1
|
Iurk VB, Ingles M, Correa GS, Silva CR, Staichak G, Pileggi SAV, Christo SW, Domit C, Pileggi M. The potential influence of microplastics on the microbiome and disease susceptibility in sea turtles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174298. [PMID: 38944299 DOI: 10.1016/j.scitotenv.2024.174298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
Microplastics (MPs) are particles with sizes of ≤5 mm formed when plastic materials break down. These contaminants are often found in marine environments, making it easy for sea turtles to ingest them and for their microbiome to be exposed. MPs can disrupt microbiome balance, leading to dysbiosis and making organisms more susceptible to diseases. Owing to the significance of these processes, it is crucial to dedicate research to studying the metabolic and genetic analysis of the gut microbiome in sea turtles. The objective of this study was to describe the effects of exposure to MPs on the gut microbiome of sea turtles, based on current knowledge. This review also aimed to explore the potential link between MP exposure and disease susceptibility in these animals. We show that the metabolites produced by the gut microbiome, such as short-chain fatty acids (SCFAs), polyamines, and polysaccharide A, can regulate the expression of host genes. Regulation occurs through various mechanisms, including histone acetylation, DNA methylation, and the modulation of cytokine gene expression. These processes are essential for preserving the integrity of the gut mucosa and enhancing the functionality of immune cells. Exposure to MPs disrupts the gut microbiome and alters gene expression, leading to immune system disturbances in sea turtles. This vulnerability makes turtles more susceptible to opportunistic microorganisms such as chelonid alphaherpesvirus 5 (ChAHV5), which is linked to the development of fibropapillomatosis (FP). Additionally, targeted dietary interventions or the use of live microorganisms such as probiotics can help restore microbial biodiversity and recover lost metabolic pathways. The goal of these interventions is to restore the functionality of the immune system in sea turtles undergoing rehabilitation at specialized centers. The gut microbiome plays a crucial role in sea turtle health, sparking discussions and investigations that can potentially lead to promising treatments for these animals.
Collapse
Affiliation(s)
- Vitória Bonfim Iurk
- Laboratório de Ecologia e Conservação, Centro de Estudos do Mar, Universidade Federal do Paraná, PR 832555-000, Brazil; Laboratório de Microbiologia Ambiental, Departamento de Biologia Estrutural, Molecular e Genética, Setor de Ciências Biológicas e da Saúde, Universidade Estadual de Ponta Grossa, PR 84030-000, Brazil
| | - Mariana Ingles
- Laboratório de Ecologia e Conservação, Centro de Estudos do Mar, Universidade Federal do Paraná, PR 832555-000, Brazil
| | - Giovana Sequinel Correa
- Laboratório de Virologia Aplicada, Centro de Ciências Biológicas, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, SC 88040-900, Brazil
| | - Caroline Rosa Silva
- Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, PR 87020-900, Brazil
| | - Gabriel Staichak
- Instituto de Biociências da Universidade Federal de Mato Grosso, Universidade Federal do Mato Grosso, MT 79070-900, Brazil
| | - Sônia Alvim Veiga Pileggi
- Laboratório de Microbiologia Ambiental, Departamento de Biologia Estrutural, Molecular e Genética, Setor de Ciências Biológicas e da Saúde, Universidade Estadual de Ponta Grossa, PR 84030-000, Brazil.
| | - Susete Wambier Christo
- Laboratório de Zoologia, Departamento de Biologia Geral, Setor de Ciências Biológicas e da Saúde, Universidade Estadual de Ponta Grossa, PR 84030-000, Brazil
| | - Camila Domit
- Laboratório de Ecologia e Conservação, Centro de Estudos do Mar, Universidade Federal do Paraná, PR 832555-000, Brazil.
| | - Marcos Pileggi
- Laboratório de Microbiologia Ambiental, Departamento de Biologia Estrutural, Molecular e Genética, Setor de Ciências Biológicas e da Saúde, Universidade Estadual de Ponta Grossa, PR 84030-000, Brazil.
| |
Collapse
|
2
|
Espinoza J, Alfaro-Núñez A, Cedillo-Peláez C, Fernández-Sanz H, Mancini A, Zavala-Norzagaray AA, Ley-Quiñonez CP, López ES, Garcia-Bereguiain MA, Alonso Aguirre A, Reséndiz E. Epidemiology of marine turtle fibropapillomatosis and tumour-associated chelonid alphaherpesvirus 5 (ChHV5; Scutavirus chelonidalpha5) in North-Western Mexico: a scoping review implementing the one health approach. Vet Res Commun 2024; 48:2943-2961. [PMID: 38922387 PMCID: PMC11442556 DOI: 10.1007/s11259-024-10429-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 05/29/2024] [Indexed: 06/27/2024]
Abstract
Fibropapillomatosis (FP) - tumour-associated chelonid alphaherpesvirus 5 (ChHV5; Scutavirus chelonidalpha5) - is a disease that affect marine turtles around the world, and characterized by the formation of cutaneous tumours that can appear anywhere on the body. We carried out a thorough literature search (from 1990 to 2024) in the feeding sites of North-western Mexico, a region that hosts important habitats for feeding, development, and reproduction for five of the seven existing sea turtle species. We found 18 reports recording a total of 32 cases of FP and/or ChHV5/Scutavirus chelonidalpha5 in coastal and insular areas of North-western Mexico. Baja California Sur resulted with the highest number of cases (75%). While the first case of ChHV5/Scutavirus chelonidalpha5 infection was reported in 2004, the presence of FP tumours was reported in 2014 and became more frequent between 2019 and 2024. The affected species were black, Chelonia mydas (50%), olive ridley, Lepidochelys olivacea (46.8%) and loggerhead turtles, Caretta caretta (3.2%). Tumours occurred mainly in anterior flippers (46.1%) and neck (22.5%), and most had a nodular and verrucous appearance with a rough surface. In the study region, there is a potential sign of the emergence of the ChHV5/Scutavirus chelonidalpha5 infections and FP disease during the last 20 years, with a rapid increase during the last 10 years. As long as infections by ChHV5/Scutavirus chelonidalpha5 and the prevalence of the FP disease may be potentially influenced by anthropogenic activities, a One Health approach is needed to understand and improve sea turtles' health.
Collapse
Affiliation(s)
- Joelly Espinoza
- Posgrado en Ciencias Marinas y Costeras (CIMACO), Universidad Autónoma de Baja California Sur (UABCS), Carretera al Sur Km 5.5., Apartado Postal 19-B, 23080, La Paz, Baja California Sur, Mexico
- Health assessments in sea turtles from B.C.S, La Paz, 23085, Baja California Sur, México
| | - Alonzo Alfaro-Núñez
- Department of Clinical Biochemistry, Naestved Hospital, Ringstedgade 57a, Naestved, 4700, Denmark.
- Section for Evolutionary Genomics, GLOBE Institute, University of Copenhagen, Øster Farimagsgade 5, Copenhagen K, 1353, Denmark.
| | - Carlos Cedillo-Peláez
- Laboratorio de Inmunología experimental, Instituto Nacional de Pediatría, Insurgentes Cuicuilco, Av. Insurgentes Sur 3700, Coyoacán, Ciudad de México, 04530, Mexico
| | - Helena Fernández-Sanz
- Posgrado en Ciencias Marinas y Costeras (CIMACO), Universidad Autónoma de Baja California Sur (UABCS), Carretera al Sur Km 5.5., Apartado Postal 19-B, 23080, La Paz, Baja California Sur, Mexico
- Health assessments in sea turtles from B.C.S, La Paz, 23085, Baja California Sur, México
| | - Agnese Mancini
- Grupo Tortuguero de las Californias A.C, La Paz, 23098, Baja California Sur, Mexico
| | - Alan A Zavala-Norzagaray
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (IPN-CIIDIR), Mexico City, Mexico
| | - Cesar Paul Ley-Quiñonez
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (IPN-CIIDIR), Mexico City, Mexico
| | - Erika Santacruz López
- Grupo tortuguero de Bahía de los Ángeles, Bahía de los ángeles, 22980, Baja California, Mexico
| | | | - A Alonso Aguirre
- Department of Fish, Wildlife, and Conservation Biology, Warner College of Natural Resources, Colorado State University, Fort Collins, CO, USA
| | - Eduardo Reséndiz
- Departamento académico de Ciencia Animal y Conservación del Hábitat, Universidad Autónoma de Baja California Sur (UABCS), Carretera al Sur KM 5.5., Apartado Postal 19-B, La Paz, 23080, Baja California Sur, México
- Asociación Mexicana de Veterinarios de Tortugas A.C, Xalapa, 91050, Veracruz, México
| |
Collapse
|
3
|
Kojima LV, Kohl MT, Rainwater TR, Parrott BB, Tuberville TD. Association of size, climatic factors, and mercury body burdens with movement behavior in American alligators. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:170859. [PMID: 38365032 DOI: 10.1016/j.scitotenv.2024.170859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024]
Abstract
Animal movement behavior provides insight into organismal and ecological function. These functions are often disturbed by anthropogenic influences, such as urbanization and habitat fragmentation, yet the effects of long-term exposures to environmental contaminants on movement have yet to be examined. The long lifespans and broad diets of crocodilians often lead to bioaccumulation of persistent contaminants and confer a marked vulnerability to consequent physiological effects. In this study, we investigate the relationships between blood concentrations of mercury (Hg), a widespread contaminant with well characterized neurotoxicity, and movement patterns in free living, naturally exposed American alligators (Alligator mississippiensis). We sampled adult male alligators from two former nuclear cooling reservoirs with different Hg contamination histories and placed GPS transmitters on a subset of individuals from each reservoir (13 total). Data collected over the ensuing two years were analyzed using a linear mixed effects framework combined with AICc model selection to resolve the relationships linking seasonal alligator movement (daily activity (s) and daily distance (m)) and home range to climate conditions, individual traits, and blood Hg concentrations (mg/kg; wet weight). We found that climate conditions, alligator size (snout-vent-length), and blood Hg concentrations all influence alligator daily activity but do not contribute to alligator daily movement (distance). Furthermore, we found that blood Hg concentrations were strongly correlated with seasonal home range size where individuals with elevated Hg had larger home ranges in spring, fall, and winter. These findings provide insight into how climate, anthropogenic contaminants, and individual traits relate to alligator movement patterns across seasons.
Collapse
Affiliation(s)
- Laura V Kojima
- Savannah River Ecology Laboratory, University of Georgia, P.O. Drawer E, Aiken, SC 29802, USA; Odum School of Ecology, University of Georgia, 140 E Green St, Athens, GA 30602, USA.
| | - Michel T Kohl
- Warnell School of Forestry and Natural Resources, University of Georgia, 180 E Green St, Athens, GA 30602, USA.
| | - Thomas R Rainwater
- Baruch Institute of Coastal Ecology and Forest Science, Clemson University, Georgetown, SC, USA; Tom Yawkey Wildlife Center, Georgetown, SC, USA
| | - Benjamin B Parrott
- Savannah River Ecology Laboratory, University of Georgia, P.O. Drawer E, Aiken, SC 29802, USA; Odum School of Ecology, University of Georgia, 140 E Green St, Athens, GA 30602, USA.
| | - Tracey D Tuberville
- Savannah River Ecology Laboratory, University of Georgia, P.O. Drawer E, Aiken, SC 29802, USA.
| |
Collapse
|
4
|
Ali Z, Khan I, Iqbal MS, Zhang Q, Ai X, Shi H, Ding L, Hong M. Toxicological effects of copper on bioaccumulation and mRNA expression of antioxidant, immune, and apoptosis-related genes in Chinese striped-necked turtle ( Mauremys sinensis). Front Physiol 2023; 14:1296259. [PMID: 38028770 PMCID: PMC10665912 DOI: 10.3389/fphys.2023.1296259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Heavy metals are among the most ubiquitous environmental pollutants of recent decades. Copper is commonly used to control algal blooms or macrophyte and waste infestations, its ambient concentration has increased significantly, indicating possible environmental risk. To investigate the effects of copper exposure on bioaccumulation, antioxidant defense, immune response, and apoptosis in the Chinese Striped-necked Turtle Mauremys sinensis, three experimental groups, control (0.0 mg/L), Cu2 (2 mg/L) and Cu4 (4 mg/L) were designed, and sampled at 14 and 28 days. Results showed that copper accumulates in different organs depending on the concentration and exposure time, Liver > Kidney > Gut > Heart > Brain > Muscle and the time order was 28 days > 14 days. The liver enzymes AST, ALT, and ALP decreased when the turtles were exposed to copper stress, while the contents of bilirubin TBIL, DBIL, IBIL, and LDH showed a significant upward trend. Similarly, the mRNA expression level of acetylcholinesterase AChE in the brain was significantly downregulated upon copper exposure. An upward trend was noticed in the liver Metallothionein MT mRNA expression levels compared to the control group. The mRNA expression levels of antioxidant enzymes CAT, SOD, MnSOD, and GSH-PX1 in the liver increased initially and then significantly decreased. Furthermore, the relative mRNA expression levels of inflammatory cytokines IL-1β, IL-8, TNF-α, and IFN-γ involved in inflammatory response significantly upregulated. Copper significantly increased the hepatic mRNA transcription of heat shock proteins HSP70 and HSP90 at different exposure durations. In addition, the relative mRNA levels of caspase3, caspase8, and caspase9 related to the caspase-dependent apoptotic pathway significantly increased under copper stress. These results explain that copper toxicity causes bioaccumulation, promotes oxidative stress, obstructs immunity, and induces inflammation and apoptosis by altering their gene expression levels in M. sinensis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Li Ding
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Meiling Hong
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| |
Collapse
|
5
|
Vanstreels RET, Durant A, Santos AP, Santos RG, Sarmiento AMS, Rossi S, Setim FE, Gattamorta MA, Matushima ER, Mayorga LFSP, Uhart MM. Exploring the relationship between environmental drivers and the manifestation of fibropapillomatosis in green turtles (Chelonia mydas) in eastern Brazil. PLoS One 2023; 18:e0290312. [PMID: 37616208 PMCID: PMC10449228 DOI: 10.1371/journal.pone.0290312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/05/2023] [Indexed: 08/26/2023] Open
Abstract
Fibropapillomatosis (FP) is a disease characterized by epithelial tumors that can impede life-sustaining activities of sea turtles, especially green turtles (Chelonia mydas). FP is caused by a herpesvirus, but environmental factors are also thought to play a role in triggering FP tumor growth. In this study, we evaluate the epidemiology of FP tumors in green turtles along the coast of Espírito Santo, Brazil, a region where juvenile green turtles are known to aggregate with high FP prevalence. A dataset comprising 2024 beach-cast green turtles recorded through daily beach surveys on 400 km of coastline from 2018 to 2021 (inclusive) was evaluated. FP tumors were recorded in 40.9% of the individuals in this dataset, and presence of FP tumors was predicted by individual variables (presence of marine leeches, stranding code, curved carapace length, body mass-size residual) and characteristics of the stranding site (distance to nearest metallurgical plant, mean sea surface salinity (SSS), annual range of sea surface temperature (SST)). Additionally, a second dataset comprising detailed information about the size and anatomical distribution of tumors in 271 green turtles with FP from the same region was evaluated. Hierarchical clustering analysis revealed these turtles could be classified in three groups according to the anatomical distribution of their tumors, and in turn the group to which each turtle was assigned could be predicted by the study period (2010-2014 vs. 2018-2022) and by characteristics of the stranding/capture site (green turtle stranding density, mean sea surface chlorophyll-a concentration, mean SSS, mean SST, annual range of SST). These results corroborate that individual and environmental factors play a significant role driving FP epidemiology. Furthermore, the results suggest that rather than behaving as a single entity, FP may be seen as a mosaic of distinct anatomical patterns that are not necessarily driven by the same environmental factors.
