1
|
Liu N, Li X, Chen P, Yuan W, Wang D, Wang X. Climate and vegetation controlling accumulation and translocation of heavy metals in water tower regions of Qinghai-Tibet Plateau. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136752. [PMID: 39637817 DOI: 10.1016/j.jhazmat.2024.136752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/19/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Understanding how climate and vegetation influencing accumulation and translocation of heavy metals (HMs) in soils and vegetation in the Qinghai-Tibet Plateau (QTP) is critical to assess the ecological risk induced by HMs under the global warming. To accompany this goal, we comprehensively determined the accumulation and translocation of HMs within the interface of soil-vegetation in water tower regions of the QTP. The PMF model results show that 54 %-86 % of cobalt (Co), nickel (Ni), arsenic (As), zinc (Zn) and lead (Pb) in the surface soil are mainly from rock weathering and 54 % of cadmium (Cd) comes from effect of litter return. The increase of vegetation biomass significantly promotes the accumulation of HMs in the surface soil. The increase of root biomass significantly enhances the uptake of Co, Ni, As, Cd and Pb by roots, due to the increasing availability of these HMs in surface soil, but reduces the translocation from roots to shoots. The precipitation and temperature influence HMs translocation by controlling the root biomass. Hence, we speculate that the further global warming in the QTP would enhance HMs accumulation in surface soil, but would not significantly increase HMs accumulation in ground vegetation biomass.
Collapse
Affiliation(s)
- Nantao Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianming Li
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Scientific Research Academy of Guangxi Environmental Protection, Nanning 530022, China
| | - Peijia Chen
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
2
|
Griffore M, Abbott M, Shelef E, Finkenbinder M, Stoner J, Edwards M. Enhanced mercury deposition in Arctic Alaskan lake sediments coincides with early Holocene hydroclimate shift. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 962:178440. [PMID: 39813837 DOI: 10.1016/j.scitotenv.2025.178440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/14/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
Substantial amounts of mercury (Hg) are projected to be released into Arctic watersheds as permafrost thaws amid warmer and wetter conditions. This may have far-reaching consequences because the highly toxic methylated form of Hg biomagnifies rapidly in ecosystems. However, understanding how climate change affects Hg dynamics in permafrost regions is limited due to the lack of long-term Arctic Hg records. Using a 27-ka Hg sediment record from Burial Lake, northwestern Alaska, we examine how well-characterized temperature, precipitation, and vegetation shifts affected Hg mobilization in a catchment underlain by permafrost. During the Last Glacial Maximum (29.6-19.6 ka), Hg concentrations (63 ± 5 μg/kg) and Hg flux (8.6 ± 2.2 μg m-2 yr-1) remain relatively stable. Abrupt warming trends, starting at 17.6 ka, do not coincide with Hg levels. After 15 ka, the ecosystem transitions to shrub tundra, Hg concentrations (101.2 μg/kg) peak at 14.2 ka, while flux (5.3 ± 1.3 μg m-2 yr-1) declines and stabilizes. At ~11 ka, increased precipitation coincides with a 72 % rise in Hg concentrations and a 32 % increase in Hg flux compared to average Hg levels since 15 ka. These results suggest that summer rainfall was the primary driver of Hg mobilization from the catchment, while the vegetation shift influenced lake sediment Hg concentrations. At 1990 CE, peak Hg levels represent an 88 % increase in Hg concentrations (196.3 μg/kg) and a sixfold rise in Hg flux (38.1 μg m-2 yr-1) above background levels, underscoring the need for further research to understand Hg dynamics driven by anthropogenic Hg emissions and climate change.
Collapse
Affiliation(s)
- Melissa Griffore
- Department of Geology and Environmental Science, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Mark Abbott
- Department of Geology and Environmental Science, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eitan Shelef
- Department of Geology and Environmental Science, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew Finkenbinder
- Department of Biology and Earth Systems Science, Wilkes University, Wilkes Barre, PA, USA
| | - Joseph Stoner
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
| | - Mary Edwards
- School of Geography and Environmental Science, University of Southampton, UK
| |
Collapse
|
3
|
Luo K, Yuan W, Lu Z, Xiong Z, Huang JH, Wang X, Feng X. Riverine songbirds capture high levels of atmospheric mercury pollution from brown food webs in forests by mercury isotopic evidence. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137347. [PMID: 39869980 DOI: 10.1016/j.jhazmat.2025.137347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 01/29/2025]
Abstract
Elevated methylmercury (MeHg) exposure poses significant risks to bird health, behavior, and reproduction. Still, the risk of MeHg exposure to forest birds, accounting for over 80 % of the world's bird species, is poorly understood. This study combines Hg isotopes and video analysis, aiming to assess MeHg exposure risks to a forest riverine songbird, the spotted forktail (Enicurus maculatus) from a remote subtropical montane forest. Noticeably, 83 % of feather MeHg concentrations of adult forktails exceeded 5000 ng g-1, a threshold level potentially impacting bird reproduction, and 50 % of feather MeHg concentrations in forktail nestlings exceeded the threshold level of 1000 ng g-1, that potentially impacts the nestling growth. Forktail nestlings ingested ∼ 99 % of their MeHg from prey within brown food webs (i.e., from forest floor, aquatic, and emergent aquatic prey). The Hg isotopes reveal that MeHg along the bird food chain is mostly derived from in situ methylation of litterfall deposited atmospheric Hg0, with limited photo-demethylation (i.e., 4-12 %) in shaded forest environments. The risk of MeHg exposure of forest songbirds correlated positively with the proportion of prey consumed from brown food webs. We recommend incorporating resident riverine songbirds in monitoring programs to better evaluate the effectiveness of the Minamata Convention, especially in remote forest ecosystems where in situ MeHg production may be underestimated.
Collapse
Affiliation(s)
- Kang Luo
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Zhiyun Lu
- Ailaoshan Station for Subtropical Forest Ecosystem Studies, Chinese Academy of Sciences, Jingdong, Yunnan 676200, China
| | - Zichun Xiong
- Ailaoshan Station for Subtropical Forest Ecosystem Studies, Chinese Academy of Sciences, Jingdong, Yunnan 676200, China
| | - Jen-How Huang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Sun T, Zhang W, Zhang J, Wang D, Xie Q, Lu Y, Yue C, Huang J. How ambient temperature rise affects mercury dynamics and its pools in secondary forests. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136449. [PMID: 39579710 DOI: 10.1016/j.jhazmat.2024.136449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/15/2024] [Accepted: 11/06/2024] [Indexed: 11/25/2024]
Abstract
The forest ecosystem is a significant pool for capturing atmospheric mercury (Hg) deposition, with most Hg accumulating in forest soils. As secondary forests now dominate global forest cover, they are particularly sensitive to changes in ambient temperature. However, the impact of these changes on Hg dynamics in secondary forests remains poorly understood. Here, we quantified Hg inputs, outputs, and mass balances in two secondary forests in China, each with different ambient temperatures. We found that elevated ambient temperature (∼1.0℃) advanced the germination of leaves by 2-3 days and extended the growing season by approximately one week, resulting in increased litterfall biomass by 1.18 Mg hm-2 yr-1 and a thicker litterfall layer by 0.22 cm over 34 years. This temperature rise also facilitated Hg methylation within forest and enhanced methylmercury (MeHg) export, heightening the potential risk of MeHg exposure to surrounding ecosystems. Additionally, higher ambient temperature not only increased soil Hg emissions (2.75 µg m-2 yr-1) but also led to significant Hg deposition via litterfall (9.26 µg m-2 yr-1), resulting in a net annual Hg deposition of 6.88 µg m-2 yr-1. This net Hg deposition accumulated in the topsoil, increasing the Hg pool by 0.51 mg m-2 in organic and 0-10 cm mineral soil horizons. Our findings suggest that even a ∼1.0℃ temperature rise could enhance the role of secondary forests as atmospheric Hg sink by 45.10 %. Therefore, the impact of ongoing climate warming on Hg cycling and pools in forests should receive increased attention and warrants further research.
Collapse
Affiliation(s)
- Tao Sun
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Funiu Mountain Biological and Ecological Environment Observatory, Zhengzhou University, Zhengzhou 450001, China
| | - Wenyue Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Funiu Mountain Biological and Ecological Environment Observatory, Zhengzhou University, Zhengzhou 450001, China
| | - Jiamin Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Funiu Mountain Biological and Ecological Environment Observatory, Zhengzhou University, Zhengzhou 450001, China
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Qing Xie
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yang Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Funiu Mountain Biological and Ecological Environment Observatory, Zhengzhou University, Zhengzhou 450001, China
| | - Caipeng Yue
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Funiu Mountain Biological and Ecological Environment Observatory, Zhengzhou University, Zhengzhou 450001, China
| | - Jinyong Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Funiu Mountain Biological and Ecological Environment Observatory, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
5
|
Ku P, Tsui MTK, Uzun H, Chen H, Dahlgren RA, Hoang TC, Karanfil T, Zhong H, Miao AJ, Pan K, Coleman JS, Chow ATS. Dominance of Particulate Mercury in Stream Transport and Rapid Watershed Recovery from Wildfires in Northern California, USA. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22159-22169. [PMID: 39628073 DOI: 10.1021/acs.est.4c09364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Frequency and intensity of wildfires are expected to increase due to climate change, especially in areas with a long summer drought. Forests are a major sink for the global pollutant mercury (Hg), and fluvial transport of Hg from recently burned watersheds has not been widely investigated. Here, we examined two years of fluvial transport of Hg and its speciation (total Hg, methyl-Hg, particulate, and dissolved forms) under storm events and baseflow in two recently burned watersheds with different burned proportions and one nonburned reference watershed in the Coastal Ranges of northern California. We examined postfire storm-event transport of Hg and its methylated form (methyl-Hg), addressed the importance of the "initial runoff pulse" to postfire Hg fluvial transport and its predominant association with suspended solids, and elucidated potential sources of Hg exports from the burned landscapes using geochemical indicators, which suggested that ash materials were likely the significant sources of particulates in the first high-flow season postfire but not subsequently. The maximum total suspended solid and total Hg levels in the "first pulse" at the severely burned watershed were 442 and 46 times higher, respectively, than those at the reference watershed. Stream suspended solid and Hg levels declined substantially in the burned watersheds after just a few months of rainfall likely due to the rapid regrowth of vegetation commonly observed in postfire landscapes, implying that the wildfire effects on immediate Hg inputs from the burned landscape are at most transient in nature.
Collapse
Affiliation(s)
- Peijia Ku
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Martin Tsz-Ki Tsui
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
- Department of Earth and Environmental Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR (852) 3943-5433, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Habibullah Uzun
- Department of Environmental Engineering, Istanbul Technical University, Istanbul 34467, Turkey
- Department of Environmental Engineering and Science, Clemson University, Clemson, South Carolina 29625, United States
| | - Huan Chen
- Department of Environmental Engineering and Science, Clemson University, Clemson, South Carolina 29625, United States
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California, Davis, California 95616, United States
| | - Tham C Hoang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama 36849, United States
| | - Tanju Karanfil
- Department of Environmental Engineering and Science, Clemson University, Clemson, South Carolina 29625, United States
| | - Huan Zhong
- School of the Environment, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China
| | - Ai-Jun Miao
- School of the Environment, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China
| | - Ke Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - James S Coleman
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Alex Tat-Shing Chow
- Department of Earth and Environmental Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR (852) 3943-5433, China
| |
Collapse
|
6
|
Flanagan Pritz CM, Johnson BL, Willacker JJ, Kennedy CM, Daniele NR, Eagles-Smith CA. Forest cover influences fish mercury concentrations in national parks of the western U.S. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176936. [PMID: 39414044 DOI: 10.1016/j.scitotenv.2024.176936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/26/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
The global prevalence of mercury (Hg) contamination and its complex biogeochemical cycling has resulted in elevated Hg concentrations in biota in remote and pristine environments. However, there is uncertainty in the relative importance of Hg deposition and landscape factors that control Hg cycling and bioaccumulation. To address this, we measured total mercury (THg) concentrations in 1344 fish across 60 subalpine lakes from 12 national parks (NPs). These parks represent three distinct high-elevation regions across the western U.S.: Cascades and Olympic Peninsula, Sierra Nevada and Great Basin, and Rocky Mountains. Within these regions, three NPs (Mount Rainier, Yosemite, and Rocky Mountain) were intensively studied representatives of each region. This study aimed to (1) assess the magnitude of mercury contamination in a collection of remote, small catchment lakes; (2) quantify the variability of fish THg concentrations among and within parks; and (3) test the relative importance of Hg inputs in comparison to landscape characteristics on lake-specific fish THg concentrations. The spatial variability in fish THg concentrations was 2.6-fold higher than variation in deposition to watersheds, suggesting that factors other than Hg delivery are important determinants of Hg accumulation in these environments. Spatially, fish THg concentrations (ng/g ww ± standard error) were lower in the Rockies (46.2 ± 5.0) and Sierra (56.5 ± 5.8) compared to the Cascades (67.8 ± 6.1). Additionally, fish THg concentrations increased with increasing conifer forest cover (Intensive parks: P < 0.0001, R2 = 0.43; All parks: P = 0.0001, R2 = 0.23) but were not correlated with wet Hg deposition across the catchment. These findings suggest that forest composition is likely an important aspect of Hg delivery to lake food webs, and although the mechanisms are unclear, could be tied to some combination of forest influences on catchment organic carbon and increased surface area for dry Hg deposition.
Collapse
Affiliation(s)
- Colleen M Flanagan Pritz
- National Park Service, National Resource Stewardship and Science Directorate, Air Resources Division, PO Box 25287, Lakewood, CO 80225, USA.
| | - Branden L Johnson
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, OR 97330, USA
| | - James J Willacker
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, OR 97330, USA
| | - Christopher M Kennedy
- U.S. Fish & Wildlife Service, Fish and Aquatic Conservation, Colorado Fish and Wildlife Conservation Office, 1131 Fairway Club Circle, B2, Estes Park, CO 80517, USA
| | - Ninette R Daniele
- National Park Service, Yosemite National Park, Resources Management and Science Division, PO Box 700, El Portal, CA 95318, USA
| | - Collin A Eagles-Smith
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, OR 97330, USA
| |
Collapse
|
7
|
Yin X, Zhou W, Su Y, Tang C, Guo J, Liu Z, Wang Y, Zhang X, Rupakheti D, Kang S. Spatial distribution and risk assessment of mercury in soils over the Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176652. [PMID: 39362537 DOI: 10.1016/j.scitotenv.2024.176652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
The Tibetan Plateau is one of the highest and most pristine plateaus in the world, and its ecological environment has a significant impact on global climate and the distribution of water resources. Mercury (Hg), as a toxic metal pollutant, can have a severe impact on the health of living organisms and the ecosystem due to its presence in the environment. This study collected 336 soil samples from 28 sites across four typical surface vegetation landscapes (meadow, grassland, desert, and forest) on the Tibetan Plateau to measure soil THg (Total Hg) concentrations. The research aimed to explore the factors influencing soil THg levels, analyze pollution and environmental risks of THg in the surface soil, and evaluate the associated health risks to the local population. The results indicate that the mean soil THg concentration (31.84 ± 32.58 ng·g-1) of this study is compared to the background value of THg in Tibetan Plateau soils (37.0 ng·g-1), but there are significant differences in THg concentration among soils with different surface vegetation landscapes. The mean THg concentration in soils of forest vegetation types (74.42 ± 41.19 ng·g-1) is approximately twice the background value of Tibetan Plateau soils. In the forested regions of the southeastern, eastern, and southern Tibetan Plateau, soil concentrations of total mercury are relatively high, whereas in the desert areas of the northern, northwestern, and northeastern Tibetan Plateau, the concentrations are lower. Organic matter (soil organic carbon) being an important factor influencing the soil THg. Based on existing surface soil THg data from this and previous research in Tibetan Plateau (n = 477), 34.2 % of the samples show Hg pollution and potential ecological risks. However, the health risks of soil Hg to both adults and children are not significant.
