1
|
Abdel-Hady A, Monge M, Aslett D, Mikelonis A, Touati A, Ratliff K. Comparison of liquid and filter sampling techniques for recovery of Bacillus spores and Escherichia coli from environmental water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122711. [PMID: 39366227 DOI: 10.1016/j.jenvman.2024.122711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/23/2024] [Accepted: 09/28/2024] [Indexed: 10/06/2024]
Abstract
Historically, detecting water contamination has involved collecting and directly analyzing liquid samples, but recent advances in filter sampling methods offer numerous potential advantages. Emerging technologies, including environmental DNA (eDNA) samplers, could be used for remote microbial contamination sampling, but work is needed to determine if target microorganisms can be recovered from filters at comparable levels to traditional sampling methods. In this study, Escherichia coli and a surrogate for Bacillus anthracis spores were sampled from synthetic stormwater and quantified using both direct liquid and filter methods, and dwell time tests compared microorganism persistence in water and on filters. At nearly all tested timepoints, the recoveries of spores from membrane filters were within 0.5 log10 colony forming units per sample (CFU/sample) compared to the liquid-only samples, suggesting that the use of filter sampling is a feasible alternative to liquid-based sampling, and samples were held for up to 4 weeks without significant sample degradation. Recoveries for E. coli remained relatively consistent for ∼3 days in phosphate buffered saline (PBS), in synthetic stormwater, and on membrane filters, but decreases in recoveries were observed for samples held for >3 days. These results indicate that emerging water sampling technologies, which reduce logistical burdens and offer potential cost savings, can be leveraged to characterize biological contamination in water matrices with multiple types of microbiological agents.
Collapse
Affiliation(s)
| | - Mariela Monge
- Consolidated Safety Services, Inc., Research Triangle Park, NC, USA
| | - Denise Aslett
- Jacobs Technology Inc., Research Triangle Park, NC, USA
| | - Anne Mikelonis
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | | | - Katherine Ratliff
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA.
| |
Collapse
|
2
|
Ligda P, Mittas N, Kyzas GZ, Claerebout E, Sotiraki S. Machine learning and explainable artificial intelligence for the prevention of waterborne cryptosporidiosis and giardiosis. WATER RESEARCH 2024; 262:122110. [PMID: 39042970 DOI: 10.1016/j.watres.2024.122110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/21/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
Cryptosporidium and Giardia are important parasitic protozoa due to their zoonotic potential and impact on human health, and have often caused waterborne outbreaks of disease. Detection of (oo)cysts in water matrices is challenging and extremely costly, thus only few countries have legislated for regular monitoring of drinking water for their presence. Several attempts have been made trying to investigate the association between the presence of such (oo)cysts in waters with other biotic or abiotic factors, with inconclusive findings. In this regard, the aim of this study was the development of an holistic approach leveraging Machine Learning (ML) and eXplainable Artificial Intelligence (XAI) techniques, in order to provide empirical evidence related to the presence and prediction of Cryptosporidium oocysts and Giardia cysts in water samples. To meet this objective, we initially modelled the complex relationship between Cryptosporidium and Giardia (oo)cysts and a set of parasitological, microbiological, physicochemical and meteorological parameters via a model-agnostic meta-learner algorithm that provides flexibility regarding the selection of the ML model executing the fitting task. Based on this generic approach, a set of four well-known ML candidates were, empirically, evaluated in terms of their predictive capabilities. Then, the best-performed algorithms, were further examined through XAI techniques for gaining meaningful insights related to the explainability and interpretability of the derived solutions. The findings reveal that the Random Forest achieves the highest prediction performance when the objective is the prediction of both contamination and contamination intensity with Cryptosporidium oocysts in a given water sample, with meteorological/physicochemical and microbiological markers being informative, respectively. For the prediction of contamination with Giardia, the eXtreme Gradient Boosting with physicochemical parameters was the most efficient algorithm, while, the Support Vector Regression that takes into consideration both microbiological and meteorological markers was more efficient for evaluating the contamination intensity with cysts. The results of the study designate that the adoption of ML and XAI approaches can be considered as a valuable tool for unveiling the complicated correlation of the presence and contamination intensity with these zoonotic parasites that could constitute, in turn, a basis for the development of monitoring platforms and early warning systems for the prevention of waterborne disease outbreaks.
Collapse
Affiliation(s)
- Panagiota Ligda
- Laboratory of Parasitology, Veterinary Research Institute, Hellenic Agricultural Organization - DIMITRA, Thermi, Thessaloniki 57001, Greece.
| | - Nikolaos Mittas
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala GR-65404, Greece
| | - George Z Kyzas
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala GR-65404, Greece
| | - Edwin Claerebout
- Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke B-9820, Belgium
| | - Smaragda Sotiraki
- Laboratory of Parasitology, Veterinary Research Institute, Hellenic Agricultural Organization - DIMITRA, Thermi, Thessaloniki 57001, Greece
| |
Collapse
|
3
|
Fork ML, McManamay RA, Heffernan JB. Propagation of inflowing urban stormwater pulses through reservoir embayments. Urban Ecosyst 2022. [DOI: 10.1007/s11252-022-01218-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Impacts of Event-Based Recharge on the Vulnerability of Public Supply Wells. SUSTAINABILITY 2021. [DOI: 10.3390/su13147695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dynamic recharge events related to extreme rainfall or snowmelt are becoming more common due to climate change. The vulnerability of public supply wells to water quality degradation may temporarily increase during these types of events. The Walkerton, ON, Canada, tragedy (2000) highlighted the threat to human health associated with the rapid transport of microbial pathogens to public supply wells during dynamic recharge events. Field research at the Thornton (Woodstock, ON, Canada) and Mannheim West (Kitchener, ON, Canada) well fields, situated in glacial overburden aquifers, identified a potential increase in vulnerability due to event-based recharge phenomena. Ephemeral surface water flow and local ponding containing microbial pathogen indicator species were observed and monitored within the capture zones of public supply wells following heavy rain and/or snowmelt. Elevated recharge rates beneath these temporary surface water features were estimated to range between 40 and 710 mm over two-week periods using analytical and numerical modelling based on the water level, soil moisture, and temperature data. Modelling also suggested that such events could reduce contaminant travel times to a supply well, increasing vulnerability to water quality degradation. These studies suggest that event-based recharge processes occurring close to public supply wells may enhance the vulnerability of the wells to surface-sourced contaminants.
Collapse
|
5
|
Ligda P, Claerebout E, Kostopoulou D, Zdragas A, Casaert S, Robertson LJ, Sotiraki S. Cryptosporidium and Giardia in surface water and drinking water: Animal sources and towards the use of a machine-learning approach as a tool for predicting contamination. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114766. [PMID: 32417583 DOI: 10.1016/j.envpol.2020.114766] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/16/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Cryptosporidium and Giardia are important parasites due to their zoonotic potential and impact on human health, often causing waterborne outbreaks of disease. Detection of (oo)cysts in water matrices is challenging and few countries have legislated water monitoring for their presence. The aim of this study was to investigate the presence and origin of these parasites in different water sources in Northern Greece and identify interactions between biotic/abiotic factors in order to develop risk-assessment models. During a 2-year period, using a longitudinal, repeated sampling approach, 12 locations in 4 rivers, irrigation canals, and a water production company, were monitored for Cryptosporidium and Giardia, using standard methods. Furthermore, 254 faecal samples from animals were collected from 15 cattle and 12 sheep farms located near the water sampling points and screened for both parasites, in order to estimate their potential contribution to water contamination. River water samples were frequently contaminated with Cryptosporidium (47.1%) and Giardia (66.2%), with higher contamination rates during winter and spring. During a 5-month period, (oo)cysts were detected in drinking-water (<1/litre). Animals on all farms were infected by both parasites, with 16.7% of calves and 17.2% of lambs excreting Cryptosporidium oocysts and 41.3% of calves and 43.1% of lambs excreting Giardia cysts. The most prevalent species identified in both water and animal samples were C. parvum and G. duodenalis assemblage AII. The presence of G. duodenalis assemblage AII in drinking water and C. parvum IIaA15G2R1 in surface water highlights the potential risk of waterborne infection. No correlation was found between (oo)cyst counts and faecal-indicator bacteria. Machine-learning models that can predict contamination intensity with Cryptosporidium (75% accuracy) and Giardia (69% accuracy), combining biological, physicochemical and meteorological factors, were developed. Although these prediction accuracies may be insufficient for public health purposes, they could be useful for augmenting and informing risk-based sampling plans.
