1
|
Liu P, Liu Y, Gai Z, Yang F, Yang Y. Highly specific colorimetric detection of sarcosine using surface molecular imprinted Zn/Ce-ZIF. J Colloid Interface Sci 2025; 681:239-249. [PMID: 39608025 DOI: 10.1016/j.jcis.2024.11.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/11/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024]
Abstract
Despite significant progress in nanozyme research and the advancement of analytical techniques, the inherent lack of specificity for target analytes often limits their utility in analysis. Integrating specific recognition capabilities into inorganic nanomaterials, independent of biological catalysts or adaptors, represents a crucial breakthrough in the field. Detecting Sarcosine (Sar) in human urine has recently emerged as a non-invasive biomarker for prostate cancer (PCa), presenting a valuable diagnostic tool. This study introduces a novel method for embedding molecular imprinting sites directly onto the surface of a Zn/Ce-based zeolitic imidazolate framework (Zn/Ce-ZIF) nanozyme, facilitating the development of a highly specific colorimetric assay for precise Sar measurement. By utilizing the lanthanide metal cerium as the catalytic element and ZIF-8 as the structural scaffold, we synthesized spherical Zn/Ce-ZIF nanozymes with exceptional oxidase-like catalytic efficiency. The efficiency of molecular imprinting experiments and the ability of molecularly imprinted polymers (MIPs) to identify target molecules were significantly enhanced by using theortical calculations to screen suitable functional monomers. The molecularly imprinted nanozyme (Zn/Ce-ZIF@MIP) initiates a colorimetric oxidation reaction of 3,3',5,5'-tetramethylbenzidine (TMB), wherein the presence of Sar facilitates selective recognition and capture by the MIP shell, modulating the colorimetric response by hindering TMB's access to the catalytic site. An intelligent color extraction detection device has been developed for the rapid perception of Sar. This colorimetric sensing platform has been validated through the detection of Sar in simulated urine samples. Overall, the application of surface molecular imprinting enhances the functionality of nanozymes in analytical fields.
Collapse
Affiliation(s)
- Peng Liu
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yeping Liu
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Zhexu Gai
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Fei Yang
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, China.
| | - Yanzhao Yang
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| |
Collapse
|
2
|
Fu H, Gray KA. Graphene-encapsulated nanocomposites: Synthesis, environmental applications, and future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176753. [PMID: 39393689 DOI: 10.1016/j.scitotenv.2024.176753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/13/2024]
Abstract
The discovery of graphene and its remarkable properties has sparked extensive research and innovation across various fields. Graphene and its derivatives, such as oxide and reduced graphene oxide, have high surface area, tunable porosity, strong surface affinity with organic molecules, and excellent electrical/thermal conductivity. However, the practical application of 2D graphene in aqueous environments is often limited by its tendency to stack, reducing its effectiveness. To address this challenge, the development of three-dimensional graphene structures, particularly graphene-encapsulated nanocomposites (GENs), offers a promising solution. GENs not only mitigate stacking issues but also promote flexible tailoring for specific applications through the incorporation of diverse fill materials. This customization allows for precise control over shape, size, porosity, selective adsorption, and advanced engineering capabilities, including the integration of multiple components and controlled release mechanisms. This review covers GEN synthesis strategies, including physical attachment, electrostatic interactions, chemical bonding, emulsification, chemical vapor deposition, aerosol methods, and nano-spray drying techniques. Key environmental applications of GENs are highlighted, with GENs showing 4-8 times greater micropollutant adsorption (compared to GAC), a 20-fold increase in photocatalytic pollutant degradation efficiency (compared to TiO2), a 21-fold enhancement in hydrogen production (compared to photocatalyst only), and a 20-45 % improvement in solar-driven water evaporation efficiency (compared to rGO). Additional applications include membrane fouling control, environmental sensing, resource generation, and enhancing thermal desalination through solar thermal harvesting. The review concludes by outlining future perspectives, emphasizing the need for improved 3D characterization techniques, more efficient large-scale production methods, and further optimization of multicomponent GENs for enhanced synergistic effects and broader environmental applications.
