1
|
Lin Y, Qiao J, Sun Y, Dong H. The profound review of Fenton process: What's the next step? J Environ Sci (China) 2025; 147:114-130. [PMID: 39003034 DOI: 10.1016/j.jes.2023.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 07/15/2024]
Abstract
Fenton and Fenton-like processes, which could produce highly reactive species to degrade organic contaminants, have been widely used in the field of wastewater treatment. Therein, the chemistry of Fenton process including the nature of active oxidants, the complicated reactions involved, and the behind reason for its strongly pH-dependent performance, is the basis for the application of Fenton and Fenton-like processes in wastewater treatment. Nevertheless, the conflicting views still exist about the mechanism of the Fenton process. For instance, reaching a unanimous consensus on the nature of active oxidants (hydroxyl radical or tetravalent iron) in this process remains challenging. This review comprehensively examined the mechanism of the Fenton process including the debate on the nature of active oxidants, reactions involved in the Fenton process, and the behind reason for the pH-dependent degradation of contaminants in the Fenton process. Then, we summarized several strategies that promote the Fe(II)/Fe(III) cycle, reduce the competitive consumption of active oxidants by side reactions, and replace the Fenton reagent, thus improving the performance of the Fenton process. Furthermore, advances for the future were proposed including the demand for the high-accuracy identification of active oxidants and taking advantages of the characteristic of target contaminants during the degradation of contaminants by the Fenton process.
Collapse
Affiliation(s)
- Yimin Lin
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Junlian Qiao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yuankui Sun
- Department of Environmental Science, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Hongyu Dong
- Department of Environmental Science, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
2
|
Yang S, Sun S, Xie Z, Dong Y, Zhou P, Zhang J, Xiong Z, He CS, Mu Y, Lai B. Comprehensive Insight into the Common Organic Radicals in Advanced Oxidation Processes for Water Decontamination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19571-19583. [PMID: 39442087 DOI: 10.1021/acs.est.4c06676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Radical-based advanced oxidation processes (AOPs) are among the most effective technologies employed to destroy organic pollutants. Compared to common inorganic radicals, such as •OH, O2•-, and SO4•-, organic radicals are widespread, and more selective, but are easily overlooked. Furthermore, a systematic understanding of the generation and contributions of organic radicals remains lacking. In this review, we systematically summarize the properties, possible generation pathways, detection methods, and contributions of organic radicals in AOPs. Notably, exploring organic radicals in AOPs is challenging due to (1) limited detection methods for generated organic radicals; (2) controversial organic radical-mediated reaction mechanisms; and (3) rapid transformation of organic radicals as reaction intermediates. In addition to their characteristics and reactivity, we examine potential scenarios of organic radical generation in AOPs, including during the peroxide activation process, in water matrices or with coexisting organic pollutants, and due to the addition of quenching agents. Subsequently, we summarize various methods for organic radical detection as reported previously, such as electron paramagnetic resonance spectroscopy (EPR), 31P nuclear magnetic resonance spectroscopy (31P NMR), liquid/gas chromatography-mass spectroscopy (GC/LC-MS), and fluorescence probes. Finally, we review the contributions of organic radicals to decontamination processes and provide recommendations for future research.
Collapse
Affiliation(s)
- Shurun Yang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Si Sun
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zhihui Xie
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yudan Dong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Peng Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Jing Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Chuan-Shu He
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| |
Collapse
|
3
|
Zhang C, Yang A, Qin B, Zhao W, Kong C, Qin C. pH dependence of reactive oxygen species generation and pollutant degradation in Fe(II)/O 2/tripolyphosphate system. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136174. [PMID: 39418909 DOI: 10.1016/j.jhazmat.2024.136174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/26/2024] [Accepted: 10/13/2024] [Indexed: 10/19/2024]
Abstract
It has been reported that tripolyphosphate (TPP) can effectively enhance the activation of O2 by Fe(II) to remove organic pollutants in the environment. However, the influence of solution pH on the generation and conversion of reactive oxygen species (ROS) and their degradation of pollutants in the Fe(II)/O2/TPP system needs further investigation. In this study, we demonstrated that O2•- and •OH were the main ROS responsible for degradation in the system at different pH conditions, and their formation rates were calculated using a steady-state model. Experiments combined with density functional theory (DFT) calculations showed that the p-nitrophenol (PNP) degradation pathway in the Fe(II)/O2/TPP system is regulated by solution pH. Specifically, at pH = 3, the existence of Fe(II) in the solution is dominated by [Fe(II)(HTPP)2]2-, which leads to a rapid conversion from O2 and HO2• to generate •OH, and PNP is primarily oxidatively degraded. However, at pH = 5/7, [Fe(II)(TPP)2]4- is taking the lead with which O2•- is accumulated in the solution due to the slow conversion to •OH in this condition, and the PNP is mainly reductively degraded. This study proposes a new strategy to achieve the targeted oxidative/reductive removal of different types of pollutants by simply varying the solution pH in the Fe(II)/O2/TPP system.
Collapse
Affiliation(s)
- Chengwu Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China
| | - Anqi Yang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China
| | - Bing Qin
- Sinopec Research Institute of Petroleum Processing Co., LTD, Beijing 100083, China
| | - Wei Zhao
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China
| | - Chuipeng Kong
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, China.
| | - Chuanyu Qin
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China.
| |
Collapse
|
4
|
Myakala SN, Ladisich M, Ayala P, Rabl H, Batool S, Elsaesser MS, Cherevan A, Eder D. Harnessing a Ti-based MOF for selective adsorption and visible-light-driven water remediation. JOURNAL OF MATERIALS CHEMISTRY. A 2024; 12:19924-19934. [PMID: 39114767 PMCID: PMC11302510 DOI: 10.1039/d4ta01967a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/04/2024] [Indexed: 08/10/2024]
Abstract
In pursuit of universal access to clean water, photocatalytic water remediation using metal-organic frameworks (MOFs) emerges as a strong alternative to the current wastewater treatment methods. In this study, we explore a unique Ti-based MOF comprised of 2D secondary-building units (SBUs) connected via biphenyl dicarboxylic acid (H2bpdc) ligands - denoted as COK-47 - as a visible-light-driven photocatalyst for organic dye degradation. Synthesized via a recently developed microwave-assisted method, COK-47 exhibits high hydrolytic stability, demonstrates a strong dye uptake, and shows noteworthy dye-degradation performance under UV, visible, and solar light, outperforming benchmark TiO2 and MIL-125-Ti photocatalysts. Due to its nanocrystalline structure and surface termination with organic linkers, COK-47 exhibits selective degradation of cationic pollutants while remaining inert towards anionic dyes, thus highlighting its potential for selective oxidation reactions. Mechanistic studies reveal the involvement of superoxide radicals in the degradation process and emphasize the need to minimize the recombination of photogenerated electron-hole pairs to achieve optimal performance. Post-catalytic studies further confirm the high stability and reusability of COK-47, making it a promising photocatalyst for water purification, organic transformation, and water splitting reactions under visible light.
Collapse
Affiliation(s)
- Stephen Nagaraju Myakala
- Institute of Materials Chemistry, Division of Molecular Materials Chemistry, TU Wien Getreidemarkt 9/BC/02 1060 Vienna Austria
| | - Magdalena Ladisich
- Institute of Materials Chemistry, Division of Molecular Materials Chemistry, TU Wien Getreidemarkt 9/BC/02 1060 Vienna Austria
| | - Pablo Ayala
- Institute of Materials Chemistry, Division of Molecular Materials Chemistry, TU Wien Getreidemarkt 9/BC/02 1060 Vienna Austria
| | - Hannah Rabl
- Institute of Materials Chemistry, Division of Molecular Materials Chemistry, TU Wien Getreidemarkt 9/BC/02 1060 Vienna Austria
| | - Samar Batool
- Institute of Materials Chemistry, Division of Molecular Materials Chemistry, TU Wien Getreidemarkt 9/BC/02 1060 Vienna Austria
| | - Michael S Elsaesser
- Department of Chemistry and Physics of Materials, Paris-Lodron-University of Salzburg 5020 Salzburg Austria
| | - Alexey Cherevan
- Institute of Materials Chemistry, Division of Molecular Materials Chemistry, TU Wien Getreidemarkt 9/BC/02 1060 Vienna Austria
| | - Dominik Eder
- Institute of Materials Chemistry, Division of Molecular Materials Chemistry, TU Wien Getreidemarkt 9/BC/02 1060 Vienna Austria
| |
Collapse
|
5
|
Wang M, Song Z, Shen Q, Zeng H, Su X, Sun F, Dong W, Xing D, Zhou G. Simultaneous enhanced antibiotic pollutants removal and sustained permeability of the membrane involving CoFe 2O 4/MoS 2 catalyst initiated with simple H 2O 2 backwashing. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135086. [PMID: 39024762 DOI: 10.1016/j.jhazmat.2024.135086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
Membranes for wastewater treatment should ideally exhibit sustainable high permeate production, enhanced pollutant removal, and intrinsic physical rejection. In this study, CoFe2O4/MoS2 serves as a non-homogeneous phase catalyst; it is combined with polyether sulfone membranes via liquid-induced phase separation to simultaneously sustain membrane permeability and enhance antibiotic pollutant degradation. The prepared catalytic membranes have higher pure water flux (329.34 L m-2 h-1) than pristine polyethersulfone membranes (219.03 L m-2 h-1), as well as higher mean pore size, porosity, and hydrophilicity. Under a moderate transmembrane pressure (0.05 MPa), tetracycline (TC) in synthetic and real wastewater was degraded by the optimal catalytic membrane by 72.7 % and 91.2 %, respectively. Owing to the generation of the reactive oxygen species (ROS) during the Fenton-like reaction process, the catalytic membrane could exclude the natural organics during the H2O2 backwash step and selectively promote fouling degradation in the membrane channel. The irreversible fouling ratio of the catalyzed membrane was significantly reduced, and the flux recovery rate increased by up to 91.6 %. A potential catalytic mechanism and TC degradation pathways were proposed. This study offers valuable insights for designing catalytic membranes with enhanced filtration performance.
Collapse
Affiliation(s)
- Mingming Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zi Song
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Qi Shen
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Haojie Zeng
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xiaoli Su
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Feiyun Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Wenyi Dong
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dingyu Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guofei Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
6
|
Ren Y, Liu C, Ji C, Lai B, Zhang W, Li J. Selective oxidation decontamination in cobalt molybdate activated Fenton-like oxidation via synergic effect of cobalt and molybdenum. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134639. [PMID: 38772113 DOI: 10.1016/j.jhazmat.2024.134639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/01/2024] [Accepted: 05/16/2024] [Indexed: 05/23/2024]
Abstract
In this study, cobalt molybdate (CoMoO4) activated peracetic acid (PAA) was developed for water purification. CoMoO4/PAA system could remove 95% SMX with pseudo-first-order reaction rate constant of 0.15410 min-1, which was much higher than CoFe2O4/PAA, FeMoO4/PAA, and CoMoO4/persulfate systems. CoMoO4/PAA system follows a non-radical species pathway dominated by the high-valent cobalt (Co(IV)), and CH3C(O)OO• shows a minor contribution to decontamination. Density functional theory (DFT) calculation indicates that the generation of Co(IV) is thermodynamically more favorable than CH3C(O)OO• generation. The abundant Co(IV) generation was attributed to the special structure of CoMoO4 and effect of molybdenum on redox cycle of Co(II)/Co(III). DFT calculation showed that the atoms of SMX with higher ƒ0 and ƒ- values are the main attack sites, which are in accordance with the results of degradation byproducts. CoMoO4/PAA system can effectively reduce biological toxicity after the reaction. Benefiting from the selective of Co(IV) and CH3C(O)OO•, the established CoMoO4/PAA system exhibits excellent anti-interference capacity and satisfactory decontamination performance under actual water conditions. Furthermore, the system was capable of good potential practical application for efficient removal of various organics and favorable reuse. Overall, this study provides a new strategy by CoMoO4 activated PAA for decontamination with high efficiency, high selectivity and favorable anti-interference.