Collapse
Affiliation(s)
- Xiufeng Yin
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
| | - Wenting Zhou
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China; Lanzhou University of Arts and Science, Lanzhou 730000, China
| | - Yanbin Su
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China; School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Cuiwen Tang
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Junming Guo
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
| | - Zhiwei Liu
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingying Wang
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Xiaohui Zhang
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Dipesh Rupakheti
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Shichang Kang
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Aslam MW, Meng B, Ali W, Abrar MM, Abdelhafiz MA, Feng X. Low mercury risks in paddy soils across the Pakistan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173879. [PMID: 38857798 DOI: 10.1016/j.scitotenv.2024.173879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Mercury (Hg) is a globally distributed heavy metal. Here, we study Hg concentration and isotopic composition to understand the status of Hg pollution and its sources in Pakistan's paddy soil. The collected paddy soils (n = 500) across the country have an average THg concentration of 22.30 ± 21.74 ng/g. This low mean concentration suggests Hg pollution in Pakistan was not as severe as previously thought. Meanwhile, samples collected near brick kilns and industrial areas were significantly higher in THg than others, suggesting the influence of Hg emitted from point sources in certain areas. Soil physicochemical properties showed typical characteristic of mineral soils due to the study area's arid to semi-arid climate. Hg stable isotopes analysis, depicted mean Δ199Hg of -0.05 ± 0.12‰ and mean δ202Hg -0.45 ± 0.35‰, respectively, for contaminated sites, depicting Hg was primarily sourced from coal combustion by local anthropogenic sources. While uncontaminated sites show mean Δ199Hg of 0.15 ± 0.08‰, mean Δ200Hg of 0.06 ± 0.07‰ and mean δ202Hg of -0.32 ± 0.28‰, implying long-range transboundry Hg transport through wet Hg(II) deposition as a dominant Hg source. This study fills a significant knowledge gap regarding the Hg pollution status in Pakistan and suggests that the Hg risk in Pakistan paddies is generally low.
Collapse
Affiliation(s)
- Muhammad Wajahat Aslam
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China.
| | - Waqar Ali
- Department of Ecological Sciences and Engineering, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Muhammad Mohsin Abrar
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, 510225 Guangzhou, China; Engineering and Technology Research Center for Agricultural Land Pollution and Integrated Prevention, Guangzhou, China
| | - Mahmoud A Abdelhafiz
- Geology Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
9
|
Guo W, Liu M, Zhang Q, Deng Y, Chu Z, Qin H, Li Y, Liu YR, Zhang H, Zhang W, Tao S, Wang X. Warming-Induced Vegetation Greening May Aggravate Soil Mercury Levels Worldwide. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39140482 DOI: 10.1021/acs.est.4c01923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Mercury, a neurotoxic substance, circulates globally, significantly stored in soils through atmospheric deposition and plant decay. Despite being deposited, mercury can be remobilized and released into the atmosphere and water, enhancing its global cycle. Recent research suggests that climate warming may amplify the remobilization of soil mercury, facilitating its incorporation into food webs that humans exploit. However, the potential geospatial feedback of soil mercury levels in response to warming remains unclear. By leveraging up-to-date soil measurements and observation-driven models, we determined the amount of mercury stored in global 0-100 cm soils to be 4.3 Tg (interquartile range: 2.5-6.3 Tg). Furthermore, our analysis indicates that warming likely aggravates global soil mercury levels, particularly in many temperate areas in East Asia, North Europe, and North America (>20 ng g-1 increase by 2100) due to warming-induced vegetation greening. Critically, observation-driven models raise the possibility that implementing ambitious mercury-emission-control schemes alone may be insufficient to counterbalance the positive feedback of soil mercury concentration, while process-based biogeochemical modeling demonstrates consistent patterns that reinforce this concern. These findings hold broad implications; for example, such feedback may catalyze mercury remobilization in land-ocean continuums and exacerbate human risks, stressing the necessity for continued reductions in greenhouse gas and mercury emissions.
Collapse
Affiliation(s)
- Wenzhe Guo
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Maodian Liu
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
- School of the Environment, Yale University, New Haven, Connecticut 06511, United States
| | - Qianru Zhang
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
| | - Yidan Deng
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Zhaohan Chu
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hehao Qin
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yangmingkai Li
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yu-Rong Liu
- College of Resources and Environment and State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Haoran Zhang
- The Bartlett School of Sustainable Construction, University College London, London WC1E 7HB, U.K
| | - Wei Zhang
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Shu Tao
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xuejun Wang
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
10
|
Rodriguez-Pascual MJ, Vega CM, Andrade N, Fernández LE, Silman MR, Torrents A. "Hg distribution and accumulation in soil and vegetation in areas impacted by artisanal gold mining in the Southern Amazonian region of Madre de Dios, Peru.". CHEMOSPHERE 2024; 361:142425. [PMID: 38797216 DOI: 10.1016/j.chemosphere.2024.142425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Artisanal and small-scale gold mining (ASGM) is the primary global source of anthropogenic mercury (Hg) emissions. It has impacted the Amazon rainforest in the Peruvian region of Madre de Dios. However, few studies have investigated Hg's distribution in terrestrial ecosystems in this region. We studied Hg's distribution and its predictors in soil and native plant species from artisanal mining sites. Total Hg concentrations were determined in soil samples collected at different depths (0-5 cm and 5-30 cm) and plant samples (roots, shoots, leaves) from 19 native plant species collected in different land cover categories: naked soil (L1), gravel piles (L2), natural regeneration (L3), reforestation (L4), and primary forest (L5) in the mining sites. Hg levels in air were also studied using passive air samplers. The highest Hg concentrations in soil (average 0.276 and 0.210 mg kg-1 dw.) were found in the intact primary forest (L5) at 0-5 cm depth and in the plant rooting zones at 5-30 cm depth, respectively. Moreover, the highest Hg levels in plants (average 0.64 mg kg-1 dw) were found in foliage of intact primary forest (L5). The results suggest that the forest in these sites receives Hg from the atmosphere through leaf deposition and that Hg accumulates in the soil surrounding the roots. The Hg levels found in the plant leaves of the primary forest are the highest ever recorded in this region, exceeding values found in forests impacted by Hg pollution worldwide and raising concerns about the extent of the ASGM impact in this ecosystem. Correlations between Hg concentrations in soil, bioaccumulation in plant roots, and soil physical-chemical characteristics were determined. Linear regression models showed that the soil organic matter content (SOM), pH, and electrical conductivity (EC) predict the Hg distribution and accumulation in soil and bioaccumulation in root plants.
Collapse
Affiliation(s)
- Maria J Rodriguez-Pascual
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Claudia M Vega
- Centro de Innovación Científica Amazónica (CINCIA), Puerto Maldonado, Madre de Dios, Peru; Sabin Center for Environment and Sustainability, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Natasha Andrade
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Luis E Fernández
- Centro de Innovación Científica Amazónica (CINCIA), Puerto Maldonado, Madre de Dios, Peru; Sabin Center for Environment and Sustainability, Wake Forest University, Winston-Salem, NC, 27109, USA; Department of Biology, Wake Forest University, Winston-Salem, NC, 27109, USA; Department of Global Ecology, Carnegie Institute for Science, Stanford, CA, 94305, USA
| | - Miles R Silman
- Centro de Innovación Científica Amazónica (CINCIA), Puerto Maldonado, Madre de Dios, Peru; Sabin Center for Environment and Sustainability, Wake Forest University, Winston-Salem, NC, 27109, USA; Department of Biology, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Alba Torrents
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
11
|
Janssen SE, Kotalik CJ, Willacker JJ, Tate MT, Pritz CMF, Nelson SJ, Krabbenhoft DP, Walters DM, Eagles-Smith CA. Geographic Drivers of Mercury Entry into Aquatic Food Webs Revealed by Mercury Stable Isotopes in Dragonfly Larvae. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58. [PMID: 39012137 PMCID: PMC11295128 DOI: 10.1021/acs.est.4c02436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 07/17/2024]
Abstract
Atmospheric mercury (Hg) emissions and subsequent transport and deposition are major concerns within protected lands, including national parks, where Hg can bioaccumulate to levels detrimental to human and wildlife health. Despite this risk to biological resources, there is limited understanding of the relative importance of different Hg sources and delivery pathways within the protected regions. Here, we used Hg stable isotope measurements within a single aquatic bioindicator, dragonfly larvae, to determine if these tracers can resolve spatial patterns in Hg sources, delivery mechanisms, and aquatic cycling at a national scale. Mercury isotope values in dragonfly tissues varied among habitat types (e.g., lentic, lotic, and wetland) and geographic location. Photochemical-derived isotope fractionation was habitat-dependent and influenced by factors that impact light penetration directly or indirectly, including dissolved organic matter, canopy cover, and total phosphorus. Strong patterns for Δ200Hg emerged in the western United States, highlighting the relative importance of wet deposition sources in arid regions in contrast to dry deposition delivery in forested regions. This work demonstrates the efficacy of dragonfly larvae as biosentinels for Hg isotope studies due to their ubiquity across freshwater ecosystems and ability to track variation in Hg sources and processing attributed to small-scale habitat and large-scale regional patterns.
Collapse
Affiliation(s)
- Sarah E. Janssen
- US
Geological Survey Upper Midwest Water Science Center, One Gifford Pinchot Drive,, Madison, Wisconsin 53726, United States
| | - Christopher J. Kotalik
- US
Geological Survey Columbia Environmental Research Center, 4200 New Haven Rd, Columbia, Missouri 65201, United States
| | - James J. Willacker
- U.S.
Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200SW Jefferson Way, Corvallis, Oregon 97331, United States
| | - Michael T. Tate
- US
Geological Survey Upper Midwest Water Science Center, One Gifford Pinchot Drive,, Madison, Wisconsin 53726, United States
| | - Colleen M. Flanagan Pritz
- National
Park Service, Air Resources Division,
P.O. Box 25287, Denver, Colorado 80225, United States
| | - Sarah J. Nelson
- Appalachian
Mountain Club, 361 Route
16, Gorham, New Hampshire 03581, United States
| | - David P. Krabbenhoft
- US
Geological Survey Upper Midwest Water Science Center, One Gifford Pinchot Drive,, Madison, Wisconsin 53726, United States
| | - David M. Walters
- US
Geological Survey Columbia Environmental Research Center, 4200 New Haven Rd, Columbia, Missouri 65201, United States
| | - Collin A. Eagles-Smith
- U.S.
Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200SW Jefferson Way, Corvallis, Oregon 97331, United States
| |
Collapse
|
12
|
Monteiro LC, Vieira LCG, Bernardi JVE, Recktenvald MCNDN, Nery AFDC, Fernandes IO, de Miranda VL, da Rocha DMS, de Almeida R, Bastos WR. Mercury distribution, bioaccumulation, and biomagnification in riparian ecosystems from a neotropical savanna floodplain, Araguaia River, central Brazil. ENVIRONMENTAL RESEARCH 2024; 252:118906. [PMID: 38609069 DOI: 10.1016/j.envres.2024.118906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Litterfall is the main source of dry deposition of mercury (Hg) into the soil in forest ecosystems. The accumulation of Hg in soil and litter suggests the possibility of transfer to terrestrial invertebrates through environmental exposure or ingestion of plant tissues. We quantified total mercury (THg) concentrations in two soil layers (organic: 0-0.2 m; mineral: 0.8-1 m), litter, fresh leaves, and terrestrial invertebrates of the Araguaia River floodplain, aiming to evaluate the THg distribution among terrestrial compartments, bioaccumulation in invertebrates, and the factors influencing THg concentrations in soil and invertebrates. The mean THg concentrations were significantly different between the compartments evaluated, being higher in organic soil compared to mineral soil, and higher in litter compared to mineral soil and fresh leaves. Soil organic matter content was positively related to THg concentration in this compartment. The order Araneae showed significantly higher Hg concentrations among the most abundant invertebrate taxa. The higher Hg concentrations in Araneae were positively influenced by the concentrations determined in litter and individuals of the order Hymenoptera, confirming the process of biomagnification in the terrestrial trophic chain. In contrast, the THg concentrations in Coleoptera, Orthoptera and Hymenoptera were not significantly related to the concentrations determined in the soil, litter and fresh leaves. Our results showed the importance of organic matter for the immobilization of THg in the soil and indicated the process of biomagnification in the terrestrial food web, providing insights for future studies on the environmental distribution of Hg in floodplains.
Collapse
Affiliation(s)
- Lucas Cabrera Monteiro
- Programa de Pós-Graduação em Ecologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil; Núcleo de Estudos e Pesquisas Ambientais e Limnológicas, Faculdade UnB Planaltina, Universidade de Brasília, Planaltina, DF, Brazil; Laboratório de Geoestatística e Geodésia, Faculdade UnB Planaltina, Universidade de Brasília, Planaltina, DF, Brazil.
| | - Ludgero Cardoso Galli Vieira
- Núcleo de Estudos e Pesquisas Ambientais e Limnológicas, Faculdade UnB Planaltina, Universidade de Brasília, Planaltina, DF, Brazil
| | - José Vicente Elias Bernardi
- Laboratório de Geoestatística e Geodésia, Faculdade UnB Planaltina, Universidade de Brasília, Planaltina, DF, Brazil
| | | | | | - Iara Oliveira Fernandes
- Programa de Pós-Graduação em Ciências Ambientais, Faculdade UnB Planaltina, Universidade de Brasília, Planaltina, DF, Brazil
| | - Vinicius Lima de Miranda
- Programa de Pós-Graduação em Zoologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
| | | | - Ronaldo de Almeida
- Laboratório de Biogeoquímica Ambiental, Universidade Federal de Rondônia, Porto Velho, RO, Brazil
| | | |
Collapse
|
13
|
Chen M, Neupane B, Zhan X, Liu T, Lin Z, Gao C, Zaccone C, Bao K. Three thousand years of Hg pollution recorded in mangrove wetland sediments from South China. ENVIRONMENTAL RESEARCH 2024; 252:118866. [PMID: 38580002 DOI: 10.1016/j.envres.2024.118866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/09/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Mercury (Hg) is known to affect aquatic, terrestrial ecosystems as well as human health, through biomagnification. Mangrove wetlands are potential Hg sinks because of their low tidal velocity, fast sedimentation rate, strong reducing condition and high organic matter content. The spatial and temporal distribution of Hg has been a hot topic of recent studies in mangrove wetlands. In this study, we investigated Hg concentration, accumulation rate and isotopes to reconstruct the Hg pollution history and to differentiate its potential sources in the Gaoqiao mangrove wetland (Guangdong province), which is part of the largest mangrove area in China. We reconstructed a first, continuous, high-resolution Hg pollution history over the last 3000 years in South China. Our findings show that mangrove wetland sediments are more enriched in Hg than the adjacent grasslands. The increased Hg concentration and δ202Hg in recent sediments mirror the enhanced anthropogenic impacts; Hg concentrations in areas with high levels of anthropogenic disturbance are up to 5× higher than the average background value (9.9 ± 1.2 μg kg-1). Compared to mangroves in coastal areas of South China and around the world, the Hg concentration in Gaoqiao is much lower. The significant increase of Hg since the 1950s and the major Hg peak since the 1980s were the evidence of the human activities influences and indicated the possible start date of Anthropocene. After 2007 CE, a decline in Hg pollution occurs due to the effective implementation of the mangrove protection policy. Three potential sources were identified by the Hg isotope traces including urban gaseous Hg, industrial Hg, and regional soil and leaf litter Hg input.
