1
|
Zang X, He M, Xu Y, Che T, Wang F, Xu J, Zhang H, Hu F, Xu L. Metaphire guillelmi exhibited predominant capacity of arsenic efflux. CHEMOSPHERE 2024; 361:142479. [PMID: 38815813 DOI: 10.1016/j.chemosphere.2024.142479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Earthworm could regulate their body concentration of arsenic via storage or excretion, and the ability of As efflux among different earthworms is not consistent. Here, whole and semi As exposure patterns with 0-10-30-60-100 mg kg-1 exposure concentrations were set to characterize the As efflux in geophagous earthworm, Metaphire guillelmi. Cast As (As-C) and earthworms' antioxidative responses were monitored to explore the efflux mechanisms under 30 mg kg-1 As-spiked soil (As30), besides, As concentration in earthworm tissue after egestion and dissection depurations were compared. In the whole exposure pattern, As concentration in gut content (As-G, 19.2-120.3 mg kg-1) surpassed that in the tissue (As-T, 17.2-53.2 mg kg-1), and they both increased with exposure concentrations. With the prolong time, they firstly increased and kept stable between day 10-15, then As-G increased while As-T decreased between day 15-20. In the semi-exposure pattern, both As-G and As-T decreased when M. guillelmi was transferred to clean soil for 5 days. During the 42-day incubation in As30, the antioxidative responses including reactive oxygen species (ROS), glutathione (GSH) and glutathione-S-transferase (GST) were firstly increased and then decreased, and As-C (13.9-43.9 mg kg-1) kept higher than As-G (14.2-35.1 mg kg-1). Significantly positive correlations were found between As-T and GSH, As-C and GST. Moreover, tissue As after dissection (11.6-22.9 mg kg-1) was obviously lower than that after egestion (11.4-26.4 mg kg-1), but significantly related to ROS and GSH. Taken together, M. guillelmi exhibited excellent capacity of As efflux, and GSH explained tissue As accumulation while GST facilitated the As elimination via cast. Besides, dissection instead of egestion revealed the As efflux in M. guillelmi more accurately. These findings contributed to a better understanding of how geophagous earthworm M. guillelmi regulated tissue As accumulation for As stress tolerance, and recommended an optimal depuration mode to characterize As accumulation.
Collapse
Affiliation(s)
- Xiayun Zang
- Asia Hub, Sanya Institute of Nanjing Agricultural University, Sanya, 572025, Hainan, China; College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210014, Jiangsu, China
| | - Mingyue He
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yuanzhou Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Ting Che
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Fei Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jingjing Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Huijuan Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Feng Hu
- Asia Hub, Sanya Institute of Nanjing Agricultural University, Sanya, 572025, Hainan, China; College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210014, Jiangsu, China
| | - Li Xu
- Asia Hub, Sanya Institute of Nanjing Agricultural University, Sanya, 572025, Hainan, China; College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210014, Jiangsu, China.
| |
Collapse
|
2
|
Wu Y, Deng SG, Xu Y, Zhang Y, Hao P, Zhao Q, Jiang J, Li Y. Biotransformation of roxarsone by earthworms and subsequent risk of soil arsenic release: The role of gut bacteria. ENVIRONMENT INTERNATIONAL 2024; 185:108517. [PMID: 38401435 DOI: 10.1016/j.envint.2024.108517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/17/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
The organoarsenical feed additive roxarsone (ROX) is a ubiquitous threat due to the unpredictable levels of arsenic (As) released by soil bacteria. The earthworms representing soil fauna communities provide hotspots for As biotransformation genes (ABGs). Nonetheless, the role of gut bacteria in this regard is unclear. In this study, the changes in As speciation, bacterial ABGs, and communities were analyzed in a ROX-contaminated soil (50 mg/kg As in ROX form) containing the earthworm Eisenia feotida. (RE vs. R treatment). After 56 d, earthworms reduced the levels of both ROX and total As by 59 % and 17 %, respectively. The available As content was 10 % lower in the RE than in R treatment. Under ROX stress, the total ABG abundance was upregulated in both earthworm gut and soil, with synergistic effects observed following RE treatment. Besides, the enrichment of arsM and arsB genes in earthworm gut suggested that gut bacteria may facilitate As removal by enhancing As methylation and transport function in soil. However, the bacteria carrying ABGs were not associated with the ABG abundance in earthworm gut indicating the unique strategies of earthworm gut bacteria compared with soil bacteria due to different microenvironments. Based on a well-fit structural equation model (P = 0.120), we concluded that gut bacteria indirectly contribute to ROX transformation and As detoxification by modifying soil ABGs. The positive findings of earthworm-induced ROX transformation shed light on the role of As biomonitoring and bioremediation in organoarsenical-contaminated environments.
Collapse
Affiliation(s)
- Yizhao Wu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Shanghai 200240, China
| | - Song-Ge Deng
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yunxiang Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Shanghai 200240, China
| | - Yifan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Shanghai 200240, China
| | - Puguo Hao
- Department of Biotechnology, Ordos Vocational College of Eco-environment, Ordos 017010, China
| | - Qi Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Shanghai 200240, China
| | - Jibao Jiang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Shanghai 200240, China
| | - Yinsheng Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Shanghai 200240, China.
| |
Collapse
|
3
|
Karczewska A, Gruss I, Szopka K, Dradrach A, Twardowski J, Twardowska K. Arsenic toxicity to earthworms in soils of historical As mining sites: an assessment based on various endpoints and chemical extractions. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:6713-6726. [PMID: 37368174 PMCID: PMC10403387 DOI: 10.1007/s10653-023-01665-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
Eisenia fetida is an earthworm species often used to assess the toxicity of contaminants in soils. Several studies indicated that its response can be unpredictable because it depends both on total concentrations of contaminants and also on their forms that differ in susceptibility to be released from soil solid phase. The issue is complex because two various uptake routes are concurrently involved, dermal and ingestion in guts, where the bioavailability of contaminants can considerably change. The aim of this study was to analyze the toxicity of arsenic (As) in various strongly contaminated meadow and forest soils, representative for former As mining and processing area, to earthworms E. fetida and its accumulation in their bodies. An attempt was made to find relationships between the response of earthworms and chemical extractability of As. In the bioassay, carried out according to the standard ISO protocol, different endpoints were applied: earthworm survival, fecundity measured by the numbers of juveniles and cocoons, earthworm weight and As accumulation in the bodies. The results proved that E. fetida can tolerate extremely high total As concentrations in soils, such as 8000 mg/kg, however, the individual endpoints were not correlated and showed different patterns. The most sensitive one was the number of juveniles. No particular soil factor was identified that would indicate an exceptionally high As susceptibility to the release from one of soils, however, we have demonstrated that the sum of non-specifically and specifically bound As (i.e. fractions F1 + F2 in sequential extraction according to Wenzel) could be a good chemical indicator of arsenic toxicity to soil invertebrates.
