1
|
Chan WS, Santobuono M, D'Amico E, Selck H. The antidepressant, sertraline, impacts growth and reproduction in the benthic deposit feeder, Tubifex tubifex. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117134. [PMID: 39357382 DOI: 10.1016/j.ecoenv.2024.117134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/28/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Among emerging contaminants, pharmaceuticals are considered one of the most pertinent substances that may threaten aquatic ecosystems. Pharmaceuticals are designed to be directed at specific metabolic- and molecular pathways. Thus, they are assumed to be still biologically active when entering the ecosystem and may result in unpremeditated impacts on non-target organisms. One of the most widely used selective serotonin reuptake inhibitors, sertraline (an antidepressant), is regularly found in aquatic environments. However, knowledge about the effects, and in particular, of sediment-associated sertraline in benthic invertebrates is limited. We examined the impacts of chronic exposure (28 d) to sediment-associated sertraline (3.3, 33, 330 μg/g dw sed.) on survival, growth and reproduction in the deposit-feeding oligochaete, Tubifex tubifex. Sertraline significantly decreased T. tubifex survival and growth. Worms exposed to high sertraline concentrations (330 μg/g) had a lower growth rate and reproduction, as indicated by a significantly lower number of cumulated cocoons. Worms exposed to an environmentally relevant concentration (3.3 μg/g) decreased growth but maintained a reproduction rate similar to that of the control. The implications are that adult worms exposed to high sertraline concentrations presumably required more energy for maintenance and detoxification, thereby reducing available energy for reproduction and growth. This represents a trade-off between survival, reproduction and growth. In contrast, T. tubifex exposed to environmentally relevant concentrations allocated more energy to reproduction by slightly increasing the number of cocoons produced and reducing growth. However, the quantity and quality of offspring may be impacted as we observed fewer juveniles in the environmentally relevant treatment than in the control. Overall, the results indicate that sediment-associated sertraline is bioavailable and negatively impacts T. tubifex survival, growth, and reproduction even at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Wing Sze Chan
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.
| | - Martina Santobuono
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Elettra D'Amico
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Henriette Selck
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| |
Collapse
|
2
|
Nigro L, Magni S, Ortenzi MA, Gazzotti S, Della Torre C, Signorini SG, Sbarberi R, Binelli A. Unveiling the multilevel impact of four water-soluble polymers on Daphnia magna: From proteome to behaviour (a case study). JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134000. [PMID: 38508107 DOI: 10.1016/j.jhazmat.2024.134000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/27/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024]
Abstract
The ubiquitous presence of water-soluble polymers (WSPs) in freshwater environments raises concerns regarding potential threats to aquatic organisms. This study investigated, for the first time, the effects of widely used WSPs -polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), polyacrylic acid (PAA), and polyethylene glycol (PEG)- using a multi-level approach in the freshwater biological model Daphnia magna. This integrated assessment employed a suite of biomarkers, evaluation of swimming behaviour, and proteomic analysis to investigate the effects of three environmentally relevant concentrations (0.001, 0.5, and 1 mg/L) of the tested WSPs from molecular to organismal levels, assessing both acute and chronic effects. Our findings reveal that exposure to different WSPs induces specific responses at each biological level, with PEG being the only WSP inducing lethal effects at 0.5 mg/L. At the physiological level, although all WSPs impacted both swimming performance and heart rate of D. magna specimens, PAA exhibited the greatest effects on the measured behavioural parameters. Furthermore, proteomic analyses demonstrated altered protein profiles following exposure to all WSPs, with PVA emerging as the most effective.
Collapse
Affiliation(s)
- Lara Nigro
- Department of Biosciences, University of Milan, Via Celoria 26, Milan 20133, Italy
| | - Stefano Magni
- Department of Biosciences, University of Milan, Via Celoria 26, Milan 20133, Italy.
| | - Marco Aldo Ortenzi
- Department of Chemistry, University of Milan, Via Golgi 19, Milan 20133, Italy
| | - Stefano Gazzotti
- Department of Chemistry, University of Milan, Via Golgi 19, Milan 20133, Italy
| | - Camilla Della Torre
- Department of Biosciences, University of Milan, Via Celoria 26, Milan 20133, Italy
| | | | - Riccardo Sbarberi
- Department of Biosciences, University of Milan, Via Celoria 26, Milan 20133, Italy
| | - Andrea Binelli
- Department of Biosciences, University of Milan, Via Celoria 26, Milan 20133, Italy
| |
Collapse
|
3
|
Moro H, Raldúa D, Barata C. Developmental defects in cognition, metabolic and cardiac function following maternal exposures to low environmental levels of selective serotonin re-uptake inhibitors and tributyltin in Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170463. [PMID: 38290680 DOI: 10.1016/j.scitotenv.2024.170463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/03/2024] [Accepted: 01/24/2024] [Indexed: 02/01/2024]
Abstract
Aquatic organisms are exposed to low concentrations of neuro-active chemicals, many of them acting also as neuroendocrine disruptors that can be hazardous during earlier embryonic stages. The present study aims to assess how exposure early in live to environmental low concentrations of two selective serotonin reuptake inhibitors (SSRIs), fluoxetine and sertraline, and tributyltin (TBT) affected cognitive, metabolic and cardiac responses in the model aquatic crustacean Daphnia magna. To that end, newly brooded females were exposed for an entire reproductive cycle (3-4 days) and the response of collected juveniles in the first, second and third consecutive broods, which were exposed, respectively, as embryos, provisioned and un-provisioned egg stages, was monitored. Pre-exposure to the selected SSRIs during embryonic and egg developmental stages altered the swimming behaviour of D. magna juveniles to light in a similar way reported elsewhere by serotonergic compounds while TBT altered cognition disrupting multiple neurological signalling routes. The studied compounds also altered body size, the amount of storage lipids in lipid droplets, heart rate, oxygen consumption rates and the transcription of related serotonergic, dopaminergic and lipid metabolic genes in new-born individuals, mostly pre-exposed during their embryonic and provisioning egg stages. The obtained cognitive, cardiac and metabolic defects in juveniles developed from exposed sensitive pre-natal stages align with the "Developmental Origins of Health and Disease (DoHAD)" paradigm.
Collapse
Affiliation(s)
- Hugo Moro
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| | - Demetrio Raldúa
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| | - Carlos Barata
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Spain.
| |
Collapse
|
4
|
Lin XL, Guo F, Rillig MC, Chen C, Duan GL, Zhu YG. Effects of common artificial sweeteners at environmentally relevant concentrations on soil springtails and their gut microbiota. ENVIRONMENT INTERNATIONAL 2024; 185:108496. [PMID: 38359549 DOI: 10.1016/j.envint.2024.108496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
Artificial sweeteners (AS) are extensively utilized as sugar substitutes and have been recognized as emerging environmental contaminants. While the effect of AS on aquatic organisms has garnered recent attention, their effects on soil invertebrates and gut microbial communities remain unclear. To address this knowledge gap, we exposed springtails (Folsomia candida) to both single and combined treatments of four typical AS (sucralose [SUC], saccharin [SAC], cyclamate [CYC], and acesulfame [ACE]) at environmentally relevant concentrations of 0.01, 0.1 and 1 mg kg-1 in soil. Following the first-generational exposure, the reproduction of juveniles showed a significant increase under all the AS treatments of 0.1 mg kg-1. The transcriptomic analysis revealed significant enrichment of several Kyoto Encyclopedia of Gene and Genome pathways (e.g., glycolysis/gluconeogenesis, pentose and glucuronate interconversions, amino sugar, and nucleotide sugar metabolism, ribosome, and lysosome) in springtails under all AS treatments. Analysis of gut bacterial microbiota indicated that three AS (SUC, CYC, and ACE) significantly decreased alpha diversity, and all AS treatments increased the abundance of the genus Achromobacter. After the sixth-generational exposure to CYC, weight increased, but reproduction was inhibited. The pathways that changed significantly (e.g., extracellular matrix-receptor interaction, amino sugar and nucleotide sugar metabolism, lysosome) were generally similar to those altered in first-generational exposure, but with opposite regulation directions. Furthermore, the effect on the alpha diversity of gut microbiota was contrary to that after first-generational exposure, and more noticeable disturbances in microbiota composition were observed. These findings underscore the ecological risk of AS in soils and improve our understanding of the toxicity effects of AS on living organisms.
Collapse
Affiliation(s)
- Xiang-Long Lin
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Fei Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100000, China
| | - Matthias C Rillig
- Institut Für Biologie, Freie Universität Berlin, Berlin 14195, Germany
| | - Chun Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gui-Lan Duan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
5
|
Liu F, Cao X, Zhou L. Lipid metabolism analysis providing insights into nonylphenol multi-toxicity mechanism. iScience 2023; 26:108417. [PMID: 38053636 PMCID: PMC10694653 DOI: 10.1016/j.isci.2023.108417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/29/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
Nonylphenol (NP), a widely recognized endocrine disruptor, exhibits lipophobic properties that drive its accumulation in adipose tissue, leading to various physiological disruptions. Using Caenorhabditis elegans, this study investigated the effects of NP exposure on lipid homeostasis and physiological indicators. NP exposure increased lipid storage, hindered reproduction and growth, and altered phospholipid composition. Transcriptional analysis revealed NP's promotion of lipogenesis and inhibition of lipolysis. Metabolites related to lipid metabolism like citrate, amino acids, and neurotransmitters, along with lipids, collectively influenced physiological processes. This work elucidates the complex link between lipid metabolism disturbances and NP-induced physiological disruptions, enhancing our understanding of NP's multifaceted toxicity.
Collapse
Affiliation(s)
- Fuwen Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xue Cao
- Department of Civil and Environmental Engineering, Shantou University, Shantou 515063, China
| | - Lei Zhou
- Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
6
|
Gu L, Yang Y, Chen X, Liu Q, Sun Y, Zhang L, Yang Z. Delicate plasticity: Maladaptive responses to fish predation risk in Daphnia magna caused by sertraline pollution. CHEMOSPHERE 2023; 344:140393. [PMID: 37820873 DOI: 10.1016/j.chemosphere.2023.140393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/17/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
An emerging environmental pollutant may have a greater impact on phenotypic plasticity than its direct toxicity, causing maladaptive responses of organisms to their current environment. To better understand such ecological risks, we proposed a delicate plasticity hypothesis: if an emerging stressor acts on the fundamental processes underlying a specific adaptive plastic response, it is more likely to pose high risks to the phenotypic plasticity. Endocrine regulation is one of the critical processes of plasticity and is becoming a target for emerging pollutants. To test this hypothesis, we measured individual traits and the expression of endocrine-related genes in Daphnia magna in response to fish predation risk under exponentially increasing concentrations of the antidepressant sertraline, a selective serotonin reuptake inhibitor. The results showed that sertraline impaired most of the defense responses of D. magna at concentrations lower than the effective concentrations of its direct toxicity. The high risks of sertraline on inducible defenses were also visually reflected in the relationships between toxicity and plasticity strength, that is, most of the defense responses exponentially decayed with an increase in sertraline toxicity. In addition, the expression of genes involved in serotonin synthesis was significantly correlated with the expression of other endocrine-related genes and with changes in morphological traits. These results revealed that environmental sertraline pollution could disturb endocrine regulation and cause high risks to inducible defenses of D. magna, providing evidence supporting the delicate plasticity hypothesis.
Collapse
Affiliation(s)
- Lei Gu
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Ya Yang
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Xihua Chen
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Qi Liu
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yunfei Sun
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Lu Zhang
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Zhou Yang
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
7
|
Luo T, Dai X, Wei W, Xu Q, Ni BJ. Microplastics Enhance the Prevalence of Antibiotic Resistance Genes in Anaerobic Sludge Digestion by Enriching Antibiotic-Resistant Bacteria in Surface Biofilm and Facilitating the Vertical and Horizontal Gene Transfer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14611-14621. [PMID: 37733635 DOI: 10.1021/acs.est.3c02815] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Antibiotic resistance genes (ARGs) and microplastics (MPs) are recognized as emerging contaminants and threats to global human health. Despite both of them being significantly detected in their "hotspots", i.e., waste activated sludge (WAS), rare studies on how MPs affect ARGs and antibiotic-resistant bacteria (ARB) in anaerobic sludge digestion are available. Herein, the fate of ARGs and ARB after exposure to MPs of three dosages (10, 30, and 80 particles/g-TS), three polymer types (LDPE, PET, and PS), and three branching extents (LDPE, LLDPE, and HDPE) in anaerobic sludge digestion was investigated. Metagenomic results indicated that all variants of MPs resulted in an increase of the relative abundance of ARGs in the digester compared to the control. The abundance of ARGs demonstrated a dosage-dependent relationship within the range from 10 to 80 particles/g-TS, resulting in an increase from 4.5 to 27.9% compared to the control. Branching structure and polymer type influence ARG level in the sludge digester as well. Mechanism studies revealed that LDPE selectively enriched potential ARB and ARGs in the surface biofilm, possibly creating a favorable environment for ARB proliferation and ARG exchange. Furthermore, vertical transfer of ARGs was facilitated by LDPE through increasing bacterial cell proliferation accompanied by the enhancement of relevant functional genes. The elevated abundance of mobile genetic elements (MGEs) and ARGs-carrying plasmids also demonstrated that MGE-mediated horizontal transfer was promoted by LDPE at 80 particles/g-TS. This effect was compounded by increased oxidative stress, cell membrane permeability, and cell cohesion, collectively facilitating horizontal ARG transfer. Consequently, both vertical and horizontal transfer of ARGs could be concurrently promoted by LDPE an in anaerobic sludge digester.