Collapse
Affiliation(s)
- Minqi Chen
- School of Geography, South China Normal University, Guangzhou, 510631, China
| | - Bigyan Neupane
- School of Geography, South China Normal University, Guangzhou, 510631, China; Institute of Fundamental Research and Studies (InFeRS), Kathmandu, 44600, Nepal
| | - Xuan Zhan
- Eco-Environmental Monitoring and Research Center, Pearl River Valley and South China Sea Ecology and Environment Administration, Ministry of Ecology and Environment, Guangzhou, 510611, China
| | - Ting Liu
- School of Geography, South China Normal University, Guangzhou, 510631, China
| | - Zhanyi Lin
- School of Geography, South China Normal University, Guangzhou, 510631, China
| | - Changjun Gao
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Claudio Zaccone
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona, 37134, Italy.
| | - Kunshan Bao
- School of Geography, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
14
|
Landis JD, Obrist D, Zhou J, Renshaw CE, McDowell WH, Nytch CJ, Palucis MC, Del Vecchio J, Montano Lopez F, Taylor VF. Quantifying soil accumulation of atmospheric mercury using fallout radionuclide chronometry. Nat Commun 2024; 15:5430. [PMID: 38926366 PMCID: PMC11208417 DOI: 10.1038/s41467-024-49789-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Soils are a principal global reservoir of mercury (Hg), a neurotoxic pollutant that is accumulating through anthropogenic emissions to the atmosphere and subsequent deposition to terrestrial ecosystems. The fate of Hg in global soils remains uncertain, however, particularly to what degree Hg is re-emitted back to the atmosphere as gaseous elemental mercury (GEM). Here we use fallout radionuclide (FRN) chronometry to directly measure Hg accumulation rates in soils. By comparing these rates with measured atmospheric fluxes in a mass balance approach, we show that representative Arctic, boreal, temperate, and tropical soils are quantitatively efficient at retaining anthropogenic Hg. Potential for significant GEM re-emission appears limited to a minority of coniferous soils, calling into question global models that assume strong re-emission of legacy Hg from soils. FRN chronometry poses a powerful tool to reconstruct terrestrial Hg accumulation across larger spatial scales than previously possible, while offering insights into the susceptibility of Hg mobilization from different soil environments.
Collapse
Affiliation(s)
- Joshua D Landis
- Department of Earth Sciences, Dartmouth College, Hanover, NH, 03755, USA.
| | - Daniel Obrist
- Department of Environmental, Earth, and Atmospheric Sciences, University of Massachusetts, Lowell, MA, 01854, USA
- Division of Agriculture and Natural Resources, University of California, Davis, CA, 95616, USA
| | - Jun Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Carl E Renshaw
- Department of Earth Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - William H McDowell
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, USA
- Institute of Environment, Florida International University, Miami, FL, USA
| | - Christopher J Nytch
- Department of Environmental Sciences, University of Puerto Rico - Rio Piedras, San Juan, PR, 00925, USA
| | - Marisa C Palucis
- Department of Earth Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | | | | | - Vivien F Taylor
- Department of Earth Sciences, Dartmouth College, Hanover, NH, 03755, USA
| |
Collapse
|
15
|
Vaňková M, Domingues Vieira AM, Ettler V, Vaněk A, Trubač J, Penížek V, Mihaljevič M. Tracing anthropogenic mercury in soils from Fe-Hg mining/smelting area: Isotopic and speciation insights. CHEMOSPHERE 2024; 357:142038. [PMID: 38621486 DOI: 10.1016/j.chemosphere.2024.142038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
Mercury (Hg) stable isotope ratios supplemented by Hg solid speciation data were determined in soils in a former Fe-Hg mining/smelting area (Jedová hora, Czech Republic, Central Europe). The dominant Hg phase in the studied soils was found to be cinnabar (HgS). A secondary form of soil Hg(II) was represented by Hg weakly and strongly bound to mineral (micro)particles, as revealed by thermo-desorption analysis. These Hg species probably play a key role in local soil Hg processes and biogeochemical cycling. The Hg isotopic data generally showed small differences between HgS (-1.1 to -0.8‰; δ202Hg) and the soil samples (-1.4 to -0.9‰; δ202Hg), as well as limited isotopic variability within the two studied soil profiles. On the other hand, the detected negative δ202Hg shift (∼0.4‰) in organic horizons compared to mineral soils in the highly contaminated profile suggests the presence of secondary post-depositional Hg processes, such as sorption or redox changes. For the less contaminated profile, the observed Hg isotopic variation (∼0.3‰; δ202Hg) in the subsurface mineral soil compared to both overlying and underlying horizons is likely due to cyclic redox reactions associated with Hg isotopic fractionation. We assume that the adsorption of Hg(II) to secondary Fe(III)/Mn(III,IV)-oxides could be of major importance in such cases.
Collapse
Affiliation(s)
- Maria Vaňková
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 00 Praha 2, Czech Republic.
| | - Alda Maria Domingues Vieira
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 00 Praha 2, Czech Republic.
| | - Vojtěch Ettler
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 00 Praha 2, Czech Republic.
| | - Aleš Vaněk
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha 6, Czech Republic.
| | - Jakub Trubač
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 00 Praha 2, Czech Republic.
| | - Vít Penížek
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha 6, Czech Republic.
| | - Martin Mihaljevič
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 00 Praha 2, Czech Republic.
| |
Collapse
|
16
|
Yang YH, Kim MS, Park J, Kwon SY. Atmospheric mercury uptake and accumulation in forests dependent on climatic factors. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:519-529. [PMID: 38344926 DOI: 10.1039/d3em00454f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The environmental and climatic factors dictating atmospheric mercury (Hg) uptake by foliage and accumulation within the forest floor are evaluated across six mountain sites, South Korea, using Hg concentration and Hg stable isotope analyses. The isotope ratios of total gaseous Hg (TGM) at six mountains are explained by local anthropogenic Hg emission influence and partly by mountain elevation and wind speed. The extent to which TGM is taken up by foliage is not dependent on the site-specific TGM concentration, but by the local wind speed, which facilitates TGM passage through dense deciduous canopies in the Korean forests. This is depicted by the significant positive relationship between wind speed and foliage Hg concentration (r2 = 0.92, p < 0.05) and the magnitude of δ202Hg shift from TGM to foliage (r2 = 0.37, p > 0.05), associated with TGM uptake and oxidation by foliar tissues. The litter and topsoil Hg concentrations and isotope ratios reveal relationships with a wide range of factors, revealing lower Hg level and greater isotopic fractionation at sites with low elevation, high wind speed, and high mean warmest temperature. We attribute this phenomenon to active TGM re-emission from the forest floor at sites with high wind speed and high temperature, caused by turnover of labile organic matter and decomposition. In contrast to prior studies, we observe no significant effect of precipitation on forest Hg accumulation but precipitation appears to reduce foliage-level Hg uptake by scavenging atmospheric Hg species available for stomata uptake. The results of this study would enable better prediction of future atmospheric and forest Hg influence under climate change.
Collapse
Affiliation(s)
- Yo Han Yang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, South Korea.
| | - Min-Seob Kim
- Environmental Measurement & Analysis Center, National Institute of Environmental Research, 42 Hwangyong-Ro, Seo-Gu, Incheon 22689, South Korea
| | - Jaeseon Park
- Environmental Measurement & Analysis Center, National Institute of Environmental Research, 42 Hwangyong-Ro, Seo-Gu, Incheon 22689, South Korea
| | - Sae Yun Kwon
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, South Korea.
| |
Collapse
|
17
|
Yuan W, Wang X, Lin CJ, Zhang G, Wu F, Liu N, Jia L, Zhang H, Lu H, Dong J, Feng X. Fate and Transport of Mercury through Waterflows in a Tropical Rainforest. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4968-4978. [PMID: 38452105 DOI: 10.1021/acs.est.3c09265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Knowledge gaps of mercury (Hg) biogeochemical processes in the tropical rainforest limit our understanding of the global Hg mass budget. In this study, we applied Hg stable isotope tracing techniques to quantitatively understand the Hg fate and transport during the waterflows in a tropical rainforest including open-field precipitation, throughfall, and runoff. Hg concentrations in throughfall are 1.5-2 times of the levels in open-field rainfall. However, Hg deposition contributed by throughfall and open-field rainfall is comparable due to the water interception by vegetative biomasses. Runoff from the forest shows nearly one order of magnitude lower Hg concentration than those in throughfall. In contrast to the positive Δ199Hg and Δ200Hg signatures in open-field rainfall, throughfall water exhibits nearly zero signals of Δ199Hg and Δ200Hg, while runoff shows negative Δ199Hg and Δ200Hg signals. Using a binary mixing model, Hg in throughfall and runoff is primarily derived from atmospheric Hg0 inputs, with average contributions of 65 ± 18 and 91 ± 6%, respectively. The combination of flux and isotopic modeling suggests that two-thirds of atmospheric Hg2+ input is intercepted by vegetative biomass, with the remaining atmospheric Hg2+ input captured by the forest floor. Overall, these findings shed light on simulation of Hg cycle in tropical forests.
Collapse
Affiliation(s)
- Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Che-Jen Lin
- Center for Advances in Water and Air Quality, Lamar University, Beaumont, Texas 77710, United States
| | - Ge Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Fei Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nantao Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Longyu Jia
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Huazheng Lu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Jinlong Dong
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Hao X, Zhao Q, Zhou X, Huang Q, Liu YR. Labile carbon inputs boost microbial contribution to legacy mercury reduction and emissions from industry-polluted soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133122. [PMID: 38056276 DOI: 10.1016/j.jhazmat.2023.133122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/24/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Soils is a crucial reservoir influencing mercury (Hg) emissions and soil-air exchange dynamics, partially modulated by microbial reducers aiding Hg reduction. Yet, the extent to which microbial engagements contribute to soil Hg volatilization remains largely unknown. Here, we characterized Hg-reducing bacterial communities in natural and anthropogenically perturbed soil environments and quantified their contribution to soil Hg(0) volatilization. Our results revealed distinct Hg-reducing bacterial compositions alongside elevated mercuric reductase (merA) gene abundance and diversity in soils adjacent to chemical factories compared to less-impacted ecosystems. Notably, solely industry-impacted soils exhibited increased merA gene abundance along Hg gradients, indicating microbial adaption to Hg selective pressure through quantitative changes in Hg reductase and genetic diversity. Microcosm studies demonstrated that glucose inputs boosted microbial involvement and induced 2-8 fold increments in cumulative Hg(0) volatilization in industry-impacted soils. Microbially-mediated Hg reduction contributed to 41.6% of soil Hg(0) volatilization in industry-impacted soils under 25% water-holding capacity and glucose input conditions over a 21-day incubation period. Alcaligenaceae, Moraxellaceae, Nitrosomonadaceae and Shewanellaceae were identified as potential contributors to Hg(0) volatilization in the soil. Collectively, our study provides novel insights into microbially-mediated Hg reduction and soil-air exchange processes, with important implications for risk assessment and management of industrial Hg-contaminated soils.
Collapse
Affiliation(s)
- Xiuli Hao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Qianqian Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinquan Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Rong Liu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
19
|
Stinson I, Li HH, Tsui MTK, Ku P, Ulus Y, Cheng Z, Lam HM. Tree foliage as a net accumulator of highly toxic methylmercury. Sci Rep 2024; 14:1757. [PMID: 38242950 PMCID: PMC10799008 DOI: 10.1038/s41598-024-51469-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/05/2024] [Indexed: 01/21/2024] Open
Abstract
Tree canopies are known to elevate atmospheric inputs of both mercury (Hg) and methylmercury (MeHg). While foliar uptake of gaseous Hg is well documented, little is known regarding the temporal dynamics and origins of MeHg in tree foliage, which represents typically less than 1% of total Hg in foliage. In this work, we examined the foliar total Hg and MeHg content by following the growth of five individual trees of American Beech (Fagus grandifolia) for one growing season (April-November, 2017) in North Carolina, USA. We show that similar to other studies foliar Hg content increased almost linearly over time, with daily accumulation rates ranging from 0.123 to 0.161 ng/g/day. However, not all trees showed linear increases of foliar MeHg content along the growing season; we found that 2 out of 5 trees showed elevated foliar MeHg content at the initial phase of the growing season but their MeHg content declined through early summer. However, foliar MeHg content among all 5 trees showed eventual increases through the end of the growing season, proving that foliage is a net accumulator of MeHg while foliar gain of biomass did not "dilute" MeHg content.
Collapse
Affiliation(s)
- Idus Stinson
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| | - Han-Han Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Martin Tsz-Ki Tsui
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA.
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| | - Peijia Ku
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Yener Ulus
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
- Department of Environmental Studies, Davidson College, Davidson, NC, 28035, USA
| | - Zhang Cheng
- College of Environment, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hon-Ming Lam
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
20
|
Chu Z, Zhou Y, Liu M, Lin H, Cheng M, Xie H, Yuan L, Zhang Z, Zhang Q, Li C, Chen Y, Guo Y, Chen L, Wang X. Large-Scale Observations Support Aboveground Vegetation as an Important Biological Mercury Sink in the Tibetan Plateau. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17278-17290. [PMID: 37919873 DOI: 10.1021/acs.est.3c05164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Mercury, a pervasive global pollutant, primarily enters the atmosphere through human activities and legacy emissions from the land and oceans. A significant portion of this mercury subsequently settles on land through vegetation uptake. Characterizing mercury storage and distribution within vegetation is essential for comprehending regional and global mercury cycles. We conducted an unprecedented large-scale aboveground vegetation mercury survey across the expansive Tibetan Plateau. We find that mosses (31.1 ± 0.5 ng/g) and cushion plants (15.2 ± 0.7 ng/g) outstood high mercury concentrations. Despite exceptionally low anthropogenic mercury emissions, mercury concentrations of all biomes exceeded at least one-third of their respective global averages. While acknowledging the role of plant physiological factors, statistical models emphasize the predominant impact of atmospheric mercury on driving variations in mercury concentrations. Our estimations indicate that aboveground vegetation on the plateau accumulates 32-12+21 Mg (interquartile range) mercury. Forests occupy the highest biomass and store 82% of mercury, while mosses, representing only 3% of the biomass, disproportionally contribute 13% to mercury storage and account for 43% (2.5-1.4+3.0 Mg/year) of annual mercury assimilation by vegetation. Additionally, our study underscores that extrapolating aboveground vegetation mercury storage from lower-altitude regions to the Tibetan Plateau can lead to substantial overestimation, inspiring further exploration in alpine ecosystems worldwide.
Collapse
Affiliation(s)
- Zhaohan Chu
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yunzhuo Zhou
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Maodian Liu
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
- School of the Environment, Yale University, New Haven, Connecticut 06511, United States
| | - Huiming Lin
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Menghan Cheng
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Han Xie
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Liuliang Yuan
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Zhihao Zhang
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | - Qianru Zhang
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Chengcheng Li
- Modern Chinese Literature, Department of Chinese Language and Literature, Peking University, Beijing 100871, China
| | - Yuang Chen
- Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yanpei Guo
- Institute of Ecology, Key Laboratory for Earth Surface Processes and College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Long Chen
- Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Xuejun Wang
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
21
|
Du H, Wang X, Yuan W, Wu F, Jia L, Liu N, Lin CJ, Gan J, Zeng F, Wang K, Feng X. Elevated Mercury Deposition, Accumulation, and Migration in a Karst Forest. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17490-17500. [PMID: 37908057 DOI: 10.1021/acs.est.3c05409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The karst forest is one of the extremely sensitive and fragile ecosystems in southwest China, where the biogeochemical cycling of mercury (Hg) is largely unknown. In this study, we investigated the litterfall deposition, accumulation, and soil migration of Hg in an evergreen-deciduous broadleaf karst forest using high-resolution sampling and stable isotope techniques. Results show that elevated litterfall Hg concentrations and fluxes in spring are due to the longer lifespan of evergreen tree foliage exposed to atmospheric Hg0. The hillslope has 1-2 times higher litterfall Hg concentration compared to the low-lying land due to the elevated atmospheric Hg levels induced by topographical and physiological factors. The Hg isotopic model suggests that litterfall Hg depositions account for ∼80% of the Hg source contribution in surface soil. The spatial trend of litterfall Hg deposition cannot solely explain the trend of Hg accumulation in the surface soil. Indeed, soil erosion enhances Hg accumulation in soil of low-lying land, with soil Hg concentration up to 5-times greater than the concentration on the hillslope. The high level of soil Hg migration in the karst forest poses significant ecological risks to groundwater and downstream aquatic ecosystems.