Collapse
Affiliation(s)
- Panagiota Ligda
- Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium; Laboratory of Infectious and Parasitic Diseases, Veterinary Research Institute, Hellenic Agricultural Organization - DEMETER, 57001, Thermi, Thessaloniki, Greece.
| | - Edwin Claerebout
- Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium.
| | - Despoina Kostopoulou
- Laboratory of Infectious and Parasitic Diseases, Veterinary Research Institute, Hellenic Agricultural Organization - DEMETER, 57001, Thermi, Thessaloniki, Greece.
| | - Antonios Zdragas
- Laboratory of Infectious and Parasitic Diseases, Veterinary Research Institute, Hellenic Agricultural Organization - DEMETER, 57001, Thermi, Thessaloniki, Greece.
| | - Stijn Casaert
- Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium.
| | - Lucy J Robertson
- Parasitology, Department of Paraclinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, PO Box 369 Sentrum, 0102, Oslo, Norway.
| | - Smaragda Sotiraki
- Laboratory of Infectious and Parasitic Diseases, Veterinary Research Institute, Hellenic Agricultural Organization - DEMETER, 57001, Thermi, Thessaloniki, Greece.
| |
Collapse
|
6
|
Impact of Climate Forecasts on the Microbial Quality of a Drinking Water Source in Norway Using Hydrodynamic Modeling. WATER 2019. [DOI: 10.3390/w11030527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study applies hydrodynamic and water quality modeling to evaluate the potential effects of local climate projections on the mixing conditions in Lake Brusdalsvatnet in Norway and the implications on the occurrence of Escherichia coli (E. coli) at the raw water intake point of the Ålesund water treatment plant in the future. The study is mainly based on observed and projected temperature, the number of E. coli in the tributaries of the lake and projected flow. The results indicate a gradual rise in the temperature of water at the intake point from the base year 2017 to year 2075. In the future, vertical circulations in spring may occur earlier while autumn circulation may start later than currently observed in the lake. The number of E. coli at the intake point of the lake is expected to marginally increase in future. By the year 2075, the models predict an approximately three-fold increase in average E. coli numbers for the spring and autumn seasons compared to current levels. The results are expected to provide the water supply system managers of Ålesund with the information necessary for long-term planning and decisions in the protection of the drinking water source. The method used here can also be applied to similar drinking water sources in Norway for developing effective risk management strategies within their catchments.
Collapse
|
7
|
Epting J, Huggenberger P, Radny D, Hammes F, Hollender J, Page RM, Weber S, Bänninger D, Auckenthaler A. Spatiotemporal scales of river-groundwater interaction - The role of local interaction processes and regional groundwater regimes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 618:1224-1243. [PMID: 29111243 DOI: 10.1016/j.scitotenv.2017.09.219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/20/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
Drinking water production in the vicinity of rivers not only requires the consideration of different spatiotemporal scales and settings of river-groundwater interaction processes, but also of local and regional scale groundwater regimes. Selected case studies in combination with field-experiments and the setup of high-resolution groundwater flow models enabled the investigation of the spatiotemporal development of microbial (classical fecal indicator bacteria and total cell counts) and selected organic micropollutants in riverine and regional groundwater for different hydrological settings, including low and high flow conditions. Proxy indicators suitable as surrogates for the diverse contaminations in alluvial aquifers with different settings could be identified. Based on the study results, the basic elements for both groundwater management and river restoration concepts are derived, which include the: (1) compilation and evaluation of the "current state" concerning hydrogeology, microbiology and contamination by organic micropollutants, (2) definition of field-experiments to qualitatively assess variability related to the "current state", and (3) quantitative assessment of groundwater regimes, including variability of groundwater components and inflow areas, by application of high-resolution groundwater flow models. The validity and transferability of the concept and inferred controls (specifically drivers and controls of river-groundwater interaction) are tested by evaluations derived from hydraulic relationships to river sections with comparable settings and regional groundwater flow regimes in general. The results of our investigations illustrate the influence of dynamic hydrologic boundary conditions on river-groundwater interaction and of regional scale groundwater flow regimes on the water composition of riverine groundwater systems. It is demonstrated how to identify river sections and their variations with intensified river-groundwater exchange processes and how to quantify the transient character of the different groundwater components that constitute the raw water quality of drinking water wells near rivers.
Collapse
Affiliation(s)
- Jannis Epting
- Department of Environmental Sciences, Applied and Environmental Geology, University of Basel, Switzerland.
| | - Peter Huggenberger
- Department of Environmental Sciences, Applied and Environmental Geology, University of Basel, Switzerland.
| | - Dirk Radny
- Department of Water Resources and Drinking Water (Research Group Hydrogeology), Eawag-Swiss Federal Institute for Aquatic Science and Technology, Dübendorf, Switzerland.
| | - Frederik Hammes
- Department of Environmental Microbiology, Eawag-Swiss Federal Institute for Aquatic Science and Technology, Dübendorf, Switzerland.
| | - Juliane Hollender
- Department of Environmental Chemistry, Eawag-Swiss Federal Institute for Aquatic Science and Technology, Dübendorf, Switzerland.
| | | | - Stefanie Weber
- Office for Food Safety and Veterinary Affairs, Canton Basel-Landschaft, Liestal, Switzerland.
| | - Dominik Bänninger
- Department of Environmental Protection and Energy, Canton Basel-Landschaft, Rheinstrasse 29, 4410 Liestal, Switzerland.
| | - Adrian Auckenthaler
- Department of Environmental Protection and Energy, Canton Basel-Landschaft, Rheinstrasse 29, 4410 Liestal, Switzerland.
| |
Collapse
|
8
|
Swirski AL, Pearl DL, Peregrine AS, Thomas J, Pintar K. Temporal trends in Giardia occurrence in the Grand River and surrounding tributaries, Waterloo, Ontario (2005-2013), a retrospective analysis of surveillance data. Zoonoses Public Health 2017; 65:291-303. [PMID: 28984083 DOI: 10.1111/zph.12388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Indexed: 02/06/2023]
Abstract
Giardia contamination in the Grand River Watershed (south-western Ontario, Canada) was monitored from 2005 to 2013 as part of FoodNet Canada. Our study objectives were to describe the temporal pattern of Giardia occurrence and determine whether water quality parameters and bacterial indicators could act as effective markers for Giardia occurrence. Water samples were collected monthly from the Grand River near a drinking water intake point (2005-2013) and also collected intermittently from other areas in the watershed during the study period. Samples were tested for Giardia cysts using the US EPA method 1623. Samples were also tested for chemical and microbial water quality indicators. Univariable and multivariable linear regression models were built to examine whether temporal, water quality and bacterial indicators were associated with Giardia cyst concentration. Giardia cysts were identified in 89% of samples (n = 228), with highest measured concentrations downstream of a waste water treatment plant outfall. Year and season were found to be predictors for Giardia occurrence. Concentrations were significantly higher in the winter and fall compared to the summer, and significantly higher in 2007 compared to other study years. After controlling for season, year and sampling location, dissolved oxygen was the only variable significantly associated with Giardia cyst concentration. Seasonal peaks in Giardia cyst concentrations in samples collected near the intake for the drinking water plant did not align with the seasonal peak in human Giardiasis cases in this region that are reported annually by public health authorities. This suggests that the risk of contracting Giardiasis from treated drinking water in this community is possibly low when the treatment plant is functioning adequately. Instead, waterborne exposure is likely the result of seasonal behaviours surrounding recreational water use. Therefore, the collective findings of our study are important to help inform future risk management studies and guide public health protection policies.
Collapse
Affiliation(s)
- A L Swirski
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - D L Pearl
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - A S Peregrine
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - J Thomas
- Environmental Monitoring and Reporting Branch, Ontario Ministry of the Environment and Climate Change, Toronto, ON, Canada
| | - K Pintar
- Centre for Food-Borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Ottawa, ON, Canada
| |
Collapse
|
9
|
Nandy A, Djurhuus H, Gaini S. Foodborne botulism in the Faroe Islands in a two-decade period. Infect Dis (Lond) 2017; 49:859-861. [DOI: 10.1080/23744235.2017.1337275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Anirban Nandy
- National Hospital of the FaroeIslands, Tórshavn, Faroe Islands
| | - Høgni Djurhuus
- National Hospital of the FaroeIslands, Tórshavn, Faroe Islands
| | - Shahin Gaini
- National Hospital of the FaroeIslands, Tórshavn, Faroe Islands
- Odense University Hospital & University of Southern Denmark, Odense, Denmark
- University of the Faroe Islands, Tórshavn, Faroe Islands
| |
Collapse
|
10
|
Hadi M, Mesdaghinia A, Yunesian M, Nasseri S, Nabizadeh Nodehi R, Tashauoei H, Jalilzadeh E, Zarinnejad R. Contribution of environmental media to cryptosporidiosis and giardiasis prevalence in Tehran: a focus on surface waters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:19317-19329. [PMID: 27370533 DOI: 10.1007/s11356-016-7055-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 06/07/2016] [Indexed: 06/06/2023]
Abstract
The occurrences of Cryptosporidium and Giardia in surface sources of drinking water in Tehran were monitored, using US EPA method 1623.1. The prevalence ratios (PR) of positive samples among other media (animal's stools, vegetables, and human's stools) were also estimated from literature data. The density of Giardia and Cryptosporidium in water samples were 0.129 ± 0.069 cysts/L and 0.005 ± 0.002 oocysts/L, respectively. Estimated PR in vegetables, animal stools, surface waters, and human stools were 6.65, 20.42, 21.05, and 4.28 % for Cryptosporidium and 6.46, 17.13, 73.68, and 15.65 % for Giardia, respectively. These reveal the importance of surface waters' and animal stools' roles in the prevalence of cryptosporidiosis and giardiasis in Tehran's population. Giardia's prevalence in untreated surface waters in Tehran was found 3.5 times as much as Cryptosporidium while this found 2.3 times on a global scale. Moreover, the prevalence of giardiasis to cryptosporidiosis infections in Tehran's human population was 3.65. These values could be a clue to attribute the infections to the occurrence of parasites in surface waters. Significant (p < 0.05) associations were observed between rainfalls and presence of Giardia (r = 0.62) and Cryptosporidium (r = 0.60) in surface waters. In autumn, rainfalls can increase the parasites occurrences in surface waters. Significant (p < 0.05) difference on the density of parasites was found between some seasons using Kruskal-Wallis and multiple comparison tests. A significant correlation (r = 0.86) between Giardia and Cryptosporidium densities also confirms the common sources of pollution in surface waters. Findings suggest that untreated surface waters in Tehran may be a potential route of human exposure to protozoan parasites.