Collapse
Affiliation(s)
- Tianyi Luo
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 200092 Shanghai, PR China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 200092 Shanghai, PR China
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Qiuxiang Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 200092 Shanghai, PR China
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
8
|
Guo J, Ren J, Chang C, Duan Q, Li J, Kanerva M, Yang F, Mo J. Freshwater crustacean exposed to active pharmaceutical ingredients: ecotoxicological effects and mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:48868-48902. [PMID: 36884171 DOI: 10.1007/s11356-023-26169-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 02/23/2023] [Indexed: 04/16/2023]
Abstract
Concerns over the ecotoxicological effects of active pharmaceutical ingredients (APIs) on aquatic invertebrates have been raised in the last decade. While numerous studies have reported the toxicity of APIs in invertebrates, no attempt has been made to synthesize and interpret this dataset in terms of different exposure scenarios (acute, chronic, multigenerational), multiple crustacean species, and the toxic mechanisms. In this study, a thorough literature review was performed to summarize the ecotoxicological data of APIs tested on a range of invertebrates. Therapeutic classes including antidepressants, anti-infectives, antineoplastic agents, hormonal contraceptives, immunosuppressants, and neuro-active drugs exhibited higher toxicity to crustaceans than other API groups. The species sensitivity towards APIs exposure is compared in D. magna and other crustacean species. In the case of acute and chronic bioassays, ecotoxicological studies mainly focus on the apical endpoints including growth and reproduction, whereas sex ratio and molting frequency are commonly used for evaluating the substances with endocrine-disrupting properties. The multigenerational and "Omics" studies, primarily transcriptomics and metabolomics, were confined to a few API groups including beta-blocking agents, blood lipid-lowing agents, neuroactive agents, anticancer drugs, and synthetic hormones. We emphasize that in-depth studies on the multigenerational effects and the toxic mechanisms of APIs on the endocrine systems of freshwater crustacean are warranted.
Collapse
Affiliation(s)
- Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Jingya Ren
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Chao Chang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Qiannan Duan
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Jun Li
- Department of Environment and Geography, University of York, Heslington, York, YO10 5NG, UK
| | - Mirella Kanerva
- Center for Marine Environmental Studies, Ehime University, Matsuyama, 7908577, Japan
| | - Fangshe Yang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China.
| | - Jiezhang Mo
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
9
|
Tominaga FK, Boiani NF, Silva TT, Garcia VSG, Borrely SI. Acute and chronic ecotoxicological effects of pharmaceuticals and their mixtures in Daphnia similis. CHEMOSPHERE 2022; 309:136671. [PMID: 36209851 DOI: 10.1016/j.chemosphere.2022.136671] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 09/18/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Pharmaceuticals have increasingly received attention from the scientific community due to their growing intake, improved detection and potential ecological risks. Several pharmaceuticals, including antidepressants, anti-inflammatory and antidiabetic compounds and antibiotics, have been described as contaminants in different water matrices. In this context, the aim of the present study was to assess the acute and chronic effects of four classes of pharmaceuticals (acetylsalicylic acid, fluoxetine, metformin and ciprofloxacin) individually and in binary and quartenary mixture. Furthermore, the toxicity of binary mixtures containing the antidepressant fluoxetine was also evaluated. The results of the single acute and chronic toxicity assays indicate lower acetylsalicylic acid and higher fluoxetine toxicity towards Daphnia similis. Regarding the evaluated mixture toxicity, the nature of potential toxicological interactions was predicted by applying mathematical concentration addition and independent action models. The findings revealed both antagonistic and synergistic features, depending on the applied amounts and doses. Finally, the chronic assays performed with the quaternary mixture indicated the presence of a hormetic effect at low concentrations. In sum, the present study demonstrated that the effects of individual pharmaceuticals can underestimate the risk level of these contaminants in the environment.
Collapse
Affiliation(s)
- Flávio Kiyoshi Tominaga
- Instituto de Pesquisas Energéticas e Nucleares, Radiation Technology Center - IPEN-CNEN/SP, Av. Prof. Lineu Prestes, 2242, São Paulo, CEP 05508-000, Brazil.
| | - Nathalia Fonseca Boiani
- Instituto de Pesquisas Energéticas e Nucleares, Radiation Technology Center - IPEN-CNEN/SP, Av. Prof. Lineu Prestes, 2242, São Paulo, CEP 05508-000, Brazil
| | - Thalita Tieko Silva
- Instituto de Pesquisas Energéticas e Nucleares, Radiation Technology Center - IPEN-CNEN/SP, Av. Prof. Lineu Prestes, 2242, São Paulo, CEP 05508-000, Brazil
| | - Vanessa Silva Granadeiro Garcia
- Instituto de Pesquisas Energéticas e Nucleares, Radiation Technology Center - IPEN-CNEN/SP, Av. Prof. Lineu Prestes, 2242, São Paulo, CEP 05508-000, Brazil
| | - Sueli Ivone Borrely
- Instituto de Pesquisas Energéticas e Nucleares, Radiation Technology Center - IPEN-CNEN/SP, Av. Prof. Lineu Prestes, 2242, São Paulo, CEP 05508-000, Brazil
| |
Collapse
|
10
|
Ni FJ, Arhonditsis GB. Examination of the effects of toxicity and nutrition on a two prey-predator system with a metabolomics-inspired model. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
11
|
Choi TJ, An HE, Kim CB. Machine Learning Models for Identification and Prediction of Toxic Organic Compounds Using Daphnia magna Transcriptomic Profiles. Life (Basel) 2022; 12:1443. [PMID: 36143479 PMCID: PMC9503646 DOI: 10.3390/life12091443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
A wide range of environmental factors heavily impact aquatic ecosystems, in turn, affecting human health. Toxic organic compounds resulting from anthropogenic activity are a source of pollution in aquatic ecosystems. To evaluate these contaminants, current approaches mainly rely on acute and chronic toxicity tests, but cannot provide explicit insights into the causes of toxicity. As an alternative, genome-wide gene expression systems allow the identification of contaminants causing toxicity by monitoring the organisms' response to toxic substances. In this study, we selected 22 toxic organic compounds, classified as pesticides, herbicides, or industrial chemicals, that induce environmental problems in aquatic ecosystems and affect human-health. To identify toxic organic compounds using gene expression data from Daphnia magna, we evaluated the performance of three machine learning based feature-ranking algorithms (Learning Vector Quantization, Random Forest, and Support Vector Machines with a Linear kernel), and nine classifiers (Linear Discriminant Analysis, Classification And Regression Trees, K-nearest neighbors, Support Vector Machines with a Linear kernel, Random Forest, Boosted C5.0, Gradient Boosting Machine, eXtreme Gradient Boosting with tree, and eXtreme Gradient Boosting with DART booster). Our analysis revealed that a combination of feature selection based on feature-ranking and a random forest classification algorithm had the best model performance, with an accuracy of 95.7%. This is a preliminary study to establish a model for the monitoring of aquatic toxic substances by machine learning. This model could be an effective tool to manage contaminants and toxic organic compounds in aquatic systems.
Collapse
Affiliation(s)
| | | | - Chang-Bae Kim
- Department of Biotechnology, Sangmyung University, Seoul 03016, Korea
| |
Collapse
|
12
|
Nigro L, Magni S, Ortenzi MA, Gazzotti S, Della Torre C, Binelli A. Are "liquid plastics" a new environmental threat? The case of polyvinyl alcohol. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 248:106200. [PMID: 35605492 DOI: 10.1016/j.aquatox.2022.106200] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Despite the pollution induced by plastics become a well-known and documented problem, bringing many countries to adopt restrictions about their production, commercialization and use, the impact of another emerging category of synthetic polymers, represented by the Water-Soluble Polymers (WSPs), also known as "liquid plastics", is overlooked by scientific community. WSPs are produced in large quantities and used in a wide plethora of applications such as food packaging, pharmaceuticals and personal care products, cosmetics and detergents, with a consequent continuous release in the environment. The aim of this study was the investigation of the possible toxicity induced by polyvinyl alcohol (PVA), one of the main produced and used WSPs, on two freshwater model organisms, the crustacean Daphnia magna and the teleost Danio rerio (zebrafish). We evaluated the effects of solubilized standard PVA powder and PVA-based commercial bags for carp-fishing, at 3 different concentrations (1 µg/L, 0.5 mg/L and 1 mg/L), through the exposures for 14 days of D. magna (daphnids; age < 24 h) and for 5 days of zebrafish embryos (up to 120 h post fertilization - hpf). As acute effects we evaluated the immobilization/mortality of specimens, while for chronic toxicity we selected several endpoints with a high ecological relevance, as the behavioural alteration on swimming performance, in real-time readout, and the activity of monoamine oxidase (MAO), a neuro-enzyme with a potential implication in the organism movement. The results showed the lack of significant effects induced by the selected substances, at all tested concentrations and in both model organisms. However, considering the wide plethora of available WSPs, other investigations are needed to provide the initial knowledge of risk assessment of these compounds contained in some consumer products.
Collapse
Affiliation(s)
- Lara Nigro
- Department of Biosciences, University of Milan, Via Celoria 26, Milan 20133, Italy
| | - Stefano Magni
- Department of Biosciences, University of Milan, Via Celoria 26, Milan 20133, Italy.
| | - Marco Aldo Ortenzi
- Department of Chemistry, University of Milan, Via Golgi 19, Milan 20133, Italy
| | - Stefano Gazzotti
- Department of Chemistry, University of Milan, Via Golgi 19, Milan 20133, Italy
| | - Camilla Della Torre
- Department of Biosciences, University of Milan, Via Celoria 26, Milan 20133, Italy
| | - Andrea Binelli
- Department of Biosciences, University of Milan, Via Celoria 26, Milan 20133, Italy
| |
Collapse
|
13
|
Alcaraz AJG, Baraniuk S, Mikulášek K, Park B, Lane T, Burbridge C, Ewald J, Potěšil D, Xia J, Zdráhal Z, Schneider D, Crump D, Basu N, Hogan N, Brinkmann M, Hecker M. Comparative analysis of transcriptomic points-of-departure (tPODs) and apical responses in embryo-larval fathead minnows exposed to fluoxetine. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118667. [PMID: 34896397 DOI: 10.1016/j.envpol.2021.118667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/17/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Current approaches in chemical hazard assessment face significant challenges because they rely on live animal testing, which is time-consuming, expensive, and ethically questionable. These concerns serve as an impetus to develop new approach methodologies (NAMs) that do not rely on live animal tests. This study explored a molecular benchmark dose (BMD) approach using a 7-day embryo-larval fathead minnow (FHM) assay to derive transcriptomic points-of-departure (tPODs) to predict apical BMDs of fluoxetine (FLX), a highly prescribed and potent selective serotonin reuptake inhibitor frequently detected in surface waters. Fertilized FHM embryos were exposed to graded concentrations of FLX (confirmed at < LOD, 0.19, 0.74, 3.38, 10.2, 47.5 μg/L) for 32 days. Subsets of fish were subjected to omics and locomotor analyses at 7 days post-fertilization (dpf) and to histological and biometric measurements at 32 dpf. Enrichment analyses of transcriptomics and proteomics data revealed significant perturbations in gene sets associated with serotonergic and axonal functions. BMD analysis resulted in tPOD values of 0.56 μg/L (median of the 20 most sensitive gene-level BMDs), 5.0 μg/L (tenth percentile of all gene-level BMDs), 7.51 μg/L (mode of the first peak of all gene-level BMDs), and 5.66 μg/L (pathway-level BMD). These tPODs were protective of locomotor and reduced body weight effects (LOEC of 10.2 μg/L) observed in this study and were reflective of chronic apical BMDs of FLX reported in the literature. Furthermore, the distribution of gene-level BMDs followed a bimodal pattern, revealing disruption of sensitive neurotoxic pathways at low concentrations and metabolic pathway perturbations at higher concentrations. This is one of the first studies to derive protective tPODs for FLX using a short-term embryo assay at a life stage not considered to be a live animal under current legislations.
Collapse
Affiliation(s)
| | - Shaina Baraniuk
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada
| | - Kamil Mikulášek
- Central European Institute of Technology, Masaryk University, Brno, CZ-625 00, Czech Republic
| | - Bradley Park
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada
| | - Taylor Lane
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada; Department of Environment and Geography, University of York, Heslington, YO10 5NG, United Kingdom
| | - Connor Burbridge
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 0W9, Canada
| | - Jessica Ewald
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, H9X 3V9, Canada
| | - David Potěšil
- Central European Institute of Technology, Masaryk University, Brno, CZ-625 00, Czech Republic
| | - Jianguo Xia
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, H9X 3V9, Canada
| | - Zbyněk Zdráhal
- Central European Institute of Technology, Masaryk University, Brno, CZ-625 00, Czech Republic
| | - David Schneider
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 0W9, Canada; School of the Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, S7N 5C8, Canada
| | - Doug Crump
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, ON, K1A 0H3, Canada
| | - Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, H9X 3V9, Canada
| | - Natacha Hogan
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada; Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Markus Brinkmann
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada; School of the Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, S7N 5C8, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK, S7N 3H5, Canada
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada; School of the Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, S7N 5C8, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK, S7N 3H5, Canada.
| |
Collapse
|
14
|
Malev O, Babić S, Sima Cota A, Stipaničev D, Repec S, Drnić M, Lovrić M, Bojanić K, Radić Brkanac S, Čož-Rakovac R, Klobučar G. Combining short-term bioassays using fish and crustacean model organisms with ToxCast in vitro data and broad-spectrum chemical analysis for environmental risk assessment of the river water (Sava, Croatia). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118440. [PMID: 34740738 DOI: 10.1016/j.envpol.2021.118440] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/27/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
This study focused on the short-term whole organism bioassays (WOBs) on fish (Danio rerio) and crustaceans (Gammarus fossarum and Daphnia magna) to assess the negative biological effects of water from the major European River Sava and the comparison of the obtained results with in vitro toxicity data (ToxCast database) and Risk Quotient (RQ) methodology. Pollution profiles of five sampling sites along the River Sava were assessed by simultaneous chemical analysis of 562 organic contaminants (OCs) of which 476 were detected. At each sampling site, pharmaceuticals/illicit drugs category was mostly represented by their cumulative concentration, followed by categories industrial chemicals, pesticides and hormones. An exposure-activity ratio (EAR) approach based on ToxCast data highlighted steroidal anti-inflammatory drugs, antibiotics, antiepileptics/neuroleptics, industrial chemicals and hormones as compounds with the highest biological potential. Summed EAR-based prediction of toxicity showed a good correlation with the estimated toxicity of assessed sampling sites using WOBs. WOBs did not exhibit increased mortality but caused various sub-lethal biological responses that were dependant relative to the sampling site pollution intensity as well as species sensitivity. Exposure of G. fossarum and D. magna to river water-induced lower feeding rates increased GST activity and TBARS levels. Zebrafish D. rerio embryo exhibited a significant decrease in heartbeat rate, failure in pigmentation formation, as well as inhibition of ABC transporters. Nuclear receptor activation was indicated as the biological target of greatest concern based on the EAR approach. A combined approach of short-term WOBs, with a special emphasis on sub-lethal endpoints, and chemical characterization of water samples compared against in vitro toxicity data from the ToxCast database and RQs can provide a comprehensive insight into the negative effect of pollutants on aquatic organisms.