Collapse
Affiliation(s)
- Anna Karczewska
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Wrocław University of Environmental and Life Sciences, ul. Grunwaldzka 53, 50-357, Wrocław, Poland.
| | - Iwona Gruss
- Department of Plant Protection, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 24a, 50-363, Wrocław, Poland
| | - Katarzyna Szopka
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Wrocław University of Environmental and Life Sciences, ul. Grunwaldzka 53, 50-357, Wrocław, Poland
| | - Agnieszka Dradrach
- Institute of Agroecology and Plant Production, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 24a, 50-363, Wrocław, Poland
| | - Jacek Twardowski
- Department of Plant Protection, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 24a, 50-363, Wrocław, Poland
| | - Kamila Twardowska
- Department of Plant Protection, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 24a, 50-363, Wrocław, Poland
| |
Collapse
|
4
|
Wang HT, Liang ZZ, Ding J, Li G, Fu SL, Zhu D. Deciphering roles of microbiota in arsenic biotransformation from the earthworm gut and skin. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130707. [PMID: 36603428 DOI: 10.1016/j.jhazmat.2022.130707] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Biotransformation mediated by microbes can affect the biogeochemical cycle of arsenic. However, arsenic biotransformation mediated by earthworm-related microorganisms has not been well explored, especially the role played by earthworm skin microbiota. Herein, we reveal the profiles of arsenic biotransformation genes (ABGs) and elucidate the microbial communities of the earthworm gut, skin, and surrounding soil from five different soil environments in China. The relative abundance of ABGs in the earthworm skin microbiota, which were dominated by genes associated with arsenate reduction and transport, was approximately three times higher than that in the surrounding soil and earthworm gut microbiota. The composition and diversity of earthworm skin microbiota differed significantly from those of the soil and earthworm gut, comprising a core bacterial community with a relative abundance of 96% Firmicutes and a fungal community with relative abundances of 50% Ascomycota and 13% Mucoromycota. In addition, stochastic processes mainly contributed to the microbial community assembly across all samples. Moreover, fungal genera such as Vishniacozyma and Oomyces were important mediators of ABGs involved in the biogeochemical cycle of arsenic. This is the first study to investigate earthworm skin as a reservoir of microbial diversity in arsenic biotransformation. Our findings broaden the current scientific knowledge of the involvement of earthworms in the arsenic biogeochemical cycle.
Collapse
Affiliation(s)
- Hong-Tao Wang
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China; Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China
| | - Zong-Zheng Liang
- Academy of Regional and Global Governance, Beijing Foreign Studies University, Beijing 100089, China
| | - Jing Ding
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Sheng-Lei Fu
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China; Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.
| |
Collapse
|
5
|
Wang Z, Xue W, Qi F, Zhang Z, Li C, Cao X, Cui X, Wang N, Cui Z. How do different arsenic species affect the joint toxicity of perfluorooctanoic acid and arsenic to earthworm Eisenia fetida: A multi-biomarker approach. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114528. [PMID: 36640577 DOI: 10.1016/j.ecoenv.2023.114528] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/22/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Perfluorooctanoic acid (PFOA) and arsenic are widely distributed pollutants and can coexist in the environment. However, no study has been reported about the effects of different arsenic species on the joint toxicity of arsenic and PFOA to soil invertebrates. In this study, four arsenic species were selected, including arsenite (As(III)), arsenate (As(V)), monomethylarsonate (MMA), and dimethylarsinate (DMA). Earthworms Eisenia fetida were exposed to soils spiked with sublethal concentrations of PFOA, different arsenic species, and their binary mixtures for 56 days. The bioaccumulation and biotransformation of pollutants, as well as eight biomarkers in organisms, were assayed. The results indicated that the coexistence of PFOA and different arsenic species in soils could enhance the bioavailability of arsenic species while reducing the bioavailability of PFOA, and inhibit the arsenic biotransformation process in earthworms. Responses of most biomarkers in joint treatments of PFOA and As(III)/As(V) showed more significant variations compared with those in single treatments, indicating higher toxicity to the earthworms. The Integrated Biomarker Response (IBR) index was used to integrate the multi-biomarker responses, and the results also exhibited enhanced toxic effects in combined treatments of inorganic arsenic and PFOA. In comparison, both the biomarker variations and IBR values were lower in joint treatments of PFOA and MMA/DMA. Then the toxic interactions in the binary mixture systems were characterized by using a combined method of IBR and Effect Addition Index. The results revealed that the toxic interactions of the PFOA/arsenic mixture in earthworms depended on the different species of arsenic. The combined exposure of PFOA with inorganic arsenic led to a synergistic interaction, while that with organic arsenic resulted in an antagonistic response. Overall, this study provides new insights into the assessment of the joint toxicity of perfluoroalkyl substances and arsenic in soil ecosystems.
Collapse
Affiliation(s)
- Zhifeng Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, No. 1000 Fengming Road, Jinan 250101, China.
| | - Weina Xue
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, No. 1000 Fengming Road, Jinan 250101, China
| | - Fangjie Qi
- Global Centre for Environmental Research (GCER), Advanced Technology Center (ATC) Building, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Zhibin Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, No. 1000 Fengming Road, Jinan 250101, China.
| | - Chaona Li
- Experimental Testing Team of Jiangxi Geological Bureau, No.101 Hongduzhong Avenue, Nanchang 330002, China
| | - Xiufeng Cao
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, No. 1000 Fengming Road, Jinan 250101, China
| | - Xiaowei Cui
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, No. 1000 Fengming Road, Jinan 250101, China
| | - Ning Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, No. 1000 Fengming Road, Jinan 250101, China
| | - Zhaojie Cui
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, No. 1000 Fengming Road, Jinan 250101, China; School of Environmental Science and Engineering, Shandong University, No.72 Binhai Road, Qingdao 266237, China
| |
Collapse
|
6
|
Wang X, Gong B, He E, Peijnenburg WJGM, Qiu H. Subcellular localization and compartment-specific toxicokinetics of cadmium, arsenic, and zinc in brandling worm Eisenia fetida. CHEMOSPHERE 2022; 308:136482. [PMID: 36126735 DOI: 10.1016/j.chemosphere.2022.136482] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/02/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
Awareness of toxicokinetics at the subcellular level is crucial to deciphering the underlying intoxication processes of metal(loid)s, although this information is often lacking. Here, the toxicokinetics of two non-essential metal(loid)s (Cd and As) and one essential metal (Zn) in both the whole body and subcellular fractions of earthworm (Eisenia fetida) were assessed. Earthworms were exposed to natural soils originating from a gradient of metal(loid) pollution for 14 days followed by a 14-day elimination phase in clean soil. Clearly distinct toxicokinetic patterns were found in the earthworms according to the metal(loid) considered. An obvious concentration-dependent increase was observed in earthworms or subcellular compartments where no equilibrium was reached (with slow or no elimination) for Cd and As throughout the experiment. As for Zn, the earthworms were able to retain a steady-state concentration of Zn in its body or each fraction without a clear intake behavior via the dynamic trade-off between uptake and elimination at different pollution levels. These differences in toxicokinetics at the subcellular level supported the observed differences in bioaccumulation patterns and were indicative of the strategy by which non-essential and essential elements are handled by earthworms. Notably, the concentration of Cd and As in subcellular compartments showed the same pattern as for Zn in the order of cellular cytosol > cellular debris > metal-rich granules, which might be associated with the binding of non-essential/essential elements with metallothionein enriched in the cytosol. Our findings enhance the understanding of the underlying mechanisms for metal(loid) accumulation kinetics in earthworms from the perspective of subcellular partitioning, and will be beneficial for accurate risk assessment of Cd, As, and Zn.
