1
|
Wang F, Xiong W, Liu Y, Zhai X, Zhou J, Li H, Huang X, Chen Y, Zhou K, Zhan A. Exploring technical improvements for environmental nucleic acids-based biodiversity assessment and management in coastal ecosystems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124724. [PMID: 40020373 DOI: 10.1016/j.jenvman.2025.124724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 01/27/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
Assessing and conserving marine biodiversity remain critical global challenges, particularly in highly disturbed coastal regions. The use of environmental DNA (eDNA)-metabarcoding has revolutionized biodiversity assessment and management; however, the prevalence of both false positives and negatives continues to be a significant concern. To address these technical errors, we tested two potential methodological improvements in the highly disturbed Guangdong-Hong Kong-Macao Greater Bay Area: (1) the use of random whole-genome amplification (WGA) to reduce false negatives derived from low eDNA concentration, and (2) the application of environmental RNA (eRNA)-metabarcoding to mitigate false positives arising from eDNA contamination by human activities. Using fish communities as our target, we found that WGA enhanced downstream PCR amplification for metabarcoding but significantly reduced the detection of rare taxa, altered community structure, and increased false negatives (p < 0.001 for all tests). Interestingly, WGA led to higher levels of false negatives in more biodiverse communities. eDNA-metabarcoding revealed that 20.9%-23.6% of detected taxa were pure freshwater species (false positives) incapable of surviving in estuarine and coastal regions, highlighting the often-overlooked eDNA contamination in disturbed coastal ecosystems. In contrast, eRNA-metabarcoding significantly reduced false positives (p < 0.001), with error taxa accounting for only 2.5%-6.3% of all detections. Comparisons between eDNA and eRNA metabarcoding further revealed differences in their rare taxa recovery capacity. The findings provide critical insights into method selection for biodiversity assessment and management in highly disturbed coastal regions and highlight the need for further technical improvement of eDNA and eRNA-based biodiversity monitoring and conservation in aquatic ecosystems.
Collapse
Affiliation(s)
- Fuwen Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Wei Xiong
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Yue Liu
- Shenzhen Research & Promotion Center on Marine Development, 69 Xinwen Road, Futian District, Shenzhen, 518034, China
| | - Xiaohui Zhai
- Shenzhen Research & Promotion Center on Marine Development, 69 Xinwen Road, Futian District, Shenzhen, 518034, China
| | - Juan Zhou
- Shenzhen Research & Promotion Center on Marine Development, 69 Xinwen Road, Futian District, Shenzhen, 518034, China
| | - Haitao Li
- South China Sea Ecological Center, Ministry of Natural Resources of the People's Republic of China, 155 Xingang Road West, Haizhu District, Guangzhou, 510275, China; Nansha lslands Coral Reef Ecosystem National Observation and Research Station, 155 Xingang Road West, Haizhu District, Guangzhou, 510275, China; Key Laboratory of Marine Environmental Survey Technology and Application, Ministry of Natural Resources of the People's Republic of China, 155 Xingang Road West, Haizhu District, Guangzhou, 510275, China
| | - Xuena Huang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
| | - Yiyong Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
| | - Kai Zhou
- Shenzhen Research & Promotion Center on Marine Development, 69 Xinwen Road, Futian District, Shenzhen, 518034, China.
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China.
| |
Collapse
|
2
|
Nichols PK, Fraiola KMS, Sherwood AR, Hauk BB, Lopes KH, Davis CA, Fumo JT, Counsell CWW, Williams TM, Spalding HL, Marko PB. Navigating uncertainty in environmental DNA detection of a nuisance marine macroalga. PLoS One 2025; 20:e0318414. [PMID: 39903716 PMCID: PMC11793909 DOI: 10.1371/journal.pone.0318414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/15/2025] [Indexed: 02/06/2025] Open
Abstract
Early detection of nuisance species is crucial for managing threatened ecosystems and preventing widespread establishment. Environmental DNA (eDNA) data can increase the sensitivity of biomonitoring programs, often at minimal cost and effort. However, eDNA analyses are prone to errors that can complicate their use in management frameworks. To address this, eDNA studies must consider imperfect detections and estimate error rates. Detecting nuisance species at low abundances with minimal uncertainty is vital for successful containment and eradication. We developed a novel eDNA assay to detect a nuisance marine macroalga across its colonization front using surface seawater samples from Papahānaumokuākea Marine National Monument (PMNM), one of the world's largest marine reserves. Chondria tumulosa is a cryptogenic red alga with invasive traits, forming dense mats that overgrow coral reefs and smother native flora and fauna in PMNM. We verified the eDNA assay using site-occupancy detection modeling from quantitative polymerase chain reaction (qPCR) data, calibrated with visual estimates of benthic cover of C. tumulosa that ranged from < 1% to 95%. Results were subsequently validated with high-throughput sequencing of amplified eDNA and negative control samples. Overall, the probability of detecting C. tumulosa at occupied sites was at least 92% when multiple qPCR replicates were positive. False-positive rates were 3% or less and false-negative errors were 11% or less. The assay proved effective for routine monitoring at shallow sites (less than 10 m), even when C. tumulosa abundance was below 1%. Successful implementation of eDNA tools in conservation decision-making requires balancing uncertainties in both visual and molecular detection methods. Our results and modeling demonstrated the assay's high sensitivity to C. tumulosa, and we outline steps to infer ecological presence-absence from molecular data. This reliable, cost-effective tool enhances the detection of low-abundance species, and supports timely management interventions.
Collapse
Affiliation(s)
- Patrick K. Nichols
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, HI, United States of America
| | | | - Alison R. Sherwood
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, HI, United States of America
| | - Brian B. Hauk
- National Oceanic and Atmospheric Administration, Honolulu, HI, United States of America
| | - Keolohilani H. Lopes
- Natural Resources and Environmental Management, College of Tropical Agriculture and Human Resources, University of Hawaiʻi at Mānoa, Honolulu, HI, United States of America
| | - Colt A. Davis
- Cooperative Institute for Marine and Atmospheric Research, University of Hawaiʻi at Mānoa, Honolulu, HI, United States of America
| | - James T. Fumo
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, HI, United States of America
| | - Chelsie W. W. Counsell
- Cooperative Institute for Marine and Atmospheric Research, University of Hawaiʻi at Mānoa, Honolulu, HI, United States of America
| | - Taylor M. Williams
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Heather L. Spalding
- Department of Biology, College of Charleston, Charleston, SC, United States of America
| | - Peter B. Marko
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, HI, United States of America
| |
Collapse
|
3
|
Nelson HV, Georges A, Farquharson KA, McLennan EA, DeGabriel JL, Belov K, Hogg CJ. A Genomic-Based Workflow for eDNA Assay Development for a Critically Endangered Turtle, Myuchelys georgesi. Ecol Evol 2025; 15:e70798. [PMID: 39781257 PMCID: PMC11707621 DOI: 10.1002/ece3.70798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/12/2025] Open
Abstract
Environmental DNA (eDNA) analysis has become a popular conservation tool for detecting rare and elusive species. eDNA assays typically target mitochondrial DNA (mtDNA) due to its high copy number per cell and its ability to persist in the environment longer than nuclear DNA. Consequently, the development of eDNA assays has relied on mitochondrial reference sequences available in online databases, or in cases where such data are unavailable, de novo DNA extraction and sequencing of mtDNA. In this study, we designed eDNA primers for the critically endangered Bellinger River turtle (Myuchelys georgesi) using a bioinformatically assembled mitochondrial genome (mitogenome) derived from a reference genome. We confirmed the accuracy of this assembled mitogenome by comparing it to a Sanger-sequenced mitogenome of the same species, and no base pair mismatches were detected. Using the bioinformatically extracted mitogenome, we designed two 20 bp primers that target a 152-base-pair-long fragment of the cytochrome oxidase 1 (CO1) gene and a 186-base-pair-long fragment of the cytochrome B (CytB) gene. Both primers were successfully validated in silico, in vitro, and in situ.
Collapse
Affiliation(s)
- Holly V. Nelson
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
| | - Arthur Georges
- Institute for Applied EcologyUniversity of CanberraBruceAustralian Capital TerritoryAustralia
| | - Katherine A. Farquharson
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNew South WalesAustralia
- NSW Department of Climate Change, The Environment, Energy and WaterParramattaNew South WalesAustralia
| | - Elspeth A. McLennan
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
| | - Jane L. DeGabriel
- NSW Department of Climate Change, The Environment, Energy and WaterParramattaNew South WalesAustralia
| | - Katherine Belov
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNew South WalesAustralia
| | - Carolyn J. Hogg
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
4
|
Hettiarachchi E, Grassian VH. Impact of Surface Adsorption on DNA Structure and Stability: Implications for Environmental DNA Interactions with Iron Oxide Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:27194-27205. [PMID: 39699067 PMCID: PMC11697337 DOI: 10.1021/acs.langmuir.4c02501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/11/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024]
Abstract
Environmental DNA (eDNA), i.e., DNA found in the environment, can interact with various geochemical surfaces, yet little is known about these interactions. Mineral surfaces may alter the structure, stability, and reactivity of eDNA, impacting the cycling of genetic information and the reliability of eDNA-based detection tools. Understanding how eDNA interacts with surfaces is crucial for predicting its fate in the environment. In this study, we examined the surface interaction and stability of herring testes DNA, a model system for eDNA, on two common iron oxide phases present in the environment: α-FeOOH (goethite) and α-Fe2O3 (hematite). Utilizing spectroscopic probes, including attenuated total reflection Fourier-transform infrared (ATR-FTIR) and UV-vis spectroscopy, we quantified the DNA adsorption capacity at pH 5 and determined its secondary structure. DNA adsorbed irreversibly at pH 5 and 25 °C, primarily through its phosphate groups, and retained the solution-phase B-form structure. However, the infrared data also indicated some distortion of the B-form likely due to additional interactions between nitrogenous bases when adsorbed on the α-Fe2O3 particle surfaces. The distortion in the double helical structure of adsorbed DNA on α-Fe2O3 led to a lower melting temperature (Tm) of 60 °C compared to 70 °C for DNA in solution. In contrast, DNA adsorbed on α-FeOOH melted at higher temperatures relative to solution-phase DNA and in two distinct phases. Upon testing adsorbed DNA stability at higher pH values, there were distinct differences between the two iron oxide phases. For α-FeOOH, nearly 50% of the DNA desorbed from the surface when the solution pH changed from 5 to 8, while less than 5% desorbed from α-Fe2O3 under the same conditions. Overall, these findings underscore the importance of mineral-specific eDNA-surface interactions and their role in adsorbed eDNA stability, in terms of DNA melting and the impact of solution-phase pH changes.
Collapse
Affiliation(s)
- Eshani Hettiarachchi
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Vicki H. Grassian
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
5
|
Liu Y, Zhang M, Wang L, Yang C, Yang Y, Xie Q, Liu M, Chen C, Jia C, Shan B. Experimental assessment of Acanthopagrus schlegelii biomass based on environmental DNA technology. Sci Rep 2024; 14:32029. [PMID: 39739086 DOI: 10.1038/s41598-024-83590-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025] Open
Abstract
The Environmental DNA (eDNA) technology has attracted significant attention due to its convenience and high sensitivity. However, the variations of eDNA across diverse environments and biological species remain complex. Therefore, a detailed exploration of the release patterns of eDNA for specific species under different environments is crucial for the scientific utilization of eDNA detection techniques. This study conducted an experiment involving the aquaculture of Acanthopagrus schlegelii to explore the release and degradation mechanisms of eDNA. It also analyzed the influence of salinity and biomass on the concentration of eDNA in water. Through model simulations, the variation patterns of A. schlegelii eDNA were revealed. The study achieved three key findings: (1) The research on the release and degradation mechanisms of A. schlegelii eDNA indicated that the Generalized Additive Model (GAM) effectively fits the variation patterns of eDNA concentration. The peak concentration of eDNA released by A. schlegelii was observed at 42 h, and the degradation process exhibited two stages: rapid and slow degradation, with a negative correlation between eDNA concentration and time. (2) By investigating the relationship between the concentration of A. schlegelii eDNA and biomass, it was demonstrated that Linear Models (LM) effectively captured this relationship, indicating a correlation between eDNA concentration and biomass. (3) The detection of A. schlegelii eDNA concentration under different salinity conditions revealed that the GAM model better reflected the relationship between eDNA and salinity, exhibiting a negative correlation. As salinity increased, the concentration of eDNA decreased. This study lays a foundation for future assessments of the A. schlegelii biomass in natural waters using eDNA quantitative detection techniques, and provides relevant references for quantitative eDNA detection techniques in other marine fish species.
Collapse
Affiliation(s)
- Yan Liu
- South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, 510300, China
- Key Laboratory of Marine Ranching, Ministry of Agriculture Rural Affairs, Guangzhou, 510300, China
| | - Mengyi Zhang
- South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, 510300, China
- Key Laboratory of Marine Ranching, Ministry of Agriculture Rural Affairs, Guangzhou, 510300, China
| | - Liangming Wang
- South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, 510300, China
- Key Laboratory of Marine Ranching, Ministry of Agriculture Rural Affairs, Guangzhou, 510300, China
| | - Changping Yang
- South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, 510300, China
- Key Laboratory of Marine Ranching, Ministry of Agriculture Rural Affairs, Guangzhou, 510300, China
| | - Yukai Yang
- South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, 510300, China
| | - Qijian Xie
- South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, 510300, China
- Key Laboratory of Marine Ranching, Ministry of Agriculture Rural Affairs, Guangzhou, 510300, China
| | - Manting Liu
- South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, 510300, China
- Key Laboratory of Marine Ranching, Ministry of Agriculture Rural Affairs, Guangzhou, 510300, China
| | - Cheng Chen
- South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, 510300, China
- Key Laboratory of Marine Ranching, Ministry of Agriculture Rural Affairs, Guangzhou, 510300, China
| | - Chunbin Jia
- Shenzhen Fisheries Development Research Center, Shenzhen, 518067, China.
| | - Binbin Shan
- South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, 510300, China.
- Key Laboratory of Marine Ranching, Ministry of Agriculture Rural Affairs, Guangzhou, 510300, China.
| |
Collapse
|
6
|
Ballmer E, McNeill K, Deiner K. Potential Role of Photochemistry in Environmental DNA Degradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2024; 11:1284-1295. [PMID: 39678710 PMCID: PMC11636254 DOI: 10.1021/acs.estlett.4c00704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024]
Abstract
Given the severe loss of species richness across diverse ecosystems, there is an urgent need to assess and monitor biodiversity on a global scale. The analysis of environmental DNA (eDNA), referring to any DNA extracted from environmental samples and subsequently sequenced, is a promising method for performing such biodiversity related studies. However, a comprehensive understanding of the factors that drive distinct eDNA degradation rates under different environmental conditions is currently missing, which limits the spatiotemporal interpretations that are possible from the eDNA-based detection of species. Here, we explore what role photochemistry may play in the fate of eDNA in aquatic ecosystems. Since few eDNA photodegradation studies have been performed, we extrapolate measured photochemical degradation dynamics from dissolved organic matter (DOM) and cellular DNA to what is expected for eDNA. Our findings show that photochemistry may dominate eDNA degradation under certain environmental conditions (e.g., DOM-rich waters with no light-limitation) and that photochemical alteration of eDNA may impact microbial respiration rates and the quantitative polymerase chain reaction (qPCR)-based detection of eDNA. We therefore encourage future studies to analyze the impact of photochemistry on eDNA degradation and provide suggested research directions that could help improve the accuracy of spatiotemporal inferences from eDNA analyses.