Collapse
Affiliation(s)
- Olga Malev
- Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Sanja Babić
- Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia; Centre of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Zagreb, Croatia
| | - Anja Sima Cota
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, Zagreb, Croatia
| | - Draženka Stipaničev
- Croatian Waters, Central Water Management Laboratory, Ulica grada Vukovara 220, Zagreb, Croatia
| | - Siniša Repec
- Croatian Waters, Central Water Management Laboratory, Ulica grada Vukovara 220, Zagreb, Croatia
| | - Martina Drnić
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, Zagreb, Croatia
| | - Mario Lovrić
- Know-Center, Inffeldgasse 13, 8010, Graz, Austria; Centre for Applied Bioanthropology, Institute for Anthropological Research, 10000, Zagreb, Croatia
| | - Krunoslav Bojanić
- Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia; Centre of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Zagreb, Croatia
| | - Sandra Radić Brkanac
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, Zagreb, Croatia
| | - Rozelindra Čož-Rakovac
- Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia; Centre of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Zagreb, Croatia
| | - Göran Klobučar
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, Zagreb, Croatia.
| |
Collapse
|
15
|
Campos B, Piña B, Barata C. Daphnia magna Gut-Specific Transcriptomic Responses to Feeding Inhibiting Chemicals and Food Limitation. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:2510-2520. [PMID: 34081794 DOI: 10.1002/etc.5134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/31/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
Transcriptomic responses combined with apical adverse ecologically relevant outcomes have proven to be useful to unravel and anchor molecular mechanisms of action to adverse outcomes. This is the case for feeding inhibition responses in the model ecotoxicological species Daphnia magna. The aim of the present study was to assess the transcriptomic responses in guts dissected from D. magna individuals exposed to concentrations of selected compounds that inhibit feeding and compare them with the responses associated to 2 levels of food restriction (low food and starvation). Chemical treatments included cadmium, copper, fluoranthene, λ-cyhalothrin, and the cyanotoxin anatoxin-a. Although the initial hypothesis was that exposure to chemical feeding inhibitors should elicit similar molecular responses as food limitation, the corresponding gut transcriptomic responses differed significantly. In moderate food limitation conditions, D. magna individuals increased protein and carbohydrate catabolism, likely to be used as energetic sources, whereas under severe starving conditions most metabolism-related pathways appeared down-regulated. Treatment with chemical feeding inhibitors promoted cell turnover-related signaling pathways in the gut, probably to renew tissue damage caused by the reported oxidative stress effects of these compounds, and inhibited the transcription of gut digestive gene enzymes and energetic metabolic pathways. We conclude that chemical feeding inhibitors, rather than mimicking the physiological response to low- or no-food conditions, cause specific toxic effects, preventing Daphnia both from feeding and from adjusting its metabolism to the resulting low energy intake. Environ Toxicol Chem 2021;40:2510-2520. © 2021 SETAC.
Collapse
Affiliation(s)
- Bruno Campos
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, Barcelona, Spain
| | - Benjamín Piña
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, Barcelona, Spain
| | - Carlos Barata
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, Barcelona, Spain
| |
Collapse
|
16
|
Faria M, Prats E, Rosas Ramírez JR, Bellot M, Bedrossiantz J, Pagano M, Valls A, Gomez-Canela C, Porta JM, Mestres J, Garcia-Reyero N, Faggio C, Gómez Oliván LM, Raldua D. Androgenic activation, impairment of the monoaminergic system and altered behavior in zebrafish larvae exposed to environmental concentrations of fenitrothion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145671. [PMID: 33621872 DOI: 10.1016/j.scitotenv.2021.145671] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/11/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Fenitrothion is an organophosphorus insecticide usually found in aquatic ecosystems at concentrations in the range of low ng/L. In this manuscript we show that 24 h exposure to environmental concentrations of fenitrothion, from ng/L to low μg/L, altered basal locomotor activity, visual-motor response and acoustic/vibrational escape response of zebrafish larvae. Furthermore, fenitrothion and expression of gap43a, gfap, atp2b1a, and mbp exhibited a significant non-monotonic concentration-response relationship. Once determined that environmental concentrations of fenitrothion were neurotoxic for zebrafish larvae, a computational analysis identified potential protein targets of this compound. Some of the predictions, including interactions with acetylcholinesterase, monoamine-oxidases and androgen receptor (AR), were experimentally validated. Binding to AR was the most suitable candidate for molecular initiating event, as indicated by both the up-regulation of cyp19a1b and sult2st3 and the non-monotonic relationship found between fenitrothion and the observed responses. Finally, when the integrity of the monoaminergic system was evaluated, altered levels of L-DOPA, DOPAC, HVA and 5-HIAA were found, as well as a significant up-regulation of slc18a2 expression at the lowest concentrations of fenitrothion. These data strongly suggest that concentrations of fenitrothion commonly found in aquatic ecosystems present a significant environmental risk for fish communities.
Collapse
Affiliation(s)
- Melissa Faria
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain
| | - Eva Prats
- Research and Development Center (CID-CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| | - Jonathan Ricardo Rosas Ramírez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Marina Bellot
- Department of Analytical Chemistry and Applied (Chromatography section), School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Juliette Bedrossiantz
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain
| | - Maria Pagano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98166 Agata-Messina, Italy
| | - Arnau Valls
- Institut de Robòtica i Informàtica Industrial, CSIC-UPC, Barcelona, Spain
| | - Cristian Gomez-Canela
- Department of Analytical Chemistry and Applied (Chromatography section), School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Josep M Porta
- Institut de Robòtica i Informàtica Industrial, CSIC-UPC, Barcelona, Spain
| | - Jordi Mestres
- Systems Pharmacology, Research Group on Biomedical Informatics (GRIB), IMIM Hospital del Mar Medical Research Institute and Universitat Pompeu Fabra, Parc de Recerca Biomèdica, Chemotargets SL, Parc Científic de Barcelona, Barcelona, Spain
| | - Natalia Garcia-Reyero
- Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98166 Agata-Messina, Italy
| | - Leobardo Manuel Gómez Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Demetrio Raldua
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain.
| |
Collapse
|
17
|
Pilecky M, Závorka L, Arts MT, Kainz MJ. Omega-3 PUFA profoundly affect neural, physiological, and behavioural competences - implications for systemic changes in trophic interactions. Biol Rev Camb Philos Soc 2021; 96:2127-2145. [PMID: 34018324 DOI: 10.1111/brv.12747] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 01/01/2023]
Abstract
In recent decades, much conceptual thinking in trophic ecology has been guided by theories of nutrient limitation and the flow of elements, such as carbon and nitrogen, within and among ecosystems. More recently, ecologists have also turned their attention to examining the value of specific dietary nutrients, in particular polyunsaturated fatty acids (PUFA), among which the omega-3 PUFA, especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) play a central role as essential components of neuronal cell membranes in many organisms. This review focuses on a new neuro-ecological approach stemming from the biochemical (mechanistic) and physiological (functional) role of DHA in neuronal cell membranes, in particular in conjunction with G-protein coupled receptors (GPCRs). We link the co-evolution of these neurological functions to metabolic dependency on dietary omega-3 PUFA. We outline ways in which deficiencies in dietary DHA supply may affect, cognition, vision, and behaviour, and ultimately, the biological fitness of consumers. We then review emerging evidence that changes in access to dietary omega-3 PUFA may ultimately have profound impacts on trophic interactions leading to potential changes in community structure and ecosystem functioning that, in turn, may affect the supply of DHA within and across ecosystems, including the supply for human consumption.
Collapse
Affiliation(s)
- Matthias Pilecky
- WasserCluster Lunz - Biologische Station, Inter-University Center for Aquatic Ecosystem Research, Dr. Carl-Kupelwieser Promenade 5, Lunz am See, 3293, Austria.,Department of Biomedical Research, Donau-Universität Krems, Dr. Karl Dorrek-Straße 30, Krems, 3500, Austria
| | - Libor Závorka
- WasserCluster Lunz - Biologische Station, Inter-University Center for Aquatic Ecosystem Research, Dr. Carl-Kupelwieser Promenade 5, Lunz am See, 3293, Austria
| | - Michael T Arts
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St, Toronto, ON, M5B 2K3, Canada
| | - Martin J Kainz
- WasserCluster Lunz - Biologische Station, Inter-University Center for Aquatic Ecosystem Research, Dr. Carl-Kupelwieser Promenade 5, Lunz am See, 3293, Austria.,Department of Biomedical Research, Donau-Universität Krems, Dr. Karl Dorrek-Straße 30, Krems, 3500, Austria
| |
Collapse
|
18
|
High-Throughput Screening of Psychotropic Compounds: Impacts on Swimming Behaviours in Artemia franciscana. TOXICS 2021; 9:toxics9030064. [PMID: 33803064 PMCID: PMC8003060 DOI: 10.3390/toxics9030064] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 11/16/2022]
Abstract
Animal behaviour is becoming increasingly popular as an endpoint in ecotoxicology due to its increased sensitivity and speed compared to traditional endpoints. However, the widespread use of animal behaviours in environmental risk assessment is currently hindered by a lack of optimisation and standardisation of behavioural assays for model species. In this study, assays to assess swimming speed were developed for a model crustacean species, the brine shrimp Artemia franciscana. Preliminary works were performed to determine optimal arena size for this species, and weather lux used in the experiments had an impact on the animals phototactic response. Swimming speed was significantly lower in the smallest arena, whilst no difference was observed between the two larger arenas, suggesting that the small arena was limiting swimming ability. No significant difference was observed in attraction to light between high and low light intensities. Arena size had a significant impact on phototaxis behaviours. Large arenas resulted in animals spending more time in the light side of the arena compared to medium and small, irrespective of light intensity. The swimming speed assay was then used to expose specimens to a range of psychotropic compounds with varying modes of action. Results indicate that swimming speed provides a valid measure of the impacts of behaviour modulating compounds on A. franciscana. The psychotropic compounds tested varied in their impacts on animal behaviour. Fluoxetine resulted in increased swimming speed as has been found in other crustacean species, whilst oxazepam, venlafaxine and amitriptyline had no significant impacts on the behaviours measured. The results from this study suggest a simple, fast, high throughput assay for A. franciscana and gains insight on the impacts of a range of psychotropic compounds on the swimming behaviours of a model crustacean species used in ecotoxicology studies.
Collapse
|
19
|
Labine LM, Simpson MJ. Targeted Metabolomic Assessment of the Sub-Lethal Toxicity of Halogenated Acetic Acids (HAAs) to Daphnia magna. Metabolites 2021; 11:100. [PMID: 33578863 PMCID: PMC7916598 DOI: 10.3390/metabo11020100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/19/2022] Open
Abstract
Halogenated acetic acids (HAAs) are amongst the most frequently detected disinfection by-products in aquatic environments. Despite this, little is known about their toxicity, especially at the molecular level. The model organism Daphnia magna, which is an indicator species for freshwater ecosystems, was exposed to sub-lethal concentrations of dichloroacetic acid (DCAA), trichloroacetic acid (TCAA) and dibromoacetic acid (DBAA) for 48 h. Polar metabolites extracted from Daphnia were analyzed using liquid chromatography hyphened to a triple quadrupole mass spectrometer (LC-MS/MS). Multivariate analyses identified shifts in the metabolic profile with exposure and pathway analysis was used to identify which metabolites and associated pathways were disrupted. Exposure to all three HAAs led to significant downregulation in the nucleosides: adenosine, guanosine and inosine. Pathway analyses identified perturbations in the citric acid cycle and the purine metabolism pathways. Interestingly, chlorinated and brominated acetic acids demonstrated similar modes of action after sub-lethal acute exposure, suggesting that HAAs cause a contaminant class-based response which is independent of the type or number of halogens. As such, the identified metabolites that responded to acute HAA exposure may serve as suitable bioindicators for freshwater monitoring programs.
