
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Natural Sciences, Duy Tan University, Da Nang, 550000, Viet Nam.
| | - Dinh Hieu Truong
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Natural Sciences, Duy Tan University, Da Nang, 550000, Viet Nam
| | | | - Duong Tuan Quang
- Department of Chemistry, University of Education, Hue University, Hue, 530000, Viet Nam.
| | - Duy Quang Dao
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Natural Sciences, Duy Tan University, Da Nang, 550000, Viet Nam
| |
Collapse
|
24
|
Vitale E, Li Manni G, Alavi A, Kats D. FCIQMC-Tailored Distinguishable Cluster Approach: Open-Shell Systems. J Chem Theory Comput 2022; 18:3427-3437. [PMID: 35522217 PMCID: PMC9202306 DOI: 10.1021/acs.jctc.2c00059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
A recently proposed
tailored approach based on the distinguishable
cluster method and the stochastic FCI solver, FCIQMC [J. Chem.
Theory Comput. 2020, 16, 5621], is extended to open-shell
molecular systems. The method is employed to calculate spin gaps of
various Fe(II) complexes, including a Fe(II) porphyrin model system.
Both distinguishable cluster and fully relaxed CASSCF natural orbitals
were used in this work as reference for the subsequent tailored distinguishable
cluster calculations. The distinguishable cluster natural orbitals
occupation numbers were also used as an aid to the selection of the
active space. The effect of the active space sizes and of the explicit
correlation correction (F12) onto the predicted spin gaps is investigated.
The tailored distinguishable cluster with singles and doubles yields
consistently more accurate results compared to the tailored coupled
cluster with singles and doubles.
Collapse
Affiliation(s)
- Eugenio Vitale
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Giovanni Li Manni
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Ali Alavi
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany.,Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Daniel Kats
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| |
Collapse
|
25
|
Chegerev MG, Starikova AA. A computational search for spin-crossover in bis(catecholate) diiron complexes. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Spillebout F, Stoyanov SR, Zelyak O, Stryker JM, Kovalenko A. Computational Investigation of the Metal and Ligand Substitution Effects on the Structure and Electronic States of the Phosphoranimide Tetramer Complexes of Cu(I), Ni(I), Co(I), and Fe(I). Inorg Chem 2022; 61:1471-1485. [PMID: 34994544 DOI: 10.1021/acs.inorgchem.1c03172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The structurally unique saddle-shaped paramagnetic tetrametallic clusters of Co(I) and Ni(I) with phosphoranimide ligands have been synthesized and proposed as catalyst precursors. The analogous Cu(I) nanocluster is planar and diamagnetic. These notable variations in geometry and ground electronic states indicate that the effect of metal and ligand substituents on the structure and electronic properties of these complexes requires investigation. We present a computational study of a series of these novel homoleptic complexes containing Co(I), Ni(I), and Cu(I) as well as Fe(I) coordinated to phosphoranimides with electron-donating and withdrawing substituents, conducted at the relativistic density functional theory level using ZORA-PBE/TZP. The optimized structures of the saddle-shaped Co(I) and Ni(I) and planar Cu(I) tetramers with linear N-M-N coordination are validated with respect to X-ray diffraction determinations. The ground-state analysis indicates that Cu(I) complexes are diamagnetic, whereas Ni(I) and Co(I) complexes are in high-spin states, in agreement with magnetic susceptibility measurements. The computational results show that Fe(I) complexes are saddle shaped and high spin. The Co(I) complex is stabilized by a metal macrocycle distortion from square to diamond, as elucidated from its Walsh diagram. The effects of metals and ligand substituents on the ground electronic state, metal center coordination environment, and energy of the complexes are investigated. The bulky tertiary butyl substituent causes the largest saddle-shape distortion of the tetramer marcocycle, which partially offsets its electron-donating effect. Macrocycle distortions with N-M-N site angles ranging from obtuse to alternating obtuse reflex are correlated with the increasing number of unpaired electrons. The phenyl-substituted complexes are expected to have the highest reactivity toward electrophiles. Understanding the interplay between structural and electronic parameters is intended to guide the development of synthetic cooperative systems for multielectron redox reactions, models of biological systems, and molecular magnets.