Collapse
Affiliation(s)
- Eliane Ballmer
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
| | - Kristopher McNeill
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
| | - Kristy Deiner
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
7
|
Yan Z, Luo Y, Chen X, Yang L, Yao M. Angling and trolling for eDNA: A novel and effective approach for passive eDNA capture in natural waters. ENVIRONMENT INTERNATIONAL 2024; 194:109175. [PMID: 39662281 DOI: 10.1016/j.envint.2024.109175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/18/2024] [Accepted: 11/28/2024] [Indexed: 12/13/2024]
Abstract
The conventional water filtration approach for collecting environmental DNA (eDNA) has critical limitations. The collection of eDNA via passive eDNA samplers (PEDS) has been proposed as an alternative to the water filtration method. Here, we developed a novel and rapid eDNA sampling approach and evaluated the extent to which this method enhances eDNA sampling efficiency. We drove boats along transects across nine large natural lakes and deployed PEDS either by briefly submerging them at each sampling location ("angling") or towing them in the water ("trolling"). One liter of water was also collected at each location and processed via the filtration method. Fish biodiversity was determined by metabarcoding analysis of eDNA extracts. Despite a short total submersion time (42-66 min of "angling") and substantially fewer samples (PEDS: 3-6 samples; filtration: 21-33 samples per lake), PEDS generally detected more fish species in each lake as well as per sample compared with filtration. Detection probabilities for fish species were significantly higher for PEDS compared with the filtration method. PEDS are also superior to the filtration method since sampling requires less equipment, labor, time, and costs. Our innovative sampling strategy is thus effective and could be used for the eDNA biomonitoring of large water systems.
Collapse
Affiliation(s)
- Ziling Yan
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Institute for Ecological and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Yuan Luo
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xiaoyu Chen
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Lingyi Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Meng Yao
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
8
|
Liu Z, Hu C, You W, Li S, Wu Y, Liang Y, Chu L, Yan Y, Zhang C. Comparison Between Environmental DNA Metabarcoding and Traditional Survey Method to Identify Community Composition and Assembly of Stream Fish. Ecol Evol 2024; 14:e70627. [PMID: 39588347 PMCID: PMC11588354 DOI: 10.1002/ece3.70627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/02/2024] [Accepted: 11/10/2024] [Indexed: 11/27/2024] Open
Abstract
Environmental DNA (eDNA) metabarcoding has been widely used in freshwater systems, contributing to the advancements in the monitoring of fish diversity and community species composition. Nevertheless, the accuracy and reliability of eDNA metabarcoding in assessing functional structures and revealing the mechanisms underlying fish community assembly remain unclear. In this study, we combined a traditional survey method (electrofishing) and eDNA metabarcoding to conduct fish stock monitoring in the upper reaches of the Huishui stream. We assessed taxonomic and functional structures, as well as community assembly mechanisms, during dry and wet seasons. The results revealed that, compared with electrofishing surveys, eDNA metabarcoding detected a greater number of species and higher functional richness in both seasons. Despite significant differences in fish taxonomic composition between the seasons, both eDNA and traditional methods indicated that environmental filtering dominated the process of fish community assembly in both dry and wet seasons. We showed that eDNA metabarcoding is comparable to the electrofishing method in monitoring the community composition of stream fish and can accurately and reliably determine fish community assembly mechanisms. Combining functional traits and eDNA is a robust approach for monitoring stream fish community compared to taxonomic uncertainty.
Collapse
Affiliation(s)
- Ziyu Liu
- School of Ecology and EnvironmentAnhui Normal UniversityWuhuChina
| | - Cong Hu
- School of Ecology and EnvironmentAnhui Normal UniversityWuhuChina
| | - Wenhui You
- School of Ecology and EnvironmentAnhui Normal UniversityWuhuChina
| | - Shuxin Li
- School of Ecology and EnvironmentAnhui Normal UniversityWuhuChina
| | - Yongsheng Wu
- School of Ecology and EnvironmentAnhui Normal UniversityWuhuChina
| | - Yangyang Liang
- Anhui Province Key Laboratory of Aquaculture & Stock EnhancementFishery Institute of Anhui Academy of Agricultural SciencesHefeiChina
| | - Ling Chu
- School of Ecology and EnvironmentAnhui Normal UniversityWuhuChina
- Anhui Normal UniversityProvincial Key Laboratory of Biotic Environment and Ecological Safety in AnhuiWuhuChina
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co‐Founded by Anhui Province and Ministry of EducationAnhui Normal UniversityWuhuChina
| | - Yunzhi Yan
- School of Ecology and EnvironmentAnhui Normal UniversityWuhuChina
- Anhui Normal UniversityProvincial Key Laboratory of Biotic Environment and Ecological Safety in AnhuiWuhuChina
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co‐Founded by Anhui Province and Ministry of EducationAnhui Normal UniversityWuhuChina
| | - Chen Zhang
- School of Ecology and EnvironmentAnhui Normal UniversityWuhuChina
- Anhui Normal UniversityProvincial Key Laboratory of Biotic Environment and Ecological Safety in AnhuiWuhuChina
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co‐Founded by Anhui Province and Ministry of EducationAnhui Normal UniversityWuhuChina
| |
Collapse
|
9
|
Sansom BJ, Ruiz-Ramos DV, Thompson NL, Roberts MO, Taylor ZA, Ortiz K, Jones JW, Richter CA, Klymus KE. Detection and transport of environmental DNA from two federally endangered mussels. PLoS One 2024; 19:e0304323. [PMID: 39418270 PMCID: PMC11486370 DOI: 10.1371/journal.pone.0304323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/09/2024] [Indexed: 10/19/2024] Open
Abstract
Environmental DNA (eDNA) offers a novel approach to supplement traditional surveys and provide increased spatial and temporal information on species detection, and it can be especially beneficial for detecting at risk or threatened species with minimal impact on the target species. The transport of eDNA in lotic environments is an important component in providing more informed descriptions of where and when a species is present, but eDNA transport phenomena are not well understood. In this study, we used species-specific assays to detect eDNA from two federally endangered mussels in two geographically distinct rivers. Using the eDNA concentrations measured from field samples, we developed a one-dimensional (1D) hydrodynamic transport model to predict the downstream fate and transport of eDNA. We detected eDNA from both federally endangered mussels across several seasons and flow rates and up to 3.5 km downstream from the source populations, but the detection rates and eDNA concentrations were highly variable across and within rivers and study reaches. Our 1D transport models successfully integrated the variability of the eDNA field samples into the model predictions and overall model results were generally within ±1 standard error of the eDNA field concentration values. Overall, the results of this study demonstrate the importance of optimizing the spatial locations from where eDNA is collected downstream from a source population, and it highlights the need to improve understanding on the shedding mechanisms and magnitude of eDNA from source populations and biogeomorphic processes that influence eDNA transport.
Collapse
Affiliation(s)
- Brandon J. Sansom
- U.S. Geological Survey–Columbia Environmental Research Center, Columbia, MO, United States of America
| | - Dannise V. Ruiz-Ramos
- U.S. Geological Survey–Columbia Environmental Research Center, Columbia, MO, United States of America
- Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD, United States of America
| | - Nathan L. Thompson
- U.S. Geological Survey–Columbia Environmental Research Center, Columbia, MO, United States of America
| | - Maura O. Roberts
- U.S. Geological Survey–Columbia Environmental Research Center, Columbia, MO, United States of America
| | - Zachary A. Taylor
- Maryland Department of Natural Resources, Annapolis, MD, United States of America
- Department of Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States of America
| | - Katie Ortiz
- Department of Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States of America
| | - Jess W. Jones
- Department of Fish and Wildlife Conservation, U.S. Fish and Wildlife Service, Blacksburg, VA, United States of America
| | - Catherine A. Richter
- U.S. Geological Survey–Columbia Environmental Research Center, Columbia, MO, United States of America
| | - Katy E. Klymus
- U.S. Geological Survey–Columbia Environmental Research Center, Columbia, MO, United States of America
| |
Collapse
|
10
|
Millard-Martin B, Sheridan K, Morien E, Lemay MA, Hessing-Lewis M, Clemente-Carvalho RB, Sunday JM. Effect of environmental DNA sampling resolution in detecting nearshore fish biodiversity compared to capture surveys. PeerJ 2024; 12:e17967. [PMID: 39421418 PMCID: PMC11485132 DOI: 10.7717/peerj.17967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/02/2024] [Indexed: 10/19/2024] Open
Abstract
Sampling and sequencing marine environmental DNA (eDNA) provides a tool that can increase our ability to monitor biodiversity, but movement and mixing of eDNA after release from organisms before collection could affect our inference of species distributions. To assess how conditions at differing spatial scales influence the inferred species richness and compositional turnover, we conducted a paired eDNA metabarcoding and capture (beach seining) survey of fishes on the coast of British Columbia. We found more taxa were typically detected using eDNA compared to beach seining. eDNA identified more taxa with alternative habitat preferences, and this richness difference was greater in areas of high seawater movement, suggesting eDNA has a larger spatial grain influenced by water motion. By contrast, we found that eDNA consistently missed low biomass species present in seining surveys. Spatial turnover of communities surveyed using beach seining differed from that of the eDNA and was better explained by factors that vary at small (10-1000s meters) spatial scales. Specifically, vegetation cover and shoreline exposure explained most species turnover from seining, while eDNA turnover was not explained by those factors and showed a distance decay pattern (a change from 10% to 25% similarity from 2 km to 10 km of distance), suggesting unmeasured environmental variation at larger scales drives its turnover. Our findings indicate that the eDNA sample grain is larger than that of capture surveys. Whereas seining can detect differences in fish distributions at scales of 10s-100s of meters, eDNA can best summarize fish biodiversity at larger scales possibly more relevant to regional biodiversity assessments.
Collapse
Affiliation(s)
| | - Kate Sheridan
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Evan Morien
- Department of Biodiversity, Hakai Institute, Victoria, British Columbia, Canada
| | - Matthew A. Lemay
- Department of Biodiversity, Hakai Institute, Victoria, British Columbia, Canada
| | | | | | | |
Collapse
|
11
|
Antony Dass M, Sherman CDH, van Oorschot RAH, Hartman D, Carter G, Durdle A. A preliminary study on detecting human DNA in aquatic environments: Potential of eDNA in forensics. Forensic Sci Int Genet 2024; 74:103155. [PMID: 39383603 DOI: 10.1016/j.fsigen.2024.103155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
Human environmental DNA (eDNA) application have not been fully applied or adequately considered in the fields of eDNA and forensics. Nonetheless, this technique holds great potential as a complementary tool for detecting human DNA in aquatic environments, particularly in cases involving crimes connect to such environments. However, the detectability or stability of eDNA can vary depending on several factors. Therefore, this preliminary study investigates the detection and degradation rates of human eDNA, as well as the recovery of nuclear short tandem repeat (STR) profiles and mitochondrial DNA (mtDNA) sequencing, using water samples from both saltwater and freshwater sources. To conduct the experiment, whole human blood was spiked into the water samples. Water samples were then filtered using a 5 µm pore size filter, and samples were collected at various time intervals up to 23 days. A human specific qPCR assay targeting HV1 region of human mtDNA was used to detect human eDNA. Results demonstrated that human eDNA remains detectable for up to 36 hours in freshwater samples and up 84 hours in saltwater samples. The limit of detection (LOD) of human eDNA, (205 copies/µl), was achieved after 60 hours in freshwater and 180 hours in saltwater samples. Partial STR profiles could be recovered up to 24 hours for freshwater and saltwater. Results from mtDNA sequencing indicate that full mtDNA profiles could be recovered from freshwater samples up to 48 hours and remained detectable up to 72 hours in saltwater. Overall, the findings of this study underscore the importance of considering and incorporating human eDNA analysis as a valuable tool in forensic practice. By harnessing the power of eDNA, law enforcement agencies can enhance their investigation capabilities, improve the accuracy of forensic reconstructions, and ultimately contribute to the resolution of cases involving aquatic environments. Further research and validation are needed to optimize and expand the utilization of eDNA techniques in forensic investigations.
Collapse
Affiliation(s)
- Marie Antony Dass
- School of Life and Environmental Sciences, Deakin University, Locked Bag 20000, Geelong 3220, Australia.
| | - Craig D H Sherman
- School of Life and Environmental Sciences, Deakin University, Locked Bag 20000, Geelong 3220, Australia
| | - Roland A H van Oorschot
- Office of the Chief Forensic Scientist, Victoria Police Forensic Services Department, Macleod 3085, Australia; School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora 3086, Australia
| | - Dadna Hartman
- Victorian Institute of Forensic Medicine, 65 Kavanagh Street, Southbank 3006, Australia; Department of Forensic Medicine, Monash University, 65 Kavanagh Street Southbank, Melbourne, Victoria 3006, Australia
| | - Gemma Carter
- Victorian Institute of Forensic Medicine, 65 Kavanagh Street, Southbank 3006, Australia
| | - Annalisa Durdle
- School of Life and Environmental Sciences, Deakin University, Locked Bag 20000, Geelong 3220, Australia; Office of the Chief Forensic Scientist, Victoria Police Forensic Services Department, Macleod 3085, Australia
| |
Collapse
|
12
|
Bhassu S, Shama M, Tiruvayipati S, Soo TCC, Ahmed N, Yusoff K. Microbes and pathogens associated with shrimps - implications and review of possible control strategies. FRONTIERS IN MARINE SCIENCE 2024; 11:1397708. [PMID: 39498300 PMCID: PMC11534305 DOI: 10.3389/fmars.2024.1397708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Shrimp aquaculture has been growing rapidly over the last three decades. However, high-density aquaculture together with environmental degradation has led to increased incidence of shrimp infections. Thus, devising and implementing effective strategies to predict, diagnose and control the spread of infections of shrimps are crucial, also to ensure biosecurity and sustainability of the food industry. With the recent advancements in biotechnology, more attention has been given to develop novel promising therapeutic tools with potential to prevent disease occurrence and better manage shrimp health. Furthermore, owing to the advent of the next-generation sequencing (NGS) platforms, it has become possible to analyze the genetic basis of susceptibility or resistance of different stocks of shrimps to infections and how sustainable aquaculture could be made free of shrimp diseases.