Collapse
Affiliation(s)
- Lisa M. Labine
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON M5S 3H6, Canada;
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Myrna J. Simpson
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON M5S 3H6, Canada;
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| |
Collapse
|
20
|
Heyland A, Bastien T, Halliwushka K. Transgenerational reproductive effects of two serotonin reuptake inhibitors after acute exposure in Daphnia magna embryos. Comp Biochem Physiol C Toxicol Pharmacol 2020; 238:108875. [PMID: 32835857 DOI: 10.1016/j.cbpc.2020.108875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 02/04/2023]
Abstract
The release of pharmaceuticals and personal care products (PPCPs) into aquatic environments has been a major concern for the health of ecosystems. Transgenerational plasticity is a potential mechanism for organisms to respond to changing environmental conditions, including climate change and environmental contaminants. The purpose of the present study was to determine the long-term transgenerational effects of an abundant freshwater zooplankton, Daphnia magna, to acute embryonic exposures of serotonin re-uptake inhibitors (SSRI - fluoxetine and sertraline). Both SSRIs have been used extensively to treat depression and anxiety disorders for decades and persist in freshwater ecosystems at physiologically relevant concentrations. Our results revealed that even short (72 h) embryonic exposures of D. magna embryos had long lasting consequences on life history and expression of 5HT related genes in the unexposed generation (F3). Moreover, we identified direct effects of SSRIs on heart rate and swimming behavior in the first generation that carried over from embryonic exposure. We also found that SSRI exposure resulted in a transient increase of ephippia formation in the F1 and F2 . Our results suggest that SSRI exposure has transgenerational consequences to the unexposed generation and potentially beyond, even at low concentration (10-100× lower than what can be found in natural ecosystems) and as a result of embryonic exposure. Because of the short reproductive period of D. magna and their integral role in aquatic food webs, these findings have population-level implications and deserve further investigation.
Collapse
Affiliation(s)
- Andreas Heyland
- Department of Integrative Biology, University of Guelph, Guelph N1G 2W1, Canada.
| | - Trysta Bastien
- Department of Integrative Biology, University of Guelph, Guelph N1G 2W1, Canada
| | - Kelsey Halliwushka
- Department of Integrative Biology, University of Guelph, Guelph N1G 2W1, Canada
| |
Collapse
|
21
|
Fuertes I, Piña B, Barata C. Changes in lipid profiles in Daphnia magna individuals exposed to low environmental levels of neuroactive pharmaceuticals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 733:139029. [PMID: 32446052 DOI: 10.1016/j.scitotenv.2020.139029] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
Disruptive effects of chemicals on lipids in aquatic species are mostly limited to obesogens and vertebrates. Recent studies reported that antidepressants, anxiolytic, antiepileptic and β-adrenergic pharmaceuticals, with putative distinct mechanisms of action at low environmental relevant concentrations, up-regulated common neurological and lipid metabolic pathways and enhanced similarly reproduction in the crustacean Daphnia magna. Conversely CRISPR mutants for the tryptophan hydrolase enzyme gene (TRH) that lack serotonin had the opposed phenotype: the lipid metabolism down-regulated and impaired reproduction. Lipid metabolism is strongly linked to reproduction in D. magna. The aim of this study is to test if the above mentioned neuro-active chemicals disrupted common lipid groups and showed also the opposed lipidomic effects as those individuals lacking serotonin. This study used ultra-high performance liquid chromatography/time-of-flight mass spectrometry (UHPLC/TOFMS) to study how neuro-active chemicals (carbamazepine, diazepam, fluoxetine and propranolol) at low (0.1 μg/L) and higher concentrations (1 μg/L) and three CRISPR TRH mutant clones disrupt the dynamics of glycerophospholipids and glycerolipids in Daphnia adults. Lipidomic analysis identified 267 individual lipids corresponding to three classes of glycerolipids, eleven of glycerophospholipids, one of sterols and one of sphingolipids, of which 132 and 125 changed according to the chemical treatments or across clones, respectively. Most pharmaceutical treatments enhanced reproduction whereas mutated clones lacking serotonin reproduced to a lesser extent. Except for carbamazepine, most of the tested pharmaceuticals increased some triacylglycerol species and decreased monoacylglycerols, lysophospholipids, sphingomyelins and cholesterol esters in exposed females. Opposed lipidomic pattern was observed in mutated clones lacking serotonin. Lipidomic data, thus, indicate a close link between reported transcriptomic and lipidomic changes, which are likely related to serotonin and other neurological signalling pathways.
Collapse
Affiliation(s)
- Inmaculada Fuertes
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (IDAEA, CSIC), Jordi Girona 18, 08034 Barcelona, Spain.
| | - Benjamín Piña
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (IDAEA, CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| | - Carlos Barata
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (IDAEA, CSIC), Jordi Girona 18, 08034 Barcelona, Spain.
| |
Collapse
|
22
|
Tan H, Polverino G, Martin JM, Bertram MG, Wiles SC, Palacios MM, Bywater CL, White CR, Wong BBM. Chronic exposure to a pervasive pharmaceutical pollutant erodes among-individual phenotypic variation in a fish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114450. [PMID: 32283454 DOI: 10.1016/j.envpol.2020.114450] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/27/2020] [Accepted: 03/22/2020] [Indexed: 06/11/2023]
Abstract
Pharmaceutical pollution is now recognised as a major emerging agent of global change. Increasingly, pharmaceutical pollutants are documented to disrupt ecologically important physiological and behavioural traits in exposed wildlife. However, little is known about potential impacts of pharmaceutical exposure on among-individual variation in these traits, despite phenotypic diversity being critical for population resilience to environmental change. Furthermore, although wildlife commonly experience multiple stressors contemporaneously, potential interactive effects between pharmaceuticals and biological stressors-such as predation threat-remain poorly understood. To redress this, we investigated the impacts of long-term exposure to the pervasive pharmaceutical pollutant fluoxetine (Prozac®) on among-individual variation in metabolic and behavioural traits, and the combined impacts of fluoxetine exposure and predation threat on mean metabolic and behavioural traits in a freshwater fish, the guppy (Poecilia reticulata). Using a mesocosm system, guppy populations were exposed for 15 months to one of two field-realistic levels of fluoxetine (nominal concentrations: 30 and 300 ng/L) or a solvent control. Fish from these populations were then tested for metabolic rate (oxygen uptake) and behaviour (activity), both before and after experiencing one of three levels of a predation treatment: an empty tank, a non-predatory fish (Melanotaenia splendida) or a predatory fish (Leiopotherapon unicolor). Guppies from both fluoxetine treatments had ∼70% lower among-individual variation in their activity levels, compared to unexposed fish. Similarly, fluoxetine exposure at the higher dosage was associated with a significant (26%) reduction in individual-level variation in oxygen uptake relative to unexposed fish. In addition, mean baseline metabolic rate was disrupted in low-fluoxetine exposed fish, although mean metabolic and behavioural responses to predation threat were not affected. Overall, our study demonstrates that long-term exposure to a pervasive pharmaceutical pollutant alters ecologically relevant traits in fish and erodes among-individual variability, which may be detrimental to the stability of contaminated populations globally.
Collapse
Affiliation(s)
- Hung Tan
- School of Biological Sciences, Monash University, Melbourne, Australia.
| | - Giovanni Polverino
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Australia
| | - Jake M Martin
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Michael G Bertram
- School of Biological Sciences, Monash University, Melbourne, Australia; Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Sarah C Wiles
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Maria M Palacios
- School of Life and Environmental Sciences, Deakin University, Melbourne, Australia
| | - Candice L Bywater
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Craig R White
- School of Biological Sciences, Monash University, Melbourne, Australia; Centre for Geometric Biology, Monash University, Melbourne, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
23
|
Zou W, Zhang X, Ouyang S, Hu X, Zhou Q. Graphene oxide nanosheets mitigate the developmental toxicity of TDCIPP in zebrafish via activating the mitochondrial respiratory chain and energy metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138486. [PMID: 32330713 DOI: 10.1016/j.scitotenv.2020.138486] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/24/2020] [Accepted: 04/04/2020] [Indexed: 05/14/2023]
Abstract
Graphene oxide (GO), a novel two-dimension carbon nanomaterial, has showed tremendous potential for utilization in intelligent manufacturing and environmental protection. In parallel, tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) is widely distributed in the water environment and represents a great threat to ecosystem health. However, the related knowledge remained absent regarding the impact of GO on the biological risks of TDCIPP. Herein, GO significantly reduced the mortality and malformation rates of zebrafish induced by TDCIPP maximumly by 28.6% and 41.8%, respectively. Decreased mitochondrial respiratory chain (MRC) enzyme and ATP activity induced by TDCIPP were mitigated by GO. Integrating proteomics and metabolomics revealed TDCIPP obviously induced the downregulation of the proteins and metabolites involved in the cytoskeleton, mitochondrial function, carbohydrate and amino acid metabolism, and the TCA cycle, but the alterations were attenuated by GO. GO primarily promoted MRC activity, carbohydrate metabolism, and fatty acid β-oxidation, thus activating the energy metabolism of zebrafish and leading to antagonistic effects on the developmental toxicity of TDCIPP. These results provide a novel view on the co-exposure of GO with other pollutants and promote the reconsideration of the environmental risks of GO.
Collapse
Affiliation(s)
- Wei Zou
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Xingli Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Shaohu Ouyang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
24
|
Fuertes I, Campos B, Rivetti C, Piña B, Barata C. Effects of Single and Combined Low Concentrations of Neuroactive Drugs on Daphnia magna Reproduction and Transcriptomic Responses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11979-11987. [PMID: 31517487 DOI: 10.1021/acs.est.9b03228] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Assessing the risk of neuroactive pharmaceuticals in the environment requires an understanding of their joint effects at low concentrations across species. Here, we assessed reproductive and transcriptional effects of single and ternary equi-effective mixture exposure to propranolol, diazepam, and carbamazepine on the crustacean Daphnia magna at environmentally relevant concentrations. The three compounds enhanced reproduction in adults and induced specific transcriptome changes in preadolescent individuals. Comparison of the results from single exposures to a ternary equi-effective mixture of the three compounds showed additive action. Transcriptomic analyses identified 3248 genes affected by at least one of the treatments, which were grouped into four clusters. Two clusters (1897 gene transcripts in total) behaved similarly, appearing either over- or under-represented relative to control, in all single and mixture treatments. The third and fourth clusters grouped genes differently transcribed upon exposure to diazepam and propranolol, respectively. Functional transcriptomics analysis indicated that the four clusters shared major deregulated signaling pathways implicated on energy, growth, reproduction, and neurologically related processes, which may be responsible for the observed reproductive effects. Thus, our study showed additive effects at the transcriptional and physiological level and provides a novel approach to the analysis of environmentally relevant mixtures of neuroactive compounds.
Collapse
Affiliation(s)
- Inmaculada Fuertes
- Department of Environmental Chemistry , Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (IDAEA, CSIC) , Jordi Girona 18 , 08034 Barcelona , Spain
| | - Bruno Campos
- Department of Environmental Chemistry , Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (IDAEA, CSIC) , Jordi Girona 18 , 08034 Barcelona , Spain
| | - Claudia Rivetti
- Department of Environmental Chemistry , Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (IDAEA, CSIC) , Jordi Girona 18 , 08034 Barcelona , Spain
| | - Benjamín Piña
- Department of Environmental Chemistry , Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (IDAEA, CSIC) , Jordi Girona 18 , 08034 Barcelona , Spain
| | - Carlos Barata
- Department of Environmental Chemistry , Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (IDAEA, CSIC) , Jordi Girona 18 , 08034 Barcelona , Spain
| |
Collapse
|
25
|
Fuertes I, Jordão R, Piña B, Barata C. Time-dependent transcriptomic responses of Daphnia magna exposed to metabolic disruptors that enhanced storage lipid accumulation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:99-108. [PMID: 30884398 DOI: 10.1016/j.envpol.2019.02.102] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/31/2019] [Accepted: 02/28/2019] [Indexed: 05/03/2023]
Abstract
The analysis of lipid disruption in invertebrates is limited by our poor knowledge of their lipidomes and of the associated metabolic pathways. For example, the mechanism by which exposure of the crustacean Daphnia magna to tributyltin, juvenoids, or bisphenol A increase the accumulation of storage lipids into lipid droplets is largely unknown/presently unclear. Here we analyze transcriptome changes subsequent to this lipid accumulation effect induced by either the pesticide pyriproxyfen (a juvenoid agonist), the plasticizer bisphenol A, or the antifouling agent tributyltin. Changes in the whole transcriptome were assessed after 8 and 24 h of exposure, the period showing the greatest variation in storage lipid accumulation. The three compounds affected similarly to a total of 1388 genes (965 overexpressed and 423 underexpressed transcripts), but only after 24 h of exposure. In addition, 225 transcripts became up-regulated in samples exposed to tributyltin for both 8 h and 24 h. Using D. melanogaster functional annotation, we determined that upregulated genes were enriched in members of KEGG modules implicated in fatty acid, glycerophospholipid, and glycerolipid metabolic pathways, as well as in genes related to membrane constituents and to chitin and cuticle metabolic pathways. Conversely, down-regulated genes appeared mainly related to visual perception and to oocyte development signaling pathways. Many tributyltin specifically upregulated genes were related to neuro-active ligand receptor interaction signaling pathways. These changes were consistent with the phetotypic effects reported in this and in previous studies that exposure of D. magna to the tested compounds increased lipid accumulation and reduced egg quantity and quality.