Collapse
Affiliation(s)
- Faustine Spillebout
- Nanotechnology Research Centre, National Research Council of Canada, 11421 Saskatchewan Drive, Edmonton, Alberta T6G 2M9, Canada.,Department of Mechanical Engineering, University of Alberta, 10-203 Donadeo Innovation Centre for Engineering, Edmonton, Alberta T6G 1H9, Canada
| | - Stanislav R Stoyanov
- Nanotechnology Research Centre, National Research Council of Canada, 11421 Saskatchewan Drive, Edmonton, Alberta T6G 2M9, Canada.,Department of Mechanical Engineering, University of Alberta, 10-203 Donadeo Innovation Centre for Engineering, Edmonton, Alberta T6G 1H9, Canada.,Natural Resources Canada, CanmetENERGY Devon, 1 Oil Patch Drive, Devon, Alberta T9G 1A8, Canada
| | - Oleksandr Zelyak
- Nanotechnology Research Centre, National Research Council of Canada, 11421 Saskatchewan Drive, Edmonton, Alberta T6G 2M9, Canada.,Department of Mechanical Engineering, University of Alberta, 10-203 Donadeo Innovation Centre for Engineering, Edmonton, Alberta T6G 1H9, Canada
| | - Jeffrey M Stryker
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Andriy Kovalenko
- Nanotechnology Research Centre, National Research Council of Canada, 11421 Saskatchewan Drive, Edmonton, Alberta T6G 2M9, Canada.,Department of Mechanical Engineering, University of Alberta, 10-203 Donadeo Innovation Centre for Engineering, Edmonton, Alberta T6G 1H9, Canada.,Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Building, Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|
27
|
Finney BA, Chowdhury SR, Kirkvold C, Vlaisavljevich B. CASPT2 molecular geometries of Fe(II) spin-crossover complexes. Phys Chem Chem Phys 2022; 24:1390-1398. [PMID: 34981806 DOI: 10.1039/d1cp04885f] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Using fully internally contracted (FIC)-CASPT2 analytical gradients, geometry optimizations of spin-crossover complexes are reported. This approach is tested on a series of Fe(II) complexes with different sizes, ranging from 13 to 61 atoms. A combination of active space and basis set choices are employed to investigate their role in determining reliable molecular geometries. The reported strategy demonstrates that a wave function-based level of theory can be used to optimize the geometries of metal complexes in reasonable times and enables one to treat the molecular geometry and electronic structure of the complexes using the same level of theory. For a series of smaller Fe(II) SCO complexes, strong field ligands in the LS state result in geometries with the largest differences between DFT and CASPT2; however, good agreement overall is observed between DFT and CASPT2. For the larger complexes, moderate sized basis sets yield geometries that compare well with DFT and available experimental data. We recommend using the (10e,12o) active space since convergence to a minimum structure was more efficient than with truncated active spaces despite having similar Fe-ligand bond distances.
Collapse
Affiliation(s)
- Brian A Finney
- University of South Dakota, Department of Chemistry, 414 E Clark St., Vermillion SD, 57069, USA.
| | - Sabyasachi Roy Chowdhury
- University of South Dakota, Department of Chemistry, 414 E Clark St., Vermillion SD, 57069, USA.
| | - Clara Kirkvold
- University of South Dakota, Department of Chemistry, 414 E Clark St., Vermillion SD, 57069, USA.
| | - Bess Vlaisavljevich
- University of South Dakota, Department of Chemistry, 414 E Clark St., Vermillion SD, 57069, USA.
| |
Collapse
|
28
|
Gaughan SJH, Hirst JD, Croft AK, Jäger CM. Effect of Oriented Electric Fields on Biologically Relevant Iron-Sulfur Clusters: Tuning Redox Reactivity for Catalysis. J Chem Inf Model 2022; 62:591-601. [PMID: 35045248 DOI: 10.1021/acs.jcim.1c00791] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Enzyme-based iron-sulfur clusters, exemplified in families such as hydrogenases, nitrogenases, and radical S-adenosylmethionine enzymes, feature in many essential biological processes. The functionality of biological iron-sulfur clusters extends beyond simple electron transfer, relying primarily on the redox activity of the clusters, with a remarkable diversity for different enzymes. The active-site structure and the electrostatic environment in which the cluster resides direct this redox reactivity. Oriented electric fields in enzymatic active sites can be significantly strong, and understanding the extent of their effect on iron-sulfur cluster reactivity can inform first steps toward rationally engineering their reactivity. An extensive systematic density functional theory-based screening approach using OPBE/TZP has afforded a simple electric field-effect representation. The results demonstrate that the orientation of an external electric field of strength 28.8 MV cm-1 at the center of the cluster can have a significant effect on its relative stability in the order of 35 kJ mol-1. This shows clear implications for the reactivity of iron-sulfur clusters in enzymes. The results also demonstrate that the orientation of the electric field can alter the most stable broken-symmetry state, which further has implications on the directionality of initiated electron-transfer reactions. These insights open the path for manipulating the enzymatic redox reactivity of iron-sulfur cluster-containing enzymes by rationally engineering oriented electric fields within the enzymes.
Collapse
Affiliation(s)
- Samuel J H Gaughan
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.,Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Jonathan D Hirst
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Anna K Croft
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Christof M Jäger
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| |
Collapse
|
29
|
Li R, Yang X, Ping H. A radical mechanism for C–H bond cross-coupling and N 2 activation catalysed by β-diketiminate iron complexes. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00564f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Density functional theory calculations and electronic structure analyses reveal a radical mechanism with spin-crossovers for C–H bond cross-coupling and N2 activation catalysed by β-diketiminate iron complexes.