Collapse
Affiliation(s)
- Hu Du
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China
- Huanjiang Observation and Research Station for Karst Ecosystems, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Huanjiang 547100, Guangxi, China
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Fei Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Longyu Jia
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Nantao Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Che-Jen Lin
- Center for Advances in Water and Air Quality, Lamar University, Beaumont, Texas 77710, United States
| | - Jiang Gan
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China
- Huanjiang Observation and Research Station for Karst Ecosystems, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Huanjiang 547100, Guangxi, China
| | - Fuping Zeng
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China
- Huanjiang Observation and Research Station for Karst Ecosystems, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Huanjiang 547100, Guangxi, China
| | - Kelin Wang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China
- Huanjiang Observation and Research Station for Karst Ecosystems, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Huanjiang 547100, Guangxi, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|
22
|
Wu F, Yang L, Wang X, Yuan W, Lin CJ, Feng X. Mercury Accumulation and Sequestration in a Deglaciated Forest Chronosequence: Insights from Particulate and Mineral-Associated Forms of Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16512-16521. [PMID: 37857302 DOI: 10.1021/acs.est.3c03107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Understanding mercury (Hg) complexation with soil organic matter is important in assessing atmospheric Hg accumulation and sequestration processes in forest ecosystems. Separating soil organic matter into particulate organic matter (POM) and mineral-associated organic matter (MAOM) can help in the understanding of Hg dynamics and cycling due to their very different chemical constituents and associated formation and functioning mechanisms. The concentration of Hg, carbon, and nitrogen contents and isotopic signatures of POM and MAOM in a deglaciated forest chronosequence were determined to construct the processes of Hg accumulation and sequestration. The results show that Hg in POM and MAOM are mainly derived from atmospheric Hg0 deposition. Hg concentration in MAOM is up to 76% higher than that in POM of broadleaf forests and up to 60% higher than that in POM of coniferous forests. Hg accumulation and sequestration in organic soil vary with the vegetation succession. Variations of δ202Hg and Δ199Hg are controlled by source mixing in the broadleaf forest and by Hg sequestration processes in the coniferous forest. Accumulation of atmospheric Hg and subsequent microbial reduction enrich heavier Hg isotopes in MAOM compared to POM due to the specific chemical constituents and nutritional role of MAOM.
Collapse
Affiliation(s)
- Fei Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Luhan Yang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Che-Jen Lin
- Center for Advances in Water and Air Quality, Lamar University, Beaumont, Texas 77710, United States
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|
23
|
Ndzana CE, Emmanuel Mvondo VY, Tchouta KD, Ngatcha BN. Assessment of the impact of small-scale mining on soil contamination by mercury and hydrocarbons in the kadey catchment (East Cameroon). Heliyon 2023; 9:e18786. [PMID: 37576211 PMCID: PMC10415891 DOI: 10.1016/j.heliyon.2023.e18786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/15/2023] Open
Abstract
The objective of the present study was to assess soil contamination by mercury and hydrocarbon products used in gold mining in the Kadey catchment area. The results obtained show that gold mining by the small mine is the cause of chemical contamination of the soil caused by hydrocarbon products with concentrations 800 times higher than the threshold value on certain points of the former mining sites. The use of mercury has led to an increase in its concentration to values that are still below the critical thresholds. It also appears from this work that organic matter plays a very important role in the retention of mercury on the soil surface. In the case of hydrocarbons are concerned, although high concentrations above are found exclusively at the surface, the rainfall contributes to their infiltration into the soil and to a horizontal redistribution of the contamination.
Collapse
Affiliation(s)
- Charles Eloundou Ndzana
- Ministry of Mines, Industry and Technological Development, Yaounde, Cameroon
- University of Ngaoundéré, Faculty of Science, Department of Earth Sciences, Ngaoundere, Cameroon
| | | | - Kemgang Dongmo Tchouta
- University of Ngaoundéré, Faculty of Science, Department of Earth Sciences, Ngaoundere, Cameroon
| | - Benjamin Ngounou Ngatcha
- University of Ngaoundéré, Faculty of Science, Department of Earth Sciences, Ngaoundere, Cameroon
| |
Collapse
|
24
|
Méndez-López M, Eimil-Fraga C, Alonso-Vega F, Rodríguez-Soalleiro R, Álvarez-Rodríguez E, Arias-Estévez M, Nóvoa-Muñoz JC. Variation of Hg concentration and accumulation in the soil of maritime pine plantations along a coast-inland transect in SW Europe. ENVIRONMENTAL RESEARCH 2023; 231:116155. [PMID: 37196692 DOI: 10.1016/j.envres.2023.116155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/13/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
Climatic conditions have been shown as a major driver of the fate of Hg in forest ecosystems at a global scale, but less is known about climatic effects at shorter scales. This study assesses whether the concentration and pools of Hg in soils collected from seventeen Pinus pinaster stands describing a coastal-inland transect in SW Europe vary along a regional climatic gradient. In each stand, samples of the organic subhorizons (OL, OF + OH) and the mineral soil (up to 40 cm) were collected and some general physico-chemical properties and total Hg (THg) were analyzed. Total Hg was significantly higher in the OF + OH than in the OL subhorizons (98 and 38 μg kg-1, respectively), favored by a greater organic matter humification in the former. In the mineral soil, mean THg values decreased with depth, ranging from 96 μg kg-1 in the 0-5 cm layers to 54 μg kg-1 in the deepest layers (30-40 cm), respectively. The average Hg pool (PHg) was 0.30 mg m-2 in the organic horizons (92% accumulated in the OF + OH subhorizons), and 27.4 mg m-2 in the mineral soil. Changes in climatic factors, mainly precipitation, along the coast-inland transect resulted in a remarkable variation of THg in the OL subhorizons, consistent with their role as the first receiver of atmospheric Hg inputs. The high precipitation rate and the occurrence of fogs in coastal areas characterized by the oceanic influence would explain the higher THg found in the uppermost soil layers of pine stands located close to the coastline. The regional climate is key to the fate of mercury in forest ecosystems by influencing the plant growth and subsequent atmospheric Hg uptake, the atmospheric Hg transference to the soil surface (wet and dry deposition and litterfall) and the dynamics that determine net Hg accumulation in the forest floor.
Collapse
Affiliation(s)
- Melissa Méndez-López
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias. As Lagoas S/n, 32004, Ourense, Spain; Campus da Auga, Universidade de Vigo, Laboratorio de Tecnoloxía e Diagnose Ambiental. Rúa Canella da Costa da Vela 12, 32004, Ourense, Spain.
| | - Cristina Eimil-Fraga
- Unidad de Gestión Ambiental y Forestal Sostenible, Escuela Politécnica Superior de Ingeniería, Universidade de Santiago de Compostela. Rúa Benigno Ledo S/n, 27002, Lugo, Spain
| | - Flora Alonso-Vega
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias. As Lagoas S/n, 32004, Ourense, Spain; Campus da Auga, Universidade de Vigo, Laboratorio de Tecnoloxía e Diagnose Ambiental. Rúa Canella da Costa da Vela 12, 32004, Ourense, Spain
| | - Roque Rodríguez-Soalleiro
- Unidad de Gestión Ambiental y Forestal Sostenible, Escuela Politécnica Superior de Ingeniería, Universidade de Santiago de Compostela. Rúa Benigno Ledo S/n, 27002, Lugo, Spain
| | - Esperanza Álvarez-Rodríguez
- Departamento de Edafología y Química Agrícola, Escuela Politécnica Superior de Ingeniería, Universidade de Santiago de Compostela, Rúa Benigno Ledo S/n, 27002, Lugo, Spain
| | - Manuel Arias-Estévez
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias. As Lagoas S/n, 32004, Ourense, Spain; Campus da Auga, Universidade de Vigo, Laboratorio de Tecnoloxía e Diagnose Ambiental. Rúa Canella da Costa da Vela 12, 32004, Ourense, Spain
| | - Juan Carlos Nóvoa-Muñoz
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias. As Lagoas S/n, 32004, Ourense, Spain; Campus da Auga, Universidade de Vigo, Laboratorio de Tecnoloxía e Diagnose Ambiental. Rúa Canella da Costa da Vela 12, 32004, Ourense, Spain
| |
Collapse
|
25
|
Schneider L, Fisher JA, Diéguez MC, Fostier AH, Guimaraes JRD, Leaner JJ, Mason R. A synthesis of mercury research in the Southern Hemisphere, part 1: Natural processes. AMBIO 2023; 52:897-917. [PMID: 36943620 PMCID: PMC10073387 DOI: 10.1007/s13280-023-01832-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/30/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Recent studies demonstrate a short 3-6-month atmospheric lifetime for mercury (Hg). This implies Hg emissions are predominantly deposited within the same hemisphere in which they are emitted, thus placing increasing importance on considering Hg sources, sinks and impacts from a hemispheric perspective. In the absence of comprehensive Hg data from the Southern Hemisphere (SH), estimates and inventories for the SH have been drawn from data collected in the NH, with the assumption that the NH data are broadly applicable. In this paper, we centre the uniqueness of the SH in the context of natural biogeochemical Hg cycling, with focus on the midlatitudes and tropics. Due to its uniqueness, Antarctica warrants an exclusive review of its contribution to the biogeochemical cycling of Hg and is therefore excluded from this review. We identify and describe five key natural differences between the hemispheres that affect the biogeochemical cycling of Hg: biome heterogeneity, vegetation type, ocean area, methylation hotspot zones and occurence of volcanic activities. We review the current state of knowledge of SH Hg cycling within the context of each difference, as well as the key gaps that impede our understanding of natural Hg cycling in the SH. The differences demonstrate the limitations in using NH data to infer Hg processes and emissions in the SH.
Collapse
Affiliation(s)
- Larissa Schneider
- School of Culture, History and Language. Australian National University, Coombs Bld 9 Fellows Rd, Acton. Canberra, ACT 2601 Australia
| | - Jenny A. Fisher
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522 Australia
| | - María C. Diéguez
- Instituto de Investigaciones en Biodiversidad y Medioambiente (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional del Comahue), 1250 San Carlos de Bariloche (8400), Quintral Argentina
| | - Anne-Hélène Fostier
- Instituto de Química/Unicamp, Rua Josué de Castro, s/n – Cidade Universitária, Campinas, SP 13083-970 Brazil
| | - Jean R. D. Guimaraes
- Lab. de Traçadores, Inst. de Biofísica, Bloco G, CCS (Centro de Ciências da Saúde), Av. Carlos Chagas Filho 373, Rio de Janeiro, Ilha do Fundão CEP 21941-902 Brazil
| | - Joy J. Leaner
- Department of Environmental Affairs and Development Planning, Western Cape Government, 1 Dorp Street, Western Cape, Cape Town, 8001 South Africa
| | - Robert Mason
- Department of Marine Sciences, University of Connecticut, 1080 Shennecossett Road, Groton, CT 06340 USA
| |
Collapse
|
26
|
Casagrande GCR, Dambros J, de Andrade EA, Martello F, Sobral-Souza T, Moreno MIC, Battirola LD, de Andrade RLT. Atmospheric mercury in forests: accumulation analysis in a gold mining area in the southern Amazon, Brazil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:477. [PMID: 36928432 DOI: 10.1007/s10661-023-11063-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
The spatial distribution and dispersion of mercury (Hg) is associated with the structural conditions of the environment, primarily land use and vegetation cover. Man-made emissions of the metal from activities such as artisanal and small-scale gold mining (ASGM) can influence this distribution. Forest ecosystems are of particular importance as they constitute one of the most active environments in the biogeochemical cycle of Hg, and understanding these dynamics is essential to better understand its global cycle. In this study, we determined the content of Hg present in different forest strata (soil, leaf litter, herbaceous, underwood/bush, and arboreal), as well as the relationship between the presence of Hg and the landscape heterogeneity, percentage of gold mines, and ground slope. This study was carried out in tropical forest areas of the southern Brazilian Amazon. Accumulation and transport of Hg between forest strata was assessed in order to understand the influence of these forest environments on Hg accumulation in areas where ASGM occurs. We verified that there is a difference in Hg content between forest strata, indicating that atmospheric Hg is accumulated onto the arboreal stratum and transported vertically to strata below the canopy, i.e., underwood/bush and herbaceous, and subsequently accumulated in the leaf litter and transferred to the soil. Leaf litter was the stratum with the highest Hg content, characterized as a receptor for most of the Hg load from the upper strata in the forest. Therefore, it was confirmed that Hg accumulation dynamics are at play between the areas analyzed due to the proximity of ASGMs in the region. This indicates that the conservation of forest areas plays an important role in the process of atmospheric Hg deposition and accumulation, acting as a mercury sink in areas close to man-made emissions.
Collapse
Affiliation(s)
- Gabriela Cristina Rabello Casagrande
- Postgraduate Program in Biotechnology and Biodiversity-Rede Pró-Centro-Oeste, Federal University of Mato Grosso, Cuiabá Campus, Av. Fernando Corrêa da Costa, 2367, Bairro Boa Esperança, CEP 78060-900, Cuiabá, Mato Grosso, Brazil
| | - Juliane Dambros
- Postgraduate Program in Biotechnology and Biodiversity-Rede Pró-Centro-Oeste, Federal University of Mato Grosso, Cuiabá Campus, Av. Fernando Corrêa da Costa, 2367, Bairro Boa Esperança, CEP 78060-900, Cuiabá, Mato Grosso, Brazil
| | - Ednaldo Antônio de Andrade
- Institute of Agricultural and Environmental Sciences, Federal University of Mato Grosso, Sinop Campus, Av. Alexandre Ferronato, 1200, Setor Industrial, CEP 78557-267, Sinop, Mato Grosso, Brazil
| | - Felipe Martello
- Vale Institute of Technology-Sustainable Development, Rua Boaventura da Silva, 955, Nazaré, CEP 66055-090, Belém, Pará, Brazil
| | - Thadeu Sobral-Souza
- Department of Botany and Ecology, Federal University of Mato Grosso, Av. Fernando Corrêa da Costa 2367, Bairro Boa Esperança, CEP 78060-900, Cuiabá, Mato Grosso, Brazil
| | - Maria Inês Cruzeiro Moreno
- Departament of Biological Science, Institute of Biotechnology, Federal University of Catalão, Campus I, Av. Dr. Lamartine Pinto de Avelar, 1120 Setor Universitário, CEP 75704-020, Catalão, Goiás, Brazil
| | - Leandro Dênis Battirola
- Postgraduate Program in Biotechnology and Biodiversity-Rede Pró-Centro-Oeste, Federal University of Mato Grosso, Cuiabá Campus, Av. Fernando Corrêa da Costa, 2367, Bairro Boa Esperança, CEP 78060-900, Cuiabá, Mato Grosso, Brazil.