Collapse
Affiliation(s)
- Subha Bhassu
- Animal Genetics and Genome Evolutionary Lab (AGAGEL), Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur, Malaysia
- Malaysian Genome Vaccine Institute, National Institute Biotechnology Malaysia, Bangi, Selangor, Malaysia
| | - Maryam Shama
- Animal Genetics and Genome Evolutionary Lab (AGAGEL), Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Suma Tiruvayipati
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tze Chiew Christie Soo
- Animal Genetics and Genome Evolutionary Lab (AGAGEL), Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Niyaz Ahmed
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, Telangana, India
| | - Khatijah Yusoff
- Malaysian Genome Vaccine Institute, National Institute Biotechnology Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
13
|
Johnson M, Barnes MA. Macrobial airborne environmental DNA analysis: A review of progress, challenges, and recommendations for an emerging application. Mol Ecol Resour 2024; 24:e13998. [PMID: 39113622 DOI: 10.1111/1755-0998.13998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 10/10/2024]
Abstract
In the context of looming global biodiversity loss, effective species detection represents a critical concern for ecological research and management. Environmental DNA (eDNA) analysis, which refers to the collection and taxonomic identification of genetic fragments that are shed from an organism into its surroundings, emerged approximately 15 years ago as a sensitive tool for species detection. Today, one of the frontiers of eDNA research concerns the collection and analysis of genetic material in dust and other airborne materials, termed airborne eDNA analysis. As the study of airborne eDNA matures, it is an appropriate time to review the foundational and emerging studies that make up the current literature, and use the reviewed literature to summarize, synthesize, and forecast the major challenges and opportunities for this advancing research front. Specifically, we use the "ecology of eDNA" framework to organize our findings across the origin, state, transport, and fate of airborne genetic materials in the environment, and summarize what is so far known of their interactions with surrounding abiotic and biotic factors, including population and community ecologies and ecosystem processes. Within this work we identify key challenges, opportunities, and future directions associated with the application of airborne eDNA development. Lastly, we discuss the development of applications, partnerships, and messaging that promote development and growth of the field. Together, the broad potential of eDNA analysis and the rate at which research is accelerating in this field suggest that the sky's the limit for airborne eDNA science.
Collapse
Affiliation(s)
- Mark Johnson
- Engineer Research and Development Center, Champaign, Illinois, USA
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, Illinois, USA
| | - Matthew A Barnes
- Department of Natural Resources Management, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
14
|
Li H, Lei Y, Fa W, Wu T, Li T. Environmental DNA sheds new insight on molecular adaptation of foraminifera to temperature from laboratory-controlled culture experiment. Ecol Evol 2024; 14:e70243. [PMID: 39391814 PMCID: PMC11464909 DOI: 10.1002/ece3.70243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/24/2024] [Accepted: 08/16/2024] [Indexed: 10/12/2024] Open
Abstract
Foraminifera is the most important temperature proxy of the ocean on long time scales. However, the absence of temperature-controlled experiments at different water depths hinders the advancement of paleotemperature reconstruction with foraminifera from the continental shelf. For the first time, this study investigated the response of benthic foraminifera to temperature change using microcosm culture and metabarcoding. Foraminiferal communities from three continental stations at varying water depths (6.0, 9.2, and 26.0 m) were cultured under five temperature gradients (6, 12, 18, 24, and 30°C), with each treatment performed in triplicate. The foraminifera were fed with microalgae every 4 days, and the filtered seawater (through 0.22 μm pores), acting as a medium, was changed accordingly. The experiment lasted for 80 days, and 47 DNA samples were obtained and analyzed, including three in situ samples. The results showed that foraminifera adjusted its growth rate within the low-temperature range and adopted an r-strategy to cope with high-temperature stress. In addition, the foraminifera from deeper water stations exhibited a pronounced vulnerability to diminishing read counts. The read counts, operational taxonomic units (OTU) counts and Margalef index of foraminifera and the read counts of Rotaliida exhibited a remarkably positive correlation with temperature. The recommended relationships were described as read counts = 1314.75*T + 44754.51; OTU counts = 1.13*T + 44.26; Margalef index =1.13*T + 44.26. This study established the first quantitative relationship between temperature and foraminifera molecular parameters that holds significant implications for long-time paleotemperature calibration in climate change.
Collapse
Affiliation(s)
- Haotian Li
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and ConservationInstitute of Oceanology, Chinese Academy of SciencesQingdaoChina
| | - Yanli Lei
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and ConservationInstitute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and BiotechnologyQingdao Marine Science and Technology CenterQingdaoChina
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)ZhuhaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Wenlong Fa
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and ConservationInstitute of Oceanology, Chinese Academy of SciencesQingdaoChina
- University of Chinese Academy of SciencesBeijingChina
| | - Tianzhen Wu
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and ConservationInstitute of Oceanology, Chinese Academy of SciencesQingdaoChina
- University of Chinese Academy of SciencesBeijingChina
| | - Tiegang Li
- Key Laboratory of Marine Sedimentology and Environmental GeologyFirst Institute of Oceanography, MNRQingdaoChina
| |
Collapse
|
15
|
Wittwer C, Sharif C, Schöck I, Klimpel S. Mosquitoes on a chip-environmental DNA-based detection of invasive mosquito species using high-throughput real-time PCR. PeerJ 2024; 12:e17782. [PMID: 39364359 PMCID: PMC11448751 DOI: 10.7717/peerj.17782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/30/2024] [Indexed: 10/05/2024] Open
Abstract
The monitoring of mosquitoes is of great importance due to their vector competence for a variety of pathogens, which have the potential to imperil human and animal health. Until now mosquito occurrence data is mainly obtained with conventional monitoring methods including active and passive approaches, which can be time- and cost-consuming. New monitoring methods based on environmental DNA (eDNA) could serve as a fast and robust complementary detection system for mosquitoes. In this pilot study already existing marker systems targeting the three invasive mosquito species Aedes (Ae.) albopictus, Ae. japonicus and Ae. koreicus were used to detect these species from water samples via microfluidic array technology. We compared the performance of the high-throughput real-time PCR (HT-qPCR) system Biomark HD with real-time PCR (qPCR) and also tested the effect of different filter media (Sterivex® 0.45 µm, Nylon 0.22 µm, PES 1.2 µm) on eDNA detectability. By using a universal qPCR protocol and only 6-FAM-MGB probes we successfully transferred these marker systems on the HT-qPCR platform. All tested marker systems detected the target species at most sites, where their presence was previously confirmed. Filter media properties, the final filtration volume and observed qPCR inhibition did not affect measured Ct values via qPCR or HT-qPCR. The Ct values obtained from HT-qPCR were significantly lower as Ct values measured by qPCR due to the previous preamplification step, still these values were highly correlated. Observed incongruities in eDNA detection probability, as manifested by non-reproducible results and false positive detections, could be the result of methodological aspects, such as sensitivity and specificity issues of the used assays, or ecological factors such as varying eDNA release patterns. In this study, we show the suitability of eDNA-based detection of mosquito species from water samples using a microfluidic HT-qPCR platform. HT-qPCR platforms such as Biomark HD allow for massive upscaling of tested species-specific assays and sampling sites with low time- and cost-effort, thus this methodology could serve as basis for large-scale mosquito monitoring attempts. The main goal in the future is to develop a robust (semi)-quantitative microfluidic-based eDNA mosquito chip targeting all haematophagous culicid species occurring in Western Europe. This chip would enable large-scale eDNA-based screenings to assess mosquito diversity, to monitor species with confirmed or suspected vector competence, to assess the invasion progress of invasive mosquito species and could be used in pathogen surveillance, when disease agents are incorporated.
Collapse
Affiliation(s)
- Claudia Wittwer
- Institute for Ecology, Evolution and Diversity, Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Hessen, Germany
- Conservation Genetics Group, Senckenberg Nature Research Society, Gelnhausen, Hessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Hessen, Germany
| | - Chinhda Sharif
- Institute for Ecology, Evolution and Diversity, Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Hessen, Germany
| | - Isabelle Schöck
- Institute for Ecology, Evolution and Diversity, Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Hessen, Germany
- Conservation Genetics Group, Senckenberg Nature Research Society, Gelnhausen, Hessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Hessen, Germany
| | - Sven Klimpel
- Institute for Ecology, Evolution and Diversity, Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Hessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Hessen, Germany
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Hessen, Germany
- Branch Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Gießen, Hessen, Germany
| |
Collapse
|
16
|
Ouyang B, Yang C, Lv Z, Chen B, Tong L, Shi J. Recent advances in environmental antibiotic resistance genes detection and research focus: From genes to ecosystems. ENVIRONMENT INTERNATIONAL 2024; 191:108989. [PMID: 39241334 DOI: 10.1016/j.envint.2024.108989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
Antibiotic resistance genes (ARGs) persistence and potential harm have become more widely recognized in the environment due to its fast-paced research. However, the bibliometric review on the detection, research hotspot, and development trend of environmental ARGs has not been widely conducted. It is essential to provide a comprehensive overview of the last 30 years of research on environmental ARGs to clarify the changes in the research landscape and ascertain future prospects. This study presents a visualized analysis of data from the Web of Science to enhance our understanding of ARGs. The findings indicate that solid-phase extraction provides a reliable method for extracting ARG. Technological advancements in commercial kits and microfluidics have facilitated the efficacy of ARGs extraction with significantly reducing processing times. PCR and its derivatives, DNA sequencing, and multi-omics technology are the prevalent methodologies for ARGs detection, enabling the expansion of ARG research from individual strains to more intricate microbial communities in the environment. Furthermore, due to the development of combination, hybridization and mass spectrometer technologies, considerable advancements have been achieved in terms of sensitivity and accuracy as well as lowering the cost of ARGs detection. Currently, high-frequency terms such as "Antibiotic Resistance, Antibiotics, and Metagenomics" are the center of attention for study in this area. Prominent topics include the investigation of anthropogenic impacts on environmental resistance, as well as the dynamics of migration, dissemination, and adaptation of environmental ARGs, etc. The research on environmental ARGs has made significant advancements in the fields of "Microbiology" and "Biotechnology Applied Microbiology". Over the past decade, there has been a notable increase in the fields of "Environmental Sciences Ecology" and "Engineering" with a similar growth trend observed in "Water Resources". These three domains are expected to continue driving extensive study within the realm of environmental ARGs.
Collapse
Affiliation(s)
- Bowei Ouyang
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, China; School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Cong Yang
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, China; School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Ziyue Lv
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, China; School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Baowei Chen
- Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
| | - Lei Tong
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, China; School of Environmental Studies, China University of Geosciences, Wuhan, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China University of Geosciences, Wuhan, China.
| | - Jianbo Shi
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, China; School of Environmental Studies, China University of Geosciences, Wuhan, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China University of Geosciences, Wuhan, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
17
|
Bourbour RP, Aylward CM, Meehan TD, Martinico BL, Badger ME, Goodbla AM, Fish AM, Ely TE, Briggs CW, Hull EM. Feeding en route: Prey availability and traits influence prey selection by an avian predator on migration. J Anim Ecol 2024; 93:1176-1191. [PMID: 38881237 DOI: 10.1111/1365-2656.14122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 04/22/2024] [Indexed: 06/18/2024]
Abstract
During animal migration, ephemeral communities of taxa at all trophic levels co-occur over space and time. The interactions between predators and prey along migration corridors are ecologically and evolutionarily significant. However, these interactions remain understudied in terrestrial systems and warrant further investigations using novel approaches. We investigated the predator-prey interactions between a migrating avivorous predator and ephemeral avian prey community in the fall migration season. We tested for associations between avian traits and prey selection and hypothesized that prey traits (i.e. relative size, flocking behaviour, habitat, migration tendency and availability) would influence prey selection by a sexually dimorphic raptor on migration. To document prey consumption, we sampled trace prey DNA from beaks and talons of migrating sharp-shinned hawks Accipiter striatus (n = 588). We determined prey availability in the ephemeral avian community by extracting weekly abundance indices from eBird Status and Trends data. We used discrete choice models to assess prey selection and visualized the frequency of prey in diet and availability on the landscape over the fall migration season. Using eDNA metabarcoding, we detected prey species on 94.1% of the hawks sampled (n = 525/588) comprising 1396 prey species detections from 65 prey species. Prey frequency in diet and eBird relative abundance of prey species were correlated over the migration season for top-selected prey species, suggesting prey availability is an important component of raptor-songbird interactions during fall. Prey size, flocking behaviour and non-breeding habitat association were prey traits that significantly influenced predator choice. We found differences between female and male hawk prey selection, suggesting that sexual size dimorphism has led to distinct foraging strategies on migration. This research integrated field data collected by a volunteer-powered raptor migration monitoring station and public-generated data from eBird to reveal elusive predator-prey dynamics occurring in an ephemeral raptor-songbird community during fall migration. Understanding dynamic raptor-songbird interactions along migration routes remains a relatively unexplored frontier in animal ecology and is necessary for the conservation and management efforts of migratory and resident communities.
