1
|
Jeong H, Araújo DF, Ra K. Combined copper isotope and elemental signatures in bivalves and sediments from the Korean coast: Applicability for monitoring anthropogenic contamination. MARINE POLLUTION BULLETIN 2024; 208:116930. [PMID: 39278180 DOI: 10.1016/j.marpolbul.2024.116930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 09/01/2024] [Accepted: 09/01/2024] [Indexed: 09/17/2024]
Abstract
This study investigates the applicability of elemental and Cu isotope compositions in sediments and bivalves from the Korean coast to monitor anthropogenic Cu contamination. Sediments with high Cu (>64.4 mg/kg) and/or moderate enrichment levels (EFCu) exhibit homogenous δ65CuAE647 values (-0.12 to +0.16 ‰), suggesting similar anthropogenic Cu fingerprints along the Korean coast. Sediments with Cu concentrations near natural background levels (< 20.6 mg/kg) display large isotopic variability (Δ65Cumax-mim: ~0.8 ‰), encompassing those from sediments under anthropic influences. We hypothesize that Cu isotopic compositions of Korean geology are heterogeneous, therefore, natural end-members of source mixing models should be established locally at small scales. Cu concentrations in Oysters correlate with sediments, and their isotopic compositions are more suitable for monitoring Cu contamination, while mussel's regulatory mechanisms seem to affect source records. The current Cu isotope data will help to detect shifts attributable to anthropic contamination in future biomonitoring.
Collapse
Affiliation(s)
- Hyeryeong Jeong
- Ifremer, CCEM-Unité Contamination Chimique des Ecosystèmes Marins (CCEM), F-44300 Nantes, France; Marine Environmental Research Department, Korea Institute of Ocean Science and Technology (KIOST), Busan 49111, South Korea.
| | - Daniel F Araújo
- Ifremer, CCEM-Unité Contamination Chimique des Ecosystèmes Marins (CCEM), F-44300 Nantes, France
| | - Kongtae Ra
- Marine Environmental Research Department, Korea Institute of Ocean Science and Technology (KIOST), Busan 49111, South Korea; Department of Ocean Science (Oceanography), KIOST School, University of Science and Technology (UST), Daejeon 34113, South Korea
| |
Collapse
|
2
|
Jeong H, Ra K, Araújo DF, Yoo CM, Hyeong K, Park SJ. Zinc and copper isotope fractionation in metal leaching from hydrothermal ore deposits: Environmental implications for deep-sea mining. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174833. [PMID: 39025143 DOI: 10.1016/j.scitotenv.2024.174833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 05/07/2024] [Accepted: 07/14/2024] [Indexed: 07/20/2024]
Abstract
Deep-sea mining can remobilize large amounts of inert metals from hydrothermal seafloor massive sulfides (SMSs) into bioavailable toxic forms that are dissolved in the water column, potentially impacting marine ecosystems. It is thus critical to assess the impacts of deep-sea mining on the reactivities and behaviors of crucial elements (e.g., Zn and Cu) and their isotopes during mineral leaching processes. To this end, we conducted leaching experiments using different SMS mineral types (CuFe rich, Fe rich, and ZnFe rich) to assess metal releases and the isotope fractionations of Zn and Cu. Significant correlations were observed between Ni, Cu, Zn, Cd, and Pb concentrations in leachates and the SMSs, suggesting that metal leaching into seawater depended on individual SMS metal content. The Zn and Cu concentrations in leachates varied greatly by both SMS type and the leaching time. Zn concentrations from ZnFe rich SMSs exceeded the recommended effluent limits set by the IFC World Bank and the USEPA. SMS ore leachates exhibited Cu and Zn isotope ratios distinct from those of Indian Ocean deep seawater. The isotope fractionation magnitude (Δore-seawater) of Cu was more pronounced than that of Zn, likely due to the redox process involved in the leaching processes. In contrast, the Zn isotope signatures in leachates conserve those of minerals, although slight isotope fractionations occurred in solution following the adsorption and precipitation processes of Fe-oxyhydroxides. Our findings confirm that leveraging the chemical and isotope signatures of toxic metals offers a valuable approach for assessing the extent of metal contamination of leachates and mine tailings stemming from deep-sea mining operations, concerning their influence on the surrounding water columns.
Collapse
Affiliation(s)
- Hyeryeong Jeong
- Ifremer, CCEM-Unité Contamination Chimique des Ecosystèmes Marins (CCEM), F-44300 Nantes, France; Marine Environmental Research Department, Korea Institute of Ocean Science and Technology (KIOST), Busan 49111, Republic of Korea.
| | - Kongtae Ra
- Marine Environmental Research Department, Korea Institute of Ocean Science and Technology (KIOST), Busan 49111, Republic of Korea; Department of Ocean Science (Oceanography), KIOST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Daniel F Araújo
- Ifremer, CCEM-Unité Contamination Chimique des Ecosystèmes Marins (CCEM), F-44300 Nantes, France
| | - Chan Min Yoo
- Ocean Georesources Research Department, Korea Institute of Ocean Science & Technology (KIOST), Busan 49111, Republic of Korea
| | - Kiseong Hyeong
- Ocean Georesources Research Department, Korea Institute of Ocean Science & Technology (KIOST), Busan 49111, Republic of Korea
| | - Sang Joon Park
- Critical Minerals Research Center, Korea Institute of Geosciences and Mineral Resources (KIGAM), Daejeon 34132, Republic of Korea
| |
Collapse
|
3
|
Zhang J. The Theoretical Calculation of the Cu Isotope Fractionation Effect in Solution/Hydrothermal Solution Systems. Molecules 2024; 29:2582. [PMID: 38893459 PMCID: PMC11173797 DOI: 10.3390/molecules29112582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Copper (Cu) is an important transition metal, and its isotopes have important applications in geology, environmental science, soil science, and other fields. Cu isotope fractionation can occur in many natural processes. However, the mechanism of Cu isotope fractionation in solution/hydrothermal solution systems is not very clear. In this study, the fractionation effects of complexes of Cu(I) and Cu(II) in solution/hydrothermal solution systems were systematically studied by means of an ab initio method based on first principles. In the simulation of an aqueous solution system, the theoretical treatment method used is the "water-droplet" method. The results show that the heavy Cu isotope (65Cu) enrichment capacity of the Cu-bearing complex solutions is greatly affected by the ligand types both for Cu(I) and Cu(II). For Cu(I) complex solutions, the heavy Cu isotope enrichment sequence is [Cu(HS)2]-·(H2O)42 > [Cu(HS)(H2O)]·(H2O)42 ≈ [Cu(HS)(H2S)]·(H2O)42 > [CuCl]·(H2O)42 > [CuCl2]-·(H2O)42 > [CuCl3]2-·(H2O)42. For the aqueous solutions of Cu(II) with an inorganic ligand (such as H2O, OH-, NO3-, SO42- and CN-), the order of heavy Cu isotope enrichment is as follows: [Cu(H2O)6]2+·(H2O)42 > [Cu(NO3)2]·(H2O)42 > [Cu(OH)2]·(H2O)42 > [CuSO4(H2O)3]·(H2O)42 > [CuNO3(H2O)4]+·(H2O)42 > [CuCN]+·(H2O)42. For the Cu(II) complex solutions with a halogen as ligands, the change order of 1000lnβ is [CuCl]+·(H2O)42 > [CuCl2]·(H2O)42 > [CuBr2]·(H2O)42 > [CuCl3]-·(H2O)42. The sequence of 1000lnβ for Cu(II) organic complex aqueous solutions is [Cu(HOC6H4COO)]+·(H2O)42 > [Cu(CH3CH2COO)]+·(H2O)42 > [Cu(COOHCOO)]+·(H2O)42. The calculation also found that for Cu(I) complex aqueous solutions, the difference in Cu isotope fractionation parameters (1000lnβ) between [CuCl2]-·(H2O)42 and [Cu(HS)2]-·(H2O)42 is relatively large. At 100 °C, the 1000lnβ of the two species are 1.14 and 1.55 (‱), respectively. The difference between the two could be reached up to 0.41 (‱). The Cu isotope fractionation parameter obtained with the "water droplet" method is also very different from the results of previous studies, which indicate that the Cu isotope fractionation behavior of the two is similar. At the same time, the exciting discovery is that the enrichment capacity of heavy Cu isotopes is significantly different between Cu(I) complex aqueous solutions and Cu(II) complex aqueous solutions. At 100 °C, the 1000lnβ of 6 Cu(I) complex aqueous solutions and 13 Cu(II) complex aqueous solutions ranged from 0.90 to 1.55 and 2.24 to 3.25(‱), respectively. It also shows that the REDOX reaction has a significant effect on the Cu isotope fractionation, especially in ore-forming fluids. Therefore, the ligand type is a factor that cannot be ignored when considering the mechanism of Cu isotope fractionation in solution/hydrothermal solution systems. Whether the solvation effect of an aqueous solution is considered or not has a great influence on the numerical values of the final Cu isotope fractionation factors. Hence, the solvation effect of an aqueous solution is an essential determinant in the theoretical calculation of the Cu isotope fractionation factors for Cu-bearing complex solutions.