Collapse
Affiliation(s)
- Yi Ren
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Chao Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Chenghan Ji
- College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Bo Lai
- Department of Environmental Science and Engineering, School of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Weiming Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jun Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
7
|
Dong J, Dong H, Xiao J, Li L, Huang D, Zhao M. Enhanced Degradation of Micropollutants in a Peracetic Acid/Mn(II) System with EDDS: An Investigation of the Role of Mn Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12179-12188. [PMID: 38913078 DOI: 10.1021/acs.est.4c00901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Extensive research has been conducted on the utilization of a metal-based catalyst to activate peracetic acid (PAA) for the degradation of micropollutants (MPs) in water. Mn(II) is a commonly employed catalyst for homogeneous advanced oxidation processes (AOPs), but its catalytic performance with PAA is poor. This study showed that the environmentally friendly chelator ethylenediamine-N,N'-disuccinic acid (EDDS) could greatly facilitate the activation of Mn(II) in PAA for complete atrazine (ATZ) degradation. In this process, the EDDS enhanced the catalytic activity of manganese (Mn) and prevented disproportionation of transient Mn species, thus facilitating the decay of PAA and mineralization of ATZ. By employing electron spin resonance detection, quenching and probe tests, and 18O isotope-tracing experiments, the significance of high-valent Mn-oxo species (Mn(V)) in the Mn(II)-EDDS/PAA system was revealed. In particular, the involvement of the Mn(III) species was essential for the formation of Mn(V). Mn(III) species, along with singlet oxygen (1O2) and acetyl(per)oxyl radicals (CH3C(O)O•/CH3C(O)OO•), also contributed partially to ATZ degradation. Mass spectrometry and density functional theory methods were used to study the transformation pathway and mechanism of ATZ. The toxicity assessment of the oxidative products indicated that the toxicity of ATZ decreased after the degradation reaction. Moreover, the system exhibited excellent interference resistance toward various anions and humid acid (HA), and it could selectively degrade multiple MPs.
Collapse
Affiliation(s)
- Jie Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, Hunan 410082, China
| | - Haoran Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, Hunan 410082, China
| | - Junyang Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, Hunan 410082, China
| | - Long Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, Hunan 410082, China
| | - Daofen Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, Hunan 410082, China
| | - Mengxi Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
8
|
Jia D, Therias S, Voelker F, Kieffer J, Favero C, Mailhot G. Photochemical fate of nonionic polyacrylamide induced by hydroxyl radicals in the natural water: Mineralization mechanism exploration and half-life time evaluation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174485. [PMID: 38972421 DOI: 10.1016/j.scitotenv.2024.174485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
Water-soluble polyacrylamide (PAM) compounds have been used extensively in various sectors. The abundance of PAM in the environment raises concerns about its environmental impact. However, the mineralization of PAM in water under natural light irradiation remains insufficiently explored. This study utilizes nonionic PAM (nPAM) as a representative model to investigate both the mechanism and efficiency of nPAM degradation in water when exposed to ultraviolet (UV) light with hydrogen peroxide (H2O2) as the hydroxyl radical source. In the dark or with only UVA irradiation, negligible mineralization of nPAM occurred. In contrast, the presence of hydroxyl radicals (produced by the UVA/H2O2 system) produced 50 % nPAM mineralization over 7 days under our experimental conditions. The corresponding molecular weight (MW) of the nPAM was swiftly reduced from 1.58 ×106 Da to 1.59 ×103 Da in 3 days. Moreover, five carboxylic acids and nitrate ions were identified as the photodegradation intermediates of nPAM. The efficiencies of nPAM photodegradation by the UVA/H2O2 system in different natural waters and environmental conditions were assessed. The rate constant for the reaction between the hydroxyl radical and nPAM was 2.17 ×109 M-unit-1 s-1. The half-lives of nPAM in the sea and continental surface waters were determined to be several years and dozens of days, respectively. The application of UVB obviously accelerated the mineralization of nPAM in ultrapure water (71 % degradation in 7 days). Moreover, mineralization of concentrated nPAM (200 mg/L) in sea water was more efficient when both UVA- and UVB-activated H2O2 were used. Additionally, toxic acrylamide was not generated during nPAM photodegradation. Moreover, the photodegradation intermediates from nPAM were found to be neither acutely nor chronically toxic to aquatic organisms. This comprehensive study sheds light on the photochemical fate of nPAM in natural waters and provides essential insight for practical treatment of PAM in water systems.
Collapse
Affiliation(s)
- Daqing Jia
- Université Clermont Auvergne, CNRS, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France; SNF, SA, ZAC de milieux, 42160, Andrézieux-Bouthéon, France; National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Sandrine Therias
- Université Clermont Auvergne, CNRS, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | | | - Johann Kieffer
- SNF, SA, ZAC de milieux, 42160, Andrézieux-Bouthéon, France
| | - Cédrick Favero
- SNF, SA, ZAC de milieux, 42160, Andrézieux-Bouthéon, France
| | - Gilles Mailhot
- Université Clermont Auvergne, CNRS, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France; Université Clermont Auvergne, CNRS, Laboratoire de Météorologie Physique, F-63000 Clermont-Ferrand, France
| |
Collapse
|
9
|
Guo J, Gao B, Li Q, Wang S, Shang Y, Duan X, Xu X. Size-Dependent Catalysis in Fenton-like Chemistry: From Nanoparticles to Single Atoms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403965. [PMID: 38655917 DOI: 10.1002/adma.202403965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/20/2024] [Indexed: 04/26/2024]
Abstract
State-of-the-art Fenton-like reactions are crucial in advanced oxidation processes (AOPs) for water purification. This review explores the latest advancements in heterogeneous metal-based catalysts within AOPs, covering nanoparticles (NPs), single-atom catalysts (SACs), and ultra-small atom clusters. A distinct connection between the physical properties of these catalysts, such as size, degree of unsaturation, electronic structure, and oxidation state, and their impacts on catalytic behavior and efficacy in Fenton-like reactions. In-depth comparative analysis of metal NPs and SACs is conducted focusing on how particle size variations and metal-support interactions affect oxidation species and pathways. The review highlights the cutting-edge characterization techniques and theoretical calculations, indispensable for deciphering the complex electronic and structural characteristics of active sites in downsized metal particles. Additionally, the review underscores innovative strategies for immobilizing these catalysts onto membrane surfaces, offering a solution to the inherent challenges of powdered catalysts. Recent advances in pilot-scale or engineering applications of Fenton-like-based devices are also summarized for the first time. The paper concludes by charting new research directions, emphasizing advanced catalyst design, precise identification of reactive oxygen species, and in-depth mechanistic studies. These efforts aim to enhance the application potential of nanotechnology-based AOPs in real-world wastewater treatment.
Collapse
Affiliation(s)
- Jirui Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Qian Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Yanan Shang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
10
|
Tian S, Yang Z, Yan F, Xue X, Lu J. Preparation of xylooligosaccharides from rice husks and their structural characterization, antioxidant activity, and probiotic properties. Int J Biol Macromol 2024; 271:132575. [PMID: 38788863 DOI: 10.1016/j.ijbiomac.2024.132575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Rice husks are rich in xylan, which can be hydrolyzed by xylanase to form xylooligosaccharides (XOS). XOS are a functional oligosaccharide such as improving gut microbiota and antioxidant properties. In this study, the structure and functional characteristics of XOS were studied. The optimal xylanase hydrolysis conditions through response surface methodology (RSM) were: xylanase dosage of 3000 U/g, hydrolysis time of 3 h, hydrolysis temperature of 50 °C. Under this condition, the yield of XOS was 150.9 mg/g. The TG-DTG curve showed that XOS began to decompose at around 200 °C. When the concentration of XOS reached 1.0 g/L, the clearance rate of DPPH reached 65.76 %, and the scavenging rate of OH reached 62.10 %, while the clearance rate of ABTS free radicals reached 97.70 %, which was equivalent to the clearance rate of VC. XOS had a proliferative effect on four probiotics: Lactobacillus plantarum, Lactobacillus brucelli, Lactobacillus acidophilus, and Lactobacillus rhamnosus. However, the further experiments are needed to explore the improvement effect of XOS on human gut microbiota, laying a foundation for the effective utilization of XOS. XOS have a wide range of sources, low price, and broad development prospects. The reasonable utilization of XOS can bring greater economic benefits.
Collapse
Affiliation(s)
- Shuangqi Tian
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; Food Laboratory of Zhongyuan, Luohe 462300, China.
| | - Ziyi Yang
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Feng Yan
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Xing'ao Xue
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Jing Lu
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, PO Box 7015, SE-75007 Uppsala, Sweden
| |
Collapse
|
11
|
Fu BG, Zhou X, Lu Y, Quan WZ, Li C, Cheng L, Xiao X, Yu YY. Interfacial OOH* mediated Fe(II) regeneration on the single atom Co-N-C catalyst for efficient Fenton-like processes. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134214. [PMID: 38603908 DOI: 10.1016/j.jhazmat.2024.134214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/17/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
Fe(II) regeneration is decisive for highly efficient H2O2-based Fenton-like processes, but the role of cobalt-containing reactive sites in promoting Fe(II) regeneration was overlooked. Herein, a single atom Co-N-C catalyst was employed in Fe(II)/H2O2 system to promote the degradation of diverse organic contaminants. The EPR and quenching experiments indicated Co-N-C significantly enhanced the generation of superoxide species, and accelerated hydroxyl radical generation for pollutant degradation. The electrochemical and surface composition analyses demonstrated the enhanced H2O2 activation and Fe(III)/Fe(II) recycling on the catalyst. Furthermore, in-situ Raman characterization with shell-isolated gold nanoparticles was employed to visualize the interfacial reactive intermediates and their time-resolved interaction. The accumulation of interfacial CoOOH* was confirmed when Co-N-C activated H2O2 alone, but it rapidly transformed into FeOOH* upon Fe(II) addition. Besides, the temporal variation of OOH* intermediates and the relative intensity of Co(III)-O and Co(IV)=O peaks depicted the dynamic interaction of reactive intermediates along the H2O2 consumption. With this basis, we proposed a mechanism of interfacial OOH* mediated Fe(II) regeneration, which overcame the kinetical limitation of Fe(II)/H2O2 system. Therefore, this study provided a primary effort to elucidate the overlooked role of interfacial CoOOH* in the Fenton-like processes, which may inspire the design of more efficient catalysts.