- Postgraduate Program in Environmental Science, Institute of Natural, Human and Social Sciences, Federal University of Mato Grosso, Sinop Campus, Av. Alexandre Ferronato, 1200, Setor Industrial, CEP 78557-267, Sinop, Mato Grosso, Brazil.
| | - Ricardo Lopes Tortorela de Andrade
- Postgraduate Program in Biotechnology and Biodiversity-Rede Pró-Centro-Oeste, Federal University of Mato Grosso, Cuiabá Campus, Av. Fernando Corrêa da Costa, 2367, Bairro Boa Esperança, CEP 78060-900, Cuiabá, Mato Grosso, Brazil
- Postgraduate Program in Environmental Science, Institute of Natural, Human and Social Sciences, Federal University of Mato Grosso, Sinop Campus, Av. Alexandre Ferronato, 1200, Setor Industrial, CEP 78557-267, Sinop, Mato Grosso, Brazil
| |
Collapse
|
27
|
Méndez-López M, Parente-Sendín A, Calvo-Portela N, Gómez-Armesto A, Eimil-Fraga C, Alonso-Vega F, Arias-Estévez M, Nóvoa-Muñoz JC. Mercury in a birch forest in SW Europe: Deposition flux by litterfall and pools in aboveground tree biomass and soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158937. [PMID: 36167130 DOI: 10.1016/j.scitotenv.2022.158937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/15/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Atmospheric mercury (Hg) is largely assimilated by vegetation and subsequently transferred to the soil by litterfall, which highlights the role of forests as one of the largest global Hg sinks within terrestrial ecosystems. We assessed the pool of Hg in the aboveground biomass (leaves, wood, bark, branches and twigs), the Hg deposition flux through litterfall over two years (by sorting fallen biomass in leaves, twigs, reproductive structures and miscellaneous) and its accumulation in the soil profile in a deciduous forest dominated by Betula alba from SW Europe. The total Hg pool in the aboveground birch biomass was in the range 532-683 mg ha-1, showing the following distribution by plant tissues: well-developed leaves (171 mg ha-1) > twigs (160 mg ha-1) > bark (159 mg ha-1) > bole wood (145 mg ha-1) > fine branches (25 mg ha-1) > thick branches (24 mg ha-1) > newly sprouted leaves (20 mg ha-1). The total Hg deposition fluxes through litterfall were 15.4 and 11.7 μg m-2 yr-1 for the two years studied, with the greatest contribution coming from birch leaves (73 %). In the soil profile, the pool of Hg in the mineral soil (37.0 mg m-2) was an order of magnitude higher than in the organic horizons (1.0 mg m-2), mostly conditioned by parameters such as soil bulk density and thickness, total C and N contents and the presence of certain Al compounds.
Collapse
Affiliation(s)
- Melissa Méndez-López
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, As Lagoas s/n, 32004 Ourense, Spain; Campus da Auga, Universidade de Vigo, Laboratorio de Tecnoloxía e Diagnose Ambiental, Rúa Canella da Costa da Vela 12, 32004 Ourense, Spain.
| | - Andrea Parente-Sendín
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, As Lagoas s/n, 32004 Ourense, Spain; Campus da Auga, Universidade de Vigo, Laboratorio de Tecnoloxía e Diagnose Ambiental, Rúa Canella da Costa da Vela 12, 32004 Ourense, Spain
| | - Noemi Calvo-Portela
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, As Lagoas s/n, 32004 Ourense, Spain; Campus da Auga, Universidade de Vigo, Laboratorio de Tecnoloxía e Diagnose Ambiental, Rúa Canella da Costa da Vela 12, 32004 Ourense, Spain
| | - Antía Gómez-Armesto
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, As Lagoas s/n, 32004 Ourense, Spain; Campus da Auga, Universidade de Vigo, Laboratorio de Tecnoloxía e Diagnose Ambiental, Rúa Canella da Costa da Vela 12, 32004 Ourense, Spain
| | - Cristina Eimil-Fraga
- Unidad de Gestión Ambiental y Forestal Sostenible, Escuela Politécnica Superior de Ingeniería, Universidade de Santiago de Compostela, Rúa Benigno Ledo s/n, 27002 Lugo, Spain
| | - Flora Alonso-Vega
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, As Lagoas s/n, 32004 Ourense, Spain; Campus da Auga, Universidade de Vigo, Laboratorio de Tecnoloxía e Diagnose Ambiental, Rúa Canella da Costa da Vela 12, 32004 Ourense, Spain
| | - Manuel Arias-Estévez
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, As Lagoas s/n, 32004 Ourense, Spain; Campus da Auga, Universidade de Vigo, Laboratorio de Tecnoloxía e Diagnose Ambiental, Rúa Canella da Costa da Vela 12, 32004 Ourense, Spain
| | - Juan Carlos Nóvoa-Muñoz
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, As Lagoas s/n, 32004 Ourense, Spain; Campus da Auga, Universidade de Vigo, Laboratorio de Tecnoloxía e Diagnose Ambiental, Rúa Canella da Costa da Vela 12, 32004 Ourense, Spain
| |
Collapse
|
28
|
Yang L, Yang G, Wang J, Xiong B, Guo P, Wang T, Du H, Ma M, Wang D. Seasonal changes in total mercury and methylmercury in subtropical decomposing litter correspond to the abundances of nitrogen-fixing and methylmercury-degrading bacteria. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130064. [PMID: 36182885 DOI: 10.1016/j.jhazmat.2022.130064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Previous research has found total mercury (THg) and methylmercury (MeHg) levels increase with litterfall decay, thus suggesting litterfall decomposition plays an essential role in the biogeochemical transformation of mercury (Hg). However, it remains unclear how Hg accumulates in the decaying litter, how bacterial taxa networks vary and what roles various microorganisms play during litterfall decomposition, especially nitrogen (N)-fixing, MeHg-degrading and Hg-methylating microbes. Here, we demonstrated as degradation proceeded, a gradually-complex network evolved for litterfall bacteria for the subtropical mixed broadleaf-conifer (MBC) forest, whereas a relatively static network existed for the evergreen broadleaf (EB) forest. N-fixing and MeHg-degrading bacteria dominated throughout litterfall decomposition process, with relative abundances of N-fixing genera and nifH copies maximum and relative abundances of MeHg-degrading bacteria and merAB copies minimum in summer. Hence, N-fixing bacteria likely mediate THg increase in the decomposing litterfall, while MeHg enhancement may be regulated by aerobic MeHg-degrading microbes which can transform MeHg to inorganic divalent Hg (Hg2+) or further to elemental Hg (Hg0). Together, this work elucidates variations of N-fixing and MeHg-degrading microbes in decaying litterfall and their relationships with Hg accumulation, providing novel insights into understanding the biogeochemical cycle of Hg in the forest ecosystem.
Collapse
Affiliation(s)
- Liping Yang
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Guang Yang
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Jueying Wang
- Chongqing Key Laboratory of Bio-resource for Bioenergy, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Bingcai Xiong
- Chongqing Key Laboratory of Bio-resource for Bioenergy, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Pan Guo
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Tao Wang
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Hongxia Du
- Chongqing Key Laboratory of Bio-resource for Bioenergy, College of Resources and Environment, Southwest University, Chongqing 400715, China.
| | - Ming Ma
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Bio-resource for Bioenergy, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Dingyong Wang
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing 400715, China
| |
Collapse
|
29
|
Ulus Y, Tsui MTK, Sakar A, Nyarko P, Aitmbarek NB, Ardón M, Chow AT. Declines of methylmercury along a salinity gradient in a low-lying coastal wetland ecosystem at South Carolina, USA. CHEMOSPHERE 2022; 308:136310. [PMID: 36088973 DOI: 10.1016/j.chemosphere.2022.136310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Wetlands are widely regarded as biogeochemical hotspots of highly toxic methylmercury (MeHg), mainly mediated by sulfate-reducing bacteria. In low-lying coastal wetlands, sea level rise, a phenomenon caused by global climate change, is slowly degrading numerous healthy freshwater forested wetlands into salt-degraded counterparts with a nickname "ghost forests", and eventually converting them to saltmarshes. However, little is known about the changes of mercury (Hg) methylation, bioaccumulation, and biomagnification along the forest-to-saltmarsh gradient. Here, we conducted extensive field sampling in three wetland states (healthy forested wetlands, salt-degraded forested wetlands, and saltmarsh) along a salinity gradient (from 0 to 9.4 ppt) in Winyah Bay, South Carolina, USA. We found that in our study wetland systems the saltmarshes had the lowest levels of both total Hg and MeHg in sediments and biota, as compared to healthy forested wetlands and saltwater-degraded ghost forests. Our results suggest that the slow conversion of forested wetland to saltmarsh could reduce net MeHg production in our study wetland systems, which we hypothesized that could be attributed to increased sulfate reduction and excessive buildup of sulfide in sediment that inhibits microbial Hg methylation, and/or reduced canopy density and increased photodegradation of MeHg. However, it should be noted that biogeochemical MeHg responses to salinity changes may be site-specific and we urge more similar studies in other wetland systems along a salinity gradient. Therefore, long-term salinization of coastal wetlands and the slow conversion of forests to marshes could decrease long-term exposure of toxic MeHg levels in coastal food webs that are similar to our system, and ultimately reduce human exposure to this neurotoxin.
Collapse
Affiliation(s)
- Yener Ulus
- Department of Environmental Studies, Davidson College, Davidson, NC, 28035, USA; Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| | - Martin Tsz-Ki Tsui
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA; School of Life Sciences, Earth and Environmental Sciences Programme, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Aslihan Sakar
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| | - Paul Nyarko
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| | - Nadia B Aitmbarek
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| | - Marcelo Ardón
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA
| | - Alex T Chow
- Biogeochemistry and Environmental Quality Research Group, Clemson University, Georgetown, SC, 29442, USA
| |
Collapse
|
30
|
Méndez-López M, Gómez-Armesto A, Eimil-Fraga C, Alonso-Vega F, Rodríguez-Soalleiro R, Álvarez-Rodríguez E, Arias-Estévez M, Nóvoa-Muñoz JC. Needle age and precipitation as drivers of Hg accumulation and deposition in coniferous forests from a southwestern European Atlantic region. ENVIRONMENTAL RESEARCH 2022; 215:114223. [PMID: 36063908 DOI: 10.1016/j.envres.2022.114223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/29/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Vegetation and climate are critical in the biogeochemical cycle of Hg in forest ecosystems. The study assesses the influence of needle age and precipitation on the accumulation of Hg in needle biomass and its deposition by litterfall in thirty-one pine plantations spread throughout two biogeographical regions in SW Europe. Well-developed branches of Pinus pinaster were sampled and pine needles were classified according to 4 age classes (y0, y1, y2, y3). The concentration of total Hg (THg) was analyzed in the samples and Hg content in needle biomass and its deposition by litterfall were estimated. The concentration of total Hg (THg) increased with needle age ranging from 9.1 to 32.7 μg Hg kg-1 in the youngest and oldest needles, respectively. The rate of Hg uptake (HgR) three years after needle sprouting was 10.2 ± 2.3 μg Hg kg-1 yr-1, but it decreased with needle age probably due to a diminution in photosynthetic activity as needles get older. The average total Hg stored in needle biomass (HgWt) ranged from 5.6 to 87.8 mg Hg ha-1, with intermediate needle age classes (y1 and y2) accounting for 70% of the total Hg stored in the whole needle biomass. The average deposition flux of Hg through needle litterfall (HgLt) was 1.5 μg Hg m-2 yr-1, with the y2 and y3 needles contributing most to the total Hg flux. The spatial variation of THg, HgWt and HgLt decreased from coastal pine stands, characterized by an oceanic climate, to inland pine stands, a feature closely related to the dominant precipitation regime in the study area. Climatic conditions and needle age are the main factors affecting Hg accumulation in tree foliage, and should be considered for an accurate assessment of forest Hg pools at a regional scale and their potential consequences in the functioning of terrestrial ecosystems.
Collapse
Affiliation(s)
- Melissa Méndez-López
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, As Lagoas s/n, 32004, Ourense, Spain; Campus da Auga, Universidade de Vigo, Laboratorio de Tecnoloxía e Diagnose Ambiental, Rúa Canella da Costa da Vela 12, 32004, Ourense, Spain.
| | - Antía Gómez-Armesto
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, As Lagoas s/n, 32004, Ourense, Spain; Campus da Auga, Universidade de Vigo, Laboratorio de Tecnoloxía e Diagnose Ambiental, Rúa Canella da Costa da Vela 12, 32004, Ourense, Spain
| | - Cristina Eimil-Fraga
- Unidad de Gestión Ambiental y Forestal Sostenible, Escuela Politécnica Superior de Ingeniería, Universidade de Santiago de Compostela, Rúa Benigno Ledo s/n, 27002, Lugo, Spain
| | - Flora Alonso-Vega
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, As Lagoas s/n, 32004, Ourense, Spain; Campus da Auga, Universidade de Vigo, Laboratorio de Tecnoloxía e Diagnose Ambiental, Rúa Canella da Costa da Vela 12, 32004, Ourense, Spain
| | - Roque Rodríguez-Soalleiro
- Unidad de Gestión Ambiental y Forestal Sostenible, Escuela Politécnica Superior de Ingeniería, Universidade de Santiago de Compostela, Rúa Benigno Ledo s/n, 27002, Lugo, Spain
| | - Esperanza Álvarez-Rodríguez
- Departamento de Edafología y Química Agrícola, Escuela Politécnica Superior de Ingeniería, Universidade de Santiago de Compostela, Rúa Benigno Ledo s/n, 27002, Lugo, Spain
| | - Manuel Arias-Estévez
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, As Lagoas s/n, 32004, Ourense, Spain; Campus da Auga, Universidade de Vigo, Laboratorio de Tecnoloxía e Diagnose Ambiental, Rúa Canella da Costa da Vela 12, 32004, Ourense, Spain
| | - Juan Carlos Nóvoa-Muñoz
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, As Lagoas s/n, 32004, Ourense, Spain; Campus da Auga, Universidade de Vigo, Laboratorio de Tecnoloxía e Diagnose Ambiental, Rúa Canella da Costa da Vela 12, 32004, Ourense, Spain
| |
Collapse
|
31
|
Richardson JB. Shale weathering profiles show Hg sequestration along a New York-Tennessee transect. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:3515-3526. [PMID: 34622414 DOI: 10.1007/s10653-021-01110-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Shale-derived soils have higher clay, organic matter, and secondary Fe oxide content than other bedrock types, all of which can sequester Hg. However, shales also can be Hg-rich due to their marine formation. The objectives of this study were to determine the concentration and phase partitioning of Hg in seven upland weathering profiles from New York to Tennessee USA and use geochemical normalization techniques to estimate the extent of Hg inheritance from weathering of shale bedrock or sequestration of atmospheric Hg. Total Hg concentrations in unweathered shale ranged from 3 to 94 ng/g. Total Hg concentrations decreased with depth in the Ultisols and Alfisols, with total Hg concentrations ranging from 18 to 265 ng/g. Across all shale soils and rocks, the oxidizable fraction of Hg (15% H2O2 extraction) comprised a large portion of the total Hg at 68% ± 8%. This fraction was dominated by organic matter as confirmed with positive correlations between Hg and %LOI, but could also be impacted by Hg sulfides. Across all sites, the reducible fraction of Hg (citrate-bicarbonate-dithionite extraction) was only 10% ± 4% of the total Hg on average. Thus, secondary Fe oxides did not contain a significant portion of Hg, as commonly observed in tropical soils. Although colder sites had a higher organic matter and sequestered more Hg, τ values for Hg indexed to Ti suggest that atmospheric deposition, such as pollution sources in Ohio River Valley, drove the highest enrichment of Hg along the transect. These results demonstrate that shale-derived soils have a net accumulation and retention of atmospheric Hg, primarily through stabilization by organic matter.