Collapse
Affiliation(s)
- Jixi Zhang
- School of Geography and Environmental Science, Guizhou Normal University, Guiyang 550001, China;
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification, Guiyang 550001, China
| |
Collapse
|
4
|
Selden CR, Schilling K, Godfrey L, Yee N. Metal-binding amino acid ligands commonly found in metalloproteins differentially fractionate copper isotopes. Sci Rep 2024; 14:1902. [PMID: 38253574 PMCID: PMC11229503 DOI: 10.1038/s41598-024-52091-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
Copper (Cu) is a cofactor in numerous key proteins and, thus, an essential element for life. In biological systems, Cu isotope abundances shift with metabolic and homeostatic state. However, the mechanisms underpinning these isotopic shifts remain poorly understood, hampering use of Cu isotopes as biomarkers. Computational predictions suggest that isotope fractionation occurs when proteins bind Cu, with the magnitude of this effect dependent on the identity and arrangement of the coordinating amino acids. This study sought to constrain equilibrium isotope fractionation values for Cu bound by common amino acids at protein metal-binding sites. Free and bound metal ions were separated via Donnan dialysis using a cation-permeable membrane. Isotope ratios of pre- and post-dialysis solutions were measured by MC-ICP-MS following purification. Sulfur ligands (cysteine) preferentially bound the light isotope (63Cu) relative to water (Δ65Cucomplex-free = - 0.48 ± 0.18‰) while oxygen ligands favored the heavy isotope (65Cu; + 0.26 ± 0.04‰ for glutamate and + 0.16 ± 0.10‰ for aspartate). Binding by nitrogen ligands (histidine) imparted no isotope effect (- 0.01 ± 0.04‰). This experimental work unequivocally demonstrates that amino acids differentially fractionate Cu isotopes and supports the hypothesis that metalloprotein biosynthesis affects the distribution of transition metal isotopes in biological systems.
Collapse
Affiliation(s)
- Corday R Selden
- Department of Marine and Coastal Sciences, Rutgers, University, New Brunswick, NJ, USA.
- Department of Earth and Planetary Sciences, Rutgers University, Piscataway, NJ, USA.
| | - Kathrin Schilling
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.
| | - Linda Godfrey
- Department of Earth and Planetary Sciences, Rutgers University, Piscataway, NJ, USA
| | - Nathan Yee
- Department of Earth and Planetary Sciences, Rutgers University, Piscataway, NJ, USA
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
5
|
Barreira J, Araújo DF, Rodrigues BQA, Tonhá MS, Mendes RDA, Souto-Oliveira CE, Babinski M, Knoery J, Sanders CJ, Garnier J, Machado W. Copper isotopes as a tool to trace contamination in mangroves from an urbanized watershed. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122785. [PMID: 37871737 DOI: 10.1016/j.envpol.2023.122785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/27/2023] [Accepted: 10/21/2023] [Indexed: 10/25/2023]
Abstract
This study investigates the chronology of copper (Cu) contamination and its stable isotopes within an emblematic Brazilian mangrove impacted by multiple urban and industrial Cu sources, deforestation, and eutrophication. In particular, it tests Cu isotopes as tracers of anthropogenic inputs into an anthropized watershed impacted by multiple sources. To do so, we used multi-isotopic approaches (δ65Cu, δ13C, and δ15N), elemental analyses (Al, Ca, Fe, P, Cu, C, and N), and selective and sequential extractions in a210Pb-dated sediment core. This geochemical "toolbox" allowed identifying two main stages of Cu evolution in the sediment core. In the first stage, before 1965, Cu isotope fingerprints responded to landscape changes, indicating a shift from marine to geogenic dominance due to the remobilization and erosion of terrestrial materials. In the second stage, after 1965, the sediment geochemical profile showed increased Cu total concentrations with a higher bioavailability (as reflected by sequential extraction data) accompanying changes in Cu isotope signatures towards anthropogenic values. The findings evidence that local industrial sources, possibly combined with diffuse urban sources, export Cu into downstream mangroves with a distinguishable isotope signature compared to natural values. This study demonstrates the applicability of Cu isotopes as new environmental forensic tools to trace anthropogenic sources in mangrove sediments. Incorporated into a robust geochemical toolbox that combines inorganic and organic proxies for sedimentary materials, this new tool provides a comprehensive understanding of Cu dynamics in mangrove ecosystems, shedding light on the historical and current sources of Cu.
Collapse
Affiliation(s)
- João Barreira
- Geochemistry Program, Chemistry Institute, Fluminense Federal University, Brazil.
| | - Daniel F Araújo
- Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44000, Nantes, France
| | - Breno Q A Rodrigues
- Geochemistry Program, Chemistry Institute, Fluminense Federal University, Brazil
| | | | | | | | | | - Joël Knoery
- Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44000, Nantes, France
| | | | | | - Wilson Machado
- Geochemistry Program, Chemistry Institute, Fluminense Federal University, Brazil
| |
Collapse
|
6
|
Xia B, Huang Y, Pei X, Liu C. Application of Cu isotopes to identify Cu sources in soils impacted by multiple anthropogenic activities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167114. [PMID: 37717751 DOI: 10.1016/j.scitotenv.2023.167114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
Copper (Cu) is an important micronutrient for animals and plants, but it is toxic at high concentrations in soil. Soils adjacent to industrial areas would be subjected to severe Cu pollution. Identifying Cu sources in the surface environment is crucial for understanding their pollution level and fate. This study investigated Cu content, isotope composition of topsoils, and two soil profiles with varying levels of Cu contamination and related potential Cu sources in southwest China. The difference in Cu isotope compositions of tailing (1.29 ± 0.08 ‰), smelting fly ash (0.04 ± 0.03 ‰), coal (2.44 ± 0.09 ‰), coal-burning fly ash (0.34 ± 0.03 ‰), and geogenic soil (0.10 ± 0.03 ‰) enabled us to distinguish anthropogenic Cu from geogenic Cu. The plot of δ65Cu and 1/Cu demonstrates that Cu of the polluted soils was from three end-members: the smelting fly ash, the vehicle exhaust, and the background soils. Based on the mass balance model, we calculated that the fly ash from smelting was the major anthropogenic source, contributing approximately 29 % of Cu contamination in soils, and the diesel exhaust was another important source, with a contribution rate of approximately 25 %. Additionally, soil profile results suggest that anthropogenic Cu could transport through soil profiles and influence Cu content and isotope signatures of subsurface soils, at least to a depth of ∼60 cm. Finally, our research indicates that Cu isotopes could be a promising tool for tracing industrial pollution, as significant Cu isotope fractionation would occur during the smelting process. Our research highlights the contribution of smelting and diesel exhaust to Cu contamination in the soils in a representative mining area. These findings serve as a scientific foundation for the development of policy for pollution control in industrial-affected regions.
Collapse
Affiliation(s)
- Bo Xia
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Yi Huang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China; College of Geosciences, Chengdu University of Technology, Sichuan 610059, China.
| | - Xiangjun Pei
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Chao Liu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China; College of Geosciences, Chengdu University of Technology, Sichuan 610059, China
| |
Collapse
|
7
|
Jeong H, Araújo DF, Garnier J, Mulholland D, Machado W, Cunha B, Ponzevera E. Copper and lead isotope records from an electroplating activity in sediments and biota from Sepetiba Bay (southeastern Brazil). MARINE POLLUTION BULLETIN 2023; 190:114848. [PMID: 37027955 DOI: 10.1016/j.marpolbul.2023.114848] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
An old electroplating plant in Sepetiba Bay discharged metal-enriched wastes into the surrounding mangroves for 30 years (from the 1960s to 1990s), resulting in a hotspot zone of legacy sediments highly concentrated in toxic trace metals. This study applies Cu and Pb isotope systems to investigate the contributions of past punctual sources relative to emerging modern diffuse sources. The electroplating activity imprinted particular isotopic signatures (average δ65CuSRM-976: 0.4 ‰ and 206Pb/207Pb: 1.14) distinct from the natural baseline and urban fluvial sediments. The isotopic compositions of tidal flat sediments show intermediate isotope compositions reflecting the mixing of Cu and Pb from the hotspot zone and terrigenous materials carried by rivers. Oyster isotope fingerprints match legacy sediments, attesting that anthropogenic Cu and Pb are bioavailable to the biota. These findings confirm the interest in combining two or more metal isotope systems to discriminate between modern and past metal source emissions in coastal environments.
Collapse
Affiliation(s)
- Hyeryeong Jeong
- Ifremer, CCEM Contamination Chimique des Écosystèmes Marins, F-44000 Nantes, France.
| | - Daniel F Araújo
- Ifremer, CCEM Contamination Chimique des Écosystèmes Marins, F-44000 Nantes, France
| | - Jeremie Garnier
- Universidade de Brasília, Instituto de Geociências, Campus Darcy Ribeiro, L2, Asa Norte, Brasília, Distrito Federal, Brazil
| | - Daniel Mulholland
- Laboratório de Águas e Efluentes & Laboratório de Análises Ambientais, Universidade Federal do Tocantins, Rua Badejos, Gurupi, TO, Brazil
| | - Wilson Machado
- Universidade Federal Fluminense, Departamento de Geoquímica, Campus do Valonguinho, Niterói, Rio de Janeiro, Brazil
| | - Bruno Cunha
- Universidade de São Paulo Instituto de Geociências, Cidade Universitária, São Paulo SP Brazil CEP 05508-080
| | - Emmanuel Ponzevera
- Ifremer, CCEM Contamination Chimique des Écosystèmes Marins, F-44000 Nantes, France
| |
Collapse
|
8
|
Chifflet S, Briant N, Freydier R, Araújo DF, Quéméneur M, Zouch H, Bellaaj-Zouari A, Carlotti F, Tedetti M. Isotopic compositions of copper and zinc in plankton from the Mediterranean Sea (MERITE-HIPPOCAMPE campaign): Tracing trophic transfer and geogenic inputs. MARINE POLLUTION BULLETIN 2022; 185:114315. [PMID: 36368082 DOI: 10.1016/j.marpolbul.2022.114315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/09/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
This study uses Cu and Zn isotopic compositions as proxies of sources and metal transfers in the planktonic food webs from the Mediterranean Sea. Plankton was collected in spring 2019 in the deep chlorophyll maximum (DCM) along a North-South transect including coastal and offshore zones (MERITE-HIPPOCAMPE campaign). δ65Cu and δ66Zn were determined on four planktonic size fractions from 60 to 2000 μm. Combined δ65Cu and δ66Zn with geochemical tracers (Ti, particulate organic phosphorus) showed that geogenic particles were ubiquitous with plankton assemblages. The δ15N ecological tracer showed that planktonic food web was enriched in heavy isotopes of Cu and Zn in the higher trophic levels. δ65Cu were correlated with picoplankton in the offshore zone, and with zooplankton in the southern coastal zone. Firmicutes bacteria were found correlated with δ66Zn in northern and southern coastal zones suggesting decomposition of particulate matter at the DCM. These findings suggest that biogeochemical process may impact Cu and Zn isotopy in the planktonic community.