Collapse
Affiliation(s)
- Rongrong Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xinzheng Yang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Hongming Ping
- Department of Computer Science, University of Nottingham Ningbo China, Ningbo, 315100, China
| |
Collapse
|
30
|
Lin L, Zhu J. Antiaromaticity-Promoted Radical Anion stability in α-vinyl Heterocyclics. Org Chem Front 2022. [DOI: 10.1039/d1qo01944a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As an electron-rich species, radical anions have a wide range of applications in organic synthesis. In addition, aromaticity is an essential concept in chemistry that has attracted considerable attention from...
Collapse
|
31
|
Saiz F, Bernasconi L. Catalytic properties of the ferryl ion in the solid state: a computational review. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00200k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review summarises the last findings in the emerging field of heterogeneous catalytic oxidation of light alkanes by ferryl species supported on solid-state systems such as the conversion of methane into methanol by FeO-MOF74.
Collapse
Affiliation(s)
- Fernan Saiz
- ALBA Synchrotron, Carrer de la Llum 2-26, Cerdanyola del Valles 08290, Spain
| | - Leonardo Bernasconi
- Center for Research Computing and Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
32
|
Kumar M, Dar MA, Katiyar A, Agrawal R, Shenai P, Srinivasan V. Role of Magnetization on Catalytic Pathways of Non-Oxidative Methane Activation on Neutral Iron Carbide Clusters. Phys Chem Chem Phys 2022; 24:11668-11679. [DOI: 10.1039/d1cp05769c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Methane has emerged as a promising fuel due to its abundance and clean combustion properties. It is also a raw material for various value added chemicals. However, the conversion of...
Collapse
|
33
|
Zhou Q, Chin M, Fu Y, Liu P, Yang Y. Stereodivergent atom-transfer radical cyclization by engineered cytochromes P450. Science 2021; 374:1612-1616. [PMID: 34941416 PMCID: PMC9309897 DOI: 10.1126/science.abk1603] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Naturally occurring enzymes can be a source of unnatural reactivity that can be molded by directed evolution to generate efficient biocatalysts with valuable activities. Owing to the lack of exploitable stereocontrol elements in synthetic systems, steering the absolute and relative stereochemistry of free-radical processes is notoriously difficult in asymmetric catalysis. Inspired by the innate redox properties of first-row transition-metal cofactors, we repurposed cytochromes P450 to catalyze stereoselective atom-transfer radical cyclization. A set of metalloenzymes was engineered to impose substantial stereocontrol over the radical addition step and the halogen rebound step in these unnatural processes, allowing enantio- and diastereodivergent radical catalysis. This evolvable metalloenzyme platform represents a promising solution to tame fleeting radical intermediates for asymmetric catalysis.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Michael Chin
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Yue Fu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Yang Yang
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, USA.,Biomolecular Science and Engineering Program, University of California Santa Barbara, Santa Barbara, California 93106, USA.,Corresponding author.
| |
Collapse
|
34
|
Vidal D, Cirera J, Ribas-Arino J. Accurate calculation of spin-state energy gaps in Fe(III) spin-crossover systems using density functional methods. Dalton Trans 2021; 50:17635-17642. [PMID: 34806100 DOI: 10.1039/d1dt03335b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fe(III) complexes are receiving ever-increasing attention as spin crossover (SCO) systems because they are usually air stable, as opposed to Fe(II) complexes, which are prone to oxidation. Here, we present the first systematic study exclusively devoted to assess the accuracy of several exchange-correlation functionals when it comes to predicting the energy gap between the high-spin (S = 5/2) and the low-spin (S = 1/2) states of Fe(III) complexes. Using a dataset of 24 different Fe(III) hexacoordinated complexes, it is demonstrated that the B3LYP* functional is an excellent choice not only for predicting spin-state energy gaps for Fe(III) complexes undergoing spin-transitions but also for discriminating Fe(III) complexes that are either low- or high-spin in the whole range of temperatures. Our benchmark study has led to the identification of a very versatile Fe(III) compound whose SCO properties can be engineered upon changing a single axial ligand. Overall, this work demonstrates that B3LYP* is a reliable functional for screening new spin-crossover systems with tailored properties.