Collapse
Affiliation(s)
- Ralph E. T. Vanstreels
- Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, CA, United States of America
- Instituto de Pesquisa e Reabilitação de Animais Marinhos, Cariacica, ES, Brazil
- Faculdade de Medicina Veterinária e Zootecnia, Departamento de Patologia, Laboratório de Patologia Comparada de Animais Selvagens, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Alexis Durant
- Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, CA, United States of America
| | - Allan P. Santos
- Instituto de Pesquisa e Reabilitação de Animais Marinhos, Cariacica, ES, Brazil
| | - Robson G. Santos
- Laboratório de Biologia Marinha e Conservação, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | - Angélica M. S. Sarmiento
- Faculdade de Medicina Veterinária e Zootecnia, Departamento de Patologia, Laboratório de Patologia Comparada de Animais Selvagens, Universidade de São Paulo, São Paulo, SP, Brazil
- Instituto Argonauta para a Conservação Costeira e Marinha, Ubatuba, SP, Brazil
| | - Silmara Rossi
- Projeto Cetáceos da Costa Branca, Universidade do Estado do Rio Grande do Norte, Areia Branca, RN, Brazil
| | - Fabiola E. Setim
- Faculdade de Medicina Veterinária e Zootecnia, Departamento de Patologia, Laboratório de Patologia Comparada de Animais Selvagens, Universidade de São Paulo, São Paulo, SP, Brazil
- Universidade São Judas, São Paulo, SP, Brazil
- Universidade Paulista, São Paulo, SP, Brazil
| | - Marco A. Gattamorta
- Faculdade de Medicina Veterinária e Zootecnia, Departamento de Patologia, Laboratório de Patologia Comparada de Animais Selvagens, Universidade de São Paulo, São Paulo, SP, Brazil
- Instituto Federal de São Paulo, São Paulo, SP, Brazil
| | - Eliana R. Matushima
- Faculdade de Medicina Veterinária e Zootecnia, Departamento de Patologia, Laboratório de Patologia Comparada de Animais Selvagens, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Marcela M. Uhart
- Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, CA, United States of America
| |
Collapse
|
6
|
Chaousis S, Leusch FDL, Nouwens A, Melvin SD, van de Merwe JP. Influence of chemical dose and exposure duration on protein synthesis in green sea turtle primary cells. J Proteomics 2023; 285:104942. [PMID: 37285907 DOI: 10.1016/j.jprot.2023.104942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 05/14/2023] [Accepted: 05/24/2023] [Indexed: 06/09/2023]
Abstract
Understanding the impacts of chemical exposure in marine wildlife is challenging, due to practical and ethical constraints that preclude traditional toxicology research on these animals. This study addressed some of these limitations by presenting an ethical and high throughput cell-based approach to elucidate molecular-level effects of contaminants on sea turtles. The experimental design addressed basic questions of cell-based toxicology, including chemical dose and exposure time. Primary green turtle skin cells were exposed to polychlorinated biphenyl (PCB) 153 and perfluorononanoic acid (PFNA) for 24 and 48 h, at three sub-lethal, environmentally relevant concentrations (1, 10 and 100 μg/L). Sequential window acquisition of all theoretical mass spectra (SWATH-MS) identified over 1000 differentially abundant proteins within the 1% false discovery rate (FDR) threshold. The 24 h exposure resulted in a greater number of differentially abundant proteins, compared to 48 h exposure, for both contaminants. However, there were no statistically significant dose-response relationships for the number of differentially synthesised proteins, nor differences in the proportion of increased vs decreased proteins between or within exposure times. Known in vivo markers of contaminant exposure, superoxide dismutase and glutathione S-transferase, were differentially abundant following exposure to PCB153 and PFNA. SIGNIFICANCE: Cell-based (in vitro) proteomics provides an ethical and high throughput approach to understanding the impacts of chemical contamination on sea turtles. Through investigating effects of chemical dose and exposure duration on unique protein abundance in vitro, this study provides an optimised framework for conducting cell-based studies in wildlife proteomics, and highlights that proteins detected in vitro could act as biomarkers of chemical exposure and effect in vivo.
Collapse
Affiliation(s)
- Stephanie Chaousis
- Griffith School of Science and Environment and the Australian Rivers Institute, Griffith Univeristy, Building 51, Gold Coast Campus, QLD 4222, Australia
| | - Frederic D L Leusch
- Griffith School of Science and Environment and the Australian Rivers Institute, Griffith Univeristy, Building 51, Gold Coast Campus, QLD 4222, Australia
| | - Amanda Nouwens
- School of Chemistry and Molecular Biology, The University of Queensland, Building 76, QLD 4067, Australia
| | - Steven D Melvin
- Griffith School of Science and Environment and the Australian Rivers Institute, Griffith Univeristy, Building 51, Gold Coast Campus, QLD 4222, Australia
| | - Jason P van de Merwe
- Griffith School of Science and Environment and the Australian Rivers Institute, Griffith Univeristy, Building 51, Gold Coast Campus, QLD 4222, Australia.
| |
Collapse
|
7
|
Rossi S, de Farias DSD, da Costa Bomfim A, Carreira RS, Grisi-Filho JHH, Massone CG, de Lima Silva FJ, Gavilan SA. Concentrations of polycyclic aromatic hydrocarbons (PAHs) in liver samples of green turtles Chelonia mydas stranded in the Potiguar Basin, northeastern Brazil. MARINE POLLUTION BULLETIN 2023; 193:115264. [PMID: 37423081 DOI: 10.1016/j.marpolbul.2023.115264] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
Sea turtles are affected by pollutants worldwide, and the polycyclic aromatic hydrocarbons (PAHs) have been detected in different types of samples and at high levels in some cases. The present study brings concentrations of 37 PAHs in liver samples of 17 green turtles Chelonia mydas stranded in northeastern Brazil [four with cutaneous tumors of fibropapillomatosis (FP), being classified as FP+]. Six PAHs were detected in 100% of the liver samples, and all alkylated PAHs were frequently quantified. High levels of phenanthrene (771.20 and 794.43 ng g-1 d.w.) and fluorene (1882.36 ng g-1 d.w.) were found in three females FP- (without FP cutaneous tumors). On the other hand, one green turtle FP+ had the higher level of naphthalene (531.70 ng g-1 d.w.), compound detected in 82.35 % of the samples. Our study brings additional baseline of organic pollutants in green turtles, improving knowledge on bioaccumulation of these compounds in sea turtles.
Collapse
Affiliation(s)
- Silmara Rossi
- Projeto Cetáceos da Costa Branca - Universidade do Estado do Rio Grande do Norte (PCCB-UERN), Mossoró, RN, Brazil; Centro de Estudos e Monitoramento Ambiental (CEMAM), Areia Branca, RN, Brazil; Laboratório de Morfofisiologia de Vertebrados, Departamento de Morfologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil.
| | - Daniel Solon Dias de Farias
- Projeto Cetáceos da Costa Branca - Universidade do Estado do Rio Grande do Norte (PCCB-UERN), Mossoró, RN, Brazil; Centro de Estudos e Monitoramento Ambiental (CEMAM), Areia Branca, RN, Brazil; Laboratório de Morfofisiologia de Vertebrados, Departamento de Morfologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Aline da Costa Bomfim
- Projeto Cetáceos da Costa Branca - Universidade do Estado do Rio Grande do Norte (PCCB-UERN), Mossoró, RN, Brazil; Centro de Estudos e Monitoramento Ambiental (CEMAM), Areia Branca, RN, Brazil; Laboratório de Morfofisiologia de Vertebrados, Departamento de Morfologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Renato S Carreira
- Laboratório de Estudos Marinhos e Ambientais (LabMAM), Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil
| | - José Henrique Hildebrand Grisi-Filho
- Laboratório de Epidemiologia e Biostatística (LEB), Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Carlos G Massone
- Laboratório de Estudos Marinhos e Ambientais (LabMAM), Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil
| | - Flávio José de Lima Silva
- Projeto Cetáceos da Costa Branca - Universidade do Estado do Rio Grande do Norte (PCCB-UERN), Mossoró, RN, Brazil; Centro de Estudos e Monitoramento Ambiental (CEMAM), Areia Branca, RN, Brazil; Departamento de Turismo, Universidade do Estado do Rio Grande do Norte (UERN), Natal, RN, Brazil
| | - Simone Almeida Gavilan
- Projeto Cetáceos da Costa Branca - Universidade do Estado do Rio Grande do Norte (PCCB-UERN), Mossoró, RN, Brazil; Centro de Estudos e Monitoramento Ambiental (CEMAM), Areia Branca, RN, Brazil; Laboratório de Morfofisiologia de Vertebrados, Departamento de Morfologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil
| |
Collapse
|
8
|
Manes C, Carthy RR, Hull V. A Coupled Human and Natural Systems Framework to Characterize Emerging Infectious Diseases-The Case of Fibropapillomatosis in Marine Turtles. Animals (Basel) 2023; 13:ani13091441. [PMID: 37174478 PMCID: PMC10177368 DOI: 10.3390/ani13091441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Emerging infectious diseases of wildlife have markedly increased in the last few decades. Unsustainable, continuous, and rapid alterations within and between coupled human and natural systems have significantly disrupted wildlife disease dynamics. Direct and indirect anthropogenic effects, such as climate change, pollution, encroachment, urbanization, travel, and trade, can promote outbreaks of infectious diseases in wildlife. We constructed a coupled human and natural systems framework identifying three main wildlife disease risk factors behind these anthropogenic effects: (i) immune suppression, (ii) viral spillover, and (iii) disease propagation. Through complex and convoluted dynamics, each of the anthropogenic effects and activities listed in our framework can lead, to some extent, to one or more of the identified risk factors accelerating disease outbreaks in wildlife. In this review, we present a novel framework to study anthropogenic effects within coupled human and natural systems that facilitate the emergence of infectious disease involving wildlife. We demonstrate the utility of the framework by applying it to Fibropapillomatosis disease of marine turtles. We aim to articulate the intricate and complex nature of anthropogenically exacerbated wildlife infectious diseases as multifactorial. This paper supports the adoption of a One Health approach and invites the integration of multiple disciplines for the achievement of effective and long-lasting conservation and the mitigation of wildlife emerging diseases.
Collapse
Affiliation(s)
- Costanza Manes
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA
- One Health Center of Excellence, University of Florida, Gainesville, FL 32611, USA
| | - Raymond R Carthy
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA
- U.S. Geological Survey, Florida Cooperative Fish and Wildlife Research Unit, University of Florida, Gainesville, FL 32611, USA
| | - Vanessa Hull
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
9
|
Jones K, Limpus CJ, Brodie J, Jones R, Read M, Shum E, Bell IP, Ariel E. Spatial distribution of fibropapillomatosis in green turtles along the Queensland coast and an investigation into the influence of water quality on prevalence. CONSERVATION SCIENCE AND PRACTICE 2022. [DOI: 10.1111/csp2.12755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Karina Jones
- College of Public Health, Medical and Veterinary Sciences James Cook University Townsville Queensland Australia
- College of Medicine and Dentistry James Cook University Townsville Queensland Australia
| | - Colin J. Limpus
- Queensland Department of Environment and Science Brisbane Queensland Australia
| | - Jon Brodie
- James Cook University ARC Centre of Excellence for Coral Reef Studies Townsville Queensland Australia
- James Cook University, Centre for Tropical Water and Aquatic Ecosystem Research Townsville Queensland Australia
| | - Rhondda Jones
- James Cook University Division of Tropical Health and Medicine Townsville Queensland Australia
| | - Mark Read
- Great Barrier Reef Marine Park Authority Townsville Queensland Australia
| | - Edith Shum
- College of Public Health, Medical and Veterinary Sciences James Cook University Townsville Queensland Australia
| | - Ian P. Bell
- Queensland Department of Environment and Science Townsville Australia
| | - Ellen Ariel
- College of Public Health, Medical and Veterinary Sciences James Cook University Townsville Queensland Australia
| |
Collapse
|
10
|
Fuller N, Anzalone SE, Huff Hartz KE, Whitledge GW, Acuña S, Magnuson JT, Schlenk D, Lydy MJ. Bioavailability of legacy and current-use pesticides in juvenile Chinook salmon habitat of the Sacramento River watershed: Importance of sediment characteristics and extraction techniques. CHEMOSPHERE 2022; 298:134174. [PMID: 35276115 DOI: 10.1016/j.chemosphere.2022.134174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/22/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
The Sacramento River watershed, California, provides important rearing and migratory habitat for several species of conservation concern. Studies have suggested significant benefits for juvenile fish rearing in floodplain habitats of the watershed compared to the mainstem Sacramento River. However, the potential for contaminant exposure in each of these two habitats is poorly understood. Consequently, the present study aimed to determine the distribution and occurrence of bioavailable pesticides within two known salmon habitats using a suite of approaches including exhaustive chemical extraction, single-point Tenax extraction (SPTE) and ex situ passive sampling. Sediment samples were collected from sites within both habitats twice annually in 2019 and 2020, with inundation of the floodplain and high flows for both areas in 2019 and low flow conditions observed in 2020. Sediment characteristics including total organic carbon, black carbon and particle size distribution were determined to elucidate the influence of physical characteristics on pesticide distribution. Using exhaustive extractions, significantly greater sediment concentrations of organochlorines were observed in the floodplain compared to the Sacramento River in both years, with bioaccessible organochlorine concentrations also significantly greater in the floodplain (ANOVA, p < 0.05). Using both SPTEs and exhaustive extractions, significantly fewer pesticides were detected across both sites under low flow conditions as compared to high flow conditions (Poisson regression, p < 0.05). Sediment characteristics including percent fines and black carbon had significant positive relationships with total and bioaccessible pyrethroid and organochlorine concentrations. Fewer analytes were detected using low-density polyethylene (LDPE) passive samplers as compared to SPTEs, suggesting greater sensitivity of the Tenax technique for bioavailability assessments. These findings suggest that threatened juvenile fish populations rearing on the floodplain may have greater exposure to organochlorines than fish inhabiting adjacent riverine habitats, and that pesticide exposure of resident biota may be exacerbated during high-flow conditions.