Collapse
Affiliation(s)
- Sandrine Chifflet
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France.
| | - Nicolas Briant
- Ifremer, CCEM Contamination Chimique des Écosystèmes Marins, F-44000 Nantes, France
| | - Rémi Freydier
- HSM, Université de Montpellier, CNRS, Montpellier, France
| | - Daniel F Araújo
- Ifremer, CCEM Contamination Chimique des Écosystèmes Marins, F-44000 Nantes, France
| | - Marianne Quéméneur
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France
| | - Hana Zouch
- Institut National des Sciences et Technologies de la Mer (INSTM), 28, rue 2 mars 1934, Salammbô 2025, Tunisia
| | - Amel Bellaaj-Zouari
- Institut National des Sciences et Technologies de la Mer (INSTM), 28, rue 2 mars 1934, Salammbô 2025, Tunisia
| | - François Carlotti
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France
| | - Marc Tedetti
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France
| |
Collapse
|
9
|
Briant N, Freydier R, Araújo DF, Delpoux S, Elbaz-Poulichet F. Cu isotope records of Cu-based antifouling paints in sediment core profiles from the largest European Marina, The Port Camargue. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157885. [PMID: 35944646 DOI: 10.1016/j.scitotenv.2022.157885] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
The intensive use of copper (Cu) compounds as an alternative biocide in antifouling paints (APs) has resulted in wide Cu contamination into the marine environment, especially near marina harbor activities. In this work, the applicability of Cu isotopes to discriminate Cu origins related to the use of Cu-based APs in marine environments was tested. To this, Cu isotopes in APs, shipyard sludges, and sediment cores sampled in the Cu-contaminated Mediterranean marina of Port Camargue were determined. APs represent an important dominant anthropogenic source for metals in this site, making it ideal to test Cu isotopes as tracers. The overall isotope composition of four sediment cores and a surface sample varied between -0.13 and 0.44 ‰ (δ65Cu relative to NIST-976). Selected APs brands show a similar Cu concentration ~0.15 % and δ65Cu average of 0.54 ± 0.05 ‰. The plot of δ65Cu vs concentration for all datasets allowed dissociating natural and APs end-members. However, sample isotope systematics were not consistent with a conservative mixing binary source process. Heavily Cu-contaminated sediments show isotope signatures lighter than APs brands. However, the most Cu-contaminated sample, located directly above the careening area, shows a δ65Cu slightly lighter than APs (0.44 ‰ vs 0.54 ‰, respectively). Results suggest the preferential releasing of a heavy isotope pool by APs when these compounds are solubilized in seawater. The isotope fractionation was attributed to potential chemical Cu coordination changes during its elemental partition between paint and marina seawater and the fractionation induced by the organic ligands in the water column, before deposition. Further laboratory experiments are recommended to model the isotope fractionation mechanisms related to Cu release by APs. Because the APs' isotope signature is modified in marine environments, the use of Cu isotopes as tracers of AP in marine environments is challenging and needs more investigation.
Collapse
Affiliation(s)
- Nicolas Briant
- Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44000 Nantes, France.
| | - Rémi Freydier
- Laboratoire HydroSciences UMR 5569, CNRS, Université Montpellier, IRD, 163 rue Auguste Broussonnet, CC 57, 34090 Montpellier, France
| | - Daniel F Araújo
- Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44000 Nantes, France
| | - Sophie Delpoux
- Laboratoire HydroSciences UMR 5569, CNRS, Université Montpellier, IRD, 163 rue Auguste Broussonnet, CC 57, 34090 Montpellier, France
| | - Françoise Elbaz-Poulichet
- Laboratoire HydroSciences UMR 5569, CNRS, Université Montpellier, IRD, 163 rue Auguste Broussonnet, CC 57, 34090 Montpellier, France
| |
Collapse
|
10
|
Sullivan KV, Kidder JA, Junqueira TP, Vanhaecke F, Leybourne MI. Emerging applications of high-precision Cu isotopic analysis by MC-ICP-MS. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156084. [PMID: 35605848 DOI: 10.1016/j.scitotenv.2022.156084] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
As a component of many minerals and an essential trace element in most aerobic organisms, the transition metal element Cu is important for studying reduction-oxidation (redox) interactions and metal cycling in the total environment (lithosphere, atmosphere, biosphere, hydrosphere, and anthroposphere). The "fractionation" or relative partitioning of the naturally occurring "heavy" (65Cu) and "light" (63Cu) isotope between two coexisting phases in a system occurs according to bonding environment and/or as a result of a slight difference in the rate at which these isotopes take part in physical processes and chemical reactions (in absence of equilibrium). Due to this behaviour, Cu isotopic analysis can be used to study a range of geochemical and biological processes that cannot be elucidated with Cu concentrations alone. The shift between Cu+ and Cu2+ is accompanied by a large degree of Cu isotope fractionation, enabling the Cu isotope to be applied as a vector in mineral exploration, tracer of origin, transport, and fate of metal contaminants in the environment, biomonitor, and diagnostic/prognostic marker of disease, among other applications. In this contribution, we (1) discuss the analytical protocols that are currently available to perform Cu isotopic analysis, (2) provide a compilation of published δ65Cu values for matrix reference materials, (3) review Cu isotope fractionation mechanisms, (4) highlight emerging applications of Cu isotopic analysis, and (5) discuss future research avenues.
Collapse
Affiliation(s)
- Kaj V Sullivan
- Department of Geological Sciences and Geological Engineering, Queens University, Kingston, ON, Canada; Atomic & Mass Spectrometry - A&MS Research Unit, Department of Chemistry, Ghent University, Ghent, Belgium.
| | | | - Tassiane P Junqueira
- Department of Geological Sciences and Geological Engineering, Queens University, Kingston, ON, Canada
| | - Frank Vanhaecke
- Atomic & Mass Spectrometry - A&MS Research Unit, Department of Chemistry, Ghent University, Ghent, Belgium
| | - Matthew I Leybourne
- Department of Geological Sciences and Geological Engineering, Queens University, Kingston, ON, Canada; Arthur B. McDonald Canadian Astroparticle Physics Research Institute, Department of Physics, Engineering Physics & Astronomy, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
11
|
Ren M, Zheng L, Wang D, Chen X, Dong X, Wei X, Cheng H. Copper isotope ratios allowed for quantifying the contribution of coal mining and combustion to total soil copper concentrations in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119613. [PMID: 35705153 DOI: 10.1016/j.envpol.2022.119613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
The most prominent source of Cu contamination in soils is metal mining and processing, partly since the Middle Age. However, coal mining and combustion can also cause (some) Cu contamination. We studied the distribution of Cu concentrations and isotope ratios in soils of the Huaibei coal mining area. The contribution of the coal mining and combustion to total Cu concentrations in soil was determined with a two-end-member mixing model based on the distinct δ65Cu values of the Cu emitted from coal mining and combustion and in native soil. The mean Cu concentration of 75 mg kg-1 exceeded the local soil background value (round to 22.13 mg kg-1). The similar δ65Cu value of grass near the coal mining and combustion operation as in gangue and flying ash indicated a superficial Cu contamination. Mining input was the dominant source of Cu in the contaminated soils, contributing up to 95% and on average 72% of the total Cu in the topsoils. The mining-derived Cu was leached to a depth of 65 cm, where still 29% of the Cu could be attributed to the mining emissions. Grasses showed lower δ65Cu values than the topsoils, because of the preferential uptake of light Cu isotopes. However, the Δ65Cugrass-soil was lower in the contaminated than the uncontaminated area because of superficial adsorption of isotopically heavy Cu from the mining emissions. Overall, in this study the distinct δ65Cu values of the mining-derived Cu emissions and the native soil allowed for the quantification of the mining-derived Cu and had already reached the subsoil and contaminated the grass by superficial adsorption in only 60 years of mining operation.
Collapse
Affiliation(s)
- Mengxi Ren
- School of Resources and Environmental Engineering, Anhui University, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, 230601, Anhui, China
| | - Liugen Zheng
- School of Resources and Environmental Engineering, Anhui University, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, 230601, Anhui, China.
| | - Dandan Wang
- School of Resources and Environmental Engineering, Anhui University, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, 230601, Anhui, China
| | - Xing Chen
- School of Resources and Environmental Engineering, Anhui University, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, 230601, Anhui, China
| | - Xianglin Dong
- Geological Survey Division, Huaibei Coal Mining Group Corporation, Huaibei, 235001, Anhui, China
| | - Xiangping Wei
- Geological Survey Division, Huaibei Coal Mining Group Corporation, Huaibei, 235001, Anhui, China
| | - Hua Cheng
- School of Resources and Environmental Engineering, Anhui University, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, 230601, Anhui, China
| |
Collapse
|
12
|
Meite F, Granet M, Imfeld G. Ageing of copper, zinc and synthetic pesticides in particle-size and chemical fractions of agricultural soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153860. [PMID: 35176373 DOI: 10.1016/j.scitotenv.2022.153860] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
The transformation and mobility of heavy metals and synthetic pesticides in soil depend on ageing, involving their chemical and physical distributions among soil fractions over time. Heavy metals and synthetic pesticides often co-occur in soil, although their ageing is usually evaluated separately and in bulk soil. Here, contrasting vineyard and crop soils were spiked with copper (Cu; 700 mg kg-1) and zinc (Zn; 200 mg kg-1) a and/or synthetic pesticides (5 mg kg-1), i.e., the fungicide metalaxyl (MTY) and herbicide S-metolachlor (SMET), to evaluate within 200 days their distribution among soil physical and chemical fractions. More than 90% of MTY and SMET in soil was released into the water phase, even 200 days after spiking. This emphasizes the potential mobilization of MTY and SMET from the soil following field application. MTY, SMET, Cu and Zn were associated mainly with the silt fraction and to a lesser extent (<30%) with the sand and clay fractions. Overall, the ageing of MTY, SMET, Cu and Zn in agricultural soil was affected mainly by the soil type and sterilization and only to a minor extent by their co-occurrence. Sorption controlled the dissipation of MTY and SMET in soil, while biodegradation contributed to less than 10%. A large fraction (37 ± 2%) of Cu was associated with Fe oxides after 200 days of ageing, while Zn was found (33 ± 2%) in the residual soil fraction. The silt fraction of the nonsterile vineyard soil became enriched in 65Cu over time (Δδ65Cu = 0.25 ± 0.07‰), whereas the clay fraction was depleted in 65Cu (Δδ65Cu = -0.20 ± 0.07‰). Cu isotope fractionation mirrored the Cu distribution in soil chemical fractions, suggesting that Cu stable isotopes may help to follow-up Cu ageing. In contrast, no significant Zn isotope fractionation was observed among soil experiments or over time. Overall, our study emphasizes the variability in ageing of synthetic pesticides and heavy metals co-occurring in agricultural soils and their interplay in physical and chemical fractions of the soil.