Collapse
Affiliation(s)
- Daniel Vidal
- Departament de Química Inorgànica i Orgànica and Institut de Recerca de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain. .,Departament de Ciència de Materials i Química Física and Institut de Recerca de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
| | - Jordi Cirera
- Departament de Química Inorgànica i Orgànica and Institut de Recerca de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
| | - Jordi Ribas-Arino
- Departament de Ciència de Materials i Química Física and Institut de Recerca de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
| |
Collapse
|
35
|
Himmelbauer D, Schratzberger H, Käfer MG, Stöger B, Veiros LF, Kirchner K. Nonsymmetrical Benzene–Pyridine-Based Nickel Pincer Complexes Featuring Borohydride, Formate, Ethyl, and Nitrosyl Ligands. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel Himmelbauer
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria
| | - Heiko Schratzberger
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria
| | - Matthias G. Käfer
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria
| | - Berthold Stöger
- X-Ray Center, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria
| | - Luis F. Veiros
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Karl Kirchner
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria
| |
Collapse
|
36
|
Wowk V, Rousseau L, Lefèvre G. Importance of Two-Electron Processes in Fe-Catalyzed Aryl-(hetero)aryl Cross-Couplings: Evidence of Fe 0/Fe II Couple Implication. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Vincent Wowk
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, CSB2D, 75005 Paris, France
| | - Lidie Rousseau
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, CSB2D, 75005 Paris, France
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette Cedex, France
| | - Guillaume Lefèvre
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, CSB2D, 75005 Paris, France
| |
Collapse
|
37
|
Glatz M, Gorgas N, Stöger B, Pittenauer E, Ferreira L, Veiros LF, Calhorda MJ, Kirchner K. Structural and Electronic Properties of Iron(0) PNP Pincer Complexes. Z Anorg Allg Chem 2021; 647:1429-1435. [PMID: 34413550 PMCID: PMC8360027 DOI: 10.1002/zaac.202100015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/16/2021] [Indexed: 11/06/2022]
Abstract
In the present work we have prepared and fully characterized several Fe(0) complexes of the type [Fe(PNP)(CO)2] treating Fe(II) complexes [Fe(PNP)(Cl)2] with KC8 in the presence of carbon monoxide. While complexes [Fe(PNPNMe-iPr)(CO)2], [Fe(PNPNEt-iPr)(CO)2] adopt a trigonal bipyramidal geometry, the bulkier and more electron rich [Fe(PNPNH-tBu)(CO)2] is closer to a square pyramidal geometry. Mössbauer spectra showed isomer shifts very close to 0 and similar to those reported for Fe(I) systems. Quadrupole splitting values range between 2.2 and 2.7 mm s-1 both in experiments and DFT calculations, while those of Fe(I) complexes are much smaller (∼0.6 mm s-1).
Collapse
Affiliation(s)
- Mathias Glatz
- Institute of Applied Synthetic Chemistry Vienna University of Technology Getreidemarkt 9/163-AC 1060 Vienna Austria
| | - Nikolaus Gorgas
- Institute of Applied Synthetic Chemistry Vienna University of Technology Getreidemarkt 9/163-AC 1060 Vienna Austria
| | - Berthold Stöger
- X-ray Center Vienna University of Technology Getreidemarkt 9/163-OC 1060 Vienna Austria
| | - Ernst Pittenauer
- Institute of Chemical Technologies and Analytics Vienna University of Technology Getreidemarkt 9 A-1060 Vienna Austria
| | - Liliana Ferreira
- Department of Physics University of Coimbra 3004-516 Coimbra Portugal
- BioISI-Biosystems and Integrative Sciences Institute Faculdade de Ciências Universidade de Lisboa 1749-016 Lisboa Portugal
| | - Luis F Veiros
- Centro de Química Estrutural and Departamento de Engenharia Química Instituto Superior Técnico Universidade de Lisboa Av Rovisco Pais 1049-001 Lisboa Portugal
| | - Maria José Calhorda
- BioISI-Biosystems and Integrative Sciences Institute Faculdade de Ciências Universidade de Lisboa 1749-016 Lisboa Portugal
| | - Karl Kirchner
- Institute of Applied Synthetic Chemistry Vienna University of Technology Getreidemarkt 9/163-AC 1060 Vienna Austria
| |
Collapse
|
38
|
Meng L, Liu S, Qin Q, Zeng B, Luo Z, Chi C. Infrared photodissociation spectroscopy of heteronuclear group 15 metal-iron carbonyl cluster anions A mFe(CO) n- (A = Sb, Bi; m, n = 2, 3). Phys Chem Chem Phys 2021; 23:12668-12678. [PMID: 34036991 DOI: 10.1039/d1cp00583a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heteronuclear group 15 metal-iron carbonyl cluster complexes of AmFe(CO)n- (A = Sb, Bi; m, n = 2-3) were generated in the gas phase and studied by infrared photodissociation spectroscopy in the carbonyl stretching region. Their structures were determined by comparing the experimental spectra with predicted spectra derived from DFT calculations at the B3LYP and BP86 levels. All of the AmFe(CO)n- cluster anions were determined to have Fe(CO)n- fragments with all of the CO ligands terminally bonded to the iron center, and they can be regarded as being formed via the interactions of the neutral group 15 metal clusters with the Fe(CO)n- fragments. Bonding analyses indicated that each A2Fe(CO)n- (n = 2, 3) cluster anion contained two A-Fe single bonds and one A-A double bond. Each A3Fe(CO)n- (n = 2, 3) cluster anion involved three A-Fe single bonds and three A-A single bonds. There is an isolobal relationship between the Fe(CO)3- group and the group 15 atoms. The substitution of an Fe(CO)3- group in place of one A atom in the tetrahedral A4 molecule resulted in an A3Fe(CO)3- cluster anion with the closed-shell electronic configuration for all the group 15 metals and iron atoms.