Collapse
Affiliation(s)
- Neil Fuller
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Department of Zoology, Southern Illinois University, Carbondale, Illinois, 62901, USA
| | - Sara E Anzalone
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Department of Zoology, Southern Illinois University, Carbondale, Illinois, 62901, USA
| | - Kara E Huff Hartz
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Department of Zoology, Southern Illinois University, Carbondale, Illinois, 62901, USA
| | - Gregory W Whitledge
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Department of Zoology, Southern Illinois University, Carbondale, Illinois, 62901, USA
| | - Shawn Acuña
- Metropolitan Water District of Southern California, Sacramento, CA, 95814, USA
| | - Jason T Magnuson
- Department of Environmental Sciences, University of California Riverside, Riverside, CA, 92521, USA
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California Riverside, Riverside, CA, 92521, USA
| | - Michael J Lydy
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Department of Zoology, Southern Illinois University, Carbondale, Illinois, 62901, USA.
| |
Collapse
|
11
|
Muñoz Tenería FA, Labrada-Martagón V, Herrera-Pavón RL, Work TM, González-Ballesteros E, Negrete-Philippe AC, Maldonado-Saldaña G. Fibropapillomatosis dynamics in green sea turtles Chelonia mydas over 15 years of monitoring in Akumal Bay, Quintana Roo, Mexico. DISEASES OF AQUATIC ORGANISMS 2022; 149:133-143. [PMID: 35735233 DOI: 10.3354/dao03669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fibropapillomatosis (FP) is a tumor disease that affects all sea turtle species but is mainly seen in green turtles Chelonia mydas. The pathology of FP has been described extensively, but its dynamics in populations over time have been less studied. We analyzed the dynamics of FP in a population of green turtles in Akumal Bay on the central coast of the Mexican Caribbean. A total of 475 green turtles were captured over 15 yr (2004-2018). The highest prevalence of FP was found in the largest turtles, and there was a positive relationship between FP prevalence and size of turtles. FP was first detected in 2008 at a prevalence of 1.6%, and annual prevalence increased markedly from 17.9% in 2015 to 54% by 2018. Likewise, severity of FP increased over time, with most turtles falling into moderately to severely diseased categories (tumor score 2). The average size of turtles with FP was significantly larger than the size of individuals without FP. Regression of tumors was seen in 21% of turtles, tumor score was higher in smaller individuals, and only tumor score 2 was present in the largest sea turtles. An increase in the prevalence and tumor score of FP coincided with the massive arrival of Sargassum in 2015, suggesting that altered environmental conditions may have played a role. The increased prevalence of FP in Akumal Bay prompts the need to explain what might be driving this phenomenon and how widespread it is in the Caribbean.
Collapse
Affiliation(s)
- Fernando A Muñoz Tenería
- Laboratorio de Inmunología, Facultad de Agronomía y Veterinaria, Universidad Autónoma de San Luis Potosí, S.L.P., CP 78399, Mexico
| | | | | | | | | | | | | |
Collapse
|
12
|
Manes C, Pinton D, Canestrelli A, Capua I. Occurrence of Fibropapillomatosis in Green Turtles ( Chelonia mydas) in Relation to Environmental Changes in Coastal Ecosystems in Texas and Florida: A Retrospective Study. Animals (Basel) 2022; 12:1236. [PMID: 35625082 PMCID: PMC9137486 DOI: 10.3390/ani12101236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/21/2022] Open
Abstract
Fibropapillomatosis is a neoplastic disease of marine turtles, with green turtles (Chelonia mydas) being the most affected species. Fibropapillomatosis causes debilitating tumor growths on soft tissues and internal organs, often with lethal consequences. Disease incidence has been increasing in the last few decades and the reason is still uncertain. The potential viral infectious agent of Fibropapillomatosis, chelonid herpesvirus 5, has been co-evolving with its sea turtle host for millions of years and no major mutation linked with increased disease occurrence has been detected. Hence, frequent outbreaks in recent decades are likely attributable to external drivers such as large-scale anthropogenic changes in the green turtle coastal marine ecosystem. This study found that variations in sea surface temperature, salinity, and nutrient effluent discharge from nearby rivers were correlated with an increased incidence of the disease, substantiating that these may be among the significant environmental drivers impacting Fibropapillomatosis prevalence. This study offers data and insight on the need to establish a baseline of environmental factors which may drive Fibropapillomatosis and its clinical exacerbation. We highlight the multifactorial nature of this disease and support the inclusion of interdisciplinary work in future Fibropapillomatosis research efforts.
Collapse
Affiliation(s)
- Costanza Manes
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA
- One Health Center of Excellence, University of Florida, Gainesville, FL 32611, USA;
| | - Daniele Pinton
- Department of Civil and Coastal Engineering, University of Florida, Gainesville, FL 32611, USA; (D.P.); (A.C.)
| | - Alberto Canestrelli
- Department of Civil and Coastal Engineering, University of Florida, Gainesville, FL 32611, USA; (D.P.); (A.C.)
| | - Ilaria Capua
- One Health Center of Excellence, University of Florida, Gainesville, FL 32611, USA;
| |
Collapse
|
13
|
Finlayson KA, Limpus CJ, van de Merwe JP. Temporal changes in chemical contamination of green turtles (Chelonia mydas) foraging in a heavily industrialised seaport. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152848. [PMID: 35007578 DOI: 10.1016/j.scitotenv.2021.152848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Port Curtis, a major shipping port, has undergone significant expansion in the last decade, with plans for further development into the future. These activities may result in an increase of contaminant concentrations, threatening local wildlife including sea turtles. This study used a species-specific in vitro bioassay to examine spatial and temporal differences in exposure to, and effects of, organic contaminants in green sea turtles foraging in Port Curtis. Blood was collected from 134 green sea turtles (Chelonia mydas) from five locations in the port over four years. Organic contaminants were extracted from blood, and the cytotoxicity of the extracts to primary green sea turtle cells was assessed. Results indicated spatially similar chemical contamination throughout Port Curtis, at levels significant to sea turtle health, and with signs that chemical contamination may be increasing over time. These results can provide valuable information on the health of green turtles as further development occurs.
Collapse
Affiliation(s)
| | - Colin J Limpus
- Department of Environment and Science, Queensland, Australia
| | - Jason P van de Merwe
- Australian Rivers Institute, Griffith University, Australia; School of Environment and Science, Griffith University, Gold Coast, Australia
| |
Collapse
|
14
|
Martin KR, Mansfield KL, Savage AE. Adaptive evolution of major histocompatibility complex class I immune genes and disease associations in coastal juvenile sea turtles. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211190. [PMID: 35154791 PMCID: PMC8825991 DOI: 10.1098/rsos.211190] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/06/2022] [Indexed: 05/12/2023]
Abstract
Characterizing polymorphism at the major histocompatibility complex (MHC) genes is key to understanding the vertebrate immune response to disease. Despite being globally afflicted by the infectious tumour disease fibropapillomatosis (FP), immunogenetic variation in sea turtles is minimally explored. We sequenced the α 1 peptide-binding region of MHC class I genes (162 bp) from 268 juvenile green (Chelonia mydas) and 88 loggerhead (Caretta caretta) sea turtles in Florida, USA. We recovered extensive variation (116 alleles) and trans-species polymorphism. Supertyping analysis uncovered three functional MHC supertypes corresponding to the three well-supported clades in the phylogeny. We found significant evidence of positive selection at seven amino acid sites in the class I exon. Random forest modelling and risk ratio analysis of Ch. mydas alleles uncovered one allele weakly associated with smooth FP tumour texture, which may be associated with disease outcome. Our study represents the first characterization of MHC class I diversity in Ch. mydas and the largest sample of sea turtles used to date in any study of adaptive genetic variation, revealing tremendous genetic variation and high adaptive potential to viral pathogen threats. The novel associations we identified between MHC diversity and FP outcomes in sea turtles further highlight the importance of evaluating genetic predictors of disease, including MHC and other functional markers.
Collapse
Affiliation(s)
- Katherine R. Martin
- Department of Biology, University of Central Florida, 4110 Libra Drive, Orlando, FL 32816, USA
| | - Katherine L. Mansfield
- Department of Biology, University of Central Florida, 4110 Libra Drive, Orlando, FL 32816, USA
| | - Anna E. Savage
- Department of Biology, University of Central Florida, 4110 Libra Drive, Orlando, FL 32816, USA
| |
Collapse
|
15
|
Robledo-Avila LA, Phillips-Farfán BV, Harfush Meléndez M, Lopez Toledo L, Tafolla Venegas D, Herrera Vargas MA, Ruíz Cortés DV, Meléndez-Herrera E. Short communication: Ex-situ conservation in hatcheries is associated with spleen development in Lepidochelys olivacea turtle hatchlings. Comp Biochem Physiol A Mol Integr Physiol 2021; 265:111130. [PMID: 34954346 DOI: 10.1016/j.cbpa.2021.111130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/25/2022]
Abstract
Ex-situ conservation in hatcheries is a successful strategy for the recovery of sea turtle populations. However, it alters the ontogenesis of the brain and gonads, as well as body size and locomotor performance at nest emergence. Relocation to hatcheries may alter immune system development, since this depends highly on the nest environment. We hypothesized that ex-situ brooding would negatively associate with immune traits of Lepidochelys olivacea. Splenic cytoarchitecture and leukocyte quantification were used as proxies for the immune configuration. Body size, gonadal sex and sand temperature during incubation were determined. Additionally, the success of nest hatching and emergence was quantified. Linear mixed models of splenic cytoarchitecture, leucocyte proportions and body size, using sex and nest type as explanatory variables, evaluated the effects of ex-situ brooding. Generalized linear mixed models using quasibinomial distributions (log link) analyzed effects on hatching and emergence success. Hatchlings from ex-situ nests were heavier, larger and showed a greater spleen-somatic index. They showed more and better defined splenic periarteriolar lymphoid sheaths, as well as a higher proportion of heterophils but less monocytes. Moreover, ex-situ brooding increased hatching and emergence success. Sand temperatures in hatcheries favored male sex determination, while the opposite occurred for in-situ incubation. Interestingly, the immune configuration and body size were independent of sex but associated with ex-situ conservation. Greater body size promotes early hatchling survival, while better spleen development is related to a greater antibody production and a better immune response to pathogens. Altogether, the results suggest that ex-situ incubation is associated with a better immune configuration and higher survival success.
Collapse
Affiliation(s)
- Liliana Areli Robledo-Avila
- Instituto de Investigaciones sobre Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Av. San Juanito Itzícuaro s/n, Colonia Nueva Esperanza, C.P. 58337 Morelia, Michoacán, México
| | - Bryan Víctor Phillips-Farfán
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Insurgentes Sur 3700, Letra C, Alcaldía Coyoacán C.P. 04530, Cd. de México, México
| | | | - Leonel Lopez Toledo
- Instituto de Investigaciones sobre Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Av. San Juanito Itzícuaro s/n, Colonia Nueva Esperanza, C.P. 58337 Morelia, Michoacán, México
| | - David Tafolla Venegas
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Avenida Francisco J. Múgica s/n, Ciudad Universitaria, 58030 Morelia, Michoacán, México
| | - Ma Antonia Herrera Vargas
- Instituto de Investigaciones sobre Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Av. San Juanito Itzícuaro s/n, Colonia Nueva Esperanza, C.P. 58337 Morelia, Michoacán, México
| | - Diana Vanessa Ruíz Cortés
- Instituto de Investigaciones sobre Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Av. San Juanito Itzícuaro s/n, Colonia Nueva Esperanza, C.P. 58337 Morelia, Michoacán, México
| | - Esperanza Meléndez-Herrera
- Instituto de Investigaciones sobre Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Av. San Juanito Itzícuaro s/n, Colonia Nueva Esperanza, C.P. 58337 Morelia, Michoacán, México.
| |
Collapse
|
16
|
Renaguli A, Fernando S, Holsen TM, Hopke PK, Adams DH, Balazs GH, Jones TT, Work TM, Lynch JM, Crimmins BS. Characterization of Halogenated Organic Compounds in Pelagic Sharks and Sea Turtles Using a Nontargeted Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16390-16401. [PMID: 34846854 DOI: 10.1021/acs.est.1c03798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Halogenated organic compounds (HOCs) in marine species collected from the Atlantic Ocean [3 shortfin mako (Isurus oxyrinchus) and 1 porbeagle (Lamna nasus)], and 12 sea turtles collected from the Pacific Ocean [3 loggerhead (Caretta caretta), 3 green (Chelonia mydas), 3 olive ridley (Lepidochelys olivacea), and 3 hawksbill (Eretmochelys imbricata)] were analyzed with a nontargeted analytical method using two-dimensional gas chromatography coupled to high-resolution time-of-flight mass spectrometry. Sharks and sea turtles had distinct HOC profiles. Halogenated methoxyphenols (halo-MeOPs) were the most abundant compound class identified in sea turtle livers, while polychlorinated biphenyls (PCBs) were the most abundant in shark livers. In addition to legacy contaminants and halo-MeOPs, a total of 110 nontargeted/novel HOCs (NHOCs) were observed in the shark livers. Shortfin mako collected from the northern Gulf of Mexico contained the largest number (89) and most diverse structural classes of NHOCs. Among all NHOCs, a group of compounds with the elemental composition C14H12-nCln (n = 5-8) exhibited the highest concentrations, followed by chlorocarbazoles and tris(chlorophenyl) methanes (TCPMs). Using nontargeted workflows, a variety of known and unknown HOCs were observed, which demonstrate the need to develop more complete chemical profiles in the marine environment.
Collapse
Affiliation(s)
- Aikebaier Renaguli
- Institute for a Sustainable Environment, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| | - Sujan Fernando
- Center for Air and Aquatic Resources Engineering and Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| | - Thomas M Holsen
- Center for Air and Aquatic Resources Engineering and Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
- Department of Civil and Environmental Engineering, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| | - Philip K Hopke
- Center for Air and Aquatic Resources Engineering and Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| | - Douglas H Adams
- Cape Canaveral Scientific Inc., 220 Surf Road, Melbourne Beach, Florida 32951, United States
| | - George H Balazs
- Golden Honu Services of Oceania, Honolulu, Hawaii 96825 United States
| | - T Todd Jones
- Golden Honu Services of Oceania, Honolulu, Hawaii 96825 United States
| | - Thierry M Work
- U.S. Geological Survey, National Wildlife Health Center, Honolulu Field Station, Honolulu, Hawaii 96818, United States
| | - Jennifer M Lynch
- National Institute of Standards and Technology, Chemical Sciences Division, 41-202 Kalaniana'ole Highway Ste #9, Waima̅nalo, Hawai'i 96795, United States
- Center for Marine Debris Research, Hawai'i Pacific University, 41-202 Kalaniana'ole Highway Ste #9, Waima̅nalo, Hawai'i 96795, United States
| | - Bernard S Crimmins
- Department of Civil and Environmental Engineering, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
- AEACS, LLC, New Kensington, Pennsylvania 15068, United States
| |
Collapse
|
17
|
Jarcovis RDLM, Taniguchi S, da Silva J, Lourenço RA. Persistent organic pollutants and stable isotopes in the liver of Chelonia mydas stranded on the southeastern Brazilian coast. MARINE POLLUTION BULLETIN 2021; 173:113075. [PMID: 34741921 DOI: 10.1016/j.marpolbul.2021.113075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/16/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Among the various pollutants released into the environment, there are persistent organic pollutants (POPs). Chelonia mydas are one of the species that can be exposed to these pollutants and it is classified in the IUCN Red List as "endangered". The present study evaluated the occurrence of POPs in 49liver tissue samples of C. mydas juveniles collected on the southeastern Brazilian coast. Furthermore, the concentrations were correlated with carbon and nitrogen isotopic ratio, biometrics, and ecological factors. The main POPs found were ƴ-HCH and PCBs. Overall, the concentrations found were low and there were no significant correlations among POPs, isotopic ratios, size and weight, which may be related to the fact that the studied individuals are juveniles and occupy similar trophic positions despite the individual variations found. Despite the low concentrations, the presence of POPs, mainly PCBs, in the sea turtles' liver indicates their exposure to these compounds.