Collapse
Affiliation(s)
- Fatima Meite
- Université de Strasbourg, CNRS/EOST, ITES UMR 7063, Institut Terre et Environnement de Strasbourg, Strasbourg, France
| | - Mathieu Granet
- Université de Strasbourg, CNRS/EOST, ITES UMR 7063, Institut Terre et Environnement de Strasbourg, Strasbourg, France
| | - Gwenaël Imfeld
- Université de Strasbourg, CNRS/EOST, ITES UMR 7063, Institut Terre et Environnement de Strasbourg, Strasbourg, France.
| |
Collapse
|
13
|
Wang RR, Yu HM, Cheng WH, Liu YC, Zhang GL, Li DC, Huang F. Copper migration and isotope fractionation in a typical paddy soil profile of the Yangtze Delta. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153201. [PMID: 35090908 DOI: 10.1016/j.scitotenv.2022.153201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
To decipher Cu migration in paddy soils, which is important for understanding Cu supply in rice cultivation, Cu concentrations and isotope compositions were measured in a paddy soil profile in Suzhou, Eastern China, in the central Yangtze Delta. The results show that the variations in δ65Cu values and Cu concentrations are not coupled along the profile. From top to bottom, the δ65Cu values show small variations (0.07 ± 0.03‰ to 0.25 ± 0.01‰) in the upper layers (Ap-Br1), with a decrease in the subsurface Br2 layer (from 0.16 ± 0.04‰ to -0.19 ± 0.02‰), are almost homogeneous in the transitional Br3-BCrg layers (-0.01 ± 0.01‰ to -0.10 ± 0.02‰), and further decrease to -0.33 ± 0.01‰ in the permanently submerged G1 and G2 layers. Copper concentrations in the Ap layer show some fluctuations (25.8 to 29.0 μg/g), increase in the Br2 and Br3 layers (23.9 μg/g to 31.9 μg/g), and then decrease to 15.1 μg/g in the lower layers. The lack of coupling between δ65Cu values and Cu concentrations may be ascribed to various physicochemical conditions in different layers. In the upper layers, Cu(I) enriched in light isotopes migrates downward with soil solutions under flooded conditions, leaving the soils of the Ap and Br1 layers enriched in heavy Cu isotopes. In the Br2 layer, the readsorption of light Cu isotopes on clay minerals results in decreased δ65Cu values and increased Cu concentrations. In the Br3-BCrg layers, Cu(I) can be oxidized to Cu(II). The homogeneous Cu isotopes in these layers may mainly result from equilibrium adsorption of Cu on clay minerals. The decreased δ65Cu values and Cu concentrations in the G layer are mainly attributed to groundwater transport in this layer. This study represents the Cu isotope variations in a paddy soil profile and the possible mechanism of Cu isotope fractionation.
Collapse
Affiliation(s)
- Rui-Rui Wang
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Hui-Min Yu
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; CAS Center for Excellence in Comparative Planetology, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Wen-Han Cheng
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; CAS Center for Excellence in Comparative Planetology, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Yu-Chen Liu
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Gan-Lin Zhang
- Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - De-Cheng Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Fang Huang
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; CAS Center for Excellence in Comparative Planetology, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
14
|
Wang M, Chen S, Shi H, Liu Y. Redox dependence of manganese controls cadmium isotope fractionation in a paddy soil-rice system under unsteady pe + pH conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150675. [PMID: 34592283 DOI: 10.1016/j.scitotenv.2021.150675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Flooding in paddy soils alters the soil redox of manganese (Mn) and produces elevated concentrations of soluble Mn that can reduce cadmium (Cd) uptake by rice. To better understand the fates of Mn and Cd, along with changes in soil redox conditions, we conducted microcosm incubations in paddy soil covering the reduction to oxidation to re-reduction phases. The extractable Cd concentration decreased rapidly during the reduction phases but increased upon oxidation, and Cd availability largely depended on soil pH, Eh, pe + pH, and the extractable Mn concentration. Exogenous Mn can promote Cd binding with Fe-Mn(oxyhydro)oxides. A trade-off effect between the soil-extractable Cd and Mn concentrations across changes in pH, Eh, pe + pH was identified, and attaining an optimal pe + pH value of 6.8 was targeted. Furthermore, to provide insights into how the redox status of Mn changes to alter Cd mobilization in a paddy soil-rice system, Cd isotope ratios across the paddy soil-rice tissue continuum were investigated using planted rhizobox experiments under different irrigation regimes. The heavy Cd isotopes from the soil to liquid-phase (Δ114/110Cdextract-soil = 0.40-0.82‰) and from the soil to rice grain (Δ114/110Cdgrain-soil = 0.84-0.89‰) were preferentially enriched. Light isotopes were likely to be enriched in Cd bound to Fe/Mn-oxides, a process that was promoted by increased Mn availability. These results suggest that Cd isotopes are systematically fractionated within the paddy soil-rice system, which is caused by the unsteady soil redox, and the stabilization of Cd in the bound soil pool such as Fe-Mn(oxyhydro)oxides-Cd under reducing conditions could be developed as a Cd retention mechanism in paddy soils.
Collapse
Affiliation(s)
- Meng Wang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Shibao Chen
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Huading Shi
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, PR China
| | - Yongbing Liu
- National Research Center for Geoanalysis, Beijing 100037, PR China
| |
Collapse
|
15
|
Blotevogel S, Oliva P, Denaix L, Audry S, Viers J, Schreck E. Stable Cu Isotope Ratios Show Changes in Cu Uptake and Transport Mechanisms in Vitis vinifera Due to High Cu Exposure. FRONTIERS IN PLANT SCIENCE 2022; 12:755944. [PMID: 35095944 PMCID: PMC8790286 DOI: 10.3389/fpls.2021.755944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Even though copper (Cu) is an essential plant nutrient, it can become toxic under certain conditions. Toxic effects do not only depend on soil Cu content, but also on environmental and physiological factors, that are not well understood. In this study, the mechanisms of Cu bioavailability and the homeostasis of Vitis vinifera L. cv. Tannat were investigated under controlled conditions, using stable Cu isotope analysis. We measured Cu concentrations and δ65Cu isotope ratios in soils, soil solutions, roots, and leaves of grapevine plants grown on six different vineyard soils, in a 16-week greenhouse experiment. The mobility of Cu in the soil solutions was controlled by the solubility of soil organic matter. No direct relationship between Cu contents in soils or soil solutions and Cu contents in roots could be established, indicating a partly homeostatic control of Cu uptake. Isotope fractionation between soil solutions and roots shifted from light to heavy with increasing Cu exposure, in line with a shift from active to passive uptake. Passive uptake appears to exceed active uptake for soil solution concentrations higher than 270 μg L-1. Isotope fractionation between roots and leaves was increasingly negative with increasing root Cu contents, even though the leaf Cu contents did not differ significantly. Our results suggest that Cu isotope analysis is a sensitive tool to monitor differences in Cu uptake and translocation pathways even before differences in tissue contents can be observed.
Collapse
Affiliation(s)
- Simon Blotevogel
- Géosciences Environnement Toulouse (GET), Université Paul-Sabatier Toulouse III, CNRS, IRD, Toulouse, France
| | - Priscia Oliva
- Géosciences Environnement Toulouse (GET), Université Paul-Sabatier Toulouse III, CNRS, IRD, Toulouse, France
| | - Laurence Denaix
- Interactions Sol Plante Atmosphère (ISPA), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Bordeaux Sciences Agro, Villenave d’Ornon, France
| | - Stéphane Audry
- Géosciences Environnement Toulouse (GET), Université Paul-Sabatier Toulouse III, CNRS, IRD, Toulouse, France
| | - Jerome Viers
- Géosciences Environnement Toulouse (GET), Université Paul-Sabatier Toulouse III, CNRS, IRD, Toulouse, France
| | - Eva Schreck
- Géosciences Environnement Toulouse (GET), Université Paul-Sabatier Toulouse III, CNRS, IRD, Toulouse, France
| |
Collapse
|
16
|
Schilling K, Basu A, Kaplan A, Perkins WT. Metal distribution, bioavailability and isotope variations in polluted soils from Lower Swansea Valley, UK. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:2899-2912. [PMID: 33428049 DOI: 10.1007/s10653-020-00794-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Soils in the Lower Swansea Valley, (United Kingdom) contain elevated level of metals, enough to cause direct or indirect effects on human health. This study assesses the severity of soil pollution and bioavailability of Cu and other metals (Ni, Zn, Co, Pb and Cr) in soils with various distances from a Ni refinery. We compare Cu concentrations in operationally defined soil fractions (bioavailable, bound to Fe/Mn oxide and incorporated in organic matter) with other metals (Ni, Zn, Pb, Co, Cr) usually occurring in ores used in metallurgic processes and report their pollution and geoaccumulation indices (PI and Igeo). Further, we use Cu stable isotope ratios (δ65Cu) to trace the fate and mobility of Cu in soils. Our data suggest a point source of contamination for some of the heavy metals including Ni (Igeo = 1.9), Zn (Igeo = 0.28) and Cu (Igeo = 3.6) near the Ni refinery. However, Co (Igeo = 0.15) and Pb (Igeo = 3.3) contaminations are likely to be linked to different sources. No elevated Cr levels (Igeo= -0.07) occur in any of the studied soils. All soil metals are predominantly associated with organic matter (>50%) which reduces their bioavailibility and thus their risk for ecological and human health. The Cu isotope data show that Cu in soil organic matter is enriched in 65Cu, while the lighter isotopes (63Cu) remain in the dissolved bioavailable Cu fraction (Δ65Cuorganic-bioavailable is +0.12 ± 0.13‰). This suggests the preferential complexation of 65Cu with soil organic matter after dissolution of Cu deposited to the soil. Thus, Cu isotope data can effectively indicate pathways of metal migration in polluted soils.