Collapse
Affiliation(s)
- Mahdi Hadi
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Mesdaghinia
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Masud Yunesian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Simin Nasseri
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Nabizadeh Nodehi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Tashauoei
- Department of Environmental Health Engineering, School of Public Health, Islamic Azad University-Tehran Medical Branch, Tehran, Iran
| | - Esfandiar Jalilzadeh
- Department of Water and Wastewater Quality Control Laboratory, Water and Wastewater Company, Tehran, Iran
| | - Roya Zarinnejad
- Department of Water and Wastewater Quality Control Laboratory, Water and Wastewater Company, Tehran, Iran
| |
Collapse
|
11
|
Young P, Buchanan N, Fallowfield HJ. Inactivation of indicator organisms in wastewater treated by a high rate algal pond system. J Appl Microbiol 2016; 121:577-86. [DOI: 10.1111/jam.13180] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 05/06/2016] [Indexed: 10/21/2022]
Affiliation(s)
- P. Young
- Health & the Environment Group; School of the Environment; Flinders University; Adelaide SA Australia
| | - N. Buchanan
- Health & the Environment Group; School of the Environment; Flinders University; Adelaide SA Australia
| | - H. J. Fallowfield
- Health & the Environment Group; School of the Environment; Flinders University; Adelaide SA Australia
| |
Collapse
|
12
|
Khan SJ, Deere D, Leusch FDL, Humpage A, Jenkins M, Cunliffe D. Extreme weather events: Should drinking water quality management systems adapt to changing risk profiles? WATER RESEARCH 2015; 85:124-36. [PMID: 26311274 DOI: 10.1016/j.watres.2015.08.018] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 08/08/2015] [Accepted: 08/10/2015] [Indexed: 05/23/2023]
Abstract
Among the most widely predicted and accepted consequences of global climate change are increases in both the frequency and severity of a variety of extreme weather events. Such weather events include heavy rainfall and floods, cyclones, droughts, heatwaves, extreme cold, and wildfires, each of which can potentially impact drinking water quality by affecting water catchments, storage reservoirs, the performance of water treatment processes or the integrity of distribution systems. Drinking water guidelines, such as the Australian Drinking Water Guidelines and the World Health Organization Guidelines for Drinking-water Quality, provide guidance for the safe management of drinking water. These documents present principles and strategies for managing risks that may be posed to drinking water quality. While these principles and strategies are applicable to all types of water quality risks, very little specific attention has been paid to the management of extreme weather events. We present a review of recent literature on water quality impacts of extreme weather events and consider practical opportunities for improved guidance for water managers. We conclude that there is a case for an enhanced focus on the management of water quality impacts from extreme weather events in future revisions of water quality guidance documents.
Collapse
Affiliation(s)
- Stuart J Khan
- School of Civil & Environmental Engineering, University of New South Wales, NSW, Australia.
| | | | - Frederic D L Leusch
- Smart Water Research Centre, School of Environment, Griffith University, QLD, Australia.
| | | | | | | |
Collapse
|
13
|
Fine-Scale Spatial Heterogeneity in the Distribution of Waterborne Protozoa in a Drinking Water Reservoir. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:11910-28. [PMID: 26404350 PMCID: PMC4586715 DOI: 10.3390/ijerph120911910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 09/15/2015] [Indexed: 01/31/2023]
Abstract
Background: The occurrence of faecal pathogens in drinking water resources constitutes a threat to the supply of safe drinking water, even in industrialized nations. To efficiently assess and monitor the risk posed by these pathogens, sampling deserves careful design, based on preliminary knowledge on their distribution dynamics in water. For the protozoan pathogens Cryptosporidium and Giardia, only little is known about their spatial distribution within drinking water supplies, especially at fine scale. Methods: Two-dimensional distribution maps were generated by sampling cross-sections at meter resolution in two different zones of a drinking water reservoir. Samples were analysed for protozoan pathogens as well as for E. coli, turbidity and physico-chemical parameters. Results: Parasites displayed heterogeneous distribution patterns, as reflected by significant (oo)cyst density gradients along reservoir depth. Spatial correlations between parasites and E. coli were observed near the reservoir inlet but were absent in the downstream lacustrine zone. Measurements of surface and subsurface flow velocities suggest a role of local hydrodynamics on these spatial patterns. Conclusion: This fine-scale spatial study emphasizes the importance of sampling design (site, depth and position on the reservoir) for the acquisition of representative parasite data and for optimization of microbial risk assessment and monitoring. Such spatial information should prove useful to the modelling of pathogen transport dynamics in drinking water supplies.
Collapse
|
14
|
La Sala LF, Redondo LM, Díaz Carrasco JM, Pereyra AM, Farber M, Jost H, Fernández-Miyakawa ME. Carriage of Clostridium perfringens by benthic crabs in a sewage-polluted estuary. MARINE POLLUTION BULLETIN 2015; 97:365-372. [PMID: 26130524 DOI: 10.1016/j.marpolbul.2015.05.066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/22/2015] [Accepted: 05/29/2015] [Indexed: 06/04/2023]
Abstract
The Estuary of Bahía Blanca (EBB), Argentina, is an important wetland under intense sewage pollution. We investigated the occurrence of Clostridium perfringens (CP) in populations of two benthic crabs (Neohelice granulata and Cyrtograpsus angulatus) and in sediment from the EBB. CP was found in 49.1% of the crabs and all of the isolates were identified as type A. The alpha (cpa) and enterotoxin (cpe) encoding genes were identified. Genetic analyses identified 13 novel sequence types, and found no clustering among isolates, suggesting that CP is not part of the crabs' commensal flora. CP carriage was 51 times more likely in crabs from the area nearest sewage outfalls compared with crabs from a reference site. Our in vitro experiments suggest that the carriage of CP in crabs is transient. The use of these benthic crabs as monitoring organisms of sewage pollution in coastal habitats is proposed.
Collapse
Affiliation(s)
- Luciano F La Sala
- GEKKO, Grupo de Estudios en Conservación y Manejo, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, 8000 Bahía Blanca, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Rivadavia 1917, 1033 Ciudad Autónoma de Buenos Aires, Argentina.
| | - Leandro M Redondo
- Instituto de Patobiología, Centro Nacional de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, Calle Las Cabañas y Los Reseros s/n, Casilla de Correo 25, 1712 Castelar, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Rivadavia 1917, 1033 Ciudad Autónoma de Buenos Aires, Argentina
| | - Juan M Díaz Carrasco
- Instituto de Patobiología, Centro Nacional de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, Calle Las Cabañas y Los Reseros s/n, Casilla de Correo 25, 1712 Castelar, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Rivadavia 1917, 1033 Ciudad Autónoma de Buenos Aires, Argentina
| | - Ana María Pereyra
- Instituto de Patobiología, Centro Nacional de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, Calle Las Cabañas y Los Reseros s/n, Casilla de Correo 25, 1712 Castelar, Buenos Aires, Argentina
| | - Marisa Farber
- Consejo Nacional de Investigaciones Científicas y Técnicas, Rivadavia 1917, 1033 Ciudad Autónoma de Buenos Aires, Argentina; Instituto de Biotecnología, Centro Nacional de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, Calle Las Cabañas y Los Reseros s/n, Casilla de Correo 25, 1712 Castelar, Buenos Aires, Argentina
| | - Helen Jost
- Department of Veterinary Science and Microbiology, University of Arizona, Tucson, AZ 85721, USA
| | - Mariano E Fernández-Miyakawa
- Instituto de Patobiología, Centro Nacional de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, Calle Las Cabañas y Los Reseros s/n, Casilla de Correo 25, 1712 Castelar, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Rivadavia 1917, 1033 Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
15
|
George J, An W, Joshi D, Zhang D, Yang M, Suriyanarayanan S. Quantitative Microbial Risk Assessment to Estimate the Health Risk in Urban Drinking Water Systems of Mysore, Karnataka, India. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s12403-014-0152-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Swaffer BA, Vial HM, King BJ, Daly R, Frizenschaf J, Monis PT. Investigating source water Cryptosporidium concentration, species and infectivity rates during rainfall-runoff in a multi-use catchment. WATER RESEARCH 2014; 67:310-320. [PMID: 25306487 DOI: 10.1016/j.watres.2014.08.055] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 08/21/2014] [Accepted: 08/29/2014] [Indexed: 06/04/2023]
Abstract
Protozoan pathogens present a significant human health concern, and prevention of contamination into potable networks remains a key focus for drinking water providers. Here, we monitored the change in Cryptosporidium concentration in source water during high flow events in a multi-use catchment. Furthermore, we investigated the diversity of Cryptosporidium species/genotypes present in the source water, and delivered an oocyst infectivity fraction. There was a positive and significant correlation between Cryptosporidium concentration and flow (ρ = 0.756) and turbidity (ρ = 0.631) for all rainfall-runoff events, despite variable source water pathogen concentrations. Cell culture assays measured oocyst infectivity and suggested an overall source water infectious fraction of 3.1%. No infectious Cryptosporidium parvum or Cryptosporidium hominis were detected, although molecular testing detected C. parvum in 7% of the samples analysed using PCR-based molecular techniques. Twelve Cryptosporidium species/genotypes were identified using molecular techniques, and were reflective of the host animals typically found in remnant vegetation and agricultural areas. The inclusion of molecular approaches to identify Cryptosporidium species and genotypes highlighted the diversity of pathogens in water, which originated from various sources across the catchment. We suggest this mixing of runoff water from a range of landuses containing diverse Cryptosporidium hosts is a key explanation for the often-cited difficulty forming strong pathogen-indicator relationships.
