1
|
Hamilton CM, Winter MJ, Ball JS, Trznadel M, Margiotta-Casaluci L, Owen SF, Tyler CR. Exposure effects of synthetic glucocorticoid drugs on skeletal developmental and immune cell function in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176781. [PMID: 39395483 DOI: 10.1016/j.scitotenv.2024.176781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/06/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
Synthetic glucocorticoids (GCs) are used to treat a wide range of human health conditions and as such are frequently detected in the aquatic environment. This, together with the highly conserved nature of the glucocorticoid system across vertebrates means that the potential for biological effects of GCs in fish is relatively high. Here, we found that exposure of zebrafish (Danio rerio) to environmentally relevant concentrations of 4 of the most widely used synthetic GCs (beclomethasone dipropionate, budesonide, fluticasone propionate, and prednisolone), from 0 to 4 days post fertilisation (dpf), resulted in no effects on embryo-larval development or bone and cartilage formation. However, after exposure to equivalents of human therapeutic plasma levels, developmental abnormalities were observed that included pericardial oedema, blood pooling and alterations in jaw cartilage. Furthermore, using a double transgenic zebrafish osteoblast and chondrocyte reporter line, exposure up to 10 dpf resulted in alterations to lower jaw cartilage and bone development for all compounds at, and above, human therapeutic plasma concentrations. In the case of beclomethasone dipropionate, a reduction in lower jaw intercranial distance was observed at the environmentally relevant concentration of 0.1 μg/L. Using further transgenic reporter lines with fluorescently tagged neutrophils and macrophages, we also show exposure of embryo-larvae (0-4 dpf) to the GCs tested resulted in altered immune cell migration, but only at relatively high exposure concentrations. Collectively, our findings show GC exposure impacts embryo-larval zebrafish development, immune function, and skeletal formation, but predominantly at concentrations greater than those currently reported for the aquatic environment. Despite this, however, it is suggested that studies with longer exposure times, and to mixtures of multiple GCs (many GCs act via the same mechanism of action) are warranted before we can confidently assert that these commonly detected contaminants do not pose a risk to fish in the wild.
Collapse
Affiliation(s)
- Charles M Hamilton
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, Devon EX4 4QD, UK
| | - Matthew J Winter
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, Devon EX4 4QD, UK
| | - Jonathan S Ball
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, Devon EX4 4QD, UK
| | - Maciej Trznadel
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, Devon EX4 4QD, UK
| | - Luigi Margiotta-Casaluci
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, UK
| | | | - Charles R Tyler
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, Devon EX4 4QD, UK.
| |
Collapse
|
2
|
Margiotta-Casaluci L, Owen SF, Winter MJ. Cross-Species Extrapolation of Biological Data to Guide the Environmental Safety Assessment of Pharmaceuticals-The State of the Art and Future Priorities. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:513-525. [PMID: 37067359 DOI: 10.1002/etc.5634] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/23/2023] [Accepted: 04/13/2023] [Indexed: 05/27/2023]
Abstract
The extrapolation of biological data across species is a key aspect of biomedical research and drug development. In this context, comparative biology considerations are applied with the goal of understanding human disease and guiding the development of effective and safe medicines. However, the widespread occurrence of pharmaceuticals in the environment and the need to assess the risk posed to wildlife have prompted a renewed interest in the extrapolation of pharmacological and toxicological data across the entire tree of life. To address this challenge, a biological "read-across" approach, based on the use of mammalian data to inform toxicity predictions in wildlife species, has been proposed as an effective way to streamline the environmental safety assessment of pharmaceuticals. Yet, how effective has this approach been, and are we any closer to being able to accurately predict environmental risk based on known human risk? We discuss the main theoretical and experimental advancements achieved in the last 10 years of research in this field. We propose that a better understanding of the functional conservation of drug targets across species and of the quantitative relationship between target modulation and adverse effects should be considered as future research priorities. This pharmacodynamic focus should be complemented with the application of higher-throughput experimental and computational approaches to accelerate the prediction of internal exposure dynamics. The translation of comparative (eco)toxicology research into real-world applications, however, relies on the (limited) availability of experts with the skill set needed to navigate the complexity of the problem; hence, we also call for synergistic multistakeholder efforts to support and strengthen comparative toxicology research and education at a global level. Environ Toxicol Chem 2024;43:513-525. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Luigi Margiotta-Casaluci
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Stewart F Owen
- Global Sustainability, AstraZeneca, Macclesfield, Cheshire, United Kingdom
| | - Matthew J Winter
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, Devon, United Kingdom
| |
Collapse
|
3
|
Geng Y, Zou H, Guo Y, Huang M, Wu Y, Hou L. Chronic exposure to cortisone induces thyroid endocrine disruption and retinal dysfunction in adult female zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167022. [PMID: 37709101 DOI: 10.1016/j.scitotenv.2023.167022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/09/2023] [Accepted: 09/10/2023] [Indexed: 09/16/2023]
Abstract
Cortisone has a large content in rivers because of its wide range of medical applications and elimination by organisms that naturally secrete it. As a steroid hormone, cortisone is recognized as a novel endocrine disruptor. Although ecotoxicological effects of the reproductive endocrine system have mainly been reported recently, thyroid endocrine in fish remains relatively less understood. Here, adult female zebrafish were exposed to cortisone at 0.0 (control), 3.2, 38.7, and 326.9 ng/L for 60 days. Evidence in this study came from fish behavior, hormone levels, gene expression, histological and morphological examinations. The results showed that THs (thyroid hormone) level disruption and pathohistological changes occurred in the thyroid gland, which may account for the gene expression changes in the hypothalamus-pituitary-thyroid gland axis. Specifically, more conversion of T4 (thyroxine) to T3 (triiodothyronine) led to an increased TSH (thyroid stimulating hormone) level in plasma. Severe thyroid tissue damage mainly occurred in the zebrafish exposed to 326.9 ng/L of cortisone. Meanwhile, consistent with the THs trend, the fish locomotion activity displayed more anxiety and excitement, the partial blockage of GABA (γ - aminobutyric acid) synthetic pathway genes might be the explanation of the underlying mechanism. Cortisone affected the gene expressions in the visual cycle and the circadian rhythm network also suggested interactions between thyroid endocrine disruption, retinal dysfunction, and abnormal behaviors of zebrafish. In summary, these findings suggest chronic exposure to cortisone induced various adverse effects in adult female zebrafish, which may help us better understand the risk of cortisone to fish in the wild.
Collapse
Affiliation(s)
- Yuxin Geng
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Hong Zou
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Yanfang Guo
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Manlin Huang
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Yashi Wu
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Liping Hou
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China.
| |
Collapse
|
4
|
Yang W, Bao Y, Hao J, Hu X, Xu T, Yin D. Effects of carbamazepine on the central nervous system of zebrafish at human therapeutic plasma levels. iScience 2023; 26:107688. [PMID: 37701572 PMCID: PMC10494213 DOI: 10.1016/j.isci.2023.107688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/12/2023] [Accepted: 08/17/2023] [Indexed: 09/14/2023] Open
Abstract
The fish plasma model (FPM) facilitated the environmental risk assessment of human drugs by using existing data on human therapeutic plasma concentrations (HTPCs) and predicted fish plasma concentrations (FPCs). However, studies on carbamazepine (CMZ) with both the mode of action (MOA) based biological effects at molecular level (such as neurotransmitter and gene level) and measured FPCs are lacking. Bioconcentration of CMZ in adult zebrafish demonstrated that the FPM underestimated the bioconcentration factors (BCFs) in plasma at environmental CMZ exposure concentrations (1-100 μg/L). CMZ significantly increased Glu and GABA, decreased ACh and AChE as well as inhibited the transcription levels of gabra1, grin1b, grin2b, gad1b, and abat when the actual FPCs were in the ranges of 1/1000 HTPC to HTPC. It is the first read-across study of CMZ integrating MOA-based biological effects at molecular level and FPCs. This study facilitates model performance against a range of different drug classes.
Collapse
Affiliation(s)
- Weiwei Yang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tinggi University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yifan Bao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tinggi University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jiaoyang Hao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tinggi University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xialin Hu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tinggi University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tinggi University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tinggi University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
5
|
Ke Y, Jiang J, Mao X, Qu B, Li X, Zhao H, Wang J, Li Z. Photochemical reaction of glucocorticoids in aqueous solution: Influencing factors and photolysis products. CHEMOSPHERE 2023; 331:138799. [PMID: 37119927 DOI: 10.1016/j.chemosphere.2023.138799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/09/2023]
Abstract
Glucocorticoids (GCs), as endocrine disruptors, have attracted widespread attention due to their impacts on organisms' growth, development, and reproduction. In the current study, the photodegradation of budesonide (BD) and clobetasol propionate (CP), as targeted GCs, was investigated including the effects of initial concentrations and typical environmental factors (Cl-, NO2-, Fe3+, and fulvic acid (FA)). The results showed that the degradation rate constants (k) were 0.0060 and 0.0039 min-1 for BD and CP at concentration of 50 μg·L-1, and increased with the initial concentrations. Under the addition of Cl-, NO2-, and Fe3+ to the GCs/water system, the photodegradation rate was decreased with increasing Cl-, NO2-, and Fe3+ concentrations, which were in contrast to the addition of FA. Electron resonance spectroscopy (EPR) analysis and the radical quenching experiments verified that GCs could transition to the triplet excited states of GCs (3GCs*) for direct photolysis under irradiation to undergo, while NO2-, Fe3+, and FA could generate ·OH to induce indirect photolysis. According to HPLC-Q-TOF MS analysis, the structures of the three photodegradation products of BD and CP were elucidated, respectively, and the phototransformation pathways were inferred based on the product structures. These findings help to grasp the fate of synthetic GCs in the environment and contribute to the understanding of their ecological risks.
Collapse
Affiliation(s)
- Yifan Ke
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jingqiu Jiang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, No.12 South Zhongguancun Ave., Haidian District, Beijing, 100081, China
| | - Xiqin Mao
- Dalian Institute for Drug Control, Dalian Food and Drug Administration, Dalian, 116024, China
| | - Baocheng Qu
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, 116024, China
| | - Xintong Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Jingyao Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Zhansheng Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
6
|
Maruya KA, Lao W, Vandervort DR, Fadness R, Lyons M, Mehinto AC. Bioanalytical and chemical-specific screening of contaminants of concern in three California (USA) watersheds. Heliyon 2022; 8:e09534. [PMID: 35663765 PMCID: PMC9160045 DOI: 10.1016/j.heliyon.2022.e09534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/04/2022] [Accepted: 05/19/2022] [Indexed: 11/18/2022] Open
Abstract
To broaden the scope of contaminants monitored in human-impacted riverine systems, water, sediment, and treated wastewater effluent were analyzed using receptor-based cell assays that provide an integrated response to chemicals based on their mode of biological activity. Samples were collected from three California (USA) watersheds with varying degrees of urbanization and discharge from municipal wastewater treatment plants (WWTPs). To complement cell assay results, samples were also analyzed for a suite of contaminants of emerging concern (CECs) using gas and liquid chromatography-mass spectrometry (GC- and LC-MS/MS). For most water and sediment samples, bioassay equivalent concentrations for estrogen and glucocorticoid receptor assays (ER- and GR-BEQs, respectively) were near or below reporting limits. Measured CEC concentrations compared to monitoring trigger values established by a science advisory panel indicated minimal to moderate concern in water but suggested that select pesticides (pyrethroids and fipronil) had accumulated to levels of greater concern in river sediments. Integrating robust, standardized bioanalytical tools such as the ER and GR assays utilized in this study into existing chemical-specific monitoring and assessment efforts will enhance future CEC monitoring efforts in impacted riverine systems and coastal watersheds.