Collapse
Affiliation(s)
- Kathrin Schilling
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, 10964, NY, USA.
| | - Anirban Basu
- Department of Earth Sciences, Royal Holloway, University of London, Egham, TW20 0EX, United Kingdom
| | - Alicia Kaplan
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, United Kingdom
| | - William T Perkins
- Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, Ceredigion, SY23 3DB, United Kingdom
| |
Collapse
|
17
|
Roebbert Y, Rosendahl CD, Brown A, Schippers A, Bernier-Latmani R, Weyer S. Uranium Isotope Fractionation during the Anoxic Mobilization of Noncrystalline U(IV) by Ligand Complexation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7959-7969. [PMID: 34038128 DOI: 10.1021/acs.est.0c08623] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Uranium (U) isotopes are suggested as a tool to trace U reduction. However, noncrystalline U(IV), formed predominantly in near-surface environments, may be complexed and remobilized using ligands under anoxic conditions. This may cause additional U isotope fractionation and alter the signatures generated by U reduction. Here, we investigate the efficacy of noncrystalline U(IV) mobilization by ligand complexation and the associated U isotope fractionation. Noncrystalline U(IV) was produced via the reduction of U(VI) (400 μM) by Shewanella oneidensis MR-1 and was subsequently mobilized with EDTA (1 mM), citrate (1 mM), or bicarbonate (500 mM) in batch experiments. Complexation with all investigated ligands resulted in significant mobilization of U(IV) and led to an enrichment of 238U in the mobilized fraction (δ238U = 0.4-0.7 ‰ for EDTA; 0.3 ‰ for citrate; 0.2-0.3 ‰ for bicarbonate). For mobilization with bicarbonate, a Rayleigh approach was the most suitable isotope fractionation model, yielding a fractionation factor α of 1.00026-1.00036. Mobilization with EDTA could be modeled with equilibrium isotope fractionation (α: 1.00039-1.00049). The results show that U isotope fractionation associated with U(IV) mobilization under anoxic conditions is significant and needs to be considered when applying U isotopes in remediation monitoring or as a paleo-redox proxy.
Collapse
Affiliation(s)
- Yvonne Roebbert
- Leibniz Universität Hannover, Institut für Mineralogie, Hannover D-30167, Germany
| | | | - Ashley Brown
- École polytechnique fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Axel Schippers
- Federal Institute for Geosciences and Natural Resources, Hannover D-30655, Germany
| | | | - Stefan Weyer
- Leibniz Universität Hannover, Institut für Mineralogie, Hannover D-30167, Germany
| |
Collapse
|
18
|
Ratié G, Chrastný V, Guinoiseau D, Marsac R, Vaňková Z, Komárek M. Cadmium Isotope Fractionation during Complexation with Humic Acid. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7430-7444. [PMID: 33970606 DOI: 10.1021/acs.est.1c00646] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) isotopes are known to fractionate during complexation with various environmentally relevant surfaces and ligands. Our results, which were obtained using (i) batch experiments at different Cd concentrations, ionic strengths, and pH values, (ii) modeling, and (iii) infrared and X-ray absorption spectroscopies, highlight the preferential enrichment of light Cd isotopes bound to humic acid (HA), leaving the heavier Cd pool preferentially in solution (Δ114/110CdHA-Cd(aq) of -0.15 ± 0.01‰). At high ionic strengths, Cd isotope fractionation mainly depends on its complexation with carboxylic sites. Outer-sphere complexation occurs at equilibrium together with inner-sphere complexation as well as with the change of the first Cd coordination and its hydration complexes in solution. At low ionic strengths, nonspecific Cd binding induced by electrostatic attractions plays a dominant role and promotes Cd isotope fractionation during complexation. This significant outcome elucidates the mechanisms involved in HA-Cd interactions. The results can be used during (i) fingerprinting the available Cd in soil solution after its complexation with solid or soluble natural organic matter and (ii) evaluating the contribution of Cd complexation with organic ligands and phytoplankton-derived debris versus Cd assimilation by phytoplankton in seawater.
Collapse
Affiliation(s)
- Gildas Ratié
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague-Suchdol, Czech Republic
| | - Vladislav Chrastný
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague-Suchdol, Czech Republic
| | - Damien Guinoiseau
- Université de Paris, Institut de physique du globe de Paris, CNRS, F-75005 Paris, France
- Aix Marseille University, CNRS, IRD, INRAE, Coll France, CEREGE, F-13545 Aix-en-Provence, France
| | - Rémi Marsac
- Univ Rennes, CNRS, Géosciences Rennes - UMR 6118, F-35000 Rennes, France
| | - Zuzana Vaňková
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague-Suchdol, Czech Republic
| | - Michael Komárek
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague-Suchdol, Czech Republic
| |
Collapse
|
19
|
Zhou JW, Li Z, Liu MS, Yu HM, Wu LH, Huang F, Luo YM, Christie P. Cadmium Isotopic Fractionation in the Soil-Plant System during Repeated Phytoextraction with a Cadmium Hyperaccumulating Plant Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13598-13609. [PMID: 33079537 DOI: 10.1021/acs.est.0c03142] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Analysis of stable metal isotopes can provide important information on biogeochemical processes in the soil-plant system. Here, we conducted a repeated phytoextraction experiment using the cadmium (Cd) hyperaccumulator Sedum plumbizincicola X. H. Guo et S. B. Zhou ex L. H. Wu (Crassulaceae) in four different Cd-contaminated agricultural soils over five consecutive crops. Isotope composition of Cd was determined in the four soils before and after the fifth crop, in the plant shoots harvested in all soils in the first crop, and in the NH4OAc extracts of two contrasting soils with large differences in soil pH (5.73 and 7.32) and clay content (20.4 and 31.3%) before and after repeated phytoextraction. Before phytoextraction NH4OAc-extractable Cd showed a slight but significant negative isotope fractionation or no fractionation compared with total Cd (Δ114/110Cdextract-soil = -0.15 ± 0.05 (mean ± standard error) and 0.01 ± 0.01‰), and the extent of fractionation varied with soil pH and clay content. S. plumbizincicola preferentially took up heavy Cd from soils (Δ114/110Cdshoot-soil = 0.02-0.14‰), and heavy isotopes were significantly depleted in two soils after repeated phytoextraction (Δ114/110Cdsoil:P5-soil:P0 = -0.15 ± 0.02 and -0.12 ± 0.01‰). This provides evidence for the existence of specific Cd transporters in S. plumbizincicola, leading to positive isotope fractionation during uptake. After phytoextraction by five sequential crops, the NH4OAc-extractable Cd pool was significantly enriched in heavy isotopes (Δ114/110Cdextract:P5-extract:P0 = 0.07 ± 0.02 and 0.18 ± 0.05‰) despite the preferential uptake of heavy isotopes, indicating the occurrence of root-induced Cd mobilization in soils, which is supposed to favor heavy Cd in the organo-complexes with root exudates. Our results demonstrate that Cd is taken up by S. plumbizincicola via specific transporters, partly after active mobilization from the more strongly bound soil pool such as iron/manganese (hydr)oxide-bound Cd during repeated phytoextraction. This renders S. plumbizincicola a suitable plant for large-scale field phytoremediation.
Collapse
Affiliation(s)
- Jia-Wen Zhou
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhu Li
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Meng-Shu Liu
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Hui-Min Yu
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Long-Hua Wu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Fang Huang
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Yong-Ming Luo
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Peter Christie
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
20
|
Wang Q, Zhou L, Little SH, Liu J, Feng L, Tong S. The geochemical behavior of Cu and its isotopes in the Yangtze River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138428. [PMID: 32339845 DOI: 10.1016/j.scitotenv.2020.138428] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
Copper (Cu) isotopes can be a useful tool to constrain the interaction of water and the environment, but they have not been widely applied to riverine research in the preceding decades. Isotopically heavy Cu in rivers (global average: about +0.7‰) compared to rocks (at about 0‰) has been attributed to: a) the mobilization of heavy Cu during oxidative weathering, and b) partitioning between an isotopically heavy, organically complexed dissolved pool, and an isotopically light pool adsorbed to particulates. Here, we report Cu concentrations and isotope ratios of the main stream of the Yangtze River and its several tributaries. We find that the Yangtze River exhibits anomalously heavy Cu isotope compositions compared to other rivers: δ65CuNIST 976 of dissolved Cu for the main stream, from Chongqing to Nanjing, ranges from +0.59 to +1.65‰, while the tributaries vary from +0.48 to +1.20‰. A negative correlation is observed between Cu concentrations and Cu isotope compositions. We attribute the anomalous Cu isotope geochemistry of the Yangtze River to two key features of the basin: first, the influence of the Three Gorges Dam (TGD), and second, the presence of extensive Cu sulphide deposits close to the lower reaches of the river. In the upper reaches, downstream towards the TGD, δ65Cu values increase as Cu concentrations decrease, reflecting the preferential adsorption of light Cu by sedimenting particulate phases. δ65Cu values continue to increase to a maximum of +1.65‰ in the middle reaches, at Guangxingzhou. The lower reaches, from Jiujiang to Tongling, are characterized by less positive values of δ65Cu (at about +0.60‰), due to the oxidative weathering of Cu sulphide deposits. The overall Cu-δ65Cu trend in the river reflects mixing of these waters from the lower reaches, influenced by Cu sulphides, with waters from upstream, which have lower Cu concentrations and elevated δ65Cu values.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China
| | - Lian Zhou
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China.