Collapse
Affiliation(s)
- Bao-Gang Fu
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Xiangtong Zhou
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Yilin Lu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Wen-Zhu Quan
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Chunmei Li
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Liang Cheng
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Xiang Xiao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Yang-Yang Yu
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
| |
Collapse
|
12
|
Farinelli G, Rebilly JN, Banse F, Cretin M, Quemener D. Assessment of new hydrogen peroxide activators in water and comparison of their active species toward contaminants of emerging concern. Sci Rep 2024; 14:9301. [PMID: 38653989 DOI: 10.1038/s41598-024-59381-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
Advanced oxidation processes are the most efficient tool to thwart the overaccumulation of harmful organic compounds in the environment. In this direction bioinspired metal complexes may be a viable solution for oxidative degradations in water. However, their synthesis is often elaborated and their scalability consequently low. This study presents alternative easy-to-synthesize bioinspired metal complexes to promote degradations in water. The metals employed were iron and manganese ions, hence cheap and highly accessible ions. The complexes were tested toward Phenol, Estrone, Triclosan, Oxybenzone, Diclofenac, Carbamazepine, Erythromycin, Aspartame, Acesulfame K, Anisole and 2,4-Dinitrotoluene. The reaction favoured electron-rich compounds reaching a removal efficiency of over 90%. The central ion plays a crucial role. Specifically, Mn(II) induces a non-radical pathway while iron ions a predominant radical one (⋅OH is predominant). The iron systems resulted more versatile toward contaminants, while the manganese ones showed a higher turn-over number, hence higher catalytic behaviour.
Collapse
Affiliation(s)
- Giulio Farinelli
- Institut Européen des Membranes, IEM-UMR 5635, ENSCM, CNRS, Univeristé de Montpellier, 34090, Montpellier, France.
| | - Jean-Noël Rebilly
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS, Université Paris-Saclay, 91400, Orsay, France
| | - Frédéric Banse
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS, Université Paris-Saclay, 91400, Orsay, France
| | - Marc Cretin
- Institut Européen des Membranes, IEM-UMR 5635, ENSCM, CNRS, Univeristé de Montpellier, 34090, Montpellier, France
| | - Damien Quemener
- Institut Européen des Membranes, IEM-UMR 5635, ENSCM, CNRS, Univeristé de Montpellier, 34090, Montpellier, France.
| |
Collapse
|
13
|
Liu H, Tang S, Wang Z, Zhang Q, Yuan D. Organic cocatalysts improved Fenton and Fenton-like processes for water pollution control: A review. CHEMOSPHERE 2024; 353:141581. [PMID: 38430936 DOI: 10.1016/j.chemosphere.2024.141581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
In recent times, organic compounds have been extensively utilized to mitigate the limitations associated with Fe(Ⅲ) reduction and the narrow pH range in Fenton and Fenton-like processes, which have garnered considerable attention in relevant studies. This review presents the latest advancements in the comprehensive analysis and applications of organic agents as assistant/cocatalysts during Fenton/Fenton-like reactions for water pollution control. The primary focus includes the following: Firstly, the mechanism of organic co-catalytic reactions is introduced, encompassing both complexation and reduction aspects. Secondly, these organic compounds are classified into distinct categories based on their functional group structures and applications, namely polycarboxylates, aminopolycarboxylic acids, quinones, phenolic acids, humic substances, and sulfhydryl compounds, and their co-catalytic functions and mechanisms of each category are discussed in meticulous detail. Thirdly, a comprehensive comparison is conducted among various types of organic cocatalysts, considering their relative merits, cost implications, toxicity, and other pertinent factors. Finally, the review concludes by addressing the universal challenges and development prospects associated with organic co-catalytic systems. The overarching objective of this review is to provide insights into potential avenues for the future advancement of organic co-catalytic Fenton/Fenton-like reactions in the context of water purification.
Collapse
Affiliation(s)
- Huilin Liu
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Shoufeng Tang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China.
| | - Zhibin Wang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China.
| | - Qingrui Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Deling Yuan
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China.
| |
Collapse
|
14
|
Jin L, Huang Y, Liu H, Ye L, Liu X, Huang D. Efficient treatment of actual glyphosate wastewater via non-radical Fenton-like oxidation. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132904. [PMID: 37924705 DOI: 10.1016/j.jhazmat.2023.132904] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/18/2023] [Accepted: 10/29/2023] [Indexed: 11/06/2023]
Abstract
Compared to radical oxidative pathway, recent research revealed that non-radical oxidative pathway has higher selectivity, higher adaptability and lower oxidant requirement. In this work, we have designed and synthesized Cu2O/Cu nanowires (CuNWs), by pyrolysis of copper chloride and urea, to selectively generate high-valent copper (CuIII) upon H2O2 activation for the efficient treatment of actual glyphosate wastewater. The detailed characterizations confirmed that CuNWs nanocomposite was comprised of Cu0 and Cu2O, which possessed a nanowire-shaped structure. The electron paramagnetic resonance (EPR) analysis, in situ Raman spectra, chronoamperometry and liner sweep voltammetry (LSV) verified CuIII, which mainly contributed to glyphosate degradation, was selectively generated from CuNWs/H2O2 system. In particular, CuI is mainly oxidized by H2O2 into CuIIIvia dual-electron transfer, rather than simultaneously releasing OH• via single electron transfer. More importantly, CuNWs/H2O2 system exhibited the excellent potential in the efficient treatment of actual glyphosate wastewater, with 96.6% degradation efficiency and chemical oxygen demand (COD) dropped by 30%. This novel knowledge gained in the work helps to apply CuNWs into heterogeneous Fenton-like reaction for environmental remediation and gives new insights into non-radical pathway in H2O2 activation.
Collapse
Affiliation(s)
- Lei Jin
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Hydraulic & Environmental Engineering, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Yingping Huang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Hydraulic & Environmental Engineering, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Honglin Liu
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Hydraulic & Environmental Engineering, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Liqun Ye
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Hydraulic & Environmental Engineering, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Xiang Liu
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Hydraulic & Environmental Engineering, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China.
| | - Di Huang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Hydraulic & Environmental Engineering, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China.
| |
Collapse
|
15
|
Yoon Y, Cho M. Understanding atrazine elimination via treatment of the enzyme-based Fenton reaction: Kinetics, mechanism, reaction pathway, and metabolites toxicity. CHEMOSPHERE 2024; 349:140982. [PMID: 38103653 DOI: 10.1016/j.chemosphere.2023.140982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 12/19/2023]
Abstract
The degradation kinetics and mechanism of atrazine (ATZ) via an enzyme-based Fenton reaction were investigated at various substrate concentrations and pH values. Toxicological assessment was conducted on ATZ and its degradation products, and the associated reaction pathway was examined. The in situ production of hydrogen peroxide (H2O2) was monitored within the range of 3-15 mM, depending on the increase in glucose concentration, while decreasing the pH to 3.2-5.1 (initial pH of 5.8) or 6.5-7.4 (initial pH of 7.7). The degradation efficiency of ATZ was approximately 2-3 times higher at an initial pH of 5.8 with lower glucose concentrations than at an initial pH of 7.7 with higher substrate concentrations during the enzyme-based Fenton reaction. The apparent pseudo-first-order rate constant for H2O2 decomposition under various conditions in the presence of ferric citrate was 1.9-6.3 × 10-5 s-1. The •OH concentration ([•OH]ss) during the enzyme-based Fenton reaction was 0.5-4.1 × 10-14 M, and the second-order rate constant for ATZ degradation was 1.5-3.3 × 109 M-1 s-1. ATZ intrinsically hinders the growth and development of Arabidopsis thaliana, and its inhibitory effect is marginal, depending on the reaction time of the enzyme-based Fenton process. The ATZ transformation during this process occurs through dealkylation, hydroxylation, and dechlorination via •OH-mediated reactions. The degradation kinetics, mechanism, and toxicological assessment in the present study could contribute to the development and application of enzyme-based Fenton reactions for in situ pollutant abatement. Moreover, the enzyme-based Fenton reaction could be an environmentally benign and applicable approach for eliminating persistent organic matter, such as herbicides, using diverse H2O2-producing microbes and ubiquitous ferric iron with organic complexes.
Collapse
Affiliation(s)
- Younggun Yoon
- Division of Biotechnology, SELS Center, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, 54596, South Korea.
| | - Min Cho
- Division of Biotechnology, SELS Center, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, 54596, South Korea.
| |
Collapse
|
16
|
Wu Z, Liu Y, Huang R, Huang W. Mechanistic investigation of the electricity and gallic acid synergistically accelerated Fe(III)/Fe(II) cycle for the degradation of carbamazepine. CHEMOSPHERE 2024; 349:140915. [PMID: 38070611 DOI: 10.1016/j.chemosphere.2023.140915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
This study investigated the application of a natural plant polyphenol, gallic acid (GA) to form complex with iron to promote the redox cycle of Fe(III)/Fe(II) under neutral initial pH conditions in the electrochemical (EC) system for activation of peroxymonosulfate (PMS) to efficiently degrade carbamazepine (CBZ). Results demonstrated that the synergistic effects of GA and EC significantly improved the removal efficiency, and the EC/GA/Fe(III)/PMS system effectively removed 100% of CBZ within a wide initial pH range of 3.0-7.0. The optimum stoichiometric ratio of GA to Fe(III) was found as 2:1. Investigations including quenching experiment, chemical probe analysis, and electron paramagnetic resonance (EPR) analysis were conducted to identify the primary reaction radicals as •OH, SO4•-, along with the 1O2 and Fe(IV). In the EC/GA/Fe(III)/PMS system, the synergistic effect of GA and electrochemistry led to a remarkable enhancement in the generation of •OH. Furthermore, the complexation reduction mechanism of GA and Fe(III) was proposed based on experimental and instrumental analyses, which demonstrated that the semi-quinone products of GA were the main substances promoting the Fe(III)/Fe(II) cycle. Mass spectrometry results showed that CBZ generated 27 byproducts during degradation, with formic acid as the main product of GA. The degradation efficiency of the EC/GA/Fe(III)/PMS system remained stable and excellent, exhibiting remarkable performance in the presence of various inorganic anions, including Cl- and NO3-, as well as naturally occurring organic compounds such as fulvic acid (FA). Overall results indicated that the EC/GA/Fe(III)/PMS system can be applied to effectively treat practical wastewater treatment without requirement of pH adjustment.
Collapse
Affiliation(s)
- Zijing Wu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430078, Hubei, China
| | - Yang Liu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430078, Hubei, China
| | - Rongfu Huang
- Sichuan Provincial Key Laboratory of Universities on Environmental Science and Engineering, MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Weixiong Huang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430078, Hubei, China.
| |
Collapse
|
17
|
Wang A, Shi Y, Liu Y, Li W, Zhang H, Dai X, Luo L, Yao G, Lai B. Enhanced Fenton-like oxidation (Vis/Fe(III)/Peroxydisulfate): The role of iron species and the Fe(III)-LVF complex in levofloxacin degradation. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132755. [PMID: 37839379 DOI: 10.1016/j.jhazmat.2023.132755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
Traditional Fenton and Fenton-like processes are affected by the sluggish kinetics of Fe(II) regeneration and Fe(III) accumulation. This research revealed that the degradation efficiency of pollutants was significantly increased by adding Fe(III) to the Vis/PS system. A mechanism is proposed in which photosensitivity pollutants can boost Fe(III) to produce Fe(II) under visible light irradiation. Intriguingly, Fe(III) rapidly combines with LVF in aqueous environments to form Fe(III)-LVF complexes. This research confirms that Fe(III)-pollutant complexes are generated. The proportion of complexes are calculated using mathematical models. Furthermore, the production of Fe(IV) is verified in the Vis/PS/Fe(III) system, which also plays a vital role in boosting LVF degradation. Overall, this study provides comprehensive insights into the degradation mechanism of micropollutants, involving hydroxyl radical (OH∙), Fe(IV), and Fe(III)-LVF complexes, providing an efficient and green strategy for contaminant removal during wastewater treatment.