Collapse
Affiliation(s)
- Xupeng Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bing Gong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Erkai He
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences, Leiden University, Leiden, 2333CC, the Netherlands; National Institute of Public Health and the Environment, Center for the Safety of Substances and Products, Bilthoven, 3720BA, the Netherlands
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
7
|
Wang Z, Qi F, Shi Y, Zhang Z, Liu L, Li C, Meng L. Evaluation of single and joint toxicity of perfluorooctanoic acid and arsenite to earthworm (Eisenia fetida): A multi-biomarker approach. CHEMOSPHERE 2022; 291:132942. [PMID: 34793848 DOI: 10.1016/j.chemosphere.2021.132942] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/25/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Perfluorooctanoic acid (PFOA) and arsenic are ubiquitous environmental contaminants and could co-exist in soil. However, data on their possible combined toxic effects on terrestrial organisms are still lacking. In this study, we exposed earthworm Eisenia fetida to artificial soil spiked with different sub-lethal levels of PFOA, arsenite (As(III)) or their mixture for 28 days. The bioaccumulation and multi-biomarker responses in the earthworms were measured. Results showed that the co-existence of PFOA and As(III) in soil enhanced the bioaccumulation of arsenic while reduced the bioaccumulation of PFOA. Most selected biomarkers exhibited significant responses at higher exposure levels and indicated oxidative damages. Biomarker Response Index (BRI) was used to integrate the multi-biomarker responses and the results showed significant dose-effect relationships between biological health status and exposure levels. Moreover, variation analysis of multi-biomarkers and BRI proved that As(III) exhibited more toxicity than PFOA to the earthworms. Based on BRI results, Effect Addition Index (EAI) was calculated to evaluate the joint effects of the two toxicants. According to EAI, the joint toxicity of PFOA and As(III) was related to exposure concentration, changing from synergism to slight antagonism with the increase of exposure level. These results provide valuable toxicological information for the risk assessment of co-exposure to PFOA and arsenic in the soil environment. Moreover, this study proved that BRI is an effective tool to integrate multi-biomarker responses, and its combination with EAI provides a useful combined approach to evaluate the joint effects of mixed contamination systems.
Collapse
Affiliation(s)
- Zhifeng Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, No. 1000 Fengming Road, Jinan, 250101, PR China.
| | - Fangjie Qi
- Global Centre for Environmental Research (GCER), Advanced Technology Center (ATC) Building, Faculty of Science, The University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Yanfeng Shi
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, No. 1000 Fengming Road, Jinan, 250101, PR China
| | - Zhibin Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, No. 1000 Fengming Road, Jinan, 250101, PR China
| | - Lei Liu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, No. 1000 Fengming Road, Jinan, 250101, PR China
| | - Chaona Li
- Test and Research Center of Jiangxi Nuclear Industry Geological Bureau, No.101 Hongduzhong Avenue, Nanchang, 330002, PR China
| | - Lei Meng
- Test and Research Center of Jiangxi Nuclear Industry Geological Bureau, No.101 Hongduzhong Avenue, Nanchang, 330002, PR China
| |
Collapse
|
8
|
Luo Z, Wang Z, Liu A, Yan Y, Wu Y, Zhang X. New insights into toxic effects of arsenate on four Microcystis species under different phosphorus regimes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44460-44469. [PMID: 32770468 DOI: 10.1007/s11356-020-10396-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Very little information is available on the stressed growth of Microcystis imposed by arsenate (As(V)) under different phosphorus (P) regimes. In this study, we examined the growth characteristics and arsenic transformation of four Microcystis species exposed under As(V) with two P sources involving dissolved inorganic phosphorus (IP) and organophosphate (D-glucose-6-phosphate disodium salt, GP). Results showed that all the four chosen Microcystis species could grow and reproduce with GP as the only P source, and the difference was insignificant when compared with IP. From optical density (OD), chlorophyll a (Chla), and actual quantum yield (Yield), the tolerance to As(V) of the chosen species was following as FACHB 905 > FACHB 1028 > FACHB 1334 > FACHB 912. Specifically, the 96 h EC50 of As(V) for FACHB 905 in IP was approx. 4 orders of magnitude higher than that in GP, but for other three algal species, the 96 h EC50 values were similar under the two given different P conditions. Furthermore, all antioxidant enzyme activities of superoxide dismutase (SOD), peroxide dismutase (POD), glutathione S-transferases (GSTs), and metalloproteinase (MTs) in algal cells were significantly increased in GP conditions. Moreover, the enzyme activities of AKP, GSTs, and MTs were inhibited with increasing As(V) levels under both IP and GP conditions. In addition, arsenite (As(III)) and methylated As of monomethylarsonic acid (MMA) and dimethylthioarsinic acid (DMA) were found in FACHB 912 and FACHB 1334 media, indicating that these Microcystis could detoxify As(V) by As biotransformation under IP and GP conditions. Specifically, As(V) reduction was elevated in media of FACHB 1334 and FACHB 905, but was decreased in media of FACHB 912 under GP conditions. Our results highlight the different P sources that impact the toxic effects of arsenate exposure on Microcystis and subsequent As biotransformation.
Collapse
Affiliation(s)
- Zhuanxi Luo
- College of Chemical Engineering and Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, China.
- Key Laboratory of Karst Dynamics, MNR & Guangxi, Institute of Karst Geology, CAGS, Guilin, 541004, China.
| | - Zhenhong Wang
- College of Chemistry and Environment and Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, China
| | - Aifen Liu
- College of Chemistry and Environment and Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, China
| | - Yu Yan
- College of Chemical Engineering and Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, China
| | - Yaqing Wu
- Instrumental Analysis Center of Huaqiao University, Xiamen, 361021, China
| | - Xiaoyong Zhang
- Center of Environmental Emergency Response and Accident Investigation of Jiangsu Province, Nanjing, 210036, China
| |
Collapse
|
9
|
Kilpi-Koski J, Penttinen OP, Väisänen AO, van Gestel CAM. An uptake and elimination kinetics approach to assess the bioavailability of chromium, copper, and arsenic to earthworms (Eisenia andrei) in contaminated field soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:15095-15104. [PMID: 30924042 PMCID: PMC6529395 DOI: 10.1007/s11356-019-04908-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 03/18/2019] [Indexed: 05/08/2023]
Abstract
The aim of this study was to determine the bioavailability of metals in field soils contaminated with chromated copper arsenate (CCA) mixtures. The uptake and elimination kinetics of chromium, copper, and arsenic were assessed in the earthworm Eisenia andrei exposed to soils from a gradient of CCA wood preservative contamination near Hartola, Finland. In soils contaminated with 1480-1590 mg Cr/kg dry soil, 642-791 mg Cu/kg dry soil, and 850-2810 mg Ag/kg dry soil, uptake and elimination kinetics patterns were similar for Cr and Cu. Both metals were rapidly taken up and rapidly excreted by Eisenia andrei with equilibrium reached within 1 day. The metalloid As, however, showed very slow uptake and elimination in the earthworms and body concentrations did not reach equilibrium within 21 days. Bioaccumulation factors (BAF) were low for Cu and Cr (< 0.1), but high for As at 0.54-1.8. The potential risk of CCA exposure for the terrestrial ecosystem therefore is mainly due to As.
Collapse
Affiliation(s)
- Johanna Kilpi-Koski
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland.
| | - Olli-Pekka Penttinen
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland
| | - Ari O Väisänen
- Department of Chemistry, Jyväskylän yliopisto, PL 35, 40014, Jyväskylä, Finland
| | - Cornelis A M van Gestel
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081, HV, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Wang Z, Cui Z, Liu L, Ma Q, Xu X. Toxicological and biochemical responses of the earthworm Eisenia fetida exposed to contaminated soil: Effects of arsenic species. CHEMOSPHERE 2016; 154:161-170. [PMID: 27045633 DOI: 10.1016/j.chemosphere.2016.03.070] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 06/05/2023]
Abstract
Arsenic is a pollutant that can be detected in different chemical forms in soil. However, the toxicological effects of different arsenic species on organisms have received little attention. In this study, we exposed earthworms Eisenia fetida to artificial soils contaminated by arsenite [As(III)], arsenate [As(V)], monomethylarsonate (MMA) and dimethylarsinate (DMA) for 28 and 56 days. Three biomarkers including lipid peroxidation (LPO), metallothioneins (MTs) and lysosomal membrane stability (LMS) were analyzed in the organisms. In addition, the contents of total arsenic and arsenic species in earthworms were also determined to investigate the effects of bioaccumulation and biotransformation of arsenic on biomarkers and to evaluate the dose-response relationships. The results showed that the relationship between the three biomarkers and the two inorganic arsenic species were dose dependent, and the correlation levels between the biomarkers and As(III) were higher than that between the biomarkers and As(V). Trivalent arsenic species shows more toxicity than pentavalent arsenic on the earthworms at molecular and subcellular level, including oxidative damage, MTs induction and lysosomal membrane damage. The toxicity of MMA and DMA was lower than inorganic arsenic species. However, the occurrence of demethylation of organic arsenics could lead to the generation of highly toxic inorganic arsenics and induce adverse effects on organisms. The biotransformation of highly toxic inorganic arsenics to the less toxic organic species in the earthworms was also validated in this study. The biomarker responses of the earthworm to different arsenic species found in this study could be helpful in future environment monitoring programs.