Collapse
Affiliation(s)
- Raphael De Lucca Marcello Jarcovis
- Instituto Oceanográfico da Universidade de São Paulo (IO-USP), Praça do Oceanográfico, 191, Cidade Universitária, São Paulo 05508-120, Brazil.
| | - Satie Taniguchi
- Instituto Oceanográfico da Universidade de São Paulo (IO-USP), Praça do Oceanográfico, 191, Cidade Universitária, São Paulo 05508-120, Brazil
| | - Josilene da Silva
- Instituto Oceanográfico da Universidade de São Paulo (IO-USP), Praça do Oceanográfico, 191, Cidade Universitária, São Paulo 05508-120, Brazil
| | - Rafael André Lourenço
- Instituto Oceanográfico da Universidade de São Paulo (IO-USP), Praça do Oceanográfico, 191, Cidade Universitária, São Paulo 05508-120, Brazil
| |
Collapse
|
18
|
Sea Turtles in the Cancer Risk Landscape: A Global Meta-Analysis of Fibropapillomatosis Prevalence and Associated Risk Factors. Pathogens 2021; 10:pathogens10101295. [PMID: 34684244 PMCID: PMC8540842 DOI: 10.3390/pathogens10101295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022] Open
Abstract
Several cancer risk factors (exposure to ultraviolet-B, pollution, toxins and pathogens) have been identified for wildlife, to form a “cancer risk landscape.” However, information remains limited on how the spatiotemporal variability of these factors impacts the prevalence of cancer in wildlife. Here, we evaluated the cancer risk landscape at 49 foraging sites of the globally distributed green turtle (Chelonia mydas), a species affected by fibropapillomatosis, by integrating data from a global meta-analysis of 31 publications (1994–2019). Evaluated risk factors included ultraviolet light exposure, eutrophication, toxic phytoplanktonic blooms, sea surface temperature, and the presence of mechanical vectors (parasites and symbiotic species). Prevalence was highest in areas where nutrient concentrations facilitated the emergence of toxic phytoplankton blooms. In contrast, ultraviolet light exposure and the presence of parasitic and/or symbiotic species did not appear to impact disease prevalence. Our results indicate that, to counter outbreaks of fibropapillomatosis, management actions that reduce eutrophication in foraging areas should be implemented.
Collapse
|
19
|
Finlayson KA, van de Merwe JP. Differences in marine megafauna in vitro sensitivity highlights the need for species-specific chemical risk assessments. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 239:105939. [PMID: 34455206 DOI: 10.1016/j.aquatox.2021.105939] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/07/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Sea turtles, dolphins and dugongs can be exposed to large mixtures of contaminants due to the proximity of foraging locations to anthropogenic inputs. Differences in accumulation and effect result in differences of chemical risk to these species. However, little is known about the effect of contaminants in marine wildlife. Cell-based, or in vitro, exposure experiments offer an ethical alternative to investigate the effect of contaminants in wildlife. Data from in vitro studies can then be placed in an environmental context, by using screening risk assessments, comparing effect data with accumulation data from the literature, to identify risk to populations of marine wildlife. Cytotoxicity of Cr6+, Cd2+, Hg2+, 4,4'-DDE, and PFNA were investigated in primary skin fibroblasts of green turtles, loggerhead turtles, hawksbill turtles, dugongs, Burrunan dolphins, and common bottlenose dolphins. The general order of toxicity for all species was Hg2+> Cr6+ > Cd2+> 4,4'-DDE > PFNA, and significant differences in cytotoxicity were found between species for Cr6+, Cd2+ and PFNA. For Cd2+, in particular, cells from turtle species were less sensitive than mammalian species, and dugong cells were by far the most sensitive. The results from the cytotoxicity assay were then used in combination with published data on tissue contaminant concentrations to calculate risk quotients for identifying populations of each species most at risk from these chemicals. Cr, Cd and Hg were identified as posing risk in all six species. Dugongs were particularly at risk from Cd accumulation and dolphin species were particularly at risk from Hg accumulation. These results demonstrate the importance of using species-specific effect and accumulation data for developing chemical risk assessments and can be used to inform managers of priority contaminants, species, or populations. Development of additional in vitro endpoints, and improving links between in vitro and in vivo effects, would further improve this approach to understanding chemical risk in marine megafauna.
Collapse
Affiliation(s)
| | - Jason P van de Merwe
- Australian Rivers Institute, Griffith University, Australia; School of Environment and Science, Griffith University, Gold Coast, Australia
| |
Collapse
|
20
|
EVALUATION OF IMMUNE FUNCTION IN TWO POPULATIONS OF GREEN SEA TURTLES (CHELONIA MYDAS) IN A DEGRADED VERSUS A NONDEGRADED HABITAT. J Wildl Dis 2021; 57:761-772. [PMID: 34460917 DOI: 10.7589/jwd-d-20-00204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/08/2021] [Indexed: 11/20/2022]
Abstract
There is a strong correlation between degraded marine habitats and the prevalence of diseases such as green turtle fibropapillomatosis (GTFP) in coastal populations. In GTFP, small to large tumors grow on the turtle's soft tissues and shell, while internal nodules may also occur. The disease primarily affects juvenile green sea turtles (Chelonia mydas) that reside in nearshore waters. As a link has been shown between environmental pollution and immune suppression in a variety of animals, the objective of our research was to compare innate and adaptive immune responsiveness in green sea turtles from a severely degraded and a more pristine habitat, which differ greatly in rates of GTFP. We quantified phagocytosis by flow cytometry and performed in vitro stimulation analysis to measure activity of both the innate and adaptive immune systems in wild-caught Florida green turtles. Sea turtles from the degraded environment, both with and without visible cutaneous tumors, exhibited significantly reduced phagocytosis and stimulation indices than did those from the less polluted environment. Our results suggest that environmental factors may contribute to the development of GTFP and thus can impact the health of sea turtle populations.
Collapse
|
21
|
Finlayson KA, Leusch FDL, Villa CA, Limpus CJ, van de Merwe JP. Combining analytical and in vitro techniques for comprehensive assessments of chemical exposure and effect in green sea turtles (Chelonia mydas). CHEMOSPHERE 2021; 274:129752. [PMID: 33529958 DOI: 10.1016/j.chemosphere.2021.129752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/04/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Sea turtle populations foraging in coastal areas adjacent to human activity can be exposed to numerous chemical contaminants for long periods of time. For trace elements, well-developed, sensitive and inexpensive analytical techniques remain the most effective method for assessing exposure in sea turtles. However, there are many thousands more organic contaminants present in sea turtles, often at low levels as complex mixtures. Recently developed species-specific in vitro bioassays provide an effective means to identify the presence, and effect of, organic chemicals in sea turtles. This study used a combination of chemical analysis and effects-based bioassays to provide complementary information on chemical exposure and effects for three green turtle foraging populations (Chelonia mydas) in southern Queensland, Australia. Blood was collected from foraging sub-adult green turtles captured in Moreton Bay, Hervey Bay, and Port Curtis. Twenty-six trace elements were measured in whole blood using ICP-MS. Organic contaminants in turtle blood were extracted via QuEChERS and applied to primary green turtle skin fibroblast cell in vitro assays for two toxicity endpoints; cytotoxicity and oxidative stress. The trace element analysis and bioassay results indicated site-specific differences between foraging populations. In particular, turtles from Moreton Bay, a heavily populated coastal embayment, had pronounced cytotoxicity and oxidative stress from organic blood extracts, and elevated concentrations of Cs, Ag, and Zn relative to the other sites. Incorporating traditional chemical analysis with novel effects-based methods can provide a comprehensive assessment of chemical risk in sea turtle populations, contributing to the conservation and management of these threatened species.
Collapse
Affiliation(s)
| | - Frederic D L Leusch
- Australian Rivers Institute, Griffith University, Australia; School of Environment and Science, Griffith University, Gold Coast, Australia
| | - Cesar A Villa
- Department of Environment and Science, Queensland, Australia
| | - Colin J Limpus
- Department of Environment and Science, Queensland, Australia
| | - Jason P van de Merwe
- Australian Rivers Institute, Griffith University, Australia; School of Environment and Science, Griffith University, Gold Coast, Australia
| |
Collapse
|
22
|
Wood C, Balazs GH, Rice M, Work TM, Jones TT, Sterling E, Summers TM, Brooker J, Kurpita L, King CS, Lynch JM. Sea turtles across the North Pacific are exposed to perfluoroalkyl substances. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116875. [PMID: 33770650 DOI: 10.1016/j.envpol.2021.116875] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/16/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Perfluorinated alkyl substances (PFASs) are global, persistent, and toxic contaminants. We assessed PFAS concentrations in green (Chelonia mydas) and hawksbill (Eretmochelys imbricata) turtles from the North Pacific. Fifteen compounds were quantified via liquid chromatography tandem mass spectrometry from 62 green turtle and 6 hawksbill plasma samples from Hawai'i, Palmyra Atoll, and the Northern Marianas Islands. Plasma from 14 green turtles severely afflicted with fibropapillomatosis, and eggs from 12 Hawaiian hawksbill nests from 7 females were analyzed. Perfluorooctane sulfonate (PFOS) predominated in green turtle plasma; perfluorononanoic acid (PFNA) predominated in hawksbill tissues. Concentrations were greater in hawksbill than green turtle plasma (p < 0.05), related to trophic differences. Green turtle plasma PFOS concentrations were related to human populations from highest to lowest: Hawai'i, Marianas, Palmyra. Influence on fibropapillomatosis was not evident. PFASs were maternally transferred to hawksbill eggs, with decreasing concentrations with distance from airports and with clutch order from one female. A risk assessment of PFOS showed concern for immunosuppression in Kailua green turtles and alarming concern for hawksbill developmental toxicity. Perfluoroundecanoic (PFUnA) and perfluorotridecanoic (PFTriA) acid levels were correlated with reduced emergence success (p < 0.05). Studies to further examine PFAS effects on sea turtle development would be beneficial.
Collapse
Affiliation(s)
- Cathryn Wood
- Hawai'i Pacific University, Center for Marine Debris Research, Waimānalo, HI, USA
| | | | - Marc Rice
- Hawai'i Preparatory Academy, Waimea, HI, USA
| | - Thierry M Work
- U.S. Geological Survey, National Wildlife Health Center, Honolulu Field Station, Honolulu, HI, USA
| | - T Todd Jones
- NOAA Pacific Islands Fisheries Science Center, Honolulu, HI, USA
| | | | | | | | - Lauren Kurpita
- Hawai'i Island Hawksbill Turtle Recovery Project, Hawai'i National Park, HI, USA
| | | | - Jennifer M Lynch
- Hawai'i Pacific University, Center for Marine Debris Research, Waimānalo, HI, USA; National Institute of Standards and Technology, Chemical Sciences Division, Waimānalo, HI, USA.
| |
Collapse
|
23
|
Filippos LS, Taniguchi S, Baldassin P, Pires T, Montone RC. Persistent organic pollutants in plasma and stable isotopes in red blood cells of Caretta caretta, Chelonia mydas and Lepidochelys olivacea sea turtles that nest in Brazil. MARINE POLLUTION BULLETIN 2021; 167:112283. [PMID: 33799149 DOI: 10.1016/j.marpolbul.2021.112283] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
Studies of persistent organic pollutants (POPs), such as polychlorinated biphenyls (PCBs), organochlorinated pesticides (OCPs), and polybrominated diphenyl ethers (PBDEs), in sea turtles are reported, but there are still spatial data gaps worldwide. POP contamination of live female blood plasma from Caretta caretta (n = 28), Chelonia mydas (n = 31) and Lepidochelys olivacea (n = 19), which nest in Brazil and feed along the South Atlantic Ocean, was investigated. Carbon and nitrogen stable isotopes from red blood cells (RBC) were also evaluated to obtain information about trophic ecology. C. caretta had the highest POP concentrations, followed by L. olivacea and C. mydas. PCBs predominated in all species, and the major OCPs were the DDTs (dichlorodiphenyltrichloroethane and derivatives) and Lindane. POPs and stable isotopes revealed intra- and interspecific variations, which reflect the high plasticity in the use of habitat and food resources, making individuals within the same population susceptible to different exposures to pollutants.
Collapse
Affiliation(s)
- Luciana S Filippos
- Universidade de São Paulo, Instituto Oceanográfico, Laboratório de Química Orgânica Marinha, Praça do Oceanográfico 191, São Paulo, SP 05508-120, Brazil.
| | - Satie Taniguchi
- Universidade de São Paulo, Instituto Oceanográfico, Laboratório de Química Orgânica Marinha, Praça do Oceanográfico 191, São Paulo, SP 05508-120, Brazil
| | - Paula Baldassin
- Instituto BW, Professora Suely Brasil Flores, 88, CEP 28.970-000, Praia Seca, Araruama, RJ, Brazil
| | - Thaís Pires
- Fundação Projeto Tamar, Rua Rubens Guelli 134/307, Itaigara, Salvador, CEP: 41815-135, Bahia, Brazil
| | - Rosalinda C Montone
- Universidade de São Paulo, Instituto Oceanográfico, Laboratório de Química Orgânica Marinha, Praça do Oceanográfico 191, São Paulo, SP 05508-120, Brazil
| |
Collapse
|
24
|
Kattner P, Zeiler K, Herbener VJ, Ferla-Brühl KL, Kassubek R, Grunert M, Burster T, Brühl O, Weber AS, Strobel H, Karpel-Massler G, Ott S, Hagedorn A, Tews D, Schulz A, Prasad V, Siegelin MD, Nonnenmacher L, Fischer-Posovszky P, Halatsch ME, Debatin KM, Westhoff MA. What Animal Cancers teach us about Human Biology. Theranostics 2021; 11:6682-6702. [PMID: 34093847 PMCID: PMC8171098 DOI: 10.7150/thno.56623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/09/2021] [Indexed: 12/30/2022] Open
Abstract
Cancers in animals present a large, underutilized reservoir of biomedical information with critical implication for human oncology and medicine in general. Discussing two distinct areas of tumour biology in non-human hosts, we highlight the importance of these findings for our current understanding of cancer, before proposing a coordinated strategy to harvest biomedical information from non-human resources and translate it into a clinical setting. First, infectious cancers that can be transmitted as allografts between individual hosts, have been identified in four distinct, unrelated groups, dogs, Tasmanian devils, Syrian hamsters and, surprisingly, marine bivalves. These malignancies might hold the key to improving our understanding of the interaction between tumour cell and immune system and, thus, allow us to devise novel treatment strategies that enhance anti-cancer immunosurveillance, as well as suggesting more effective organ and stem cell transplantation strategies. The existence of these malignancies also highlights the need for increased scrutiny when considering the existence of infectious cancers in humans. Second, it has long been understood that no linear relationship exists between the number of cells within an organism and the cancer incidence rate. To resolve what is known as Peto's Paradox, additional anticancer strategies within different species have to be postulated. These naturally occurring idiosyncrasies to avoid carcinogenesis represent novel potential therapeutic strategies.
Collapse
Affiliation(s)
- Patricia Kattner
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Katharina Zeiler
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
- Department of Neurosurgery, University Medical Center Ulm, Ulm, Germany
| | - Verena J. Herbener
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | | | | | - Michael Grunert
- Department of Nuclear Medicine, German Armed Forces Hospital of Ulm, Ulm, Germany
- Department of Nuclear Medicine, University Medical Center Ulm, Ulm, Germany
| | - Timo Burster
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan Republic
| | - Oliver Brühl
- Laboratorio Analisi Sicilia Catania, Lentini; SR, Italy
| | - Anna Sarah Weber
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Hannah Strobel
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Georg Karpel-Massler
- Department of Neurosurgery, University Medical Center Ulm, Ulm, Germany
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Sibylle Ott
- Animal Research Center, University of Ulm, Ulm, Germany
| | | | - Daniel Tews
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center, Ulm, Germany
| | - Ansgar Schulz
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Vikas Prasad
- Department of Nuclear Medicine, University Medical Center Ulm, Ulm, Germany
| | - Markus D. Siegelin
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Lisa Nonnenmacher
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Pamela Fischer-Posovszky
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center, Ulm, Germany
| | | | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
25
|
Dujon AM, Ujvari B, Thomas F. Cancer risk landscapes: A framework to study cancer in ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:142955. [PMID: 33109371 DOI: 10.1016/j.scitotenv.2020.142955] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Cancer is a family of diseases that has been documented in most metazoan species and ecosystems. Human induced environmental changes are increasingly exposing wildlife to carcinogenic risk factors, and negative repercussions on ecosystems and on the conservation of endangered species are already been observed. It is therefore of key importance to understand the spatiotemporal variability of those risk factors and how they interact with the biosphere to mitigate their effects. Here we introduce the concept of cancer risk landscape that can be applied to understand how species are exposed to, interact with, and modify cancer risk factors. With this publication we aim to provide a framework in order to stimulate a discussion on how to mitigate cancer-causing risk factors.