Collapse
Affiliation(s)
- Justin B Richardson
- Department of Geoscience, University of Massachusetts Amherst, 233 Morrill Science Center, Amherst, MA, 01003, USA.
| |
Collapse
|
32
|
Vieira AMD, Vaňková M, Campos I, Trubač J, Baieta R, Mihaljevič M. Estimation of mercury emissions from the forest floor of a pine plantation during a wildfire in central Portugal. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:755. [PMID: 36083387 DOI: 10.1007/s10661-022-10436-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Mercury (Hg) concentrations in soils and Hg releases from soils during wildfires are not well characterised in Portugal, even though wildfire activity continues to increase around the Mediterranean. This study focused on the low to moderate severity wildfire in Pombal (Portugal) in 2019, which consumed 12.5 ha of maritime pine (Pinus pinaster Ait.). We evaluated Hg concentrations in soil profiles and Hg pools in organic horizons to assess the fire-induced Hg emissions. Moreover, impacts of the fire on forest floor properties were estimated. Four soil profiles were sampled, two at the burned area and two at a nearby unburned area. The soil profiles displayed a typical Hg distribution, with higher Hg concentrations (156 µg kg-1) in the organic horizons with a sharp decrease in the mineral layers. The bond between organic matter and Hg was evident along the profiles, with a strong correlation between TOC and Hg. Ratios of Hg/TOC in the surface layers of the soil were similar in all profiles. The mean organic Hg pool at the studied site was calculated at 10.6 g ha-1. The fire did not seem to affect the topsoil properties based on visual indicators and the lack of statistical differences (p > 0.05) among measured fire-sensitive chemical soil properties (pH, CEC, TOC, TS) between the topsoils of the burned and unburned areas. If we consider a hypothetical complete combustion of the organic layer (743 Mg) and unaffected topsoil, we estimated a release of 133 g of Hg from the burned area. The study emphasised the importance of the forest floor for Hg retention and its crucial role in Hg emissions during wildfires in a country increasingly affected by climate change.
Collapse
Affiliation(s)
- Alda Maria Domingues Vieira
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 00, Prague, Czech Republic.
| | - Maria Vaňková
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 00, Prague, Czech Republic
| | - Isabel Campos
- Centre for Environmental and Marine Studies, Department of Environment and Planning, CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Jakub Trubač
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 00, Prague, Czech Republic
| | - Rafael Baieta
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 00, Prague, Czech Republic
| | - Martin Mihaljevič
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 00, Prague, Czech Republic
| |
Collapse
|
33
|
Zeng S, Wang X, Yuan W, Luo J, Wang D. Mercury accumulation and dynamics in montane forests along an elevation gradient in Southwest China. J Environ Sci (China) 2022; 119:1-10. [PMID: 35934454 DOI: 10.1016/j.jes.2021.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 06/15/2023]
Abstract
Understanding atmospheric mercury (Hg) accumulation in remote montane forests is critical to assess the Hg ecological risk to wildlife and human health. To quantify impacts of vegetation, climatic and topographic factors on Hg accumulation in montane forests, we assessed the Hg distribution and stoichiometric relations among Hg, carbon (C), and nitrogen (N) in four forest types along the elevation of Mt. Gongga. Our results show that Hg concentration in plant tissues follows the descending order of litter > leaf, bark > root > branch > bole wood, indicating the importance of atmospheric Hg uptake by foliage for Hg accumulation in plants. The foliar Hg/C (from 237.0 ± 171.4 to 56.8 ± 27.7 µg/kg) and Hg/N (from 7.5 ± 3.9 to 2.5 ± 1.2 mg/kg) both decrease along the elevation. These elevation gradients are caused by the heterogeneity of vegetation uptake of atmospheric Hg and the variation of atmospheric Hg° concentrations at different altitudes. Organic soil Hg accumulation is controlled by forest types, topographic and climatic factors, with the highest concentration in the mixed forest (244.9 ± 55.7 µg/kg) and the lowest value in the alpine forest (151.9 ± 44.5 µg/kg). Further analysis suggests that soil Hg is positively correlated to C (r2 = 0.66) and N (r2 = 0.57), and Hg/C and Hg/N both increase with the soil depth. These stoichiometric relations highlight the combined effects from environmental and climatic factors which mediating legacy Hg accumulation and selective Hg absorption during processes of organic soil mineralization.
Collapse
Affiliation(s)
- Shufang Zeng
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Ji Luo
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences & Ministry of Water Conservancy, Chengdu 610041, China
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
34
|
Chen C, Huang JH, Meusburger K, Li K, Fu X, Rinklebe J, Alewell C, Feng X. The interplay between atmospheric deposition and soil dynamics of mercury in Swiss and Chinese boreal forests: A comparison study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119483. [PMID: 35595001 DOI: 10.1016/j.envpol.2022.119483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Taking advantage of the different histories of Hg deposition in Davos Seehornwald in E-Switzerland and Changbai Mountain in NE-China, the influence of atmospheric deposition on Hg soil dynamics in forest soil profiles was investigated. Today, Hg fluxes in bulk precipitation were similar, and soil profiles were generally sinks for atmospherically deposited Hg at both sites. Noticeably, a net release of 2.07 μg Hg m-2 yr-1 from the Bs horizon (Podzol) in Seehornwald was highlighted, where Hg concentration (up to 73.9 μg kg-1) and soil storage (100 mg m-3) peaked. Sequential extraction revealed that organic matter and crystalline Fe and Al hydr (oxide)-associated Hg decreased in the E horizon but increased in the Bs horizon as compared to the Ah horizon, demonstrating the coupling of Hg dynamics with the podzolisation process and accumulation of legacy Hg deposited last century in the Bs horizon. The mor humus in Seehornwald allowed Hg enrichment in the forest floor (182-269 μg kg-1). In Changbai Mountain, the Hg concentrations in the Cambisol surface layer with mull humus were markedly lower (<148 μg kg-1), but with much higher Hg soil storage (54-120 mg m-3) than in the Seehornwald forest floor (18-27 mg m-3). Thus, the vertical distribution pattern of Hg was influenced by humus form and soil type. The concentrations of Hg in soil porewater in Seehornwald (3.4-101 ng L-1) and in runoff of Changbai Mountain (1.26-5.62 ng L-1) were all low. Moreover, the pools of readily extractable Hg in the soils at both sites were all <2% of total Hg. Therefore, the potential of Hg release from the forest soil profile to the adjacent aquatic environment is currently low at both sites.
Collapse
Affiliation(s)
- Chaoyue Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jen-How Huang
- Environmental Geosciences, University of Basel, 4056, Basel, Switzerland
| | - Katrin Meusburger
- Swiss Federal Institute for Forest, Snow and Landscape Research, 8903, Birmensdorf, Switzerland
| | - Kai Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuewu Fu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xian, 710061, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India
| | - Christine Alewell
- Environmental Geosciences, University of Basel, 4056, Basel, Switzerland
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xian, 710061, China.
| |
Collapse
|
35
|
Ma H, Cheng H, Guo F, Zhang L, Tang S, Yang Z, Peng M. Distribution of mercury in foliage, litter and soil profiles in forests of the Qinling Mountains, China. ENVIRONMENTAL RESEARCH 2022; 211:113017. [PMID: 35217011 DOI: 10.1016/j.envres.2022.113017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Forest ecosystems have been confirmed to be a sink of the global mercury (Hg) in the biogeochemical cycle. However, few studies have investigated the distribution of Hg in forest ecosystems on a regional scale in China. This work aimed to investigate the concentrations, distribution and influential factors of Hg in the Qinling Mountains forests in central China. Foliage, litter and soil profile samples were collected at 24 sampling sites across the Qinling Mountains forests. The results of the present study showed that the concentrations of Hg in foliage, litter, organic soils and mineral soils were maintained at relatively low levels compared with those in subtropical forests of Southwest China. The average Hg concentrations followed the order litter (74 ± 34 ng g-1) > organic soil (71 ± 37 ng g-1) > mineral soil (34 ± 21 ng g-1) > foliage (31 ± 15 ng g-1). Mercury in foliage showed no obvious spatial pattern, likely due to differences in tree species and ages across the sampling sites. Higher concentrations of Hg in litter were observed on the southern slope (low altitude), while the distribution of Hg in organic soils was the opposite. Both the tree species and environmental parameters (altitude, temperature and precipitation) controlled the Hg concentrations in litter by regulating the decomposition rate of the litter. There were significantly positive correlations between the Hg concentrations and soil organic carbon, nitrogen and sulfur in all soil layers, indicating that organic matter has a high geochemical affinity for Hg in soils. Because of the lower turnover rate and the higher accumulation of organic matter in high altitude and low temperature areas, Hg loss from biogeochemical cycling processes was effectively reduced. The spatial distribution of Hg in forests soil can be shaped by the distribution of organic matter at the regional scale.
Collapse
Affiliation(s)
- Honghong Ma
- Institute of Geophysical & Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang, 065000, China; Key Laboratory of Geochemical Cycling of Carbon and Mercury in the Earth's Critical Zone, Chinese Academy Geological Sciences, Langfang, 065000, China; Geochemical Research Center of Soil Quality, China Geological Survey, Langfang, 065000, China
| | - Hangxin Cheng
- Institute of Geophysical & Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang, 065000, China; Key Laboratory of Geochemical Cycling of Carbon and Mercury in the Earth's Critical Zone, Chinese Academy Geological Sciences, Langfang, 065000, China; Geochemical Research Center of Soil Quality, China Geological Survey, Langfang, 065000, China.
| | - Fei Guo
- Institute of Geophysical & Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang, 065000, China; Key Laboratory of Geochemical Cycling of Carbon and Mercury in the Earth's Critical Zone, Chinese Academy Geological Sciences, Langfang, 065000, China; Geochemical Research Center of Soil Quality, China Geological Survey, Langfang, 065000, China
| | - Li Zhang
- Institute of Geophysical & Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang, 065000, China; Key Laboratory of Geochemical Cycling of Carbon and Mercury in the Earth's Critical Zone, Chinese Academy Geological Sciences, Langfang, 065000, China; Geochemical Research Center of Soil Quality, China Geological Survey, Langfang, 065000, China
| | - Shiqi Tang
- Institute of Geophysical & Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang, 065000, China; Key Laboratory of Geochemical Cycling of Carbon and Mercury in the Earth's Critical Zone, Chinese Academy Geological Sciences, Langfang, 065000, China; Geochemical Research Center of Soil Quality, China Geological Survey, Langfang, 065000, China
| | - Zheng Yang
- Institute of Geophysical & Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang, 065000, China; Key Laboratory of Geochemical Cycling of Carbon and Mercury in the Earth's Critical Zone, Chinese Academy Geological Sciences, Langfang, 065000, China; Geochemical Research Center of Soil Quality, China Geological Survey, Langfang, 065000, China
| | - Min Peng
- Institute of Geophysical & Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang, 065000, China; Key Laboratory of Geochemical Cycling of Carbon and Mercury in the Earth's Critical Zone, Chinese Academy Geological Sciences, Langfang, 065000, China; Geochemical Research Center of Soil Quality, China Geological Survey, Langfang, 065000, China
| |
Collapse
|
36
|
Méndez-López M, Gómez-Armesto A, Alonso-Vega F, Pontevedra-Pombal X, Fonseca F, de Figueiredo T, Arias-Estévez M, Nóvoa-Muñoz JC. The role of afforestation species as a driver of Hg accumulation in organic horizons of forest soils from a Mediterranean mountain area in SW Europe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154345. [PMID: 35257764 DOI: 10.1016/j.scitotenv.2022.154345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/10/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Forest areas are a primary sink of atmospheric mercury (Hg) within terrestrial ecosystems, whereas forest vegetation plays a key role in atmospheric Hg transfer to soil horizons. This study assessed variations in total Hg contents (HgT) and accumulation (HgRes) in the soil organic horizons of a forest area in NE Portugal, where post-wildfire afforestation led to the substitution of the native deciduous species (Quercus pyrenaica) by fast-growing coniferous species (Pseudotsuga menziesii and Pinus nigra). The study also evaluated, for each species, the links between Hg contents and other biophilic elements of soil organic matter (C, N, S) present in organic subhorizons (OL, OF, OH). Mean HgT in the organic horizons of the different tree species follow the sequence: P. nigra (88 μg kg-1) < Q.pyrenaica (101 μg kg-1) <P. menziesii (141 μg kg-1). The highest HgRes for the entire organic horizon was found under P. menziesii (471 μg m-2), followed by P. nigra (253 μg m-2) and Q. pyrenaica (189 μg m-2). Among the organic subhorizons, values of HgT and HgRes follow the sequence OL < OF < OH, which is consistent with the degree of organic matter humification. Indeed, HgT and HgRes correlated significantly with the C/N and C/S ratios for all species and organic subhorizons, suggesting that the quality of organic matter may influence strongly the Hg fate in these forest soils. Soils from P. menziesii plots have shown an HgRes 2.5 times higher than in plots dominated by the native Q. pyrenaica. Hg accumulation in the organic horizons, promoted in the coniferous species, may increase the risk of Hg mobilization due to wildfires and forest management practices. Therefore, forest management plans should select cautiously the tree species for afforestation in order to minimize adverse environmental effects caused by changes in the biogeochemical cycle of contaminants such as Hg.
Collapse
Affiliation(s)
- M Méndez-López
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, As Lagoas s/n, 32004 Ourense, Spain; Campus da Auga, Universidade de Vigo, Laboratorio de Tecnoloxía e Diagnose Ambiental, Rúa Canella da Costa da Vela 12, 32004 Ourense, Spain.
| | - A Gómez-Armesto
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, As Lagoas s/n, 32004 Ourense, Spain; Campus da Auga, Universidade de Vigo, Laboratorio de Tecnoloxía e Diagnose Ambiental, Rúa Canella da Costa da Vela 12, 32004 Ourense, Spain
| | - F Alonso-Vega
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, As Lagoas s/n, 32004 Ourense, Spain; Campus da Auga, Universidade de Vigo, Laboratorio de Tecnoloxía e Diagnose Ambiental, Rúa Canella da Costa da Vela 12, 32004 Ourense, Spain
| | - X Pontevedra-Pombal
- Departamento de Edafoloxía e Química Agrícola, Facultade de Bioloxía, Universidade de Santiago de Compostela, Rúa Lope Gómez de Marzoa s/n, 15786 Santiago de Compostela, Spain
| | - F Fonseca
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Sta Apolónia, 5300-253 Bragança, Portugal
| | - T de Figueiredo
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Sta Apolónia, 5300-253 Bragança, Portugal
| | - M Arias-Estévez
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, As Lagoas s/n, 32004 Ourense, Spain; Campus da Auga, Universidade de Vigo, Laboratorio de Tecnoloxía e Diagnose Ambiental, Rúa Canella da Costa da Vela 12, 32004 Ourense, Spain
| | - J C Nóvoa-Muñoz
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, As Lagoas s/n, 32004 Ourense, Spain; Campus da Auga, Universidade de Vigo, Laboratorio de Tecnoloxía e Diagnose Ambiental, Rúa Canella da Costa da Vela 12, 32004 Ourense, Spain
| |
Collapse
|
37
|
Wang T, Obrist D. Inorganic and methylated mercury dynamics in estuarine water of a salt marsh in Massachusetts, USA. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118657. [PMID: 34890749 DOI: 10.1016/j.envpol.2021.118657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/06/2021] [Accepted: 12/06/2021] [Indexed: 05/26/2023]
Abstract
Salt marsh estuaries serve as sources and sinks for nutrients and elements to and from estuarine water, which enhances and alleviates watershed fluxes to the coastal ocean. We assessed sources and sinks of mercury in the intertidal Plum Island Sound estuary in Massachusetts, the largest salt marsh estuary of New England, using 25-km spatial water sampling transects. Across all seasons, dissolved (FHg) and total (THg) mercury concentrations in estuarine water were highest and strongly enhanced in upper marshes (1.31 ± 0.20 ng L-1 and 6.56 ± 3.70 ng L-1, respectively), compared to riverine Hg concentrations (0.86 ± 0.17 ng L-1 and 0.88 ± 0.34 ng L-1, respectively). Mercury concentrations declined from upper to lower marshes and were lowest in ocean water (0.38 ± 0.10 ng L-1 and 0.56 ± 0.25 ng L-1, respectively). Conservative mixing models using river and ocean water as endmembers indicated that internal estuarine Hg sources strongly enhanced estuarine water Hg concentrations. For FHg, internal estuarine Hg contributions were estimated at 26 g yr-1 which enhanced Hg loads from riverine sources to the ocean by 44%. For THg, internal sources amounted to 251 g yr-1 and exceeded riverine sources six-fold. Proposed sources for internal estuarine mercury contributions include atmospheric deposition to the large estuarine surface area and sediment re-mobilization, although sediment Hg concentrations were low (average 23 ± 2 μg kg-1) typical of uncontaminated sediments. Soil mercury concentrations under vegetation, however, were ten times higher (average 200 ± 225 μg kg-1) than in intertidal sediments suggesting that high soil Hg accumulation might drive lateral export of Hg to the ocean. Spatial transects of methylated Hg (MeHg) showed no concentration enhancements in estuarine water and no indication of internal MeHg sources or formation. Initial mass balance considerations suggest that atmospheric deposition may either be in similar magnitude, or possibly exceed lateral tidal export which would be consistent with strong Hg accumulation observed in salt marsh soils sequestering Hg from current and past atmospheric deposition.