Collapse
Affiliation(s)
- Zhifeng Wang
- School of Environmental Science and Engineering, Shandong University, No. 27 Shanda South Road, Jinan 250100, PR China.
| | - Zhaojie Cui
- School of Environmental Science and Engineering, Shandong University, No. 27 Shanda South Road, Jinan 250100, PR China.
| | - Lei Liu
- School of Environmental Science and Engineering, Shandong University, No. 27 Shanda South Road, Jinan 250100, PR China
| | - Qianchi Ma
- School of Environmental Science and Engineering, Shandong University, No. 27 Shanda South Road, Jinan 250100, PR China
| | - Xiaoming Xu
- School of Environmental Science and Engineering, Shandong University, No. 27 Shanda South Road, Jinan 250100, PR China; School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| |
Collapse
|
11
|
Wang Z, Cui Z. Accumulation, biotransformation, and multi-biomarker responses after exposure to arsenic species in the earthworm Eisenia fetida. Toxicol Res (Camb) 2016; 5:500-510. [PMID: 30090364 PMCID: PMC6062360 DOI: 10.1039/c5tx00396b] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 12/25/2015] [Indexed: 01/11/2023] Open
Abstract
Earthworms (Eisenia fetida) were exposed to OECD soils contaminated with arsenite (29.3 mg kg-1), arsenate (35.2 mg kg-1), monomethylarsonate (342.5 mg kg-1) and dimethylarsinate (373.0 mg kg-1) for 64 days. The exposure concentration for the four arsenic species was set at one-tenth of 14 d-LC50 in order to compare their toxicity. Eight biomarkers including superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferase, glutathione reductase, reduced glutathione, lipid peroxidation and metallothioneins were analyzed in the organisms. A multi-biomarker approach, the integrated biomarker response (IBR) index, was adopted to summarize the multi-biomarker responses to a single value, reflecting the integrated stress of different arsenic species on earthworms. Furthermore, total arsenic and arsenic speciation were analyzed in earthworm tissue to evaluate the relationship between arsenic accumulation and biomarker responses at the molecular and subcellular levels and to observe the role of arsenic biotransformation in earthworms. The results showed that the toxicity of the four arsenic species was ranked as: arsenite > arsenate > monomethylarsonate and dimethylarsinate. Although organic arsenics showed a low degree of biotoxicity, they could be turned into highly toxic inorganic arsenics under the effect of demethylation, which caused a toxic effect on organisms. The biomarker responses indicated that a sub-lethal dose of both arsenite and arsenate could trigger the response of the antioxidant defense system and cause oxidative damage when the protective capacity of the system was exhausted. Arsenic in earthworms could be detoxified during the process of biotransformation, where inorganic arsenics were converted into organic arsenics, which would then be excreted out. Based on these results, it was proved that different arsenic species showed different degrees of toxicity. Therefore, arsenic species should be differentiated in order to obtain accurate results in quality/risk assessment programs.
Collapse
Affiliation(s)
- Zhifeng Wang
- School of Environmental Science and Engineering , Shandong University , No. 27 Shanda South Road , Jinan 250100 , P. R. China . ; ; Tel: +86 531 88361176
| | - Zhaojie Cui
- School of Environmental Science and Engineering , Shandong University , No. 27 Shanda South Road , Jinan 250100 , P. R. China . ; ; Tel: +86 531 88361176
| |
Collapse
|
12
|
Zhou L, Zhao Y, Wang S. Cadmium transfer and detoxification mechanisms in a soil-mulberry-silkworm system: phytoremediation potential. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:18031-9. [PMID: 26169822 DOI: 10.1007/s11356-015-5011-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 07/01/2015] [Indexed: 05/06/2023]
Abstract
Phytoremediation has been proven to be an environmentally sound alternative for the recovery of contaminated soils, and the economic profit that comes along with the process might stimulate its field use. This study investigated cadmium (Cd) transfer and detoxification mechanisms in a soil-mulberry-silkworm system to estimate the suitability of the mulberry and silkworm as an alternative method for the remediation of Cd-polluted soil; it also explored the underlying mechanisms regulating the trophic transfer of Cd. The results show that both the mulberry and silkworm have high Cd tolerance. The transfer factor suggests that the mulberry has high potential for Cd extraction from polluted soil. The subcellular distribution and chemical forms of Cd in mulberry leaves show that cell wall deposition and vacuolar compartmentalization play important role in Cd tolerance. In the presence of increasing Cd concentrations in silkworm food, detoxification mechanisms (excretion and homeostasis) were activated so that excess Cd was excreted in fecal balls, and metallothionein levels in the mid-gut, the posterior of the silk gland, and the fat body of silkworms were enhanced. And, the Cd concentrations in silk are at a low level, ranging from 0.02 to 0.21 mg kg(-1). Therefore, these mechanisms of detoxification can regulate Cd trophic transfer, and mulberry planting and silkworm breeding has high phytoremediation potential for Cd-contaminated soil.
Collapse
Affiliation(s)
- Lingyun Zhou
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No.19, Xinjiekouwai Street, Haidian District, Beijing, 100875, China
- Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, College of Chemistry and Environment, Minnan Normal University, Zhangzhou, 363000, China
| | - Ye Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No.19, Xinjiekouwai Street, Haidian District, Beijing, 100875, China.
| | - Shuifeng Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No.19, Xinjiekouwai Street, Haidian District, Beijing, 100875, China
- Analytical Testing Center, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
13
|
Lee BT, Lee SW, Kim KR, Kim KW. Bioaccumulation and the soil factors affecting the uptake of arsenic in earthworm, Eisenia fetida. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:8326-8333. [PMID: 24026203 DOI: 10.1007/s11356-013-2087-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 07/29/2013] [Indexed: 06/02/2023]
Abstract
To better understand arsenic (As) bioaccumulation, a soil invertebrate species was exposed to 17 field soils contaminated with arsenic due to mining activity. Earthworms (Eisenia fetida) were kept in the soils for 70 days under laboratory conditions, as body burden increased and failed to reach equilibrium in all soils. After 70 days of exposure, XANES spectra determined that As was biotransformed to a highly reduced form. Uptake kinetics for As was calculated using one compartment model. Stepwise multiple regression suggested that sorbed As in soils are bioaccessible, and uptake is governed by soil properties (iron oxide, sulfate, and dissolved organic carbon) that control As mobility in soils. As in soil solution are highly related to uptake rate except four soils which had relatively high chloride or phosphate. The results imply that uptake of As is through As interaction with soil characteristics as well as direct from the soil solution. Internal validation showed that empirically derived regression equations can be used for predicting As uptake as a function of soil properties within the range of soil properties in the data set.