Collapse
Affiliation(s)
- Antoine M Dujon
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia; CREEC, UMR IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France; CANECEV-Centre de Recherches Ecologiques et Evolutives sur le cancer (CREEC), Montpellier 34090, France.
| | - Beata Ujvari
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia; CANECEV-Centre de Recherches Ecologiques et Evolutives sur le cancer (CREEC), Montpellier 34090, France
| | - Frédéric Thomas
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia; CREEC, UMR IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France; CANECEV-Centre de Recherches Ecologiques et Evolutives sur le cancer (CREEC), Montpellier 34090, France
| |
Collapse
|
26
|
Rittenburg LT, Kelley JR, Mansfield KL, Savage AE. Marine leech parasitism of sea turtles varies across host species, seasons, and the tumor disease fibropapillomatosis. DISEASES OF AQUATIC ORGANISMS 2021; 143:1-12. [PMID: 33443237 DOI: 10.3354/dao03549] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fibropapillomatosis (FP) is a tumorous disease affecting all species of sea turtles and is associated with the pathogen chelonid alphaherpesvirus 5 (ChHV5). Hypothesized ChHV5 vectors include the marine leeches Ozobranchus branchiatus and O. margoi, but data on their associations with FP and ChHV5 are minimal. To establish relationships between leech parasitism, turtle hosts, and FP, we compared green and loggerhead turtles from the Indian River Lagoon (IRL), Florida, USA, in terms of (1) the presence or absence of ChHV5 within associated leeches, (2) the association between leech parasitism and host FP status, and (3) seasonal variation in leech presence. We identified 55 leeches collected from green turtles as O. branchiatus and 22 leeches collected from loggerhead turtles as O. margoi. Of 77 sequenced leeches, 10 O. branchiatus and 5 O. margoi were ChHV5 positive. ChHV5-positive O. branchiatus trended towards coming from FP-positive hosts. Using 12 yr of turtle capture data from the IRL, we found that leech parasitism was significantly correlated with FP and capture month in green turtles but not in loggerhead turtles. These results suggest that O. branchiatus and O. margoi may differ in their ability to transmit ChHV5 or to encounter and remain on FP-positive hosts. Alternatively, potential immunological differences between green and loggerhead turtles may explain the observed relationships. This study is the first to provide robust statistical evidence of an association between leeches and FP, as well as seasonal fluctuations in leech presence, in green turtles but not in loggerhead turtles.
Collapse
Affiliation(s)
- Leah T Rittenburg
- Department of Biology, University of Central Florida, 4110 Libra Drive, Orlando, FL 32816, USA
| | | | | | | |
Collapse
|
27
|
Barraza AD, Komoroske LM, Allen CD, Eguchi T, Gossett R, Holland E, Lawson DD, LeRoux RA, Lorenzi V, Seminoff JA, Lowe CG. Persistent organic pollutants in green sea turtles (Chelonia mydas) inhabiting two urbanized Southern California habitats. MARINE POLLUTION BULLETIN 2020; 153:110979. [PMID: 32275536 PMCID: PMC7174570 DOI: 10.1016/j.marpolbul.2020.110979] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 05/24/2023]
Abstract
Within Southern California, east Pacific green sea turtles (Chelonia mydas) forage year-round, taking advantage of diverse food resources, including seagrass, marine algae, and invertebrates. Assessing persistent organic pollutants (POP) in green turtle aggregations in the Seal Beach National Wildlife Refuge (SBNWR, n = 17) and San Diego Bay (SDB, n = 25) can help quantify contamination risks for these populations. Blood plasma was analyzed for polychlorinated biphenyls (PCBs), organochlorinated pesticides (OCPs), and polybrominated diphenyl ethers (PBDEs). PCBs and body size explained much of the separation of turtles by foraging aggregation in a principal component analysis. Turtles from SDB had significantly (p < 0.001) higher total PCBs than SBNWR turtles. Most PCBs detected in turtles were non-dioxin-like PCB congeners (153, 138, 99) that are associated with neurotoxicity. Recaptured turtles' POP levels changed significantly over time indicating significant variation in POP levels through time and space, even among adjacent foraging locations.
Collapse
Affiliation(s)
- Arthur D Barraza
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA, USA.
| | - Lisa M Komoroske
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA, USA; Department of Environmental Conservation, University of Massachusetts, Amherst, MA, USA
| | - Camryn D Allen
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA, USA; The Joint Institute for Marine and Atmospheric Research, Protected Species Division, Pacific Islands Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Honolulu, HI, USA
| | - Tomoharu Eguchi
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA, USA
| | - Rich Gossett
- Institute for Integrated Research on Materials, Environment, and Society, California State University Long Beach, Long Beach, CA, USA
| | - Erika Holland
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA, USA
| | - Daniel D Lawson
- Long Beach Regional Office, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Long Beach, CA, USA
| | - Robin A LeRoux
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA, USA
| | - Varenka Lorenzi
- Institute for Integrated Research on Materials, Environment, and Society, California State University Long Beach, Long Beach, CA, USA
| | - Jeffrey A Seminoff
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA, USA
| | - Christopher G Lowe
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA, USA
| |
Collapse
|
28
|
Carstairs SJ, Kyle CJ, Vilaça ST. High prevalence of subclinical frog virus 3 infection in freshwater turtles of Ontario, Canada. Virology 2020; 543:76-83. [PMID: 32174301 DOI: 10.1016/j.virol.2020.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/22/2020] [Accepted: 01/29/2020] [Indexed: 11/16/2022]
Abstract
Ranaviruses have been associated with chelonian mortality. In Canada, the first two cases of ranavirus were detected in turtles in 2018 in Ontario, although a subsequent survey of its prevalence failed to detect additional positive cases. To confirm the prevalence of ranavirus in turtles in Ontario, we used a more sensitive method to investigate if lower level persistent infection was present in the population. Here we report results via a combination of qPCR, PCR, Sanger sequencing and genome sequencing from turtles from across Ontario, with no clinical signs of illness. We found 2 positives with high viral load and 5 positives with low viral load. Histopathology found subtle histological changes. DNA sequences identified two types of frog virus 3 (FV3), and genome sequencing identified a ranavirus similar to wild-type FV3. Our results show that the virus has been present in Ontario's turtles as subclinical infections.
Collapse
Affiliation(s)
| | - Christopher J Kyle
- Forensic Science Department, Trent University, Peterborough, Ontario, K9J 7N8, Canada; Natural Resources DNA Profiling and Forensic Centre, Trent University, Peterborough, Ontario, K9J 7B8, Canada
| | - Sibelle Torres Vilaça
- Biology Department, Trent University, Peterborough, Ontario, K9J 7B8, Canada; Natural Resources DNA Profiling and Forensic Centre, Trent University, Peterborough, Ontario, K9J 7B8, Canada.
| |
Collapse
|
29
|
da Silva-Júnior ES, de Farias DSD, da Costa Bomfim A, da Boaviagem Freire AC, Revorêdo RÂ, Rossi S, Matushima ER, Hildebrand Grisi-Filho JH, de Lima Silva FJ, Gavilan SA. Stranded Marine Turtles in Northeastern Brazil: Incidence and Spatial–Temporal Distribution of Fibropapillomatosis. CHELONIAN CONSERVATION AND BIOLOGY 2019. [DOI: 10.2744/ccb-1359.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Edson Soares da Silva-Júnior
- Universidade Federal do Rio Grande do Norte, Centro de Biociências, Departamento de Morfologia, Laboratório de Morfofisiologia Comparada, Brazil [; ; ; rafael.revoredo@hotma
| | - Daniel Solon Dias de Farias
- Universidade Federal do Rio Grande do Norte, Centro de Biociências, Departamento de Morfologia, Laboratório de Morfofisiologia Comparada, Brazil [; ; ; rafael.revoredo@hotma
| | - Aline da Costa Bomfim
- Universidade Federal do Rio Grande do Norte, Centro de Biociências, Departamento de Morfologia, Laboratório de Morfofisiologia Comparada, Brazil [; ; ; rafael.revoredo@hotma
| | - Augusto Carlos da Boaviagem Freire
- Projeto Cetáceos da Costa Branca, Universidade do Estado do Rio Grande do Norte, Laboratório de Monitoramento de Biota Marinha, Brazil [; ]
| | - Rafael Ângelo Revorêdo
- Universidade Federal do Rio Grande do Norte, Centro de Biociências, Departamento de Morfologia, Laboratório de Morfofisiologia Comparada, Brazil [; ; ; rafael.revoredo@hotma
| | - Silmara Rossi
- Universidade Federal do Rio Grande do Norte, Centro de Biociências, Departamento de Morfologia, Laboratório de Morfofisiologia Comparada, Brazil [; ; ; rafael.revoredo@hotma
| | - Eliana Reiko Matushima
- Grupo de Estudos sobre Fibropapilomatose em Tartarugas Marinhas, Universidade de São Paulo, Brazil []
| | - José Henrique Hildebrand Grisi-Filho
- Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Medicina Veterinária Preventiva e Saúde Animal, Laboratório de Epidemiologia e Biostatística, Brazil []
| | - Flávio José de Lima Silva
- Projeto Cetáceos da Costa Branca, Universidade do Estado do Rio Grande do Norte, Laboratório de Monitoramento de Biota Marinha, Brazil [; ]
| | - Simone Almeida Gavilan
- Universidade Federal do Rio Grande do Norte, Centro de Biociências, Departamento de Morfologia, Laboratório de Morfofisiologia Comparada, Brazil [; ; ; rafael.revoredo@hotma
| |
Collapse
|
30
|
Ortiz-Santaliestra ME, Rodríguez A, Pareja-Carrera J, Mateo R, Martinez-Haro M. Tools for non-invasive sampling of metal accumulation and its effects in Mediterranean pond turtle populations inhabiting mining areas. CHEMOSPHERE 2019; 231:194-206. [PMID: 31129400 DOI: 10.1016/j.chemosphere.2019.05.082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/10/2019] [Accepted: 05/11/2019] [Indexed: 06/09/2023]
Abstract
Among reptiles, freshwater turtle species have high potential for metal accumulation because of their long lifespan or their aquatic and terrestrial habits. In order to monitor metal bioaccumulation, determine potential toxic effects, and investigate tools for non-invasive metal sampling in reptiles, we studied lead (Pb) and mercury (Hg) accumulation in Mediterranean pond turtles (Mauremys leprosa) inhabiting two former mining areas, one of them with high environmental concentrations of Pb (Sierra Madrona-Alcudia Valley district) and the other one with high environmental concentrations of Hg (Almadén district). Individuals from the Pb mining area showed mean blood concentrations (i.e. 5.59 μg Pb/g dry weight, d.w.) that were higher than those measured in other populations. Blood Hg concentrations were highest (8.83 μg Hg/g d.w.) in the site close to the former Hg mines, whereas blood Hg concentrations in terrapins from another site of Almadén district, located ∼28 km downstream, were not different from locations at the non-mining area. Animals from the Pb-contaminated site showed evidence of oxidative stress, whereas those from the Hg-contaminated site showed increased activity of the antioxidant enzyme glutathione peroxidase, as well as reduced circulating levels of the main endogenous antioxidant peptide, glutathione. Concentrations measured in feces and carapace scutes were useful indicators to monitor blood concentrations of Pb, but not of Hg. Our results provide evidence of the usefulness of freshwater turtles as sentinels of chronic metal pollution, and validate non-invasive tools to advance Pb monitoring in reptiles.
Collapse
Affiliation(s)
- Manuel E Ortiz-Santaliestra
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM. Ronda de Toledo 12, 13005, Ciudad Real, Spain.
| | - Antonio Rodríguez
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM. Ronda de Toledo 12, 13005, Ciudad Real, Spain.
| | - Jennifer Pareja-Carrera
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM. Ronda de Toledo 12, 13005, Ciudad Real, Spain.
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM. Ronda de Toledo 12, 13005, Ciudad Real, Spain.
| | - Mónica Martinez-Haro
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM. Ronda de Toledo 12, 13005, Ciudad Real, Spain.
| |
Collapse
|
31
|
Domiciano IG, Broadhurst MK, Domit C, Flaiban KKMC, Goldberg DW, Fritzen JTT, Bracarense APFRL. Chelonid Alphaherpesvirus 5 DNA in Fibropapillomatosis-Affected Chelonia mydas. ECOHEALTH 2019; 16:248-259. [PMID: 31124021 DOI: 10.1007/s10393-019-01412-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
Fibropapillomatosis is a panzootic and chronic disease among Chelonia mydas-usually associated with anthropogenic impacts. This study contributes towards understanding fibropapillomatosis implications for C. mydas populations as a reflector of environmental quality, via prevalence and histological, molecular and blood analyses at a World Heritage site in southern Brazil. Sixty-three juvenile C. mydas (31.3-54.5 cm curved carapace length-CCL) were sampled during two years. Eighteen specimens (~ 29%) had tumours (which were biopsied), while 45 had none. Degenerative changes in the epidermis and Chelonid alphaherpesvirus 5 DNA detection with three variants support a herpesvirus infection. Phylogenetic analysis indicated that variants A and B were similar to a herpesvirus lineage from the Atlantic group, but variant C was similar to a herpesvirus from the eastern Pacific lineage and represents the first published case for marine turtles off Brazil. Significantly lower levels of seven blood parameters, but greater numbers of eosinophils, were observed in tumour-afflicted animals. These observations were attributed to metabolism efficiencies and/or differences in diet associated with temporal-recruitment bias and disease development, and greater non-specific immune stimulation. While most animals had adequate body condition independent of disease, longer-term studies are required to elucidate any protracted population effects.