| | - Susan H Little
- Department of Earth Sciences, University College London, Gower Street, WC1E 6BT, London
| | - Jinhua Liu
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China
| | - Lanping Feng
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China
| | - Shuoyun Tong
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
21
|
Coutaud M, Paule A, Méheut M, Viers J, Rols JL, Pokrovsky OS. Elemental and Isotopic Variations of Copper and Zinc Associated with the Diel Activity of Phototrophic Biofilm. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6741-6750. [PMID: 32352767 DOI: 10.1021/acs.est.0c00733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The response in metal concentrations and isotopic composition to variations in photosynthetic activity of aquatic micro-organisms is crucially important for understanding the environmental controls on metal fluxes and isotope excursions. Here we studied the impacts of two successive diel cycles on physicochemical parameters, Cu and Zn concentrations, and isotopic composition in solution in the presence of mature phototrophic biofilm in a rotating annular bioreactor. The diel cycles induced fluctuations in temperature, pH, and dissolved oxygen concentration following the variation in the photosynthesis activity of the biofilm. Diel variations in metal concentrations were primarily related to the pH variation, with an increase in metal concentration in solution related to a pH decrease. For both metals, δ(66Zn) and δ(65Cu) in solution exhibited complex but reproducible diel cycles. Diel variations in photosynthetic activity led to alternatively positive and negative isotope fractionation, producing the sorption of light Zn (Δ(66Znsorbed-solution) = -0.1 ± 0.06‰) and heavy Cu isotopes (Δ(65Cusorbed-solution) = +0.17 ± 0.06‰) during the day at high pH and the excretion of lighter Zn isotopes (-0.4‰ < Δ(66Znexcreted-biofilm) < +0.14‰) and heavy Cu isotopes (Δ(65Cuexcreted-biofilm) = +0.7 ± 0.3‰) during the night at lower pH. We interpreted Zn and Cu diel cycles as a combination of a desorption of exopolymeric substance-metal complexes and a small active efflux during the night with adsorption and incorporation via an active uptake during the day. The hysteresis of metal concentration in solution over the diel cycle suggested the more important role of uptake compared to desorption and efflux from the biofilm. The phototrophic biofilm presents a non-negligible highly labile metal pool with important potential for contrasting isotopic fractionation at the diel scale.
Collapse
Affiliation(s)
- Margot Coutaud
- Geosciences and Environment Toulouse (GET) UMR 5563 CNRS, University of Toulouse, 14 Avenue Edouard Belin, 31400 Toulouse, France
- INP, UPS, CNRS EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement)Université de Toulouse; 118 Route de Narbonne, 31062 Toulouse, France
| | - Armelle Paule
- INP, UPS, CNRS EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement)Université de Toulouse; 118 Route de Narbonne, 31062 Toulouse, France
| | - Merlin Méheut
- Geosciences and Environment Toulouse (GET) UMR 5563 CNRS, University of Toulouse, 14 Avenue Edouard Belin, 31400 Toulouse, France
| | - Jérôme Viers
- Geosciences and Environment Toulouse (GET) UMR 5563 CNRS, University of Toulouse, 14 Avenue Edouard Belin, 31400 Toulouse, France
| | - Jean-Luc Rols
- INP, UPS, CNRS EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement)Université de Toulouse; 118 Route de Narbonne, 31062 Toulouse, France
| | - Oleg S Pokrovsky
- Geosciences and Environment Toulouse (GET) UMR 5563 CNRS, University of Toulouse, 14 Avenue Edouard Belin, 31400 Toulouse, France
- BIO-GEO-CLIM Laboratory, Tomsk State University, 36 Lenin Avenue, Tomsk 634050, Russia
- N. Laverov Federal Center for Integrated Arctic Research, Russian Academy of Science, 23 Naberezhnaya Severnoy Dviny, Arkhangelsk 163000, Russia
| |
Collapse
|
22
|
Copper and its Isotopes in Organic-Rich Sediments: From the Modern Peru Margin to Archean Shales. GEOSCIENCES 2019. [DOI: 10.3390/geosciences9080325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The cycling of copper (Cu) and its isotopes in the modern ocean is controlled by the interplay of biology, redox settings, and organic complexation. To help build a robust understanding of Cu cycling in the modern ocean and investigate the potential processes controlling its behavior in the geological past, this study presents Cu abundance and isotope data from modern Peru Margin sediments as well as from a suite of ancient, mostly organic-rich, shales. Analyses of an organic-pyrite fraction extracted from bulk modern sediments suggest that sulphidation is the main control on authigenic Cu enrichments in this setting. This organic-pyrite fraction contains, in most cases, >50% of the bulk Cu reservoir. This is in contrast to ancient samples, for which a hydrogen fluoride (HF)-dissolvable fraction dominates the total Cu reservoir. With <20% of Cu found in the organic-pyrite fraction of most ancient sediments, interpretation of the associated Cu isotope composition is challenging, as primary signatures may be masked by secondary processes. But the Cu isotope composition of the organic-pyrite fraction in ancient sediments hints at the potential importance of a significant Cu(I) reservoir in ancient seawater, perhaps suggesting that the ancient ocean was characterized by different redox conditions and a different Cu isotope composition to that of the modern ocean.
Collapse
|
23
|
Imseng M, Wiggenhauser M, Keller A, Müller M, Rehkämper M, Murphy K, Kreissig K, Frossard E, Wilcke W, Bigalke M. Towards an understanding of the Cd isotope fractionation during transfer from the soil to the cereal grain. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:834-844. [PMID: 30390457 DOI: 10.1016/j.envpol.2018.09.149] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/27/2018] [Accepted: 09/29/2018] [Indexed: 05/25/2023]
Abstract
Cd in soils might be taken up by plants, enter the food chain and endanger human health. This study investigates the isotopic fractionation of major processes during the Cd transfer from soils to cereal grains. Thereto, soil, soil solution, wheat and barley plants (roots, straw and grains) were sampled in the field at three study sites during two vegetation periods. Cd concentrations and δ114/110Cd values were determined in all samples. The composition of the soil solution was analyzed and the speciation of the dissolved Cd was modelled. Isotopic fractionation between soils and soil solutions (Δ114/110Cd20-50cm-soil solution = -0.61 to -0.68‰) was nearly constant among the three soils. Cd isotope compositions in plants were heavier than in soils (Δ114/110Cd0-20cm-plants = -0.55 to -0.31‰) but lighter than in soil solutions (Δ114/110Cdsoil solution-plants = 0.06-0.36‰) and these differences correlated with Cd plant-uptake rates. In a conceptual model, desorption from soil, soil solution speciation, adsorption on root surfaces, diffusion, and plant uptake were identified as the responsible processes for the Cd isotope fractionation between soil, soil solution and plants whereas the first two processes dominated over the last three processes. Within plants, compartments with lower Cd concentrations were enriched in light isotopes which might be a consequence of Cd retention mechanisms, following a Rayleigh fractionation, in which barley cultivars were more efficient than wheat cultivars.
Collapse
Affiliation(s)
- Martin Imseng
- Institute of Geography, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland
| | - Matthias Wiggenhauser
- Institute of Agricultural Sciences, ETH Zurich, Eschikon 33, 8315 Lindau, Switzerland
| | - Armin Keller
- Swiss Soil Monitoring Network (NABO), Agroscope, Reckenholzstrasse 191, 8046 Zürich, Switzerland
| | - Michael Müller
- Swiss Soil Monitoring Network (NABO), Agroscope, Reckenholzstrasse 191, 8046 Zürich, Switzerland
| | - Mark Rehkämper
- Department of Earth Science & Engineering, Imperial College London, SW7 2AZ London, UK
| | - Katy Murphy
- Department of Earth Science & Engineering, Imperial College London, SW7 2AZ London, UK
| | - Katharina Kreissig
- Department of Earth Science & Engineering, Imperial College London, SW7 2AZ London, UK
| | - Emmanuel Frossard
- Institute of Agricultural Sciences, ETH Zurich, Eschikon 33, 8315 Lindau, Switzerland
| | - Wolfgang Wilcke
- Institute of Geography and Geoecology, Karlsruhe Institute of Technology (KIT), Reinhard-Baumeister-Platz 1, 76131 Karlsruhe, Germany
| | - Moritz Bigalke
- Institute of Geography, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland.
| |
Collapse
|
24
|
Wei R, Guo Q, Yu G, Kong J, Li S, Song Z, Hu J, Tian L, Han X, Okoli CP. Stable isotope fractionation during uptake and translocation of cadmium by tolerant Ricinus communis and hyperaccumulator Solanum nigrum as influenced by EDTA. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 236:634-644. [PMID: 29433104 DOI: 10.1016/j.envpol.2018.01.103] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/19/2018] [Accepted: 01/29/2018] [Indexed: 05/25/2023]
Abstract
The isotopic fractionation could contribute to understanding the Cd accumulation mechanisms in plant species. However, there are few of systematical investigations with regards to the Cd isotope fractionation in hyperaccumulator plants. The Cd tolerant Ricinus communis and hyperaccumulator Solanum nigrum were cultivated in nutrient solutions with varying Cd and EDTA concentrations. Cd isotope ratios were determined in the solution, root, stem and leaf. The two investigated plants were systematically enriched in light isotopes relative to their solutions (Δ114/110Cdplant-solution = -0.64‰ to -0.29‰ for R. communis and -0.84‰ to -0.31‰ for S. nigrum). Cd isotopes were markedly fractionated among the plant tissues. For both plant species, an enrichment in light Cd isotopes from solution to root was noted, followed by a slight depletion in light Cd isotopes from root to shoot. Noticeably, the chelation process has caused lighter Cd isotope enrichment in the root of R. communis and S. nigrum. Further, the good fits between △114/110Cdroot-plant and ln Froot (or between △114/110Cdshoot-plant and ln Fshoot) indicate that Cd isotopic signatures can be used to study Cd transportation during the metabolic process of plants. This study suggests that knowledge of the Cd isotope ratios could also provide new tool for identifying the Cd-avoiding crop cultivars.