Collapse
Affiliation(s)
- Byung-Tae Lee
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea,
| | | | | | | |
Collapse
|
14
|
Affiliation(s)
- Shengwen Shen
- Department
of Laboratory Medicine
and Pathology, 10-102 Clinical Sciences Building, University
of Alberta, Edmonton, Alberta, Canada, T6G 2G3
| | - Xing-Fang Li
- Department
of Laboratory Medicine
and Pathology, 10-102 Clinical Sciences Building, University
of Alberta, Edmonton, Alberta, Canada, T6G 2G3
| | - William R. Cullen
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver,
British Columbia, Canada, V6T 1Z1
| | - Michael Weinfeld
- Department of Oncology, Cross
Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, Alberta, Canada, T6G 1Z2
| | - X. Chris Le
- Department
of Laboratory Medicine
and Pathology, 10-102 Clinical Sciences Building, University
of Alberta, Edmonton, Alberta, Canada, T6G 2G3
| |
Collapse
|
15
|
Mogren CL, Webb SM, Walton WE, Trumble JT. Micro x-ray absorption spectroscopic analysis of arsenic localization and biotransformation in Chironomus riparius Meigen (Diptera: Chironomidae) and Culex tarsalis Coquillett (Culicidae). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 180:78-83. [PMID: 23733012 DOI: 10.1016/j.envpol.2013.05.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/22/2013] [Accepted: 05/06/2013] [Indexed: 06/02/2023]
Abstract
The distribution and speciation of arsenic (As) were analyzed in individuals of various life stages of a midge, Chironomus riparius, and the mosquito Culex tarsalis exposed to 1000 μg/l arsenate. X-ray absorption spectroscopy (XAS) revealed that C. riparius larvae accumulate As in their midgut, with inorganic arsenate [As(V)] being the predominant form, followed by arsenite [As(III)] and an As-thiol. Reduced concentrations of As in pupal and adult stages of C. riparius indicate excretion of As between the larval and pupal stages. In adults, As was limited to the thorax, and the predominant form was an As-thiol. In Cx. tarsalis, As was not found in high enough concentrations to determine As speciation, but the element was distributed throughout the larva. In adults, As was concentrated in the thorax and eyes of adults. These results have implications for understanding the biotransformation of As and its movement from aquatic to terrestrial environments.
Collapse
Affiliation(s)
- Christina L Mogren
- Department of Entomology, University of California, Riverside, 900 University Ave, Riverside, CA 92521, USA.
| | | | | | | |
Collapse
|
16
|
Auffan M, Rose J, Proux O, Masion A, Liu W, Benameur L, Ziarelli F, Botta A, Chaneac C, Bottero JY. Is there a Trojan-horse effect during magnetic nanoparticles and metalloid cocontamination of human dermal fibroblasts? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:10789-10796. [PMID: 22920588 DOI: 10.1021/es302493s] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This study investigates the issue of nanoparticles/pollutants cocontamination. By combining viability assays, physicochemical and structural analysis (to probe the As speciation and valence), we assessed how γFe(2)O(3) nanoparticles can affect the cytotoxicity, the intra- and extracellular speciation of As(III). Human dermal fibroblasts were contaminated with γFe(2)O(3) nanoparticles and As(III) considering two scenarios: (i) a simultaneous coinjection of the nanoparticles and As, and (ii) an injection of the nanoparticles after 24 h of As adsorption in water. In both scenarios, we did not notice significant changes on the nanoparticles surface charge (zeta potential ∼ -10 mV) nor hydrodynamic diameters (∼950 nm) after 24 h. We demonstrated that the coinjection of γFe(2)O(3) nanoparticles and As in the cellular media strongly affects the complexation of the intracellular As with thiol groups. This significantly increases at low doses the cytotoxicity of the As nonadsorbed at the surface of the nanoparticles. However, once As is adsorbed at the surface the desorption is very weak in the culture medium. This fraction of As strongly adsorbed at the surface is significantly less cytotoxic than As itself. On the basis of our data and the thermodynamics, we demonstrated that any disturbance of the biotransformation mechanisms by the nanoparticles (i.e., surface complexation of thiol groups with the iron atoms) is likely to be responsible for the increase of the As adverse effects at low doses.
Collapse
Affiliation(s)
- Melanie Auffan
- Aix-Marseille Université, CNRS, IRD, CEREGE UM34, UMR 7330, 13545 Aix en Provence, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Button M, Koch I, Reimer KJ. Arsenic resistance and cycling in earthworms residing at a former gold mine in Canada. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2012; 169:74-80. [PMID: 22683483 DOI: 10.1016/j.envpol.2012.04.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 04/19/2012] [Accepted: 04/23/2012] [Indexed: 06/01/2023]
Abstract
Earthworms (Lumbricus castaneous and Dendrodrilus rubidus), their host soils and leaf litter were collected from a former gold mine with widespread arsenic (As) contamination in Nova Scotia, Canada and determined for total and speciated As. Resistance to As toxicity was investigated by measurement of DNA damage in exposed earthworm populations using the comet assay. Arsenobetaine (AB) was observed at low concentration in the earthworms but not in the host soil or leaf litter. Several different organoarsenic species were observed in the leaf litter and only inorganic As was found in the host soils. The results suggest that 1) adaptation to As toxicity in earthworms is widespread and not particular to a single species, 2) AB originates in the earthworm and not the consumed soil or leaf litter and 3) as previously hypothesised (Button et al., 2010), biotransformation of inorganic As to AB is not likely involved in the adaptation.
Collapse
Affiliation(s)
- Mark Button
- Royal Military College of Canada, Station Forces, Kingston, Ontario, Canada
| | | | | |
Collapse
|
18
|
Casado-Martinez MC, Duncan E, Smith BD, Maher WA, Rainbow PS. Arsenic toxicity in a sediment-dwelling polychaete: detoxification and arsenic metabolism. ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:576-590. [PMID: 22083342 DOI: 10.1007/s10646-011-0818-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/03/2011] [Indexed: 05/31/2023]
Abstract
The accumulation, subcellular distribution and speciation of arsenic in the polychaete Arenicola marina were investigated under different laboratory exposure conditions representing a range of metal bioavailabilities, to gain an insight into the physiological mechanisms of how A. marina handles bioaccumulated arsenic and to improve our understanding of the potential ecotoxicological significance of bioaccumulated arsenic in this deposit-feeder. The exposure conditions included exposure to sublethal concentrations of dissolved arsenate, exposure to sublethal concentrations of sediment-bound metal mining mixtures, and exposure to lethal concentrations of sediment-bound metal mining mixtures and arsenic- and multiple metal-spiked sediments. The sub-lethal exposures indicate that arsenic bioaccumulated by the deposit-feeding polychaete A. marina is stored in the cytosol as heat stable proteins (~50%) including metallothioneins, possibly as As (III)-thiol complexes. The remaining arsenic is mainly accumulated in the fraction containing cellular debris (~20%), with decreasing proportions accumulated in the metal-rich granules, organelles and heat-sensitive proteins fractions. A biological detoxified metal compartment including heat stable proteins and the fraction containing metal-rich granules is capable of binding arsenic coming into the cells at a constant rate under sublethal arsenic bioavailabilities. The remaining arsenic entering the cell is bound loosely into the cellular debris fraction, which can be subsequently released and diverted to an expanding detoxified pool. Our results suggest that a metal sensitive compartment comprising the cellular debris, enzymes and organelles fractions may be more representative of the toxic effects observed.