Collapse
Affiliation(s)
- Afang Wang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yang Shi
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China.
| | - Yang Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; Water Safety and Water Pollution Control Engineering Technology Research Center in Sichuan Province, Haitian Water Group, Chengdu 610041, China.
| | - Wei Li
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; China MCC5 Group Corp., Ltd, Chengdu 610063
| | - Heng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | | | - Li Luo
- China MCC5 Group Corp., Ltd, Chengdu 610063
| | - Gang Yao
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; Water Safety and Water Pollution Control Engineering Technology Research Center in Sichuan Province, Haitian Water Group, Chengdu 610041, China
| |
Collapse
|
18
|
Gao Y, Wang P, Chu Y, Kang F, Cheng Y, Repo E, Feng M, Yu X, Zeng H. Redox property of coordinated iron ion enables activation of O 2 via in-situ generated H 2O 2 and additionally added H 2O 2 in EDTA-chelated Fenton reaction. WATER RESEARCH 2024; 248:120826. [PMID: 37976952 DOI: 10.1016/j.watres.2023.120826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/20/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
The Fenton system was a generation system of reactive oxygen species via the chain reactions, which employed H2O2 and O2 as radical precursors and Fe2+/Fe3+ as electron-donor/acceptor for triggering or terminating the generation of radicals. Recent work mainly emphasized the Fe2+- activated H2O2 and the application of in-situ generated •OH, while neglecting other side-reactions. In this work, EDTA (Ethylene diamine tetraacetic acid) was employed as a chelating agent of iron ions, which simultaneously changed the redox property of coordinated iron. The Fe2+-EDTA complexes in the presence of dissolved oxygen enabled the two-electron transfer from Fe2+ to O2 and the in-situ production of H2O2, which further activate H2O2 for yielding •OH. Meanwhile, coordinated Fe3+ exhibited non-negligible reactivity toward H2O2, which was higher than that of free Fe3+ in the traditional Fenton system. The complexation of EDTA with Fe3+ could enhance the Fe2+ generation reaction by the H2O2, accompanied by the O2•- formation. The enhancement of O2•- formation and Fe2+-EDTA regeneration induced the subsequent H2O2 activation by Fe2+-EDTA, thus accelerating the Fe3+-EDTA/Fe2+-EDTA cycle for simultaneously producing O2•- and •OH. To sum up, the EDTA-chelated Fenton system extended the applicable pH range to circumneutral/alkaline level and tuned the redox property of coordinated iron for diversifying the •OH production routes. The research reinterpreted the chain reactions in the Fenton system, revealing another way to enhance the radical production or other property of the Fenton/Fenton-like system.
Collapse
Affiliation(s)
- Yuan Gao
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China
| | - Pengyi Wang
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China
| | - Yu Chu
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China
| | - Fan Kang
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China
| | - Yue Cheng
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China
| | - Eveliina Repo
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology (LUT), Lappeenranta FI-53850, Finland
| | - Mingbao Feng
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen 361102, PR China
| | - Xin Yu
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen 361102, PR China
| | - Huabin Zeng
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen 361102, PR China.
| |
Collapse
|
19
|
Zhang Y, Wu S, Sun P. Estimation of stability constants of Fe(III) with antibiotics and dissolved organic matter using a novel UV-vis spectroscopy method. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165702. [PMID: 37495120 DOI: 10.1016/j.scitotenv.2023.165702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
Determining conditional stability constant (Kcond) is paramount in assessing complex stability, particularly in Fe(III) complexes that are prevalent in actual surface water and wastewater matrices. In this study, existing methods of Kcond determination were evaluated and a novel UV-Vis spectroscopy method was proposed based on the evaluation of these approaches. Model ligands (ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), and oxalic acid (OA)), as well as common antibiotics (kanamycin (Kana) and tetracycline (TTC)), were employed to determine the Kcond of the Fe(III)-ligand complexes under neutral conditions (pH 6.5). The obtained fitting results revealed that the logKcond were in the order of Fe(III)-EDTA (7.08) > Fe(III)-NTA (4.67) > Fe(III)-OA (4.32) > Fe(III)-TTC (4.28) > Fe(III)-Kana (3.07). In addition to these single ligands, the methodology was extended to the Fe(III) complexation with humic acid (HA), a complex mixture of organic components, where the fitting result indicated a logKcond of 5.02 M-1. The method's application domain was analyzed by numerical analysis and combined with experimental results. The findings demonstrate that the proposed methodology possesses satisfactory measurement capability for Kcond ranging from 103 to 107 M-1, suggesting its broad applicability to the majority of complexes. This method can provide valuable insights into the impact of Fe(III) complexes within the water matrix.
Collapse
Affiliation(s)
- Yujie Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Shikang Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Peizhe Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
20
|
Xiang S, Lin Y, Chang T, Mei B, Liang Y, Wang Z, Sun W, Cai C. Oxygen doped graphite carbon nitride as efficient metal-free catalyst for peroxymonosulfate activation: Performance, mechanism and theoretical calculation. CHEMOSPHERE 2023; 338:139539. [PMID: 37474028 DOI: 10.1016/j.chemosphere.2023.139539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/20/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
In this study, oxygen-doped graphitic carbon nitride (g-C3N4), named O-g-C3N4, was successfully fabricated and characterized, and its performance in activating peroxymonosulfate (PMS, HSO5-) for the removal of phenol, 2,4-dichlorophenol (2,4-DCP), bisphenol A (BPA), rhodamine B (RhB), reactive brilliant blue (RBB) and acid orange 7 (AO7) was evaluated. The catalytic performance of O-g-C3N4 for AO7 removal increased by 14 times compared to g-C3N4. In the presence of 0.2 g L-1 O-g-C3N4, 3.5 mM PMS at natural pH 5.8, 96.4% of AO7 could be removed in 60 min, reduced toxicity of the treated AO7 solution was obtained, and the mineralization efficiency was 47.2% within 120 min. Density functional theory (DFT) calculations showed that the charge distribution changed after oxygen doping, and PMS was more readily adsorbed by O-g-C3N4 with the adsorption energy (Eads) of -0.855 kcal/mol than that of the pristine g-C3N4 (Eads: -0.305 kcal/mol). Mechanism investigation implied that AO7 was primarily removed by the sulfate radicals (SO4•-) and hydroxyl radicals (•OH) on the surface of O-g-C3N4, but the role of singlet oxygen (1O2) to AO7 elimination was negligible. The results of cyclic experiments and catalyst characterization after reaction confirmed the favorable catalytic activity and structural stability of O-g-C3N4 particles. Furthermore, the O-g-C3N4/PMS system was very resistant to most of the environmental impacts, and AO7 removal was still acceptable in natural water environment. This study may provide an efficient metal-free carbonaceous activator with low dosage for PMS activation to remove recalcitrant organic pollutants (ROPs).
Collapse
Affiliation(s)
- Shaofeng Xiang
- School of Environmental Studies, Hubei Provincial Engineering Research Center of Systematic Water Pollution Control, China University of Geosciences, Wuhan, 430074, China.
| | - Yu Lin
- School of Environmental Studies, Hubei Provincial Engineering Research Center of Systematic Water Pollution Control, China University of Geosciences, Wuhan, 430074, China
| | - Tongda Chang
- School of Environmental Studies, Hubei Provincial Engineering Research Center of Systematic Water Pollution Control, China University of Geosciences, Wuhan, 430074, China
| | - Bingrui Mei
- School of Environmental Studies, Hubei Provincial Engineering Research Center of Systematic Water Pollution Control, China University of Geosciences, Wuhan, 430074, China
| | - Yuhang Liang
- School of Environmental Studies, Hubei Provincial Engineering Research Center of Systematic Water Pollution Control, China University of Geosciences, Wuhan, 430074, China
| | - Ziqian Wang
- School of Environmental Studies, Hubei Provincial Engineering Research Center of Systematic Water Pollution Control, China University of Geosciences, Wuhan, 430074, China
| | - Wenwu Sun
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Chun Cai
- School of Environmental Studies, Hubei Provincial Engineering Research Center of Systematic Water Pollution Control, China University of Geosciences, Wuhan, 430074, China.
| |
Collapse
|
21
|
Zhang Z, Xiao S, Meng X, Yu S. Research progress of MOF-based membrane reactor coupled with AOP technology for organic wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:104958-104975. [PMID: 37723390 DOI: 10.1007/s11356-023-29852-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/08/2023] [Indexed: 09/20/2023]
Abstract
MOF-based catalytic membrane reactor (MCMR), which can simultaneously achieve membrane separation and chemical catalytic degradation in an integrated system, is a cutting-edge technology for effective treatment of organic pollutants in water. The coupling of MCMR and advanced oxidation process (AOP) not only significantly improves the pollutant removal efficiency but also inhibits the membrane pollution through self-cleaning effect, thus improving the stability of MCMR. This paper reviews different MCMR systems combined with photocatalysis, Fenton oxidation, and persulfate activation, elucidates the reaction mechanism, discusses key issues to improve system effectiveness, and suggests future challenges and research directions.
Collapse
Affiliation(s)
- Ziyang Zhang
- College of Materials Science and Engineering, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Shujuan Xiao
- College of Materials Science and Engineering, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Xianguang Meng
- College of Materials Science and Engineering, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Shouwu Yu
- College of Materials Science and Engineering, North China University of Science and Technology, Tangshan, 063210, Hebei, China.
| |
Collapse
|
22
|
Hinojosa M, Oller I, Quiroga JM, Malato S, Egea-Corbacho A, Acevedo-Merino A. Solar photo-Fenton optimization at neutral pH for microcontaminant removal at pilot plant scale. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:96208-96218. [PMID: 37566324 PMCID: PMC10482785 DOI: 10.1007/s11356-023-28988-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 07/21/2023] [Indexed: 08/12/2023]
Abstract
The increasing occurrence of micropollutants in natural water bodies has medium to long-term effects on both aquatic life and human health. The aim of this study is to optimize the degradation of two pharmaceutical pollutants of emerging concern: amoxicillin and acetaminophen in aqueous solution at laboratory and pilot scale, by solar photo-Fenton process carried out at neutral pH using ethylenediamine-N,N'-disuccinic acid (EDDS) as a complexing agent to maintain iron in solution. The initial concentration of each compound was set at 1 mg/L dissolved in a simulated effluent from a municipal wastewater treatment plant (MWTP). A factorial experimental design and its surface response analysis were used to optimize the operating parameters to achieve the highest initial degradation rate of each target. The evolution of the degradation process was measured by ultra-performance liquid chromatography (UPLC/UV), obtaining elimination rates above 90% for both contaminants. Statistical study showed the optimum concentrations of Fe(III) at 3 mg/L at an Fe-EDDS ratio of 1:2 and 2.75 mg/L H2O2 for the almost complete removal of the target compounds by solar photo-Fenton process. Validation of the experimental design was successfully carried out with actual MWTP effluent spiked with 100 μg/L of amoxicillin and acetaminophen, each at pilot plant scale.
Collapse
Affiliation(s)
- Mercedes Hinojosa
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, University of Cadiz, 11510, Puerto Real, Cádiz, Spain
| | - Isabel Oller
- Plataforma Solar de Almería-CIEMAT, Carretera de Senés, Km 4.5, 04200, Tabernas, Almería, Spain.
- CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120, Almería, Spain.
| | - José María Quiroga
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, University of Cadiz, 11510, Puerto Real, Cádiz, Spain
| | - Sixto Malato
- Plataforma Solar de Almería-CIEMAT, Carretera de Senés, Km 4.5, 04200, Tabernas, Almería, Spain
- CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120, Almería, Spain
| | - Agata Egea-Corbacho
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, University of Cadiz, 11510, Puerto Real, Cádiz, Spain
| | - Asunción Acevedo-Merino
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, University of Cadiz, 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
23
|
Zhang B, Chen Y, Wang Y, Zhang IY, Huang R. Utilization of Fe-Ethylenediamine-N,N'-Disuccinic Acid Complex for Electrochemical Co-Catalytic Activation of Peroxymonosulfate under Neutral Initial pH Conditions. Molecules 2023; 28:6290. [PMID: 37687118 PMCID: PMC10488724 DOI: 10.3390/molecules28176290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The ethylenediamine-N,N'-disuccinic acid (EDDS) was utilized to form Fe-EDDS complex to activate peroxymonosulfate (PMS) in the electrochemical (EC) co-catalytic system for effective oxidation of naphthenic acids (NAs) under neutral pH conditions. 1-adamantanecarboxylic acid (ACA) was used as a model compound to represent NAs, which are persistent pollutants that are abundantly present in oil and gas field wastewater. The ACA degradation rate was significantly enhanced in the EC/PMS/Fe(III)-EDDS system (96.6%) compared to that of the EC/PMS/Fe(III) system (65.4%). The addition of EDDS led to the formation of a stable complex of Fe-EDDS under neutral pH conditions, which effectively promoted the redox cycle of Fe(III)-EDDS/Fe(II)-EDDS to activate PMS to generate oxidative species for ACA degradation. The results of quenching and chemical probe experiments, as well as electron paramagnetic resonance (EPR) analysis, identified significant contributions of •OH, 1O2, and SO4•- in the removal of ACA. The ACA degradation pathways were revealed based on the results of high resolution mass spectrometry analysis and calculation of the Fukui index. The presence of anions, such as NO3-, Cl-, and HCO3-, as well as humic acids, induced nonsignificant influence on the ACA degradation, indicating the robustness of the current system for applications in authentic scenarios. Overall results indicated the EC/PMS/Fe(III)-EDDS system is a promising strategy for the practical treatment of NAs in oil and gas field wastewater.
Collapse
Affiliation(s)
- Bolin Zhang
- Sichuan Provincial Key Laboratory of Universities on Environmental Science and Engineering, MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yu Chen
- Sichuan Provincial Key Laboratory of Universities on Environmental Science and Engineering, MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yongjian Wang
- Sichuan Provincial Key Laboratory of Universities on Environmental Science and Engineering, MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Igor Ying Zhang
- Shanghai Key Laboratory of Molecular Catalysis and Innovation Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, MOE Laboratory for Computational Physical Science, Shanghai Key Laboratory of Bioactive Small Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Rongfu Huang
- Sichuan Provincial Key Laboratory of Universities on Environmental Science and Engineering, MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| |
Collapse
|
24
|
Gao Y, Ning H, Rao Y, Li K, Zeng C, Gao N. Efficient elimination of phenazone by an electro-assisted Fe 3+-EDDS/PS process at neutral pH: Kinetics, mechanistic insights and toxicity evaluation. CHEMOSPHERE 2023; 328:138598. [PMID: 37028723 DOI: 10.1016/j.chemosphere.2023.138598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
The feasibility of the degradation of phenazone (PNZ), a common anti-inflammatory drug used for reducing pain and fever, in water at neutral pH by an electrochemically assisted Fe3+-ethylenediamine disuccinate-activated persulfate process (EC/Fe3+-EDDS/PS) was investigated. The efficient removal of PNZ at neutral pH condition was mainly attributed to the continuous activation of PS via electrochemically driven regenerated Fe2+ from a Fe3+-EDDS complex at the cathode. The influence of several critical parameters, including current density, Fe3+ concentration, EDDS to Fe3+ molar ratio, and PS dosage, on PNZ degradation was evaluated and optimized. Both hydroxyl radicals (•OH) and sulfate radicals (SO4●-) were considered major reactive species responsible for PNZ degradation. To understand the mechanistic model of action at the molecular level, the thermodynamic and kinetic behaviors of the reactions between PNZ with •OH and SO4●- were theoretically calculated using a density functional theory (DFT) method. The results revealed that radical adduct formation (RAF) is the most favorable pathway for the •OH-driven oxidation of PNZ, while single electron transfer (SET) appears to be the dominant pathway for the reaction of SO4●- with PNZ. In total, thirteen oxidation intermediates were identified, and hydroxylation, pyrazole ring opening, dephenylization, and demethylation were speculated to be the major degradation pathways. Furthermore, predicted toxicity to aquatic organisms indicated that PNZ degradation resulted in products that were less harmful. However, the developmental toxicity of PNZ and its intermediate products should be further investigated in the environment. The findings of this work demonstrate the viability of effectively removing organic contaminants in water at near-neutral pH by using EDDS chelation combined with electrochemistry in a Fe3+/persulfate system.
Collapse
Affiliation(s)
- Yuqiong Gao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Han Ning
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yanyan Rao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Kexuan Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Chaole Zeng
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Naiyun Gao
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
25
|
Tu YN, Tang W, Wu W, Liu H, Cui X, Tian S, Li Y, Jiao W. Inhibiting mechanisms of metal ion complexation on photogenerated reactive intermediates derived from dissolved black carbon. CHEMOSPHERE 2023; 337:139330. [PMID: 37364645 DOI: 10.1016/j.chemosphere.2023.139330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Dissolved black carbon (DBC), an important photosensitizer in surface waters, can influence the photodegradation of various organic micropollutants. In natural water systems, DBC often co-occurs with metal ions as DBC-metal ion complexes; however, the influence of metal ion complexation on the photochemical activity of DBC is still unclear. Herein, the effects of metal ion complexation were investigated using common metal ions (Mn2+, Cr3+, Cu2+, Fe3+, Zn2+, Al3+, Ca2+, and Mg2+). Complexation constants (logKM) derived from three-dimensional fluorescence spectra revealed that Mn2+, Cr3+, Cu2+, Fe3+, Zn2+, and Al3+ quenched the fluorescence components of DBC via static quenching. The steady-state radical experiment suggested that in the complex systems of DBC with various metal ions, Mn2+, Cr3+, Cu2+, Fe3+, Zn2+ and Al3+ inhibited the photogeneration of 3DBC* via dynamic quenching, which reduced the yields of 3DBC*-derived 1O2 and O2·-. Moreover, 3DBC* quenching by metal ions was associated with the complexation constant. A strong positive linear relationship existed between logKM and the dynamic quenching rate constant of metal ions. These results indicate that the strong complexation ability of metal ions enabled 3DBC quenching, which highlights the photochemical activity of DBC in natural aquatic environments enriched with metal ions.
Collapse
Affiliation(s)
- Yi-Na Tu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Wei Tang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Weilin Wu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Huaying Liu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Xiangfen Cui
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Senlin Tian
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Yingjie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Weidong Jiao
- Kunming Geol Prospecting Inst, China Met Geol Bur, Kunming, Yunnan, 650500, China
| |
Collapse
|
26
|
Wei S, Huang Y, Huang W, Wang X, Liang J. Degradation of 2,4-Dichlorophenol by Nitrilotriacetic acid-modified photo-Fenton system: effects of organic and inorganic factors. ENVIRONMENTAL TECHNOLOGY 2023; 44:2011-2023. [PMID: 34913858 DOI: 10.1080/09593330.2021.2020338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 12/09/2021] [Indexed: 05/25/2023]
Abstract
It has proved that the photo-Fenton system modified by polycarboxylic acid is effective against the degradation of organic pollutants. Still, its effect and impact on actual water bodies are not clear. Therefore, this study mainly discussed the effect of actual water elements on the degradation of 2,4-Dichlorophenol in photo-Fenton system modified by Nitrilotriacetic acid (NTA) and its mechanism in pure water. The specific research contents were: the effect of initial concentration of 2,4-Dichlorophenol on its degradation efficiency; the effect of organic matters on the degradation of 2,4-Dichlorophenol; the effect of cations and anions; the effect of different actual water bodies. And the main results were as follows: In the effect of initial concentration, when the concentration of 2,4-Dichlorophenol was 20 mg·L-1, the degradation efficiency was the best (reached 100%). But, with the increase of initial concentration, the degradation efficiency of the system became worse and worse; the coexistence of the same kind of organic compounds can inhibit each other's degradation, and the degradation rate of pollutants in the mixed system was slower than that in the single system; the addition of anions and cations inhibited the degradation of 2,4-Dichlorophenol, and the degradation efficiency varied with the concentration of ions, in which the effect of anions was more complex; the degradation efficiency of 2,4-Dichlorophenol in three kinds of actual water bodies was lower than in deionized water, especially in PPMW. However, the degradation rates of DSTP and NLW were the fastest in the first 20 min.
Collapse
Affiliation(s)
- Shiping Wei
- School of Resources, Environment and Materials, Guangxi University, Nanning, People's Republic of China
| | - Ying Huang
- Guangxi Bossco Environmental Protection Technology Co., Ltd, Nanning, People's Republic of China
| | - Wenyu Huang
- School of Resources, Environment and Materials, Guangxi University, Nanning, People's Republic of China
- Guangxi Bossco Environmental Protection Technology Co., Ltd, Nanning, People's Republic of China
| | - Xiaofei Wang
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, People's Republic of China
| | - Jianwei Liang
- School of Resources, Environment and Materials, Guangxi University, Nanning, People's Republic of China
| |
Collapse
|
27
|
Zhang D, Xiang Y, Liu G, Liang L, Chen L, Shi J, Yin Y, Cai Y, Jiang G. Mechanism and controlling factors on rapid methylmercury degradation by ligand-enhanced Fenton-like reaction at circumneutral pH. CHEMOSPHERE 2023; 324:138291. [PMID: 36870614 DOI: 10.1016/j.chemosphere.2023.138291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/09/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Methylmercury (MeHg), derived from industrial processes and microbial methylation, is still a worldwide environmental concern. A rapid and efficient strategy is necessary for MeHg degradation in waste and environmental waters. Here, we provide a new method with ligand-enhanced Fenton-like reaction to rapidly degrade MeHg under neutral pH. Three common chelating ligands were selected (nitriloacetic acid (NTA), citrate, and ethylenediaminetetraacetic disodium (EDTA)) to promote the Fenton-like reaction and degradation of MeHg. Results showed that MeHg can be rapidly degraded, with the following efficiency sequence: EDTA > NTA > citrate. Scavenger addition demonstrated that hydroxyl radical (▪OH), superoxide radical (O2▪-), and ferryl (FeⅣO2+) were involved in MeHg degradation, and their relative contributions highly depended on ligand type. Degradation product and total Hg analysis suggested that Hg(Ⅱ) and Hg0 were generated with the demethylation of MeHg. Further, environmental factors, including initial pH, organic complexation (natural organic matter and cysteine), and inorganic ions (chloride and bicarbonate) on MeHg degradation, were investigated in NTA-enhanced system. Finally, rapid MeHg degradation was validated for MeHg-spiked waste and environmental waters. This study provided a simple and efficient strategy for MeHg remediation in contaminated waters, which is also helpful for understanding its degradation in the natural environment.