Collapse
Affiliation(s)
- Isabela G Domiciano
- Laboratório de Patologia Animal, Departamento de Medicina Veterinária Preventiva, Universidade Estadual de Londrina, PR 445 km 380, Londrina, Paraná, CEP 86057-970, Brazil
- Laboratório de Ecologia e Conservação, Centro de Estudos do Mar, Universidade Federal do Paraná, Pontal do Paraná, Paraná, Brazil
| | - Matt K Broadhurst
- NSW Department of Primary Industries, Fisheries Conservation Technology Unit, National Marine Science Centre, Coffs Harbour, NSW, Australia
- Marine and Estuarine Ecology Unit, School of Biological Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Camila Domit
- Laboratório de Ecologia e Conservação, Centro de Estudos do Mar, Universidade Federal do Paraná, Pontal do Paraná, Paraná, Brazil
- Associação MarBrasil - ONG, Pontal do Paraná, Paraná, Brazil
| | - Karina K M C Flaiban
- Laboratório de Patologia Clínica, Departamento de Medicina Veterinária Preventiva, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | | | - Juliana T T Fritzen
- Laboratório de Virologia Animal, Departamento de Medicina Veterinária Preventiva, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Ana Paula F R L Bracarense
- Laboratório de Patologia Animal, Departamento de Medicina Veterinária Preventiva, Universidade Estadual de Londrina, PR 445 km 380, Londrina, Paraná, CEP 86057-970, Brazil.
| |
Collapse
|
32
|
Barraza AD, Komoroske LM, Allen C, Eguchi T, Gossett R, Holland E, Lawson DD, LeRoux RA, Long A, Seminoff JA, Lowe CG. Trace metals in green sea turtles (Chelonia mydas) inhabiting two southern California coastal estuaries. CHEMOSPHERE 2019; 223:342-350. [PMID: 30784740 PMCID: PMC6620110 DOI: 10.1016/j.chemosphere.2019.01.107] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 01/13/2019] [Accepted: 01/20/2019] [Indexed: 05/31/2023]
Abstract
Foraging aggregations of east Pacific green sea turtles (Chelonia mydas) inhabit the Seal Beach National Wildlife Refuge (SBNWR) and San Diego Bay (SDB), two habitats in southern California, USA, located near urbanized areas. Both juvenile and adult green turtles forage in these areas and exhibit high site fidelity, which potentially exposes green turtles to anthropogenic contaminants. We assessed 21 trace metals (TM) bioaccumulated in green turtle scute and red blood cell (RBC) samples collected from SBNWR (n = 16 turtles) and SDB (n = 20 turtles) using acid digestion and inductively coupled plasma mass spectrometry. Principal component analyses of TM composition indicate that SBNWR and SDB turtles have location-specific contaminant signatures, characterized by differences in cadmium and selenium concentrations: SBNWR turtles had significantly more cadmium and selenium in RBC and more selenium in scute samples, than SDB turtles. Cadmium and selenium concentrations in RBC had a strong positive relationship, regardless of location. SBNWR turtles had higher selenium in RBCs than previously measured in other green turtle populations globally. Due to different retention times in blood vs. scute, these results suggest that SBNWR turtles have high long- and short-term selenium exposure. Turtles from SBNWR and SDB had higher trace metal concentrations than documented in green turtle populations that inhabit non-urbanized areas, supporting the hypothesis that coastal cities can increase trace metal exposure to local green turtles. Our study finds evidence that green turtle TM concentrations can differ between urbanized habitats and that long-term monitoring of these green turtles may be necessary.
Collapse
Affiliation(s)
- Arthur D Barraza
- Department of Biological Sciences, California State University, Long Beach, USA.
| | - Lisa M Komoroske
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, USA; Department of Environmental Conservation, University of Massachusetts, Amherst, USA
| | - Camryn Allen
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, USA; The Joint Institute for Marine and Atmospheric Research, Marine Turtle Biology and Assessment Program, Protected Species Division, Pacific Islands Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Honolulu, HI, USA
| | - Tomoharu Eguchi
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, USA
| | - Rich Gossett
- Institute for Integrated Research on Materials, Environment, and Society, California State University, Long Beach, USA
| | - Erika Holland
- Department of Biological Sciences, California State University, Long Beach, USA
| | - Daniel D Lawson
- Long Beach Regional Office, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, USA
| | - Robin A LeRoux
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, USA
| | - Alex Long
- Institute for Integrated Research on Materials, Environment, and Society, California State University, Long Beach, USA
| | - Jeffrey A Seminoff
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, USA
| | - Christopher G Lowe
- Department of Biological Sciences, California State University, Long Beach, USA
| |
Collapse
|
33
|
Cardoso-Brito V, Raposo ACS, Pires TT, Pinna MH, Oriá AP. Conjunctival bacterial flora and antimicrobial susceptibility of captive and free-living sea turtles in Brazil. Vet Ophthalmol 2018; 22:246-255. [PMID: 29953719 DOI: 10.1111/vop.12584] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE To describe the aerobic conjunctival bacterial flora of 3 especies of free-living and under human care sea turtles and determine its antimicrobial susceptibility in vitro. METHOD Thirty-six sea turtles (72 eyes), juveniles and adults, 7 free-living Chelonia mydas and 8 Chelonia mydas, 4 Caretta caretta, 11 Eretmochelys imbricata, and 6 Lepidochelys olivacea under human care, were evaluated. Conjunctival cultures were collected for identification of aerobic bacteria and antimicrobial susceptibility testing for ciprofloxacin, chloramphenicol, gentamicin, neomycin, oxacillin, polymyxin B, tetracycline, and tobramycin using antibiotic disks. Bacterial strains showing no sensitivity to 4 or more antimicrobials were considered multiresistant to this panel. RESULTS Bacterial growth was observed in 12/14 (85.71%) samples in the free-living sea turtles, and there was growth in 100% (58/58) of the samples from captive animals. There were 94 strains isolated and 15 species identified. There was a predominance of Gram-positive bacteria in free-living Chelonia mydas, most of which were Bacillus and Staphylococcus. The most commonly isolated Gram-negative species were enterobacteria for free-living and under human care animals. The strains were predominantly sensitive to ciprofloxacin and tobramycin, and less sensitive to oxacillin or polymyxin B. Ten multiresistant strains were isolated. Yeast were identified in 13.89% (10/72) of the samples. CONCLUSIONS These results, showing differences in the conjunctival bacterial flora of free-living and captive animals, may be helpful for diagnosis and treatment of ocular disorders in sea turtles.
Collapse
Affiliation(s)
- Vinícius Cardoso-Brito
- School of Veterinary Medicine and Zootechny, Federal University of Bahia, UFBA, Salvador, Brazil
| | - Ana Cláudia S Raposo
- School of Veterinary Medicine and Zootechny, Federal University of Bahia, UFBA, Salvador, Brazil
| | - Thaís T Pires
- Fundação Centro Brasileiro de Proteção e Pesquisa das Tartarugas Marinhas (Fundação Pró-Tamar), Salvador, Brazil
| | - Melissa H Pinna
- School of Veterinary Medicine and Zootechny, Federal University of Bahia, UFBA, Salvador, Brazil
| | - Arianne P Oriá
- School of Veterinary Medicine and Zootechny, Federal University of Bahia, UFBA, Salvador, Brazil
| |
Collapse
|
34
|
The Risk of Polychlorinated Biphenyls Facilitating Tumors in Hawaiian Green Sea Turtles ( Chelonia mydas). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15061243. [PMID: 29895772 PMCID: PMC6025165 DOI: 10.3390/ijerph15061243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 05/31/2018] [Accepted: 06/10/2018] [Indexed: 11/24/2022]
Abstract
The Hawaiian green turtle (Chelonia mydas) is on the list of threatened species protected under the U.S. Endangered Species Act in 1978 in large part due to a severe tumor-forming disease named fibropapillomatosis. Chemical pollution is a prime suspect threatening the survival of C. mydas. In this study, PCBs concentrations were determined in 43 C. mydas plasma samples archived on Tern Island. The total PCBs concentration in male C. mydas (mean 1.10 ng/mL) was two times more than that of females (mean 0.43 ng/mL). The relationship between straight carapace length and PCBs concentration in females has also been studied, which was negatively related. To figure out the possible existence of correlations between PCBs and tumor status, we measured the PCBs concentration in turtles with no tumor, moderate or severe tumor affliction. PCBs concentration of two afflicted groups was much higher than the healthy group, suggesting that PCBs may play a role in fibropapillomatosis in Hawaiian green turtle.
Collapse
|
35
|
Vilca FZ, Rossi S, de Olinda RA, Sánchez-Sarmiento AM, Prioste FES, Matushima ER, Tornisielo VL. Concentrations of polycyclic aromatic hydrocarbons in liver samples of juvenile green sea turtles from Brazil: Can these compounds play a role in the development of fibropapillomatosis? MARINE POLLUTION BULLETIN 2018; 130:215-222. [PMID: 29866550 DOI: 10.1016/j.marpolbul.2018.03.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/29/2018] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
Fibropapillomatosis (FP) poses a significant threat to the conservation of green sea turtles (Chelonia mydas). Polycyclic aromatic hydrocarbons-PAHs are considered mutagenic, carcinogenic and toxic, and can act as cofactor of this disease. In order to evaluate possible differences between green sea turtles with and without FP, we monitored 15 PAHs in liver samples of 44 specimens (24 with FP) captured in Brazil. We detected eight PAHs and quantified phenanthrene in all green sea turtles with FP. Specimens without FP presented lower values than the tumored ones (1.48 ng g-1 and 17.35 ng g-1, respectively; p < 0.0001). There were no significant differences between tumored and non-tumored specimens, among studied areas, or Southwest Atlantic Fibropapillomatosis Score. Even though we found higher concentrations in the liver samples of green sea turtles with FP, further studies are necessary to confirm if these pollutants are involved in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Franz Zirena Vilca
- Escuela de Posgrado de la Universidad Nacional del Altiplano, Av Floral 1153, Puno, Peru; Ecotoxicology Laboratory, Center of Nuclear Energy in Agriculture (CENA), University of São Paulo, Av. Centenário 303, São Dimas, PO Box 96, CEP 13416-000 Piracicaba, SP, Brazil.
| | - Silmara Rossi
- Grupo de Pesquisa sobre Fibropapilomatose em Tartarugas Marinhas, Universidade de São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, CEP 05508-270 São Paulo, SP, Brazil
| | - Ricardo Alves de Olinda
- Departamento de Estatística-CCT, Universidade Estadual da Paraíba, Bodocongó, 58101-001 Campina Grande, PB, Brazil
| | - Angélica Maria Sánchez-Sarmiento
- Laboratório de Patologia Comparada de Animais Selvagens (LAPCOM), Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, CEP 05508-270 São Paulo, SP, Brazil
| | - Fabíola Eloisa Setim Prioste
- Grupo de Pesquisa sobre Fibropapilomatose em Tartarugas Marinhas, Universidade de São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, CEP 05508-270 São Paulo, SP, Brazil
| | - Eliana Reiko Matushima
- Grupo de Pesquisa sobre Fibropapilomatose em Tartarugas Marinhas, Universidade de São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, CEP 05508-270 São Paulo, SP, Brazil; Laboratório de Patologia Comparada de Animais Selvagens (LAPCOM), Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, CEP 05508-270 São Paulo, SP, Brazil.
| | - Valdemar Luiz Tornisielo
- Ecotoxicology Laboratory, Center of Nuclear Energy in Agriculture (CENA), University of São Paulo, Av. Centenário 303, São Dimas, PO Box 96, CEP 13416-000 Piracicaba, SP, Brazil.
| |
Collapse
|
36
|
Dogruer G, Weijs L, Tang JYM, Hollert H, Kock M, Bell I, Madden Hof CA, Gaus C. Effect-based approach for screening of chemical mixtures in whole blood of green turtles from the Great Barrier Reef. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 612:321-329. [PMID: 28854388 DOI: 10.1016/j.scitotenv.2017.08.124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/12/2017] [Accepted: 08/12/2017] [Indexed: 06/07/2023]
Abstract
Organisms are exposed to mixtures of both known and unknown chemicals which are diverse and variable, and thus difficult and costly to characterise and monitor using traditional target analyses. The objective of this study was to validate and apply in vitro effect-based methods by which whole blood can be used to screen internal exposure to such complex chemical mixtures. For this study, we used whole blood of green sea turtles (Chelonia mydas). To ensure the chemical mixture in blood is transferred with minimal losses or bias, we tested a modified QuEChERS extraction method specifically developed for multi- and non-target instrument analysis. The extracts were dosed to a battery of in vitro bioassays (AhR-CAFLUX, AREc32, NFκB-bla, VM7Luc4E2, Microtox), each with a different mode of action (e.g., AhR receptor mediated xenobiotics, NrF2-mediated oxidative stress, NFκB mediated response to inflammation, estrogen activity and baseline toxicity oxidative stress, respectively) in order to cover a wide spectrum of chemicals. Results confirmed the absence of interferences of the blood extract with the responses of the different assays, thus indicating the methods' compatibility with effect-based screening approaches. To apply this approach, whole blood samples were collected from green turtles foraging in agricultural, urban and remote areas of the Australian Great Barrier Reef. The effect-based screening revealed significant differences in exposure, with higher induction of AhR-CAFLUX, AREc32 and Microtox assays in turtles from the agricultural foraging ground. Overall, these results corroborated with concurrent health, target and non-target analyses in the same animals performed as part of a larger program. This study provides evidence that the proposed effect-based approach is suitable for screening and evaluating internal exposure of organisms to chemical mixtures. The approach could be valuable for advancing understanding on multiple levels ranging from identification of priority chemicals in effect-directed investigations to exploring relationships between exposure and disease, not only in sea turtles, but in any organism.
Collapse
Affiliation(s)
- Gülsah Dogruer
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 39 Kessels Road, Coopers Plains, Queensland 4108, Australia; Institute for Environmental Research, RWTH Aachen University, Germany.
| | - Liesbeth Weijs
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 39 Kessels Road, Coopers Plains, Queensland 4108, Australia
| | - Janet Yat-Man Tang
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 39 Kessels Road, Coopers Plains, Queensland 4108, Australia
| | - Henner Hollert
- Institute for Environmental Research, RWTH Aachen University, Germany
| | - Marjolijn Kock
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 39 Kessels Road, Coopers Plains, Queensland 4108, Australia
| | - Ian Bell
- Department of Environment and Heritage Protection, Threatened Species Unit, Townsville, Australia
| | | | - Caroline Gaus
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 39 Kessels Road, Coopers Plains, Queensland 4108, Australia
| |
Collapse
|
37
|
Clukey KE, Lepczyk CA, Balazs GH, Work TM, Li QX, Bachman MJ, Lynch JM. Persistent organic pollutants in fat of three species of Pacific pelagic longline caught sea turtles: Accumulation in relation to ingested plastic marine debris. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 610-611:402-411. [PMID: 28806556 DOI: 10.1016/j.scitotenv.2017.07.242] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 07/27/2017] [Accepted: 07/27/2017] [Indexed: 06/07/2023]
Abstract
In addition to eating contaminated prey, sea turtles may be exposed to persistent organic pollutants (POPs) from ingesting plastic debris that has absorbed these chemicals. Given the limited knowledge about POPs in pelagic sea turtles and how plastic ingestion influences POP exposure, our objectives were to: 1) provide baseline contaminant levels of three species of pelagic Pacific sea turtles; and 2) assess trends of contaminant levels in relation to species, sex, length, body condition and capture location. In addition, we hypothesized that if ingesting plastic is a significant source of POP exposure, then the amount of ingested plastic may be correlated to POP concentrations accumulated in fat. To address our objectives we compared POP concentrations in fat samples to previously described amounts of ingested plastic from the same turtles. Fat samples from 25 Pacific pelagic sea turtles [2 loggerhead (Caretta caretta), 6 green (Chelonia mydas) and 17 olive ridley (Lepidochelys olivacea) turtles] were analyzed for 81 polychlorinated biphenyls (PCBs), 20 organochlorine pesticides, and 35 brominated flame-retardants. The olive ridley and loggerhead turtles had higher ΣDDTs (dichlorodiphenyltrichloroethane and metabolites) than ΣPCBs, at a ratio similar to biota measured in the South China Sea and southern California. Green turtles had a ratio close to 1:1. These pelagic turtles had lower POP levels than previously reported in nearshore turtles. POP concentrations were unrelated to the amounts of ingested plastic in olive ridleys, suggesting that their exposure to POPs is mainly through prey. In green turtles, concentrations of ΣPCBs were positively correlated with the number of plastic pieces ingested, but these findings were confounded by covariance with body condition index (BCI). Green turtles with a higher BCI had eaten more plastic and also had higher POPs. Taken together, our findings suggest that sea turtles accumulate most POPs through their prey rather than marine debris.