Collapse
Affiliation(s)
- Ryan P Bourbour
- Department of Animal Science and Graduate Group in Ecology, University of California, Davis, California, USA
- Golden Gate Raptor Observatory, Golden Gate National Parks Conservancy, San Francisco, California, USA
| | - Cody M Aylward
- Department of Wildlife, Fish & Conservation Biology and Graduate Group in Ecology, University of California, Davis, California, USA
- Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, University of California, Davis, California, USA
| | | | - Breanna L Martinico
- Department of Animal Science and Graduate Group in Ecology, University of California, Davis, California, USA
- Golden Gate Raptor Observatory, Golden Gate National Parks Conservancy, San Francisco, California, USA
| | - Mary E Badger
- Department of Animal Science and Graduate Group in Ecology, University of California, Davis, California, USA
- Golden Gate Raptor Observatory, Golden Gate National Parks Conservancy, San Francisco, California, USA
- Department of Animal Science and Genomics Variation Laboratory, University of California, Davis, California, USA
| | - Alisha M Goodbla
- Department of Animal Science and Genomics Variation Laboratory, University of California, Davis, California, USA
| | - Allen M Fish
- Golden Gate Raptor Observatory, Golden Gate National Parks Conservancy, San Francisco, California, USA
| | - Teresa E Ely
- Golden Gate Raptor Observatory, Golden Gate National Parks Conservancy, San Francisco, California, USA
| | - Christopher W Briggs
- Golden Gate Raptor Observatory, Golden Gate National Parks Conservancy, San Francisco, California, USA
- College of Environmental Science and Forestry, State University of New York, Syracuse, New York, USA
| | - Elisha M Hull
- Department of Animal Science and Graduate Group in Ecology, University of California, Davis, California, USA
- Golden Gate Raptor Observatory, Golden Gate National Parks Conservancy, San Francisco, California, USA
| |
Collapse
|
18
|
Dass MA, Sherman CDH, van Oorschot RAH, Tuohey K, Hartman D, Carter G, Durdle A. Assessing eDNA capture method from aquatic environment to optimise recovery of human mt-eDNA. Forensic Sci Int 2024; 361:112085. [PMID: 38850619 DOI: 10.1016/j.forsciint.2024.112085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/05/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Previous studies have shown that environmental DNA (eDNA) from human sources can be recovered from natural bodies of water, and the generation of DNA profiles from such environmental samples may assist in forensic investigations. However, fundamental knowledge gaps exist around the factors influencing the probability of detecting human eDNA and the design of optimal sampling protocols. One of these is understanding the particle sizes eDNA signals are most strongly associated with and the most appropriate filter size needed for efficiently capturing eDNA particles. This study assessed the amount of mitochondrial eDNA associated with different particle sizes from human blood and skin cells recovered from freshwater samples. Samples (300 mL) were taken from experimental 10 L tanks of freshwater spiked with 50 µL of human blood or skin cells deposited by vigorously rubbing hands together for two minutes in freshwater. Subsamples were collected by passing 250 mL of experimental water sample through six different filter pore sizes (from 0.1 to 8 µm). This process was repeated at four time intervals after spiking over 72 hours to assess if the particle size of the amount of eDNA recovered changes as the eDNA degrades. Using a human-specific quantitative polymerase chain reaction (qPCR) assay targeting the HV1 mitochondrial gene region, the total amount of mitochondrial eDNA associated with different particle size fractions was determined. In the case of human blood, at 0 h, the 0.45 µm filter pore size captured the greatest amount of mitochondrial eDNA, capturing 42 % of the eDNA detected. The pattern then changed after 48 h, with the 5 µm filter pore size capturing the greatest amount of eDNA (67 %), and 81 % of eDNA at 72 h. Notably, a ten-fold dilution proved to be a valuable strategy for enhancing eDNA recovery from the 8 µm filter at all time points, primarily due to the PCR inhibition observed in hemoglobin. For human skin cells, the greatest amounts of eDNA were recovered from the 8 µm filter pore size and were consistent through time (capturing 37 %, 56 %, and 88 % of eDNA at 0 hours, 48 hours, and 72 hours respectively). There is a clear variation in the amount of eDNA recovered between different cell types, and in some forensic scenarios, there is likely to be a mix of cell types present. These results suggest it would be best to use a 5 µm filter pore size to capture human blood and an 8 µm filter pore size to capture human skin cells to maximize DNA recovery from freshwater samples. Depending on the cell type contributing to the eDNA, a combination of different filter pore sizes may be employed to optimize the recovery of human DNA from water samples. This study provides the groundwork for optimizing a strategy for the efficient recovery of human eDNA from aquatic environments, paving the way for its broader application in forensic and environmental sciences.
Collapse
Affiliation(s)
- Marie Antony Dass
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3220, Australia.
| | - Craig D H Sherman
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3220, Australia
| | - Roland A H van Oorschot
- Office of the Chief Forensic Scientist, Victoria Police Forensic Services Department, Macleod, VIC 3085, Australia; School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
| | - Kate Tuohey
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3220, Australia
| | - Dadna Hartman
- Victorian Institute of Forensic Medicine, Southbank, VIC 3006, Australia; Department of Forensic Medicine, Monash University, Southbank, VIC 3006, Australia
| | - Gemma Carter
- Victorian Institute of Forensic Medicine, Southbank, VIC 3006, Australia
| | - Annalisa Durdle
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3220, Australia; Office of the Chief Forensic Scientist, Victoria Police Forensic Services Department, Macleod, VIC 3085, Australia
| |
Collapse
|
19
|
Parsley MB, Crespi EJ, Rittenhouse TAG, Brunner JL, Goldberg CS. Environmental DNA concentrations vary greatly across productive and degradative conditions, with implications for the precision of population estimates. Sci Rep 2024; 14:17392. [PMID: 39075085 PMCID: PMC11286860 DOI: 10.1038/s41598-024-66732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 07/03/2024] [Indexed: 07/31/2024] Open
Abstract
Population size is an important metric to inform the conservation and management of species. For aquatic species, environmental DNA (eDNA) concentration has been suggested for non-invasively estimating population size. However, many biotic and abiotic factors simultaneously influence the production and degradation of eDNA which can alter the relationship between population size and eDNA concentration. We investigated the influence of temperature, salinity, and ranavirus infection on eDNA concentrations using tadpole mesocosms. Using linear regression models, we tested the influence of each experimental treatment on eDNA concentrations at three time points before and during epidemics. Prior to infection, elevated temperatures lowered eDNA concentrations, indicating that degradation was the driving force influencing eDNA concentrations. During early epidemics, no treatments strongly influenced eDNA concentrations and in late epidemics, productive forces dominated as ranavirus intensity and dead organisms increased eDNA concentrations. Finally, population size was only an important predictor of eDNA concentration in late epidemics and we observed high levels of variation between samples of replicate mesocosms. We demonstrate the complexities of several interacting factors influencing productive and degradative forces, variation in influences on eDNA concentration over short time spans, and examine the limitations of estimating population sizes from eDNA with precision in semi-natural conditions.
Collapse
Affiliation(s)
- Meghan B Parsley
- School of the Environment, Washington State University, Pullman, WA, USA.
| | - Erica J Crespi
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Tracy A G Rittenhouse
- Department of Natural Resources and the Environment, University of Connecticut, Storrs, CT, USA
| | - Jesse L Brunner
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Caren S Goldberg
- School of the Environment, Washington State University, Pullman, WA, USA
| |
Collapse
|
20
|
Korbel KL, Hose GC, Karwautz C, Greenfield P, Wang H, Chariton AA, Griebler C. Detection, movement and persistence of invertebrate eDNA in groundwater. Sci Rep 2024; 14:17151. [PMID: 39060364 PMCID: PMC11282260 DOI: 10.1038/s41598-024-67349-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Sampling groundwater biodiversity is difficult because of limited access and issues with species identification. Environmental DNA (eDNA) provides a viable alternative to traditional sampling approaches, however limited knowledge of the abundance and fate of DNA in groundwater hinders the interpretation of data from these environments. Groundwater environments are dark and have lower oxygen concentrations and microbial activity than surface waters. Consequently, assumptions about DNA fate in surface ecosystems may not apply to groundwaters. Here, we test the longevity and transport of eDNA in groundwater within a static microcosm and a flow-through mesocosm. A variety of invertebrates were placed within a mesocosm and microcosm to enable DNA shedding, and then removed. DNA persisted for up to 5 weeks after their removal in the static experiment and was detected between 9 and 33 days in the flow-through experiment. Sediments and water both proved important for eDNA detection. Crustacean DNA was detected sporadically and unpredictably, whereas non-crustacean DNA was detected more frequently despite their lower densities. We suggest that detecting crustaceans poses a challenge to utilising eDNA approaches for stygofauna monitoring. This is confounded by the scarcity of sequences for stygofauna in reference databases. Further research is needed before eDNA alone can be routinely employed for stygofauna detection.
Collapse
Affiliation(s)
- K L Korbel
- School of Natural Sciences, Macquarie University, Sydney, Australia.
| | - G C Hose
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | - C Karwautz
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - P Greenfield
- Energy Business Unit, Common wealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, New South Wales, Australia
| | - H Wang
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Workgroup of Limnology and Aquatic Geomicrobiology, Friedrich Schiller University, Jena, Germany
| | - A A Chariton
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | - C Griebler
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| |
Collapse
|
21
|
Lewis M, Lainé K, Dawnay L, Lamont D, Scott K, Mariani S, Hӓnfling B, Dawnay N. The forensic potential of environmental DNA (eDNA) in freshwater wildlife crime investigations: From research to application. Sci Justice 2024; 64:443-454. [PMID: 39025568 DOI: 10.1016/j.scijus.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/07/2024] [Accepted: 06/15/2024] [Indexed: 07/20/2024]
Abstract
Environmental DNA (eDNA) is widely used in biodiversity, conservation, and ecological studies but despite its successes, similar approaches have not yet been regularly applied to assist in wildlife crime investigations. The purpose of this paper is to review current eDNA methods and assess their potential forensic application in freshwater environments considering collection, transport and persistence, analysis, and interpretation, while identifying additional research required to present eDNA evidence in court. An extensive review of the literature suggests that commonly used collection methods can be easily adapted for forensic frameworks providing they address the appropriate investigative questions and take into consideration the uniqueness of the target species, its habitat, and the requirements of the end user. The use of eDNA methods to inform conservationists, monitor biodiversity and impacts of climate change, and detect invasive species and pathogens shows confidence within the scientific community, making the acceptance of these methods by the criminal justice system highly possible. To contextualise the potential application of eDNA on forensic investigations, two test cases are explored involving i) species detection and ii) species localisation. Recommendations for future work within the forensic eDNA discipline include development of suitable standardised collection methods, considered collection strategies, forensically validated assays and publication of procedures and empirical research studies to support implementation within the legal system.
Collapse
Affiliation(s)
- Matthew Lewis
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, UK
| | - Katie Lainé
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, UK
| | - Louise Dawnay
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, UK; International Study Centre, Liverpool John Moores University, Mount Pleasant, Liverpool, UK
| | - David Lamont
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, UK; Forensic Research Institute, Liverpool John Moores University, Byrom Street, Liverpool, UK
| | - Kirstie Scott
- School of Biological and Environmental Sciences, Liverpool John Moores University, Byrom Street, Liverpool, UK; Forensic Research Institute, Liverpool John Moores University, Byrom Street, Liverpool, UK
| | - Stefano Mariani
- School of Biological and Environmental Sciences, Liverpool John Moores University, Byrom Street, Liverpool, UK; Forensic Research Institute, Liverpool John Moores University, Byrom Street, Liverpool, UK
| | - Bernd Hӓnfling
- Institute for Biodiversity and Freshwater Conservation, University of the Highlands and Islands, Inverness, UK
| | - Nick Dawnay
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, UK; Forensic Research Institute, Liverpool John Moores University, Byrom Street, Liverpool, UK.
| |
Collapse
|
22
|
Valsecchi E, Gabbiadini A. An Observatory to monitor range extension of the Mediterranean monk seal based on its eDNA traces: collecting data and delivering results in the "Open Science" era. Biodivers Data J 2024; 12:e120201. [PMID: 38883207 PMCID: PMC11176811 DOI: 10.3897/bdj.12.e120201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/24/2024] [Indexed: 06/18/2024] Open
Abstract
The monk seal is the most endangered pinniped in the world and the only one found in the Mediterranean, where its distribution and abundance have suffered a drastic decline in the last few decades. Data on its status are scattered due to both its rarity and evasiveness and records are biased towards occasional, mostly coastal encounters. Nowadays, molecular techniques allow us to detect and quantify minute amounts of DNA traces released into the environment (eDNA) by any organism. A species-specific molecular assay is now available for detecting the recent presence of the monk seal in the water column through the analysis of sea-water samples collected from the sea surface. The project "Spot the Monk" uses this non-invasive detection tool to monitor monk seal occurrence in Mediterranean waters by means of eDNA analysis. The simplicity in the acquisition of samples together with the need to collect samples in multiple points simultaneously made the project well suited to the involvement of the general public. Up to today, about 350 samples have been collected and analysed in the central-western Mediterranean by researchers and a multifarious range of citizen scientists - from recreational sailing organisations, both amateur and competitive sportsmen, to fishermen. This work announces the launch of an open-source Observatory (https://www.spot-the-monk-observatory.com/) where the project outcomes are publicly accessible as soon as they are produced. Embracing the principles of Open Science, we believe that such an approach can contribute to filling the knowledge gap about the distribution of this charismatic species in our seas, providing, at the same time, a proof of concept on how data collected by a variety of actors can be returned to the scientific and non-scientific communities in an innovative format for immediate consultation.
Collapse
Affiliation(s)
- Elena Valsecchi
- University of Milano-Bicocca, Milano, Italy University of Milano-Bicocca Milano Italy
- MaRHE Center, Magoodhoo, Maldives MaRHE Center Magoodhoo Maldives
| | - Alessandro Gabbiadini
- University of Milano-Bicocca, Milano, Italy University of Milano-Bicocca Milano Italy
| |
Collapse
|
23
|
Rund H, Wanzenböck J, Dobrovolny S, Kurmayer R. Relating target fish DNA concentration to community composition analysis in freshwater fish via metabarcoding. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172281. [PMID: 38588740 DOI: 10.1016/j.scitotenv.2024.172281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/04/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Metabarcoding has been widely accepted as a useful tool for biodiversity assessment based on eDNA. The method allows for the detection of entire groups of organisms in a single sample, making it particularly applicable in aquatic habitats. The high sensitivity of the molecular approaches is especially beneficial in detecting elusive and rare fish species, improving biodiversity assessments. Numerous biotic and abiotic factors that affect the persistence and availability of fish DNA in surface waters and therefore affecting species detectability, have been identified. However, little is known about the relationship between the total fish DNA concentration and the detectability of differential abundant species. In this study three controlled mock-community DNA samples (56 individual samples) were analyzed by (i) metabarcoding (MiSeq) of 12S rDNA (175 bp) and by (ii) total freshwater fish DNA quantification (via qPCR of 12S rDNA). We show that the fish DNA quantity affects the relative abundance of species-specific sequences and the detectability of rare species. In particular we found that samples with a concentration between 1000 pg/μL down to 10 pg/μL of total fish DNA revealed a stable relative frequency of DNA sequences obtained for a specific fish species, as well as a low variability between replicates. Additionally, we observed that even in complex mock-community DNA samples, a total fish DNA concentration of 23 pg/μL was sufficient to reliably detect all species in every replicate, including three rare species with proportions of ≤0.5 %. We also found that the DNA barcode similarity between species can affect detectability, if evenness is low. Our data suggest that the total DNA concentration of fish is an important factor to consider when analyzing and interpreting relative sequence abundance data. Therefore, the workflow proposed here will contribute to an ecologically and economically efficient application of metabarcoding in fish biodiversity assessment.