Collapse
Affiliation(s)
- Dingxi Zhang
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuping Xiang
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Guangliang Liu
- Department of Chemistry & Biochemistry and Southeast Environmental Research Center, Florida International University, Miami, FL, 33199, United States
| | - Lina Liang
- Beijing Zhongke PUYAN Science and Technology Co., Ltd, Beijing, 100096, China
| | - Lufeng Chen
- Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yongguang Yin
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Institute of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China.
| | - Yong Cai
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Chemistry & Biochemistry and Southeast Environmental Research Center, Florida International University, Miami, FL, 33199, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
28
|
Hu J, Zou Y, Li Y, Xiao Y, Li M, Lin L, Li B, Li XY. Efficacy and mechanism of peroxymonosulfate activation by single-atom transition metal catalysts for the oxidation of organic pollutants: Experimental validation and theoretical calculation. J Colloid Interface Sci 2023; 645:1-11. [PMID: 37126999 DOI: 10.1016/j.jcis.2023.04.093] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
Single-atom catalysts can activate peroxymonosulfate (PMS) to enhance its oxidation of organic pollutants in water treatment. We synthesized a series of carbon-supported single-atom transition metal catalysts (MnN@C, FeN@C, CoN@C, NiN@C, and CuN@C) with similar compositions and structures. Their catalytic activity toward PMS activation and oxidation mechanisms were investigated using acid orange 7 (AO7) as a model pollutant. The degradation rate (min-1·mol-1·g·m-2) of AO7 followed order: FeN@C/PMS (7.576 × 103) > MnN@C/PMS (5.104 × 103) > CoN@C/PMS (1.919 × 103) ≫ NiN@C/PMS (0.058 × 103) > CuN@C/PMS (0.035 × 103). Electron transfer mediated by surface-activated PMS was found to be the main regime of AO7 oxidation in the catalytic systems. Density functional theory calculations indicated that the degradation of AO7 was promoted by the intense adsorption of PMS and the electron transfer between AO7 and the surface-activated PMS on the catalyst. The cleavage of the naphthalene ring and the azo group was the primary degradation pathway. The toxicity of the products was significantly reduced. This research provides valuable findings for preparing highly efficient single-atom transition metal catalysts for PMS-based degradation of toxic and refractory organic pollutants from water.
Collapse
Affiliation(s)
- Jiahui Hu
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Yubin Zou
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Yin Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Yanan Xiao
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Mu Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Lin Lin
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Bing Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
| | - Xiao-Yan Li
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
29
|
Li J, Cheng X, Zhang H, Gou J, Zhang X, Wu D, Dionysiou DD. Insights into performance and mechanism of ZnO/CuCo 2O 4 composite as heterogeneous photoactivator of peroxymonosulfate for enrofloxacin degradation. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130946. [PMID: 36860075 DOI: 10.1016/j.jhazmat.2023.130946] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
In this study, we designed a plain strategy for fabrication of the novel composite ZnO/CuCo2O4 and applied it as catalyst for peroxymonosulfate (PMS) activation to decompose enrofloxacin (ENR) under simulated sunlight. Compared to ZnO and CuCo2O4 alone, the ZnO/CuCo2O4 composite could significantly activate PMS under simulated sunlight, resulting in the generation of more active radicals for ENR degradation. Thus, 89.2 % of ENR could be decomposed over 10 min at natural pH. Furthermore, the influences of the experimental factors, including the catalyst dose, PMS concentration, and initial pH, on ENR degradation were evaluated. Subsequent active radical trapping experiments indicated that sulfate, superoxide, and hydroxyl radicals together with holes (h+) were involved in the degradation of ENR. Notably, the ZnO/CuCo2O4 composite exhibited good stability. Only 10 % decrease in ENR degradation efficiency was observed after four runs. Finally, several reasonable ENR degradation pathways were proposed, and the mechanism of PMS activation was elucidated. This study provides a novel strategy by integrating state-of-the-art material science and advanced oxidation technology for wastewater treatment and environmental remediation.
Collapse
Affiliation(s)
- Junjing Li
- School of Environmental Science and Engineering, Tiangong University, State Key Laboratory of Separation Membranes and Membrane Processes, Binshui West Road 399, Xiqing District, Tianjin 300387, PR China.
| | - Xiuwen Cheng
- Key Laboratory of Pollutant Chemistry and Environmental Treatment, College of Chemistry and Environmental Science, Yili Normal University, Yining 835000, PR China; Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China.
| | - Huixuan Zhang
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Jianfeng Gou
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Xinyi Zhang
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Di Wu
- School of Environmental Science and Engineering, Tiangong University, State Key Laboratory of Separation Membranes and Membrane Processes, Binshui West Road 399, Xiqing District, Tianjin 300387, PR China
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (ChEE), University of Cincinnati, Cincinnati, OH 45221-0012, USA
| |
Collapse
|
30
|
Liu XC, Zhang KX, Song JS, Zhou GN, Li WQ, Ding RR, Wang J, Zheng X, Wang G, Mu Y. Tuning Fe 3O 4 for sustainable cathodic heterogeneous electro-Fenton catalysis by acetylated chitosan. Proc Natl Acad Sci U S A 2023; 120:e2213480120. [PMID: 36952380 PMCID: PMC10068792 DOI: 10.1073/pnas.2213480120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 02/14/2023] [Indexed: 03/24/2023] Open
Abstract
Peroxidase-like catalysts are safe and low-cost candidates to tackle the dilemma in constructing sustainable cathodic heterogeneous electro-Fenton (CHEF) catalysts for water purification, but the elusive structure-property relationship of enzyme-like catalysts constitutes a pressing challenge for the advancement of CHEF processes in practically relevant water and wastewater treatment. Herein, we probe the origins of catalytic efficiency in the CHEF process by artificially tailoring the peroxidase-like activity of Fe3O4 through a series of acetylated chitosan-based hydrogels, which serve as ecofriendly alternatives to traditional carbon shells. The optimized acetylated chitosan wrapping Fe3O4 hydrogel on the cathode shows an impressive activity and stability in CHEF process, overcoming the complicated and environmentally unfavored procedures in the electro-Fenton-related processes. Structural characterizations and theoretical calculations reveal that the amide group in chitosan can modulate the intrinsic redox capacity of surficial Fe sites on Fe3O4 toward CHEF catalysis via the neutral hydrogen bond. This work provides a sustainable path and molecule-level insight for the rational design of high-efficiency CHEF catalysts and beyond.
Collapse
Affiliation(s)
- Xiao-Cheng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei230026, China
| | - Kun-Xiao Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei230026, China
| | - Jun-Sheng Song
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei230026, China
| | - Guan-Nan Zhou
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei230026, China
| | - Wen-Qiang Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei230026, China
| | - Rong-Rong Ding
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei230026, China
| | - Jing Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei230026, China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui230029, China
| | - Gongming Wang
- Department of Applied Chemistry, University of Science & Technology of China, Hefei230026, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei230026, China
| |
Collapse
|
31
|
Tang F, Wang Y, Li J, Sun S, Su Y, Chen H, Cui W, Zhao C, Liu Q. Pollution characteristics of groundwater in an agricultural hormone-contaminated site and implementation of Fenton oxidation process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:35670-35682. [PMID: 36538219 DOI: 10.1007/s11356-022-24734-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
The groundwater polluted by an agricultural hormone site was taken as the research object, and a total of 7 groundwater samples were collected at different locations in the plant. The main pollutants in the research area were determined to be extractable petroleum hydrocarbons (C10-C40); 1,2-dichloroethane; 1,1,2-trichloroethane; carbon tetrachloride; vinyl chloride, and chloroform; the maximum content of these pollutants can reach 271 mg/L, 1.68 × 107 µg/L, 1.56 × 104 µg/L, 9.53 × 104 µg/L, 6.58 × 104 µg/L, and 4.81 × 104 µg/L, respectively. Aiming at the problems of groundwater pollution in this area, two sets of oxidation experiments have been carried out. The addition of NaHSO3 modified Fenton oxidation system was used in this contaminated water, which enhanced (2.2 ~ 46.7%) chemical oxygen demand (COD) removal rate. The highest removal rate of extractable petroleum hydrocarbons (C10-C40) can reach 99%. And the degradation rate of chlorinated hydrocarbon pollutants can reach 99% to 100%, which almost achieved the purpose of complete removal. In the NaHSO3 modified Fenton oxidation system, the addition of NaHSO3 accelerates the cycle of Fe3+/Fe2+ and ensures the continuous existence of Fe2+ in the reaction system, thereby producing more ·OH and further oxidizing and degrading organic pollutants. Our work has provided important insights for this economically important treatment of this type water body and laid the foundation for the engineering of this method.
Collapse
Affiliation(s)
- Fang Tang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Huangdao District, No. 66 Changjiang West Road, Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China
| | - Yaru Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Huangdao District, No. 66 Changjiang West Road, Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China
| | - Jing Li
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Huangdao District, No. 66 Changjiang West Road, Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China
| | - Shuo Sun
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Huangdao District, No. 66 Changjiang West Road, Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China
| | - Yuhua Su
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Huangdao District, No. 66 Changjiang West Road, Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China
| | - Hongxu Chen
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Huangdao District, No. 66 Changjiang West Road, Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China
| | - Wu Cui
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Huangdao District, No. 66 Changjiang West Road, Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China
| | - Chaocheng Zhao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Huangdao District, No. 66 Changjiang West Road, Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China
| | - Qiyou Liu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Huangdao District, No. 66 Changjiang West Road, Qingdao, 266580, People's Republic of China.
- State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China.
| |
Collapse
|
32
|
Zhang T, Pan Z, Wang J, Qian X, Yamashita H, Bian Z, Zhao Y. Homogeneous Carbon Dot-Anchored Fe(III) Catalysts with Self-Regulated Proton Transfer for Recyclable Fenton Chemistry. JACS AU 2023; 3:516-525. [PMID: 36873695 PMCID: PMC9975837 DOI: 10.1021/jacsau.2c00644] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/15/2022] [Accepted: 12/27/2022] [Indexed: 05/19/2023]
Abstract
Fenton chemistry has been widely studied in a broad range from geochemistry, chemical oxidation to tumor chemodynamic therapy. It was well established that Fe3+/H2O2 resulted in a sluggish initial rate or even inactivity. Herein, we report the homogeneous carbon dot-anchored Fe(III) catalysts (CD-COOFeIII) wherein CD-COOFeIII active center activates H2O2 to produce hydroxyl radicals (•OH) reaching 105 times larger than that of the Fe3+/H2O2 system. The key is the •OH flux produced from the O-O bond reductive cleavage boosting by the high electron-transfer rate constants of CD defects and its self-regulated proton-transfer behavior probed by operando ATR-FTIR spectroscopy in D2O and kinetic isotope effects, respectively. Organic molecules interact with CD-COOFeIII via hydrogen bonds, promoting the electron-transfer rate constants during the redox reaction of CD defects. The antibiotics removal efficiency in the CD-COOFeIII/H2O2 system is at least 51 times large than the Fe3+/H2O2 system under equivalent conditions. Our findings provide a new pathway for traditional Fenton chemistry.