Collapse
Affiliation(s)
- Brooke A Swaffer
- South Australia Water Corporation, GPO Box 1751, Adelaide, SA 5001, Australia.
| | - Hayley M Vial
- South Australia Water Corporation, GPO Box 1751, Adelaide, SA 5001, Australia
| | - Brendon J King
- Australian Water Quality Centre, GPO Box 1751, Adelaide, SA 5001, Australia
| | - Robert Daly
- South Australia Water Corporation, GPO Box 1751, Adelaide, SA 5001, Australia
| | | | - Paul T Monis
- Australian Water Quality Centre, GPO Box 1751, Adelaide, SA 5001, Australia
| |
Collapse
|
17
|
Pachepsky Y, Shelton D, Dorner S, Whelan G. Can E. coli or thermotolerant coliform concentrations predict pathogen presence or prevalence in irrigation waters? Crit Rev Microbiol 2014; 42:384-93. [PMID: 25198779 DOI: 10.3109/1040841x.2014.954524] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
An increase in food-borne illnesses in the United States has been associated with fresh produce consumption. Irrigation water presents recognized risks for microbial contamination of produce. Water quality criteria rely on indicator bacteria. The objective of this review was to collate and summarize experimental data on the relationships between pathogens and thermotolerant coliform (THT) and/or generic E. coli, specifically focusing on surface fresh waters used in or potentially suitable for irrigation agriculture. We analyzed peer-reviewed publications in which concentrations of E. coli or THT coliforms in surface fresh waters were measured along with concentrations of one or more of waterborne and food-borne pathogenic organisms. The proposed relationships were significant in 35% of all instances and not significant in 65% of instances. Coliform indicators alone cannot provide conclusive, non-site-specific and non-pathogen-specific information about the presence and/or concentrations of most important pathogens in surface waters suitable for irrigation. Standards of microbial water quality for irrigation can rely not only on concentrations of indicators and/or pathogens, but must include references to crop management. Critical information on microbial composition of actual irrigation waters to support criteria of microbiological quality of irrigation waters appears to be lacking and needs to be collected.
Collapse
Affiliation(s)
- Yakov Pachepsky
- a USDA-ARS, Environmental Mirobial and Food Safety Laboratory , Beltsville , MD , USA
| | - Daniel Shelton
- a USDA-ARS, Environmental Mirobial and Food Safety Laboratory , Beltsville , MD , USA
| | - Sarah Dorner
- b Department of Civil , Geological and Mining Engineering, École Polytechnique de Montréal , Montreal , Quebec , Canada , and
| | - Gene Whelan
- c US Environmental Protection Agency, National Exposure Research Laboratory , Athens , GA , USA
| |
Collapse
|
18
|
Devane ML, Moriarty EM, Wood D, Webster-Brown J, Gilpin BJ. The impact of major earthquakes and subsequent sewage discharges on the microbial quality of water and sediments in an urban river. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 485-486:666-680. [PMID: 24747258 DOI: 10.1016/j.scitotenv.2014.03.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 03/06/2014] [Accepted: 03/09/2014] [Indexed: 06/03/2023]
Abstract
A series of large earthquakes struck the city of Christchurch, New Zealand in 2010-2011. Major damage sustained by the sewerage infrastructure required direct discharge of up to 38,000 m(3)/day of raw sewage into the Avon River of Christchurch for approximately six months. This allowed evaluation of the relationship between concentrations of indicator microorganisms (Escherichia coli, Clostridium perfringens and F-RNA phage) and pathogens (Campylobacter, Giardia and Cryptosporidium) in recreational water and sediment both during and post-cessation of sewage discharges. Giardia was the pathogen found most frequently in river water and sediment, although Campylobacter was found at higher levels in water samples. E. coli levels in water above 550 CFU/100 mL were associated with increased likelihood of detection of Campylobacter, Giardia and Cryptosporidium, supporting the use of E. coli as a reliable indicator for public health risk. The strength of the correlation of microbial indicators with pathogen detection in water decreased in the following order: E. coli>F-RNA phage>C. perfringens. All the microorganisms assayed in this study could be recovered from sediments. C. perfringens was observed to accumulate in sediments, which may have confounded its usefulness as an indicator of fresh sewage discharge. F-RNA phage, however, did not appear to accumulate in sediment and in conjunction with E. coli, may have potential as an indicator of recent human sewage discharge in freshwater. There is evidence to support the low-level persistence of Cryptosporidium and Giardia, but not Campylobacter, in river sediments after cessation of sewage discharges. In the event of disturbances of the sediment, it is highly probable that there could be re-mobilisation of microorganisms beyond the sediment-water exchange processes occurring under base flow conditions. Re-suspension events do, therefore, increase the potential risk to human health for those who participate in recreational and work-related activities in the river environment.
Collapse
Affiliation(s)
- Megan L Devane
- Institute of Environmental Science and Research Limited, Christchurch Science Centre, PO Box 29-181, Christchurch, New Zealand; Waterways Centre for Freshwater Management, University of Canterbury, Private Bag 4800, Christchurch, New Zealand.
| | - Elaine M Moriarty
- Institute of Environmental Science and Research Limited, Christchurch Science Centre, PO Box 29-181, Christchurch, New Zealand
| | - David Wood
- Institute of Environmental Science and Research Limited, Christchurch Science Centre, PO Box 29-181, Christchurch, New Zealand
| | - Jenny Webster-Brown
- Waterways Centre for Freshwater Management, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Brent J Gilpin
- Institute of Environmental Science and Research Limited, Christchurch Science Centre, PO Box 29-181, Christchurch, New Zealand
| |
Collapse
|
19
|
Lalancette C, Papineau I, Payment P, Dorner S, Servais P, Barbeau B, Di Giovanni GD, Prévost M. Changes in Escherichia coli to Cryptosporidium ratios for various fecal pollution sources and drinking water intakes. WATER RESEARCH 2014; 55:150-161. [PMID: 24607521 DOI: 10.1016/j.watres.2014.01.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 01/24/2014] [Accepted: 01/27/2014] [Indexed: 06/03/2023]
Abstract
Assessing the presence of human pathogenic Cryptosporidium oocysts in surface water remains a significant water treatment and public health challenge. Most drinking water suppliers rely on fecal indicators, such as the well-established Escherichia coli (E. coli), to avoid costly Cryptosporidium assays. However, the use of E. coli has significant limitations in predicting the concentration, the removal and the transport of Cryptosporidium. This study presents a meta-analysis of E. coli to Cryptosporidium concentration paired ratios to compare their complex relationships in eight municipal wastewater sources, five agricultural fecal pollution sources and at 13 drinking water intakes (DWI) to a risk threshold based on US Environmental Protection Agency (USEPA) regulations. Ratios lower than the USEPA risk threshold suggested higher concentrations of oocysts in relation to E. coli concentrations, revealing an underestimed risk for Cryptosporidium based on E. coli measurements. In raw sewage (RS), high ratios proved E. coli (or fecal coliforms) concentrations were a conservative indicator of Cryptosporidium concentrations, which was also typically true for secondary treated wastewater (TWW). Removals of fecal indicator bacteria (FIB) and parasites were quantified in WWTPs and their differences are put forward as a plausible explanation of the sporadic ratio shift. Ratios measured from agricultural runoff surface water were typically lower than the USEPA risk threshold and within the range of risk misinterpretation. Indeed, heavy precipitation events in the agricultural watershed led to high oocyst concentrations but not to E. coli or enterococci concentrations. More importantly, ratios established in variously impacted DWI from 13 Canadian drinking water plants were found to be related to dominant fecal pollution sources, namely municipal sewage. In most cases, when DWIs were mainly influenced by municipal sewage, E. coli or fecal coliforms concentrations agreed with Cryptosporidium concentrations as estimated by the meta-analysis, but when DWIs were influenced by agricultural runoff or wildlife, there was a poor relationship. Average recovery values were available for 6 out of 22 Cryptosporidium concentration data sets and concomitant analysis demonstrated no changes in trends, with and without correction. Nevertheless, recovery assays performed along with every oocyst count would have enhanced the precision of this work. Based on our findings, the use of annual averages of E. coli concentrations as a surrogate for Cryptosporidium concentrations can result in an inaccurate estimate of the Cryptosporidium risk for agriculture impacted drinking water intakes or for intakes with more distant wastewater sources. Studies of upstream fecal pollution sources are recommended for drinking water suppliers to improve their interpretation of source water quality data.