Collapse
Affiliation(s)
- Katharine E Clukey
- Department of Natural Resources and Environmental Management, University of Hawai'i at Mānoa, Honolulu, HI 96822, United States
| | - Christopher A Lepczyk
- Department of Natural Resources and Environmental Management, University of Hawai'i at Mānoa, Honolulu, HI 96822, United States; Auburn University, School of Forestry and Wildlife Science, Auburn, AL, United States
| | - George H Balazs
- Pacific Islands Fisheries Science Center, National Marine Fisheries Service, Honolulu, HI, United States
| | - Thierry M Work
- U.S. Geological Survey, National Wildlife Health Center, Honolulu Field Station, Honolulu, HI, United States
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI 96822, United States
| | - Melannie J Bachman
- Chemical Sciences Division, National Institute of Standards and Technology, Charleston, SC, United States
| | - Jennifer M Lynch
- Chemical Sciences Division, National Institute of Standards and Technology, Kaneohe, HI, United States.
| |
Collapse
|
38
|
Nilsen FM, Dorsey JE, Lowers RH, Guillette LJ, Long SE, Bowden JA, Schock TB. Evaluating mercury concentrations and body condition in American alligators (Alligator mississippiensis) at Merritt Island National Wildlife Refuge (MINWR), Florida. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 607-608:1056-1064. [PMID: 28724244 PMCID: PMC11279556 DOI: 10.1016/j.scitotenv.2017.07.073] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/06/2017] [Accepted: 07/08/2017] [Indexed: 06/07/2023]
Abstract
Concentrations of mercury (Hg) are not well studied in free-ranging wildlife. Atmospheric deposition patterns of Hg have been studied in detail and have been modeled for both global and specific locations and often correlate to environmental impact. However, monitoring the impact of Hg deposition in wildlife is complicated due to local environmental conditions that can affect the transformation of atmospheric Hg to the biologically available forms (e.g., rainfall, humidity, pH, the ability of the environment to methylate Hg), as well as affect the accessibility to organisms for sampling. In this study, Hg concentrations in blood samples from a population of American alligators (Alligator mississippiensis) at Merritt Island National Wildlife Refuge (MINWR), FL, USA, over a seven-year period (2007 to 2014; n=174 individuals) were examined to assess Hg variation in the population, as well as the difference in Hg concentration as a function of health status. While most of this population is healthy, 18 individuals with low body mass indices (BMI, defined in this study) were captured throughout the sampling period. These alligators exhibited significantly elevated Hg concentrations compared to their age/sex/season matched counterparts with normal BMI, suggesting that health status should be taken into account when examining Hg concentrations and effects. Alligator blood Hg concentrations were related to the interaction of age/size, sex, and season. This study illustrates the value of a routinely monitored population of large predators in a unique coastal wetland ecosystem, and illuminates the value of long-term environmental exposure assessment.
Collapse
Affiliation(s)
- Frances M Nilsen
- Medical University of South Carolina, Charleston, SC, USA; National Institute of Standards and Technology, Hollings Marine Lab, Charleston, SC, USA.
| | | | | | | | - Stephen E Long
- National Institute of Standards and Technology, Hollings Marine Lab, Charleston, SC, USA
| | - John A Bowden
- National Institute of Standards and Technology, Hollings Marine Lab, Charleston, SC, USA
| | - Tracey B Schock
- National Institute of Standards and Technology, Hollings Marine Lab, Charleston, SC, USA
| |
Collapse
|
39
|
Perrault JR, Stacy NI, Lehner AF, Mott CR, Hirsch S, Gorham JC, Buchweitz JP, Bresette MJ, Walsh CJ. Potential effects of brevetoxins and toxic elements on various health variables in Kemp's ridley (Lepidochelys kempii) and green (Chelonia mydas) sea turtles after a red tide bloom event. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 605-606:967-979. [PMID: 28693110 DOI: 10.1016/j.scitotenv.2017.06.149] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/18/2017] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
Natural biotoxins and anthropogenic toxicants pose a significant risk to sea turtle health. Documented effects of contaminants include potential disease progression and adverse impacts on development, immune function, and survival in these imperiled species. The shallow seagrass habitats of Florida's northwest coast (Big Bend) serve as an important developmental habitat for Kemp's ridley (Lepidochelys kempii) and green (Chelonia mydas) sea turtles; however, few studies have been conducted in this area. Our objectives were (1) to evaluate plasma analytes (mass, minimum straight carapace length, body condition index [BCI], fibropapilloma tumor score, lysozyme, superoxide dismutase, reactive oxygen/nitrogen species, plasma protein electrophoresis, cholesterol, and total solids) in Kemp's ridleys and green turtles and their correlation to brevetoxins that were released from a red tide bloom event from July-October 2014 in the Gulf of Mexico near Florida's Big Bend, and (2) to analyze red blood cells in Kemp's ridleys and green turtles for toxic elements (arsenic, cadmium, lead, mercury, selenium, thallium) with correlation to the measured plasma analytes. Positive correlations were observed between brevetoxins and α2-globulins in Kemp's ridleys and α2- and γ-globulins in green turtles, indicating potential immunostimulation. Arsenic, cadmium, and lead positively correlated with superoxide dismutase in Kemp's ridleys, suggesting oxidative stress. Lead and mercury in green turtles negatively correlated with BCI, while mercury positively correlated with total tumor score of green turtles afflicted with fibropapillomatosis, suggesting a possible association with mercury and increased tumor growth. The total tumor score of green turtles positively correlated with total protein, total globulins, α2-globulins, and γ-globulins, further suggesting inflammation and immunomodulation as a result of fibropapillomatosis. Lastly, brevetoxin concentrations were positively related to tumor score, indicating potential tumor promotion by brevetoxin. These results signify that brevetoxins and toxic elements elicit various negative effects on sea turtle health, including immune function, oxidative stress, and possibly disease progression.
Collapse
Affiliation(s)
- Justin R Perrault
- Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL 34236, USA.
| | - Nicole I Stacy
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2015 Southwest 16th Avenue, PO Box 100136, Gainesville, FL 32610, USA
| | - Andreas F Lehner
- Michigan State University Veterinary Diagnostic Laboratory, 4125 Beaumont Road, Lansing, MI 48910, USA
| | - Cody R Mott
- Inwater Research Group, 4160 Northeast Hyline Drive, Jensen Beach, FL 34957, USA
| | - Sarah Hirsch
- Loggerhead Marinelife Center, 14200 U.S. Highway 1, Juno Beach, FL 33408, USA
| | - Jonathan C Gorham
- Inwater Research Group, 4160 Northeast Hyline Drive, Jensen Beach, FL 34957, USA
| | - John P Buchweitz
- Michigan State University Veterinary Diagnostic Laboratory, 4125 Beaumont Road, Lansing, MI 48910, USA
| | - Michael J Bresette
- Inwater Research Group, 4160 Northeast Hyline Drive, Jensen Beach, FL 34957, USA
| | - Catherine J Walsh
- Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL 34236, USA
| |
Collapse
|
40
|
Heffernan AL, Gómez-Ramos MM, Gaus C, Vijayasarathy S, Bell I, Hof C, Mueller JF, Gómez-Ramos MJ. Non-targeted, high resolution mass spectrometry strategy for simultaneous monitoring of xenobiotics and endogenous compounds in green sea turtles on the Great Barrier Reef. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:1251-1262. [PMID: 28521388 DOI: 10.1016/j.scitotenv.2017.05.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/12/2017] [Accepted: 05/02/2017] [Indexed: 06/07/2023]
Abstract
Chemical contamination poses a threat to ecosystem, biota and human health, and identifying these hazards is a complex challenge. Traditional hazard identification relies on a priori-defined targets of limited chemical scope, and is generally inappropriate for exploratory studies such as explaining toxicological effects in environmental systems. Here we present a non-target high resolution mass spectrometry environmental monitoring study with multivariate statistical analysis to simultaneously detect biomarkers of exposure (e.g. xenobiotics) and biomarkers of effect in whole turtle blood. Borrowing the concept from clinical chemistry, a case-control sampling approach was used to investigate the potential influence of xenobiotics of anthropogenic origin on free-ranging green sea turtles (Chelonia mydas) from a remote, offshore 'control' site; and two coastal 'case' sites influenced by urban/industrial and agricultural activities, respectively, on the Great Barrier Reef in North Queensland, Australia. Multiple biomarkers of exposure, including sulfonic acids (n=9), a carbamate insecticide metabolite, and other industrial chemicals; and five biomarkers of effect (lipid peroxidation products), were detected in case sites. Additionally, two endogenous biomarkers of neuroinflammation and oxidative stress were identified, and showed moderate-to-strong correlations with clinical measures of inflammation and liver dysfunction. Our data filtering strategy overcomes limitations of traditional a priori selection of target compounds, and adds to the limited environmental xenobiotic metabolomics literature. To our knowledge this is the first case-control study of xenobiotics in marine megafauna, and demonstrates the utility of green sea turtles to link internal and external exposure, to explain potential toxicological effects in environmental systems.
Collapse
Affiliation(s)
- Amy L Heffernan
- Queensland Alliance for Environmental Health Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, Australia; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia.
| | - Maria M Gómez-Ramos
- Agrifood Campus of International Excellence (CeiA3), Department of Chemistry and Physics, University of Almeria, European Union Reference Laboratory for Pesticide Residues in Fruit and Vegetables, Almería, Spain
| | - Caroline Gaus
- Queensland Alliance for Environmental Health Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, Australia
| | - Soumini Vijayasarathy
- Queensland Alliance for Environmental Health Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, Australia
| | - Ian Bell
- Aquatic Species Program, Department of Environment and Heritage Protection, Townsville, Australia
| | - Christine Hof
- Queensland Alliance for Environmental Health Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, Australia; Species Conservation and Indigenous Partnerships Unit, World Wildlife Fund for Nature-Australia, Brisbane, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, Australia
| | - Maria J Gómez-Ramos
- Queensland Alliance for Environmental Health Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, Australia; Agrifood Campus of International Excellence (CeiA3), Department of Chemistry and Physics, University of Almeria, European Union Reference Laboratory for Pesticide Residues in Fruit and Vegetables, Almería, Spain
| |
Collapse
|
41
|
Rees AF, Alfaro-Shigueto J, Barata PCR, Bjorndal KA, Bolten AB, Bourjea J, Broderick AC, Campbell LM, Cardona L, Carreras C, Casale P, Ceriani SA, Dutton PH, Eguchi T, Formia A, Fuentes MMPB, Fuller WJ, Girondot M, Godfrey MH, Hamann M, Hart KM, Hays GC, Hochscheid S, Kaska Y, Jensen MP, Mangel JC, Mortimer JA, Naro-Maciel E, Ng CKY, Nichols WJ, Phillott AD, Reina RD, Revuelta O, Schofield G, Seminoff JA, Shanker K, Tomás J, van de Merwe JP, Van Houtan KS, Vander Zanden HB, Wallace BP, Wedemeyer-Strombel KR, Work TM, Godley BJ. Are we working towards global research priorities for management and conservation of sea turtles? ENDANGER SPECIES RES 2016. [DOI: 10.3354/esr00801] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
42
|
Perrault JR, Bauman KD, Greenan TM, Blum PC, Henry MS, Walsh CJ. Maternal transfer and sublethal immune system effects of brevetoxin exposure in nesting loggerhead sea turtles (Caretta caretta) from western Florida. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 180:131-140. [PMID: 27716578 DOI: 10.1016/j.aquatox.2016.09.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 06/06/2023]
Abstract
Blooms of Karenia brevis (also called red tides) occur almost annually in the Gulf of Mexico. The health effects of the neurotoxins (i.e., brevetoxins) produced by this toxic dinoflagellate on marine turtles are poorly understood. Florida's Gulf Coast represents an important foraging and nesting area for a number of marine turtle species. Most studies investigating brevetoxin exposure in marine turtles thus far focus on dead and/or stranded individuals and rarely examine the effects in apparently "healthy" free-ranging individuals. From May-July 2014, one year after the last red tide bloom, we collected blood from nesting loggerhead sea turtles (Caretta caretta) on Casey Key, Florida USA. These organisms show both strong nesting and foraging site fidelity. The plasma was analyzed for brevetoxin concentrations in addition to a number of health and immune-related parameters in an effort to establish sublethal effects of this toxin. Lastly, from July-September 2014, we collected unhatched eggs and liver and yolk sacs from dead-in-nest hatchlings from nests laid by the sampled females and tested these samples for brevetoxin concentrations to determine maternal transfer and effects on reproductive success. Using a competitive enzyme-linked immunosorbent assay (ELISA), all plasma samples from nesting females tested positive for brevetoxin (reported as ng brevetoxin-3[PbTx-3] equivalents [eq]/mL) exposure (2.1-26.7ng PbTx-3eq/mL). Additionally, 100% of livers (1.4-13.3ng PbTx-3eq/mL) and yolk sacs (1.7-6.6ng PbTx-3eq/mL) from dead-in-nest hatchlings and 70% of eggs (<1.0-24.4ng PbTx-3eq/mL) tested positive for brevetoxin exposure with the ELISA. We found that plasma brevetoxin concentrations determined by an ELISA in nesting females positively correlated with gamma-globulins, indicating a potential for immunomodulation as a result of brevetoxin exposure. While the sample sizes were small, we also found that plasma brevetoxin concentrations determined by an ELISA in nesting females significantly correlated with liver brevetoxin concentrations of dead-in-nest hatchlings and that brevetoxins could be related to a decreased reproductive success in this species. This study suggests that brevetoxins can still elicit negative effects on marine life long after a bloom has dissipated. These results improve our understanding of maternal transfer and sublethal effects of brevetoxin exposure in marine turtles.
Collapse
Affiliation(s)
- Justin R Perrault
- Marine Immunology Program, Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL 34236, USA.
| | - Katherine D Bauman
- Department of Chemistry and Biochemistry, Middlebury College, 14 Old Chapel Road, Middlebury, VT 05753, USA.
| | - Taylor M Greenan
- College of Arts and Sciences, University of South Florida Sarasota-Manatee, 8350 North Tamiami Trail, Sarasota, FL 34243, USA.
| | - Patricia C Blum
- Marine Immunology Program, Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL 34236, USA.
| | - Michael S Henry
- Marine Immunology Program, Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL 34236, USA.
| | - Catherine J Walsh
- Marine Immunology Program, Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL 34236, USA.
| |
Collapse
|
43
|
Finlayson KA, Leusch FDL, van de Merwe JP. The current state and future directions of marine turtle toxicology research. ENVIRONMENT INTERNATIONAL 2016; 94:113-123. [PMID: 27236406 DOI: 10.1016/j.envint.2016.05.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/13/2016] [Accepted: 05/14/2016] [Indexed: 05/14/2023]
Abstract
Chemical contamination of marine turtles has been well documented in the literature, although information on the toxicological effects of these contaminants is poorly understood. This paper systematically and quantitatively presents the available marine turtle toxicological research (excluding oil chemicals and natural toxins) and the related fields of cell line establishment and biomarkers as indicators of exposure. Examination of the published literature identified a total of 49 papers on marine turtle toxicology, which were split into three categories: toxicity studies (n=33, 67%), cell line establishment (n=7, 14%), and publications using biomarkers (n=13, 27%). Toxicity studies were further broken down into four subcategories: those correlating contaminants with toxicological endpoints (n=16, 48%); in vitro exposure experiments (n=11, 33%); in vivo exposure experiments (n=5, 15%); and screening risk assessments using hazard quotients (n=3, 9%). In quantitatively assessing the literature, trends and gaps in this field of research were identified. This paper highlights the need for more marine turtle toxicology research on all species, particularly using high throughput and non-invasive in vitro assays developed for marine turtle cells, including investigations into further toxicological endpoints and mixture effects. This will provide more comprehensive species-specific assessment of the impacts of chemical contaminants on these threatened animals, and improve conservation and management strategies globally.