Collapse
Affiliation(s)
- Rongfei Wei
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Qingjun Guo
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.
| | - Guirui Yu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Jing Kong
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Siliang Li
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, China
| | - Zhaoliang Song
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, China
| | - Jian Hu
- Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Liyan Tian
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Xiaokun Han
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; Institute of Surface-Earth System Science, Tianjin University, Tianjin, China
| | - Chukwunonso Peter Okoli
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; Federal University Ndufu-Allike Ikwo, Ebonyi State, Nigeria
| |
Collapse
|
25
|
Viers J, Grande JA, Zouiten C, Freydier R, Masbou J, Valente T, Torre MLDL, Destrigneville C, Pokrovsky OS. Are Cu isotopes a useful tool to trace metal sources and processes in acid mine drainage (AMD) context? CHEMOSPHERE 2018; 193:1071-1079. [PMID: 29874734 DOI: 10.1016/j.chemosphere.2017.11.133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 11/16/2017] [Accepted: 11/22/2017] [Indexed: 06/08/2023]
Abstract
In the South-West Europe (Iberian Pyrite Belt), acid mine drainage (AMD) processes are especially problematic because they affect the environmental quality of watersheds, restricting the use of surface water. Recent studies have shown that Cu isotopes are fractionated during the oxidative dissolution of primary sulfide minerals and could be used to trace metal cycling. However the chemistry of Cu in such environment is complex because Cu is redistributed within numerous secondary minerals and strongly dependent on the hydroclimatic conditions that control key parameters (pH, redox conditions). Finally, it remains difficult to compare the various field studies and deliver some strong general tendencies because of these changing conditions. For these reasons, concerted studies on Cu isotopes fractionation in waters impacted by AMD may help to reveal the sources and transport pathways of this important pollutant. To address this issue, we used a representative scenario of strong contamination by AMD in the Iberian Pyrite Belt (SW Spain), the Cobica River. The aim of our study is to measure the Cu isotopes signature in the waters (river, mine lake, water draining waste) of the small Cobica River system (Huelva, Spain), sampled during a short period (8 h) to avoid any change in the hydro-climatic conditions. This provided an instantaneous image of the isotopic Cu signature in a small mining systems and helped us to constrain both the processes affecting Cu isotopes and their use a potential tracer of metals in contaminated environments.
Collapse
Affiliation(s)
- Jérôme Viers
- Géosciences Environnement Toulouse (GET), Université de Toulouse, CNRS, IRD 14 avenue Edouard Belin, 31400 Toulouse, France.
| | - Jose Antonio Grande
- Centro de Investigación para la Ingeniería en Minería Sostenible, Escuela Técnica Superior de Ingeniería, Universidad de Huelva, Ctra. Palos de la Frontera, s/n, 21819 Palos de la Frontera, Huelva, Spain
| | - Cyril Zouiten
- Géosciences Environnement Toulouse (GET), Université de Toulouse, CNRS, IRD 14 avenue Edouard Belin, 31400 Toulouse, France
| | - Rémi Freydier
- HydroSciences UMR 5569, CNRS, Universités Montpellier I & II, IRD, Place Eugène Bataillon, CC MSE, 34095 Montpellier Cedex 5, France
| | - Jérémy Masbou
- Géosciences Environnement Toulouse (GET), Université de Toulouse, CNRS, IRD 14 avenue Edouard Belin, 31400 Toulouse, France
| | - Teresa Valente
- Instituto de Ciências da Terra (ICT), DCT (ECUM) Polo da Universidade do Minho, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Maria-Luisa de la Torre
- Centro de Investigación para la Ingeniería en Minería Sostenible, Escuela Técnica Superior de Ingeniería, Universidad de Huelva, Ctra. Palos de la Frontera, s/n, 21819 Palos de la Frontera, Huelva, Spain
| | - Christine Destrigneville
- Géosciences Environnement Toulouse (GET), Université de Toulouse, CNRS, IRD 14 avenue Edouard Belin, 31400 Toulouse, France
| | - Oleg S Pokrovsky
- Géosciences Environnement Toulouse (GET), Université de Toulouse, CNRS, IRD 14 avenue Edouard Belin, 31400 Toulouse, France
| |
Collapse
|
26
|
Cu Isotopic Composition in Surface Environments and in Biological Systems: A Critical Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14050538. [PMID: 28524094 PMCID: PMC5451988 DOI: 10.3390/ijerph14050538] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/11/2017] [Accepted: 05/11/2017] [Indexed: 01/04/2023]
Abstract
Copper (Cu) is a transition metal and an essential micronutrient for organisms, but also one of the most widespread toxic inorganic contaminants at very high content. The research on Cu isotopes has grown rapidly in the last decade. Hitherto, a large number of studies have been published on the theoretical fractionation mechanisms, experimental data and natural variations of Cu isotopes in variable environments and ecosystems. These studies reported a large variation of δ65Cu (-16.49 to +20.04‰) in terrestrial samples and showed that Cu isotopes could be fractionated by various biogeochemical processes to different extent. Several papers have previously reviewed the coupling of Cu and Zn isotope systematics, and we give here a tentative review of the recent publications only on Cu isotopesin variable surface repositories, animals and human beings, with a goal to attract much attention to research on Cu (and other metals) behaviors in the environment and biological systems.
Collapse
|
27
|
Marković T, Manzoor S, Humphreys-Williams E, Kirk GJ, Vilar R, Weiss DJ. Experimental Determination of Zinc Isotope Fractionation in Complexes with the Phytosiderophore 2'-Deoxymugeneic Acid (DMA) and Its Structural Analogues, and Implications for Plant Uptake Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:98-107. [PMID: 27750003 DOI: 10.1021/acs.est.6b00566] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The stable isotope signatures of zinc and other metals are increasingly used to study plant and soil processes. Complexation with phytosiderophores is a key reaction and understanding the controls of isotope fractionation is central to such studies. Here, we investigated isotope fractionation during complexation of Zn2+ with the phytosiderophore 2'-deoxymugeneic acid (DMA), and with three commercially available structural analogues of DMA: EDTA, TmDTA, and CyDTA. We used ion exchange chromatography to separate free and complexed zinc, and identified appropriate cation exchange resins for the individual systems. These were Chelex-100 for EDTA and CyDTA, Amberlite CG50 for TmDTA and Amberlite IR120 for DMA. With all the ligands we found preferential partitioning of isotopically heavy zinc in the complexed form, and the extent of fractionation was independent of the Zn:ligand ratio used, indicating isotopic equilibrium and that the results were not significantly affected by artifacts during separation. The fractionations (in ‰) were +0.33 ± 0.07 (1σ, n = 3), + 0.45 ± 0.02 (1σ, n = 2), + 0.62 ± 0.05 (1σ, n = 3) and +0.30 ± 0.07 (1σ, n = 4) for EDTA, TmDTA, CyDTA, and DMA, respectively. Despite the similarity in Zn-coordinating donor groups, the fractionation factors are significantly different and extent of fractionation seems proportional to the complexation stability constant. The extent of fractionation with DMA agreed with observed fractionations in zinc uptake by paddy rice in field experiments, supporting the possible involvement of DMA in zinc uptake by rice.
Collapse
Affiliation(s)
- Tamara Marković
- Department of Earth Science and Engineering, Imperial College London , London SW7 2AZ, United Kingdom
| | - Saba Manzoor
- Department of Earth Science and Engineering, Imperial College London , London SW7 2AZ, United Kingdom
| | | | - Guy Jd Kirk
- School of Water, Energy & Environment, Cranfield University , Cranfield, Bedford MK43 0AL, United Kingdom
| | - Ramon Vilar
- Department of Chemistry, Imperial College London , London SW7 2AZ, United Kingdom
| | - Dominik J Weiss
- Department of Earth Science and Engineering, Imperial College London , London SW7 2AZ, United Kingdom
- Stanford School for Earth, Energy and Environmental Sciences, Stanford University , Stanford California 94305, United States
| |
Collapse
|
28
|
Wiggenhauser M, Bigalke M, Imseng M, Müller M, Keller A, Murphy K, Kreissig K, Rehkämper M, Wilcke W, Frossard E. Cadmium Isotope Fractionation in Soil-Wheat Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:9223-31. [PMID: 27485095 DOI: 10.1021/acs.est.6b01568] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Analyses of stable metal isotope ratios constitute a novel tool in order to improve our understanding of biogeochemical processes in soil-plant systems. In this study, we used such measurements to assess Cd uptake and transport in wheat grown on three agricultural soils under controlled conditions. Isotope ratios of Cd were determined in the bulk C and A horizons, in the Ca(NO3)2-extractable Cd soil pool, and in roots, straw, and grains. The Ca(NO3)2-extractable Cd was isotopically heavier than the Cd in the bulk A horizon (Δ(114/110)Cdextract-Ahorizon = 0.16 to 0.45‰). The wheat plants were slightly enriched in light isotopes relative to the Ca(NO3)2-extractable Cd or showed no significant difference (Δ(114/110)Cdwheat-extract = -0.21 to 0.03‰). Among the plant parts, Cd isotopes were markedly fractionated: straw was isotopically heavier than roots (Δ(114/110)Cdstraw-root = 0.21 to 0.41‰), and grains were heavier than straw (Δ(114/110)Cdgrain-straw = 0.10 to 0.51‰). We suggest that the enrichment of heavy isotopes in the wheat grains was caused by mechanisms avoiding the accumulation of Cd in grains, such as the chelation of light Cd isotopes by thiol-containing peptides in roots and straw. These results demonstrate that Cd isotopes are significantly and systematically fractionated in soil-wheat systems, and the fractionation patterns provide information on the biogeochemical processes in these systems.