Collapse
|
19
|
Button M, Moriarty MM, Watts MJ, Zhang J, Koch I, Reimer KJ. Arsenic speciation in field-collected and laboratory-exposed earthworms Lumbricus terrestris. CHEMOSPHERE 2011; 85:1277-1283. [PMID: 21868054 DOI: 10.1016/j.chemosphere.2011.07.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/14/2011] [Accepted: 07/17/2011] [Indexed: 05/31/2023]
Abstract
Mature Lumbricus terrestris were host soils and leaf litter were collected from a former arsenic mine in Devon, UK (Devon Great Consols), a former gold mine in Ontario, Canada (Deloro), and an uncontaminated residential garden in Nottingham, UK. Arsenic concentrations determined by inductively coupled plasma-mass spectrometry (ICP-MS) in soils were 16-348 mg kg(-1), 6.0-239 mg kg(-1) in the earthworms and 8.6 mg kg(-1) in leaf litter sampled at Deloro (all dry weight). High performance liquid chromatography (HPLC-ICP-MS) analysis revealed arsenite (As(III)), arsenate (As(V)) and five organoarsenic species; arsenobetaine (AB), methylarsonate (MA(V)), dimethylarsinate (DMA(V)), arsenosugar 1 (glycerol sugar), arsenosugar 2 (phosphate sugar), and trimethylarsineoxide (TMAO) in field-collected L. terrestris. Differences were observed in the variety of organoarsenic species present between field sites. Several organoarsenic species were observed in the leaf litter (DMA(V), arsenosugar 2 and TMAO) but not AB. Depuration resulted in higher concentrations of inorganic As being detected in the earthworm whereas the concentration or variety of organoarsenic species was unchanged. Commercially sourced L. terrestris were exposed to As contaminated soil in laboratory mesocosms (1.0, 98, 183, 236, 324 and 436 mg kg(-1)) without leaf litter and were additionally analyzed using X-ray absorption near edge structure (XANES). Only inorganic As(III) and As(V) was observed. It is proposed that ingestion of leaf litter and symbiotic processes in the natural soil environment are likely sources of organoarsenic compounds in field-collected L. terrestris.
Collapse
Affiliation(s)
- Mark Button
- Environmental Sciences Group, Royal Military College of Canada, Station Forces, Kingston, Ontario, Canada K7K 7B4
| | | | | | | | | | | |
Collapse
|
20
|
Plytycz B, Cygal M, Lis-Molenda U, Klimek M, Mazur AI, Duchnowski M, Morgan AJ. Characteristics of immune-competent amoebocytes non-invasively retrieved from populations of the sentinel earthworm Lumbricus rubellus (Annelida; Oligochaeta; Lumbricidae) inhabiting metal polluted field soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2011; 74:719-726. [PMID: 21040972 DOI: 10.1016/j.ecoenv.2010.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 10/13/2010] [Accepted: 10/19/2010] [Indexed: 05/30/2023]
Abstract
Lumbricus rubellus is a cosmopolitan earthworm devoid of riboflavin-storing eleocytes; its immune competent coelomocytes are predominantly amoebocytes. Our aim was to determine whether amoebocyte cytometrics in L. rubellus are robust biomarkers for innate immunological responses to environmental pollutants. Investigations were conducted on populations inhabiting three unpolluted and five metalliferous (mainly Pb+Zn+Cd) habitats in the UK and Poland. Inter-population differences in worm mass and amoebocyte numbers did not consistently reflect soil or tissue metal concentrations. Flow cytometry indicated that autofluorescence of the amoebocytes differs between cells from the unpolluted and metal-polluted worms, and pinocytosis of neutral red by amoebocytes was lower (especially at 15 versus 60 min incubation) in worms from the polluted Poland site compared with the reference population. To conclude, amoebocyte cytometrics and functionality are potentially useful for environmental diagnostics; deployment is contingent on better understanding potential confounders.
Collapse
Affiliation(s)
- Barbara Plytycz
- Institute of Zoology, Jagiellonian University, Ingardena 6, PL 30-060, Krakow, Poland.
| | | | | | | | | | | | | |
Collapse
|
21
|
Saunders JR, Hough C, Knopper LD, Koch I, Reimer KJ. Arsenic transformations in terrestrial small mammal food chains from contaminated sites in Canada. ACTA ACUST UNITED AC 2011; 13:1784-92. [DOI: 10.1039/c1em10225g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Holmstrup M, Sørensen JG, Overgaard J, Bayley M, Bindesbøl AM, Slotsbo S, Fisker KV, Maraldo K, Waagner D, Labouriau R, Asmund G. Body metal concentrations and glycogen reserves in earthworms (Dendrobaena octaedra) from contaminated and uncontaminated forest soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2011; 159:190-197. [PMID: 20870326 DOI: 10.1016/j.envpol.2010.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 08/27/2010] [Accepted: 09/06/2010] [Indexed: 05/29/2023]
Abstract
Stress originating from toxicants such as heavy metals can induce compensatory changes in the energy metabolism of organisms due to increased energy expenses associated with detoxification and excretion processes. These energy expenses may be reflected in the available energy reserves such as glycogen. In a field study the earthworm, Dendrobaena octaedra, was collected from polluted areas, and from unpolluted reference areas. If present in the environment, cadmium, lead and copper accumulated to high concentrations in D. octaedra. In contrast, other toxic metals such as aluminium, nickel and zinc appeared to be regulated and kept at low internal concentrations compared to soil concentrations. Lead, cadmium and copper accumulation did not correlate with glycogen reserves of individual worms. In contrast, aluminium, nickel and zinc were negatively correlated with glycogen reserves. These results suggest that coping with different metals in earthworms is associated with differential energy demands depending on the associated detoxification strategy.
Collapse
Affiliation(s)
- Martin Holmstrup
- National Environmental Research Institute, Aarhus University, Department of Terrestrial Ecology, Vejlsøvej 25, DK-8600 Silkeborg, Denmark.