Collapse
Affiliation(s)
- Luyan Meng
- School of Chemistry, Biological and Materials Sciences, East China University of Technology, Nanchang, Jiangxi Province 330013, China
| | | | | | | | | | | |
Collapse
|
39
|
Mariano LA, Vlaisavljevich B, Poloni R. Improved Spin-State Energy Differences of Fe(II) Molecular and Crystalline Complexes via the Hubbard U-Corrected Density. J Chem Theory Comput 2021; 17:2807-2816. [PMID: 33831303 DOI: 10.1021/acs.jctc.1c00034] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We recently showed that the DFT+U approach with a linear-response U yields adiabatic energy differences biased toward high spin [Mariano et al. J. Chem. Theory Comput. 2020, 16, 6755-6762]. Such bias is removed here by employing a density-corrected DFT approach where the PBE functional is evaluated on the Hubbard U-corrected density. The adiabatic energy differences of six Fe(II) molecular complexes computed using this approach, named PBE[U] here, are in excellent agreement with coupled cluster-corrected CASPT2 values for both weak- and strong-field ligands resulting in a mean absolute error (MAE) of 0.44 eV, smaller than that of the recently proposed Hartree-Fock density-corrected DFT (1.22 eV) and any other tested functional, including the best performer TPSSh (0.49 eV). We take advantage of the computational efficiency of this approach and compute the adiabatic energy differences of five molecular crystals using PBE[U] with periodic boundary conditions. The results show, again, an excellent agreement (MAE = 0.07 eV) with experimentally extracted values and a superior performance compared with the best performers M06-L (MAE = 0.08 eV) and TPSSh (MAE = 0.31 eV) computed on molecular fragments.
Collapse
Affiliation(s)
- Lorenzo A Mariano
- University Grenoble Alpes, CNRS, Grenoble-INP, SIMaP, F-38042 Grenoble, France
| | - Bess Vlaisavljevich
- Department of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, United States
| | - Roberta Poloni
- University Grenoble Alpes, CNRS, Grenoble-INP, SIMaP, F-38042 Grenoble, France
| |
Collapse
|
40
|
Khurana R, Gupta S, Ali ME. First-Principles Investigations of Magnetic Anisotropy and Spin-Crossover Behavior of Fe(III)-TBP Complexes. J Phys Chem A 2021; 125:2197-2207. [PMID: 33617261 DOI: 10.1021/acs.jpca.1c00022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
With the ongoing effort to obtain mononuclear 3d-transition-metal complexes that manifest slow relaxation of magnetization and, hence, can behave as single-molecule magnets (SMMs), we have modeled 14 Fe(III) complexes based on an experimentally synthesized (PMe3)2FeCl3 complex [J. Am. Chem. Soc. 2017, 139 (46), 16474-16477], by varying the axial ligands with group XV elements (N, P, and As) and equatorial halide ligands from F, Cl, Br, and I. Out of these, nine complexes possess large zero field splitting (ZFS) parameter D in the range of -40 to -60 cm-1. The first-principles investigation of the ground-spin state applying density functional theory (DFT) and wave function-based multiconfigurations methods, e.g., SA-CASSCF/NEVPT2, are found to be quite consistent except for few delicate cases with near-degenerate spin states. In such cases, the hybrid B3LYP functional is found to be biased toward high-spin (HS) state. Altering the percentage of exact exchange admixed in the B3LYP functional leads to intermediate-spin (IS) ground state consistent with the multireference calculations. The origin of large zero field splitting (ZFS) in the Fe(III)-based trigonal bipyramidal (TBP) complexes is investigated. Furthermore, a number of complexes are identified with very small ΔGHS-ISadia. values indicating the possible spin-crossover phenomenon between the bistable spin states.