Collapse
Affiliation(s)
- Hans Rund
- Research Department for Limnology, Mondsee, Universität Innsbruck, Mondseestraße 9, 5310 Mondsee, Austria.
| | - Josef Wanzenböck
- Research Department for Limnology, Mondsee, Universität Innsbruck, Mondseestraße 9, 5310 Mondsee, Austria
| | - Stefanie Dobrovolny
- Department for Molecular Biology and Microbiology, Institute for Food Safety Vienna, Austrian Agency for Health and Food Safety, Spargelfeldstraße 191, 1220 Vienna, Austria
| | - Rainer Kurmayer
- Research Department for Limnology, Mondsee, Universität Innsbruck, Mondseestraße 9, 5310 Mondsee, Austria
| |
Collapse
|
24
|
Wei Z, Zhang X, Chen Y, Liu H, Wang S, Zhang M, Ma H, Yu K, Wang L. A new strategy based on a cascade amplification strategy biosensor for on-site eDNA detection and outbreak warning of crown-of-thorns starfish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172258. [PMID: 38583618 DOI: 10.1016/j.scitotenv.2024.172258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Population outbreaks of the crown-of-thorns starfish (COTS) seriously threaten the sustainability of coral reef ecosystems. However, traditional ecological monitoring techniques cannot provide early warning before the outbreaks, thus preventing timely intervention. Therefore, there is an urgent need for a more accurate and faster technology to predict the outbreaks of COTS. In this work, we developed an electrochemical biosensor based on a programmed catalytic hairpin assembly (CHA) and hybridization chain reaction (HCR) cyclic amplification strategy for sensitive and selective detection of COTS environmental DNA (eDNA) in water bodies. This biosensor exhibited excellent electrochemical characteristics, including a low limit of detection (LOD = 18.4 fM), low limit of quantification (LOQ = 41.1 fM), and wide linear range (50 fM - 10 nM). The biosensing technology successfully allowed the detection of COTS eDNA in the aquarium environment, and the results also demonstrated a significant correlation between eDNA concentration and COTS number (r = 0.990; P < 0.001). The reliability and accuracy of the biosensor results have been further validated through comparison with digital droplet PCR (ddPCR). Moreover, the applicability and accuracy of the biosensor were reconfirmed in field tests at the COTS outbreak site in the South China Sea, which has shown potential application in dynamically monitoring the larvae before the COTS outbreak. Therefore, this efficient electrochemical biosensing technology offers a new solution for on-site monitoring and early warning of the COTS outbreak.
Collapse
Affiliation(s)
- Zongwu Wei
- School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Xuzhe Zhang
- School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yingzhan Chen
- School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Hongjie Liu
- School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Shaopeng Wang
- School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Man Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Honglin Ma
- Sansha Track Ocean Coral Reef Conservation Research Institute Co. Ltd., Qionghai 571499, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| | - Liwei Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| |
Collapse
|
25
|
Blackman R, Couton M, Keck F, Kirschner D, Carraro L, Cereghetti E, Perrelet K, Bossart R, Brantschen J, Zhang Y, Altermatt F. Environmental DNA: The next chapter. Mol Ecol 2024; 33:e17355. [PMID: 38624076 DOI: 10.1111/mec.17355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024]
Abstract
Molecular tools are an indispensable part of ecology and biodiversity sciences and implemented across all biomes. About a decade ago, the use and implementation of environmental DNA (eDNA) to detect biodiversity signals extracted from environmental samples opened new avenues of research. Initial eDNA research focused on understanding population dynamics of target species. Its scope thereafter broadened, uncovering previously unrecorded biodiversity via metabarcoding in both well-studied and understudied ecosystems across all taxonomic groups. The application of eDNA rapidly became an established part of biodiversity research, and a research field by its own. Here, we revisit key expectations made in a land-mark special issue on eDNA in Molecular Ecology in 2012 to frame the development in six key areas: (1) sample collection, (2) primer development, (3) biomonitoring, (4) quantification, (5) behaviour of DNA in the environment and (6) reference database development. We pinpoint the success of eDNA, yet also discuss shortfalls and expectations not met, highlighting areas of research priority and identify the unexpected developments. In parallel, our retrospective couples a screening of the peer-reviewed literature with a survey of eDNA users including academics, end-users and commercial providers, in which we address the priority areas to focus research efforts to advance the field of eDNA. With the rapid and ever-increasing pace of new technical advances, the future of eDNA looks bright, yet successful applications and best practices must become more interdisciplinary to reach its full potential. Our retrospect gives the tools and expectations towards concretely moving the field forward.
Collapse
Affiliation(s)
- Rosetta Blackman
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Marjorie Couton
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - François Keck
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Dominik Kirschner
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, Ecosystems and Landscape Evolution, ETH Zürich, Zürich, Switzerland
- Department of Landscape Dynamics & Ecology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Luca Carraro
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Eva Cereghetti
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Kilian Perrelet
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
- Department of Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
- Department of Urban Water Management, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Raphael Bossart
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Jeanine Brantschen
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Yan Zhang
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Florian Altermatt
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| |
Collapse
|
26
|
Smith WJM, Liu Y, Simpson SL, Bivins A, Ahmed W. Assessment of nucleic acid extraction protocols for antibiotic resistance genes (ARGs) quantification in aircraft wastewater. Hum Genomics 2024; 18:54. [PMID: 38816866 PMCID: PMC11138010 DOI: 10.1186/s40246-024-00617-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/07/2024] [Indexed: 06/01/2024] Open
Abstract
This study evaluated ten nucleic acid extraction protocols (EP1 to EP10) for measuring five endogenous antibiotic resistance genes (ARGs) in four aircraft wastewater samples (AWW1 to AWW4). The targeted ARGs, including blaCTX-M, blaNDM-1, ermB, qnrS, and tetA, encompassed highly and minimally abundant ARGs. TetA and ermB were consistently detected across four aircraft wastewater samples using the DNeasy Blood and Tissue Kit and the AllPrep PowerViral DNA/RNA kit. QnrS displayed high detection rates with specific extraction protocols and aliquot volumes. Concentrations of ARGs varied across aircraft wastewater samples, with differing extraction protocols influencing quantitative results. The concentrations of tetA, ermB, and qnrS in AWW1 were distinct, while AWW2 to AWW4 exhibited a broader range for tetA, ermB, qnrS, blaCTX-M, and blaNDM-1. EP1 consistently produced the highest concentrations for several ARGs. Collective data analysis revealed varying ARG concentrations across the ten extraction protocols, suggesting the importance of careful extraction protocol selection in ARG monitoring in aircraft wastewater samples. Based on the results, we suggest that a small sample volume (as low as 0.2 mL) may be sufficient for ARG characterization in aircraft wastewater samples. The findings also emphasize the need for considering toilet paper removal without compromising nucleic acid extraction efficiency. The study highlights promising prospects for aircraft wastewater monitoring of ARGs, calling for further investigation into the import and spread of unique ARGs through transport hubs.
Collapse
Affiliation(s)
- Wendy J M Smith
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD, 4102, Australia
| | - Yawen Liu
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD, 4102, Australia
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Stuart L Simpson
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD, 4102, Australia
| | - Aaron Bivins
- Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Warish Ahmed
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD, 4102, Australia.
| |
Collapse
|
27
|
Pont D. Predicting downstream transport distance of fish eDNA in lotic environments. Mol Ecol Resour 2024; 24:e13934. [PMID: 38318749 DOI: 10.1111/1755-0998.13934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/07/2024]
Abstract
Environmental DNA (eDNA) is an effective tool for describing fish biodiversity in lotic environments, but the downstream transport of eDNA released by organisms makes it difficult to interpret species detection at the local scale. In addition to biophysical degradation and exchanges at the water-sediment interface, hydrological conditions control the transport distance. A new eDNA transport model described in this paper considers downstream retention and degradation processes in combination with hydraulic conditions and assumes that the sedimentation rate of very fine particles is a correct estimate of the eDNA deposition rate. Based on meta-analyses of available studies, the particle size distribution of fish eDNA (PSD), the relationship between the sedimentation rate and the size of very fine particles in suspension, and the influence of temperature on the degradation rate of fish eDNA were successively modelled. After combining the results in a mechanistic-based model, the eDNA uptake distances (distance required to retain 63.21% of the eDNA particles in the riverbed) observed in a compilation of previous experimental studies were correctly simulated. eDNA degradation is negligible at low flow and temperature but has a comparable influence to background transfer when hydraulic conditions allow a long uptake distance. The wide prediction intervals associated with the simulations reflect the complexity of the processes acting on eDNA after shedding. This model can be useful for estimating eDNA detection distance downstream from a source point and discussing the possibility of false positive detection in eDNA samples, as shown in an example.
Collapse
Affiliation(s)
- Didier Pont
- Institute of Hydrobiology and Aquatic Ecosystem Management (IHG), University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
28
|
Mu Y, Zhang J, Yang J, Wu J, Zhang Y, Yu H, Zhang X. Enhancing amphibian biomonitoring through eDNA metabarcoding. Mol Ecol Resour 2024; 24:e13931. [PMID: 38345249 DOI: 10.1111/1755-0998.13931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 02/17/2024]
Abstract
Surveying biodiversity has taken a quantum leap with environmental DNA (eDNA) metabarcoding, an immensely powerful approach lauded for its efficiency, sensitivity, and non-invasiveness. This approach emerges as a game-changer for the elusive realm of endangered and rare species-think nocturnal, environmentally elusive amphibians. Here, we have established a framework for constructing a reliable metabarcoding pipeline for amphibians, covering primer design, performance evaluation, laboratory validation, and field validation processes. The Am250 primer, located on the mitochondrial 16S gene, was optimal for the eDNA monitoring of amphibians, which demonstrated higher taxonomic resolution, smaller species amplification bias, and more extraordinary detection ability compared to the other primers tested. Am250 primer exhibit an 83.8% species amplification rate and 75.4% accurate species identification rate for Chinese amphibians in the in silico PCR and successfully amplified all tested species of the standard samples in the in vitro assay. Furthermore, the field-based mesocosm experiment showed that DNA can still be detected by metabarcoding even days to weeks after organisms have been removed from the mesocosm. Moreover, field mesocosm findings indicate that eDNA metabarcoding primers exhibit different read abundances, which can affect the relative biomass of species. Thus, appropriate primers should be screened and evaluated by three experimental approaches: in silico PCR simulation, target DNA amplification, and mesocosm eDNA validation. The selection of a single primer set or multiple primers' combination should be based on the monitoring groups to improve the species detection rate and the credibility of results.
Collapse
Affiliation(s)
- Yawen Mu
- State Key Laboratory of Pollution Control & Resource, School of the Environment, Nanjing University, Nanjing, China
- Jiangsu Provincial Environmental Monitoring Center, Nanjing, China
| | - Jingwen Zhang
- State Key Laboratory of Pollution Control & Resource, School of the Environment, Nanjing University, Nanjing, China
| | - Jianghua Yang
- State Key Laboratory of Pollution Control & Resource, School of the Environment, Nanjing University, Nanjing, China
- School of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - Jun Wu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing, China
| | - Yong Zhang
- Jiangsu Provincial Environmental Monitoring Center, Nanjing, China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control & Resource, School of the Environment, Nanjing University, Nanjing, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource, School of the Environment, Nanjing University, Nanjing, China
| |
Collapse
|
29
|
Lin CP, Huang CH, Padgett T, Bucay MAC, Chen CW, Shen ZY, Chiu L, Tseng YC, Yu JK, Wang J, Wang MC, Hoh DZ. Environmental DNA-based biodiversity profiling along the Houdong River in north-eastern Taiwan. Biodivers Data J 2024; 12:e116921. [PMID: 38694844 PMCID: PMC11061556 DOI: 10.3897/bdj.12.e116921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/03/2024] [Indexed: 05/04/2024] Open
Abstract
Background This paper describes two datasets: species occurrences, which were determined by environmental DNA (eDNA) metabarcoding and their associated DNA sequences, originating from a research project which was carried out along the Houdong River (), Jiaoxi Township, Yilan, Taiwan. The Houdong River begins at an elevation of 860 m and flows for approximately 9 km before it empties into the Pacific Ocean. Meandering through mountains, hills, plains and alluvial valleys, this short river system is representative of the fluvial systems in Taiwan. The primary objective of this study was to determine eukaryotic species occurrences in the riverine ecosystem through the use of the eDNA analysis. The second goal was, based on the current dataset, to establish a metabarcoding eDNA data template that will be useful and replicable for all users, particularly the Taiwan community. The species occurrence data are accessible at the Global Biodiversity Information Facility (GBIF) portal and its associated DNA sequences have been deposited in the European Nucleotide Archive (ENA) at EMBL-EBI, respectively. A total of 12 water samples from the study yielded an average of 1.5 million reads. The subsequent species identification from the collected samples resulted in the classification of 432 Operational Taxonomic Units (OTUs) out of a total of 2,734. Furthermore, a total of 1,356 occurrences with taxon matches in GBIF were documented (excluding 4,941 incertae sedis, accessed 05-12-2023). These data will be of substantial importance for future species and habitat monitoring within the short river, such as assessment of biodiversity patterns across different elevations, zonations and time periods and its correlation to water quality, land uses and anthropogenic activities. Further, these datasets will be of importance for regional ecological studies, in particular the freshwater ecosystem and its status in the current global change scenarios. New information The datasets are the first species diversity description of the Houdong River system using either eDNA or traditional monitoring processes.