Collapse
Affiliation(s)
- Keith A Maruya
- Southern California Coastal Water Research Project Authority, Costa Mesa, CA, 92626, USA
| | - Wenjian Lao
- Southern California Coastal Water Research Project Authority, Costa Mesa, CA, 92626, USA
| | - Darcy R Vandervort
- Southern California Coastal Water Research Project Authority, Costa Mesa, CA, 92626, USA
| | - Richard Fadness
- California Regional Water Quality Control Board, North Coast Region, Santa Rosa, CA, 95403, USA
| | - Michael Lyons
- California Regional Water Quality Control Board, Los Angeles Region, Los Angeles, CA, 90013, USA
| | - Alvine C Mehinto
- Southern California Coastal Water Research Project Authority, Costa Mesa, CA, 92626, USA
| |
Collapse
|
7
|
Hamilton CM, Winter MJ, Margiotta-Casaluci L, Owen SF, Tyler CR. Are synthetic glucocorticoids in the aquatic environment a risk to fish? ENVIRONMENT INTERNATIONAL 2022; 162:107163. [PMID: 35240385 DOI: 10.1016/j.envint.2022.107163] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 05/27/2023]
Abstract
The glucocorticosteroid, or glucocorticoid (GC), system is largely conserved across vertebrates and plays a central role in numerous vital physiological processes including bone development, immunomodulation, and modification of glucose metabolism and the induction of stress-related behaviours. As a result of their wide-ranging actions, synthetic GCs are widely prescribed for numerous human and veterinary therapeutic purposes and consequently have been detected extensively within the aquatic environment. Synthetic GCs designed for humans are pharmacologically active in non-mammalian vertebrates, including fish, however they are generally detected in surface waters at low (ng/L) concentrations. In this review, we assess the potential environmental risk of synthetic GCs to fish by comparing available experimental data and effect levels in fish with those in mammals. We found the majority of compounds were predicted to have insignificant risk to fish, however some compounds were predicted to be of moderate and high risk to fish, although the dataset of compounds used for this analysis was small. Given the common mode of action and high level of inter-species target conservation exhibited amongst the GCs, we also give due consideration to the potential for mixture effects, which may be particularly significant when considering the potential for environmental impact from this class of pharmaceuticals. Finally, we also provide recommendations for further research to more fully understand the potential environmental impact of this relatively understudied group of commonly prescribed human and veterinary drugs.
Collapse
Affiliation(s)
- Charles M Hamilton
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, Devon EX4 4QD, UK
| | - Matthew J Winter
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, Devon EX4 4QD, UK
| | - Luigi Margiotta-Casaluci
- Department of Analytical, Environmental & Forensic Sciences, School of Cancer & Pharmaceutical Sciences, King's College London, London SE1 9NH, UK
| | - Stewart F Owen
- AstraZeneca, Global Environment, Macclesfield, Cheshire SK10 2NA, UK
| | - Charles R Tyler
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, Devon EX4 4QD, UK.
| |
Collapse
|
8
|
Martyniuk CJ, Martínez R, Navarro-Martín L, Kamstra JH, Schwendt A, Reynaud S, Chalifour L. Emerging concepts and opportunities for endocrine disruptor screening of the non-EATS modalities. ENVIRONMENTAL RESEARCH 2022; 204:111904. [PMID: 34418449 PMCID: PMC8669078 DOI: 10.1016/j.envres.2021.111904] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/22/2021] [Accepted: 08/16/2021] [Indexed: 05/15/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are ubiquitous in the environment and involve diverse chemical-receptor interactions that can perturb hormone signaling. The Organization for Economic Co-operation and Development has validated several EDC-receptor bioassays to detect endocrine active chemicals and has established guidelines for regulatory testing of EDCs. Focus on testing over the past decade has been initially directed to EATS modalities (estrogen, androgen, thyroid, and steroidogenesis) and validated tests for chemicals that exert effects through non-EATS modalities are less established. Due to recognition that EDCs are vast in their mechanisms of action, novel bioassays are needed to capture the full scope of activity. Here, we highlight the need for validated assays that detect non-EATS modalities and discuss major international efforts underway to develop such tools for regulatory purposes, focusing on non-EATS modalities of high concern (i.e., retinoic acid, aryl hydrocarbon receptor, peroxisome proliferator-activated receptor, and glucocorticoid signaling). Two case studies are presented with strong evidence amongst animals and human studies for non-EATS disruption and associations with wildlife and human disease. This includes metabolic syndrome and insulin signaling (case study 1) and chemicals that impact the cardiovascular system (case study 2). This is relevant as obesity and cardiovascular disease represent two of the most significant health-related crises of our time. Lastly, emerging topics related to EDCs are discussed, including recognition of crosstalk between the EATS and non-EATS axis, complex mixtures containing a variety of EDCs, adverse outcome pathways for chemicals acting through non-EATS mechanisms, and novel models for testing chemicals. Recommendations and considerations for evaluating non-EATS modalities are proposed. Moving forward, improved understanding of the non-EATS modalities will lead to integrated testing strategies that can be used in regulatory bodies to protect environmental, animal, and human health from harmful environmental chemicals.
Collapse
Affiliation(s)
- Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA.
| | - Rubén Martínez
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain
| | - Laia Navarro-Martín
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain
| | - Jorke H Kamstra
- Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands
| | - Adam Schwendt
- Division of Experimental Medicine, School of Medicine, Faculty of Medicine and Biomedical Sciences, McGill University, 850 Sherbrooke Street, Montréal, Québec, H3A 1A2, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec, H3T 1E2, Canada
| | - Stéphane Reynaud
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France
| | - Lorraine Chalifour
- Division of Experimental Medicine, School of Medicine, Faculty of Medicine and Biomedical Sciences, McGill University, 850 Sherbrooke Street, Montréal, Québec, H3A 1A2, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec, H3T 1E2, Canada
| |
Collapse
|
9
|
Ojoghoro JO, Scrimshaw MD, Sumpter JP. Steroid hormones in the aquatic environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148306. [PMID: 34157532 DOI: 10.1016/j.scitotenv.2021.148306] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 05/16/2023]
Abstract
Steroid hormones are extremely important natural hormones in all vertebrates. They control a wide range of physiological processes, including osmoregulation, sexual maturity, reproduction and stress responses. In addition, many synthetic steroid hormones are in widespread and general use, both as human and veterinary pharmaceuticals. Recent advances in environmental analytical chemistry have enabled concentrations of steroid hormones in rivers to be determined. Many different steroid hormones, both natural and synthetic, including transformation products, have been identified and quantified, demonstrating that they are widespread aquatic contaminants. Laboratory ecotoxicology experiments, mainly conducted with fish, but also amphibians, have shown that some steroid hormones, both natural and synthetic, can adversely affect reproduction when present in the water at extremely low concentrations: even sub-ng/L. Recent research has demonstrated that mixtures of different steroid hormones can inhibit reproduction even when each individual hormone is present at a concentration below which it would not invoke a measurable effect on its own. Limited field studies have supported the conclusions of the laboratory studies that steroid hormones may be environmental pollutants of significant concern. Further research is required to identify the main sources of steroid hormones entering the aquatic environment, better describe the complex mixtures of steroid hormones now known to be ubiquitously present, and determine the impacts of environmentally-realistic mixtures of steroid hormones on aquatic vertebrates, especially fish. Only once that research is completed can a robust aquatic risk assessment of steroid hormones be concluded.
Collapse
Affiliation(s)
- J O Ojoghoro
- Department of Botany, Faculty of Science, Delta State University Abraka, Delta State, Nigeria
| | - M D Scrimshaw
- Division of Environmental Science, Department of Life Sciences, Brunel University London, Uxbridge, Middlesex UB8 3PH, United Kingdom.
| | - J P Sumpter
- Division of Environmental Science, Department of Life Sciences, Brunel University London, Uxbridge, Middlesex UB8 3PH, United Kingdom.
| |
Collapse
|
10
|
Zhong L, Liang YQ, Lu M, Pan CG, Dong Z, Zhao H, Li C, Lin Z, Yao L. Effects of dexamethasone on the morphology, gene expression and hepatic histology in adult female mosquitofish (Gambusia affinis). CHEMOSPHERE 2021; 274:129797. [PMID: 33545586 DOI: 10.1016/j.chemosphere.2021.129797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 05/27/2023]
Abstract
Glucocorticoids (GCs), including natural hormones as well as synthetic chemicals, can pose influences on physiological performance, development and reproduction of fish. Dexamethasone (DEX) is a synthetic glucocorticoid widely used as pharmaceutical and usually exists in effluents with varying degrees of concentrations. In this study, adult female mosquitofish (Gambusia affinis) were treated by DEX at concentrations of 0, 0.5, 5 and 50 μg/L for 60 days. Morphological parameters of anal fin and skeleton, mRNA expression abundance, and histological alterations of liver were investigated to assess effects of DEX on mosquitofish. The results showed that DEX increased number of sections of ray 3 in anal fin and decreased 16L, 15D and 16D in skeletal parameters, which indicates DEX could potentially lead to weak masculinization. Furthermore, transcriptional expression levels of ARα, ARβ, ERβ, VTGC and CYP19A genes were notably down-regulated by DEX, which will contribute to weak masculinization in females. In addition, the damage to liver tissue was also induced by DEX. Taken together, this research demonstrated that aquatic environments contaminated by DEX have negative effects on mosquitofish at a population level.
Collapse
Affiliation(s)
- Lishan Zhong
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Yan-Qiu Liang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524000, PR China.
| | - Mixue Lu
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Chang-Gui Pan
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, PR China
| | - Zhongdian Dong
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Hui Zhao
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524000, PR China
| | - Chengyong Li
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Zhong Lin
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Li Yao
- Guangdong Institute of Analysis (China National Analytical Center), Guangdong Academy of Sciences, Guangzhou, 510070, PR China
| |
Collapse
|
11
|
Parrott JL, Pacepavicius G, Shires K, Clarence S, Khan H, Gardiner M, Sullivan C, Alaee M. Fathead minnow exposed to environmentally relevant concentrations of metformin for one life cycle show no adverse effects. Facets (Ott) 2021. [DOI: 10.1139/facets-2020-0106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Metformin is a glucose-lowering drug taken for diabetes. It is excreted by humans in urine and detected in municipal wastewater effluents and rivers. Fathead minnows ( Pimephales promelas) were exposed over a life cycle to measured concentrations of metformin: 3.0, 31, and 322 μg/L. No significant changes were observed in survival, maturation, growth, condition factor, or liver size. Relative ovary size of females exposed to 322 μg/L metformin was significantly larger than controls. There was no induction of vitellogenin in plasma of minnows, and gonad maturation was not statistically different from controls. The start of breeding was delayed by 9–10 d in the mid- and high metformin treatments (statistically significant only in the mid-concentration), but numbers and quality of eggs were not statistically different from controls. There were no effects of metformin on survival or growth of offspring. Exposure to metformin at environmentally relevant concentrations (i.e., 3.0 and 31 μg/L metformin) caused no adverse effects in fathead minnows exposed for a life cycle, with the exception of a delay in time to first breeding (that did not impact overall egg production). The results of the study are important to help understand whether metformin concentrations in rivers and lakes can harm fishes.
Collapse
Affiliation(s)
- Joanne L. Parrott
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada
| | - Grazina Pacepavicius
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada
| | - Kallie Shires
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada
| | - Stacey Clarence
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada
| | - Hufsa Khan
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada
| | - Madelaine Gardiner
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada
| | - Cheryl Sullivan
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada
| | - Mehran Alaee
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada
| |
Collapse
|
12
|
The pharmaceutical prednisone affects sheepshead minnow (Cyprinodon variegatus) metabolism and swimming performance. Comp Biochem Physiol A Mol Integr Physiol 2020; 253:110851. [PMID: 33238196 DOI: 10.1016/j.cbpa.2020.110851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 11/23/2022]
Abstract
High usage of the synthetic glucocorticoids (GCs) has led to significant presence of this pharmaceutical group in surface waters where it can affect non-target organisms such as fish. Assessment of a fish's metabolism and swimming performance provide reliable sub-lethal measures of effects of GCs on oxygen-requiring processes and ability to swim. In this study, we determined time-dependent (7, 14 and 21 days) effects of the synthetic GC prednisone (1 μg L-1) on sheepshead minnow (SHM) (Cyprinodon variegatus). Standard (SMR), routine (RMR) and maximum (MMR) metabolic rate, metabolic scope (MS), excess post-exercise oxygen consumption (EPOC), cost of transport (COT) and critical swimming speed (Ucrit) were determined. Twenty-one days exposure to prednisone resulted in significantly higher SMR, RMR, MMR, MS, EPOC and COT compared with 7d and 14d prednisone fish. However, Ucrit was not significantly different between prednisone and solvent control exposed fish (within 7d, 14d, 21d groups). SMR, RMR and MMR were lower in the 7d and 14d prednisone exposed fish compared with their solvent control groups. In contrast, SMR, RMR and MMR were all significantly higher in the 21d prednisone exposed fish compared with solvent control. EPOC was significantly higher in 14d prednisone exposed fish and trending higher in 21d and 7d prednisone exposed fish compared with their solvent controls. EPOC was significantly higher in 21d compared with 7d prednisone exposed fish. A significantly higher COT was seen in the 21d compared with 7d and 14d prednisone fish. Collectively, this study showed time-dependent effects of prednisone on SHM metabolism and swimming performance.