Collapse
Affiliation(s)
- Cindy Lalancette
- Polytechnique Montréal, Département des Génies Civil, Géologique et des Mines, CP 6079, Succ. Centre-ville, Montréal, Québec, Canada H3C 3A7; Centre INRS-Institut Armand-Frappier, Institut National de Recherche Scientifique (INRS), 531 Boulevard des Prairies, Laval, Québec, Canada H7V 1B7.
| | - Isabelle Papineau
- Polytechnique Montréal, Département des Génies Civil, Géologique et des Mines, CP 6079, Succ. Centre-ville, Montréal, Québec, Canada H3C 3A7
| | - Pierre Payment
- Centre INRS-Institut Armand-Frappier, Institut National de Recherche Scientifique (INRS), 531 Boulevard des Prairies, Laval, Québec, Canada H7V 1B7
| | - Sarah Dorner
- Polytechnique Montréal, Département des Génies Civil, Géologique et des Mines, CP 6079, Succ. Centre-ville, Montréal, Québec, Canada H3C 3A7
| | - Pierre Servais
- Écologie des Systèmes Aquatiques, Université Libre de Bruxelles, Campus de la Plaine, CP 221, Boulevard du Triomphe, B-1050 Bruxelles, Belgium
| | - Benoit Barbeau
- Polytechnique Montréal, Département des Génies Civil, Géologique et des Mines, CP 6079, Succ. Centre-ville, Montréal, Québec, Canada H3C 3A7
| | - George D Di Giovanni
- University of Texas-Houston School of Public Health, Center for Infectious Diseases, El Paso Regional Campus, 1101 N. Campbell CH 412, El Paso, TX 79902, United States
| | - Michèle Prévost
- Polytechnique Montréal, Département des Génies Civil, Géologique et des Mines, CP 6079, Succ. Centre-ville, Montréal, Québec, Canada H3C 3A7
| |
Collapse
|
20
|
Jung AV, Le Cann P, Roig B, Thomas O, Baurès E, Thomas MF. Microbial contamination detection in water resources: interest of current optical methods, trends and needs in the context of climate change. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:4292-310. [PMID: 24747537 PMCID: PMC4025003 DOI: 10.3390/ijerph110404292] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 11/16/2022]
Abstract
Microbial pollution in aquatic environments is one of the crucial issues with regard to the sanitary state of water bodies used for drinking water supply, recreational activities and harvesting seafood due to a potential contamination by pathogenic bacteria, protozoa or viruses. To address this risk, microbial contamination monitoring is usually assessed by turbidity measurements performed at drinking water plants. Some recent studies have shown significant correlations of microbial contamination with the risk of endemic gastroenteresis. However the relevance of turbidimetry may be limited since the presence of colloids in water creates interferences with the nephelometric response. Thus there is a need for a more relevant, simple and fast indicator for microbial contamination detection in water, especially in the perspective of climate change with the increase of heavy rainfall events. This review focuses on the one hand on sources, fate and behavior of microorganisms in water and factors influencing pathogens' presence, transportation and mobilization, and on the second hand, on the existing optical methods used for monitoring microbiological risks. Finally, this paper proposes new ways of research.
Collapse
Affiliation(s)
- Aude-Valérie Jung
- School of Environmental Engineering (EME), Campus de Ker Lann, Avenue Robert Schuman, Bruz 35170, France.
| | - Pierre Le Cann
- EHESP Rennes, Sorbonne Paris Cité, Avenue du Professeur Léon Bernard-CS 74312, Rennes Cedex 35043, France.
| | - Benoit Roig
- EHESP Rennes, Sorbonne Paris Cité, Avenue du Professeur Léon Bernard-CS 74312, Rennes Cedex 35043, France.
| | - Olivier Thomas
- EHESP Rennes, Sorbonne Paris Cité, Avenue du Professeur Léon Bernard-CS 74312, Rennes Cedex 35043, France.
| | - Estelle Baurès
- EHESP Rennes, Sorbonne Paris Cité, Avenue du Professeur Léon Bernard-CS 74312, Rennes Cedex 35043, France.
| | - Marie-Florence Thomas
- School of Environmental Engineering (EME), Campus de Ker Lann, Avenue Robert Schuman, Bruz 35170, France.
| |
Collapse
|
21
|
Burnet JB, Penny C, Ogorzaly L, Cauchie HM. Spatial and temporal distribution of Cryptosporidium and Giardia in a drinking water resource: implications for monitoring and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 472:1023-1035. [PMID: 24345862 DOI: 10.1016/j.scitotenv.2013.10.083] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 10/18/2013] [Accepted: 10/24/2013] [Indexed: 06/03/2023]
Abstract
Because of their significant public health impact, waterborne Cryptosporidium and Giardia have been monitored in surface water in order to assess microbial quality of water bodies used for drinking water production and/or for recreational purposes. In this context, sampling strategy is of key importance and should be representative enough to appropriately assess the related microbial risk. This, however, requires sound knowledge on the behaviour of both pathogens in water. In the present study, the spatial and temporal distribution of Cryptosporidium and Giardia was explored in the rural Upper-Sûre watershed used for drinking water production in Luxembourg. By subdividing it into three compartments including (i) sub-catchments, (ii) the Sûre River fed by the sub-catchments and (iii) the Upper-Sûre reservoir fed by the Sûre River, parasite distribution was assessed using sampling designs adapted to the hydro-dynamic characteristics of the respective compartments. Results highlighted the high spatial and temporal variability in parasite distribution at watershed scale, as well as the prevalence of Giardia over Cryptosporidium. Besides land use features and catchment characteristics, hydro-climatology appeared to be a major driver of parasite behaviour in the watershed. It introduced a seasonal trend in their occurrence, highest densities being detected during the wet season. Peaks of contamination triggered out by rainfall-induced runoff were further observed in the three compartments. In the Sûre River, Cryptosporidium and Giardia fluxes peaked at 10(9) and 10(10) (oo)cysts.d(-1), respectively, and were discharged into the drinking water reservoir, where they underwent a 2 to 3 log10 removal rate. Despite this, parasite fluxes entering the drinking water treatment plant were still high (10(6) to 10(7) (oo)cysts.d(-1)) and stressed on the need for improved watershed management upstream the water treatment barrier. The catchment-wide analysis described here constitutes a valuable tool for assessment of catchment microbial dynamics, especially within the framework of Water Safety Plans.
Collapse
Affiliation(s)
- Jean-Baptiste Burnet
- Centre de Recherche Public - Gabriel Lippmann, Department of Environment and Agro-biotechnologies (EVA), 41, rue du Brill, L-4422 Belvaux, Luxembourg; Université de Liège (ULg), Department of Environmental Sciences and Management, 165 avenue de Longwy, B-6700 Arlon, Belgium.
| | - Christian Penny
- Centre de Recherche Public - Gabriel Lippmann, Department of Environment and Agro-biotechnologies (EVA), 41, rue du Brill, L-4422 Belvaux, Luxembourg.
| | - Leslie Ogorzaly
- Centre de Recherche Public - Gabriel Lippmann, Department of Environment and Agro-biotechnologies (EVA), 41, rue du Brill, L-4422 Belvaux, Luxembourg.
| | - Henry-Michel Cauchie
- Centre de Recherche Public - Gabriel Lippmann, Department of Environment and Agro-biotechnologies (EVA), 41, rue du Brill, L-4422 Belvaux, Luxembourg.
| |
Collapse
|
22
|
Abilities of the mCP Agar method and CRENAME alpha toxin-specific real-time PCR assay to detect Clostridium perfringens spores in drinking water. Appl Environ Microbiol 2013; 79:7654-61. [PMID: 24077714 DOI: 10.1128/aem.02791-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We first determined the analytical specificity and ubiquity (i.e., the ability to detect all or most strains) of a Clostridium perfringens-specific real-time PCR (rtPCR) assay based on the cpa gene (cpa rtPCR) by using a bacterial strain panel composed of C. perfringens and non-C. perfringens Clostridium strains. All non-C. perfringens Clostridium strains tested negative, whereas all C. perfringens strains tested positive with the cpa rtPCR, for an analytical specificity and ubiquity of 100%. The cpa rtPCR assay was then used to confirm the identity of 116 putative C. perfringens isolates recovered after filtration of water samples and culture on mCP agar. Colonies presenting discordant results between the phenotype on mCP agar and cpa rtPCR were identified by sequencing the 16S rRNA and cpa genes. Four mCP(-)/rtPCR(+) colonies were identified as C. perfringens, whereas 3 mCP(+)/rtPCR(-) colonies were identified as non-C. perfringens. The cpa rtPCR was negative with all 51 non-C. perfringens strains and positive with 64 of 65 C. perfringens strains. Finally, we compared mCP agar and a CRENAME (concentration and recovery of microbial particles, extraction of nucleic acids, and molecular enrichment) procedure plus cpa rtPCR (CRENAME + cpa rtPCR) for their abilities to detect C. perfringens spores in drinking water. CRENAME + cpa rtPCR detected as few as one C. perfringens CFU per 100 ml of drinking water sample in less than 5 h, whereas mCP agar took at least 25 h to deliver results. CRENAME + cpa rtPCR also allows the simultaneous and sensitive detection of Escherichia coli and C. perfringens from the same potable water sample. In itself, it could be used to assess the public health risk posed by drinking water potentially contaminated with pathogens more resistant to disinfection.
Collapse
|
23
|
Occurrence of waterborne pathogens and Escherichia coli at offshore drinking water intakes in lake Ontario. Appl Environ Microbiol 2013; 79:5799-813. [PMID: 23835181 DOI: 10.1128/aem.00870-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The occurrence of waterborne pathogens was investigated at three drinking water intakes located about 2 km offshore in Lake Ontario. Water sampling was conducted over 3 years for Campylobacter spp., Cryptosporidium spp., Giardia spp., cultivable enteric viruses, and water quality parameters. All pathogens were detected in the offshore source water for each water treatment plant (WTP1 to WTP3), although at relatively low frequencies and concentrations. Giardia was the most common pathogen, occurring in 36% of water samples from the influent of WTP1 (n = 46), and with a maximum concentration of 0.70 cysts/liter in this influent. Cryptosporidium occurred as frequently as 15% in the WTP2 influent (n = 35), with a maximum concentration of 0.40 oocysts/liter in the WTP1 influent. The human Bacteroidales HF183 DNA marker was most common in the WTP1 influent (19%), and this was the only WTP where the Cryptosporidium hominis genotype was detected. No water quality parameter was predictive of pathogen occurrence across all three WTP influents. Escherichia coli was often below detection when pathogens were detected, and spikes in E. coli concentrations often did not coincide with pathogen occurrence. After summer rain events, river plumes had E. coli concentrations as high as 222 CFU/100 ml in surface waters 2 km offshore, without impacting drinking water intakes below the thermocline on the lake bottom. At times, prechlorination to control mussels at offshore intake cribs compromised the use of E. coli for "raw" water quality assessment, particularly for chlorine-resistant Cryptosporidium. E. coli measured by standard methods did not reliably predict pathogen occurrence at drinking water intakes in offshore ecosystems.