| | - Jesper G Sørensen
- National Environmental Research Institute, Aarhus University, Department of Terrestrial Ecology, Vejlsøvej 25, DK-8600 Silkeborg, Denmark
| | - Johannes Overgaard
- Zoophysiology, Department of Biological Sciences, Aarhus University, Building 131, DK-8000 Aarhus C, Denmark
| | - Mark Bayley
- Zoophysiology, Department of Biological Sciences, Aarhus University, Building 131, DK-8000 Aarhus C, Denmark
| | - Anne-Mette Bindesbøl
- National Environmental Research Institute, Aarhus University, Department of Terrestrial Ecology, Vejlsøvej 25, DK-8600 Silkeborg, Denmark; Zoophysiology, Department of Biological Sciences, Aarhus University, Building 131, DK-8000 Aarhus C, Denmark
| | - Stine Slotsbo
- National Environmental Research Institute, Aarhus University, Department of Terrestrial Ecology, Vejlsøvej 25, DK-8600 Silkeborg, Denmark
| | - Karina V Fisker
- National Environmental Research Institute, Aarhus University, Department of Terrestrial Ecology, Vejlsøvej 25, DK-8600 Silkeborg, Denmark
| | - Kristine Maraldo
- National Environmental Research Institute, Aarhus University, Department of Terrestrial Ecology, Vejlsøvej 25, DK-8600 Silkeborg, Denmark
| | - Dorthe Waagner
- National Environmental Research Institute, Aarhus University, Department of Terrestrial Ecology, Vejlsøvej 25, DK-8600 Silkeborg, Denmark; Zoophysiology, Department of Biological Sciences, Aarhus University, Building 131, DK-8000 Aarhus C, Denmark
| | - Rodrigo Labouriau
- Aarhus University, Faculty of Agricultural Sciences, Department of Genetics and Biotechnology, Research Centre Foulum, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark
| | - Gert Asmund
- National Environmental Research Institute, Aarhus University, Department of Arctic Environment, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| |
Collapse
|
23
|
Sizmur T, Tilston EL, Charnock J, Palumbo-Roe B, Watts MJ, Hodson ME. Impacts of epigeic, anecic and endogeic earthworms on metal and metalloid mobility and availability. ACTA ACUST UNITED AC 2011; 13:266-73. [DOI: 10.1039/c0em00519c] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Saunders JR, Knopper LD, Koch I, Reimer KJ. Arsenic transformations and biomarkers in meadow voles (Microtus pennsylvanicus) living on an abandoned gold mine site in Montague, Nova Scotia, Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2010; 408:829-835. [PMID: 19945142 DOI: 10.1016/j.scitotenv.2009.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 11/03/2009] [Accepted: 11/04/2009] [Indexed: 05/28/2023]
Abstract
Arsenic is one of the most widely encountered environmental contaminants because of a number of anthropogenic sources; in Canada the main anthropogenic release of arsenic is from mine tailings ponds. The present study is part of a series of studies to measure chemical and biological effects of exposure for meadow voles (Microtus pennsylvanicus) living on arsenic contaminated sites. Two additional objectives were addressed in the present study: the effect of higher arsenic concentrations compared with previous studies, and the comparison of chemical speciation and biological effects. To obtain the higher environmental concentrations, specimens were collected from a former gold mining site in Montague, NS that contains highly elevated concentrations of arsenic in soils and plants. Meadow voles were collected and their tissues were analyzed for total arsenic to measure uptake, and arsenic speciation to examine the chemical effects of the high arsenic exposure. In addition to the arsenic analysis, a biomonitoring study was undertaken to examine the sub-cellular effects in meadow voles resulting from the elevated arsenic exposure. Meadow voles living on the contaminated site had substantially higher concentrations of total arsenic than animals from the background (reference) location. The extractable arsenic in internal tissues was present mainly as monomethylarsonic acid (up to 14% of total arsenic). A statistically significant relationship was observed between the reduction of glutathione in vole livers and the increase in liver arsenic concentrations, and micronucleated monochromatic red blood cells were also significantly elevated in voles from the arsenic contaminated site. This is one of the few field studies where sub-cellular effects were observed, and the first to show a co-existence of such effects with relatively high proportions of monomethylarsonic acid in voles living near mine tailings.
Collapse
Affiliation(s)
- Jared R Saunders
- Environmental Sciences Group, Royal Military College of Canada, Kingston, Ontario, Canada K7K 7B4
| | | | | | | |
Collapse
|
25
|
Langdon CJ, Morgan AJ, Charnock JM, Semple KT, Lowe CN. As-resistance in laboratory-reared F1, F2 and F3 generation offspring of the earthworm Lumbricus rubellus inhabiting an As-contaminated mine soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2009; 157:3114-3119. [PMID: 19501438 DOI: 10.1016/j.envpol.2009.05.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 05/08/2009] [Accepted: 05/10/2009] [Indexed: 05/27/2023]
Abstract
Previous studies provided no unequivocal evidence demonstrating that field populations of Lumbricus rubellus Hoffmeister (1843), exhibit genetically inherited resistance to As-toxicity. In this study F1, F2 and F3 generation offspring derived from adults inhabiting As-contaminated field soil were resistant when exposed to 2000 mg kg(-1) sodium arsenate. The offspring of uncontaminated adults were not As-resistant. Cocoon viability was 80% for F1 and 82% for F2 offspring from As-contaminated adults and 59% in the F1 control population. High energy synchrotron analysis was used to determine whether ligand complexation of As differed in samples of: resistant mine-site adults, the resistant F1 and F2 offspring of the mine-site earthworms exposed to the LC(25) sodium arsenate (700 mg kg(-1)) of the F1 parental generation; and adult L. rubellus from an uncontaminated site exposed to LC(25) concentrations of sodium arsenate (50 mg kg(-1)). XANES and EXAFS indicated that As was present as a sulfur-coordinated species.
Collapse
Affiliation(s)
- C J Langdon
- C/O The Open University in the North, Baltic Buiness Quarter, Gateshead, UK.
| | | | | | | | | |
Collapse
|
26
|
Lee BT, Kim KW. Lysosomal membrane response of earthworm, Eisenia fetida, to arsenic contamination in soils. ENVIRONMENTAL TOXICOLOGY 2009; 24:369-376. [PMID: 18825726 DOI: 10.1002/tox.20441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Earthworm (Eisenia fetida) were exposed to sandy soils contaminated with arsenate (0.01-0.3 micromol g(-1)) for 28 days. Lysosomal membrane stability was used as a biomarker to determine the applicability of neutral-red retention times (NRRTs) for arsenic (As) toxicity to earthworm in soils. Total As and As speciation were analyzed to evaluate dose-response relationship between As accumulation and NRRTs and to observe the role of As metabolism in earthworms on a subcellular level toxicity. Significant decrease of NRRTs was found with the increasing As concentration in soils (ANOVA, P < 0.05). Adverse effects on earthworm survival and growth did not occur when exposed to 0.1 and 0.05 micromol g(-1) at 14 and 28 days, respectively, whereas NRRTs showed significant reduction from the control, as was readily bioconcentrated in the reduced form of As(III) in earthworms and clear dose-response relationships were found for As body burden and NRRTs. Therefore, it is possible to conclude that As has an adverse effect on lysosomal membrane of coelomocytes, and NRRT assay is a potentially applicable method to assess As toxicity as an early warning tool. Also, sequestered As in the form of As(III)-thiol complex can be expected to cause an adverse effect on lysosomal membrane stability.
Collapse
Affiliation(s)
- Byung-Tae Lee
- Department of Environmental Science & Engineering, Gwangju Institute of Science and Technology, South Korea
| | | |
Collapse
|
27
|
Sizmur T, Hodson ME. Do earthworms impact metal mobility and availability in soil?--a review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2009; 157:1981-1989. [PMID: 19321245 DOI: 10.1016/j.envpol.2009.02.029] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 12/18/2008] [Accepted: 02/19/2009] [Indexed: 05/27/2023]
Abstract
The importance of earthworms to ecosystem functioning has led to many studies on the impacts of metals on earthworms. Far less attention has been paid to the impact that earthworms have on soil metals both in terms of metal mobility and availability. In this review we consider which earthworms have been used in such studies, which soil components have been investigated, which types of soil have been used and what measures of mobility and availability applied. We proceed to review proposed reasons for effects: changes in microbial populations, pH, dissolved organic carbon and metal speciation. The balance of evidence suggests that earthworms increase metal mobility and availability but more studies are required to determine the precise mechanism for this.