Collapse
|
13
|
Cuzziol Boccioni AP, Peltzer PM, Martinuzzi CS, Attademo AM, León EJ, Lajmanovich RC. Morphological and histological abnormalities of the neotropical toad, Rhinella arenarum (Anura: Bufonidae) larvae exposed to dexamethasone. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2020; 56:41-53. [PMID: 33112724 DOI: 10.1080/03601234.2020.1832410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dexamethasone (DEX) is a glucocorticoid highly effective as an anti-inflammatory, immunosuppressant and decongestant drug. In the present study, a preliminary acute toxicity test was assayed in order to determinate DEX median-lethal, lowest-observed-effect and the no-observed-effect concentrations (LC50, LOEC and NOEC, respectively) on the common toad embryos (Rhinella arenarum). Also, morphological and histological abnormalities from five body larval regions, liver melanomacrophages (MM) and glutathione S-transferase (GST) activity were evaluated in the toad larvae to characterize the chronic sublethal effects of DEX (1-1,000 µg L-L). Results of the acute test showed that the LC50 of DEX at 96 h of exposure for the toad embryos (GS 18-20) was 10.720 mg L-g, and the LOEC was 1 µg L-g. In the chronic assay, the larval development and body length were significantly affected. DEX exposition also induced teratogenic effects. Most frequent external abnormalities observed in DEX-treated larvae included abdominal edema and swollen body, abnormal gut coiling and visceral congestion. Intestinal dysplasia was recurrent in cross-section of all DEX-treated larvae. Neural, conjunctive and renal epithelial cells were also affected. Significant increase in liver MM number and size, and GST activity levels were also registered in DEX treatments with respect to controls. The evaluation of a variety of biomarkers provided clear evidence of toad larvae sensitivity to DEX, and the ecotoxicological risk of these pharmaceuticals, commonly found in different water bodies worldwide on aquatic animals.
Collapse
Affiliation(s)
- Ana P Cuzziol Boccioni
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Paola M Peltzer
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Candela S Martinuzzi
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrés M Attademo
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Evelina J León
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Rafael C Lajmanovich
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
14
|
Schmid S, Willi RA, Fent K. Effects of environmental steroid mixtures are regulated by individual steroid receptor signaling. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 226:105562. [PMID: 32668346 DOI: 10.1016/j.aquatox.2020.105562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/09/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Fish are exposed to steroids of different classes in contaminated waters, but their effects are not sufficiently understood. Here we employed an anti-sense technique using morpholino oligonucleotides to knockdown the glucocorticoid receptors (GRs, GRα and GRβ) and androgen receptor (AR) to investigate their role in physiological and transcriptional responses. To this end, zebrafish embryos were exposed to clobetasol propionate (CLO), androstenedione (A4) and mixtures containing different classes of steroids. CLO caused a decrease of spontaneous muscle contraction and increase of heart rate, as well as transcriptional induction of pepck1, fkbp5, sult2st3 and vitellogenin (vtg1) at 24 and/or 48 h post fertilization (hpf). Knockdown of GRs eliminated these effects, while knockdown of AR decreased the ar transcript but caused no expressional changes, except induction of sult2st3 after exposure to A4 at 24 hpf. Exposure to a mixture of 6 steroids comprising progesterone (P4) and three progestins, cyproterone acetate, dienogest, drospirenone, 17β-estradiol (E2) and CLO caused a significant induction of pepck1, sult2st3, vtg1 and per1a. Knockdown of GRs eliminated the physiological effects and the up-regulation of vtg1, sult2st3, pepck1, fkbp5 and per1a. Thus, as with CLO, responses in mixtures were regulated by GRs independently from the presence of other steroids. Exposure to a mixture comprising A4, CLO, E2 and P4 caused induction of vtg1, cyp19b, sult2st3 and fkbp5. Knockdown of AR had no effect, indicating that regulation of these genes occurred by the GRs and estrogen receptor (ER). Our findings show that in early embryos GRs cause vtg1 and sult2st3 induction in addition to known glucocorticoid target genes. Each steroid receptor regulated its own target genes in steroid mixtures independently from other steroids. However, enhanced expressional induction occurred for vtg1 and fkbp5 in steroid mixtures, indicating an interaction/cross-talk between GRs and ER. These findings have importance for the understanding of molecular effects of steroid mixtures.
Collapse
Affiliation(s)
- Simon Schmid
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Hofackerstrasse 30, CH-4132 Muttenz, Switzerland
| | - Raffael Alois Willi
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Hofackerstrasse 30, CH-4132 Muttenz, Switzerland
| | - Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Hofackerstrasse 30, CH-4132 Muttenz, Switzerland; Swiss Federal Institute of Technology (ETH Zürich), Institute of Biogeochemistry and Pollution Dynamics, Department of Environmental Systems Science, CH-8092 Zürich, Switzerland.
| |
Collapse
|
15
|
Weizel A, Schlüsener MP, Dierkes G, Wick A, Ternes TA. Analysis of the aerobic biodegradation of glucocorticoids: Elucidation of the kinetics and transformation reactions. WATER RESEARCH 2020; 174:115561. [PMID: 32087415 DOI: 10.1016/j.watres.2020.115561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 05/23/2023]
Abstract
Glucocorticoids (GCs) are one of the most prescribed pharmaceutical classes worldwide. They have reached the focus as environmental pollutants in the current scientific research, due to their potential risks to aquatic organisms even in the lower ng L-1 range. The objective of this study was to determine the kinetic behavior of selected GCs and to identify their main transformation products (TPs) in lab scaled biodegradation experiments. Therefore, we analyzed the removal of 13 GCs in aerated incubation experiments with activated sludge taken from a German municipal wastewater treatment plant (WWTP) as inoculum. For all steroids, an exponential decrease of the concentrations was observed, which was modelled by pseudo-first order kinetics. Overall, the rate constants kbiol. ranged from 0.07 L gss-1 d-1 (triamcinolone acetonide) to 250 L gss-1 d-1 (prednisolone). These results emphasize the broad variation in the biodegradability and recalcitrance of certain GCs. The selection of the studied GCs enabled a deduction of microbiological stability related to functional groups. Based on the identified TPs, a variety of enzymatically mediated reactions were postulated. Moreover, the identified TPs are characterized by an intact steroid core structure. Thus residual endocrine activity cannot be ruled out. The main observed reactions were regioselective hydrogenation of carbon double-bonds, degradation of the steroid C17 side-chain, ester hydrolysis and oxidative hydroxylation. In total, 41 TPs were tentatively identified and 22 of them were unambiguously confirmed via reference standards. Additionally, 12 TPs were detected in the effluents of municipal WWTPs and, to the best of our knowledge, the occurrence of eight of these TPs has been shown for the first time. These TPs might significantly contribute to the detected residual endocrine activities in the aquatic environments. Therefore, there is a strong need for efficient removal strategies, in particular for persistent steroid hormones with elevated potencies.
Collapse
Affiliation(s)
- Alexander Weizel
- Federal Institute of Hydrology, Department of Aquatic Chemistry, 56068, Koblenz, Germany
| | - Michael P Schlüsener
- Federal Institute of Hydrology, Department of Aquatic Chemistry, 56068, Koblenz, Germany
| | - Georg Dierkes
- Federal Institute of Hydrology, Department of Aquatic Chemistry, 56068, Koblenz, Germany
| | - Arne Wick
- Federal Institute of Hydrology, Department of Aquatic Chemistry, 56068, Koblenz, Germany
| | - Thomas A Ternes
- Federal Institute of Hydrology, Department of Aquatic Chemistry, 56068, Koblenz, Germany.
| |
Collapse
|
16
|
Schmid S, Willi RA, Salgueiro-González N, Fent K. Effects of new generation progestins, including as mixtures and in combination with other classes of steroid hormones, on zebrafish early life stages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:136262. [PMID: 31905574 DOI: 10.1016/j.scitotenv.2019.136262] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/11/2019] [Accepted: 12/19/2019] [Indexed: 05/12/2023]
Abstract
Fish are exposed to progestins and steroid mixtures in contaminated waters but the ecotoxicological implications are not sufficiently known. Here we analyze effects of the new generation progestin dienogest (DNG) followed by investigating effects of mixtures of new generation progestins containing DNG, cyproterone acetate and drospirenone and the hormone progesterone. Furthermore, effects of this mixture were studied after adding 17β-estradiol (E2) and clobetasol propionate (CLO) in zebrafish embryos and larvae at concentrations between 0.01 and 10 μg/L. DNG showed only very minor transcriptional alterations among the 24 assessed genes with downregulation of the fshb transcript only. The progestin mixture caused weak induction of the lhb, cyp2k22 and sult2st3 transcripts. Addition of E2 to the mixture caused strong induction vtg1, cyp19b, esr1 and lhb, as well as downregulation of fshb from 0.01 μg/L onwards. Besides altering the same transcripts, addition of CLO altered glucocorticoid regulated genes mmp-9, mmp-13, g6pca, fkbp5 and irg1l. While each steroid class exhibited its specific activity independently in the mixture, sult2st3 and cyp2k22 were regulated by both E2 and CLO. Furthermore, CLO alone and in mixtures decreased spontaneous muscle contractions, increased heartrate and induced edema. Our study highlights the prominent effects of E2 and CLO in environmental steroid mixtures, while new generation progestins show relatively low activity.
Collapse
Affiliation(s)
- Simon Schmid
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Hofackerstrasse 30, CH-4132 Muttenz, Switzerland
| | - Raffael Alois Willi
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Hofackerstrasse 30, CH-4132 Muttenz, Switzerland
| | - Noelia Salgueiro-González
- Istituto di Ricerche Farmacologiche Mario Negri, IRCCS, Department of Environmental Health Sciences, Via Mario Negri 2, 20156 Milan, Italy
| | - Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Hofackerstrasse 30, CH-4132 Muttenz, Switzerland; Swiss Federal Institute of Technology (ETH Zürich), Institute of Biogeochemistry and Pollution Dynamics, Department of Environmental Systems Science, CH-8092 Zürich, Switzerland.
| |
Collapse
|
17
|
Faltermann S, Hettich T, Küng N, Fent K. Effects of the glucocorticoid clobetasol propionate and its mixture with cortisol and different class steroids in adult female zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 218:105372. [PMID: 31812088 DOI: 10.1016/j.aquatox.2019.105372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/13/2019] [Accepted: 11/21/2019] [Indexed: 05/27/2023]
Abstract
Ecotoxicological effects of glucocorticoids and steroid mixtures in the environment are not sufficiently known. Here we investigate effects of 11-14 days exposure of female zebrafish to the glucocorticoid clobetasol propionate (Clo), cortisol (Cs), their mixture and mixtures with five different class steroids (Clo + triamcinolone + estradiol + androstenedione + progesterone) in liver, brain and gonads. Cs showed little activity, while Clo reduced the condition factor at 0.57 and 6.35 μg/L. Clo induced differential expression of genes in the liver at 0.07-6.35 μg/L, which were related to circadian rhythm (per1, nr1d2), glucose metabolism (g6pca, pepck1), immune system response (fkbp 5, socs3, gilz), nuclear steroid receptors (pgr and pxr), steroidogeneses and steroid metabolism (hsd11b2, cyp2k22). Clo caused strong transcriptional down-regulation of vtg. Similar upregulations occurred in the brain for pepck1, fkbp5, socs3, gilz, hsd11b2, and nr1d2a, while cyp19b was down-regulated. Effects of Clo + Cs mixtures were similar to Clo alone. Transcriptional alterations were different in mixtures of five steroids with no alteration of vtg in the liver due to counteraction of Clo and estradiol. Induction of fkbp5 (brain) and sult2st3 (liver) and downregulation of cyp19a (gonads) occurred at 1 μg/L. Histological effects of the five steroids mixture in gonads were characterized by a decrease of mature oocytes. Our data indicate that effects of steroids of different classes sum up to an overall joint effect driven by the most potent steroid Clo.