Collapse
|
24
|
Clostridium perfringens is not suitable for the indication of fecal pollution from ruminant wildlife but is associated with excreta from nonherbivorous animals and human sewage. Appl Environ Microbiol 2013; 79:5089-92. [PMID: 23747707 DOI: 10.1128/aem.01396-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
During a 3-year study, Clostridium perfringens was investigated in defined fecal sources from a temperate alluvial backwater area of a large river system. The results reveal that using C. perfringens as a conservative water quality indicator for total fecal pollution monitoring is no longer justified but suggest that it can be used as a tracer for excreta from nonherbivorous wildlife and human sewage.
Collapse
|
25
|
Criteria for selection of surrogates used to study the fate and control of pathogens in the environment. Appl Environ Microbiol 2012; 78:1969-77. [PMID: 22247166 DOI: 10.1128/aem.06582-11] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This article defines the term surrogate as an organism, particle, or substance used to study the fate of a pathogen in a specific environment. Pathogenic organisms, nonpathogenic organisms, and innocuous particles have been used as surrogates for a variety of purposes, including studies on survival and transport as well as for method development and as "indicators" of certain conditions. This article develops a qualitative surrogate attribute prioritization process and allows investigators to select a surrogate by systematically detailing the experimental process and prioritizing attributes. The results are described through the use of case studies of various laboratories that have used this process. This article also discusses the history of surrogate and microbial indicator use and outlines the method by which surrogates can be used when conducting a quantitative microbial risk assessment. The ultimate goal of selecting a sufficiently representative surrogate is to improve public health through a health-based risk assessment framework. Under- or overestimating the resistance, inactivation, or movement may negatively impact risk assessments that, in turn, will impact health assessments and estimated safety levels. Reducing uncertainty in a risk assessment is one of the objectives of using surrogates and the ultimate motive for any experiment investigating potential exposure of a pathogen.
Collapse
|
26
|
Helmi K, Skraber S, Burnet JB, Leblanc L, Hoffmann L, Cauchie HM. Two-year monitoring of Cryptosporidium parvum and Giardia lamblia occurrence in a recreational and drinking water reservoir using standard microscopic and molecular biology techniques. ENVIRONMENTAL MONITORING AND ASSESSMENT 2011; 179:163-175. [PMID: 20890786 DOI: 10.1007/s10661-010-1726-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 09/20/2010] [Indexed: 05/29/2023]
Abstract
Starting in 2006, a monitoring of Giardia lamblia and Cryptosporidium parvum occurrence was conducted for 2 years in the largest drinking water reservoir of Luxembourg (Esch-sur-Sûre reservoir) using microscopy and qPCR techniques. Parasite analyses were performed on water samples collected from three sites: site A located at the inlet of the reservoir, site B located 18 km downstream site A, at the inlet of the drinking water treatment plant near the dam of the reservoir and site C where the finished drinking water is injected in the distribution network. Results show that both parasites are present in the reservoir throughout the year with a higher occurrence of G. lamblia cysts compared to C. parvum oocysts. According to our results, only 25% of the samples positive by microscopy were confirmed by qPCR. (Oo)cyst concentrations were 10 to 100 times higher at site A compared to site B and they were positively correlated to the water turbidity and negatively correlated to the temperature. Highest (oo)cyst concentrations were observed in winter. In contrast, no relationship between the concentrations of (oo)cysts in the reservoir and rain events could be established. Though a correlation has been observed between both parasites and faecal indicators in the reservoir, some discrepancies highlight that the latter do not represent a reliable tool to predict the presence/absence of these pathogenic protozoa. In summer 2007, the maximal risk of parasite infection per exposure event for swimmers in the reservoir was estimated to be 0.0015% for C. parvum and 0.56% for G. lamblia. Finally, no (oo)cysts could be detected in large volumes of finished drinking water.
Collapse
Affiliation(s)
- Karim Helmi
- Department of Environment and Agro-biotechnologies (EVA), Centre de Recherche Public-Gabriel Lippmann, 41 rue du Brill, 4422 Belvaux, Luxembourg.
| | | | | | | | | | | |
Collapse
|
27
|
Hunter PR, de Sylor MA, Risebro HL, Nichols GL, Kay D, Hartemann P. Quantitative microbial risk assessment of cryptosporidiosis and giardiasis from very small private water supplies. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2011; 31:228-236. [PMID: 20880218 DOI: 10.1111/j.1539-6924.2010.01499.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
This article reports a quantitative microbial risk assessment of the risk of Giardia and Cryptosporidium in very small private water supplies. Both pathogens have been implicated in causing outbreaks of waterborne disease associated with such supplies, though the risk of endemic disease is not known. For exposure assessments, we used existing data to derive regression equations describing the relationships between the concentration of these pathogens and Escherichia coli in private water supplies. Pathogen concentrations were then estimated using national surveillance data of E. coli in private water supplies in England and France. The estimated risk of infection was very high with the median annual risk being of the order of 25-28% for Cryptosporidium and 0.4% to 0.7% for Giardia, though, in the poorer quality supplies the risk could be much higher. These risks are substantially greater than for public water supplies and well above the risk considered tolerable. The observation that observed infection rates are generally much lower may indicate increased immunity in people regularly consuming water from private supplies. However, this increased immunity is presumed to derive from increased disease risk in young children, the group most at risk from severe disease.
Collapse
Affiliation(s)
- Paul R Hunter
- School of Medicine, Health Policy and Practice, University of East Anglia, Norwich, NR4 7TJ, UK.
| | | | | | | | | | | |
Collapse
|
28
|
Freshwater suspended sediments and sewage are reservoirs for enterotoxin-positive Clostridium perfringens. Appl Environ Microbiol 2010; 76:5556-62. [PMID: 20581181 DOI: 10.1128/aem.01702-09] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The release of fecal pollution into surface waters may create environmental reservoirs of feces-derived microorganisms, including pathogens. Clostridium perfringens is a commonly used fecal indicator that represents a human pathogen. The pathogenicity of this bacterium is associated with its expression of multiple toxins; however, the prevalence of C. perfringens with various toxin genes in aquatic environments is not well characterized. In this study, C. perfringens spores were used to measure the distribution of fecal pollution associated with suspended sediments in the nearshore waters of Lake Michigan. Particle-associated C. perfringens levels were greatest adjacent to the Milwaukee harbor and diminished in the nearshore waters. Species-specific PCR and toxin gene profiles identified 174 isolates collected from the suspended sediments, surface water, and sewage influent as C. perfringens type A. Regardless of the isolation source, the beta2 and enterotoxin genes were common among isolates. The suspended sediments yielded the highest frequency of cpe-carrying C. perfringens (61%) compared to sewage (38%). Gene arrangement of enterotoxin was investigated using PCR to target known insertion sequences associated with this gene. Amplification products were detected in only 9 of 90 strains, which suggests there is greater variability in cpe gene arrangement than previously described. This work presents evidence that freshwater suspended sediments and sewage influent are reservoirs for potentially pathogenic cpe-carrying C. perfringens spores.
Collapse
|
29
|
Mueller-Spitz SR, Stewart LB, McLellan SL. Reliability of mCP method for identification of Clostridium perfringens from faecal polluted aquatic environments. J Appl Microbiol 2009; 108:1994-2002. [PMID: 19929952 DOI: 10.1111/j.1365-2672.2009.04605.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS The purpose of the work was to evaluate the mCP method to correctly identify and enumerate Clostridium perfringens that are present in surface waters impacted by a mixture of faecal pollution sources. METHODS Clostridium perfringens were enumerated and isolated from sewage influent, surface water and suspended sediments using the mCP method. Molecular characterization of isolates was performed using species-specific PCR, along with full-length sequencing of the 16S rRNA gene for a subset of isolates. RESULTS The environmental isolates were presumptively identified as C. perfringens based on utilization of sucrose, inability to ferment cellobiose and a positive action for acid phosphatase activity. All isolates (n = 126) were classified as C. perfringens based on positive results with species-specific PCR with a subset confirmed as C. perfringens based on the 16S rRNA gene identity. CONCLUSIONS The molecular results indicated all of the presumptive positive isolates were C. perfringens regardless of the source, e.g. sewage influent or environmental water samples. Sequencing revealed that C. perfringens obtained from sewage and the aquatic environment were nearly identical (c. 99.5% similarity). SIGNIFICANCE AND IMPACT OF THE STUDY From this study we conclude that the mCP method is a robust approach to enumerate and isolate C. perfringens from aquatic environments that receive diverse sources of faecal pollution.