Collapse
Affiliation(s)
- Rishu Khurana
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India
| | - Sameer Gupta
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India
| | - Md Ehesan Ali
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India
| |
Collapse
|
41
|
Xu S, Chen X, Luo G, Gao W. Nickel complexes based on BIAN ligands: transformation and catalysis on ethylene polymerization. Dalton Trans 2021; 50:7356-7363. [PMID: 33960360 DOI: 10.1039/d1dt00649e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Treatment of bis(arylimino)acenaphthene (ArBIAN) with Ni(COD)2 in toluene afforded dmpBIANNi(COD) (2a, dmp = 2,6-Me2C6H3) and dippBIANNi(COD) (2b, dipp = 2,6-iPrC6H3), respectively, in moderate yields. Complexes 2a and 2b can be oxidized by a small amount of oxygen at low temperature leading to oxygen-bridged dinuclear Ni(ii) complexes (dmpBIANNi)2(μ-O)2 (4a) and (dippBIANNi)2(μ-O)2 (4b), respectively, as a purple powder. The reaction of ArBIAN with 0.5 equiv of Ni(COD)2 or Ni(Ph3P)4 gave bisligated complexes (dmpBIAN)2Ni (3a) and (dippBIAN)2Ni (3b), which can be considered as Ni(0) complexes supported by two neutral BIAN ligands. Oxidation of the bisligated nickel complexes 3a and 3b with [Cp2Fe][B(C6F5)4] afforded cationic Ni(i) complexes [(dmpBIAN)2Ni][B(C6F5)4] (5a) and [(dippBIAN)2Ni][B(C6F5)4] (5b), respectively, in which the Ni(i) centre is chelated by two neutral Ar-BIAN ligands. These complexes were characterized by NMR and IR spectroscopy and DFT calculation, and the molecular structures of 3b, 4b, and 5b were well established by X-ray diffraction analysis. These complexes were evaluated as catalysts for ethylene polymerization in which 2b showed high activity in the presence of AlMe3. 13C NMR analysis of polymers showed that the 2b/AlMe3 catalytic system gave less-branched polymers when compared to that obtained with dippBIANNiBr2 under the same conditions.
Collapse
Affiliation(s)
- Shuyun Xu
- College of Chemistry, Jilin University, Changchun, China.
| | - Xuemeng Chen
- College of Chemistry, Jilin University, Changchun, China.
| | - Gen Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
| | - Wei Gao
- College of Chemistry, Jilin University, Changchun, China.
| |
Collapse
|
42
|
da Silva AR, de Almeida JS, Rivelino R. A Theoretical Assessment of Spin and Charge States in Binuclear Cobalt-Ruthenium Complexes: Implications for a Creutz-Taube Model Ion Separated by a C 60-Derivative Bridging Ligand. J Phys Chem A 2020; 124:10826-10837. [PMID: 33296201 DOI: 10.1021/acs.jpca.0c09194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We investigate the spin-state energetics and the role of ionic charges in the electronic configuration of binuclear complexes of the form [(NH3)5Co(py)-X-(py)Ru(NH3)5]q+. In these compounds with q = 4-6, py = pyridine, and X = C≡C and C60, the Co-Ru distance varies from ∼1.4 to ∼2.1 nm. We carry out a systematic electronic structure calculation using different exchange-correlation (xc) approaches within spin-density functional theory, which are largely employed to investigate the properties of a variety of coordination complexes. To evaluate the effects of spin states and type of spacer in the bridging ligand on the valence tautomerism between Co2+/3+ and Ru2+/3+, we examine in more detail the case of Creutz-Taube-type ions [(NH3)5Co(py)-X-(py)Ru(NH3)5]5+. Our analysis shows that the stabilization of low- and high-spin states critically depends on the total charge of the complex, type of X-bridged ligand, and employed xc approach to calculate the electron spin density. Importantly, the C60-bridged group may result in a blockage of the valence tautomerism of the Creutz-Taube complex, inducing bistable charge configurations. Overall, our results also show that an adiabatic description in terms of the frontier molecular spin-orbitals for analyzing the distinct spin-charge states of these complexes may dramatically depend on the density-functional description.
Collapse
Affiliation(s)
- Alexsandro R da Silva
- Instituto de Física, Universidade Federal da Bahia, 40210-340 Salvador, Bahia, Brazil.,Instituto Federal do Maranhão, Campus São João dos Patos, 65665-000 São João dos Patos, Maranhão, Brazil
| | | | - Roberto Rivelino
- Instituto de Física, Universidade Federal da Bahia, 40210-340 Salvador, Bahia, Brazil
| |
Collapse
|
43
|
Abstract
Applications of density-functional theory (DFT) in computational chemistry rely on an approximate exchange-correlation (xc) functional. However, existing approximations can fail dramatically for open-shell molecules, in particular for transition-metal complexes or radicals. Most importantly, predicting energy differences between different spin-states with approximate exchange-correlation functionals remains extremely challenging. Formally, it is known that the exact xc functional should be spin-state dependent, but none of the available approximations feature such an explicit spin-state dependence [C. R. Jacob and M. Reiher, Int. J. Quantum Chem., 2012, 112, 3661-3684]. Thus, to find novel approximations for the xc functional for open-shell systems, the development of spin-state dependent xc functionals appears to be a promising avenue. Here, we set out to shed light on the spin-state dependence of the xc functional by investigating the underlying xc holes, which we extract from configuration interaction calculations for model systems. We analyze the similarities and differences between the xc holes of the lowest-energy singlet and triplet states of the dihydrogen molecule, the helium atom, and the lithium dimer. To shed further light on the spin-state dependence of these xc holes we also discuss exact conditions that can be derived from the spin structure of the reduced two-electron density matrix. Altogether, our results suggest several possible routes towards the construction of explicitly spin-state dependent approximations for the xc functional.