Collapse
Affiliation(s)
- Susanne Faltermann
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Hofackerstrasse 30, CH-4132, Muttenz, Switzerland
| | - Timm Hettich
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Hofackerstrasse 30, CH-4132, Muttenz, Switzerland
| | - Noemi Küng
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Hofackerstrasse 30, CH-4132, Muttenz, Switzerland
| | - Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Hofackerstrasse 30, CH-4132, Muttenz, Switzerland; Swiss Federal Institute of Technology (ETH Zürich), Institute of Biogeochemistry and Pollution Dynamics, Department of Environmental Systems Science, CH-8092, Zürich, Switzerland.
| |
Collapse
|
18
|
Gong J, Lin C, Xiong X, Chen D, Chen Y, Zhou Y, Wu C, Du Y. Occurrence, distribution, and potential risks of environmental corticosteroids in surface waters from the Pearl River Delta, South China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:102-109. [PMID: 31071626 DOI: 10.1016/j.envpol.2019.04.110] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 05/25/2023]
Abstract
The occurrence, spatiotemporal distribution, and potential risks of 21 glucocorticoids (GCs) and 3 mineralocorticoids (MCs) in four rivers were studied by investigating the surface waters from the Pearl River Delta (PRD), South China. These environmental corticosteroids (ECs) were commonly present in the river surface waters with average concentrations varying from <0.17 ng/L for fluticasone propionate to 5.6 ng/L for clobetasone butyrate; and cortisone had the highest concentration, 32.9 ng/L. The total ECs ranged in concentration from undetectable to 83.3 ng/L, with a mean and median of 8.1 ng/L and 4.8 ng/L, respectively. Spatially the total EC concentration levels in the Pearl River system occurred in the following order: Zhujiang River (ZR) > Dongjiang River (DR) > Shiziyang waterway (SW) > Beijiang River (BR). These levels generally demonstrated a trend of increasing from upstream to midstream or downstream then attenuating toward the estuary. Considerable seasonal variations in the ECs differed among rivers. Higher ECs concentrations in winter were mostly found in the ZR, whereas lower levels were found in the DR. Moreover, the temporal variations of the ECs were marginal in the BR and SW. These spatiotemporal distributions of the ECs might have been simultaneously influenced by pollution sources derived from anthropogenic activities and river hydrologic conditions. Correlation analyses indicated that dissolved organic carbon (DOC) could play a key role in the occurrence and distribution of ECs in an aquatic environment. Risk assessment demonstrated that the occurrence of ECs might have posed medium to high risk to aquatic organisms in the Pearl River.
Collapse
Affiliation(s)
- Jian Gong
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Canyuan Lin
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Xiaoping Xiong
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Diyun Chen
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yongheng Chen
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yongshun Zhou
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Cuiqin Wu
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yongming Du
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
19
|
Willi RA, Salgueiro-González N, Carcaiso G, Fent K. Glucocorticoid mixtures of fluticasone propionate, triamcinolone acetonide and clobetasol propionate induce additive effects in zebrafish embryos. JOURNAL OF HAZARDOUS MATERIALS 2019; 374:101-109. [PMID: 30981015 DOI: 10.1016/j.jhazmat.2019.04.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/26/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
Many synthetic glucocorticoids from medical applications occur in the aquatic environment. Whether they pose a risk for fish health is poorly known. Here we investigate effects of glucocorticoids fluticasone propionate (FLU) and triamcinolone acetonide (TRI) as single steroids and as ternary mixtures with clobetasol propionate (CLO) in zebrafish embryos. Exposure to FLU and TRI in a range of concentrations between 0.099 and 120.08 μg/L led to concentration-related decrease in muscle contractions and increase in heart rate at 0.98 and 1.05 μg/L, respectively, and higher. Genes encoding for proteins related to glucose metabolism (g6pca, pepck1), immune system regulation (fkbp5, irg1l, socs3, gilz) and matrix metalloproteinases mmp-9 and mmp-13 showed expressional alterations, as well as genes encoding for the progestin receptor (pgr) and corticosteroid dehydrogenase (hsd11b2). FLU accelerated hatching and led to embryotoxicity (immobilization and edema). Ternary mixtures (FLU + TRI + CLO) induced the same physiological and toxicological effects at concentrations of individual glucocorticoids of 11.1-16.37 μg/L and higher. Heart rate was increased in the mixture at concentrations as low as 0.0885-0.11 μg/L of each steroid. Glucocorticoids in mixtures showed additive activity; the fold-changes of transcripts of 19 target genes were additive. Together, our data show that glucocorticoids act additively and their joint activity may be of concern for developing fish in contaminated environments.
Collapse
Affiliation(s)
- Raffael Alois Willi
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | - Noelia Salgueiro-González
- Istituto di Ricerche Farmacologiche Mario Negri - IRCCS, Department of Environmental Health Sciences, Via La Masa 19, 20156 Milan, Italy
| | - Giulia Carcaiso
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | - Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland; Swiss Federal Institute of Technology (ETH Zürich), Institute of Biogeochemistry and Pollution Dynamics, Department of Environmental Systems Science, CH-8092 Zürich, Switzerland.
| |
Collapse
|
20
|
Völker J, Stapf M, Miehe U, Wagner M. Systematic Review of Toxicity Removal by Advanced Wastewater Treatment Technologies via Ozonation and Activated Carbon. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7215-7233. [PMID: 31120742 DOI: 10.1021/acs.est.9b00570] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Upgrading wastewater treatment plants (WWTPs) with advanced technologies is one key strategy to reduce micropollutant emissions. Given the complex chemical composition of wastewater, toxicity removal is an integral parameter to assess the performance of WWTPs. Thus, the goal of this systematic review is to evaluate how effectively ozonation and activated carbon remove in vitro and in vivo toxicity. Out of 2464 publications, we extracted 46 relevant studies conducted at 22 pilot or full-scale WWTPs. We performed a quantitative and qualitative evaluation of in vitro (100 assays) and in vivo data (20 species), respectively. Data is more abundant on ozonation (573 data points) than on an activated carbon treatment (162 data points), and certain in vitro end points (especially estrogenicity) and in vivo models (e.g., daphnids) dominate. The literature shows that while a conventional treatment effectively reduces toxicity, residual effects in the effluents may represent a risk to the receiving ecosystem on the basis of effect-based trigger values. In general, an upgrade to ozonation or activated carbon treatment will significantly increase toxicity removal with similar performance. Nevertheless, ozonation generates toxic transformation products that can be removed by a post-treatment. By assessing the growing body of effect-based studies, we identify sensitive and underrepresented end points and species and provide guidance for future research.
Collapse
Affiliation(s)
- Johannes Völker
- Department of Biology , Norwegian University of Science and Technology (NTNU) , Trondheim 7491 , Norway
| | - Michael Stapf
- Berlin Centre of Competence for Water (KWB) , Berlin 10709 , Germany
| | - Ulf Miehe
- Berlin Centre of Competence for Water (KWB) , Berlin 10709 , Germany
| | - Martin Wagner
- Department of Biology , Norwegian University of Science and Technology (NTNU) , Trondheim 7491 , Norway
| |
Collapse
|
21
|
Trace analysis of corticosteroids (CSs) in environmental waters by liquid chromatography-tandem mass spectrometry. Talanta 2018; 195:830-840. [PMID: 30625625 DOI: 10.1016/j.talanta.2018.11.113] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 11/20/2022]
Abstract
Natural and synthetic corticosteroids (CSs) are a class of steroid hormones which could potentially disturb the corticosteroid signaling pathways in wildlife and humans. In this study, a sensitive and robust analytical method using solid phase extraction (SPE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed for simultaneous analysis of sub-ng/L concentrations of 26 CSs in highly complex natural water matrices. The method performance was validated for WWTP influent, effluent, surface water and finished drinking water. Low practical quantification levels (PQLs) were achieved as 0.008-0.16 ng/L in finished drinking water, 0.019-0.50 ng/L in surface water, 0.047-1.5 ng/L in WWTP effluent, and 0.10-3.1 ng/L in WWTP influent, respectively, with the recoveries ranging from 70% to 130%. The cleanup performance and matrix interferences were also evaluated. This method was then applied to the analysis of target CSs in WWTP influent and effluent samples collected from a local WWTP, as well as surface water downstream of the WWTP outfall, detecting an average summed CS concentration of 744 ng/L in influent, 23.4 ng/L in effluent and 10.9 ng/L in surface water. Four synthetic CSs (triamcinolone acetonide, fluocinolone acetonide, clobetasol propionate, and fluticasone propionate) were found poorly removed in the WWTP. The developed method provides a tool to obtain occurrence data of corticosteroids in environmental waters, which will permit assessing their risk to environmental organisms.
Collapse
|
22
|
Weizel A, Schlüsener MP, Dierkes G, Ternes TA. Occurrence of Glucocorticoids, Mineralocorticoids, and Progestogens in Various Treated Wastewater, Rivers, and Streams. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5296-5307. [PMID: 29580053 DOI: 10.1021/acs.est.7b06147] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In the current study a high sensitive analytical method was developed for the determination of 60 steroids including glucocorticoids (GC), mineralocorticoids (MC), and progestogens (PG) in WWTP effluents and surface water using liquid chromatography with tandem mass spectrometry detection (LC-MS/MS). The limits of quantification (LOQ) ranged between 0.02 ng/L (cortisone) to 0.5 ng/L (drospirenone) in surface water and from 0.05 ng/L (betamethasone) to 5 ng/L (chlormadinone) in treated wastewater. After optimization, the developed method was applied to WWTP effluents, rivers, and streams around Germany. Numerous steroids have been detected during the sampling campaign and predominant analytes from all steroid types were determined. Moreover, the occurrence of dienogest, mometasone furoate, flumethasone pivalate, and the metabolites 6β-hydroxy dienogest, 6β-hydroxy triamcinolone acetonide, 7α-thiomethyl spironolactone, and 11α-hydroxy canrenone is reported for the first time. In addition, this study revealed the ubiquitous presence of topically applied GC monoesters betamethasone propionate, betamethasone valerate, and 6α-methylprednisolone propionate in WWTP effluents and surface water.
Collapse
Affiliation(s)
- Alexander Weizel
- Federal Institute of Hydrology , Department of Aquatic Chemistry , 56068 Koblenz , Germany
| | - Michael P Schlüsener
- Federal Institute of Hydrology , Department of Aquatic Chemistry , 56068 Koblenz , Germany
| | - Georg Dierkes
- Federal Institute of Hydrology , Department of Aquatic Chemistry , 56068 Koblenz , Germany
| | - Thomas A Ternes
- Federal Institute of Hydrology , Department of Aquatic Chemistry , 56068 Koblenz , Germany
| |
Collapse
|
23
|
Thrupp TJ, Runnalls TJ, Scholze M, Kugathas S, Kortenkamp A, Sumpter JP. The consequences of exposure to mixtures of chemicals: Something from 'nothing' and 'a lot from a little' when fish are exposed to steroid hormones. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 619-620:1482-1492. [PMID: 29734624 DOI: 10.1016/j.scitotenv.2017.11.081] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 05/12/2023]
Abstract
Ill-defined, multi-component mixtures of steroidal pharmaceuticals are present in the aquatic environment. Fish are extremely sensitive to some of these steroids. It is important to know how fish respond to these mixtures, and from that knowledge develop methodology that enables accurate prediction of those responses. To provide some of the data required to reach this objective, pairs of fish were first exposed to five different synthetic steroidal pharmaceuticals (one estrogen, EE2; one androgen, trenbolone; one glucocorticoid, beclomethasone dipropionate; and two progestogens, desogestrel and levonorgestrel) and concentration-response data on egg production obtained. Based on those concentration-response relationships, a five component mixture was designed and tested twice. Very similar effects were observed in the two experiments. The mixture inhibited egg production in an additive manner predicted better by the model of Independent Action than that of Concentration Addition. Our data provide a reference case for independent action in an in vivo model. A significant combined effect was observed when each steroidal pharmaceutical in the mixture was present at a concentration which on its own would produce no statistically significant effect (something from 'nothing'). Further, when each component was present in the mixture at a concentration expected to inhibit egg production by between 18% (Beclomethasone diproprionate) and 40% (trenbolone), this mixture almost completely inhibited egg production: a phenomenon we term 'a lot from a little'. The results from this proof-of-principle study suggest that multiple steroids present in the aquatic environment can be analysed for their potential combined environmental risk.
Collapse
Affiliation(s)
- Tara J Thrupp
- Institute for the Environment, Health and Societies, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK
| | - Tamsin J Runnalls
- Institute for the Environment, Health and Societies, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK
| | - Martin Scholze
- Institute for the Environment, Health and Societies, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK
| | - Subramaniam Kugathas
- Institute for the Environment, Health and Societies, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK
| | - Andreas Kortenkamp
- Institute for the Environment, Health and Societies, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK
| | - John P Sumpter
- Institute for the Environment, Health and Societies, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK.
| |
Collapse
|
24
|
Lyu L, Yu G, Zhang L, Hu C, Sun Y. 4-Phenoxyphenol-Functionalized Reduced Graphene Oxide Nanosheets: A Metal-Free Fenton-Like Catalyst for Pollutant Destruction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 51:6498-6506. [PMID: 29250958 DOI: 10.1021/acs.est.7b01231] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Metal-containing Fenton catalysts have been widely investigated. Here, we report for the first time a highly effective stable metal-free Fenton-like catalyst with dual reaction centers consisting of 4-phenoxyphenol-functionalized reduced graphene oxide nanosheets (POP-rGO NSs) prepared through surface complexation and copolymerization. Experimental and theoretical studies verified that dual reaction centers are formed on the C-O-C bridge of POP-rGO NSs. The electron-rich center around O is responsible for the efficient reduction of H2O2 to •OH, while the electron-poor center around C captures electrons from the adsorbed pollutants and diverts them to the electron-rich area via the C-O-C bridge. By these processes, pollutants are degraded and mineralized quickly in a wide pH range, and a higher H2O2 utilization efficiency is achieved. Our findings address the problems of the classical Fenton reaction and are useful for the development of efficient Fenton-like catalysts using organic polymers for different fields.