Collapse
Affiliation(s)
- Tom Sizmur
- Department of Soil Science, University of Reading, Whiteknights, Reading RG6 6DW, UK.
| | | |
Collapse
|
28
|
Chang JS, Gu MB, Kim KW. Effect of arsenic on p53 mutation and occurrence of teratogenic salamanders: their potential as ecological indicators for arsenic contamination. CHEMOSPHERE 2009; 75:948-954. [PMID: 19203779 DOI: 10.1016/j.chemosphere.2009.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 12/27/2008] [Accepted: 01/02/2009] [Indexed: 05/27/2023]
Abstract
The p53 mutation in salamanders can be used as an indicator of arsenic contamination. The influence of arsenic exposure was studied on mutation of tumor suppressor gene in salamanders collected from several As-contaminated mine areas in Korea. Salamander eggs and larvae were exposed to arsenic in a toxicity test, and teratogenic salamanders found in heavy metal- and As-contaminated water from As-Bi mines were evaluated using PCR-SSCP to determine if they would be useful as an ecological indicator species. Changes in amino acids were shown to have occurred as a result of an arsenic-accumulating event that occurred after the DNA damage. In addition, both of the Hynobius leechii exposed groups were primarily affected by forms of skin damage, changes in the lateral tail/dorsal flexure and/or abnormality teratogenesis. Single-base sense mutation in codons 346 (AAG: Lys to ATG: Met), 224 (TTT: Phe to TTA: Leu), 211 (ATG: Met to AAG: Lys), 244 (TTT: Phe to TTTG: insertion), 245 (Glu GAG to Gln CAG) and 249 (TGT Cys to TGA stop) of the p53 gene were simultaneously found in mutated salamanders. Based on the results of our data illustrating the effect of arsenic exposure on the p53 mutation of salamanders in arsenic-contaminated mine areas, these mutated salamanders can be used as potential ecological indicators in the arsenic-contaminated ecosystems.
Collapse
Affiliation(s)
- Jin-Soo Chang
- Arsenic Geoenvironment Laboratory (National Research Laboratory), Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), Buk-gu, Gwangju, Republic of Korea
| | | | | |
Collapse
|
29
|
Munro KL, Mariana A, Klavins AI, Foster AJ, Lai B, Vogt S, Cai Z, Harris HH, Dillon CT. Microprobe XRF Mapping and XAS Investigations of the Intracellular Metabolism of Arsenic for Understanding Arsenic-Induced Toxicity. Chem Res Toxicol 2008; 21:1760-9. [DOI: 10.1021/tx800128d] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kristie L. Munro
- School of Chemistry, University of Wollongong, NSW 2522, Australia, School of Chemistry, University of Sydney, NSW 2006, Australia, X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, School of Chemistry and Physics, University of Adelaide, SA 5005, Australia
| | - Anna Mariana
- School of Chemistry, University of Wollongong, NSW 2522, Australia, School of Chemistry, University of Sydney, NSW 2006, Australia, X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, School of Chemistry and Physics, University of Adelaide, SA 5005, Australia
| | - Andrejs I. Klavins
- School of Chemistry, University of Wollongong, NSW 2522, Australia, School of Chemistry, University of Sydney, NSW 2006, Australia, X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, School of Chemistry and Physics, University of Adelaide, SA 5005, Australia
| | - Amalanie J. Foster
- School of Chemistry, University of Wollongong, NSW 2522, Australia, School of Chemistry, University of Sydney, NSW 2006, Australia, X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, School of Chemistry and Physics, University of Adelaide, SA 5005, Australia
| | - Barry Lai
- School of Chemistry, University of Wollongong, NSW 2522, Australia, School of Chemistry, University of Sydney, NSW 2006, Australia, X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, School of Chemistry and Physics, University of Adelaide, SA 5005, Australia
| | - Stefan Vogt
- School of Chemistry, University of Wollongong, NSW 2522, Australia, School of Chemistry, University of Sydney, NSW 2006, Australia, X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, School of Chemistry and Physics, University of Adelaide, SA 5005, Australia
| | - ZhongHou Cai
- School of Chemistry, University of Wollongong, NSW 2522, Australia, School of Chemistry, University of Sydney, NSW 2006, Australia, X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, School of Chemistry and Physics, University of Adelaide, SA 5005, Australia
| | - Hugh H. Harris
- School of Chemistry, University of Wollongong, NSW 2522, Australia, School of Chemistry, University of Sydney, NSW 2006, Australia, X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, School of Chemistry and Physics, University of Adelaide, SA 5005, Australia
| | - Carolyn T. Dillon
- School of Chemistry, University of Wollongong, NSW 2522, Australia, School of Chemistry, University of Sydney, NSW 2006, Australia, X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, School of Chemistry and Physics, University of Adelaide, SA 5005, Australia
| |
Collapse
|
30
|
Nakashima T, Okada T, Asahi J, Yamashita A, Kawai K, Kasai H, Matsuno K, Gamou S, Hirano T. 8-Hydroxydeoxyguanosine generated in the earthworm Eisenia fetida grown in metal-containing soil. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2008; 654:138-44. [DOI: 10.1016/j.mrgentox.2008.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 05/12/2008] [Accepted: 05/24/2008] [Indexed: 10/22/2022]
|
31
|
Watts MJ, Button M, Brewer TS, Jenkin GRT, Harrington CF. Quantitative arsenic speciation in two species of earthworms from a former mine site. ACTA ACUST UNITED AC 2008; 10:753-9. [PMID: 18528543 DOI: 10.1039/b800567b] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The relationship between the total arsenic concentration and the chemical speciation of arsenic in two species of earthworm (Lumbricus rubellus and Dendrodrilus rubidus) in relation to the host soil, was investigated for 13 sites of varying arsenic content, including a background level garden soil and a former mine site at the Devon Great Consols, UK. Earthworms were collected with the host soil (As soil concentration range 16-12, 466 mg kg(-1) dry weight) and measured for their total arsenic (concentration range 7-595 mg kg(-1) dry weight) using inductively coupled plasma mass spectrometry (ICP-MS). A methanol-water mixture was used to extract arsenic species from the earthworms prior to determination of the individual arsenic species by a combination of anion and cation exchange high performance liquid chromatography coupled to inductively coupled plasma mass spectrometry (HPLC-ICP-MS). A gradient elution anion exchange method is presented whereby nine arsenic species could be measured in one sample injection. Arsenic species were identified by comparison of retention times and sample spiking with known standards and a fully characterised seaweed extract. Arsenic was generally present in the earthworm as arsenate (As(V)) or arsenite (As(III)) and arsenobetaine (AB). Methylarsonate (MA), dimethylarsinate (DMA) and three arsenosugars (glycerol, phosphate, sulfate) were present as minor constituents. These results are discussed in relation to the mechanisms for coping with exposure to soil bound arsenic.
Collapse
|
32
|
Influence of Cadmium(II) Ions and Brewery Sludge on Metallothionein Level in Earthworms (Eisenia fetida) - Bio- transforming of Toxic Wastes. SENSORS 2008; 8:1039-1047. [PMID: 27879751 PMCID: PMC3927502 DOI: 10.3390/s8021039] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 02/14/2008] [Indexed: 12/14/2022]
Abstract
Metallothioneins belong to a group of intracellular, high molecular and cysteine-rich proteins whose content in an organism increase with increasing concentration of a heavy metal. The aim of this work was to apply the electrochemical analysis for the analysis of metallothioneins in earthworms exposed to cadmium ions and brewery sludge. Here we utilized adsorptive transfer technique coupled with differential pulse voltammetry Brdicka reaction to determine metallothionein in different biological samples. By means this very sensitive technique it was possible to analyze metallothionein in concentrations below 1 μmol.l−1 with the standard deviation of 4-5%. We found out that the average MT level in the non-treated earthworms oscillated between 19 and 48 μmol.l−1. When we analysed samples of earthworms treated by cadmium, we observed that the MT content increased with the exposition length and increase dose of cadmium ions. Finally, we attempted to study and compare the toxicity of the raw sludge and its leach by using of earthworms. The raw brewery sludge caused the death of the earthworms quickly. Earthworms held in the presence of leach from brewery sludge increased their weight of 147 % of their original weight because they ingested the nutrients from the sludge. The metallothionein level changes markedly with increasing time of exposition and applied dose of toxic compound. It clearly follows from the obtained results that the MT synthesis is insufficient in the first hours of the exposition and increases after more than 24 h.
Collapse
|