Collapse
Affiliation(s)
- Inmaculada Fuertes
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (IDAEA, CSIC), Jordi Girona 18, 08034, Barcelona, Spain
| | - Rita Jordão
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (IDAEA, CSIC), Jordi Girona 18, 08034, Barcelona, Spain
| | - Benjamín Piña
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (IDAEA, CSIC), Jordi Girona 18, 08034, Barcelona, Spain
| | - Carlos Barata
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (IDAEA, CSIC), Jordi Girona 18, 08034, Barcelona, Spain.
| |
Collapse
|
26
|
Simão FCP, Martínez-Jerónimo F, Blasco V, Moreno F, Porta JM, Pestana JLT, Soares AMVM, Raldúa D, Barata C. Using a new high-throughput video-tracking platform to assess behavioural changes in Daphnia magna exposed to neuro-active drugs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 662:160-167. [PMID: 30690351 DOI: 10.1016/j.scitotenv.2019.01.187] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
Recent advances in imaging allow to monitor in real time the behaviour of individuals under a given stress. Light is a common stressor that alters the behaviour of fish larvae and many aquatic invertebrate species. The water flea Daphnia magna exhibits a vertical negative phototaxis, swimming against light trying to avoid fish predation. The aim of this study was to develop a high-throughput image analysis system to study changes in the vertical negative phototaxis of D. magna first reproductive adult females exposed to 0.1 and 1 μg/L of four neuro-active drugs: diazepam, fluoxetine, propranolol and carbamazepine. Experiments were conducted using a custom designed experimental chamber containing four independent arenas and infrared illumination. The apical-located visible light and the GigE camera located in front of the arenas were controlled by the Ethovision XT 11.5 sofware (Noldus Information Technology, Leesburg, VA). Total distance moved, time spent per zone (bottom vs upper zones) and distance among individuals were analyzed in dark and light conditions, and the effect of different intensities of the apical-located visible light was also investigated. Results indicated that light intensity increased the locomotor activity and low light intensities allowed to better discriminate individual responses to the studied drugs. The four tested drugs decreased the response of exposed organisms to light: individuals moved less, were closer to the bottom and at low light intensities were closer each other. At high light intensities, however, exposed individuals were less aggregated. Propranolol, carbamazepine and fluoxetine induced the most severe behavioural effects. The tested drugs at environmental relevant concentrations altered locomotor activity, geotaxis, phototaxis and aggregation in D. magna individuals in the lab. Therefore the new image analysis system presented here was proven to be sensitive and versatile enough to detect changes in diel vertical migration across light intensities and low concentration levels of neuro-active drugs.
Collapse
Affiliation(s)
- Fátima C P Simão
- Centre for Environmental and Marine studies (CESAM), Department of Biology, University of Aveiro, Portugal; Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (IDAEA, CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| | - Fernando Martínez-Jerónimo
- Instituto Politecnico Nacional, Escuela Nacional de Ciencias Biológicas,-Lab. de Hidrobiología Experimental, Carpio y Plan de Ayala S/N, Mexico City 11340, Mexico
| | - Victor Blasco
- Institut de Robòtica i Informàtica Industrial (CSIC-UPC), Barcelona, Spain
| | - Francesc Moreno
- Institut de Robòtica i Informàtica Industrial (CSIC-UPC), Barcelona, Spain
| | - Josep M Porta
- Institut de Robòtica i Informàtica Industrial (CSIC-UPC), Barcelona, Spain
| | - João L T Pestana
- Centre for Environmental and Marine studies (CESAM), Department of Biology, University of Aveiro, Portugal
| | - Amadeu M V M Soares
- Centre for Environmental and Marine studies (CESAM), Department of Biology, University of Aveiro, Portugal
| | - Demetrio Raldúa
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (IDAEA, CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| | - Carlos Barata
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (IDAEA, CSIC), Jordi Girona 18, 08034 Barcelona, Spain.
| |
Collapse
|
27
|
Campos B, Rivetti C, Tauler R, Piña B, Barata C. Tryptophan hydroxylase (TRH) loss of function mutations in Daphnia deregulated growth, energetic, serotoninergic and arachidonic acid metabolic signalling pathways. Sci Rep 2019; 9:3693. [PMID: 30842467 PMCID: PMC6403212 DOI: 10.1038/s41598-019-39987-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 02/06/2019] [Indexed: 12/03/2022] Open
Abstract
Serotonin has a pivotal function regulating development, growth, reproduction and behavior in animals. In this paper, we studied the deregulatory effects of the deprivation of serotonin in Daphnia magna TRH CRISPR-Cas9 mutants. Bi-allelic in-del THR mutants and, to a lesser extent, mono-allelic ones grew less, reproduced later, and produced smaller clutches than wild type clones. Transcriptomic and functional gene analyses showed a down-regulation of growth/molting and energy metabolism signaling pathways in TRH mutants, while revealing marked differences between mono- and bi-allelic clones. Bi-allelic mutants, lacking serotonin, presented the serotonergic synapse and arachidonic acid metabolic pathways down-regulated while the tryptophan to kynurenine was upregulated, thus indicating a cross-talk between the serotonergic and arachidonic acid metabolic pathways. Finally, the effects on the insulin growth factor-mediated signaling pathway were marginal. These changes in functional and metabolic pathways are consistent with previously reported effects in D. magna exposed to pharmaceuticals that inhibited arachidonic metabolism or enhanced the levels of serotonin.
Collapse
Affiliation(s)
- Bruno Campos
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA, CSIC), Jordi Girona 18, 08017, Barcelona, Spain
| | - Claudia Rivetti
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA, CSIC), Jordi Girona 18, 08017, Barcelona, Spain
| | - Roma Tauler
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA, CSIC), Jordi Girona 18, 08017, Barcelona, Spain
| | - Benjamin Piña
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA, CSIC), Jordi Girona 18, 08017, Barcelona, Spain
| | - Carlos Barata
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA, CSIC), Jordi Girona 18, 08017, Barcelona, Spain.
| |
Collapse
|
28
|
Wagner ND, Helm PA, Simpson AJ, Simpson MJ. Metabolomic responses to pre-chlorinated and final effluent wastewater with the addition of a sub-lethal persistent contaminant in Daphnia magna. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:9014-9026. [PMID: 30719660 DOI: 10.1007/s11356-019-04318-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
Consumer products such as perfluorooctanesulfonic acid (PFOS) and pharmaceuticals (PCPPs) enter aquatic ecosystems through inefficient removal during wastewater treatment. Often, the sterilization process of wastewater includes the addition of sodium hypochlorite that can react with PCPPs and other organic matter (i.e., dissolve organic matter) to generate disinfection by-products and can cause the final effluent to be more harmful to aquatic organisms. Here, we exposed Daphnia magna to two stages of wastewater, the pre-chlorinated wastewater (PreCl) and the final effluent. In addition, we exposed D. magna, to the final effluent with a concentration gradient of added PFOS, to investigate if this persistent contaminant altered the toxicity of the final effluent. After 48 h of contaminant exposure, we measured the daphnids metabolic responses to the different stages of wastewater treatment, and with the addition of PFOS, utilizing proton nuclear magnetic resonance spectroscopy and liquid chromatography tandem mass spectrometry. We found few significant changes to the metabolic profile of animals exposed to the PreCl wastewater; however, animals exposed to the final effluent displayed increases in many amino acids and decreases in some sugar metabolites. With the addition of PFOS to the final effluent, the metabolic profile shifted from increased amino acids and decreased sugar metabolites and energy molecules especially at the low and high concentrations of PFOS. Overall, our results demonstrate the metabolome is sensitive to changes in the final effluent that are caused by sterilization, and with the addition of a persistent contaminant, the metabolic profile is further altered.
Collapse
Affiliation(s)
- Nicole D Wagner
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, M1C 1A4, Canada
| | - Paul A Helm
- Environmental Monitoring & Reporting Branch, Ontario Ministry of the Environment, Conservation, and Parks, Toronto, Ontario, M9P 3V6, Canada
| | - André J Simpson
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, M1C 1A4, Canada
| | - Myrna J Simpson
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, M1C 1A4, Canada.
| |
Collapse
|
29
|
Nielsen ME, Roslev P. Behavioral responses and starvation survival of Daphnia magna exposed to fluoxetine and propranolol. CHEMOSPHERE 2018; 211:978-985. [PMID: 30119029 DOI: 10.1016/j.chemosphere.2018.08.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/31/2018] [Accepted: 08/07/2018] [Indexed: 06/08/2023]
Abstract
Fluoxetine and propranolol are neuroactive human pharmaceuticals that occur frequently as pollutants in surface waters. The potential effects of these pharmaceuticals on aquatic organisms have raised concern but many adverse effects are not well characterized for a broad range of concentrations and endpoints. In this study, 6 biological parameters in the freshwater Cladoceran Daphnia magna were compared for their responses to fluoxetine or propranolol exposure: mobility (dichotomous response), active swimming time, swimming distance, swimming velocity, swimming acceleration speed, and survival in the absence of food (starvation-survival). Changes in swimming behavior was quantified by video tracking followed by image analyses at six exposure concentrations between 100 ng/L and 10 mg/L. Active swimming time and swimming distance were the most responsive parameters among the behavioral traits. Sublethal exposure concentrations resulted in nonmonotonic responses and behavior profiling suggested that fluoxetine and propranolol stimulated swimming activity at 1-10 μg/L whereas lower (0.1-1 μg/L) and higher exposure concentrations (>100 μg/L) inhibited swimming activity. The ability to survive in the absence of food when exposed to fluoxetine or propranolol resulted in EC50 and EC10 values that were lower than for swimming behavior (EC50 of 0.79-0.99 mg/L; EC10 of 1.4-2.9 μg/L). Starvation-survival appeared to be a potentially simple and sensitive endpoint for adverse effects in D. magna at intermediate exposure concentrations. Nonmonotonic behavioral responses at low exposure concentrations and decreased ability to survive starvation should be considered in assessment of adverse effects of pharmaceuticals to freshwater invertebrates.
Collapse
Affiliation(s)
- Majken Elley Nielsen
- Section of Biology and Environmental Science, Aalborg University, Aalborg, Denmark
| | - Peter Roslev
- Section of Biology and Environmental Science, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
30
|
Campos B, Fletcher D, Piña B, Tauler R, Barata C. Differential gene transcription across the life cycle in Daphnia magna using a new all genome custom-made microarray. BMC Genomics 2018; 19:370. [PMID: 29776339 PMCID: PMC5960145 DOI: 10.1186/s12864-018-4725-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/25/2018] [Indexed: 11/23/2022] Open
Abstract
Background Unravelling the link between genes and environment across the life cycle is a challenging goal that requires model organisms with well-characterized life-cycles, ecological interactions in nature, tractability in the laboratory, and available genomic tools. Very few well-studied invertebrate model species meet these requirements, being the waterflea Daphnia magna one of them. Here we report a full genome transcription profiling of D. magna during its life-cycle. The study was performed using a new microarray platform designed from the complete set of gene models representing the whole transcribed genome of D. magna. Results Up to 93% of the existing 41,317 D. magna gene models showed differential transcription patterns across the developmental stages of D. magna, 59% of which were functionally annotated. Embryos showed the highest number of unique transcribed genes, mainly related to DNA, RNA, and ribosome biogenesis, likely related to cellular proliferation and morphogenesis of the several body organs. Adult females showed an enrichment of transcripts for genes involved in reproductive processes. These female-specific transcripts were essentially absent in males, whose transcriptome was enriched in specific genes of male sexual differentiation genes, like doublesex. Conclusion Our results define major characteristics of transcriptional programs involved in the life-cycle, differentiate males and females, and show that large scale gene-transcription data collected in whole animals can be used to identify genes involved in specific biological and biochemical processes. Electronic supplementary material The online version of this article (10.1186/s12864-018-4725-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bruno Campos
- IDAEA-CSIC: Institute of Environmental Diagnosis and Water Research, CSIC, Barcelona, Spain.
| | | | - Benjamín Piña
- IDAEA-CSIC: Institute of Environmental Diagnosis and Water Research, CSIC, Barcelona, Spain
| | - Romà Tauler
- IDAEA-CSIC: Institute of Environmental Diagnosis and Water Research, CSIC, Barcelona, Spain
| | - Carlos Barata
- IDAEA-CSIC: Institute of Environmental Diagnosis and Water Research, CSIC, Barcelona, Spain
| |
Collapse
|
31
|
Campos B, Colbourne JK. How omics technologies can enhance chemical safety regulation: perspectives from academia, government, and industry: The Perspectives column is a regular series designed to discuss and evaluate potentially competing viewpoints and research findings on current environmental issues. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:1252-1259. [PMID: 29697867 DOI: 10.1002/etc.4079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 06/19/2017] [Accepted: 12/29/2017] [Indexed: 06/08/2023]
Affiliation(s)
- Bruno Campos
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA, CSIC), Jordi Girona, Barcelona, Spain
| | - John K Colbourne
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| |
Collapse
|
32
|
Hedgespeth ML, Karasek T, Ahlgren J, Berglund O, Brönmark C. Behaviour of freshwater snails (Radix balthica) exposed to the pharmaceutical sertraline under simulated predation risk. ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:144-153. [PMID: 29349647 PMCID: PMC5847023 DOI: 10.1007/s10646-017-1880-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/15/2017] [Indexed: 05/18/2023]
Abstract
Due to their potential for affecting the modulation of behaviour, effects of selective serotonin reuptake inhibitors (SSRIs) in the environment are particularly interesting regarding interspecies interactions and non-consumptive effects (NCEs) induced by predator cues in prey organisms. We evaluated the effects of sertraline (0.4, 40 ng/L, 40 µg/L) over 8 days on activity and habitat choice in the freshwater snail Radix balthica, on snails' boldness in response to mechanical stimulation (simulating predator attack), and their activity/habitat choice in response to chemical cues from predatory fish. We hypothesised that sertraline exposure would detrimentally impact NCEs elicited by predator cues, increasing predation risk. Although there were no effects of sertraline on NCEs, there were observed effects of chemical cue from predatory fish on snail behaviour independent of sertraline exposure. Snails reduced their activity in which the percentage of active snails decreased by almost 50% after exposure to fish cue. Additionally, snails changed their habitat use by moving away from open (exposed) areas. The general lack of effects of sertraline on snails' activity and other behaviours in this study is interesting considering that other SSRIs have been shown to induce changes in gastropod behaviour. This raises questions on the modes of action of various SSRIs in gastropods, as well as the potential for a trophic "mismatch" of effects between fish predators and snail prey in aquatic systems.