Collapse
Affiliation(s)
- Chieh-Ping Lin
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, TaiwanGenome and Systems Biology Degree Program, Academia Sinica and National Taiwan UniversityTaipeiTaiwan
- Biodiversity Research Center, Academia Sinica, Taipei, TaiwanBiodiversity Research Center, Academia SinicaTaipeiTaiwan
| | - Chung-Hsin Huang
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica, Taipei, TaiwanBiodiversity Program, Taiwan International Graduate Program, Academia SinicaTaipeiTaiwan
- International Graduate Degree Program for Biodiversity, Tunghai University, Taichung, TaiwanInternational Graduate Degree Program for Biodiversity, Tunghai UniversityTaichungTaiwan
| | - Trevor Padgett
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica, Taipei, TaiwanBiodiversity Program, Taiwan International Graduate Program, Academia SinicaTaipeiTaiwan
- International Graduate Degree Program for Biodiversity, Tunghai University, Taichung, TaiwanInternational Graduate Degree Program for Biodiversity, Tunghai UniversityTaichungTaiwan
| | - Mark Angelo C. Bucay
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica, Taipei, TaiwanBiodiversity Program, Taiwan International Graduate Program, Academia SinicaTaipeiTaiwan
- Department of Life Science, National Taiwan Normal University, Taipei, TaiwanDepartment of Life Science, National Taiwan Normal UniversityTaipeiTaiwan
| | - Cheng-Wei Chen
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica, Taipei, TaiwanBiodiversity Program, Taiwan International Graduate Program, Academia SinicaTaipeiTaiwan
- Department of Life Science, National Taiwan Normal University, Taipei, TaiwanDepartment of Life Science, National Taiwan Normal UniversityTaipeiTaiwan
| | - Zong-Yu Shen
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica, Taipei, TaiwanBiodiversity Program, Taiwan International Graduate Program, Academia SinicaTaipeiTaiwan
- Department of Life Science, National Taiwan Normal University, Taipei, TaiwanDepartment of Life Science, National Taiwan Normal UniversityTaipeiTaiwan
| | - Ling Chiu
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, TaiwanMarine Research Station, Institute of Cellular and Organismic Biology, Academia SinicaYilanTaiwan
- Institute of Oceanography, National Taiwan University, Taipei, TaiwanInstitute of Oceanography, National Taiwan UniversityTaipeiTaiwan
| | - Yung-Che Tseng
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, TaiwanMarine Research Station, Institute of Cellular and Organismic Biology, Academia SinicaYilanTaiwan
| | - Jr-Kai Yu
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, TaiwanMarine Research Station, Institute of Cellular and Organismic Biology, Academia SinicaYilanTaiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, TaiwanInstitute of Cellular and Organismic Biology, Academia SinicaTaipeiTaiwan
| | - John Wang
- Biodiversity Research Center, Academia Sinica, Taipei, TaiwanBiodiversity Research Center, Academia SinicaTaipeiTaiwan
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica, Taipei, TaiwanBiodiversity Program, Taiwan International Graduate Program, Academia SinicaTaipeiTaiwan
| | - Min-Chen Wang
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, TaiwanMarine Research Station, Institute of Cellular and Organismic Biology, Academia SinicaYilanTaiwan
- Zoological Institute, Christian-Albrechts University of Kiel, Kiel, GermanyZoological Institute, Christian-Albrechts University of KielKielGermany
| | - Daphne Z. Hoh
- Taiwan Biodiversity Information Facility, Biodiversity Research Centre, Academia Sinica, Taipei, TaiwanTaiwan Biodiversity Information Facility, Biodiversity Research Centre, Academia SinicaTaipeiTaiwan
| |
Collapse
|
30
|
Zhang J, Huang L, Wang Y. Changes in the level of biofilm development significantly affect the persistence of environmental DNA in flowing water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170162. [PMID: 38244634 DOI: 10.1016/j.scitotenv.2024.170162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/27/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
As one of the powerful tools of species biomonitoring, the utilization of environmental DNA (eDNA) technology is progressively expanding in both scope and frequency within the field of ecology. Nonetheless, the growing dissemination of this technology has brought to light a multitude of intricate issues. The complex effects of environmental factors on the persistence of eDNA in water have brought many challenges to the interpretation of eDNA information. In this study, the primary objective was to examine how variations in the presence and development of biofilms impact the persistence of grass carp eDNA under different sediment types and flow conditions. This investigation encompassed the processes of eDNA removal and resuspension in water, shedding light on the complex interactions involved. The findings reveal that with an elevated biofilm development level, the total removal rate of eDNA gradually rose, resulting in a corresponding decrease in its residence time within the mesocosms. The influence of biofilms on the persistence of grass carp eDNA is more pronounced under flowing water conditions. However, changes in bottom sediment types did not significantly interact with biofilms. Lastly, in treatments involving alternating flow conditions between flowing and still water, significant resuspension of grass carp eDNA was not observed due to interference from multiple factors, including the effect of biofilms. Our study offers preliminary insights into the biofilm-mediated mechanisms of aquatic eDNA removal, emphasizing the need for careful consideration of environmental factors in the practical application of eDNA technology for biomonitoring in natural aquatic environments.
Collapse
Affiliation(s)
- Jianmin Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, First Ring Road 24#, Chengdu 610065, People's Republic of China.
| | - Lei Huang
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, First Ring Road 24#, Chengdu 610065, People's Republic of China.
| | - Yurong Wang
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, First Ring Road 24#, Chengdu 610065, People's Republic of China.
| |
Collapse
|
31
|
Zeng L, Wen J, Huang B, Yang Y, Huang Z, Zeng F, Fang H, Du H. Environmental DNA metabarcoding reveals the effect of environmental selection on phytoplankton community structure along a subtropical river. ENVIRONMENTAL RESEARCH 2024; 243:117708. [PMID: 37993044 DOI: 10.1016/j.envres.2023.117708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
The Dongjiang River, a major tributary of the Pearl River system that supplies water to more than 40 million people in Guangdong Province and neighboring regions of China, harbors rich biodiversity, including many endemic and endangered species. However, human activities such as urbanization, agriculture, and industrialization have posed serious threats to its water quality and biodiversity. To assess the status and drivers of phytoplankton diversity, which is a key indicator of aquatic ecosystem health, this study used Environmental DNA (eDNA) metabarcoding combined with machine learning methods to explore spatial variations in the composition and structure of phytoplankton communities along the Dongjiang River, including its estuary. The results showed that phytoplankton diversity exhibited spatial distribution patterns, with higher community structure similarity and lower network complexity in the upstream than in the downstream regions. Environmental selection was the main mechanism shaping phytoplankton community composition, with natural factors driving the dominance of Pyrrophyta, Ochrophyta, and Cryptophyta in the upstream regions and estuaries. In contrast, the downstream regions was influenced by high concentrations of pollutants, resulting in increased abundance of Cryptophyta. The random forest model identified temperature, dissolved oxygen, chlorophyll a, NO2-, and NH4+ as the main factors influencing the primary phytoplankton communities and could be used to predict changes during wet periods. This study provides valuable insights into the factors influencing phytoplankton diversity and community composition in the Dongjiang River, and demonstrates the application value of eDNA metabarcoding technique in large-scale, long-distance river biodiversity monitoring.
Collapse
Affiliation(s)
- Luping Zeng
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, No. 18 Ruihe Road, Guangzhou, 510530, China
| | - Jing Wen
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, No. 18 Ruihe Road, Guangzhou, 510530, China
| | - Bangjie Huang
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, No. 18 Ruihe Road, Guangzhou, 510530, China
| | - Yang Yang
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Zhiwei Huang
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, No. 18 Ruihe Road, Guangzhou, 510530, China
| | - Fantang Zeng
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, No. 18 Ruihe Road, Guangzhou, 510530, China
| | - Huaiyang Fang
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, No. 18 Ruihe Road, Guangzhou, 510530, China.
| | - Hongwei Du
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, No. 18 Ruihe Road, Guangzhou, 510530, China.
| |
Collapse
|
32
|
Sun X, Guo N, Gao J, Xiao N. Using eDNA to survey amphibians: Methods, applications, and challenges. Biotechnol Bioeng 2024; 121:456-471. [PMID: 37986625 DOI: 10.1002/bit.28592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023]
Abstract
In recent years, environmental DNA (eDNA) has received attention from biologists due to its sensitivity, convenience, labor and material efficiency, and lack of damage to organisms. The extensive application of eDNA has opened avenues for the monitoring and biodiversity assessment of amphibians, which are frequently small and difficult to observe in the field, in areas such as biodiversity survey assessment and detection of specific, rare and threatened, or alien invasive species. However, the accuracy of eDNA can be influenced by factors such as ambient temperature, pH, and false positives or false negatives, which makes eDNA an adjunctive tool rather than a replacement for traditional surveys. This review provides a concise overview of the eDNA method and its workflow, summarizes the differences between applying eDNA for detecting amphibians and other organisms, reviews the research progress in eDNA technology for amphibian monitoring, identifies factors influencing detection efficiency, and discusses the challenges and prospects of eDNA. It aims to serve as a reference for future research on the application of eDNA in amphibian detection.
Collapse
Affiliation(s)
- Xiaoxuan Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Ningning Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Jianan Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
- Collage of Forestry, Shanxi Agricultural University, Jinzhong, China
| | - Nengwen Xiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| |
Collapse
|
33
|
Krol L, Langezaal M, Budidarma L, Wassenaar D, Didaskalou EA, Trimbos K, Dellar M, van Bodegom PM, Geerling GW, Schrama M. Distribution of Culex pipiens life stages across urban green and grey spaces in Leiden, The Netherlands. Parasit Vectors 2024; 17:37. [PMID: 38287368 PMCID: PMC10826093 DOI: 10.1186/s13071-024-06120-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/03/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND There is an urgent need for cities to become more climate resilient; one of the key strategies is to include more green spaces in the urban environment. Currently, there is a worry that increasing green spaces might increase mosquito nuisance. As such, this study explores a comprehensive understanding of how mosquitoes utilise contrasting grey and green habitats at different life stages and which environmental factors could drive these distributions. METHODS We used a setup of six paired locations, park (green) vs. residential (grey) areas in a single model city (Leiden, The Netherlands), where we sampled the abundances of different mosquito life stages (eggs, larvae, adults) and the local microclimatic conditions. In this study, we focused on Culex pipiens s.l., which is the most common and abundant mosquito species in The Netherlands. RESULTS Our results show that while Cx. pipiens ovipositioning rates (number of egg rafts) and larval life stages were far more abundant in residential areas, adults were more abundant in parks. These results coincide with differences in the number of suitable larval habitats (higher in residential areas) and differences in microclimatic conditions (more amenable in parks). CONCLUSIONS These findings suggest that Cx. pipiens dispersal may be considerably more important than previously thought, where adult Cx. pipiens seek out the most suitable habitat for survival and breeding success. Our findings can inform more targeted and efficient strategies to mitigate and reduce mosquito nuisance while urban green spaces are increased, which make cities more climate resilient.
Collapse
Affiliation(s)
- Louie Krol
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands.
- Deltares, Daltonlaan 600, Utrecht, The Netherlands.
| | - Melissa Langezaal
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| | - Lisa Budidarma
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| | - Daan Wassenaar
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| | - Emilie A Didaskalou
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| | - Krijn Trimbos
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| | - Martha Dellar
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
- Deltares, Daltonlaan 600, Utrecht, The Netherlands
| | - Peter M van Bodegom
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| | - Gertjan W Geerling
- Deltares, Daltonlaan 600, Utrecht, The Netherlands
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Maarten Schrama
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| |
Collapse
|
34
|
Wang C, Xu M, Zhang J, Zhou X. High-latitude invasion and environmental adaptability of the freshwater mussel Limnoperna fortunei in Beijing, China. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2887. [PMID: 37210676 DOI: 10.1002/eap.2887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/22/2023]
Abstract
The invasive freshwater mussel Limnoperna fortunei (Dunker, 1857) has spread widely throughout Asia and South America, especially via interbasin water diversion and navigation. The middle route of the South-to-North Water Transfer Project (SNWTP), whose terminal is Beijing, has diverted more than 60 billion m3 of water from the Yangtze River Basin to Northern China since December 2014. L. fortunei has spread north to Beijing along the SNWTP, biofouling its channels and tunnels. To determine the status of L. fortunei's invasion in Beijing, we systematically inspected the water bodies receiving southern water, including all branches of the SNWTP, water treatment plants, lakes, reservoirs, and rivers. We measured the densities of adults and veligers of L. fortunei and conducted eDNA analyses of water samples. A generalized linear model and canonical correspondence analysis were adopted to investigate the correlations between environmental (e.g., water temperature, conductivity, pH, total nitrogen, and phosphorus) and biological (e.g., chlorophyll a, plankton density, and community composition) variables and the densities of adults and veligers of L. fortunei. Water temperature is the most important factor in determining the densities of D-shaped and pediveliger veligers, with explanatory variable contributions of 56.2% and 43.9%, respectively. The pH affects the densities of D-shaped, umbonated, and pediveliger veligers. The density of plantigrade veligers is negatively correlated with the conductivity and positively correlated with the concentration of chlorophyll a. Canonical correspondence analysis shows a weak correlation between the dominant phytoplankton taxa and the density of veligers. The densities of D-shaped, umbonated, and pediveliger veligers are positively correlated with the density of small phytoplankton (12.54 ± 4.33 μm), and the density of plantigrade veligers is positively correlated with the density of large (16.12 ± 5.96 μm) phytoplankton. The density of planktonic veligers is well correlated with local abiotic variables, and that of plantigrade veligers is less correlated with local abiotic variables. This finding implies that controlling early-stage veligers by altering water temperature, pH, and food size might effectively control the establishment of further L. fortunei colonies.
Collapse
Affiliation(s)
- Congcong Wang
- State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing, China
| | - Mengzhen Xu
- State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing, China
| | - Jiahao Zhang
- State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing, China
| | - Xiongdong Zhou
- State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
35
|
Wang X, Feng G, Zhu J, Jiang W. Correlation between the Density of Acipenser sinensis and Its Environmental DNA. BIOLOGY 2023; 13:19. [PMID: 38248450 PMCID: PMC10813529 DOI: 10.3390/biology13010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024]
Abstract
Since the construction of the Gezhouba Dam, Chinese sturgeon (Acipenser sinensis) numbers have gradually declined, rendering this species critically endangered according to the International Union for the Conservation of Nature. Environmental DNA (eDNA) technology plays an important role in monitoring the abundance of aquatic organisms. Species density and biomass have been proven to be estimable by researchers, but the level of accuracy depends on the specific species and ecosystem. In this study, juvenile A. sinensis, an endangered fish, were selected as the research target. Under controlled laboratory conditions in an aquarium, one, two, four, six, and eight juvenile A. sinensis were cultured in five fish tanks, respectively. Water samples were filtered at eight different time points for eDNA content analysis. Additionally, eDNA yield was tested at six different time points after a 0.114 ind./L density of A. sinensis was removed, and the employed degradation model was screened using the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). The results showed that eDNA content remained stable after 3 days and exhibited a significant positive linear correlation with the density of A. sinensis (R2 = 0.768~0.986). Furthermore, eDNA content was negatively correlated with the 3-day period after the removal of A. sinensis. The power function had the smallest AIC and BIC values, indicating better fitting performance. This study lays a momentous foundation for the application of eDNA for monitoring juvenile A. sinensis in the Yangtze Estuary and reveals the applicability of eDNA as a useful tool for assessing fish density/biomass in natural environments.
Collapse
Affiliation(s)
- Xiaojing Wang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China;
- College of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Guangpeng Feng
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China;
- College of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Jiazhi Zhu
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China; (J.Z.); (W.J.)
| | - Wei Jiang
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China; (J.Z.); (W.J.)
| |
Collapse
|
36
|
Duarte S, Simões L, Costa FO. Current status and topical issues on the use of eDNA-based targeted detection of rare animal species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166675. [PMID: 37647964 DOI: 10.1016/j.scitotenv.2023.166675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/26/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023]
Abstract
Animal detection through DNA present in environmental samples (eDNA) is a valuable tool for detecting rare species, that are difficult to observe and monitor. eDNA-based tools are underpinned by molecular evolutionary principles, key to devising tools to efficiently single out a targeted species from an environmental sample. Here, we present a comprehensive review of the use of eDNA-based methods for the detection of targeted animal species, such as rare, endangered, or invasive species, through the analysis of 549 publications (2008-2022). Aquatic ecosystems have been the most surveyed, in particular, freshwaters (74 %), and to a less extent marine (14 %) and terrestrial systems (10 %). Vertebrates, in particular, fish (38 %), and endangered species, have been the focus of most of these studies, and Cytb and COI are the most employed markers. Among invertebrates, assays have been mainly designed for Mollusca and Crustacea species (21 %), in particular, to target invasive species, and COI the most employed marker. Targeted molecular approaches, in particular qPCR, have been the most adopted (75 %), while eDNA metabarcoding has been rarely used to target single or few species (approx. 6 %). However, less attention has been given in these studies to the effects of environmental factors on the amount of shed DNA, the differential amount of shed DNA among species, or the sensitivity of the markers developed, which may impact the design of the assays, particularly to warrant the required detection level and avoid false negatives and positives. The accuracy of the assays will also depend on the availability of genetic data and vouchered tissue or DNA samples from closely related species to assess both marker and primers' specificity. In addition, eDNA-based assays developed for a particular species may have to be refined for use in a new geographic area taking into account site-specific populations, as well as any intraspecific variation.