Collapse
Affiliation(s)
- Ting Wang
- Department of Environmental, Earth, and Atmospheric Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA.
| | - Daniel Obrist
- Department of Environmental, Earth, and Atmospheric Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA.
| |
Collapse
|
38
|
Gerson JR, Szponar N, Zambrano AA, Bergquist B, Broadbent E, Driscoll CT, Erkenswick G, Evers DC, Fernandez LE, Hsu-Kim H, Inga G, Lansdale KN, Marchese MJ, Martinez A, Moore C, Pan WK, Purizaca RP, Sánchez V, Silman M, Ury EA, Vega C, Watsa M, Bernhardt ES. Amazon forests capture high levels of atmospheric mercury pollution from artisanal gold mining. Nat Commun 2022; 13:559. [PMID: 35091543 PMCID: PMC8799693 DOI: 10.1038/s41467-022-27997-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 12/16/2021] [Indexed: 11/10/2022] Open
Abstract
Mercury emissions from artisanal and small-scale gold mining throughout the Global South exceed coal combustion as the largest global source of mercury. We examined mercury deposition and storage in an area of the Peruvian Amazon heavily impacted by artisanal gold mining. Intact forests in the Peruvian Amazon near gold mining receive extremely high inputs of mercury and experience elevated total mercury and methylmercury in the atmosphere, canopy foliage, and soils. Here we show for the first time that an intact forest canopy near artisanal gold mining intercepts large amounts of particulate and gaseous mercury, at a rate proportional with total leaf area. We document substantial mercury accumulation in soils, biomass, and resident songbirds in some of the Amazon's most protected and biodiverse areas, raising important questions about how mercury pollution may constrain modern and future conservation efforts in these tropical ecosystems.
Collapse
Affiliation(s)
- Jacqueline R Gerson
- Department of Biology, Duke University, Durham, NC, 27708, USA.
- Duke Global Health Institute, Duke University, Durham, NC, 27708, USA.
| | - Natalie Szponar
- Department of Earth Sciences, University of Toronto, Toronto, ON, M5S 3B1, Canada
| | | | - Bridget Bergquist
- Department of Earth Sciences, University of Toronto, Toronto, ON, M5S 3B1, Canada
| | - Eben Broadbent
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, 32611, USA
| | - Charles T Driscoll
- Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY, 13244, USA
| | - Gideon Erkenswick
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Field Projects International, Escondido, CA, 92029, USA
| | - David C Evers
- Biodiversity Research Institute, Portland, ME, 04103, USA
| | - Luis E Fernandez
- Centro de Innovación Científica Amazónica (CINCIA), Puerto Maldonado, Peru
- Center for Energy, Environment, and Sustainability (CEES), Wake Forest University, Winston-Salem, NC, 27109, USA
- Department of Biology, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Heileen Hsu-Kim
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, 27708, USA
| | - Giancarlo Inga
- San Diego Zoo Wildlife Alliance, San Diego, CA, 92101, USA
| | - Kelsey N Lansdale
- Environmental Science Program, Duke University, Durham, NC, 27708, USA
| | - Melissa J Marchese
- Duke Global Health Institute, Duke University, Durham, NC, 27708, USA
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | - Ari Martinez
- Department of Biological Sciences, California State University, Long Beach, CA, 90840, USA
| | - Caroline Moore
- San Diego Zoo Wildlife Alliance, San Diego, CA, 92101, USA
| | - William K Pan
- Duke Global Health Institute, Duke University, Durham, NC, 27708, USA
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | | | - Victor Sánchez
- Instituto de Investigación en Ecología y Conservación (IIECOO), La Libertad, Peru
| | - Miles Silman
- Centro de Innovación Científica Amazónica (CINCIA), Puerto Maldonado, Peru
- Center for Energy, Environment, and Sustainability (CEES), Wake Forest University, Winston-Salem, NC, 27109, USA
- Department of Biology, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Emily A Ury
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Claudia Vega
- Centro de Innovación Científica Amazónica (CINCIA), Puerto Maldonado, Peru
- Center for Energy, Environment, and Sustainability (CEES), Wake Forest University, Winston-Salem, NC, 27109, USA
- Department of Biology, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Mrinalini Watsa
- Field Projects International, Escondido, CA, 92029, USA
- San Diego Zoo Wildlife Alliance, San Diego, CA, 92101, USA
| | | |
Collapse
|
39
|
Li X, Wang X, Yuan W, Lu Z, Wang D. Increase of litterfall mercury input and sequestration during decomposition with a montane elevation in Southwest China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118449. [PMID: 34740733 DOI: 10.1016/j.envpol.2021.118449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/27/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
Litterfall mercury (Hg) input has been regarded as the dominant Hg source in montane forest floor. To depict combining effects of vegetation, climate and topography on accumulation of Hg in montane forests, we comprehensively quantified litterfall Hg deposition and decomposition in a serial of subtropical forests along an elevation gradient on both leeward and windward slopes of Mt. Ailao, Southwest China. Results showed that the average litterfall Hg deposition increased from 12.0 ± 4.2 μg m-2 yr-1 in dry-hot valley shrub at 850-1000 m, 14.9 ± 6.8 μg m-2 yr-1 in mixed conifer-broadleaf forest at 1250-2400 m, to 23.1 ± 8.3 μg m-2 yr-1 in evergreen broadleaf forest at 2500-2650 m. Additionally, the windward slope forests had a significantly higher litterfall Hg depositions at the same altitude because the larger precipitation promoted the greater litterfall biomass production. The one-year litter Hg decomposition showed that the Hg mass of litter in dry-hot valley shrub decreased by 29%, while in mixed conifer-broadleaf and evergreen broadleaf forests increased by 22-48%. The dynamics of Hg in decomposing litter was controlled by the temperature mediated litter decomposition rate and the additional adsorption of environmental Hg during decomposition. Overall, our study highlights the litterfall mediated atmospheric mercury inputs and sequestration increase with the montane elevation, thus driving a Hg enhanced accumulation in the high montane forest.
Collapse
Affiliation(s)
- Xianming Li
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Zhiyun Lu
- Ailaoshan Station for Subtropical Forest Ecosystem Studies, Chinese Academy of Sciences, Jingdong, Yunnan, 676200, China
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
40
|
Prasetia H, Sakakibara M, Sera K, Laird JS. Evaluation of the Total Mercury Weight Exposure Distribution Using Tree Bark Analysis in an Artisanal and Small-Scale Gold Mining Area, North Gorontalo Regency, Gorontalo Province, Indonesia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:33. [PMID: 35010294 PMCID: PMC8750678 DOI: 10.3390/ijerph19010033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
It is well known that atmospheric mercury (Hg) contaminates air, water, soil, and living organisms, including trees. Therefore, tree bark can be used for the environmental assessment of atmospheric contamination because it absorbs heavy metals. This study aimed to establish a new biomonitoring for the assessment of atmospheric Hg pollution. Reporting on atmospheric Hg contamination in an artisanal and small-scale gold mining (ASGM) area in North Gorontalo, Indonesia, we calculated the total weight of Hg (THg) and quantitatively measured the concentrations of Hg in the tree bark of Mangifera indica, Syzygium aromaticum, Terminalia catappa, and Lansium domesticum. The THg of Hg in the M. indica tree bark samples ranged from not detected (ND) to 74.6 μg dry weight (DW) per sample. The total Hg in the tree bark of S. aromaticum, T. catappa, and L. domesticum ranged from ND to 156.8, ND to 180, and ND to 63.4 μg DW, respectively. We concluded that topography significantly influences the accumulation of Hg together with local weather conditions. A mapped distribution of the THg suggested that the distribution of THg in the tree bark was not affected by the distance to the amalgamation site. Therefore, tree bark can be used as biomonitoring of atmospheric Hg contamination for the assessment of ASGM areas.
Collapse
Affiliation(s)
- Hendra Prasetia
- Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan
- Department of Forestry, Faculty of Agriculture, University of Lampung, Bandar Lampung 35145, Indonesia
| | - Masayuki Sakakibara
- Research Institute for Humanity and Nature, Kyoto 603-8047, Japan;
- Faculty of Collaborative Regional Innovation, Ehime University, Matsuyama 790-8577, Japan
| | - Koichiro Sera
- Cyclotron Research Center, Iwate Medical University, Tomegamori 348-58 Tomegamori, Takizawa 020-0173, Japan;
| | - Jamie Stuart Laird
- School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia;
| |
Collapse
|
41
|
The proximity of a highway increases CO 2 respiration in forest soil and decreases the stability of soil organic matter. Sci Rep 2021; 11:21605. [PMID: 34732785 PMCID: PMC8566509 DOI: 10.1038/s41598-021-00971-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/21/2021] [Indexed: 11/08/2022] Open
Abstract
Roadways traverse many forest areas and they often have harmful effects on forest soils, including the modified stability of soil organic matter (SOM). Soil CO2 respiration is an important indicator of SOM biological stability. The aim of this study was to test the hypotheses that a roadway will (1) modify the composition of the cation exchange capacity of adjacent forest soils, and (2) significantly decrease the stability of SOM. Two study sites were established in Scots pine and Silver fir stands, located close to the S7 highway in central Poland, which was opened to traffic in 1984. From each site, samples were taken at 2, 12 and 22 m from the forest edge. Soil CO2 respiration was determined using closed chamber incubation with an alkali trap. We also conducted a comprehensive analysis of soil chemical properties. The stoichiometric ratios of chosen chemical parameters to total carbon (Ct) were calculated. In both sites, we observed increased soil pH and CO2 respiration in the vicinity of the highway, as well as increased ratios of exchangeable calcium (Ca), magnesium (Mg) and sodium (Na) to Ct. In the fir site, the humic and fulvic acids, the dissolved organic carbon (DOC) content and aluminum (Al) to Ct ratio were depleted in close proximity to the highway. We suggest that the combined effect of Ca and Na ions, originating from winter de-icing, caused the depletion of Al and hydrogen (H) in the soil close to the forest edge and, therefore, resulted in lower SOM stability expressed as the decreased DOC and pyrophosphate-extractable carbon content, as well as the release of CO2. We conclude that the changes of SOM stability with distance were the effect of modification of ion-exchange relationships (particularly base cations versus Al3+ with H+) rather than forest stand species or intrinsic SOM properties (like functional groups, the recalcitrance of bindings etc.). Our work supports earlier studies, confirming the significant impact of Al and H on SOM stability.
Collapse
|
42
|
Huang S, Xiao L, Zhang Y, Wang L, Tang L. Interactive effects of natural and anthropogenic factors on heterogenetic accumulations of heavy metals in surface soils through geodetector analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:147937. [PMID: 34049148 DOI: 10.1016/j.scitotenv.2021.147937] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
The rapid socioeconomic development has led to severe pollution of urban soils by heavy metals. It is vital to identify and quantify the factors that affect trace-element pollution for better preventing and managing soil pollution. In this study, we collected 179 surface soil samples from Zhangzhou City in a coastal area of south China to determine the concentration of seven heavy metals (As, Cr, Cu, Hg, Ni, Pb, and Zn) and used the Nemerow Pollution Index (Pn) to estimate the level of heavy metal pollution in soils. Eighteen environmental factors, including six natural factors (e.g. soil properties, surface topography) and twelve anthropogenic factors (e.g. industry, road network, land use types and landscape pattern), were evaluated with the geodetector statistical method. The results indicate that the heavy metal contamination of soils in Zhangzhou City was highly heterogeneous. We found that the primary influencing factors for heavy metal concentrations were soil organic matter content, agriculture activities, and landscape pattern. Furthermore, the nonlinear relationship between the primary factors and their interaction factors enhanced soil contamination by the heavy metals. Among the anthropogenic factors, landscape pattern enhanced Pn the most when interacting with natural factor. In addition, the buffer zone should be considered when evaluating the effects of factors such as land use and landscape pattern, because the interactions between landscape pattern and slope aspect produce a maximum effect, accounting for 31.0% of the Pn value on the scale of 800 m. Based on this analysis, we identified the key factors of heavy metal pollution in the soils of Zhangzhou City and proposed strategic procedures for effective soil pollution prevention and treatment in the future.
Collapse
Affiliation(s)
- Sha Huang
- Institute of Urban Study, School of Environmental and Geographical Sciences (SEGS), Shanghai Normal University, Shanghai 200234, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Lishan Xiao
- Institute of Urban Study, School of Environmental and Geographical Sciences (SEGS), Shanghai Normal University, Shanghai 200234, China.
| | - Youchi Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Lin Wang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Lina Tang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
43
|
Woś B, Gruba P, Socha J, Pietrzykowski M. Biomonitoring of Mercury Contamination in Poland Based on Its Concentration in Scots Pine ( Pinus sylvestris L.) Foliage. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph181910366. [PMID: 34639665 PMCID: PMC8507935 DOI: 10.3390/ijerph181910366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/24/2021] [Accepted: 09/30/2021] [Indexed: 11/16/2022]
Abstract
This work evaluates current mercury (Hg) contamination in Poland, represented by the Hg concentrations in Scots pine foliage. Samples were collected over 295 investigation plots in monitoring grids throughout Poland, from pines aged between 12 and 147 years. Analyses were conducted with consideration of bioclimatic factors and soil properties. Concentrations in the pine foliage did not exceed the values characteristic of an ecosystem unaffected by industrial pollution, ranging from 0.0032 to 0.0252 mg kg−1 dry mass. However, pine stands located in western and central Poland, and in the northwest near the Baltic Sea, exhibited higher Hg concentrations in foliage than in eastern regions. Hg content in foliage depends on the mean temperature of the driest quarter, as well as on Hg content in soils. This indicates that the periods of drought observed in recent years in Poland may affect Hg concentrations in pine foliage.
Collapse
Affiliation(s)
- Bartłomiej Woś
- Department of Ecology and Silviculture, Faculty of Forestry, University of Agriculture in Krakow, al. 29 Listopada 46, 31-425 Krakow, Poland; (P.G.); (M.P.)