Collapse
Affiliation(s)
- Lai Lyu
- School of Environmental Science and Engineering, Guangzhou University , Guangzhou 510006, China
- Research Institute of Environmental Studies at Greater Bay, Guangzhou University , Guangzhou 510006, China
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Guangfei Yu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Lili Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Chun Hu
- School of Environmental Science and Engineering, Guangzhou University , Guangzhou 510006, China
- Research Institute of Environmental Studies at Greater Bay, Guangzhou University , Guangzhou 510006, China
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Yong Sun
- College of Aerospace and Civil Engineering, Harbin Engineering University , Harbin 150001, China
| |
Collapse
|
25
|
Willi RA, Faltermann S, Hettich T, Fent K. Active Glucocorticoids Have a Range of Important Adverse Developmental and Physiological Effects on Developing Zebrafish Embryos. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:877-885. [PMID: 29190094 DOI: 10.1021/acs.est.7b06057] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Glucocorticoids in aquatic systems originating from natural excretion and medical use may pose a risk to fish. Here, we analyzed physiological and transcriptional effects of clobetasol propionate (CLO), cortisol and cortisone in zebrafish embryos as single compounds and binary mixtures. CLO and cortisol, but not cortisone showed a concentration-dependent decrease in muscle contraction, increase in heart rate, and accelerated hatching. CLO also induced immobilization and edema at high concentrations. Transcription analysis covering up to 26 genes showed that mostly genes related to glucose metabolism, immune system and development were differentially expressed at 91 ng/L and higher. CLO showed stronger effects on immune system genes than cortisol, which was characterized by upregulation of fkbp5, irg1l, gilz, and socs3, and development genes, matrix metalloproteinases mmp-9 and mmp-13, while cortisol led to stronger upregulation of the gluconeogenesis genes g6pca and pepck1. CLO also induced genes regulating the circadian rhythm, nr1d1 and per1a. In contrast, cortisone led to down-regulation of vitellogenin. Binary mixtures of cortisol and CLO mostly showed a similar activity as CLO alone on physiological and transcriptional end points but additive effects in heart rate and pepck1 upregulation, which indicates that mixtures of glucocorticoids may be of concern for developing fish.
Collapse
Affiliation(s)
- Raffael Alois Willi
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences , Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | - Susanne Faltermann
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences , Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | - Timm Hettich
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences , Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | - Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences , Gründenstrasse 40, CH-4132 Muttenz, Switzerland
- Swiss Federal Institute of Technology (ETH Zürich), Institute of Biogeochemistry and Pollution Dynamics, Department of Environmental System Sciences , CH-8092 Zürich, Switzerland
| |
Collapse
|
26
|
Wigh A, Aït-Aïssa S, Creusot N, Terrisse H, Delignette-Muller ML, Bergé A, Vulliet E, Domenjoud B, Gonzalez-Ospina A, Brosselin V, Devaux A, Bony S. Assessment of Ozone or Not-Treated Wastewater Ecotoxicity Using Mechanism-Based and Zebrafish Embryo Bioassays. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/jep.2018.94022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Ye RR, Peterson DR, Seemann F, Kitamura SI, Lee JS, Lau TCK, Tsui SKW, Au DWT. Immune competence assessment in marine medaka (Orzyias melastigma)-a holistic approach for immunotoxicology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:27687-27701. [PMID: 27473621 DOI: 10.1007/s11356-016-7208-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/08/2016] [Indexed: 06/06/2023]
Abstract
Many anthropogenic pollutants in coastal marine environments can induce immune impairments in wild fish and reduce their survival fitness. There is a pressing need to establish sensitive and high throughput in vivo tools to systematically evaluate the immunosuppressive effects of contaminants in marine teleosts. This study reviewed a battery of in vivo immune function detection technologies established for different biological hierarchies at molecular (immune function pathways and genes by next generation sequencing (NGS)), cellular (leukocytes profiles by flow cytometry), tissues/organ system (whole adult histo-array), and organism (host resistance assays (HRAs)) levels, to assess the immune competence of marine medaka Oryzias melastigma. This approach enables a holistic assessment of fish immune competence under different chemical exposure or environmental scenarios. The data obtained will also be useful to unravel the underlying immunotoxic mechanisms. Intriguingly, NGS analysis of hepatic immune gene expression profiles (male > female) are in support of the bacterial HRA findings, in which infection-induced mortality was consistently higher in females than in males. As such, reproductive stages and gender-specific responses must be taken into consideration when assessing the risk of immunotoxicants in the aquatic environment. The distinct phenotypic sexual dimorphism and short generation time (3 months) of marine medaka offer additional advantages for sex-related immunotoxicological investigation.
Collapse
Affiliation(s)
- Roy R Ye
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Drew R Peterson
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Frauke Seemann
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Shin-Ichi Kitamura
- Centre for Marine Environmental Studies, Ehime University, Matsuyama, 790-8577, Japan
| | - J S Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, 440-746, South Korea
| | - Terrance C K Lau
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Stephen K W Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, New Territories, Hong Kong
| | - Doris W T Au
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong.
- Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China.
| |
Collapse
|
28
|
Rehberger K, Werner I, Hitzfeld B, Segner H, Baumann L. 20 Years of fish immunotoxicology - what we know and where we are. Crit Rev Toxicol 2017; 47:509-535. [PMID: 28425344 DOI: 10.1080/10408444.2017.1288024] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Despite frequent field observations of impaired immune response and increased disease incidence in contaminant-exposed wildlife populations, immunotoxic effects are rarely considered in ecotoxicological risk assessment. The aim of this study was to review the literature on immunotoxic effects of chemicals in fish to quantitatively evaluate (i) which experimental approaches were used to assess immunotoxic effects, (ii) whether immune markers exist to screen for potential immunotoxic activities of chemicals, and (iii) how predictive those parameters are for adverse alterations of fish immunocompetence and disease resistance. A total of 241 publications on fish immunotoxicity were quantitatively analyzed. The main conclusions included: (i) To date, fish immunotoxicology focused mainly on innate immune responses and immunosuppressive effects. (ii) In numerous studies, the experimental conditions are poorly documented, as for instance age or sex of the fish or the rationale for the selected exposure conditions is often missing. (iii) Although a broad variety of parameters were used to assess immunotoxicity, the rationale for the choice of measured parameters was often not given, remaining unclear how they link to the suspected immunotoxic mode of action of the chemicals. (iv) At the current state of knowledge, it is impossible to identify a set of immune parameters that could reliably screen for immunotoxic potentials of chemicals. (v) Similarly, in fish immunotoxicology there is insufficient understanding of how and when chemical-induced modulations of molecular/cellular immune changes relate to adverse alterations of fish immunocompetence, although this would be crucial to include immunotoxicity in ecotoxicological risk assessment.
Collapse
Affiliation(s)
- Kristina Rehberger
- a Centre for Fish and Wildlife Health, Vetsuisse Faculty , University of Bern , Bern , Switzerland
| | - Inge Werner
- b Swiss Centre for Applied Ecotoxicology , Dübendorf , Switzerland
| | | | - Helmut Segner
- a Centre for Fish and Wildlife Health, Vetsuisse Faculty , University of Bern , Bern , Switzerland
| | - Lisa Baumann
- a Centre for Fish and Wildlife Health, Vetsuisse Faculty , University of Bern , Bern , Switzerland
| |
Collapse
|
29
|
Detection of Fish Hormones by Electrochemical Impedance Spectroscopy and Quartz Crystal Microbalance. SENSING AND BIO-SENSING RESEARCH 2017. [DOI: 10.1016/j.sbsr.2017.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
30
|
Hidasi AO, Groh KJ, Suter MJF, Schirmer K. Clobetasol propionate causes immunosuppression in zebrafish (Danio rerio) at environmentally relevant concentrations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 138:16-24. [PMID: 27987419 DOI: 10.1016/j.ecoenv.2016.11.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/26/2016] [Accepted: 11/28/2016] [Indexed: 06/06/2023]
Abstract
Synthetic glucocorticoids (GCs) are potential endocrine disrupting compounds that have been detected in the aquatic environment around the world in the low ng/L (nanomolar) range. GCs are used as immunosuppressants in medicine. It is of high interest whether clobetasol propionate (CP), a highly potent GC, suppresses the inflammatory response in fish after exposure to environmentally relevant concentrations. Bacterial lipopolysaccharide (LPS) challenge was used to induce inflammation and thus mimic pathogen infection. Zebrafish embryos were exposed to ≤1000nM CP from ~1h post fertilization (hpf) to 96 hpf, and CP uptake, survival after LPS challenge, and expression of inflammation-related genes were examined. Our initial experiments were carried out using 0.001% DMSO as a solvent vehicle, but we observed that DMSO interfered with the LPS challenge assay, and thus masked the effects of CP. Therefore, DMSO was not used in the subsequent experiments. The internal CP concentration was quantifiable after exposure to ≥10nM CP for 96h. The bioconcentration factor (BCF) of CP was determined to be between 16 and 33 in zebrafish embryos. CP-exposed embryos showed a significantly higher survival rate in the LPS challenge assay after exposure to ≥0.1nM in a dose dependent manner. This effect is an indication of immunosuppression. Furthermore, the regulation pattern of several genes related to LPS challenge in mammals supported our results, providing evidence that LPS-mediated inflammatory pathways are conserved from mammals to teleost fish. Anxa1b, a GC-action related anti-inflammatory gene, was significantly down-regulated after exposure to ≥0.05nM CP. Our results show for the first time that synthetic GCs can suppress the innate immune system of fish at environmentally relevant concentrations. This may reduce the chances of fish to survive in the environment, as their defense against pathogens is weakened.
Collapse
Affiliation(s)
- Anita O Hidasi
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Dübendorf 8600, Switzerland; EPFL, School of Architecture, Civil and Environmental Engineering, Lausanne 1015, Switzerland
| | - Ksenia J Groh
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Dübendorf 8600, Switzerland
| | - Marc J-F Suter
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Dübendorf 8600, Switzerland; ETHZ, Institute of Biogeochemistry and Pollutant Dynamics, Zürich 8092, Switzerland
| | - Kristin Schirmer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Dübendorf 8600, Switzerland; EPFL, School of Architecture, Civil and Environmental Engineering, Lausanne 1015, Switzerland; ETHZ, Institute of Biogeochemistry and Pollutant Dynamics, Zürich 8092, Switzerland.
| |
Collapse
|
31
|
Chen Q, Li C, Gong Z, Chan ECY, Snyder SA, Lam SH. Common deregulated gene expression profiles and morphological changes in developing zebrafish larvae exposed to environmental-relevant high to low concentrations of glucocorticoids. CHEMOSPHERE 2017; 172:429-439. [PMID: 28092764 DOI: 10.1016/j.chemosphere.2017.01.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 06/06/2023]
Abstract
Synthetic glucocorticoids have been detected in environmental waters and their biological potency have raised concerns of their impact on aquatic vertebrates especially fish. In this study, developing zebrafish larvae exposed to representative glucocorticoids (dexamethasone, prednisolone and triamcinolone) at 50 pM to 50 nM from 3 h post-fertilisation to 5 days post-fertilisation were investigated. Microarray analysis identified 1255, 1531, and 2380 gene probes, which correspondingly mapped to 660, 882 and 1238 human/rodent homologs, as deregulated by dexamethasone, prednisolone and triamcinolone, respectively. A total of 248 gene probes which mapped to 159 human/rodent homologs were commonly deregulated by the three glucocorticoids. These homologs were associated with over 20 molecular functions from cell cycle to cellular metabolisms, and were involved in the development and function of connective tissue, nervous, haematological, and digestive systems. Glucocorticoid receptor signalling, NRF2-mediated oxidative stress response and RAR signalling were among the top perturbed canonical pathways. Morphological analyses using four transgenic zebrafish lines revealed that the hepatic and endothelial-vascular systems were affected by all three glucocorticoids while nervous, pancreatic and myeloid cell systems were affected by one of them. Quantitative real-time PCR detected significant change in the expression of seven genes at 50 pM of all three glucocorticoids, a concentration comparable to total glucocorticoids reported in environmental waters. Three genes (cry2b, fbxo32, and klhl38b) responded robustly to all glucocorticoid concentrations tested. The common deregulated genes with the associated biological processes and morphological changes can be used for biological inference of glucocorticoid exposure in fish for future studies.