Collapse
Affiliation(s)
- Sofia Duarte
- Centre of Molecular and Environmental Biology (CBMA) and ARNET-Aquatic Research Network, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Luara Simões
- Centre of Molecular and Environmental Biology (CBMA) and ARNET-Aquatic Research Network, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Filipe O Costa
- Centre of Molecular and Environmental Biology (CBMA) and ARNET-Aquatic Research Network, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
37
|
Liu Y, Smith W, Gebrewold M, Wang X, Simpson SL, Bivins A, Ahmed W. Comparison of concentration and extraction workflows for qPCR quantification of intI1 and vanA in untreated wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166442. [PMID: 37604373 DOI: 10.1016/j.scitotenv.2023.166442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Quantitative polymerase chain reaction (qPCR) measurement of antibiotic resistance genes (ARGs) in untreated municipal wastewater may prove useful in combating the antimicrobial resistance crisis. However, harmonizing and optimizing qPCR-based workflows is essential to facilitate comparisons across studies, and includes achieving highly-effective ARG capture through efficient concentration and extraction procedures. In the current study, combinations of sample volume, membrane types and DNA extraction kits within filtration and centrifugation-based workflows were used to quantify 16S ribosomal RNA (16S rRNA), class 1 integron-integrase gene (intI1) and an ARG encoding resistance to vancomycin (vanA) in untreated wastewater sampled from three wastewater treatment plants (WWTPs). Highly abundant 16S rRNA and intI1 were detected in 100 % of samples from all three WWTPs using both 2 and 20 mL sample volumes, while lower prevalence vanA was only detected when using the 20 mL volume. When filtering 2 mL of wastewater, workflows with 0.20-/0.40-μm polycarbonate (PC) membranes generally yielded greater concentrations of the three targets than workflows with 0.22-/0.45-μm mixed cellulose ester (MCE) membranes. The improved performance was diminished when the sample volume was increased to 20 mL. Consistently greater concentrations of 16S rRNA, intI1 and vanA were yielded by filtration-based workflows using PC membranes combined with a DNeasy PowerWater (DPW) Kit, regardless of the sample volume used, and centrifugation-based workflows with DNeasy Blood & Tissue Kit for 2-mL wastewater extractions. Within the filtration-based workflows, the DPW kit yielded more detection and quantifiable results for less abundant vanA than the DNeasy PowerSoil Pro Kit and FastDNA™ SPIN Kit for Soil. These findings indicate that the performance of qPCR-based workflows for surveillance of ARGs in wastewater varies across targets, sample volumes, concentration methods and extraction kits. Workflows must be carefully considered and validated considering the target ARGs to be monitored.
Collapse
Affiliation(s)
- Yawen Liu
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Wendy Smith
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Metasebia Gebrewold
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Xinhong Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | | | - Aaron Bivins
- Department of Civil & Environmental Engineering, Louisiana State University, Baton Rouge, LA 70809, USA
| | - Warish Ahmed
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia.
| |
Collapse
|
38
|
Roth SA, Griffis-Kyle KL, Barnes MA. Batrachochytrium dendrobatidis in the Arid and Thermally Extreme Sonoran Desert. ECOHEALTH 2023; 20:370-380. [PMID: 38243042 DOI: 10.1007/s10393-023-01668-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 12/08/2023] [Indexed: 01/21/2024]
Abstract
Batrachochytrium dendrobatidis (Bd), the causative agent of the devastating global amphibian disease chytridiomycosis, was not projected to threaten amphibians in hot and arid regions due to its sensitivity to heat and desiccation. However, Bd is being detected more frequently than ever in hot and arid regions of Australia and the USA, challenging our current understanding of the environmental tolerances of the pathogen under natural conditions. We surveyed for Bd in an extremely hot and arid portion of the Sonoran Desert, where the pathogen is not projected to occur, and related presence and prevalence of the pathogen to local environmental conditions. We collected eDNA samples from isolated desert water sites including six tinajas and 13 catchments in June and August of 2020 and swabbed a total of 281 anurans of three species (red-spotted toad Anaxyrus punctatus, Couch's spadefoot Scaphiopus couchii, and the Sonoran Desert toad Incillius alvarius) across five catchments and six tinajas from June to September of 2020. Overall, Bd occurred at 68.4% of sites, despite extreme heat and aridity routinely exceeding tolerances established in laboratory studies. Average summer maximum air and water temperatures were 40.7°C and 30.7°C, respectively, and sites received an average of just 16.9 mm of precipitation throughout the summer monsoon season. Prevalence was low (5.7%) across species and life stage. Our results demonstrate that Bd is capable of persisting and infecting amphibians beyond its projected range, indicating a need to account for higher thermal tolerances when quantifying risk of Bd presence and infection.
Collapse
Affiliation(s)
- Sadie A Roth
- Department of Natural Resources Management, Texas Tech University, 2500 Broadway, Lubbock, TX, 79409, USA.
| | - Kerry L Griffis-Kyle
- Department of Natural Resources Management, Texas Tech University, 2500 Broadway, Lubbock, TX, 79409, USA
| | - Matthew A Barnes
- Department of Natural Resources Management, Texas Tech University, 2500 Broadway, Lubbock, TX, 79409, USA
| |
Collapse
|
39
|
Papaioannou C, Geladakis G, Kommata V, Batargias C, Lagoumintzis G. Insights in Pharmaceutical Pollution: The Prospective Role of eDNA Metabarcoding. TOXICS 2023; 11:903. [PMID: 37999555 PMCID: PMC10675236 DOI: 10.3390/toxics11110903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023]
Abstract
Environmental pollution is a growing threat to natural ecosystems and one of the world's most pressing concerns. The increasing worldwide use of pharmaceuticals has elevated their status as significant emerging contaminants. Pharmaceuticals enter aquatic environments through multiple pathways related to anthropogenic activity. Their high consumption, insufficient waste treatment, and the incapacity of organisms to completely metabolize them contribute to their accumulation in aquatic environments, posing a threat to all life forms. Various analytical methods have been used to quantify pharmaceuticals. Biotechnology advancements based on next-generation sequencing (NGS) techniques, like eDNA metabarcoding, have enabled the development of new methods for assessing and monitoring the ecotoxicological effects of pharmaceuticals. eDNA metabarcoding is a valuable biomonitoring tool for pharmaceutical pollution because it (a) provides an efficient method to assess and predict pollution status, (b) identifies pollution sources, (c) tracks changes in pharmaceutical pollution levels over time, (d) assesses the ecological impact of pharmaceutical pollution, (e) helps prioritize cleanup and mitigation efforts, and (f) offers insights into the diversity and composition of microbial and other bioindicator communities. This review highlights the issue of aquatic pharmaceutical pollution while emphasizing the importance of using modern NGS-based biomonitoring actions to assess its environmental effects more consistently and effectively.
Collapse
Affiliation(s)
- Charikleia Papaioannou
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | - George Geladakis
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | - Vasiliki Kommata
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | - Costas Batargias
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | | |
Collapse
|
40
|
Jothinarayanan N, Karlsen F, Roseng LE. Comparative evaluation of loop-mediated isothermal amplification and PCR for detection of Esox lucius housekeeping genes for use in on-site environmental monitoring. JOURNAL OF FISH BIOLOGY 2023; 103:897-905. [PMID: 37283200 DOI: 10.1111/jfb.15476] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/04/2023] [Indexed: 06/08/2023]
Abstract
Esox lucius (northern pike) is an invasive species in fresh water and causes extreme impacts in the local habitat. Northern pike easily replaces the local native species and disrupts the regional ecosystem. Traditionally, in connection with environmental monitoring, invasive species are identified using PCR through species-specific DNA. PCR involves many cycles of heating to amplify the target DNA and requires complex equipment; on the contrary, loop-mediated isothermal amplification (LAMP) entails isothermal amplification, which means the target needs to be heated to only one temperature between 60 and 65°C. In this study, the authors conducted a LAMP assay and a conventional PCR assay to determine which technique is less time consuming, more sensitive and reliable for use in real-time and on-site environmental monitoring. Mitochondrial gene cytochrome b, an essential factor in electron transport; histone (H2B), a nuclear DNA responsible for the chromatin structure; and glyceraldehyde 3-phosphate dehydrogenase involved in energy metabolism are taken as the reference genes for this article. The results show that LAMP is more sensitive and less time consuming than the conventional PCR, and thus it can be used for the detection of northern pike in aquatic ecosystems related to environmental monitoring.
Collapse
Affiliation(s)
| | - Frank Karlsen
- Department of Microsystems, University of South-Eastern Norway, Horten, Vestfold, Norway
| | - Lars Eric Roseng
- Department of Microsystems, University of South-Eastern Norway, Horten, Vestfold, Norway
| |
Collapse
|
41
|
Rees HC, Measures GH, Kane SD, Maddison BC. Quantitative PCR (qPCR) assay for the specific detection of the Chinese mystery snail (Cipangopaludina chinensis) in the UK. PLoS One 2023; 18:e0292163. [PMID: 37796948 PMCID: PMC10553251 DOI: 10.1371/journal.pone.0292163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/13/2023] [Indexed: 10/07/2023] Open
Abstract
Cipangopaludina chinensis Gray 1833 is an East Asian freshwater snail and invasive species in many parts of the world (Global Invasive Species Database, 2022). Within the UK, it was first found at the Pevensey Levels, Sussex, and has since been reported at a second site at Southampton Common, Hampshire. Both sites are designated as Sites of Special Scientific Interest (SSSI) for their wildlife importance. Although the impacts of this species within the UK have not yet been investigated several exotic parasites of the snail have been reported and research suggests that its presence can negatively impact native snail species. This is especially important at the Pevensey Levels due to the presence of the rare freshwater mollusc Anisus vorticulus (Little Whirlpool Rams's-horn snail). Here, we have developed a qPCR-based eDNA assay for the detection of C. chinensis and compared water samples tested for eDNA with results from manual survey of the ditches at the Pevensey Levels. Our eDNA analysis exhibited an overall observed percentage agreement of 80% with a kappa coefficient of agreement between manual and eDNA surveys of 0.59 (95% CI 0.31 to 0.88). Some samples which were qPCR negative for C. chinensis were positive by manual survey, and vice versa revealing the potential for improved overall detection rates when using a combination of manual and eDNA methodologies. eDNA analysis can therefore augment manual survey techniques for C. chinensis as a relatively quick and inexpensive tool for collecting presence and distribution data that could be used to inform further manual surveys and control measures within the ditches.
Collapse
Affiliation(s)
- Helen C. Rees
- Biotechnology, RSK ADAS Ltd, Nottingham, United Kingdom
| | - Gavin H. Measures
- Species Recovery and Reintroductions Team, Natural England, Peterborough, United Kingdom
| | | | | |
Collapse
|
42
|
Hoban ML, Bunce M, Bowen BW. Plumbing the depths with environmental DNA (eDNA): Metabarcoding reveals biodiversity zonation at 45-60 m on mesophotic coral reefs. Mol Ecol 2023; 32:5590-5608. [PMID: 37728237 DOI: 10.1111/mec.17140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/06/2023] [Indexed: 09/21/2023]
Abstract
Mesophotic coral ecosystems (MCEs) are tropical reefs found at depths of ~30-150 m, below the region most heavily impacted by heat stress and other disturbances. Hence, MCEs may serve as potential refugia for threatened shallow reefs, but they also harbour depth-endemic fauna distinct from shallow reefs. Previous studies have characterized biodiversity patterns along depth gradients, but focussed primarily on conspicuous taxa (fishes, corals, etc.). Environmental DNA (eDNA) metabarcoding offers a more holistic approach to assess biodiversity patterns across the tree of life. Here, we use three metabarcoding assays targeting fishes (16S rRNA), eukaryotes (18S rDNA) and metazoans (COI) to assess biodiversity change from the surface to ~90 m depth across 15-m intervals at three sites within the Hawaiian Archipelago. We observed significant community differences between most depth zones, with distinct zonation centred at 45-60 m for eukaryotes and metazoans, but not for fishes. This finding may be attributable to the higher mobility of reef fishes, although methodological limitations are likely a contributing factor. The possibility for MCEs to serve as refugia is not excluded for fishes, but invertebrate communities >45 m are distinct, indicating limited connectivity for the majority of reef fauna. This study provides a new approach for surveying biodiversity on MCEs, revealing patterns in a much broader context than the limited-taxon studies that comprise the bulk of our present knowledge.
Collapse
Affiliation(s)
- Mykle L Hoban
- Hawai'i Institute of Marine Biology, Kāne'ohe, Hawai'i, USA
| | - Michael Bunce
- Department of Conservation, Wellington, New Zealand
- Trace and Environmental DNA Laboratory, Curtin University, Perth, Western Australia, Australia
| | - Brian W Bowen
- Hawai'i Institute of Marine Biology, Kāne'ohe, Hawai'i, USA
| |
Collapse
|
43
|
Harrison K, Snead D, Kilts A, Ammerman ML, Wigginton KR. The Protective Effect of Virus Capsids on RNA and DNA Virus Genomes in Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13757-13766. [PMID: 37656816 PMCID: PMC10516120 DOI: 10.1021/acs.est.3c03814] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 09/03/2023]
Abstract
Virus concentrations measured in municipal wastewater help inform both the water treatment necessary to protect human health and wastewater-based epidemiology. Wastewater measurements are typically PCR-based, and interpreting gene copy concentrations requires an understanding of the form and stability of the nucleic acids. Here, we study the persistence of model virus genomes in wastewater, the protective effects provided by the virus capsids, and the relative decay rates of the genome and infectious viruses. In benchtop batch experiments in wastewater influent at 25 °C, extraviral (+)ssRNA and dsDNA amplicons degraded by 90% within 15-19 min and 1.6-1.9 h, respectively. When encapsidated, the T90 for MS2 (+)ssRNA increased by 424× and the T90 for T4 dsDNA increased by 52×. The (+)ssRNA decay rates were similar for a range of amplicon sizes. For our model phages MS2 and T4, the nucleic acid signal in untreated wastewater disappeared shortly after the viruses lost infectivity. Combined, these results suggest that most viral genome copies measured in wastewater are encapsidated, that measured concentrations are independent of assay amplicon sizes, and that the virus genome decay rates of nonenveloped (i.e., naked) viruses are similar to inactivation rates. These findings are valuable for the interpretation of wastewater virus measurements.