Collapse
Affiliation(s)
- Han Fu
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA; NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85287, USA.
| | - Kimberly A Gray
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
3
|
Wang J, Bi S, Wei L, Shen Y, Meng F, Zhang Y, Tan X. Unveiling the critical roles of nascent MnO 2 in accelerating permanganate carbocatalysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136439. [PMID: 39531815 DOI: 10.1016/j.jhazmat.2024.136439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/10/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
To probe the underlying mechanisms of carbocatalysis in enhanced permanganate (PM) oxidation and identify the exact roles of nascent MnO2, graphene aerogels (GA) were fabricated to activate PM for naproxen (NPX) degradation. All the three GA samples could accelerate NPX oxidation by PM, the rate constants and reaction stoichiometric efficiency (RSE) followed the order of GA900 > GA600 > GA300. Mechanistic studies revealed that Mn(VI), Mn(V) and Mn(III) were not the major reactive species involved in NPX oxidation, but highlighted the essential contribution of electron transfer pathway (ETP) mediated directly by GA and indirectly by nascent MnO2. For GA300 with strong electron-donating capability, it mainly served as the electron donor for PM decomposition, and indirectly oxidized NPX via nascent MnO2 mediated ETP, thereby exhibiting inferior RSE as well as mediocre recycling performance. GA600 and GA900 could serve as the electron shuttle to directly mediate the ETP for NPX degradation, the nascent MnO2 accumulated on GA framework during the reaction would also mediate the ETP from NPX to PM, thus displaying an obvious accelerating recycling performance. This work provides novel insights into the structure-dominated PM carbocatalysis, which contributes better to development of promising carbocatalysts and utilization of nascent MnO2.
Collapse
Affiliation(s)
- Jun Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China; Cangzhou Institute of Tiangong University, Cangzhou 061000, China
| | - Simeng Bi
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China; Cangzhou Institute of Tiangong University, Cangzhou 061000, China
| | - Li Wei
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China; Cangzhou Institute of Tiangong University, Cangzhou 061000, China
| | - Yi Shen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Fanpeng Meng
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Yang Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Xiaoyao Tan
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China; Cangzhou Institute of Tiangong University, Cangzhou 061000, China; Department of Chemical Engineering, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
4
|
Xiong T, Xu X, Tang C, Guo H, Wang W, Liu M, Guo J, Wang H, Leng L, Liu B, Yuan X. Performance and mechanism of diclofenac adsorption onto 3D poly(m-phenylenediamine)-grafted melamine foam via batch experiment and theoretical studies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122556. [PMID: 39357450 DOI: 10.1016/j.jenvman.2024.122556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024]
Abstract
Seeking highly efficient adsorbents for pharmaceuticals and personal care products (PPCPs) removal has been a worldwide continuing endeavor. In this study, a new 3D composite material was synthesized by covalently anchoring Poly(m-Phenylenediamine) onto 3D polyvinyl alcohol modified foam framework (PmPD-MF-PVA). PmPD-MF-PVA was characterized and evaluated for its efficacy in removing diclofenac (DCF), a commonly detected PPCPs in both wastewater and surface water. Results showed that the adsorption capacity of PmPD-MF-PVA toward DCF was 1.5 times higher than that of PmPD-MF. The addition of PVA increased deposition area of PmPD, and promoted PmPD loading on the foam surface. Batch adsorption experiments exhibited that the adsorption of DCF was fitted well with Langmuir isotherm and pseudo-second-order kinetic models. The maximum adsorption capacity of PmPD-MF-PVA was 115 mg/g. Meanwhile, PmPD-MF-PVA exhibited better separation ability than the hard-to-separate PmPD. Characterization analysis and density functional theory (DFT) calculation elucidated the main mechanisms of DCF adsorption on PmPD-MF-PVA. Hydrogen bonding and π-π interactions were main drivers for DCF adsorption, followed by electrostatic attraction and hydrophobic forces. This study provides an effective strategy to overcome the drawbacks of PmPD, such as recycling difficulty and agglomeration problems, offering valuable insights for the design of polymers-based adsorbents.