Collapse
Affiliation(s)
- S R Mueller-Spitz
- Great Lakes WATER Institute, University of Wisconsin-Milwaukee, Milwaukee, WI 53204, USA
| | | | | |
Collapse
|
30
|
Abstract
Sewage and its microbiology, treatment and disposal are important to the topic of Antarctic wildlife health because disposal of untreated sewage effluent into the Antarctic marine environment is both allowed and commonplace. Human sewage contains enteric bacteria as normal flora, and has the potential to contain parasites, bacteria and viruses which may prove pathogenic to Antarctic wildlife. Treatment can reduce levels of micro-organisms in sewage effluent, but is not a requirement of the Environmental Protocol to the Antarctic Treaty (the Madrid Protocol). In contrast, the deliberate release of non-native organisms for any other reason is prohibited. Hence, disposal of sewage effluent to the marine environment is the only activity routinely undertaken in Antarctica knowing that it will likely result in the release of large numbers of potentially non-native species. When the Madrid Protocol was negotiated, the decision to allow release of untreated sewage effluent was considered the only pragmatic option, as a prohibition would have been costly, and may not have been achievable by many Antarctic operators. In addition, at that time the potential for transmission of pathogens to wildlife from sewage was not emphasised as a significant potential risk. Since then, the transmission of disease-causing agents between species is more widely recognised and it is now timely to consider the risks of continued discharge of sewage effluent in Antarctica and whether there are practical alternatives.
Collapse
|
31
|
Vernile A, Nabi AQ, Bonadonna L, Briancesco R, Massa S. Occurrence of Giardia and Cryptosporidium in Italian water supplies. ENVIRONMENTAL MONITORING AND ASSESSMENT 2009; 152:203-207. [PMID: 18528772 DOI: 10.1007/s10661-008-0308-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 04/09/2008] [Indexed: 05/26/2023]
Abstract
A total of 21 samples: raw water (RW) samples; water samples after coagulation with aluminium sulfate (clarified water: CW); and water after chlorination (treated water: TW) from a water purification plant that treats river surface water from the neighbourhood of Foggia (Italy), were analysed for the presence of Giardia cysts and Cryptosporidium oocysts. Bacteriological indicator of faecal contamination (total and faecal coliforms, faecal streptococci,), total bacterial count at 22 and 36 degrees C and physicochemical parameters (turbidity, temperature, pH) were evaluated. Cryptosporidium oocysts were not found in any samples examined, while Giardia cysts were found only in RW samples, with the maximal concentration of 8 cysts/100 l. A positive correlation was found between the Giardia densities and quality parameters such as TC, FC and TBC at 22 degrees C. Giardia levels in raw water samples correlated (p < 0.05) with TC, FC and with temperature. No other water quality parameters was consistently correlated with cysts level.
Collapse
Affiliation(s)
- A Vernile
- Department of Food Science, Agricultural Faculty of Foggia, University of Foggia, via Napoli 25, 71100, Foggia, Italy.
| | | | | | | | | |
Collapse
|
32
|
Wilkes G, Edge T, Gannon V, Jokinen C, Lyautey E, Medeiros D, Neumann N, Ruecker N, Topp E, Lapen DR. Seasonal relationships among indicator bacteria, pathogenic bacteria, Cryptosporidium oocysts, Giardia cysts, and hydrological indices for surface waters within an agricultural landscape. WATER RESEARCH 2009; 43:2209-2223. [PMID: 19339033 DOI: 10.1016/j.watres.2009.01.033] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 01/28/2009] [Accepted: 01/30/2009] [Indexed: 05/27/2023]
Abstract
The South Nation River basin in eastern Ontario, Canada is characterized by mixed agriculture. Over 1600 water samples were collected on a bi-weekly basis from up to 24 discrete sampling sites on river tributaries of varying stream order within the river basin between 2004 and 2006. Water samples were analyzed for: densities of indicator bacteria (Escherichia coli, Clostridium perfringens, enterococci, total and fecal coliforms), the presence of pathogenic bacteria (Listeria monocytogenes, E. coli O157:H7, Salmonella spp., Campylobacter spp.), and densities of parasite Giardia cysts and Cryptosporidium oocysts. Relationships between indicator bacteria, pathogens, and parasite oocysts/cysts were overall weak, seasonally dependent, site specific, but primarily positive. However, L. monocytogenes was inversely related with indicator bacteria densities. Campylobacter, Salmonella, Giardia cysts and Cryptosporidium oocysts were most frequently detected in the fall. E. coli O157:H7 was detected at a very low frequency. Exploratory decision tree analyses found overall that E. coli densities were the most utilitarian classifiers of parasite/pathogen presence and absence, followed closely by fecal coliforms, and to a lesser extent enterococci and total coliforms. Indicator bacteria densities that classified pathogen presence and absence groupings, were all below 100 CFU per 100 mL(-1). Microorganism relationships with rainfall indices and tributary discharge variables were globally weak to modest, and generally inconsistent among season, site and microorganism. But, overall rainfall and discharge were primarily positively associated with indicator bacteria densities and pathogen detection. Instances where a pathogen was detected in the absence of a detectable bacterial indicator were extremely infrequent; thus, the fecal indicators were conservative surrogates for a variety of pathogenic microorganisms in this agricultural setting. The results from this study indicate that no one indicator or simple hydrological index is entirely suitable for all environmental systems and pathogens/parasites, even within a common geographic setting. These results place more firmly into context that robust prediction and/or indicator utility will require a more firm understanding of microorganism distribution in the landscape, the nature of host sources, and transport/environmental fate affinities among pathogens and indicators.
Collapse
Affiliation(s)
- Graham Wilkes
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Castro-Hermida JA, García-Presedo I, Almeida A, González-Warleta M, Correia Da Costa JM, Mezo M. Presence of Cryptosporidium spp. and Giardia duodenalis through drinking water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2008; 405:45-53. [PMID: 18684490 DOI: 10.1016/j.scitotenv.2008.06.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 06/16/2008] [Accepted: 06/24/2008] [Indexed: 05/26/2023]
Abstract
To evaluate the presence of Cryptosporidium spp. and Giardia duodenalis in the influent and final effluent of sixteen drinking water treatment plants located in a hydrographic basin in Galicia (NW Spain) - in which the principal river is recognised as a Site of Community Importance (SCI) - estimate the efficiency of treatment plants in removing these protozoans and determine the species and genotypes of the parasites by means of a molecular assay. All plant samples of influent and final effluent (50-100 l) were examined in the spring, summer, autumn and winter of 2007. A total of 128 samples were analysed by method 1623, developed by US Environmental Protection Agency for isolation and detection of both parasites. To identify the genotypes present the following genes were amplified and sequenced: 18S SSU rRNA (Cryptosporidium spp.) and b-giardina (G. duodenalis). The mean concentrations of parasites in the influent were 0.0-10.5 Cryptosporidium spp. oocysts per litre and 1.0-12.8 of G. duodenalis cysts per litre. In the final treated effluent, the mean concentration of parasites ranged from 0.0-3.0 oocysts per litre and 0.5-4.0 cysts per litre. The distribution of results by season revealed that in all plants, the highest numbers of (oo)cysts were recorded in spring and summer. Cryptosporidium parvum, C. andersoni, C. hominis and assemblages A-I, A-II, E of G. duodenalis were detected. Cryptosporidium spp. and G. duodenalis were consistently found at high concentrations in drinking water destined for human and animal consumption in the hydrographic basin under study, in Galicia (NW Spain). It is important that drinking water treatment authorities rethink the relevance of contamination levels of both parasites in drinking water and develop adequate countermeasures.
Collapse
Affiliation(s)
- José Antonio Castro-Hermida
- Laboratorio de Parasitología, Centro de Investigaciones Agrarias de Mabegondo-Xunta de Galicia, Abegondo (A Coruña), Spain.
| | | | | | | | | | | |
Collapse
|
34
|
Castro-Hermida JA, García-Presedo I, Almeida A, González-Warleta M, Correia Da Costa JM, Mezo M. Contribution of treated wastewater to the contamination of recreational river areas with Cryptosporidium spp. and Giardia duodenalis. WATER RESEARCH 2008; 42:3528-3538. [PMID: 18538816 DOI: 10.1016/j.watres.2008.05.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 04/24/2008] [Accepted: 05/02/2008] [Indexed: 05/26/2023]
Abstract
Samples of the influent and final effluent from 12 wastewater treatment plants from Galicia (NW, Spain) were analyzed for the presence of Cryptosporidium spp. oocysts and Giardia duodenalis cysts. All of the plants discharge effluent to a hydrographic basin in which there are numerous recreational areas and fluvial beaches. The samples (25-50 liters) were collected in spring, summer, autumn and winter of 2007. A total of 96 samples were analyzed using techniques included in the US Environmental Protection Agency Method 1623. To identify the genotypes present, the following genes were amplified and sequenced: 18S SSU rRNA (Cryptosporidium spp.) and beta-giardina (G. duodenalis). Both parasites were detected in influent and effluent samples from all treatment plants (100%) throughout the year, and G. duodenalis always outnumbered Cryptosporidium spp. The mean concentration of G. duodenalis per liter of influent was significantly higher (P<0.05) than the mean concentration of Cryptosporidium spp. per liter of influent. The mean concentrations of parasites in influent samples ranged from 6 to 350 Cryptosporidium spp. oocysts per liter and from 89 to 8305 G. duodenalis cysts per liter. In final treated effluent, the mean concentration of parasites ranged from 2 to 390 Cryptosporidium spp. oocysts per liter and from 79 to 2469 G. duodenalis cysts per liter. The distribution of results per season revealed that in all plants, the highest number of (oo)cysts were detected in spring and summer. Cryptosporidium parvum, Cryptosporidium andersoni, Cryptosporidium hominis and assemblages A-I, A-II, E of G. duodenalis were detected. The risk of contamination of water courses by Cryptosporidium spp. and G. duodenalis is therefore considerable. It is important that wastewater treatment authorities reconsider the relevance of the levels of contamination by both parasites in wastewater, and develop adequate countermeasures.