Collapse
Affiliation(s)
- Qiyu Chen
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Caixia Li
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore; Department of Biological Science, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Zhiyuan Gong
- Department of Biological Science, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Eric Chun Yong Chan
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Shane A Snyder
- University of Arizona, 1133 E. James E. Rogers Way, Harshbarger 108, Tucson, AZ 85721-0011, USA
| | - Siew Hong Lam
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore; Department of Biological Science, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
32
|
Völker J, Castronovo S, Wick A, Ternes TA, Joss A, Oehlmann J, Wagner M. Advancing Biological Wastewater Treatment: Extended Anaerobic Conditions Enhance the Removal of Endocrine and Dioxin-like Activities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:10606-10615. [PMID: 26848848 DOI: 10.1021/acs.est.5b05732] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Conventional activated sludge treatment of wastewater does not completely remove micropollutants. Here, extending anaerobic conditions may enhance biodegradation. To explore this, we combined iron-reducing or substrate-limiting and aerobic pilot-scale reactors directly at a wastewater treatment plant. To assess the removal of endocrine disrupting chemicals (EDCs) as group of micropollutants that adversely affects wildlife, we applied a bioanalytical approach. We used in vitro bioassays covering seven receptor-mediated mechanisms of action, including (anti)androgenicity, (anti)estrogenicity, retinoid-like, and dioxin-like activity. Untreated wastewater induced antiandrogenic, estrogenic, antiestrogenic, and retinoid-like activity. Full-scale as well as reactor-scale activated sludge treatment effectively removes the observed effects. Nevertheless, high antiandrogenic and minor dioxin-like and estrogenic effects persisted in the treated effluent that may still be environmentally relevant. The anaerobic post-treatment under substrate-limiting conditions resulted in an additional removal of endocrine activities by 17-40%. The anaerobic pre-treatment under iron-reducing conditions significantly enhanced the removal of the residual effects by 40-75%. In conclusion, this study demonstrates that a further optimization of biological wastewater treatment is possible. Here, implementing iron-reducing anaerobic conditions preceding aerobic treatment appears promising to improve the removal of receptor-mediated toxicity.
Collapse
Affiliation(s)
- Johannes Völker
- Goethe University Frankfurt am Main , Department Aquatic Ecotoxicology, Max-von-Laue-Str. 13, 60438 Frankfurt, Germany
| | - Sandro Castronovo
- Federal Institute of Hydrology , Am Mainzer Tor 1, D-56068 Koblenz, Germany
| | - Arne Wick
- Federal Institute of Hydrology , Am Mainzer Tor 1, D-56068 Koblenz, Germany
| | - Thomas A Ternes
- Federal Institute of Hydrology , Am Mainzer Tor 1, D-56068 Koblenz, Germany
| | - Adriano Joss
- Eawag: Swiss Federal Institute of Aquatic Science and Technology , Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Jörg Oehlmann
- Goethe University Frankfurt am Main , Department Aquatic Ecotoxicology, Max-von-Laue-Str. 13, 60438 Frankfurt, Germany
| | - Martin Wagner
- Goethe University Frankfurt am Main , Department Aquatic Ecotoxicology, Max-von-Laue-Str. 13, 60438 Frankfurt, Germany
| |
Collapse
|
33
|
Zhao Y, Zhang K, Fent K. Corticosteroid Fludrocortisone Acetate Targets Multiple End Points in Zebrafish (Danio rerio) at Low Concentrations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:10245-54. [PMID: 27618422 DOI: 10.1021/acs.est.6b03436] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Synthetic corticosteroids may pose an environmental risk to fish. Here, we describe multiend point responses of adult zebrafish (8 months old) upon 21-day exposure to a commonly prescribed corticosteroid, fludrocortisone acetate (FLU), at concentrations between 0.006 and 42 μg/L. No remarkable reproductive impacts were observed, while physiological effects, including plasma glucose level and blood leukocyte numbers were significant altered even at 42 ng/L. Ovary parameters and transcriptional analysis of hypothalamic-pituitary-gonadal-liver axis revealed negligible effects. Significant alterations of the circadian rhythm network were observed in the zebrafish brain. Transcripts of several biomarker genes, including per1a and nr1d1, displayed strong transcriptional changes, which occurred at environmental relevant concentrations of 6 and 42 ng/L FLU. Importantly, the development and behavior of F1 embryos were significant changed. Heartbeat, hatching success and swimming behavior of F1 embryos were all increased even at 6 and 42 ng/L. All effects were further confirmed by exposure of eleuthero-embryos. Significant transcriptional changes of biomarker genes involved in gluconeogenesis, immune response and circadian rhythm in eleuthero-embryos confirmed the observations in adult fish. Hatching success, heartbeat, and swimming activity were increased at 81 ng/L and higher, as with F1 embryos. These results provide novel insights into the understanding of potential environmental risks of corticosteroids.
Collapse
Affiliation(s)
- Yanbin Zhao
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland , Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | - Kun Zhang
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland , Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | - Karl Fent
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland , Gründenstrasse 40, CH-4132 Muttenz, Switzerland
- Institute of Biogeochemistry and Pollution Dynamics, Department of Environmental System Sciences, Swiss Federal Institute of Technology (ETH Zürich) , CH-8092 Zürich, Switzerland
| |
Collapse
|
34
|
Dang Z. Interpretation of fish biomarker data for identification, classification, risk assessment and testing of endocrine disrupting chemicals. ENVIRONMENT INTERNATIONAL 2016; 92-93:422-441. [PMID: 27155823 DOI: 10.1016/j.envint.2016.04.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/03/2016] [Accepted: 04/03/2016] [Indexed: 06/05/2023]
Abstract
Chemical induced changes in fish biomarkers vitellogenin (VTG), secondary sex characteristics (SSC), and sex ratio indicate modes/mechanisms of action (MOAs) of EAS (estrogen, androgen and steroidogenesis) pathways. These biomarkers could be used for defining MOAs and the causal link between MOAs and adverse effects in fish for the identification of endocrine disrupting chemicals (EDCs). This paper compiled data sets of 150 chemicals for VTG, 57 chemicals for SSC and 38 chemicals for sex ratio in fathead minnow, medaka and zebrafish. It showed 1) changes in fish biomarkers can indicate the MOAs as anticipated; 2) in addition to EAS pathways, chemicals with non-EAS pathways induced changes in fish biomarkers; 3) responses of fish biomarkers did not always follow the anticipated patterns of EAS pathways. These responses may result from the interaction of chemical-induced multiple MOAs and confounding factors like fish diet, infection, culture conditions, general toxicity and stress response. The complex response of fish biomarkers to a chemical of interest requires EDC testing at multiple biological levels. Interpretation of fish biomarker data should be combined with relevant information at different biological levels, which is critical for defining chemical specific MOAs. The utility of fish biomarker data for identification, classification, PBT assessment, risk assessment, and testing of EDCs in the regulatory context was discussed. This paper emphasizes the importance of fish biomarker data in the regulatory context, a weight of evidence approach for the interpretation of fish biomarker data and the need for defining levels of evidence for the identification of EDCs.
Collapse
Affiliation(s)
- ZhiChao Dang
- National Institute for Public Health and the Environment (RIVM), A. van Leeuwenhoeklaan 9, Bilthoven, The Netherlands.
| |
Collapse
|
35
|
Nakayama K, Sato K, Shibano T, Isobe T, Suzuki G, Kitamura SI. Occurrence of glucocorticoids discharged from a sewage treatment plant in Japan and the effects of clobetasol propionate exposure on the immune responses of common carp (Cyprinus carpio) to bacterial infection. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:946-952. [PMID: 26126539 DOI: 10.1002/etc.3136] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/13/2015] [Accepted: 06/26/2015] [Indexed: 06/04/2023]
Abstract
The present study evaluated the environmental risks to common carp (Cyprinus carpio) posed by glucocorticoids present in sewage treatment plant (STP) effluent. To gather information on the seasonal variations in glucocorticoid concentration, the authors sampled the effluent of a Japanese STP every other week for 12 mo. Six of 9 selected glucocorticoids were detected in the effluent, with clobetasol propionate and betamethasone 17-valerate detected at the highest concentrations and frequencies. The present study's results indicated that effluent glucocorticoid concentration may depend on water temperature, which is closely related to the removal efficiency of the STP or to seasonal variations in the public's use of glucocorticoids. In a separate experiment, to clarify whether glucocorticoids in environmental water increase susceptibility to bacterial infection in fish, the authors examined the responses to bacterial infection (Aeromonas veronii) of common carp exposed to clobetasol propionate. Clobetasol propionate exposure did not affect bacterial infection-associated mortality. In fish infected with A. veronii but not exposed to clobetasol propionate, head kidney weight and number of leukocytes in the head kidney were significantly increased (p < 0.05), whereas these effects were not observed in infected fish exposed to clobetasol. This suggests that clobetasol propionate alleviated bacterial infection-associated inflammation. Together, these results indicate that susceptibility to bacterial infection in common carp is not affected by exposure to glucocorticoids at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Kei Nakayama
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan
| | - Kentaro Sato
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan
| | - Takazumi Shibano
- Department of Biology, Faculty of Science, Ehime University, Matsuyama, Japan
| | - Tomohiko Isobe
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan
- Center for Environmental Health Science, National Institute for Environmental Studies, Tsukuba, Japan
| | - Go Suzuki
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, Tsukuba, Japan
| | - Shin-Ichi Kitamura
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan
| |
Collapse
|
36
|
Jia A, Wu S, Daniels KD, Snyder SA. Balancing the Budget: Accounting for Glucocorticoid Bioactivity and Fate during Water Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:2870-80. [PMID: 26840181 DOI: 10.1021/acs.est.5b04893] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Numerous studies have identified the presence and bioactivity of glucocorticoid receptor (GR) active substances in water; however, the identification and activity-balance of GR compounds remained elusive. This study determined the occurrence and attenuation of GR bioactivity and closed the balance by determining those substances responsible. The observed in vitro GR activity ranged from 39 to 155 ng dexamethasone-equivalent/L (ng Dex-EQ/L) in the secondary effluents of four wastewater treatment plants. Monochromatic ultraviolet light of 80 mJ/cm(2) disinfection dose was efficient for GR activity photolysis, whereas chlorination could not appreciably attenuate the observed GR activity. Ozonation was effective only at relatively high dose (ozone/TOC 1:1). Microfiltration membranes were not efficient for GR activity attenuation; however, reverse osmosis removed GR activity to levels below the limits of detection. A high-sensitivity liquid chromatography with tandem mass spectrometry (LC-MS/MS) method was then developed to screen 27 GR agonists. Twelve were identified and quantified in effluents at summed concentrations of 9.6-21.2 ng/L. The summed Dex-EQ of individual compounds based on their measured concentrations was in excellent agreement with the Dex-EQ obtained from bioassay, which demonstrated that the detected glucocorticoids can entirely explain the observed GR bioactivity. Four synthetic glucocorticoids (triamcinolone acetonide, fluocinolone acetonide, clobetasol propionate, and fluticasone propionate) predominantly accounted for GR activity. These data represent the first known publication where a complete activity balance has been determined for GR agonists in an aquatic environment.
Collapse
Affiliation(s)
- Ai Jia
- University of Arizona , 1133 E. James E. Rogers Way, Harshbarger 108, Tucson, Arizona 85721-0011, United States
| | - Shimin Wu
- University of Arizona , 1133 E. James E. Rogers Way, Harshbarger 108, Tucson, Arizona 85721-0011, United States
| | - Kevin D Daniels
- University of Arizona , 1133 E. James E. Rogers Way, Harshbarger 108, Tucson, Arizona 85721-0011, United States
| | - Shane A Snyder
- University of Arizona , 1133 E. James E. Rogers Way, Harshbarger 108, Tucson, Arizona 85721-0011, United States
| |
Collapse
|
37
|
Margiotta-Casaluci L, Owen SF, Huerta B, Rodríguez-Mozaz S, Kugathas S, Barceló D, Rand-Weaver M, Sumpter JP. Internal exposure dynamics drive the Adverse Outcome Pathways of synthetic glucocorticoids in fish. Sci Rep 2016; 6:21978. [PMID: 26917256 PMCID: PMC4768075 DOI: 10.1038/srep21978] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/03/2016] [Indexed: 01/22/2023] Open
Abstract
The Adverse Outcome Pathway (AOP) framework represents a valuable conceptual tool to systematically integrate existing toxicological knowledge from a mechanistic perspective to facilitate predictions of chemical-induced effects across species. However, its application for decision-making requires the transition from qualitative to quantitative AOP (qAOP). Here we used a fish model and the synthetic glucocorticoid beclomethasone dipropionate (BDP) to investigate the role of chemical-specific properties, pharmacokinetics, and internal exposure dynamics in the development of qAOPs. We generated a qAOP network based on drug plasma concentrations and focused on immunodepression, skin androgenisation, disruption of gluconeogenesis and reproductive performance. We showed that internal exposure dynamics and chemical-specific properties influence the development of qAOPs and their predictive power. Comparing the effects of two different glucocorticoids, we highlight how relatively similar in vitro hazard-based indicators can lead to different in vivo risk. This discrepancy can be predicted by their different uptake potential, pharmacokinetic (PK) and pharmacodynamic (PD) profiles. We recommend that the development phase of qAOPs should include the application of species-specific uptake and physiologically-based PK/PD models. This integration will significantly enhance the predictive power, enabling a more accurate assessment of the risk and the reliable transferability of qAOPs across chemicals.