Collapse
Affiliation(s)
- Ting Xiong
- School of Advanced Interdisciplinary Studies, Hunan University of Technology and Business, Changsha, 410205, China; Xiangjiang Laboratory, Changsha, 410205, China
| | - Xintao Xu
- School of Advanced Interdisciplinary Studies, Hunan University of Technology and Business, Changsha, 410205, China
| | - Chao Tang
- School of Advanced Interdisciplinary Studies, Hunan University of Technology and Business, Changsha, 410205, China
| | - Hai Guo
- College of Resources and Environment, Hunan University of Technology and Business, Changsha, 410205, China
| | - Wenjun Wang
- College of Resources and Environment, Hunan University of Technology and Business, Changsha, 410205, China
| | - Milan Liu
- Department of Civil and Environmental Engineering, Imperial College London, SW7 2AZ, UK
| | - Jiayin Guo
- College of Resources and Environment, Hunan University of Technology and Business, Changsha, 410205, China
| | - Hou Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Lijian Leng
- School of Energy Science and Engineering, Central South University, Changsha, 410083, China
| | - Bing Liu
- School of Advanced Interdisciplinary Studies, Hunan University of Technology and Business, Changsha, 410205, China.
| | - Xingzhong Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
5
|
Shahbazi M, Jäger H, Ettelaie R, Chen J, Kashi PA, Mohammadi A. Dispersion strategies of nanomaterials in polymeric inks for efficient 3D printing of soft and smart 3D structures: A systematic review. Adv Colloid Interface Sci 2024; 333:103285. [PMID: 39216400 DOI: 10.1016/j.cis.2024.103285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/03/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Nanoscience-often summarized as "the future is tiny"-highlights the work of researchers advancing nanotechnology through incremental innovations. The design and innovation of new nanomaterials are vital for the development of next-generation three-dimensional (3D) printed structures characterized by low cost, high speed, and versatile capabilities, delivering exceptional performance in advanced applications. The integration of nanofillers into polymeric-based inks for 3D printing heralds a new era in additive manufacturing, allowing for the creation of custom-designed 3D objects with enhanced multifunctionality. To optimize the use of nanomaterials in 3D printing, effective disaggregation techniques and strong interfacial adhesion between nanofillers and polymer matrices are essential. This review provides an overview of the application of various types of nanomaterials used in 3D printing, focusing on their functionalization principles, dispersion strategies, and colloidal stability, as well as the methodologies for aligning nanofillers within the 3D printing framework. It discusses dispersive methods, synergistic dispersion, and in-situ growth, which have yielded smart 3D-printed structures with unique functionality for specific applications. This review also focuses on nanomaterial alignment in 3D printing, detailing methods that enhance selective deposition and orientation of nanofillers within established and customized printing techniques. By emphasizing alignment strategies, we explore their impact on the performance of 3D-printed composites and highlight potential applications that benefit from ordered nanoparticles. Through these continuing efforts, this review shows that the design and development of the new class of nanomaterials are crucial to developing the next generation of smart 3D printed architectures with versatile abilities for advanced structures with exceptional performance.
Collapse
Affiliation(s)
- Mahdiyar Shahbazi
- Institute of Material Technology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria.
| | - Henry Jäger
- Institute of Material Technology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria.