- Correspondence:
| | - Piotr Gruba
- Department of Ecology and Silviculture, Faculty of Forestry, University of Agriculture in Krakow, al. 29 Listopada 46, 31-425 Krakow, Poland; (P.G.); (M.P.)
| | - Jarosław Socha
- Department of Forest Resources Management, Faculty of Forestry, University of Agriculture in Krakow, al. 29 Listopada 46, 31-425 Krakow, Poland;
| | - Marcin Pietrzykowski
- Department of Ecology and Silviculture, Faculty of Forestry, University of Agriculture in Krakow, al. 29 Listopada 46, 31-425 Krakow, Poland; (P.G.); (M.P.)
| |
Collapse
|
44
|
Guo J, Sharma CM, Tripathee L, Kang S, Fu X, Huang J, Shrestha KL, Chen P. Source identification of atmospheric particle-bound mercury in the Himalayan foothills through non-isotopic and isotope analyses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117317. [PMID: 33990047 DOI: 10.1016/j.envpol.2021.117317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
This study reports on the sources of atmospheric particle-bound mercury (HgP) in less studied regions of Nepal based on the analysis of stable mercury (Hg) isotopes in aerosol samples from two neighboring areas with high and low anthropogenic emissions (Kathmandu and Dhulikhel, respectively) during 2018. Although the Indian monsoon and westerlies are generally regarded as the primary carriers of pollutants to this region via the heavily industrialized Indo-Gangetic Plain, the concentrations of total suspended particles (TSP) and HgP in Kathmandu were higher than those in Dhulikhel, thus suggesting a substantial contribution from local sources. Both isotopic (δ200Hg and Δ199Hg) and non-isotopic evidence indicated that dust, waste burning, and industrial byproducts (without Hg amalgamation) were the major sources of Hg in Kathmandu during the study period. Mercury may have been transported via air masses from Kathmandu to Dhulikhel, as indicated by the similar organic carbon/elemental carbon ratios and seasonal trends of TSP and HgP in these two locations. Local anthropogenic sources were found to contribute significantly to atmospheric Hg pollution through dust resuspension. Therefore, dust resuspension should be considered when evaluating the long-range transport of air pollutants such as Hg, particularly in anthropogenically stressed areas.
Collapse
Affiliation(s)
- Junming Guo
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, 730000, China
| | - Chhatra Mani Sharma
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, 730000, China; Central Department of Environmental Science, Tribhuvan University, Kathmandu, Nepal
| | - Lekhendra Tripathee
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, 730000, China; Himalayan Environment Research Institute (HERI), Kathmandu, Nepal.
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, 730000, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuewu Fu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 99 Lincheng West Road, Guiyang, 550081, China
| | - Jie Huang
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese, Academy of Sciences, Beijing, 100101, China
| | - Kundan Lal Shrestha
- Department of Environmental Science and Engineering, Kathmandu University, Dhulikhel, Nepal
| | - Pengfei Chen
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, 730000, China
| |
Collapse
|
45
|
Tarbier B, Hugelius G, Kristina Sannel AB, Baptista-Salazar C, Jonsson S. Permafrost Thaw Increases Methylmercury Formation in Subarctic Fennoscandia. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6710-6717. [PMID: 33902281 PMCID: PMC8277125 DOI: 10.1021/acs.est.0c04108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Methylmercury (MeHg) forms in anoxic environments and can bioaccumulate and biomagnify in aquatic food webs to concentrations of concern for human and wildlife health. Mercury (Hg) pollution in the Arctic environment may worsen as these areas warm and Hg, currently locked in permafrost soils, is remobilized. One of the main concerns is the development of Hg methylation hotspots in the terrestrial environment due to thermokarst formation. The extent to which net methylation of Hg is enhanced upon thaw is, however, largely unknown. Here, we have studied the formation of Hg methylation hotspots using existing thaw gradients at five Fennoscandian permafrost peatland sites. Total Hg (HgT) and MeHg concentrations were analyzed in 178 soil samples from 14 peat cores. We observed 10 times higher concentrations of MeHg and 13 times higher %MeHg in the collapse fen (representing thawed conditions) as compared to the peat plateau (representing frozen conditions). This suggests significantly greater net methylation of Hg when thermokarst wetlands are formed. In addition, we report HgT to soil organic carbon ratios representative of Fennoscandian permafrost peatlands (median and interquartile range of 0.09 ± 0.07 μg HgT g-1 C) that are of value for future estimates of circumpolar HgT stocks.
Collapse
Affiliation(s)
- Brittany Tarbier
- Department
of Physical Geography, Stockholm University, Stockholm 106 91, Sweden
| | - Gustaf Hugelius
- Department
of Physical Geography, Stockholm University, Stockholm 106 91, Sweden
- Bolin
Centre for Climate Research, Stockholm University, Stockholm 106 91, Sweden
| | - Anna Britta Kristina Sannel
- Department
of Physical Geography, Stockholm University, Stockholm 106 91, Sweden
- Bolin
Centre for Climate Research, Stockholm University, Stockholm 106 91, Sweden
| | | | - Sofi Jonsson
- Department
of Environmental Science, Stockholm University, Stockholm 106 91, Sweden
| |
Collapse
|
46
|
Ballabio C, Jiskra M, Osterwalder S, Borrelli P, Montanarella L, Panagos P. A spatial assessment of mercury content in the European Union topsoil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144755. [PMID: 33736262 PMCID: PMC8024745 DOI: 10.1016/j.scitotenv.2020.144755] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 05/29/2023]
Abstract
Mapping of surface soil Hg concentrations, a priority pollutant, at continental scale is important in order to identify hotspots of soil Hg distribution (e.g. mining or industrial pollution) and identify factors that influence soil Hg concentrations (e.g. climate, soil properties, vegetation). Here we present soil Hg concentrations from the LUCAS topsoil (0-20 cm) survey including 21,591 samples from 26 European Union countries (one sample every ~200 km2). Deep Neural Network (DNN) learning models were used to map the European soil Hg distribution. DNN estimated a median Hg concentration of 38.3 μg kg-1 (2.6 to 84.7 μg kg-1) excluding contaminated sites. At continental scale, we found that soil Hg concentrations increased with latitude from south to north and with altitude. A GLMM revealed a correlation (R2 = 0.35) of soil Hg concentrations with vegetation activity, normalized difference vegetation index (NDVI), and soil organic carbon content. This observation corroborates the importance of atmospheric Hg0 uptake by plants and the build-up of the soil Hg pool by litterfall over continental scales. The correlation of Hg concentrations with NDVI was amplified by higher soil organic matter content, known to stabilize Hg in soils through thiol bonds. We find a statistically significant relation between soil Hg levels and coal use in large power plants, proving that emissions from power plants are associated with higher mercury deposition in their proximity. In total 209 hotspots were identified, defined as the top percentile in Hg concentration (>422 μg kg-1). 87 sites (42% of all hotspots) were associated with known mining areas. The sources of the other hotspots could not be identified and may relate to unmined geogenic Hg or industrial pollution. The mapping effort in the framework of LUCAS can serve as a starting point to guide local and regional authorities in identifying Hg contamination hotspots in soils.
Collapse
Affiliation(s)
| | - Martin Jiskra
- Environmental Geosciences, University of Basel, Basel, Switzerland.
| | - Stefan Osterwalder
- Université Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, Grenoble, France.
| | - Pasquale Borrelli
- Università degli Studi di Pavia, Dipartimento di Scienze della Terra e dell'Ambiente, Pavia, Italy.
| | | | - Panos Panagos
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
| |
Collapse
|
47
|
Seelen EA, Chen CY, Balcom PH, Buckman KL, Taylor VF, Mason RP. Historic contamination alters mercury sources and cycling in temperate estuaries relative to uncontaminated sites. WATER RESEARCH 2021; 190:116684. [PMID: 33310435 PMCID: PMC7855490 DOI: 10.1016/j.watres.2020.116684] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 05/16/2023]
Abstract
Mercury (Hg) is a global and persistent pollutant which can be methylated to more toxic forms (methylmercury; MeHg) in natural systems. Both forms pose a health risk to humans and wildlife, and exposure often begins in aquatic environments. Therefore, quantifying aquatic concentrations and identifying source pathways is important for understanding biotic exposure. In this study, data from estuaries in the Northeast United States were combined to evaluate how point source contamination impacts the concentration and source dynamics of water column total and MeHg with an emphasis on sediment versus non-sediment sources. Partial least squares regression models were implemented to identify a set of variables most related to water column MeHg and total Hg (HgT) across the estuaries. The main findings suggest that contaminated sites have strong internal recycling of HgT that dominates over external inputs, and this leads to elevated concentrations of HgT and MeHg in the local water columns. However, HgT sources in uncontaminated estuarine systems have a strong connection to the local watershed with dissolved HgT linked to dissolved organic carbon, and particulate HgT linked to watershed land use and estuarine mixing. There was little correlative evidence that water column MeHg concentrations were linked to sediment in such systems, but unlike HgT, the concentrations were also not clearly linked to the watershed. Instead, in situ methylation of dissolved water column HgT appeared to dominate the MeHg source pathway. The results suggest that Hg point-source contaminated sites should be considered independently from non-contaminated sites in terms of management, and that land use plays an important indirect role in coastal MeHg dynamics.
Collapse
Affiliation(s)
- Emily A Seelen
- University of Connecticut, Department of Marine Sciences, 1084 Shennecossett Road, Groton, CT, 06340 USA.
| | - Celia Y Chen
- Dartmouth College, Department of Biological Sciences, Hanover, NH 03755 USA.
| | - Prentiss H Balcom
- University of Connecticut, Department of Marine Sciences, 1084 Shennecossett Road, Groton, CT, 06340 USA; Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS), 29 Oxford Street, Cambridge, MA 02138 USA.
| | - Kate L Buckman
- Dartmouth College, Department of Biological Sciences, Hanover, NH 03755 USA.
| | - Vivien F Taylor
- Dartmouth College, Department of Earth Science, Hanover, NH 03755 USA.
| | - Robert P Mason
- University of Connecticut, Department of Marine Sciences, 1084 Shennecossett Road, Groton, CT, 06340 USA.
| |
Collapse
|
48
|
Wang T, Yang G, Du H, Guo P, Sun T, An S, Wang D, Ma M. Migration characteristics and potential determinants of mercury in long-term decomposing litterfall of two subtropical forests. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111402. [PMID: 33068979 DOI: 10.1016/j.ecoenv.2020.111402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/11/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
It is of great importance to elucidate the mechanism of mercury (Hg) migration in the forest litterfall so as to clearly understand global Hg deposition. However, it is still unclear for the migration and transformation of Hg in different forest litters during long-term decomposition. Therefore, the dynamics of total Hg (THg), methylmercury (MeHg), carbon, nitrogen, microbial biomass carbon and nitrogen in the litterfall of the evergreen broadleaf (EB) and mixed broadleaf-conifer (MBC) forests, southwest China were investigated, aiming to understand the migration characteristics of Hg in the two-year decomposing litterfall. Results showed that carbon decreased, while nitrogen accumulated slightly in the process of litterfall decomposition. THg levels in the second year of the EB and MBC forests decreased by 16.9% and 11.3%, while MeHg levels reduced by 141.4% and 210.7% respectively comparing with those in the first year. The total percentage of hydrochloric acid-soluble mercury (Hg-h) and water-soluble mercury (Hg-w) had a significant impact on the migration of THg and MeHg in the two forest stands. The C/N ratio in the EB forest bore a positive correlation with THg and MeHg levels, whereas that in the MBC forest was adverse. Besides, microbial biomass C and N were positively related with THg and MeHg levels in both the EB and MBC forests. It is proposed that THg and MeHg accumulation in the second year drastically decreased probably due to finite nutritional conditions, which implies that Hg accumulation risks alleviate with degradation time.
Collapse
Affiliation(s)
- Tao Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Southwest University, Chongqing 400715, China
| | - Guang Yang
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Southwest University, Chongqing 400715, China
| | - Hongxia Du
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Bio-resource for Bioenergy, Southwest University, Chongqing 400715, China
| | - Pan Guo
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Southwest University, Chongqing 400715, China
| | - Tao Sun
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Southwest University, Chongqing 400715, China
| | - Siwei An
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Southwest University, Chongqing 400715, China
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Southwest University, Chongqing 400715, China
| | - Ming Ma
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Bio-resource for Bioenergy, Southwest University, Chongqing 400715, China.
| |
Collapse
|
49
|
da Silva Oliveira CA, Kasper D, Sargentini Junior É, Bolson MA, Torrezani L, Zara LF. Influence of environmental conditions on the mercury levels of the sediment along the Balbina Reservoir, Brazilian Amazon. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:50. [PMID: 33420665 DOI: 10.1007/s10661-020-08837-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Mercury dynamics in hydroelectric reservoirs have been studied worldwide. In tropical reservoirs, especially in those of the Amazon, the influence of geochemistry on Hg levels along this aquatic system is not well understood. The main objective of the present study was to assess the influence of environmental conditions (physical and chemical water parameters, trace element concentrations of sediment and sediment geochemistry) on mercury levels of sediment along the Balbina Reservoir (Amazon basin, Brazil). Sediment was collected along the reservoir and in the main tributaries in May 2015 (n = 10). These samples were assessed for labile iron (LFe), manganese (LMn), aluminum (LAl) and mercury (LHg) concentrations, total mercury (THg) concentrations, organic matter (OM) content, and granulometry. Concentrations in the sediment were 4-212 (LFe), 2-460 (LAl), 180-613 (LMn), < detection limit-256 (LHg), and 12-307 μg kg-1 dry weight (THg). In general, these concentrations decreased along the reservoir from upstream to downstream, reaching the lowest concentrations in the middle of the lake, and they increased in the sampling points near the dam. The lability and concentrations of mercury were influenced by the concentrations of LFe, LMn, LAl, and the granulometry and OM content of the sediment. Altogether, THg concentrations of sediments of the Balbina Reservoir encompass the range of concentrations of other reservoirs or natural lakes in the Amazon basin (from ten to a few hundred μg kg-1 dry weight).
Collapse
Affiliation(s)
| | - Daniele Kasper
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-900, Brazil
| | | | | | | | | |
Collapse
|
50
|
Lu Z, Yuan W, Luo K, Wang X. Litterfall mercury reduction on a subtropical evergreen broadleaf forest floor revealed by multi-element isotopes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115867. [PMID: 33160734 DOI: 10.1016/j.envpol.2020.115867] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Litterfall mercury (Hg) deposition is the dominant source of soil Hg in forests. Identifying reduction processes and tracking the fate of legacy Hg on forest floor are challenging tasks. Interplays between isotopes of carbon (C) and nitrogen (N) may shed some lights on Hg biogeochemical processes because their biogeochemical cycling closely links with organic matters. Isotope measurements at the evergreen broadleaf forest floor at Mt. Ailao (Mountain Ailao) display that δ202Hg and Δ199Hg both significantly correlate with δ13C and δ15N in soil profiles. Data analysis results show that microbial reduction is the dominant process for the distinct δ202Hg shift (up to ∼1.0‰) between Oi and 0-10 cm surface mineral soil, and dark abiotic organic matter reduction is the main cause for the Δ199Hg shift (∼-0.18‰). Higher N in foliage leads to greater Hg concentration, and Hg0 re-emission via microbial reduction on forest floor is likely linked to N release and immobilization on forest floor. We thus suggest that the enhanced N deposition in global forest ecosystems can potentially influence Hg uptake by vegetation and litter Hg sequestration on forest floor.
Collapse
Affiliation(s)
- Zhiyun Lu
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Xishuangbanna, Yunnan, 666303, China; Ailaoshan Station for Subtropical Forest Ecosystem Studies, Chinese Academy of Sciences, Jingdong, Yunnan, 676200, China
| | - Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Kang Luo
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Xishuangbanna, Yunnan, 666303, China; Ailaoshan Station for Subtropical Forest Ecosystem Studies, Chinese Academy of Sciences, Jingdong, Yunnan, 676200, China
| | - Xun Wang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| |
Collapse
|