Collapse
Affiliation(s)
- Julia Brüggemann
- Technische Universität Braunschweig, Institute of Physical and Theoretical Chemistry, Gaußstraße 17, 38106 Braunschweig, Germany.
| | | |
Collapse
|
44
|
Carlotto S, Casella G, Floreano L, Verdini A, Ribeiro AP, Martins LM, Casarin M. Spin state, electronic structure and bonding on C-scorpionate [Fe(II)Cl2(tpm)] catalyst: An experimental and computational study. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
45
|
Mariano LA, Vlaisavljevich B, Poloni R. Biased Spin-State Energetics of Fe(II) Molecular Complexes within Density-Functional Theory and the Linear-Response Hubbard U Correction. J Chem Theory Comput 2020; 16:6755-6762. [DOI: 10.1021/acs.jctc.0c00628] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Lorenzo A. Mariano
- Grenoble-INP, SIMaP, University of Grenoble-Alpes, CNRS, F-38042 Grenoble, France
| | - Bess Vlaisavljevich
- Department of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, United States
| | - Roberta Poloni
- Grenoble-INP, SIMaP, University of Grenoble-Alpes, CNRS, F-38042 Grenoble, France
| |
Collapse
|
46
|
Chen D, Szczepanik DW, Zhu J, Solà M. Probing the Origin of Adaptive Aromaticity in 16-Valence-Electron Metallapentalenes. Chemistry 2020; 26:12964-12971. [PMID: 32519777 DOI: 10.1002/chem.202001830] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/08/2020] [Indexed: 12/19/2022]
Abstract
Species with adaptive aromaticity are aromatic in the ground and lowest-lying triplet excited states and they have normally intermediate singlet-triplet gaps. Few examples of compounds with adaptive aromaticity are known to date, including 16-valence-electron (16e) metallapentalenes. A sweeping search could be conducted to discover new members of this group, but efficient designs with an explicit strategy would facilitate the quest for new members of this elusive family. Density functional theory calculations and aromaticity evaluations have been performed to reveal the nature of triplet-state aromaticity in 16e metallapentalenes. Our results show that coordination of strong σ- or π-donor ligands helps achieving adaptive aromaticity of 16e metallapentalenes by means of a spin delocalization mechanism. These results have important implications for understanding the unusual properties of the organometallic adaptive aromatics, leading the way to efficient design of new compounds with tunable singlet-triplet gaps.
Collapse
Affiliation(s)
- Dandan Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.,Institute of Computational Chemistry and Catalysis, Department of Chemistry, University of Girona, C/ M. Aurèlia Capmany, 69, 17003, Girona, Catalonia, Spain
| | - Dariusz W Szczepanik
- Institute of Computational Chemistry and Catalysis, Department of Chemistry, University of Girona, C/ M. Aurèlia Capmany, 69, 17003, Girona, Catalonia, Spain.,K. Guminski Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa, 2, 30-387, Kraków, Poland
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Miquel Solà
- Institute of Computational Chemistry and Catalysis, Department of Chemistry, University of Girona, C/ M. Aurèlia Capmany, 69, 17003, Girona, Catalonia, Spain
| |
Collapse
|
47
|
Sharma AK, Nakamura M. A DFT Study on Fe I/Fe II/Fe III Mechanism of the Cross-Coupling between Haloalkane and Aryl Grignard Reagent Catalyzed by Iron-SciOPP Complexes. Molecules 2020; 25:molecules25163612. [PMID: 32784472 PMCID: PMC7465158 DOI: 10.3390/molecules25163612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 01/18/2023] Open
Abstract
To explore plausible reaction pathways of the cross-coupling reaction between a haloalkane and an aryl metal reagent catalyzed by an iron–phosphine complex, we examine the reaction of FeBrPh(SciOPP) 1 and bromocycloheptane employing density functional theory (DFT) calculations. Besides the cross-coupling, we also examined the competitive pathways of β-hydrogen elimination to give the corresponding alkene byproduct. The DFT study on the reaction pathways explains the cross-coupling selectivity over the elimination in terms of FeI/FeII/FeIII mechanism which involves the generation of alkyl radical intermediates and their propagation in a chain reaction manner. The present study gives insight into the detailed molecular mechanic of the cross-coupling reaction and revises the FeII/FeII mechanisms previously proposed by us and others.