| | - Rammile Ettelaie
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Jianshe Chen
- Food Oral Processing Laboratory, School of Food Science & Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Peyman Asghartabar Kashi
- Faculty of Biosystem, College of Agricultural and Natural Resources Tehran University, Tehran, Iran
| | - Adeleh Mohammadi
- Department of Chemistry, University Hamburg, Institute of Food Chemistry, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| |
Collapse
|
6
|
Abioye SO, Majooni Y, Moayedi M, Rezvani H, Kapadia M, Yousefi N. Graphene-based nanomaterials for the removal of emerging contaminants of concern from water and their potential adaptation for point-of-use applications. CHEMOSPHERE 2024; 355:141728. [PMID: 38499073 DOI: 10.1016/j.chemosphere.2024.141728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 03/20/2024]
Abstract
Considering the plethora of work on the exceptional environmental performance of 2D nanomaterials, there is still a missing link in addressing their practical application in point-of-use (POU) water treatment. By reviewing the exceptional environmental performance of 2D nanomaterials with specific emphasis on graphene and its derivatives, this review aims at inspiring further discussions and research in graphene-based POU water treatment with particular focus on the removal of emerging contaminants of concern (ECCs), which is largely missing in the literature. We outlined the prevalence of ECCs in the environment, their health effects both on humans and marine life, and the potential of efficiently removing them from water using three-dimensional graphene-based macrostructures to ensure ease of adsorbent recovery and reuse compared to nanostructures. Given various successful studies showing superior adsorption capacity of graphene nanosheets, we give an account of the recent developments in graphene-based adsorbents. Moreover, several cost-effective materials which can be easily self-assembled with nanosheets to improve their environmental performance and safety for POU water treatment purposes were highlighted. We highlighted the strategy to overcome challenges of adsorbent regeneration and contaminant degradation; and concluded by noting the need for policy makers to act decisively considering the conservative nature of the water treatment industry, and the potential health risks from ingesting ECCs through drinking water. We further justified the need for the development of advanced POU water treatment devices in the face of the growing challenges regarding ECCs in surface water, and the rising cases of drinking water advisories across the world.
Collapse
Affiliation(s)
- Samson Oluwafemi Abioye
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, M5B 2K3, ON, Canada
| | - Yalda Majooni
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, M5B 2K3, ON, Canada; Department of Aerospace Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, M5B 2K3, ON, Canada
| | - Mahsa Moayedi
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, M5B 2K3, ON, Canada
| | - Hadi Rezvani
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, M5B 2K3, ON, Canada
| | - Mihir Kapadia
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, M5B 2K3, ON, Canada
| | - Nariman Yousefi
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, M5B 2K3, ON, Canada.
| |
Collapse
|
7
|
Wu L, Qi S, Zhang T, Jin Y, Xiao H. One-step carbonization/activation synthesis of chitosan-based porous sheet-like carbon and studies of adsorptive removal for Rhodamine B. Carbohydr Polym 2024; 330:121832. [PMID: 38368087 DOI: 10.1016/j.carbpol.2024.121832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/28/2023] [Accepted: 01/13/2024] [Indexed: 02/19/2024]
Abstract
In this work, new N, O-codoped chitosan-derived carbon adsorbents (CKC-x, x refer to the calcination temperature) were synthesized over a simple process of chitosan-KOH aerogel production and simultaneous carbonization/activation of the aerogel. CKC-700 was characterized by sheet-like morphology (even containing a portion of carbon nano-sheet of 3 nm thickness), high porosity and specific surface area (1702.1 m2/g), and pyridinic/pyrrolic/graphitic N groups. The simultaneous carbonization/activation of chitosan-KOH aerogel prepared by top-down coagulation of chitosan aqueous solution by KOH aqueous solution rendered these beneficial characteristics. CKC-700 exhibited a superior adsorption capacity for Rhodamine B (RhB) to other chitosan-derived carbon adsorbents, and the maximum adsorption capacity for RhB of 594 mg/g was achieved at 55 °C. CKC-700 also possessed reasonable reusability for the removal of RhB, and the removal efficiency was still above 95 % in the fifth cycle. The effects of adsorption temperature and time, adsorbent dose, organic dye concentration, and solution pH on the adsorption capacity of CKC-700 were studied. Moreover, the adsorption isotherm, kinetics, thermodynamics, and the adsorption mechanism of RhB on CKC-700 were discussed. In addition, CKC-700 also showed favorable adsorption performance for methylene blue (441 mg/g), methyl orange (457 mg/g), and congo red (500 mg/g) at around 25 °C.