Collapse
Affiliation(s)
- Kimberly A Finlayson
- Smart Water Research Centre, Australian Rivers Institute, Griffith School of Environment, Griffith University, Gold Coast, Australia.
| | - Frederic D L Leusch
- Smart Water Research Centre, Australian Rivers Institute, Griffith School of Environment, Griffith University, Gold Coast, Australia
| | - Jason P van de Merwe
- Smart Water Research Centre, Australian Rivers Institute, Griffith School of Environment, Griffith University, Gold Coast, Australia
| |
Collapse
|
44
|
da Silva CC, Klein RD, Barcarolli IF, Bianchini A. Metal contamination as a possible etiology of fibropapillomatosis in juvenile female green sea turtles Chelonia mydas from the southern Atlantic Ocean. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 170:42-51. [PMID: 26615366 DOI: 10.1016/j.aquatox.2015.11.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 11/03/2015] [Accepted: 11/09/2015] [Indexed: 05/14/2023]
Abstract
Environmental contaminants have been suggested as a possible cause of fibropapillomatosis (FP) in green sea turtles. In turn, a reduced concentration of serum cholesterol has been indicated as a reliable biomarker of malignancy in vertebrates, including marine turtles. In the present study, metal (Ag, Cd, Cu, Fe, Ni, Pb and Zn) concentrations, oxidative stress parameters [antioxidant capacity against peroxyl radicals (ACAP), protein carbonyls (PC), lipid peroxidation (LPO), frequency of micronucleated cells (FMC)], water content, cholesterol concentration and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) activity were analyzed in the blood/serum of juvenile (29.3-59.5cm) female green sea turtles (Chelonia mydas) with FP (n=14) and without FP (n=13) sampled at Ubatuba coast (São Paulo State, southeastern Brazil). Green sea turtles were grouped and analyzed according to the severity of tumors. Individuals heavily afflicted with FP showed significantly higher blood Cu, Pb and Fe concentrations, blood LPO levels, as well as significantly lower serum cholesterol concentrations and HMGR activity than turtles without FP. Significant and positive correlations were observed between HMGR activity and cholesterol concentrations, as well as LPO levels and Fe and Pb concentrations. In turn, Cu and Pb concentrations were significantly and negatively correlated with HMGR activity and cholesterol concentration. Furthermore, Cu, Fe and Pb were positively correlated with each other. Therefore, the reduced concentration of serum cholesterol observed in green sea turtles heavily afflicted with FP is related to a Cu- and Pb-induced inhibition of HMGR activity paralleled by a higher LPO rate induced by increased Fe and Pb concentrations. As oxidative stress is implicated in the pathogenesis of viral infections, our findings support the idea that metal contamination, especially by Cu, Fe and Pb, may be implicated in the etiology of FP in green sea turtles through oxidative stress generation.
Collapse
Affiliation(s)
- Cinthia Carneiro da Silva
- Programa de Pós-Graduação em Ciências Fisiológicas - Fisiologia Animal Comparada, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, 96.203-900, Rio Grande, RS, Brazil
| | - Roberta Daniele Klein
- Programa de Pós-Graduação em Ciências Fisiológicas - Fisiologia Animal Comparada, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, 96.203-900, Rio Grande, RS, Brazil
| | - Indianara Fernanda Barcarolli
- Programa de Pós-Graduação em Ciências Fisiológicas - Fisiologia Animal Comparada, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, 96.203-900, Rio Grande, RS, Brazil
| | - Adalto Bianchini
- Programa de Pós-Graduação em Ciências Fisiológicas - Fisiologia Animal Comparada, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, 96.203-900, Rio Grande, RS, Brazil.
| |
Collapse
|
45
|
Letcher RJ, Lu Z, de Solla SR, Sandau CD, Fernie KJ. Snapping Turtles (Chelydra serpentina) from Canadian Areas of Concern across the southern Laurentian Great Lakes: Chlorinated and brominated hydrocarbon contaminants and metabolites in relation to circulating concentrations of thyroxine and vitamin A. ENVIRONMENTAL RESEARCH 2015; 143:266-278. [PMID: 26519832 DOI: 10.1016/j.envres.2015.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/16/2015] [Accepted: 10/14/2015] [Indexed: 06/05/2023]
Abstract
The metabolites of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs), as well as other halogenated phenolic contaminants (HPCs) have been shown to have endocrine-disrupting properties, and have been reported with increasing frequency in the blood of wildlife, and mainly in mammals and birds. However, little is known about the persistence, accumulation and distribution of these contaminants in long-lived freshwater reptiles. In the present study, in addition to a large suite of chlorinated and brominated contaminants, metabolites and HPCs, we assessed and compared hydroxylated (OH) PCBs and OH-PBDEs relative to PCBs and PBDEs, respectively, in the plasma of adult male common snapping turtles (Chelydra serpentina). Blood samples were collected from 62 snapping turtles (2001-2004) at 12 wetland sites between the Detroit River and the St. Lawrence River on the Canadian side of the Laurentian Great Lakes of North America. Turtles were sampled from sites designated as Areas of Concern (AOCs) and from a relatively clean reference site in southern Georgian Bay (Tiny Marsh), Lake Huron. Plasma concentrations of Σ46PCB (10-340 ng/g wet weight (ww)) and Σ28OH-PCB (3-83 ng/g ww) were significantly greater (p<0.05) in turtles from the Turkey Creek and Muddy Creek-Wheatley Harbour sites in Lake Erie compared with the reference site turtles. The HPC, pentachlorophenol (PCP), had a mean concentration of 9.6±1.1 ng/g ww. Of the 28 OH-CB congeners screened for, 4-OH-CB187 (42±7 ng/g ww) was the most concentrated of all HPCs measured. Of the 14 OH-BDE congeners examined, four (4'-OH-BDE17, 3-OH-BDE47, 5-OH-BDE47 and 4'-OH-BDE49) were consistently found in all plasma samples. p,p'-DDE was the most concentrated of the 18 organochlorine pesticides (OCPs) examined. The mean concentrations of circulating total thyroxine (TT4), dehydroretinol and retinol in the plasma of the male snapping turtles regardless of sampling site were 5.4±0.3, 81±4.7 and 291±13 ng/mL, respectively. Significant (p<0.05) negative (e.g. cis-chlordane) or positive (e.g. BDE-99) correlations between some of the target contaminants and TT4, dehydroretinol or retinol were observed. To our knowledge, we report for the first time on HPC (e.g. OH-PCBs) and methylsulfonyl- (MeSO2-) PCB metabolite contaminants in the plasma of any freshwater turtle or freshwater reptilian species. Our findings also show that the accumulation of OH-PCBs, MeSO2-PCBs, OH-PBDEs and some OCPs in the snapping turtles from Lake Erie and Lake Ontario (in 2001-2004) had the potential for eliciting endocrine disruption. Exposure to these contaminants and associated adverse effects on the endocrine system in freshwater reptiles and the related mechanisms require further investigation.
Collapse
Affiliation(s)
- Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Science and Technology Branch, Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario, Canada K1A 0H3.
| | - Zhe Lu
- Richardson College for the Environment, Environmental Studies Program and Department of Chemistry, University of Winnipeg, Winnipeg, MB, Canada R3B 2E9
| | - Shane R de Solla
- Ecotoxicology and Wildlife Health Division, Science and Technology Branch, Environment Canada, Canada Centre for Inland Waters, Burlington, Ontario, Canada L7S 1A1
| | | | - Kimberly J Fernie
- Ecotoxicology and Wildlife Health Division, Science and Technology Branch, Environment Canada, Canada Centre for Inland Waters, Burlington, Ontario, Canada L7S 1A1
| |
Collapse
|
46
|
Jin L, Escher BI, Limpus CJ, Gaus C. Coupling passive sampling with in vitro bioassays and chemical analysis to understand combined effects of bioaccumulative chemicals in blood of marine turtles. CHEMOSPHERE 2015; 138:292-299. [PMID: 26091870 DOI: 10.1016/j.chemosphere.2015.05.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/14/2015] [Accepted: 05/17/2015] [Indexed: 06/04/2023]
Abstract
Conventional target analysis of biological samples such as blood limits our ability to understand mixture effects of chemicals. This study aimed to establish a rapid passive sampling technique using the polymer polydimethylsiloxane (PDMS) for exhaustive extraction of mixtures of neutral organic chemicals accumulated in blood of green turtles, in preparation for screening in in vitro bioassays. We designed a PDMS-blood partitioning system based on the partition coefficients of chemicals between PDMS and major blood components. The sampling kinetics of hydrophobic test chemicals (polychlorinated dibenzo-p-dioxins; PCDDs) from blood into PDMS were reasonably fast reaching steady state in <96 h. The geometric mean of the measured PDMS-blood partition coefficients for PCDDs, polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) was 14 L blood kg PDMS(-1) and showed little variability (95% confidence interval from 8.4 to 29) across a wide range of hydrophobicity (logKow 5.7-8.3). The mass transfer of these chemicals from 5 mL blood into 0.94 g PDMS was 62-84%, which is similar to analytical recoveries in conventional solvent extraction methods. The validated method was applied to 15 blood samples from green turtles with known concentrations of PCDD/Fs, dioxin-like PCBs, PBDEs and organochlorine pesticides. The quantified chemicals explained most of the dioxin-like activity (69-98%), but less than 0.4% of the oxidative stress response. The results demonstrate the applicability of PDMS-based passive sampling to extract bioaccumulative chemicals from blood as well as the value of in vitro bioassays for capturing the combined effects of unknown and known chemicals.
Collapse
Affiliation(s)
- Ling Jin
- The University of Queensland, National Research Centre for Environmental Toxicology (Entox), Brisbane, QLD, Australia
| | - Beate I Escher
- The University of Queensland, National Research Centre for Environmental Toxicology (Entox), Brisbane, QLD, Australia; UFZ - Helmholtz Centre for Environmental Research, Cell Toxicology, Leipzig, Germany; Eberhard Karls University Tübingen, Environmental Toxicology, Center for Applied Geosciences, Germany.
| | - Colin J Limpus
- Threatened Species Unit, Department of Environment and Heritage Protection (Queensland), Brisbane, Australia
| | - Caroline Gaus
- The University of Queensland, National Research Centre for Environmental Toxicology (Entox), Brisbane, QLD, Australia
| |
Collapse
|
47
|
A review of fibropapillomatosis in Green turtles (Chelonia mydas). Vet J 2015; 212:48-57. [PMID: 27256025 DOI: 10.1016/j.tvjl.2015.10.041] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 10/16/2015] [Accepted: 10/16/2015] [Indexed: 12/25/2022]
Abstract
Despite being identified in 1938, many aspects of the pathogenesis and epidemiology of fibropapillomatosis (FP) in marine turtles are yet to be fully uncovered. Current knowledge suggests that FP is an emerging infectious disease, with the prevalence varying both spatially and temporally, even between localities in close proximity to each other. A high prevalence of FP in marine turtles has been correlated with residency in areas of reduced water quality, indicating that there is an environmental influence on disease presentation. Chelonid herpesvirus 5 (ChHV5) has been identified as the likely aetiological agent of FP. The current taxonomic position of ChHV5 is in the family Herpesviridae, subfamily Alphaherpesvirinae, genus Scutavirus. Molecular differentiation of strains has revealed that a viral variant is typically present at specific locations, even within sympatric species of marine turtles, indicating that the disease FP originates regionally. There is uncertainty surrounding the exact path of transmission and the conditions that facilitate lesion development, although recent research has identified atypical genes within the genome of ChHV5 that may play a role in pathogenesis. This review discusses emerging areas where researchers might focus and theories behind the emergence of FP globally since the 1980s, which appear to be a multi-factorial interplay between the virus, the host and environmental factors influencing disease expression.
Collapse
|
48
|
Hart CE, Blanco GS, Coyne MS, Delgado-Trejo C, Godley BJ, Jones TT, Resendiz A, Seminoff JA, Witt MJ, Nichols WJ. Multinational tagging efforts illustrate regional scale of distribution and threats for east pacific green turtles (Chelonia mydas agassizii). PLoS One 2015; 10:e0116225. [PMID: 25646803 PMCID: PMC4315605 DOI: 10.1371/journal.pone.0116225] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 12/04/2014] [Indexed: 11/24/2022] Open
Abstract
To further describe movement patterns and distribution of East Pacific green turtles (Chelonia mydas agassizii) and to determine threat levels for this species within the Eastern Pacific. In order to do this we combined published data from existing flipper tagging and early satellite tracking studies with data from an additional 12 satellite tracked green turtles (1996-2006). Three of these were tracked from their foraging grounds in the Gulf of California along the east coast of the Baja California peninsula to their breeding grounds in Michoacán (1337-2928 km). In addition, three post-nesting females were satellite tracked from Colola beach, Michoacán to their foraging grounds in southern Mexico and Central America (941.3-3020 km). A further six turtles were tracked in the Gulf of California within their foraging grounds giving insights into the scale of ranging behaviour. Turtles undertaking long-distance migrations showed a tendency to follow the coastline. Turtles tracked within foraging grounds showed that foraging individuals typically ranged up to 691.6 km (maximum) from release site location. Additionally, we carried out threat analysis (using the cumulative global human impact in the Eastern Pacific) clustering pre-existing satellite tracking studies from Galapagos, Costa Rica, and data obtained from this study; this indicated that turtles foraging and nesting in Central American waters are subject to the highest anthropogenic impact. Considering that turtles from all three rookeries were found to migrate towards Central America, it is highly important to implement conservation plans in Central American coastal areas to ensure the survival of the remaining green turtles in the Eastern Pacific. Finally, by combining satellite tracking data from this and previous studies, and data of tag returns we created the best available distributional patterns for this particular sea turtle species, which emphasized that conservation measures in key areas may have positive consequences on a regional scale.
Collapse
Affiliation(s)
- Catherine E. Hart
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, Cornwall, United Kingdom
| | - Gabriela S. Blanco
- Biology Department, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Michael S. Coyne
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, Cornwall, United Kingdom
- SEATURTLE.org, Durham, North Carolina, United States of America
| | - Carlos Delgado-Trejo
- Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacána de San Nicolas de Hidalgo, Morelia, Michoacán, Mexico
| | - Brendan J. Godley
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, Cornwall, United Kingdom
| | - T. Todd Jones
- NOAA Fisheries, Pacific Islands Fisheries Science Center, Honolulu, Hawaii, United States of America
| | - Antonio Resendiz
- Instituto Nacional de Ecología, Dirección General de Vida Silvestre, Secretaria de Medio Ambiente y Recursos Naturales, Ensenada, Baja California, Mexico
| | - Jeffrey A. Seminoff
- NOAA—National Marine Fisheries Service, Southwest Fisheries Science Center, La Jolla Shores Dr., La Jolla, California, United States of America
| | - Matthew J. Witt
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, Cornwall, United Kingdom
| | - Wallace J. Nichols
- California Academy of Sciences, Golden Gate Park, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|