Collapse
Affiliation(s)
- Luigi Margiotta-Casaluci
- Brunel University London, Institute of Environment, Health and Societies, London, UB8 3PH, United Kingdom.,AstraZeneca, Global Environment, Alderley Park, Macclesfield, SK10 4TF, United Kingdom
| | - Stewart F Owen
- AstraZeneca, Global Environment, Alderley Park, Macclesfield, SK10 4TF, United Kingdom
| | - Belinda Huerta
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, 17003, Spain
| | - Sara Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, 17003, Spain
| | - Subramanian Kugathas
- Brunel University London, Institute of Environment, Health and Societies, London, UB8 3PH, United Kingdom
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, 17003, Spain.,Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Mariann Rand-Weaver
- Brunel University London, College of Health and Life Sciences, London, UB8 3PH, United Kingdom
| | - John P Sumpter
- Brunel University London, Institute of Environment, Health and Societies, London, UB8 3PH, United Kingdom
| |
Collapse
|
38
|
Chen Q, Jia A, Snyder SA, Gong Z, Lam SH. Glucocorticoid activity detected by in vivo zebrafish assay and in vitro glucocorticoid receptor bioassay at environmental relevant concentrations. CHEMOSPHERE 2016; 144:1162-9. [PMID: 26461441 DOI: 10.1016/j.chemosphere.2015.09.089] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 05/27/2023]
Abstract
Glucocorticoids are pharmaceutical contaminants of emerging concern due to their incomplete removal during wastewater treatment, increased presence in aquatic environment and their biological potency. The zebrafish is a popular model for aquatic toxicology and environmental risk assessment. This study aimed to determine if glucocorticoids at environmental concentrations would perturb expression of selected glucocorticoid-responsive genes in zebrafish and to investigate their potentials as an in vivo zebrafish assay in complementing in vitro glucocorticoid receptor bioassay. The relative expression of eleven glucocorticoid-responsive genes in zebrafish larvae and liver of adult male zebrafish exposed to three representative glucocorticoids (dexamethasone, prednisolone and triamcinolone) was determined. The expression of pepck, baiap2 and pxr was up-regulated in zebrafish larvae and the expression of baiap2, pxr and mmp-2 was up-regulated in adult zebrafish exposed to glucocorticoids at concentrations equivalent to total glucocorticoids reported in environmental samples. The responsiveness of the specific genes were sufficiently robust in zebrafish larvae exposed to a complex environmental sample detected with in vitro glucocorticoid activity equivalent to 478 pM dexamethasone (DEX-EQ) and confirmed to contain low concentration (0.2 ng/L or less) of the targeted glucocorticoids, and possibly other glucocorticoid-active compounds. The findings provided in vivo relevance to the in vitro glucocorticoid activity and suggested that the environmental sample can perturb glucocorticoid-responsive genes in its original, or half the diluted, concentration as may be found in the environment. The study demonstrated the important complementary roles of in vivo zebrafish and in vitro bioassays coupled with analytical chemistry in monitoring environmental glucocorticoid contaminants.
Collapse
Affiliation(s)
- Qiyu Chen
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore
| | - Ai Jia
- University of Arizona, 1133 E. James E. Rogers Way, Harshbarger 108, Tucson, AZ 85721-0011, USA
| | - Shane A Snyder
- University of Arizona, 1133 E. James E. Rogers Way, Harshbarger 108, Tucson, AZ 85721-0011, USA
| | - Zhiyuan Gong
- Department of Biological Science, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Siew Hong Lam
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore; Department of Biological Science, National University of Singapore, 14 Science Drive 4, 117543, Singapore.
| |
Collapse
|
39
|
Wigh A, Devaux A, Brosselin V, Gonzalez-Ospina A, Domenjoud B, Aït-Aïssa S, Creusot N, Gosset A, Bazin C, Bony S. Proposal to optimize ecotoxicological evaluation of wastewater treated by conventional biological and ozonation processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:3008-3017. [PMID: 26400245 DOI: 10.1007/s11356-015-5419-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/14/2015] [Indexed: 06/05/2023]
Abstract
A mixture of urban and hospital effluents (50% v/v) was evaluated for ecotoxicity with an advanced bioassay battery. Mixed effluents were tested before any treatment, after biological treatment alone, and after biological treatment followed by a tertiary ozonation (15 mg O3/L). Laying a high value on the continuance of organisms' fitness, essential to preserve a healthy receiving ecosystem, the main objective of this study was to combine normalized bioassays with newly developed in vivo and in vitro tests in order to assess alteration of embryo development, growth and reproduction, as well as genotoxic effects in aquatic organisms exposed to complex wastewater effluents. Comparison of the bioassays sensitivity was considered. Contrary to the lack of toxicity observed with normalized ecotoxicity tests, endpoints measured on zebrafish embryos such as developmental abnormalities and genotoxicity demonstrated a residual toxicity in wastewater both after a biological treatment followed or not by a tertiary O3 treatment. However, the ozonation step allowed to alleviate the residual endocrine disrupting potential measure in the biologically treated effluent. This study shows that normalized bioassays are not sensitive enough for the ecotoxicological evaluation of wastewaters and that there is a great need for the development of suitable sensitive bioassays in order to characterize properly the possible residual toxicity of treated effluents.
Collapse
Affiliation(s)
- Adriana Wigh
- UMR 5023 LEHNA, INRA, ENTPE, rue Maurice Audin, 69518, Vaulx-en-Velin Cedex, France
| | - Alain Devaux
- UMR 5023 LEHNA, INRA, ENTPE, rue Maurice Audin, 69518, Vaulx-en-Velin Cedex, France
| | - Vanessa Brosselin
- UMR 5023 LEHNA, INRA, ENTPE, rue Maurice Audin, 69518, Vaulx-en-Velin Cedex, France
| | - Adriana Gonzalez-Ospina
- SUEZ Traitement de l'eau, Direction Technique Innovation, Degrémont SAS 183, avenue du 18 juin 1940, 92508, Rueil-Malmaison, France
| | - Bruno Domenjoud
- SUEZ Traitement de l'eau, Direction Technique Innovation, Degrémont SAS 183, avenue du 18 juin 1940, 92508, Rueil-Malmaison, France
| | - Selim Aït-Aïssa
- INERIS, Unité d'Ecotoxicologie in vitro et in vivo (ECOT), BP2, 60550, Verneuil-en-Halatte, France
| | - Nicolas Creusot
- INERIS, Unité d'Ecotoxicologie in vitro et in vivo (ECOT), BP2, 60550, Verneuil-en-Halatte, France
| | - Antoine Gosset
- UMR 5023 LEHNA, INRA, ENTPE, rue Maurice Audin, 69518, Vaulx-en-Velin Cedex, France
| | - Christine Bazin
- PROVADEMSE, Boulevard Niels Bohr, CS 52132, 69603, Villeurbanne Cedex, France
| | - Sylvie Bony
- UMR 5023 LEHNA, INRA, ENTPE, rue Maurice Audin, 69518, Vaulx-en-Velin Cedex, France.
| |
Collapse
|
40
|
LaLone CA, Berninger JP, Villeneuve DL, Ankley GT. Leveraging existing data for prioritization of the ecological risks of human and veterinary pharmaceuticals to aquatic organisms. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2014.0022. [PMID: 25405975 DOI: 10.1098/rstb.2014.0022] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Medicinal innovation has led to the discovery and use of thousands of human and veterinary drugs. With this comes the potential for unintended effects on non-target organisms exposed to pharmaceuticals inevitably entering the environment. The impracticality of generating whole-organism chronic toxicity data representative of all species in the environment has necessitated prioritization of drugs for focused empirical testing as well as field monitoring. Current prioritization strategies typically emphasize likelihood for exposure (i.e. predicted/measured environmental concentrations), while incorporating only rather limited consideration of potential effects of the drug to non-target organisms. However, substantial mammalian pharmacokinetic and mechanism/mode of action (MOA) data are produced during drug development to understand drug target specificity and efficacy for intended consumers. An integrated prioritization strategy for assessing risks of human and veterinary drugs would leverage available pharmacokinetic and toxicokinetic data for evaluation of the potential for adverse effects to non-target organisms. In this reiview, we demonstrate the utility of read-across approaches to leverage mammalian absorption, distribution, metabolism and elimination data; analyse cross-species molecular target conservation and translate therapeutic MOA to an adverse outcome pathway(s) relevant to aquatic organisms as a means to inform prioritization of drugs for focused toxicity testing and environmental monitoring.
Collapse
Affiliation(s)
- Carlie A LaLone
- Water Resources Center, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, 1985 Buford Avenue, St Paul, MN 55108, USA Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, US Environmental Protection Agency, 6201 Congdon Boulevard, Duluth, MN 55804, USA
| | - Jason P Berninger
- National Research Council, 6201 Congdon Boulevard, Duluth, MN 55804, USA
| | - Daniel L Villeneuve
- Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, US Environmental Protection Agency, 6201 Congdon Boulevard, Duluth, MN 55804, USA
| | - Gerald T Ankley
- Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, US Environmental Protection Agency, 6201 Congdon Boulevard, Duluth, MN 55804, USA
| |
Collapse
|
41
|
Burkina V, Sakalli S, Rasmussen MK, Zamaratskaia G, Koba O, Thai GP, Grabic R, Randak T, Zlabek V. Does dexamethasone affect hepatic CYP450 system of fish? Semi-static in-vivo experiment on juvenile rainbow trout. CHEMOSPHERE 2015; 139:155-162. [PMID: 26117200 DOI: 10.1016/j.chemosphere.2015.06.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/01/2015] [Accepted: 06/16/2015] [Indexed: 06/04/2023]
Abstract
Effects of aquatic pollutants on fish are of increasing concern. Pharmaceutical-based contaminants are prioritized for further study in environmental risk assessment using several approaches. Dexamethasone (DEX) was one such contaminant recognised for its effect on fish health status. Thus, we carried out an in vivo experiment to identify potential effects of DEX on rainbow trout. Fish were exposed to 3, 30, 300 and 3000ngL(-1) DEX in a semi-static system over a period of 42d. The concentrations of DEX that fish were exposed to was confirmed by LC-LC-MS/MS. Using hepatic microsomes, we determined cytochrome P450 content, activities of ethoxyresorufin O-deethylase (EROD), p-nitrophenol hydroxylase (PNPH), 7-benzyloxy-4-trifluoromethylcoumarin O-debenzylase (BFCOD) and benzyloxyquinoline O-debenzylase (BQOD), as well as protein expression. Our results showed that fish do not change the catalytic activity of CYP450-mediated reactions after high DEX concentration exposure. These results disagree with mammalian studies, where DEX is a well-known inducer of CYP450. We showed a significant effect of DEX exposure on CYP450-mediated reactions (EROD, BCFOD, BQOD and PNPH) when expressed as amount of product formed per min per nmol total CYP450 at 3, 30 and 300ngL(-1) after 21d exposure. Moreover, BFCOD and BQ activities showed matching trends in all groups. Western blot analysis showed induction of CYP3A-like protein in the presence of the lowest environmentally relevant concentration of DEX. Based on these findings, continued investigation of the effect of DEX on fish using a battery of complementary biomarkers of exposure and effect is highly relevant.