Collapse
Affiliation(s)
- Ting Zhang
- School
of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai200240, China
| | - Zhelun Pan
- School
of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai200240, China
| | - Jianying Wang
- School
of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai200240, China
| | - Xufang Qian
- School
of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai200240, China
| | - Hiromi Yamashita
- Division
of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita565-0871, Osaka, Japan
| | - Zhenfeng Bian
- The
Education Ministry Key Lab. of Resource Chemistry, Shanghai Key Laboratory
of Rare Earth Functional Materials, Shanghai
Normal University, 100
Guilin Road, Shanghai200234, China
| | - Yixin Zhao
- School
of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai200240, China
| |
Collapse
|
33
|
Chen X, Fu W, Yang Z, Yang Y, Li Y, Huang H, Zhang X, Pan B. Enhanced H 2O 2 utilization efficiency in Fenton-like system for degradation of emerging contaminants: Oxygen vacancy-mediated activation of O 2. WATER RESEARCH 2023; 230:119562. [PMID: 36603306 DOI: 10.1016/j.watres.2022.119562] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/25/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Hydrogen peroxide (H2O2) is the most commonly used oxidant in advanced oxidation processes for emerging organic contaminant degradation. However, the activation of H2O2 to generate reactive oxygen species is always accompanied by O2 generation resulting in H2O2 waste. Here, we prepare a Ti doped Mn3O4/Fe3O4 ternary catalyst (Ti-Mn3O4/Fe3O4) to create abundant oxygen vacancies (OVs), which yields electron delocalization impacts on enhancing the electrical conductivity, accelerating the activation of O2 to produce H2O2. In Ti-Mn3O4/Fe3O4/H2O2 system, OVs-mediated O2/O2•-/H2O2 redox cycles trigger the activation of locally generated O2, boost the regeneration of O2•- and on site produce H2O2 for replenishment. This leads to a 100% removal of tiamulin in 30 min at an unprecedented H2O2 utilization efficiency of 96.0%, which is 24 folds higher than that with Fe3O4/H2O2. Importantly, further integration of Ti-Mn3O4/Fe3O4 catalysts into membrane filtration achieved high rejections of tiamulin (> 83.9%) from real surface water during a continuous 12-h operation, demonstrating broad pH adaptability, excellent catalytic stability and leaching resistance. This work demonstrates a feasible strategy for developing OVs-rich catalysts for improving H2O2 utilization efficiency via activation of locally generated oxygen during the Haber-Weiss reaction.
Collapse
Affiliation(s)
- Xixi Chen
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Wanyi Fu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China.
| | - Zhichao Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Yulong Yang
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yanjun Li
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Hui Huang
- Shenzhen Shenshui Longhua Water Co., Ltd., Shenzhen, 518000, China
| | - Xihui Zhang
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
34
|
Shi C, Zhang L, Shi Z, Wang Z, Ma J. Mechanistic investigation of cellulose regulating the morphology and photocatalytic activity of Al-doped ZnO. Int J Biol Macromol 2023; 228:435-444. [PMID: 36572077 DOI: 10.1016/j.ijbiomac.2022.12.222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/05/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
The morphology of metal oxide is a crucial factor for improving of catalysis properties. As a renewable and environmentally friendly biomass material, cellulose has been widely used to induce the morphology of semiconductors. The contributions of cellulose hydroxyl groups and spatial hindrance in tailoring Al doped ZnO (AZO) morphologies were investigated. The morphology of AZO could be gradually induced from flake-like to flower-like with the increase of cellulose hydroxyl content per unit volume. At the same time, the changes in spatial hindrance had no apparent effect on the morphology of AZO. So the cellulose hydroxyl groups that act to induce the in situ growth of AZO nanoparticles on cellulose substrates. The results further confirmed the strong interaction between cellulose hydroxyl groups and Zn2+. In addition, the photocatalytic activities of Al-doped ZnO/cellulose nanocomposites (AZOC) with different morphologies were evaluated by the degradation of bisphenol A (BPA). The high hydroxyl contents of cellulose substrates contributed to the growth of flower-like AZO with high light utilization and photocatalytic activity. This work proposed cleaner strategies to modify semiconductor morphologies for photocatalysis by regulating the content of cellulose hydroxyl contents.
Collapse
Affiliation(s)
- Chun Shi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; University Key Laboratory of Biomass Chemical Refinery & Synthesis, Southwest Forestry University, Kunming 650224, China
| | - Lili Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Zhengjun Shi
- University Key Laboratory of Biomass Chemical Refinery & Synthesis, Southwest Forestry University, Kunming 650224, China
| | - Zhiguo Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jinxia Ma
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
35
|
Chen Y, Bai X, Ji Y, Chen D. Enhanced activation of peroxymonosulfate using ternary MOFs-derived MnCoFeO for sulfamethoxazole degradation: Role of oxygen vacancies. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129912. [PMID: 36103765 DOI: 10.1016/j.jhazmat.2022.129912] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/19/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Herein, ternary metal-organic frameworks (MOFs)-derived MnCoFeO with different levels of oxygen vacancies (Ov) were designed by adjusting the doping amount of Mn and employed to activate peroxymonosulfate (PMS) for sulfamethoxazole (SMX) degradation. The MnCoFeO-2 with the largest Ov content exhibited the highest SMX degradation efficacy. Almost 100% of SMX was removed within 5 min using the MnCoFeO-2/PMS system. The reaction rate constant (kobs) was 1.7321 min-1, which was 4.1 times that of CoFeO (0.4195 min-1). Both the SO4•- and 1O2 were the dominant reactive oxygen species. Significantly, the relationship among Ov, radical pathways, and non-radical pathways was explored for the first time. The results showed that Ov could regulate the radical pathways by promoting the adsorption of PMS onto MnCoFeO-2. Ov was positively correlated with 1O2 (P < 0.05) and facilitated the direct electron transfer. The superior catalytic activity of MnCoFeO was attributed to the Fe, Co, Mn active sites, Lewis basic sites and Ov in MnCoFeO. Mn(II) not only contributed to the formation of Ov, but also facilitated the reduction of Fe(III). Additionally, Ov was mainly concentrated near the low-valent metal ions, thus the synergistic effect between the metal active sites and Ov promoted the activation of PMS.
Collapse
Affiliation(s)
- Yanling Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xue Bai
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, China.
| | - Yetong Ji
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Dandan Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
36
|
Poblete R, Cortes E, Pérez N, Maldonado MI. Use of vinasse and coffee waste as chelating agent of photo-Fenton landfill leachate treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:5037-5046. [PMID: 35974283 DOI: 10.1007/s11356-022-22573-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
This research studies the use of vinasse (VS) coming from Pisco and caffeic acid (Caa) from solid coffee waste as chelating agents of this process, to carry out a photo-Fenton process using UVc lamps of 254-nm wavelength for 60 min, at the natural pH of the landfill leachate (8.9). Without the chelating agent, there was a removal of UV 254 and COD of 54.2% and 54.7%, respectively, when the photo-Fenton reaction was carried out at pH 3; at pH 6, the removal of UV 254 and COD was 13.1% and 39.2%, respectively, and at pH 8.9, the elimination of UV 254 and COD was 10.8% and 16.1%, respectively. When Caa was used in the landfill leachate (LL) for the photo-catalytic processes carried out at pH 8.9, a removal of 24.1%, 43.0%, and 47.4% of UV 254 was obtained using 5 mg/L, 50 mg/L, and 100 mg/L of Caa. The removal of UV 254 was 27.3%, 30.7%, and 36.3% using 5 mg/L, 50 mg/L, and 100 mg/L of VS, respectively, and the removal of COD was 32.2%, 35.4%, and 39.2% using 5 mg/L, 50 mg/L, and 100 mg/L of VS, respectively. When Caa was used in the LL at pH 8.9, the concentration of total Fe went from 37.5 to 33.2, from 40.2 to 36.8, and from 45.2 to 42.1, using 5 mg/L, 50 mg/L, and 100 mg/L of caffeic acid, respectively. Using VS in the LL at pH 8.9, the concentration of total Fe along the run went from 35.1 to 32.2, from 39.4 to 34.8, and from 42.1 to 40.2, using 5 mg/L, 50 mg/L, and 100 mg/L of VS, respectively. As a result of these processes, it was noted that the use of Caa and VS increases the solubility of Fe at a higher pH.
Collapse
Affiliation(s)
- Rodrigo Poblete
- Universidad Católica del Norte, Facultad de Ciencias del Mar, Escuela de Prevención de Riesgosy Medioambiente, 1780000, Coquimbo, Chile.
| | - Ernesto Cortes
- Universidad Católica del Norte, Facultad de Ciencias del Mar, Escuela de Prevención de Riesgosy Medioambiente, 1780000, Coquimbo, Chile
| | - Norma Pérez
- Universidad Católica del Norte, Facultad de Ciencias del Mar, Escuela de Prevención de Riesgosy Medioambiente, 1780000, Coquimbo, Chile
| | - Manuel I Maldonado
- Plataforma Solar de Almería (CIEMAT), 04200, Tabernas, Almeria, Spain
- CIESOL, Joint Centre University of Almería-CIEMAT, 04120, Almería, Spain
| |
Collapse
|
37
|
Degradation of the Selected Antibiotic in an Aqueous Solution by the Fenton Process: Kinetics, Products and Ecotoxicity. Int J Mol Sci 2022; 23:ijms232415676. [PMID: 36555316 PMCID: PMC9779365 DOI: 10.3390/ijms232415676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Sulfonamides used in veterinary medicine can be degraded via the Fenton processes. In the premise, the process should also remove the antimicrobial activity of wastewater containing antibiotics. The kinetics of sulfathiazole degradation and identification of the degradation products were investigated in the experiments. In addition, their toxicity against Vibrio fischeri, the MARA® assay, and unselected microorganisms from a wastewater treatment plant and the river was evaluated. It was found that in the Fenton process, the sulfathiazole degradation was described by the following kinetic equation: r0 = k CSTZ-1 or 0 CFe(II)3 CH2O20 or 1 CTOC-2, where r0 is the initial reaction rate, k is the reaction rate constant, C is the concentration of sulfathiazole, Fe(II) ions, hydrogen peroxide and total organic carbon, respectively. The reaction efficiency and the useful pH range (up to pH 5) could be increased by UVa irradiation of the reaction mixture. Eighteen organic degradation products of sulfathiazole were detected and identified, and a possible degradation mechanism was proposed. An increase in the H2O2 dose, to obtain a high degree of mineralization of sulfonamide, resulted in an increase in the ecotoxicity of the post-reaction mixture.
Collapse
|
38
|
Rodrigues-Silva F, V M Starling MC, Amorim CC. Challenges on solar oxidation as post-treatment of municipal wastewater from UASB systems: Treatment efficiency, disinfection and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157940. [PMID: 35952890 PMCID: PMC9554792 DOI: 10.1016/j.scitotenv.2022.157940] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
The application of solar photo-Fenton as post-treatment of municipal secondary effluents (MSE) in developing tropical countries is the main topic of this review. Alternative technologies such as stabilization ponds and upflow anaerobic sludge blanket (UASB) are vastly applied in these countries. However, data related to the application of solar photo-Fenton to improve the quality of effluents from UASB systems are scarce. This review gathered main achievements and limitations associated to the application of solar photo-Fenton at neutral pH and at pilot scale to analyze possible challenges associated to its application as post-treatment of MSE generated by alternative treatments. To this end, the literature review considered studies published in the last decade focusing on CECs removal, toxicity reduction and disinfection via solar photo-Fenton. Physicochemical characteristics of effluents originated after UASB systems alone and followed by a biological post-treatment show significant difference when compared with effluents from conventional activated sludge (CAS) systems. Results obtained for solar photo-Fenton as post-treatment of MSE in developed countries indicate that remaining organic matter and alkalinity present in UASB effluents may pose challenges to the performance of solar advanced oxidation processes (AOPs). This drawback could result in a more toxic effluent. The use of chelating agents such as Fe3+-EDDS to perform solar photo-Fenton at neutral pH was compared to the application of intermittent additions of Fe2+ and both of these strategies were reported as effective to remove CECs from MSE. The latter strategy may be of greater interest in developing countries due to costs associated to complexing agents. In addition, more studies are needed to confirm the efficiency of solar photo-Fenton on the disinfection of effluent from UASB systems to verify reuse possibilities. Finally, future research urges to evaluate the efficiency of solar photo-Fenton at natural pH for the treatment of effluents from UASB systems.