Collapse
Affiliation(s)
- Melanie Lea Hedgespeth
- Aquatic Ecology, Department of Biology, Lund University, Ecology Building, Lund, 223 62, Sweden.
| | - Tomasz Karasek
- Aquatic Ecology, Department of Biology, Lund University, Ecology Building, Lund, 223 62, Sweden
- Department of Hydrobiology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, Warsaw, 02-089, Poland
| | - Johan Ahlgren
- Aquatic Ecology, Department of Biology, Lund University, Ecology Building, Lund, 223 62, Sweden
| | - Olof Berglund
- Aquatic Ecology, Department of Biology, Lund University, Ecology Building, Lund, 223 62, Sweden
| | - Christer Brönmark
- Aquatic Ecology, Department of Biology, Lund University, Ecology Building, Lund, 223 62, Sweden
| |
Collapse
|
33
|
Rivetti C, Campos B, Piña B, Raldúa D, Kato Y, Watanabe H, Barata C. Tryptophan hydroxylase (TRH) loss of function mutations induce growth and behavioral defects in Daphnia magna. Sci Rep 2018; 8:1518. [PMID: 29367674 PMCID: PMC5784079 DOI: 10.1038/s41598-018-19778-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/08/2018] [Indexed: 11/11/2022] Open
Abstract
Tryptophan hydroxylase (TRH) is the rate limiting enzyme in the serotonin synthesis. CRISPR-Cas9 technology was used to generate seven indel TRH mutants in Daphnia magna. Mono-allelic indel TRH-/+ clones showed normal levels of serotonin, measured by both immunohistochemistry and mass spectrometry (LC-MS/MS), whereas bi-allelic indel TRH-/- clones showed no detectable levels of serotonin. Life history and behavioral responses of TRH-/- clones showed the anti-phenotype of those exposed to selective serotonin reuptake inhibitors (SSRI). Mutants lacking serotonin grew less and hence reproduced latter, produced smaller clutches of smaller offspring and responded to a greater extent to light than wild type individuals. Mono-allelic indel TRH-/+ individuals showed the intermediate phenotype. The SSRI fluoxetine enhanced offspring production in all clones and decreased the response to light only in those clones having serotonin, thus indication that behavioral effects of this drug in D. magna are associated to serotonin. Results obtained with the TRH mutants are in line with reported ones in TRH knockouts of Caenorhabditis elegans, Drosophila and mice, indicating that there is one gene encoding TRH, which is the serotonin limiting enzyme in both the central and the periphery nervous system in Daphnia and that deprivation of serotonin increases anxiety-like behavior.
Collapse
Affiliation(s)
- Claudia Rivetti
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA, CSIC), Jordi Girona 18, 08017, Barcelona, Spain
| | - Bruno Campos
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA, CSIC), Jordi Girona 18, 08017, Barcelona, Spain
| | - Benjamín Piña
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA, CSIC), Jordi Girona 18, 08017, Barcelona, Spain
| | - Demetrio Raldúa
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA, CSIC), Jordi Girona 18, 08017, Barcelona, Spain
| | - Yasuhiko Kato
- Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Hajime Watanabe
- Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Carlos Barata
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA, CSIC), Jordi Girona 18, 08017, Barcelona, Spain.
| |
Collapse
|
34
|
Piña B, Raldúa D, Barata C, Portugal J, Navarro-Martín L, Martínez R, Fuertes I, Casado M. Functional Data Analysis: Omics for Environmental Risk Assessment. COMPREHENSIVE ANALYTICAL CHEMISTRY 2018. [DOI: 10.1016/bs.coac.2018.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
35
|
Kim HY, Asselman J, Jeong TY, Yu S, De Schamphelaere KAC, Kim SD. Multigenerational Effects of the Antibiotic Tetracycline on Transcriptional Responses of Daphnia magna and Its Relationship to Higher Levels of Biological Organizations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:12898-12907. [PMID: 29023098 DOI: 10.1021/acs.est.7b05050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Given the risk of environmental pollution by pharmaceutical compounds and the effects of these compounds on exposed ecosystems, ecologically relevant and realistic assessments are required. However, many studies have been mostly focused on individual responses in a single generation exposed to one-effect concentrations. Here, transcriptional responses of the crustacean Daphnia magna to the antibiotic tetracycline across multiple generations and effect concentrations were investigated. The results demonstrated that tetracycline induced different transcriptional responses of daphnids that were dependent on dose and generation. For example, reproduction-related expressed sequence tags (ESTs), including vitellogenin, were distinctly related to the dose-dependent tetracycline exposure, whereas multigenerational exposure induced significant change of molting-related ESTs such as cuticle protein. A total of 65 ESTs were shared in all contrasts, suggesting a conserved mechanism of tetracycline toxicity regardless of exposure concentration or time. Most of them were associated with general stress responses including translation, protein and carbohydrate metabolism, and oxidative phosphorylation. In addition, effects across the dose-response curve showed higher correlative connections among transcriptional, physiological, and individual responses than multigenerational effects. In the multigenerational exposure, the connectivity between adjacent generations decreased with increasing generation number. The results clearly highlight that exposure concentration and time trigger different mechanisms and functions, providing further evidence that multigenerational and dose-response effects cannot be neglected in environmental risk assessment.
Collapse
Affiliation(s)
- Hyun Young Kim
- Research and Development Division, Korea Institute of Nuclear Nonproliferation and Control (KINAC) , 1534 Yuseong-daero, Yuseong-gu, Daejeon, 34054 Republic of Korea
| | - Jana Asselman
- Laboratory of Environmental Toxicology and Aquatic Ecology (GhEnToxLab), Ghent University , Ghent, B-9000 Belgium
| | - Tae-Yong Jeong
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST) , 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005 Republic of Korea
| | - Seungho Yu
- Radiation Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute , Jeongeup-Si, Jeollabuk-Do, 56212 Republic of Korea
| | - Karel A C De Schamphelaere
- Laboratory of Environmental Toxicology and Aquatic Ecology (GhEnToxLab), Ghent University , Ghent, B-9000 Belgium
| | - Sang Don Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST) , 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005 Republic of Korea
| |
Collapse
|
36
|
Varano V, Fabbri E, Pasteris A. Assessing the environmental hazard of individual and combined pharmaceuticals: acute and chronic toxicity of fluoxetine and propranolol in the crustacean Daphnia magna. ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:711-728. [PMID: 28451857 DOI: 10.1007/s10646-017-1803-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/05/2017] [Indexed: 06/07/2023]
Abstract
Pharmaceuticals are widespread emerging contaminants and, like all pollutants, are present in combination with others in the ecosystems. The aim of the present work was to evaluate the toxic response of the crustacean Daphnia magna exposed to individual and combined pharmaceuticals. Fluoxetine, a selective serotonin re-uptake inhibitor widely prescribed as antidepressant, and propranolol, a non-selective β-adrenergic receptor-blocking agent used to treat hypertension, were tested. Several experimental trials of an acute immobilization test and a chronic reproduction test were performed. Single chemicals were first tested separately. Toxicity of binary mixtures was then assessed using a fixed ratio experimental design. Five concentrations and 5 percentages of each substance in the mixture (0, 25, 50, 75, and 100%) were tested. The MIXTOX model was applied to analyze the experimental results. This tool is a stepwise statistical procedure that evaluates if and how observed data deviate from a reference model, either concentration addition (CA) or independent action (IA), and provides significance testing for synergism, antagonism, or more complex interactions. Acute EC50 values ranged from 6.4 to 7.8 mg/L for propranolol and from 6.4 to 9.1 mg/L for fluoxetine. Chronic EC50 values ranged from 0.59 to 1.00 mg/L for propranolol and from 0.23 to 0.24 mg/L for fluoxetine. Results showed a significant antagonism between chemicals in both the acute and the chronic mixture tests when CA was adopted as the reference model, while absence of interactive effects when IA was used.
Collapse
Affiliation(s)
- Valentina Varano
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, via Sant'Alberto 163,, Ravenna, 48123, Italy
| | - Elena Fabbri
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, via Sant'Alberto 163,, Ravenna, 48123, Italy
| | - Andrea Pasteris
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, via Sant'Alberto 163,, Ravenna, 48123, Italy.
| |
Collapse
|
37
|
Wagner ND, Simpson AJ, Simpson MJ. Metabolomic responses to sublethal contaminant exposure in neonate and adult Daphnia magna. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:938-946. [PMID: 27571995 DOI: 10.1002/etc.3604] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/02/2016] [Accepted: 08/29/2016] [Indexed: 06/06/2023]
Abstract
The use of consumer products and pharmaceuticals that act as contaminants entering waterways through runoff and wastewater effluents alters aquatic ecosystem health. Traditional toxicological endpoints may underestimate the toxicity of contaminants, as lethal concentrations are often orders of magnitude higher than those found within freshwater ecosystems. While newer techniques examine the metabolic responses of sublethal contaminant exposure, there has been no direct comparison with ontogeny in Daphnia. It was hypothesized that Daphnia magna would have distinct metabolic changes after 3 different sublethal contaminant exposures, because of differences in the toxic mode of action and ontogeny. To test this hypothesis, the proton nuclear magnetic resonance metabolomic profiles were measured in D. magna aged day 0 and 18 after exposure to 28% of the lethal concentration of 50% of organisms tested (LC50) of atrazine, propranolol, and perfluorooctanesulfonic acid (PFOS) for 48 h. Principal component analysis revealed significant separation of contaminants from the control daphnids in both neonates and adults exposed to propranolol and PFOS. In contrast, atrazine exposure caused separation from the controls in only the adult D. magna. Minimal ontogenetic changes in the targeted metabolites were seen after exposure to propranolol. For both atrazine and PFOS exposures ontogeny exhibited unique changes in the targeted metabolites. These results indicate that, depending on the contaminant studied, neonates and adults respond uniquely to sublethal contaminant exposure. Environ Toxicol Chem 2017;36:938-946. © 2016 SETAC.
Collapse
Affiliation(s)
- Nicole D Wagner
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, Scarborough, Ontario, Canada
| | - André J Simpson
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, Scarborough, Ontario, Canada
| | - Myrna J Simpson
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, Scarborough, Ontario, Canada
| |
Collapse
|
38
|
Salesa B, Ferrando MD, Villarroel MJ, Sancho E. Effect of the lipid regulator Gemfibrozil in the Cladocera Daphnia magna at different temperatures. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2017; 52:228-234. [PMID: 27835067 DOI: 10.1080/10934529.2016.1246937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In the present study, an ecotoxicological approach to the evaluation of Gemfibrozil (GEM) as an emerging organic pollutant was done. In order to assess its toxicity, tests were conducted using the cladocera Daphnia magna. Experiments were carried out at 22°C and 28°C. EC50, feeding behavior, and chronic toxicity tests (21 days) were evaluated in D. magna exposed to GEM as well as cholesterol levels at 21-day chronic exposure. D. magna GEM EC50 values (24 h) in our experimental conditions were 148.75 and 116.24 mg L-1 at 22°C and 28°C, respectively. Test concentrations of 0.1, 0.5, 1.0, 5.0 and 7.5 mg L-1 were selected for subacute and chronic experiments. Subacute short-term test (feeding study) was assessed after exposure to the toxicant. Filtration and ingestion rates of D. magna exposed animals did not show any significant difference (P > 0.05) with respect to control daphniids neither at 22°C nor at 28°C. Therefore, GEM test concentrations used in the present study did not reduce feeding behavior in D. magna. Temperature increased from 22°C to 28°C, which resulted in a decrease of the daphniids reproductive parameters such as brood size and number of young per female. Other parameters as longevity were not affected. The GEM concentrations used in the chronic test with D. magna did not affect daphniids longevity but some reproductive parameters as number of young per female or brood size were affected. Finally, a significant decreased in cholesterol levels was found in those animals exposed to the highest toxicant concentrations. More studies must be done to determine the possible implications of GEM in aquatic fauna and to derive its possible effects on the environment.
Collapse
Affiliation(s)
- Beatriz Salesa
- a Laboratory of Ecotoxicology, Department of Cellular Biology , Functional Biology and Physical Anthropology, Faculty of Biology, University of Valencia , Valencia , Spain
| | - María D Ferrando
- a Laboratory of Ecotoxicology, Department of Cellular Biology , Functional Biology and Physical Anthropology, Faculty of Biology, University of Valencia , Valencia , Spain
| | - María J Villarroel
- a Laboratory of Ecotoxicology, Department of Cellular Biology , Functional Biology and Physical Anthropology, Faculty of Biology, University of Valencia , Valencia , Spain
| | - Encarna Sancho
- a Laboratory of Ecotoxicology, Department of Cellular Biology , Functional Biology and Physical Anthropology, Faculty of Biology, University of Valencia , Valencia , Spain
| |
Collapse
|
39
|
Giraudo M, Douville M, Cottin G, Houde M. Transcriptomic, cellular and life-history responses of Daphnia magna chronically exposed to benzotriazoles: Endocrine-disrupting potential and molting effects. PLoS One 2017; 12:e0171763. [PMID: 28196088 PMCID: PMC5308779 DOI: 10.1371/journal.pone.0171763] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 01/25/2017] [Indexed: 11/19/2022] Open
Abstract
Benzotriazoles (BZTs) are ubiquitous aquatic contaminants used in a wide range of industrial and domestic applications from aircraft deicers to dishwasher tablets. Acute toxicity has been reported in aquatic organisms for some of the BZTs but their mode of action remains unknown. The objectives of this study were to evaluate the transcriptomic response of D. magna exposed to sublethal doses of 1H-benzotriazole (BTR), 5-methyl-1H-benzotriazole (5MeBTR) and 5-chloro-1H-benzotriazole (5ClBTR) using RNA-sequencing and quantitative real-time PCR. Cellular and life-history endpoints (survival, number of neonates, growth) were also investigated. Significant effects on the molting frequency were observed after 21-d exposure to 5MeBTR and 5ClBTR. No effects on molting frequency were observed for BTR but RNA-seq results indicated that this BZT induced the up-regulation of genes coding for cuticular proteins, which could have compensated the molting disruption. Molting in cladocerans is actively controlled by ecdysteroid hormones. Complementary short-term temporal analysis (4- and 8-d exposure) of the transcription of genes related to molting and hormone-mediated processes indicated that the three compounds had specific modes of action. BTR induced the transcription of genes involved in 20-hydroxyecdysone synthesis, which suggests pro-ecdysteroid properties. 5ClBTR exposure induced protein activity and transcriptional levels of chitinase enzymes, associated with an impact on ecdysteroid signaling pathways, which could explain the decrease in molt frequency. Finally, 5MeBTR seemed to increase molt frequency through epigenetic processes. Overall, results suggested that molting effects observed at the physiological level could be linked to endocrine regulation impacts of BZTs at the molecular level.