Collapse
Affiliation(s)
- Viktoriia Burkina
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic.
| | - Sidika Sakalli
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic.
| | | | - Galia Zamaratskaia
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic; Swedish University of Agricultural Sciences, Uppsala BioCenter, Department of Food Science, P.O. Box 7051, SE-750 07 Uppsala, Sweden.
| | - Olga Koba
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic.
| | - Giang Pham Thai
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic.
| | - Roman Grabic
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic.
| | - Tomas Randak
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic.
| | - Vladimir Zlabek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic.
| |
Collapse
|
42
|
Fent K. Progestins as endocrine disrupters in aquatic ecosystems: Concentrations, effects and risk assessment. ENVIRONMENT INTERNATIONAL 2015; 84:115-30. [PMID: 26276056 DOI: 10.1016/j.envint.2015.06.012] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/09/2015] [Accepted: 06/25/2015] [Indexed: 05/04/2023]
Abstract
In aquatic ecosystems, progesterone (P4) and synthetic progestins (gestagens) originate from excretion by humans and livestock. Synthetic progestins are used for contraception and as P4 for medical treatments as well. Despite significant use, their ecotoxicological implications are poorly understood. Only about 50% of the progestins in use have been analyzed for their environmental occurrence and effects in aquatic organisms. Here we critically summarize concentrations and effects of progestins in aquatic systems. P4 and progestins were mostly detected when analyzed for, and they occurred in the low ng/L range in wastewater and surface water. In animal farm waste and runoff, they reached up to several μg/L. P4 and synthetic progestins act through progesterone receptors but they also interact with other steroid hormone receptors. They act on the hypothalamus-pituitary-gonad axis, lead to oocyte maturation in female and sperm motility in male fish. Additionally, other pathways are affected as well, including the circadian rhythm. Effects of P4, mifepristone and eleven synthetic progestins have been studied in fish and a few compounds in frogs and mussels. Environmental risks may be associated with P4, dydrogesterone and medroxyprogesterone acetate, where transcriptional effects were found at highest environmental levels. Reproductive effects occurred at higher levels. However, norethindrone, levonorgestrel and norgestrel compromised reproduction at environmental (ng/L) concentrations. Thus, some of the progestins are very active endocrine disrupters. This review summarizes the current state of the art and highlights risks for fish. Further research is needed into environmental concentrations and effects of non-investigated progestins, unexplored modes of action, and the activity of mixtures of progestins and other steroids to fully assess their environmental risks.
Collapse
Affiliation(s)
- Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland; Swiss Federal Institute of Technology (ETH Zürich), Institute of Biogeochemistry and Pollution Dynamics, Department of Environmental Systems Science, CH-8092 Zürich, Switzerland.
| |
Collapse
|
43
|
Suzuki G, Sato K, Isobe T, Takigami H, Brouwer A, Nakayama K. Detection of glucocorticoid receptor agonists in effluents from sewage treatment plants in Japan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 527-528:328-34. [PMID: 25965047 DOI: 10.1016/j.scitotenv.2015.05.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/01/2015] [Accepted: 05/03/2015] [Indexed: 05/07/2023]
Abstract
Glucocorticoids (GCs) are widely used as anti-inflammatory drugs. Our previous study demonstrated that several GCs such as cortisol and dexamethasone (Dex) were frequently detected in effluents collected from Japanese sewage treatment plants (STPs) in 2012. In this study, we used the GC-Responsive Chemical-Activated LUciferase gene eXpression (GR-CALUX) assay to elucidate GC receptor (GR) agonistic activities of ten pure synthetic GCs and selected STP effluents in Japan for assessment of the risks associated with the presence of GR agonists. The tested GCs demonstrated dose-dependent agonistic effects in the GR-CALUX assay and their EC50 values were calculated for estimation of relative potencies (REPs) compared to Dex. The GR agonistic potency was in the rank of: clobetasol propionate > clobetasone butyrate > betamethasone 17-valerate > difluprednate > betamethasone 17,21-dipropionate > Dex > betamethasone > 6α-methylprednisolone > prednisolone > cortisol. The GR agonistic activity in STP effluents as measured in Dex-equivalent (Dex-EQ) activities ranged from < 3.0-78 ng L(-1) (median: 29 ng L(-1), n = 50). To evaluate the contribution of the target GCs, theoretical Dex-EQs were calculated by multiplying the concentrations of each GC by its respective REP. Our calculation of Dex-EQ contribution for individual GR agonists indicated that the well-known GCs cortisol and Dex should not be given priority for subsequent in vivo testing, monitoring and removal experiments, but rather the highly potent synthetic GCs clobetasol propionate and betamethasone 17-valerate (REP = 28 and 3.1) as well as other unidentified compounds are important GR agonists in STP effluents in Japan.
Collapse
Affiliation(s)
- Go Suzuki
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, Tsukuba 305-8506, Japan.
| | - Kentaro Sato
- Center for Marine Environmental Studies, Ehime University, Matsuyama 790-8577, Japan
| | - Tomohiko Isobe
- Center for Environmental Health Sciences, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Hidetaka Takigami
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | | | - Kei Nakayama
- Center for Marine Environmental Studies, Ehime University, Matsuyama 790-8577, Japan
| |
Collapse
|
44
|
Isobe T, Sato K, Joon-Woo K, Tanabe S, Suzuki G, Nakayama K. Determination of natural and synthetic glucocorticoids in effluent of sewage treatment plants using ultrahigh performance liquid chromatography-tandem mass spectrometry. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:14127-35. [PMID: 25963071 DOI: 10.1007/s11356-015-4626-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/27/2015] [Indexed: 05/15/2023]
Abstract
A sensitive and comprehensive analytical method for glucocorticoids (GCs) in water samples was developed and applied to effluent of sewage treatment plants (STPs). In the present study, totally 10 natural and synthetic GCs, including cortisol, betamethasone valerate, clobetasol propionate, clobetasone butyrate, difluprednate, betamethasone, dexamethasone, betamethasone dipropionate, methylprednisolone, and prednisolone, were targeted. Analytes were extracted and concentrated using an OASIS HLB solid phase extraction cartridge. Chromatographic separation and quantification were achieved using an ultrahigh performance liquid chromatograph coupled with a tandem mass spectrometer (UHPLC-MS/MS). Method detection limits were 0.05 to 0.89 ng/L, which were 1-2 orders of magnitude more sensitive than in the previous reports. Cortisol was detected in more than half of (27 out of 50) analyzed effluent samples at concentrations in the range of ND-1.36 ng/L, indicating continuous discharge of natural GC via STP effluent. On the other hand, dexamethasone + betamethasone, prednisolone, betamethasone valerate, and clobetasol propionate were detected in 25, 8, 20, and 9 samples among 50 effluent samples, respectively, suggesting not extreme but significant administration of synthetic GCs.
Collapse
Affiliation(s)
- Tomohiko Isobe
- Center for Environmental Health Sciences, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 305-8506, Japan,
| | | | | | | | | | | |
Collapse
|
45
|
Carney Almroth BM, Gunnarsson LM, Cuklev F, Fick J, Kristiansson E, Larsson DGJ. Waterborne beclomethasone dipropionate affects the physiology of fish while its metabolite beclomethasone is not taken up. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 511:37-46. [PMID: 25527967 DOI: 10.1016/j.scitotenv.2014.12.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/05/2014] [Accepted: 12/05/2014] [Indexed: 06/04/2023]
Abstract
Asthma is commonly treated with inhalable glucocorticosteroids, including beclomethasone dipropionate (BDP). This is a synthetic prodrug which is metabolized to the more active monopropionate (BMP) and free beclomethasone in humans. To evaluate potential effects of residual drugs on fish, we conducted a 14 day flow-through exposure experiment with BDP and beclomethasone using rainbow trout, and analyzed effects on plasma glucose, hepatic glutathione and catalase activity together with water and body concentrations of the BDP, BMP and beclomethasone. We also analyzed hepatic gene expression in BDP-exposed fish by microarray and quantitative PCR. Beclomethasone (up to 0.65 μg/L) was not taken up in the fish while BDP (0.65 and 0.07 μg/L) resulted in accumulation of both beclomethasone, BMP and BDP in plasma, reaching levels up to those found in humans during therapy. Accordingly, exposure to 0.65 μg/L of BDP significantly increased blood glucose as well as oxidized glutathione levels and catalase activity in the liver. Exposure to beclomethasone or the low concentration of BDP had no effect on these endpoints. Both exposure concentrations of BDP resulted in significantly higher transcript abundance of phosphoenolpyruvate carboxykinase involved in gluconeogenesis, and of genes involved in immune responses. As only the rapidly metabolized prodrug was potent in fish, the environmental risks associated with the use of BDP are probably small. However, the observed physiological effects in fish of BDP at plasma concentrations known to affect human physiology provides valuable input to the development of read-across approaches in the identification of pharmaceuticals of environmental concern.
Collapse
Affiliation(s)
- Bethanie M Carney Almroth
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Box 430, SE-405 30 Göteborg, Sweden.
| | - Lina M Gunnarsson
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy at the University of Gothenburg, Box 440, SE-405 30 Göteborg, Sweden.
| | - Filip Cuklev
- Genomics Core Facility at the Sahlgrenska Academy, University of Gothenburg, Box 413, SE-405 30 Göteborg, Sweden.
| | - Jerker Fick
- Department of Chemistry, Umeå University, Linaeus väg 10, SE-907 36 Umeå, Sweden.
| | - Erik Kristiansson
- Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, SE-412 96 Göteborg, Sweden.
| | - D G Joakim Larsson
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy at the University of Gothenburg, Box 440, SE-405 30 Göteborg, Sweden.
| |
Collapse
|
46
|
Chen F, Gong Z, Kelly BC. Rapid analysis of pharmaceuticals and personal care products in fish plasma micro-aliquots using liquid chromatography tandem mass spectrometry. J Chromatogr A 2015; 1383:104-11. [DOI: 10.1016/j.chroma.2015.01.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/11/2015] [Accepted: 01/13/2015] [Indexed: 11/30/2022]
|
47
|
Macikova P, Groh KJ, Ammann AA, Schirmer K, Suter MJF. Endocrine disrupting compounds affecting corticosteroid signaling pathways in Czech and Swiss waters: potential impact on fish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:12902-12911. [PMID: 25269596 DOI: 10.1021/es502711c] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This study investigated the occurrence of corticosteroid signaling disruptors in wastewaters and rivers in the Czech Republic and in Switzerland. 36 target compounds were detected using HPLC-MS/MS, with up to 6.4 μg/L for azole antifungals that indirectly affect corticosteroid signaling. Glucocorticoid receptor (GR)-mediated activity was determined using the GR-CALUX bioassay with dexamethasone equivalent concentrations ranging from <LOD-2.6, 19-37, and 78-542 ng/L for river water, treated, and untreated wastewater, respectively. For most samples, the chemically predicted GR-mediated response was higher than that determined by the bioassay. Correspondingly, antiglucocorticoid activity was observed in some fractions. The fish plasma model (FPM), which predicts plasma concentrations, was applied to evaluate the potential of detected pharmaceuticals to cause receptor-mediated effects in fish. With one exception, medroxyprogesterone, the FPM applied to individual compounds predicted fish plasma concentrations to be below the level of human therapeutic plasma concentrations. To account for the activity of the sum of GR-active compounds, we introduce the "cortisol equivalents fish plasma concentration" approach, through which an increase in fish glucocorticoid plasma levels comparable to 0.9-83 ng/mL cortisol after exposure to the analyzed river waters was estimated. The results suggest that these chemicals may impact wild fish.
Collapse
Affiliation(s)
- Petra Macikova
- Masaryk University , Faculty of Science, RECETOX, 62500 Brno, Czech Republic
| | | | | | | | | |
Collapse
|
48
|
Caldwell DJ, Mastrocco F, Margiotta-Casaluci L, Brooks BW. An integrated approach for prioritizing pharmaceuticals found in the environment for risk assessment, monitoring and advanced research. CHEMOSPHERE 2014; 115:4-12. [PMID: 24636702 DOI: 10.1016/j.chemosphere.2014.01.021] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/16/2014] [Accepted: 01/17/2014] [Indexed: 06/03/2023]
Abstract
Numerous active pharmaceutical ingredients (APIs), approved prior to enactment of detailed environmental risk assessment (ERA) guidance in the EU in 2006, have been detected in surface waters as a result of advancements in analytical technologies. Without adequate knowledge of the potential hazards these APIs may pose, assessing their environmental risk is challenging. As it would be impractical to commence hazard characterization and ERA en masse, several approaches to prioritizing substances for further attention have been published. Here, through the combination of three presentations given at a recent conference, "Pharmaceuticals in the Environment, Is there a problem?" (Nîmes, France, June 2013) we review several of these approaches, identify salient components, and present available techniques and tools that could facilitate a pragmatic, scientifically sound approach to prioritizing APIs for advanced study or ERA and, where warranted, fill critical data gaps through targeted, intelligent testing. We further present a modest proposal to facilitate future prioritization efforts and advanced research studies that incorporates mammalian pharmacology data (e.g., adverse outcomes pathways and the fish plasma model) and modeled exposure data based on pharmaceutical use.
Collapse
Affiliation(s)
| | | | | | - Bryan W Brooks
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| |
Collapse
|