Collapse
Affiliation(s)
- Fernando Rodrigues-Silva
- Research Group on Environmental Applications of Advanced Oxidation Processes, Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Maria Clara V M Starling
- Research Group on Environmental Applications of Advanced Oxidation Processes, Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Camila C Amorim
- Research Group on Environmental Applications of Advanced Oxidation Processes, Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| |
Collapse
|
39
|
Degradation of sulfamethoxazole by a new modified Fenton-like process using Cu(II)-nitrilotriacetic acid complex as catalyst at neutral pH in aqueous medium. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
40
|
Bertolotti S, Minella M, Laurenti E, Brigante M, Mailhot G, Bianco Prevot A. Application of Fe(III)–EDDS complexes and soybean peroxidase in photo-Fenton processes for organic pollutant removal: insights into possible synergistic effects. Photochem Photobiol Sci 2022; 22:603-613. [PMID: 36374373 DOI: 10.1007/s43630-022-00339-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022]
Abstract
AbstractPhoto-Fenton processes activated by biodegradable Fe(III)–EDDS complexes have attracted huge attention from the scientific community, but the operative mechanism of the photo-activation of H2O2 in the presence of Fe(III)–EDDS has not been fully clarified yet. The application of the Fe(III)–EDDS complex in Fenton and photo-Fenton (mainly under UV-B light) processes, using 4-chlorophenol (4-CP) as a model pollutant was explored to give insights into the operative mechanism. Furthermore, the potential synergistic contribution of soybean peroxidase (SBP) was investigated, since it has been reported that upon irradiation of Fe(III)–EDDS the production of H2O2 can occur. SBP did not boost the 4-CP degradation, suggesting that the possibly produced H2O2 reacts immediately with the Fe(II) ion with a quick kinetics that does not allow the diffusion of H2O2 into the bulk of the solution (i.e., outside the solvent cage of the complex). So, a concerted mechanism in which the photochemically produced H2O2 and Fe(II) react inside the hydration sphere of the Fe(III)–EDDS complex is proposed.
Graphical abstract
Collapse
Affiliation(s)
- Silvia Bertolotti
- Department of Life Sciences and System Biology, University of Turin, via Accademia Albertina 13, 10123, Turin, Italy
- ALPSTREAM - Alpine Stream Research Center, 102030, Ostana, Italy
| | - Marco Minella
- Department of Chemistry, University of Turin, via P. Giuria 7, 10125, Turin, Italy.
| | - Enzo Laurenti
- Department of Chemistry, University of Turin, via P. Giuria 7, 10125, Turin, Italy
| | - Marcello Brigante
- CNRS, Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Gilles Mailhot
- CNRS, Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | | |
Collapse
|
41
|
Zhao Z, Li M, Du N, Li Z, Zhang Y, Zhang Q. Fenton-like reaction of glucose oxidase-glucose@Kaolin coupled with green rust: A framework triggering FeⅣ=O in refractory pollutants degradation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
42
|
Xiao Y, Xiong L, Xu Y, Zhang H. Elimination of bisphenol A with visible light-enhanced peroxydisulfate activation process mediated by Fe 3+-nitrilotriacetic acid complex. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129780. [PMID: 36027750 DOI: 10.1016/j.jhazmat.2022.129780] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/01/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
In recent years, visible light assisted advanced oxidation processes (AOPs) are appealing in the elimination of pollutants. Herein, an innovative and eco-friendly visible light enhanced Fe3+-nitrilotriacetic acid system for the activation of peroxydisulfate (Vis/Fe3+-NTA/PDS) was proposed for the removal of bisphenol A (BPA). Fe3+-NTA could be dissociated through ligand-to-metal charge transfer (LMCT) to realize the generation of Fe2+ for the continuous activation of PDS to remove BPA. The use of 0.10 mM Fe3+, 0.10 mM NTA and 1.00 mM PDS led to 97.5% decay of 0.05 mM BPA and 66.3% of TOC removal in 30 min with the illumination of visible light at initial pH 3.0. The sulfate and hydroxyl radicals were proved to be the dominant species leading to BPA removal by means of radical scavenging experiments, radical probes and electron paramagnetic resonance (EPR) technique. The effects of various operating parameters, natural water constituents as well as different water matrices on BPA abatement were explored. The intermediate products of BPA degradation were identified and a possible transformation pathway was proposed. Briefly, this research provides an attractive strategy for the remediation of refractory wastewater using NTA assisted with visible light in the homogeneous Fe3+/PDS system.
Collapse
Affiliation(s)
- Yan Xiao
- Department of Environmental Science and Engineering, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Liangliang Xiong
- Department of Environmental Science and Engineering, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Yin Xu
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China.
| | - Hui Zhang
- Department of Environmental Science and Engineering, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
43
|
Shang X, Cui T, Xiao Z, Ren R, Song Z, Wang Z, Li C, Xu B, Qi F, Ikhlaq A, Kumirska J, Maria Siedlecka E, Oksana I. Electrochemical oxidation degradation of fungicide 5-chloro-2-methyl-4-isothiazoline-3-one (CMIT) in brine of reverse osmosis by a novel Ti/CB@MXene anode. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Cai H, Ma Y, Li J, Jin Y, Zhu P, Chen M. Norfloxacin Degradation by Persulfate Activated with Cu 2O@WO 3 Composites: Efficiency, Stability, Mechanism, and Degradation Pathway. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Haitao Cai
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
- Engineering Research Center of Comprehensive Utilization and Clean Processing of Phosphorus Resources, Ministry of Education, Chengdu 610065, Sichuan, China
| | - Yujing Ma
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
- Engineering Research Center of Comprehensive Utilization and Clean Processing of Phosphorus Resources, Ministry of Education, Chengdu 610065, Sichuan, China
| | - Jun Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
- Engineering Research Center of Comprehensive Utilization and Clean Processing of Phosphorus Resources, Ministry of Education, Chengdu 610065, Sichuan, China
| | - Yang Jin
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
- Engineering Research Center of Comprehensive Utilization and Clean Processing of Phosphorus Resources, Ministry of Education, Chengdu 610065, Sichuan, China
| | - Pan Zhu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
- Engineering Research Center of Comprehensive Utilization and Clean Processing of Phosphorus Resources, Ministry of Education, Chengdu 610065, Sichuan, China
| | - Ming Chen
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
- Engineering Research Center of Comprehensive Utilization and Clean Processing of Phosphorus Resources, Ministry of Education, Chengdu 610065, Sichuan, China
| |
Collapse
|
45
|
Liu L, Dong W, Niu M, Liu X, Xue J, Tang A. Fabrication of a confined pyrite cinder-based photo-Fenton catalyst and its degradation performance for ciprofloxacin. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Prete P, Fiorentino A, Rizzo L, Proto A, Cucciniello R. Open the way to turnover frequency determination in (photo)Fenton processes for catalytic activities comparison. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Liu Y, Sheng X, Zhou Z, Wang P, Lu Z, Dong J, Sun Y, Lyu S. Efficient naphthalene degradation in FeS 2-activated nano calcium peroxide system: Performance and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128693. [PMID: 35338930 DOI: 10.1016/j.jhazmat.2022.128693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/03/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Naphthalene (NAP) has received increasing concern due to frequent detection in groundwater and harm to humans. In this study, FeS2 was selected as a novel catalyst to activate nano calcium peroxide (nCP) for NAP degradation. Batch experiments were conducted in a 250 mL glass reactor containing 0.1 mM NAP solution to investigate the effect of reagents dosage, pH, air conditions (with or without N2 purge), and different solution matrixes on NAP degradation. Scavenging tests, electron paramagnetic resonance (EPR) spectrum, and radical probe tests were conducted to identify the main radicals. Results indicated that over 96% NAP was removed in a wide pH range (3.0-9.0) within 180 min at optimal dosage of nCP = 1.0 mM and FeS2 = 5.0 g L-1 in nCP/FeS2 system. Aerobic condition was more beneficial to NAP degradation and the system could tolerate complex solution conditions. Moreover, HO• was determined to be responsible for NAP degradation. NAP degradation intermediates were detected by gas chromatography-mass spectrometry (GC-MS) and the possible degradation pathways were revealed. Finally, the efficient degradation of other organic pollutants confirmed the broad-spectrum reactivity of the nCP/FeS2 system. Overall, these findings strongly demonstrated the potential applicability of nCP/FeS2 system in remediating organic contaminated groundwater.
Collapse
Affiliation(s)
- Yulong Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Xianxian Sheng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Zhikang Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Peng Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Zhanpeng Lu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaqi Dong
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Yong Sun
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Shuguang Lyu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
48
|
Zhang Y, Chu W. Enhanced degradation of metronidazole by cobalt doped TiO2/sulfite process under visible light. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120900] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Ahmed Y, Zhong J, Yuan Z, Guo J. Roles of reactive oxygen species in antibiotic resistant bacteria inactivation and micropollutant degradation in Fenton and photo-Fenton processes. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128408. [PMID: 35150997 DOI: 10.1016/j.jhazmat.2022.128408] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/17/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Reactive oxygen species play a critical role in degrading chemical or biological contaminants in advanced oxidation processes. However, it is still not clear whether conventional Fenton and photo-Fenton processes generate different reactive oxygen species, respectively. This study revealed the roles of reactive oxygen species (ROS) for simultaneous removal of antibiotic resistant bacteria (ARB) and recalcitrant micropollutant using three processes, i.e., conventional Fenton, photo-Fenton, and ethylenediamine-N, N'-disuccinic acid (EDDS) modified photo-Fenton. Both chemical scavengers and electron paramagnetic resonance spectroscopy confirmed the generation of various ROS and their contribution towards bacterial inactivation and micropollutant degradation. Results showed ARB and carbamazepine (CBZ) elimination efficiency in the order: EDDS modified photo-Fenton process > photo-Fenton process > Fenton process. The ARB detection limit (6-log ARB) was observed within 10 min at lower doses of 0.1 mM Fe3+, 0.2 mM EDDS, and 0.5 mM hydrogen peroxide (H2O2). With the same dose, it took longer (60 min) to remove CBZ, while 2.5 times higher H2O2 dose (1.25 mM) removed around 99% of CBZ within 10 min treatment. The present study highlighted that the hydroxyl radical (HO•) plays a dominant role, while singlet oxygen (1O2) and superoxide radical anion (O2•-) exhibit moderate effects to remove the hazards. Our findings provide mechanistic insights into the role of various reactive oxygen species on degrading micropollutants and inactivating ARB.
Collapse
Affiliation(s)
- Yunus Ahmed
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jiexi Zhong
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Zhiguo Yuan
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia.
| |
Collapse
|
50
|
Song HM, Zhu LJ, Wang Y, Wang G, Zeng ZX. Fe-based Prussian blue cubes confined in graphene oxide nanosheets for the catalytic degradation of dyes in wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|