Collapse
Affiliation(s)
- Maeva Giraudo
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Water Science and Technology Directorate, Montreal, Québec, Canada
| | - Mélanie Douville
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Water Science and Technology Directorate, Montreal, Québec, Canada
| | - Guillaume Cottin
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Water Science and Technology Directorate, Montreal, Québec, Canada
- Université Paris Descartes, Paris, France
| | - Magali Houde
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Water Science and Technology Directorate, Montreal, Québec, Canada
| |
Collapse
|
40
|
Chamorro S, López D, Brito P, Jarpa M, Piña B, Vidal G. Sublethal Effects of Chlorine-Free Kraft Mill Effluents on Daphnia magna. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 97:843-847. [PMID: 27704189 DOI: 10.1007/s00128-016-1936-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 09/27/2016] [Indexed: 06/06/2023]
Abstract
The implementation of elemental chlorine-free (ECF) bleaching methods has drastically reduced the aquatic toxicity of Kraft mill effluents during the last decade. However, the residual toxicity of Kraft mill effluents is still a potential concern for the environment, even when subjected to secondary wastewater treatment. The aim of this study is characterize potential sublethal effects of ECF Kraft mill effluents using Daphnia magna as model species. D. magna exposed towards increasing concentration of ECF Kraft mill effluent showed a significant, dose-dependent reduction in feeding. Conversely, post-feeding assay, life history, and allometric growth analyses showed stimulatory, rather than inhibitory effects in exposed animals at low concentrations, while high concentrations of ECF Kraft mill effluents reduced their reproductive output. These results suggest a hormetic effect in which moderate concentrations of the effluent had a stimulatory effect with higher concentrations causing inhibition in some variables.
Collapse
Affiliation(s)
- Soledad Chamorro
- Engineering and Environmental Biotechnology Group, Environmental Science Faculty and Center EULA-Chile, University of Concepción, P.O. Box 160-C, Concepción, Chile
| | - Daniela López
- Engineering and Environmental Biotechnology Group, Environmental Science Faculty and Center EULA-Chile, University of Concepción, P.O. Box 160-C, Concepción, Chile
| | - Pablina Brito
- Engineering and Environmental Biotechnology Group, Environmental Science Faculty and Center EULA-Chile, University of Concepción, P.O. Box 160-C, Concepción, Chile
| | - Mayra Jarpa
- Engineering and Environmental Biotechnology Group, Environmental Science Faculty and Center EULA-Chile, University of Concepción, P.O. Box 160-C, Concepción, Chile
| | - Benjamin Piña
- Institute of Environmental Assessment and Water Research, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Gladys Vidal
- Engineering and Environmental Biotechnology Group, Environmental Science Faculty and Center EULA-Chile, University of Concepción, P.O. Box 160-C, Concepción, Chile.
| |
Collapse
|
41
|
Gorrochategui E, Jaumot J, Lacorte S, Tauler R. Data analysis strategies for targeted and untargeted LC-MS metabolomic studies: Overview and workflow. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.07.004] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Gust KA, Kennedy AJ, Melby NL, Wilbanks MS, Laird J, Meeks B, Muller EB, Nisbet RM, Perkins EJ. Daphnia magna's sense of competition: intra-specific interactions (ISI) alter life history strategies and increase metals toxicity. ECOTOXICOLOGY (LONDON, ENGLAND) 2016; 25:1126-1135. [PMID: 27151402 PMCID: PMC4921107 DOI: 10.1007/s10646-016-1667-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/27/2016] [Indexed: 06/01/2023]
Abstract
This work investigates whether the scale-up to multi-animal exposures that is commonly applied in genomics studies provides equivalent toxicity outcomes to single-animal experiments of standard Daphnia magna toxicity assays. Specifically, we tested the null hypothesis that intraspecific interactions (ISI) among D. magna have neither effect on the life history strategies of this species, nor impact toxicological outcomes in exposure experiments with Cu and Pb. The results show that ISI significantly increased mortality of D. magna in both Cu and Pb exposure experiments, decreasing 14 day LC50 s and 95 % confidence intervals from 14.5 (10.9-148.3) to 8.4 (8.2-8.7) µg Cu/L and from 232 (156-4810) to 68 (63-73) µg Pb/L. Additionally, ISI potentiated Pb impacts on reproduction eliciting a nearly 10-fold decrease in the no-observed effect concentration (from 236 to 25 µg/L). As an indication of environmental relevance, the effects of ISI on both mortality and reproduction in Pb exposures were sustained at both high and low food rations. Furthermore, even with a single pair of Daphnia, ISI significantly increased (p < 0.05) neonate production in control conditions, demonstrating that ISI can affect life history strategy. Given these results we reject the null hypothesis and conclude that results from scale-up assays cannot be directly applied to observations from single-animal assessments in D. magna. We postulate that D. magna senses chemical signatures of conspecifics which elicits changes in life history strategies that ultimately increase susceptibility to metal toxicity.
Collapse
Affiliation(s)
- Kurt A Gust
- Environmental Laboratory, US Army, Engineer Research and Development Center, Vicksburg, MS, USA.
| | - Alan J Kennedy
- Environmental Laboratory, US Army, Engineer Research and Development Center, Vicksburg, MS, USA
| | - Nicolas L Melby
- Environmental Laboratory, US Army, Engineer Research and Development Center, Vicksburg, MS, USA
| | - Mitchell S Wilbanks
- Environmental Laboratory, US Army, Engineer Research and Development Center, Vicksburg, MS, USA
| | - Jennifer Laird
- Environmental Laboratory, US Army, Engineer Research and Development Center, Vicksburg, MS, USA
| | | | - Erik B Muller
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Roger M Nisbet
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Edward J Perkins
- Environmental Laboratory, US Army, Engineer Research and Development Center, Vicksburg, MS, USA
| |
Collapse
|
43
|
Campos B, Rivetti C, Kress T, Barata C, Dircksen H. Depressing Antidepressant: Fluoxetine Affects Serotonin Neurons Causing Adverse Reproductive Responses in Daphnia magna. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:6000-6007. [PMID: 27128505 DOI: 10.1021/acs.est.6b00826] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are widely used antidepressants. As endocrine disruptive contaminants in the environment, SSRIs affect reproduction in aquatic organisms. In the water flea Daphnia magna, SSRIs increase offspring production in a food ration-dependent manner. At limiting food conditions, females exposed to SSRIs produce more but smaller offspring, which is a maladaptive life-history strategy. We asked whether increased serotonin levels in newly identified serotonin-neurons in the Daphnia brain mediate these effects. We provide strong evidence that exogenous SSRI fluoxetine selectively increases serotonin-immunoreactivity in identified brain neurons under limiting food conditions thereby leading to maladaptive offspring production. Fluoxetine increases serotonin-immunoreactivity at low food conditions to similar maximal levels as observed under high food conditions and concomitantly enhances offspring production. Sublethal amounts of the neurotoxin 5,7-dihydroxytryptamine known to specifically ablate serotonin-neurons markedly decrease serotonin-immunoreactivity and offspring production, strongly supporting the effect to be serotonin-specific by reversing the reproductive phenotype attained under fluoxetine. Thus, SSRIs impair serotonin-regulation of reproductive investment in a planktonic key organism causing inappropriately increased reproduction with potentially severe ecological impact.
Collapse
Affiliation(s)
- Bruno Campos
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC) , Jordi Girona 18, E-08034, Barcelona, Spain
- Department of Zoology, Stockholm University , Svante Arrhenius väg 18A, S-106 91 Stockholm, Sweden
| | - Claudia Rivetti
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC) , Jordi Girona 18, E-08034, Barcelona, Spain
- Department of Zoology, Stockholm University , Svante Arrhenius väg 18A, S-106 91 Stockholm, Sweden
| | - Timm Kress
- Department of Zoology, Stockholm University , Svante Arrhenius väg 18A, S-106 91 Stockholm, Sweden
| | - Carlos Barata
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC) , Jordi Girona 18, E-08034, Barcelona, Spain
| | - Heinrich Dircksen
- Department of Zoology, Stockholm University , Svante Arrhenius väg 18A, S-106 91 Stockholm, Sweden
| |
Collapse
|
44
|
Gorrochategui E, Lacorte S, Tauler R, Martin FL. Perfluoroalkylated Substance Effects in Xenopus laevis A6 Kidney Epithelial Cells Determined by ATR-FTIR Spectroscopy and Chemometric Analysis. Chem Res Toxicol 2016; 29:924-32. [PMID: 27078751 PMCID: PMC4870675 DOI: 10.1021/acs.chemrestox.6b00076] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
![]()
The effects of four perfluoroalkylated
substances (PFASs), namely,
perfluorobutanesulfonate (PFBS), perfluorooctanoic acid (PFOA), perfluorooctanesulfonate
(PFOS), and perfluorononanoic acid (PFNA) were assessed in Xenopus laevis A6 kidney epithelial cells by attenuated
total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy
and chemometric analysis. Principal component analysis–linear
discriminant analysis (PCA-LDA) was used to visualize wavenumber-related
alterations and ANOVA-simultaneous component analysis (ASCA) allowed
data processing considering the underlying experimental design. Both
analyses evidenced a higher impact of low-dose PFAS-treatments (10–9 M) on A6 cells forming monolayers, while there was
a larger influence of high-dose PFAS-treatments (10–5 M) on A6 cells differentiated into dome structures. The observed
dose–response PFAS-induced effects were to some extent related
to their cytotoxicity: the EC50-values of most influential
PFAS-treatments increased (PFOS < PFNA < PFOA ≪ PFBS),
and higher-doses of these chemicals induced a larger impact. Major
spectral alterations were mainly attributed to DNA/RNA, secondary
protein structure, lipids, and fatty acids. Finally, PFOS and PFOA
caused a decrease in A6 cell numbers compared to controls, whereas
PFBS and PFNA did not significantly change cell population levels.
Overall, this work highlights the ability of PFASs to alter A6 cells,
whether forming monolayers or differentiated into dome structures,
and the potential of PFOS and PFOA to induce cell death.
Collapse
Affiliation(s)
- Eva Gorrochategui
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Consejo Superior de Investigaciones Científicas (CSIC) , Barcelona 08034, Catalonia, Spain
| | - Sílvia Lacorte
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Consejo Superior de Investigaciones Científicas (CSIC) , Barcelona 08034, Catalonia, Spain
| | - Romà Tauler
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Consejo Superior de Investigaciones Científicas (CSIC) , Barcelona 08034, Catalonia, Spain
| | - Francis L Martin
- Centre for Biophotonics, Lancaster Environment Centre, Lancaster University , Lancaster LA1 4YQ, U.K.,School of Pharmacy and Biomedical Sciences, University of Central Lancashire , Preston, U.K
| |
Collapse
|
45
|
Jordão R, Garreta E, Campos B, Lemos MFL, Soares AMVM, Tauler R, Barata C. Compounds altering fat storage in Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 545-546:127-136. [PMID: 26747981 DOI: 10.1016/j.scitotenv.2015.12.097] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 12/21/2015] [Accepted: 12/21/2015] [Indexed: 06/05/2023]
Abstract
The analysis of lipid disruptive effects in invertebrates is limited by our poor knowledge of the lipid metabolic pathways. A recent study showed that tributyltin activated the ecdysteroid, juvenile hormone and retinoic X receptor signaling pathways, and disrupted the dynamics of neutral lipids in the crustacean Daphnia magna impairing the transfer of triacylglycerols to eggs and hence promoting their accumulation in post-spawning females. Tributyltin disruptive effects correlated with lower fitness for offspring and adults. The present study aims to addresses effects of existing compounds on storage lipids in post-spawning females and their health effects. D. magna individuals were exposed 12 chemicals that included vertebrate obesogens (tributyltin, triphenyltin, bisphenol A, nonylphenol, di-2-ethylhexyl phthalate), other contaminants known to affect arthropods (pyriproxyfen, fenarimol, methoprene, emamectin benzoate and fluoxetine), as well as the natural hormones methyl farnesoate and 20-hydroxyecdysone. Reproductive effects were also assessed. Quantitative changes in storage lipids accumulated in lipid droplets were studied using Nile red staining, which showed a close relationship with whole organism levels of triacylglycerols. Ten compounds altered storage lipids in a concentration related manner enhancing (tributyltin, bisphenol A, methyl farnesoate, pyriproxyfen and 20-hydroxyecdysone) or decreasing (nonylphenol, fenarimol, emamectin benzoate, methoprene and fluoxetine) their levels in post-spawning females. Eight compounds that altered lipid levels also had detrimental effects on growth and/or reproduction.