Collapse
Affiliation(s)
- Ling Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shuang Qi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Tingwei Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| |
Collapse
|
8
|
Lancellotti L, Bianchi A, Kovtun A, Gazzano M, Marforio TD, Xia ZY, Calvaresi M, Melucci M, Zanardi C, Palermo V. Selective ion transport in large-area graphene oxide membrane filters driven by the ionic radius and electrostatic interactions. NANOSCALE 2024; 16:7123-7133. [PMID: 38501609 DOI: 10.1039/d3nr05874c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Filters made of graphene oxide (GO) are promising for purification of water and selective sieving of specific ions; while some results indicate the ionic radius as the discriminating factor in the sieving efficiency, the exact mechanism of sieving is still under debate. Furthermore, most of the reported GO filters are planar coatings with a simple geometry and an area much smaller than commercial water filters. Here, we show selective transport of different ions across GO coatings deposited on standard hollow fiber filters with an area >10 times larger than typical filters reported. Thanks to the fabrication procedure, we obtained a uniform coating on such complex geometry with no cracks or holes. Monovalent ions like Na+ and K+ can be transported through these filters by applying a low electric voltage, while divalent ions are blocked. By combining transport and adsorption measurements with molecular dynamics simulations and spectroscopic characterization, we unravel the ion sieving mechanism and demonstrate that it is mainly due to the interactions of the ions with the carboxylate groups present on the GO surface at neutral pH.
Collapse
Affiliation(s)
- Lidia Lancellotti
- Institute for Organic Synthesis and Photoreactivity, National Research Council (ISOF-CNR), via Piero Gobetti 101, 40129, Bologna, BO, Italy.
| | - Antonio Bianchi
- Institute for Organic Synthesis and Photoreactivity, National Research Council (ISOF-CNR), via Piero Gobetti 101, 40129, Bologna, BO, Italy.
| | - Alessandro Kovtun
- Institute for Organic Synthesis and Photoreactivity, National Research Council (ISOF-CNR), via Piero Gobetti 101, 40129, Bologna, BO, Italy.
| | - Massimo Gazzano
- Institute for Organic Synthesis and Photoreactivity, National Research Council (ISOF-CNR), via Piero Gobetti 101, 40129, Bologna, BO, Italy.
| | - Tainah Dorina Marforio
- Department of Chemistry 'G. Ciamician', Alma Mater Studiorum University of Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Zhen Yuan Xia
- Department of Industrial and Materials Science, Chalmers University of Technology, Gothenburg S-41296, Sweden
| | - Matteo Calvaresi
- Department of Chemistry 'G. Ciamician', Alma Mater Studiorum University of Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Manuela Melucci
- Institute for Organic Synthesis and Photoreactivity, National Research Council (ISOF-CNR), via Piero Gobetti 101, 40129, Bologna, BO, Italy.
| | - Chiara Zanardi
- Institute for Organic Synthesis and Photoreactivity, National Research Council (ISOF-CNR), via Piero Gobetti 101, 40129, Bologna, BO, Italy.
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, via Torino 155, 30172 Venezia-Mestre, Italy
| | - Vincenzo Palermo
- Institute for Organic Synthesis and Photoreactivity, National Research Council (ISOF-CNR), via Piero Gobetti 101, 40129, Bologna, BO, Italy.
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, via Torino 155, 30172 Venezia-Mestre, Italy
| |
Collapse
|
9
|
Wang J, Tan Y, Zhan L, Yang H, Li X, Gao F, Qiu S. Sustainable development of environmental protection talents training: Research on the behavior decision of government, university and enterprise under the background of evolutionary game. PLoS One 2024; 19:e0298548. [PMID: 38394217 PMCID: PMC10890725 DOI: 10.1371/journal.pone.0298548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Environmental protection talents training (EPTT) is recognized as a key prerequisite for maintaining environmental sustainability, and in order to study the influence of each player on EPTT. This paper innovatively constructs a tripartite evolutionary game model of government, university and enterprise. The equilibrium points and evolutionary stabilization strategies of each participant are solved by replicating the dynamic equations, and the behaviors of each subject in EPTT are analyzed so as to clarify the behavioral characteristics and optimal strategies of the government's participation in EPTT. The results show that enterprises occupy a more important position in influencing government decisions. The government should reduce the financial incentives for enterprises and replace them with greater policy support. Meanwhile, the government should actively promote the cultivation mechanism that integrates universities and enterprises. The results of the study can provide a decision-making basis for the government to promote the sustainable development of EPTT.