Collapse
Affiliation(s)
- José Antonio Castro-Hermida
- Laboratorio de Parasitología, Centro de Investigaciones Agrarias de Mabegondo-Xunta de Galicia, Carretera AC-542 de Betanzos a Mesón do Vento, Km 7, 5. CP 15318 Abegondo (A Coruña), Spain.
| | | | | | | | | | | |
Collapse
|
35
|
Keeley A, Faulkner BR. Influence of land use and watershed characteristics on protozoa contamination in a potential drinking water resources reservoir. WATER RESEARCH 2008; 42:2803-2813. [PMID: 18367230 DOI: 10.1016/j.watres.2008.02.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 01/24/2008] [Accepted: 02/18/2008] [Indexed: 05/26/2023]
Abstract
Relative changes in the microbial quality of Lake Texoma, on the border of Texas and Oklahoma, were investigated by monitoring protozoan pathogens, fecal indicators, and factors influencing the intensity of the microbiological contamination of surface water reservoirs. The watershed serves rural agricultural communities active in cattle ranching, recreation, and is a potential drinking water source. A total of 193 surface water samples were tested over a 27-month period to determine levels of parasite contamination. The overall occurrence of Cryptosporidium oocysts was higher in both frequency and concentration than Giardia cysts. Cryptosporidium oocysts were found in 99% and Giardia cysts in 87% of the samples. Although Cryptosporidium and Giardia occurrence were significantly but not strongly correlated, all other correlation coefficients including turbidity and total dissolved solids were non-significant. Statistically supportable seasonal variations were found suggesting that Cryptosporidium and Giardia were higher in summer and fall than in other seasons of the year. While Cryptosporidium levels were correlated with rainfall, this was not the case with Giardia. The maximum numbers for both protozoan parasites were detected from a site impacted by cattle ranching during calving season. Restriction fragment length polymorphism analysis was used for confirmation of Cryptosporidium in surface waters influenced by agricultural discharges. As we had expected, oocysts were of the bovine type indicating that the Cryptosporidium parvum detected in surface waters perhaps came from cattle living in the watershed.
Collapse
Affiliation(s)
- Ann Keeley
- National Risk Management Research Laboratory, US Environmental Protection Agency, 919 Kerr Research Drive, Ada, OK 74820, USA.
| | | |
Collapse
|
36
|
Pronk M, Goldscheider N, Zopfi J. Particle-size distribution as indicator for fecal bacteria contamination of drinking water from karst springs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2007; 41:8400-5. [PMID: 18200870 DOI: 10.1021/es071976f] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Continuous monitoring of particle-size distribution (PSD), total organic carbon (TOC), turbidity, discharge and physicochemical parameters, together with analyses of fecal indicator bacteria, particularly Escherichia coli, made it possible to better understand the processes governing pathogen transport in karst groundwater and to establish PSD as indicator for possible microbial contamination of drinking water from karst springs. In the study area near Yverdon-les-Bains, Switzerland, tracer tests proved connection between a sinking stream draining agricultural land and several springs, 4.8-6.3 km away. Tracing and monitoring results demonstrate that (i) suspended particles (turbidity) in the spring water either originate from remobilization of sediments inside the aquifer (autochthonous) or from the sinking stream and land surface (allochthonous); (ii) allochthonous turbidity coincides with increased E. coli and TOC levels; (iii) PSD makes it possible to distinguish the two types of turbidity; (iv) a relative increase of finer particles (0.9-10 microm) indicates allochthonous turbidity and thus possible fecal contamination. The method permits to optimize water treatment and identify periods when the spring water must be rejected. Findings from other test sites confirm the feasibility of this approach.
Collapse
Affiliation(s)
- Michiel Pronk
- Center of Hydrogeology, and Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Emile-Argand 11, 2009 Neuchâtel, Switzerland
| | | | | |
Collapse
|
37
|
Field KG, Samadpour M. Fecal source tracking, the indicator paradigm, and managing water quality. WATER RESEARCH 2007; 41:3517-38. [PMID: 17643471 DOI: 10.1016/j.watres.2007.06.056] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2007] [Revised: 05/18/2007] [Accepted: 06/18/2007] [Indexed: 05/03/2023]
Abstract
Fecal source tracking is used because standard methods of measuring fecal contamination in water by enumerating fecal indicator bacteria (FIB) do not identify the sources of the contamination. This paper presents a critical review of source tracking with emphasis on the extent to which methods have been tested (especially in comparison with other methods and/or with blind samples), when methods are applicable, their shortcomings, and their usefulness in predicting public health risk or pathogen occurrence. In addition, the paper discusses the broader question of whether fecal source tracking and fecal indicator monitoring is the best approach to regulate water quality and protect human health. Many fecal source-tracking methods have only been tested against sewage or fecal samples or isolates in laboratory studies (proof of concept testing) and/or applied in field studies where the "real" answer is not known, so their comparative performance and accuracy cannot be assessed. For source tracking to be quantitative, stability of ratios between host-specific markers in the environment must be established. In addition, research is needed on the correlation between host-specific markers and pathogens, and survival of markers after waste treatments. As a result of the exclusive emphasis on FIB in legislation, monitoring has concentrated on FIB and lost sight of pathogens. A more rational approach to regulating water quality would start with available epidemiological data to identify pathogens of concern in a particular water body, and then use targeted pathogen monitoring coupled with targeted fecal source tracking to control them. Baseline monitoring of indicators would become just one tool among many.
Collapse
Affiliation(s)
- Katharine G Field
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA.
| | | |
Collapse
|
38
|
Sunderland D, Graczyk TK, Tamang L, Breysse PN. Impact of bathers on levels of Cryptosporidium parvum oocysts and Giardia lamblia cysts in recreational beach waters. WATER RESEARCH 2007; 41:3483-9. [PMID: 17583766 DOI: 10.1016/j.watres.2007.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 04/24/2007] [Accepted: 05/07/2007] [Indexed: 05/15/2023]
Abstract
Recreational beach water samples collected on weekends and weekdays during 11 consecutive summer weeks were tested for potentially viable Cryptosporidium parvum oocysts and Giardia lamblia cysts using the multiplexed fluorescence in situ hybridization (FISH) method. The levels of oocysts and cysts on weekends were significantly higher than on the weekdays (P<0.01). Concentrations of oocysts in weekend samples (n=27) ranged from 2 to 42 oocysts/L (mean: 13.7 oocysts/L), and cyst concentration ranged from 0 to 33 cysts/L (mean: 9.1 cysts/L). For the samples collected on weekdays (n=33), the highest oocyst concentration was 7 oocysts/L (mean: 1.5 oocysts/L), and the highest cyst concentration was 4 cysts/L (mean: 0.6 cysts/L). The values of water turbidity were significantly higher on weekends than on weekdays, and were correlated with the number of bathers and concentration of C. parvum oocysts and G. lamblia cysts (P<0.04). The study demonstrated positive relationships between number of bathers and levels of waterborne C. parvum oocysts and G. lamblia cysts in recreational beach water. It is essential to test recreational waters for Cryptosporidium and Giardia when numbers of bathers are greatest, or limit the number of bathers in a recreational beach area.
Collapse
Affiliation(s)
- Deirdre Sunderland
- Department of Environmental Health Sciences, Division of Environmental Health Engineering, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA.
| | | | | | | |
Collapse
|
39
|
Ruecker NJ, Braithwaite SL, Topp E, Edge T, Lapen DR, Wilkes G, Robertson W, Medeiros D, Sensen CW, Neumann NF. Tracking host sources of Cryptosporidium spp. in raw water for improved health risk assessment. Appl Environ Microbiol 2007; 73:3945-57. [PMID: 17483276 PMCID: PMC1932708 DOI: 10.1128/aem.02788-06] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent molecular evidence suggests that different species and/or genotypes of Cryptosporidium display strong host specificity, altering our perceptions regarding the zoonotic potential of this parasite. Molecular forensic profiling of the small-subunit rRNA gene from oocysts enumerated on microscope slides by U.S. Environmental Protection Agency method 1623 was used to identify the range and prevalence of Cryptosporidium species and genotypes in the South Nation watershed in Ontario, Canada. Fourteen sites within the watershed were monitored weekly for 10 weeks to assess the occurrence, molecular composition, and host sources of Cryptosporidium parasites impacting water within the region. Cryptosporidium andersoni, Cryptosporidium muskrat genotype II, Cryptosporidium cervine genotype, C. baileyi, C. parvum, Cryptosporidium muskrat genotype I, the Cryptosporidium fox genotype, genotype W1, and genotype W12 were detected in the watershed. The molecular composition of the Cryptosporidium parasites, supported by general land use analysis, indicated that mature cattle were likely the main source of contamination of the watershed. Deer, muskrats, voles, birds, and other wildlife species, in addition to sewage (human or agricultural) may also potentially impact water quality within the study area. Source water protection studies that use land use analysis with molecular genotyping of Cryptosporidium parasites may provide a more robust source-tracking tool to characterize fecal impacts in a watershed. Moreover, the information is vital for assessing environmental and human health risks posed by water contaminated with zoonotic and/or anthroponotic forms of Cryptosporidium.
Collapse
Affiliation(s)
- Norma J Ruecker
- Alberta Provincial Laboratory for Public Health (Microbiology), and Department of Microbiology and Infectious Diseases, University of Calgary, 3030 Hospital Drive NW, Calgary, Alberta, Canada T2N 4W4
| | | | | | | | | | | | | | | | | | | |
Collapse
|