Collapse
Affiliation(s)
- Rita Jordão
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (IDAEA, CSIC), Barcelona, Spain; Centre for Environmental and Marine studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal; Marine and Environmental Sciences Centre (MARE), ESTM, Polytechnic Institute of Leiria, Peniche, Portugal
| | - Elba Garreta
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (IDAEA, CSIC), Barcelona, Spain
| | - Bruno Campos
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (IDAEA, CSIC), Barcelona, Spain
| | - Marco F L Lemos
- Centre for Environmental and Marine studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal; Marine and Environmental Sciences Centre (MARE), ESTM, Polytechnic Institute of Leiria, Peniche, Portugal
| | - Amadeu M V M Soares
- Centre for Environmental and Marine studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Romà Tauler
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (IDAEA, CSIC), Barcelona, Spain
| | - Carlos Barata
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (IDAEA, CSIC), Barcelona, Spain.
| |
Collapse
|
46
|
Di Poi C, Evariste L, Séguin A, Mottier A, Pedelucq J, Lebel JM, Serpentini A, Budzinski H, Costil K. Sub-chronic exposure to fluoxetine in juvenile oysters (Crassostrea gigas): uptake and biological effects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:5002-5018. [PMID: 25315935 DOI: 10.1007/s11356-014-3702-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 10/06/2014] [Indexed: 06/04/2023]
Abstract
The bioconcentration potential of fluoxetine (FLX) and its biological effects were investigated in juvenile Pacific oyster exposed for 28 days to environmentally relevant concentrations of FLX (1 ng L(-1), 100 ng L(-1) and up to 10 μg L(-1)). FLX bioaccumulated in oyster flesh resulting in 28-day bioconcentration factors greater than 2,000 and 10,000 by referring to wet and dry weights, respectively. Nevertheless, FLX did not induce oyster mortality, delayed gametogenesis, or lead to adverse histopathological alterations. At the two highest concentrations, despite non-optimal trophic conditions, FLX stimulated shell growth but only in a transient manner, suggesting a role of serotonin in the regulation of feeding and metabolism in bivalves. Those high concentrations seemed to drive bell-shaped responses of catalase and glutathione S-transferase activities throughout the exposure period, which may indicate the activation of antioxidant enzyme synthesis and then an enhanced catabolic rate or direct inhibition of those enzymes. However, no clear oxidative stress was detected because no strong differences in thiobarbituric acid-reactive substance (TBARS) content (i.e. lipid peroxidation) were observed between oyster groups, suggesting that cellular defence mechanisms were effective. These results demonstrate the importance of considering additional biomarkers of oxidative stress to obtain a comprehensive overview of the FLX-induced changes in marine bivalves exposed under realistic conditions. Considering the battery of biomarkers used, FLX appears to induce little or no effects on oyster physiology even at a concentration of 10 μg L(-1). These results do not confirm the lowest observed effect concentration (LOEC) values reported by some authors in other mollusc species.
Collapse
Affiliation(s)
- Carole Di Poi
- Normandie Université, 14032, Caen, France
- UMR Biologie des Organismes et des Ecosystèmes Aquatiques (BOREA); MNHN, UPMC, UCBN, CNRS-7208, IRD-207; IBFA, Université de Caen Basse-Normandie, Esplanade de la Paix, CS 14032, 14032, Caen Cedex 5, France
| | - Lauris Evariste
- Normandie Université, 14032, Caen, France
- UMR Biologie des Organismes et des Ecosystèmes Aquatiques (BOREA); MNHN, UPMC, UCBN, CNRS-7208, IRD-207; IBFA, Université de Caen Basse-Normandie, Esplanade de la Paix, CS 14032, 14032, Caen Cedex 5, France
| | - Alexis Séguin
- Normandie Université, 14032, Caen, France
- UMR Biologie des Organismes et des Ecosystèmes Aquatiques (BOREA); MNHN, UPMC, UCBN, CNRS-7208, IRD-207; IBFA, Université de Caen Basse-Normandie, Esplanade de la Paix, CS 14032, 14032, Caen Cedex 5, France
| | - Antoine Mottier
- Normandie Université, 14032, Caen, France
- UMR Biologie des Organismes et des Ecosystèmes Aquatiques (BOREA); MNHN, UPMC, UCBN, CNRS-7208, IRD-207; IBFA, Université de Caen Basse-Normandie, Esplanade de la Paix, CS 14032, 14032, Caen Cedex 5, France
| | - Julie Pedelucq
- UMR 5805 CNRS Environnements et Paléoenvironnements Océaniques et Continentaux (EPOC), Laboratoire de Physico- et Toxico-Chimie de l'Environnement (LPTC), Université Bordeaux 1, Bâtiment A12, 351 crs de la Libération, 33405, Talence, France
| | - Jean-Marc Lebel
- Normandie Université, 14032, Caen, France
- UMR Biologie des Organismes et des Ecosystèmes Aquatiques (BOREA); MNHN, UPMC, UCBN, CNRS-7208, IRD-207; IBFA, Université de Caen Basse-Normandie, Esplanade de la Paix, CS 14032, 14032, Caen Cedex 5, France
| | - Antoine Serpentini
- Normandie Université, 14032, Caen, France
- UMR Biologie des Organismes et des Ecosystèmes Aquatiques (BOREA); MNHN, UPMC, UCBN, CNRS-7208, IRD-207; IBFA, Université de Caen Basse-Normandie, Esplanade de la Paix, CS 14032, 14032, Caen Cedex 5, France
| | - Hélène Budzinski
- UMR 5805 CNRS Environnements et Paléoenvironnements Océaniques et Continentaux (EPOC), Laboratoire de Physico- et Toxico-Chimie de l'Environnement (LPTC), Université Bordeaux 1, Bâtiment A12, 351 crs de la Libération, 33405, Talence, France
| | - Katherine Costil
- Normandie Université, 14032, Caen, France.
- UMR Biologie des Organismes et des Ecosystèmes Aquatiques (BOREA); MNHN, UPMC, UCBN, CNRS-7208, IRD-207; IBFA, Université de Caen Basse-Normandie, Esplanade de la Paix, CS 14032, 14032, Caen Cedex 5, France.
| |
Collapse
|
47
|
Kovacevic V, Simpson AJ, Simpson MJ. (1)H NMR-based metabolomics of Daphnia magna responses after sub-lethal exposure to triclosan, carbamazepine and ibuprofen. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 19:199-210. [PMID: 26809854 DOI: 10.1016/j.cbd.2016.01.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/30/2015] [Accepted: 01/13/2016] [Indexed: 01/07/2023]
Abstract
Pharmaceuticals and personal care products are a class of emerging contaminants that are present in wastewater effluents, surface water, and groundwater around the world. There is a need to determine rapid and reliable bioindicators of exposure and the toxic mode of action of these contaminants to aquatic organisms. (1)H nuclear magnetic resonance (NMR)-based metabolomics in combination with multivariate statistical analysis was used to determine the metabolic profile of Daphnia magna after exposure to a range of sub-lethal concentrations of triclosan (6.25-100μg/L), carbamazepine (1.75-14mg/L) and ibuprofen (1.75-14mg/L) for 48h. Sub-lethal triclosan exposure suggested a general oxidative stress condition and the branched-chain amino acids, glutamine, glutamate, and methionine emerged as potential bioindicators. The aromatic amino acids, serine, glycine and alanine are potential bioindicators for sub-lethal carbamazepine exposure that may have altered energy metabolism. The potential bioindicators for sub-lethal ibuprofen exposure are serine, methionine, lysine, arginine and leucine, which showed a concentration-dependent response. The differences in the metabolic changes were related to the dissimilar modes of toxicity of triclosan, carbamazepine and ibuprofen. (1)H NMR-based metabolomics gave an improved understanding of how these emerging contaminants impact the keystone species D. magna.
Collapse
Affiliation(s)
- Vera Kovacevic
- Department of Chemistry, University of Toronto, 80St. George Street, Toronto, ON, M5S 3H6, Canada; Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - André J Simpson
- Department of Chemistry, University of Toronto, 80St. George Street, Toronto, ON, M5S 3H6, Canada; Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Myrna J Simpson
- Department of Chemistry, University of Toronto, 80St. George Street, Toronto, ON, M5S 3H6, Canada; Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada.
| |
Collapse
|
48
|
Rivetti C, Campos B, Barata C. Low environmental levels of neuro-active pharmaceuticals alter phototactic behaviour and reproduction in Daphnia magna. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 170:289-296. [PMID: 26277448 DOI: 10.1016/j.aquatox.2015.07.019] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/23/2015] [Accepted: 07/28/2015] [Indexed: 06/04/2023]
Abstract
Assessing the risks of emerging contaminants, such as pharmaceuticals in the environment requires an understanding of their exposure regime and their effects at environmentally relevant concentrations across species. Daphnia magna represents an excellent invertebrate model species to study the mode of action of emerging pollutants, allowing the assessment of effects at different biological levels. The present study aims to test the hypothesis that different families of neuro-active pharmaceuticals at low environmentally relevant concentrations may lead to similar phenotypic responses in D. magna. Phenotypic traits included reproduction and behavioural responses. Selected pharmaceuticals were carbamazepine, diazepam and propranolol, three widely prescribed compounds, already detected at considerable levels in the environment (ng to few μg/L). Fluoxetine was also included in behavioural assays. The three tested neuro-active pharmaceuticals were able to enhance reproduction at 1ng/L of propranolol, 0.1μg/L of diazepam and 1μg/L of carbamazepine. Fluoxetine, carbamazepine and diazepam increased positive phototactic behaviour at concentrations ranging from 1, 10 and 100ng/L, respectively. Reported responses were nonmonotonic, which means that eco-toxicity testing of pharmaceuticals need to assess effects at the ng/L range.
Collapse
Affiliation(s)
- Claudia Rivetti
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain
| | - Bruno Campos
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain
| | - Carlos Barata
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain.
| |
Collapse
|
49
|
Ananthasubramaniam B, McCauley E, Gust KA, Kennedy AJ, Muller EB, Perkins EJ, Nisbet RM. Relating suborganismal processes to ecotoxicological and population level endpoints using a bioenergetic model. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2015; 25:1691-1710. [PMID: 26552275 DOI: 10.1890/14-0498.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Ecological effects of environmental stressors are commonly evaluated using organismal or suborganismal data, such as standardized toxicity tests that characterize responses of individuals (e.g., mortality and reproduction) and a rapidly growing body of "omics" data. A key challenge for environmental risk assessment is relating such information to population dynamics. One approach uses dynamic energy budget (DEB) models that relate growth and reproduction of individuals to underlying flows of energy and elemental matter. We hypothesize that suborganismal information identifies DEB parameters that are most likely impacted by a particular stressor and that the DEB model can then project suborganismal effects on life history and population endpoints. We formulate and parameterize a model of growth and reproduction for the water flea Daphnia magna. Our model resembles previous generic bioenergetic models, but has explicit representation of discrete molts, an important feature of Daphnia life history. We test its ability to predict six endpoints commonly used in chronic toxicity studies in specified food environments. With just one adjustable parameter, the model successfully predicts growth and reproduction of individuals from a wide array of experiments performed in multiple laboratories using different clones of D. magna raised on different food sources. Fecundity is the most sensitive endpoint, and there is broad correlation between the sensitivities of fecundity and long-run growth rate, as is desirable for the default metric used in chronic toxicity tests. Under some assumptions, we can combine our DEB model with the Euler-Lotka equation to estimate longrun population growth rates at different food levels. A review of Daphnia gene-expression experiments on the effects of contaminant exposure reveals several connections to model parameters, in particular a general trend of increased transcript expression of genes involved in energy assimilation and utilization at concentrations affecting growth and reproduction. The sensitivity of fecundity to many model parameters was consistent with frequent generalized observations of decreased expression of genes involved in reproductive physiology, but interpretation of these observations requires further mechanistic modeling. We thus propose an approach based on generic DEB models incorporating few essential species-specific features for rapid extrapolation of ecotoxicogenomic assays for Daphnia-based population risk assessment.
Collapse
|
50
|
Giraudo M, Douville M, Houde M. Chronic toxicity evaluation of the flame retardant tris (2-butoxyethyl) phosphate (TBOEP) using Daphnia magna transcriptomic response. CHEMOSPHERE 2015; 132:159-65. [PMID: 25855008 DOI: 10.1016/j.chemosphere.2015.03.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 02/12/2015] [Accepted: 03/12/2015] [Indexed: 05/24/2023]
Abstract
Tris (2-butoxyethyl) phosphate (TBOEP) is an organophosphorous-containing flame retardant (OPFR) of high production volume used in a broad range of applications. The use of TBOEP containing products has resulted in its release and ubiquitous occurrence in the aquatic environment. In this study, Daphnia magna transcriptomic response was measured by microarray to evaluate sublethal effects of TBOEP as part of a multi-level biological approach including specific gene transcription measured by qRT-PCR, enzyme activity, and life-history endpoints (i.e., survival, growth and reproduction). Chronic exposure (21 d) to a range of sublethal concentrations of TBOEP (14.7-1470μgL(-1)) did not impact growth, survival or reproduction, although the number of offspring decreased between the lowest and the highest dose. Gene transcription profiling by microarray analysis revealed that 101 genes were differentially transcribed in response to TBOEP (fold change treated/control ±1, p<0.05). Most of the responding genes were involved in protein metabolism (9), biosynthesis (4) and energy metabolism (6) indicating that TBOEP could have chronic toxic effects on aquatic organisms at sublethal doses by disrupting essential biological pathways. Nine genes were found to be commonly affected by more than one dose, including a gene coding for cathepsin D and multiple isoforms of genes coding for hemoglobin, suggesting potential biomarkers of interest. Microarray results were confirmed by qRT-PCR and measurements at the protein level as cathepsin D enzymatic activity increased significantly in the highest dose treatment. Results highlight the relevance of using the transcriptomic response of D. magna as a first line of evidence to unravel the mode of action of chemicals.
Collapse
Affiliation(s)
- Maeva Giraudo
- Environment Canada, Centre Saint-Laurent, 105 McGill Street, Montreal, QC H2Y 2E7, Canada
| | - Mélanie Douville
- Environment Canada, Centre Saint-Laurent, 105 McGill Street, Montreal, QC H2Y 2E7, Canada
| | - Magali Houde
- Environment Canada, Centre Saint-Laurent, 105 McGill Street, Montreal, QC H2Y 2E7, Canada.
| |
Collapse
|