Collapse
Affiliation(s)
- Katherine
R. Harrison
- Department of Civil &
Environmental Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
| | - Delaney Snead
- Department of Civil &
Environmental Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
| | - Anna Kilts
- Department of Civil &
Environmental Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
| | - Michelle L. Ammerman
- Department of Civil &
Environmental Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
| | - Krista R. Wigginton
- Department of Civil &
Environmental Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
44
|
Brandão-Dias PFP, Tank JL, Snyder ED, Mahl UH, Peters B, Bolster D, Shogren AJ, Lamberti GA, Bibby K, Egan SP. Suspended Materials Affect Particle Size Distribution and Removal of Environmental DNA in Flowing Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13161-13171. [PMID: 37610829 DOI: 10.1021/acs.est.3c02638] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Environmental DNA (eDNA) in aquatic systems is a complex mixture that includes dissolved DNA, intracellular DNA, and particle-adsorbed DNA. Information about the various components of eDNA and their relative proportions could be used to discern target organism abundance and location. However, a limited knowledge of eDNA adsorption dynamics and interactions with other materials hinders these applications. To address this gap, we used recirculating stream mesocosms to investigate the impact of suspended materials (fine particulate organic matter, plankton, clay, and titanium dioxide) on the eDNA concentration and particle size distribution (PSD) from two fish species in flowing water. Our findings revealed that eDNA rapidly adsorbs to other materials in the water column, affecting its concentration and PSD. Nonetheless, only particulate organic matter affected eDNA removal rate after 30 h. Moreover, we observed that the removal of larger eDNA components (≥10 μm) was more strongly influenced by physical processes, whereas the removal of smaller eDNA components was driven by biological degradation. This disparity in removal mechanisms between larger and smaller eDNA components could explain changes in eDNA composition over time and space, which have implications for modeling the spatial distribution and abundance of target species and optimizing eDNA detection in high turbidity systems.
Collapse
Affiliation(s)
| | - Jennifer L Tank
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Notre Dame Environmental Change Initiative, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Elise D Snyder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Ursula H Mahl
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Brett Peters
- Notre Dame Environmental Change Initiative, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Diogo Bolster
- Notre Dame Environmental Change Initiative, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Arial J Shogren
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35401, United States
| | - Gary A Lamberti
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Notre Dame Environmental Change Initiative, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Kyle Bibby
- Notre Dame Environmental Change Initiative, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Scott P Egan
- Department of BioSciences, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
45
|
Zhang M, Zou Y, Xiao S, Hou J. Environmental DNA metabarcoding serves as a promising method for aquatic species monitoring and management: A review focused on its workflow, applications, challenges and prospects. MARINE POLLUTION BULLETIN 2023; 194:115430. [PMID: 37647798 DOI: 10.1016/j.marpolbul.2023.115430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 09/01/2023]
Abstract
Marine and freshwater biodiversity is under threat from both natural and manmade causes. Biological monitoring is currently a top priority for biodiversity protection. Given present limitations, traditional biological monitoring methods may not achieve the proposed monitoring aims. Environmental DNA metabarcoding technology reflects species information by capturing and extracting DNA from environmental samples, using molecular biology techniques to sequence and analyze the DNA, and comparing the obtained information with existing reference libraries to obtain species identification. However, its practical application has highlighted several limitations. This paper summarizes the main steps in the environmental application of eDNA metabarcoding technology in aquatic ecosystems, including the discovery of unknown species, the detection of invasive species, and evaluations of biodiversity. At present, with the rapid development of big data and artificial intelligence, certain advanced technologies and devices can be combined with environmental DNA metabarcoding technology to promote further development of aquatic species monitoring and management.
Collapse
Affiliation(s)
- Miaolian Zhang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yingtong Zou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Xiao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Jing Hou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
46
|
Dong W, Liu Y, Hou J, Zhang J, Xu J, Yang K, Zhu L, Lin D. Nematodes Degrade Extracellular Antibiotic Resistance Genes by Secreting DNase II Encoded by the nuc-1 Gene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12042-12052. [PMID: 37523858 DOI: 10.1021/acs.est.3c03829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
This study investigated the degradation performance and mechanism of extracellular antibiotic resistance genes (eARGs) by nematodes using batch degradation experiments, mutant strain validation, and phylogenetic tree construction. Caenorhabditis elegans, a representative nematode, effectively degraded approximately 99.999% of eARGs (tetM and kan) in 84 h and completely deactivated them within a few hours. Deoxyribonuclease (DNase) II encoded by nuc-1 in the excretory and secretory products of nematodes was the primary mechanism. A neighbor-joining phylogenetic tree indicated the widespread presence of homologs of the NUC-1 protein in other nematodes, such as Caenorhabditis remanei and Caenorhabditis brenneri, whose capabilities of degrading eARGs were then experimentally confirmed. C. elegans remained effective in degrading eARGs under the effects of natural organic matter (5, 10, and 20 mg/L, 5.26-6.22 log degradation), cation (2.0 mM Mg2+ and 2.5 mM Ca2+, 5.02-5.04 log degradation), temperature conditions (1, 20, and 30 °C, 1.21-5.26 log degradation), and in surface water and wastewater samples (4.78 and 3.23 log degradation, respectively). These findings highlight the pervasive but neglected role of nematodes in the natural decay of eARGs and provide novel approaches for antimicrobial resistance mitigation biotechnology by introducing nematodes to wastewater, sludge, and biosolids.
Collapse
Affiliation(s)
- Wenhua Dong
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yi Liu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jie Hou
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jianying Zhang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiang Xu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Kun Yang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lizhong Zhu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Ecological Civilization Academy, Anji 313300, China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Ecological Civilization Academy, Anji 313300, China
| |
Collapse
|
47
|
Boger N, Ozer M. Monitoring sewer systems to detect the eDNA of missing persons and persons of interest. Forensic Sci Int 2023; 349:111744. [PMID: 37348435 DOI: 10.1016/j.forsciint.2023.111744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/24/2023]
Abstract
The paper proposes a theoretical framework for using eDNA detection devices to locate missing persons, wanted criminals, and persons of interest in densely populated areas by monitoring sewer water. The proposed system includes a computer application to enter information on missing targets, and the data collected by the system can be used to narrow down their location for rescue or apprehension. The paper investigates eDNA persistence, sewer water studies, and current eDNA and DNA analysis tools to formulate a research concept. The limitations of the concept are mentioned, and it is suggested that collaboration between a large university and a leading DNA analysis equipment manufacturer is needed to custom-build eDNA detection devices to fulfill the requirements of the concept. Eventually, manufacturing costs will drive down the initial and nationwide adoption costs of the system.
Collapse
Affiliation(s)
- Nathaniel Boger
- University of Cincinnati, School of Information Technology, USA.
| | - Murat Ozer
- University of Cincinnati, School of Information Technology, USA.
| |
Collapse
|
48
|
Gutiérrez-López R, Egeter B, Paupy C, Rahola N, Makanga B, Jiolle D, Bourret V, Melo M, Loiseau C. Monitoring mosquito richness in an understudied area: can environmental DNA metabarcoding be a complementary approach to adult trapping? BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:456-468. [PMID: 37183666 DOI: 10.1017/s0007485323000147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Mosquito surveillance programmes are essential to assess the risks of local vector-borne disease outbreaks as well as for early detection of mosquito invasion events. Surveys are usually performed with traditional sampling tools (i.e., ovitraps and dipping method for immature stages or light or decoy traps for adults). Over the past decade, numerous studies have highlighted that environmental DNA (eDNA) sampling can enhance invertebrate species detection and provide community composition metrics. However, the usefulness of eDNA for detection of mosquito species has, to date, been largely neglected. Here, we sampled water from potential larval breeding sites along a gradient of anthropogenic perturbations, from the core of an oil palm plantation to the rainforest on São Tomé Island (Gulf of Guinea, Africa). We showed that (i) species of mosquitoes could be detected via metabarcoding mostly when larvae were visible, (ii) larvae species richness was greater using eDNA than visual identification and (iii) new mosquito species were also detected by the eDNA approach. We provide a critical discussion of the pros and cons of eDNA metabarcoding for monitoring mosquito species diversity and recommendations for future research directions that could facilitate the adoption of eDNA as a tool for assessing insect vector communities.
Collapse
Affiliation(s)
- Rafael Gutiérrez-López
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio, Laboratório Associado, University of Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
- Animal Health Research Center, National Food and Agriculture Research and Technology Institute (INIA-CISA-CSIC), Valdeolmos, Spain
| | - Bastian Egeter
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio, Laboratório Associado, University of Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| | - Christophe Paupy
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier 34394, France
| | - Nil Rahola
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier 34394, France
| | - Boris Makanga
- Institut de Recherche en Écologie Tropicale/CENAREST, BP 13354 Libreville, Gabon
| | - Davy Jiolle
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier 34394, France
| | - Vincent Bourret
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio, Laboratório Associado, University of Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
- INRAE - Université de Toulouse UR 0035 CEFS, 31326 Castanet Tolosan, France
| | - Martim Melo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio, Laboratório Associado, University of Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
- MHNC-UP - Natural History and Science Museum of the University of Porto, Porto, Portugal
- FitzPatrick Institute of African Ornithology, University of Cape Town, Cape Town, South Africa
| | - Claire Loiseau
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio, Laboratório Associado, University of Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
- CEFE, Université de Montpellier, CNRS, Montpellier, France
| |
Collapse
|
49
|
Adcock ZC, Adcock ME, Forstner MRJ. Development and validation of an environmental DNA assay to detect federally threatened groundwater salamanders in central Texas. PLoS One 2023; 18:e0288282. [PMID: 37428788 DOI: 10.1371/journal.pone.0288282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 06/23/2023] [Indexed: 07/12/2023] Open
Abstract
The molecular detection of DNA fragments that are shed into the environment (eDNA) has become an increasingly applied tool used to inventory biological communities and to perform targeted species surveys. This method is particularly useful in habitats where it is difficult or not practical to visually detect or trap the target organisms. Central Texas Eurycea salamanders inhabit both surface and subterranean aquatic environments. Subterranean surveys are challenging or infeasible, and the detection of salamander eDNA in water samples is an appealing survey technique for these situations. Here, we develop and validate an eDNA assay using quantitative PCR for E. chisholmensis, E. naufragia, and E. tonkawae. These three species are federally threatened and constitute the Septentriomolge clade that occurs in the northern segment of the Edwards Aquifer. First, we validated the specificity of the assay in silico and with DNA extracted from tissue samples of both target Septentriomolge and non-target amphibians that overlap in distribution. Then, we evaluated the sensitivity of the assay in two controls, one with salamander-positive water and one at field sites known to be occupied by Septentriomolge. For the salamander-positive control, the estimated probability of eDNA occurrence (ψ) was 0.981 (SE = 0.019), and the estimated probability of detecting eDNA in a qPCR replicate (p) was 0.981 (SE = 0.011). For the field control, the estimated probability of eDNA occurring at a site (ψ) was 0.938 (95% CRI: 0.714-0.998). The estimated probability of collecting eDNA in a water sample (θ) was positively correlated with salamander relative density and ranged from 0.371 (95% CRI: 0.201-0.561) to 0.999 (95% CRI: 0.850- > 0.999) among sampled sites. Therefore, sites with low salamander density require more water samples for eDNA evaluation, and we determined that our site with the lowest estimated θ would require seven water samples for the cumulative collection probability to exceed 0.95. The estimated probability of detecting eDNA in a qPCR replicate (p) was 0.882 (95% CRI: 0.807-0.936), and our assay required two qPCR replicates for the cumulative detection probability to exceed 0.95. In complementary visual encounter surveys, the estimated probability of salamanders occurring at a known-occupied site was 0.905 (SE = 0.096), and the estimated probability of detecting salamanders in a visual encounter survey was 0.925 (SE = 0.052). We additionally discuss future research needed to refine this method and understand its limitations before practical application and incorporation into formal survey protocols for these taxa.
Collapse
Affiliation(s)
- Zachary C Adcock
- Department of Biology, Texas State University, San Marcos, Texas, United States of America
- Cambrian Environmental, Austin, Texas, United States of America
| | - Michelle E Adcock
- Department of Biology, Texas State University, San Marcos, Texas, United States of America
| | - Michael R J Forstner
- Department of Biology, Texas State University, San Marcos, Texas, United States of America
| |
Collapse
|
50
|
Van Driessche C, Everts T, Neyrinck S, Halfmaerten D, Haegeman A, Ruttink T, Bonte D, Brys R. Using environmental DNA metabarcoding to monitor fish communities in small rivers and large brooks: Insights on the spatial scale of information. ENVIRONMENTAL RESEARCH 2023; 228:115857. [PMID: 37059322 DOI: 10.1016/j.envres.2023.115857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 05/16/2023]
Abstract
Monitoring fish communities is central to the evaluation of ecological health of rivers. Both presence/absence of fish species and their relative quantity in local fish assemblages are crucial parameters to measure. Fish communities in lotic systems are traditionally monitored via electrofishing, characterized by a known limited efficiency and high survey costs. Analysis of environmental DNA could serve as a non-destructive alternative for detection and quantification of lotic fish communities, but this approach still requires further insights in practical sampling schemes incorporating transport and dilution of the eDNA particles; optimization of predictive power and quality assurance of the molecular detection method. Via a controlled cage experiment, we aim to extend the knowledge on streamreach of eDNA in small rivers and large brooks, as laid out in the European Water Framework Directive's water typology. Using a high and low source biomass in two river transects of a species-poor river characterized by contrasting river discharge rates, we found strong and significant correlations between the eDNA relative species abundances and the relative biomass per species in the cage community. Despite a decreasing correlation over distance, the underlying community composition remained stable from 25 to 300 m, or up to 1 km downstream of the eDNA source, depending on the river discharge rate. Such decrease in similarity between relative source biomass and the corresponding eDNA-based community profile with increasing distance downstream from the source, might be attributed to variation in species-specific eDNA persistence. Our findings offer crucial insights on eDNA behaviour and characterization of riverine fish communities. We conclude that water sampled from a relatively small river offers an adequate eDNA snapshot of the total fish community in the 300-1000 m upstream transect. The potential application for other river systems is further discussed.
Collapse
Affiliation(s)
- Charlotte Van Driessche
- Research Institute for Nature and Forest (INBO), Genetic Diversity, Geraardsbergen, Belgium; Ghent University, Department of Biology, Terrestrial Ecology Unit, Ghent, Belgium.
| | - Teun Everts
- Research Institute for Nature and Forest (INBO), Genetic Diversity, Geraardsbergen, Belgium; KU Leuven, Department of Biology, Plant Conservation and Population Biology, Leuven, Belgium
| | - Sabrina Neyrinck
- Research Institute for Nature and Forest (INBO), Genetic Diversity, Geraardsbergen, Belgium
| | - David Halfmaerten
- Research Institute for Nature and Forest (INBO), Genetic Diversity, Geraardsbergen, Belgium
| | - Annelies Haegeman
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Melle, Belgium
| | - Tom Ruttink
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Melle, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Dries Bonte
- Ghent University, Department of Biology, Terrestrial Ecology Unit, Ghent, Belgium
| | - Rein Brys
- Research Institute for Nature and Forest (INBO), Genetic Diversity, Geraardsbergen, Belgium
| |
Collapse
|