Collapse
Affiliation(s)
- Akhilesh K. Sharma
- International Research Center for Elements Science (IRCELS), Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan;
| | - Masaharu Nakamura
- International Research Center for Elements Science (IRCELS), Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan;
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
- Correspondence: ; Tel.: +81-774-38-3180
| |
Collapse
|
48
|
Zhang D, Truhlar DG. Spin Splitting Energy of Transition Metals: A New, More Affordable Wave Function Benchmark Method and Its Use to Test Density Functional Theory. J Chem Theory Comput 2020; 16:4416-4428. [PMID: 32525690 DOI: 10.1021/acs.jctc.0c00518] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Accurately predicting the spin splitting energy of chemical species is important for understanding their reactivity and magnetic properties, but it is very challenging, especially for molecules containing transition metals. One impediment to progress is the scarcity of accurate benchmark data. Here we report a set of calculations designed to yield reliable benchmarks for simple transition-metal complexes that can be used to test density functional methods that are affordable for large systems of more practical interest. Various wave function methods are tested against experiment for Fe2+, Fe3+, and Co3+, including CASSCF, CASPT2, CASPT3, MRCISD, MRCISD+Q, ACPF, AQCC, CCSD(T), and CASPT2/CCSD(T) and also a new method called CASPT2.5, which is performed by taking the average of the CASPT2 and CASPT3 energies. We find that MRCISD+Q, ACPF, and AQCC require smaller active spaces for good accuracy than are required by CASPT2 and CASPT3, and this aspect may be important for calculations on larger molecules; here we find that CASPT2.5 extrapolated to a complete basis set is the most suitable method-in terms of computational cost and in terms of accuracy on monatomic systems-and therefore we chose this method for molecular benchmarks. Then Kohn-Sham density functional calculations with 60 exchange-correlation functionals are tested for FeF2, FeCl2, and CoF2. We find that MN15-L, M06-SX, and revM06 have very good agreement with CASPT2.5 benchmarks in terms of both the spin splitting energy and the optimized geometry for each spin state. In addition, we recommend def2-TZVP as the most suitable basis set to perform density functional calculations for molecular spin splitting energies; extra polarization functions in the basis set do not help to increase the accuracy of the spin splitting energy in KS calculations.
Collapse
Affiliation(s)
- Dayou Zhang
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
49
|
Moltved KA, Kepp KP. Using electronegativity and hardness to test density functionals. J Chem Phys 2020; 152:244113. [PMID: 32610960 DOI: 10.1063/5.0006189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Density functional theory (DFT) is used in thousands of papers each year, yet lack of universality reduces DFT's predictive capacity, and functionals may produce energy-density imbalances. The absolute electronegativity (χ) and hardness (η) directly reflect the energy-density relationship via the chemical potential ∂E/∂N and we thus hypothesized that they probe universality. We studied χ and η for atoms Z = 1-36 using 50 diverse functionals covering all major classes. Very few functionals describe both χ and η well. η benefits from error cancellation, whereas χ is marred by error propagation from IP and EA; thus, almost all standard GGA and hybrid functionals display a plateau in the MAE at ∼0.2 eV-0.3 eV for η. In contrast, variable performance for χ indicates problems in describing the chemical potential by DFT. The accuracy and precision of a functional is far from linearly related, yet for a universal functional, we expect linearity. Popular functionals such as B3LYP, PBE, and revPBE perform poorly for both properties. Density sensitivity calculations indicate large density-derived errors as occupation of degenerate p- and d-orbitals causes "non-universality" and large dependency on exact exchange. Thus, we argue that performance for χ for the same systems is a hallmark of an important aspect of universality by probing ∂E/∂N. With this metric, B98, B97-1, PW6B95D3, MN-15, rev-TPSS, HSE06, and APFD are the most "universal" among the tested functionals. B98 and B97-1 are accurate for very diverse metal-ligand bonds, supporting that a balanced description of ∂E/∂N and ∂E2/∂N2, via χ and η, is probably a first simple probe of universality.
Collapse
Affiliation(s)
- Klaus A Moltved
- Technical University of Denmark, DTU Chemistry, Building 206, 2800 Kgs. Lyngby, Denmark
| | - Kasper P Kepp
- Technical University of Denmark, DTU Chemistry, Building 206, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
50
|
Loipersberger M, Zee DZ, Panetier JA, Chang CJ, Long JR, Head-Gordon M. Computational Study of an Iron(II) Polypyridine Electrocatalyst for CO2 Reduction: Key Roles for Intramolecular Interactions in CO2 Binding and Proton Transfer. Inorg Chem 2020; 59:8146-8160. [DOI: 10.1021/acs.inorgchem.0c00454] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Matthias Loipersberger
- Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
- Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - David Z. Zee
- Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Julien A. Panetier
- Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - Jeffrey R. Long
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemical & Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Martin Head-Gordon
- Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|