Collapse
Affiliation(s)
- Matthias Wiggenhauser
- Institute of Agricultural Sciences, ETH Zurich , Eschikon 33, CH-8315 Lindau, Switzerland
| | - Moritz Bigalke
- Institute of Geography, University of Bern , Hallerstrasse 12, CH-3012 Bern, Switzerland
| | - Martin Imseng
- Institute of Geography, University of Bern , Hallerstrasse 12, CH-3012 Bern, Switzerland
| | - Michael Müller
- Swiss Soil Monitoring Network (NABO), Agroscope , Reckenholzstrasse 191, CH-8046 Zürich, Switzerland
| | - Armin Keller
- Swiss Soil Monitoring Network (NABO), Agroscope , Reckenholzstrasse 191, CH-8046 Zürich, Switzerland
| | - Katy Murphy
- Department of Earth Science & Engineering, Imperial College London , SW7 2AZ London, U.K
| | - Katharina Kreissig
- Department of Earth Science & Engineering, Imperial College London , SW7 2AZ London, U.K
| | - Mark Rehkämper
- Department of Earth Science & Engineering, Imperial College London , SW7 2AZ London, U.K
| | - Wolfgang Wilcke
- Institute of Geography and Geoecology, Karlsruhe Institute of Technology (KIT) , P.O. Box 6980, D-76049 Karlsruhe, Germany
| | - Emmanuel Frossard
- Institute of Agricultural Sciences, ETH Zurich , Eschikon 33, CH-8315 Lindau, Switzerland
| |
Collapse
|
29
|
Babcsányi I, Chabaux F, Granet M, Meite F, Payraudeau S, Duplay J, Imfeld G. Copper in soil fractions and runoff in a vineyard catchment: Insights from copper stable isotopes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 557-558:154-62. [PMID: 26994803 DOI: 10.1016/j.scitotenv.2016.03.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/26/2016] [Accepted: 03/07/2016] [Indexed: 05/15/2023]
Abstract
Understanding the fate of copper (Cu) fungicides in vineyard soils and catchments is a prerequisite to limit the off-site impact of Cu. Using Cu stable isotopes, Cu retention in soils and runoff transport was investigated in relation to the use of Cu fungicides and the hydrological conditions in a vineyard catchment (Rouffach, Haut-Rhin, France; mean slope: 15%). The δ(65)Cu values of the bulk vineyard soil varied moderately through the depth of the soil profiles (-0.12 to 0.24‰±0.08‰). The values were in the range of those of the fungicides (-0.21 to 0.11‰) and included the geogenic δ(65)Cu value of the untreated soil (0.08‰). However, δ(65)Cu values significantly differed between particle-size soil fractions (-0.37±0.10‰ in fine clays and 0.23±0.07‰ in silt). Together with the soil mineralogy, the results suggested Cu isotope fractionation primarily associated with the clay and fine clay fractions that include both SOM and mineral phases. The vegetation did not affect the Cu isotope patterns in the vineyard soils. Cu export by runoff from the catchment accounted for 1% of the applied Cu mass from 11th May to 20(th) July 2011, covering most of the Cu use period. 84% of the exported Cu mass was Cu bound to suspended particulate matter (SPM). The runoff displayed δ(65)Cu values from 0.52 to 1.35‰ in the dissolved phase (<0.45μm) compared to -0.34 to -0.02‰ in the SPM phase, indicating that clay and fine clay fractions were the main vectors of SPM-bound Cu in runoff. Overall, this study shows that Cu stable isotopes may allow identifying the Cu distribution in the soil fractions and their contribution to Cu export in runoff from Cu-contaminated catchments.
Collapse
Affiliation(s)
- Izabella Babcsányi
- Laboratoire d'Hydrologie et de Géochimie de Strasbourg (LHyGeS), Université de Strasbourg/EOST, CNRS, 1 rue Blessig, 67084 Strasbourg Cedex, France
| | - François Chabaux
- Laboratoire d'Hydrologie et de Géochimie de Strasbourg (LHyGeS), Université de Strasbourg/EOST, CNRS, 1 rue Blessig, 67084 Strasbourg Cedex, France
| | - Mathieu Granet
- Laboratoire d'Hydrologie et de Géochimie de Strasbourg (LHyGeS), Université de Strasbourg/EOST, CNRS, 1 rue Blessig, 67084 Strasbourg Cedex, France
| | - Fatima Meite
- Laboratoire d'Hydrologie et de Géochimie de Strasbourg (LHyGeS), Université de Strasbourg/EOST, CNRS, 1 rue Blessig, 67084 Strasbourg Cedex, France
| | - Sylvain Payraudeau
- Laboratoire d'Hydrologie et de Géochimie de Strasbourg (LHyGeS), Université de Strasbourg/EOST, CNRS, 1 rue Blessig, 67084 Strasbourg Cedex, France
| | - Joëlle Duplay
- Laboratoire d'Hydrologie et de Géochimie de Strasbourg (LHyGeS), Université de Strasbourg/EOST, CNRS, 1 rue Blessig, 67084 Strasbourg Cedex, France
| | - Gwenaël Imfeld
- Laboratoire d'Hydrologie et de Géochimie de Strasbourg (LHyGeS), Université de Strasbourg/EOST, CNRS, 1 rue Blessig, 67084 Strasbourg Cedex, France.
| |
Collapse
|
30
|
Wiederhold JG. Metal stable isotope signatures as tracers in environmental geochemistry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:2606-24. [PMID: 25640608 DOI: 10.1021/es504683e] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The biogeochemical cycling of metals in natural systems is often accompanied by stable isotope fractionation which can now be measured due to recent analytical advances. In consequence, a new research field has emerged over the last two decades, complementing the traditional stable isotope systems (H, C, O, N, S) with many more elements across the periodic table (Li, B, Mg, Si, Cl, Ca, Ti, V, Cr, Fe, Ni, Cu, Zn, Ge, Se, Br, Sr, Mo, Ag, Cd, Sn, Sb, Te, Ba, W, Pt, Hg, Tl, U) which are being explored and potentially applicable as novel geochemical tracers. This review presents the application of metal stable isotopes as source and process tracers in environmental studies, in particular by using mixing and Rayleigh model approaches. The most important concepts of mass-dependent and mass-independent metal stable isotope fractionation are introduced, and the extent of natural isotopic variations for different elements is compared. A particular focus lies on a discussion of processes (redox transformations, complexation, sorption, precipitation, dissolution, evaporation, diffusion, biological cycling) which are able to induce metal stable isotope fractionation in environmental systems. Additionally, the usefulness and limitations of metal stable isotope signatures as tracers in environmental geochemistry are discussed and future perspectives presented.
Collapse
Affiliation(s)
- Jan G Wiederhold
- Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich , 8092 Zurich, Switzerland
| |
Collapse
|
31
|
Abstract
Biological carbon fixation is limited by the supply of Fe in vast regions of the global ocean. Dissolved Fe in seawater is primarily sourced from continental mineral dust, submarine hydrothermalism, and sediment dissolution along continental margins. However, the relative contributions of these three sources to the Fe budget of the open ocean remains contentious. By exploiting the Fe stable isotopic fingerprints of these sources, it is possible to trace distinct Fe pools through marine environments, and through time using sedimentary records. We present a reconstruction of deep-sea Fe isotopic compositions from a Pacific Fe-Mn crust spanning the past 76 My. We find that there have been large and systematic changes in the Fe isotopic composition of seawater over the Cenozoic that reflect the influence of several, distinct Fe sources to the central Pacific Ocean. Given that deeply sourced Fe from hydrothermalism and marginal sediment dissolution exhibit the largest Fe isotopic variations in modern oceanic settings, the record requires that these deep Fe sources have exerted a major control over the Fe inventory of the Pacific for the past 76 My. The persistence of deeply sourced Fe in the Pacific Ocean illustrates that multiple sources contribute to the total Fe budget of the ocean and highlights the importance of oceanic circulation in determining if deeply sourced Fe is ever ventilated at the surface.
Collapse
|
32
|
Jiskra M, Saile D, Wiederhold JG, Bourdon B, Björn E, Kretzschmar R. Kinetics of Hg(II) exchange between organic ligands, goethite, and natural organic matter studied with an enriched stable isotope approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:13207-13217. [PMID: 25280234 DOI: 10.1021/es503483m] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The mobility and bioavailability of toxic Hg(II) in the environment strongly depends on its interactions with natural organic matter (NOM) and mineral surfaces. Using an enriched stable isotope approach, we investigated the exchange of Hg(II) between dissolved species (inorganically complexed or cysteine-, EDTA-, or NOM-bound) and solid-bound Hg(II) (carboxyl-/thiol-resin or goethite) over 30 days under constant conditions (pH, Hg and ligand concentrations). The Hg(II)-exchange was initially fast, followed by a slower phase, and depended on the properties of the dissolved ligands and sorbents. The results were described by a kinetic model allowing the simultaneous determination of adsorption and desorption rate coefficients. The time scales required to reach equilibrium with the carboxyl-resin varied greatly from 1.2 days for Hg(OH)2 to 16 days for Hg(II)-cysteine complexes and approximately 250 days for EDTA-bound Hg(II). Other experiments could not be described by an equilibrium model, suggesting that a significant fraction of total-bound Hg was present in a non-exchangeable form (thiol-resin and NOM: 53-58%; goethite: 22-29%). Based on the slow and incomplete exchange of Hg(II) described in this study, we suggest that kinetic effects must be considered to a greater extent in the assessment of the fate of Hg in the environment and the design of experimental studies, for example, for stability constant determination or metal isotope fractionation during sorption.
Collapse
Affiliation(s)
- Martin Jiskra
- Soil Chemistry, Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zurich , CH-8092 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|