Collapse
Affiliation(s)
- Jinxia Wang
- College of Resources and Safety, Chongqing Vocational Institute of Engineering, Chongqing, China
| | - Yunfeng Tan
- College of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, China
| | - Lingling Zhan
- General college, Chongqing Vocational Institute of Engineering, Chongqing, China
| | - Hongjun Yang
- College of Resources and Environment, Southwest University, Beibei, Chongqing, China
| | - Xieling Li
- College of Resources and Safety, Chongqing Vocational Institute of Engineering, Chongqing, China
| | - Fang Gao
- College of Resources and Safety, Chongqing Vocational Institute of Engineering, Chongqing, China
| | - Siyuan Qiu
- College of Resources and Safety, Chongqing Vocational Institute of Engineering, Chongqing, China
| |
Collapse
|
10
|
Bukhari A, Ijaz I, Nazir A, Hussain S, Zain H, Gilani E, Lfseisi AA, Ahmad H. Functionalization of Shorea faguetiana biochar using Fe 2O 3 nanoparticles and MXene for rapid removal of methyl blue and lead from both single and binary systems. RSC Adv 2024; 14:3732-3747. [PMID: 38288151 PMCID: PMC10823340 DOI: 10.1039/d3ra07250a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/25/2023] [Indexed: 01/31/2024] Open
Abstract
The synthesis of polymeric magnetic composites is a promising strategy for the rapid and efficient treatment of wastewater. Lead and methyl blue are extremely hazardous to living organisms. The sorption of Pb2+ and the dye methyl blue (MB) by biochar is an ecologically sustainable method to remediate this type of water pollution. We functionalized Shorea faguetiana biochar with Fe2O3 and MXene, resulting in Fe2O3/BC/MXene composites with an efficient, rapid, and selective adsorption performance. Based on X-ray photoelectron and Fourier transform infrared spectrometry, we found that the Fe2O3/BC/MXene composites had an increased number of surface functional groups (F-, C[double bond, length as m-dash]O, CN, NH, and OH-) compared with the original biochar. The batch sorption findings showed that the maximum sorption capacities for Pb2+ and MB at 293 K were 882.76 and 758.03 mg g-1, respectively. The sorption phenomena obeyed a pseudo-second-order (R2 = 1) model and the Langmuir isotherm. There was no competition between MB and Pb2+ in binary solutions, indicating that MB and Pb2+ did not influence each other as a result of their different adsorption mechanisms (electrostatic interaction for Pb2+ and hydrogen bonding for MB). This illustrates monolayer sorption on the Fe2O3/BC/MXene composite governed by chemical adsorption. Thermodynamic investigations indicated that the sorption process was spontaneous and exothermic at 293-313 K, suggesting that it is feasible for practical applications. Fe2O3/BC/MXene can selectively adsorb Pb2+ ions and MB from wastewater containing multiple interfering metal ions. The sorption capacities were still high after five reusability experiments. This work provides a novel Fe2O3/BC/MXene composite for the rapid and efficient removal of Pb2+ and MB.
Collapse
Affiliation(s)
- Aysha Bukhari
- School of Chemistry, Faculty of Basic Sciences and Mathematics, Minhaj University Lahore Lahore 54700 Pakistan
| | - Irfan Ijaz
- School of Chemistry, Faculty of Basic Sciences and Mathematics, Minhaj University Lahore Lahore 54700 Pakistan
| | - Ammara Nazir
- School of Chemistry, Faculty of Basic Sciences and Mathematics, Minhaj University Lahore Lahore 54700 Pakistan
| | - Sajjad Hussain
- School of Physics, Henan Key Laboratory of Photovoltaic Materials, Henan Normal University Xinxiang 453007 China
- School of Chemistry, Faculty of Basic Sciences and Mathematics, Minhaj University Lahore Lahore 54700 Pakistan
| | - Hina Zain
- Department of Biological Sciences, Superior University Lahore Lahore 54700 Pakistan
| | - Ezaz Gilani
- School of Chemistry, Faculty of Basic Sciences and Mathematics, Minhaj University Lahore Lahore 54700 Pakistan
| | - Ahmad A Lfseisi
- Department of Chemistry, College of Science, King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Hijaz Ahmad
- Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology Kuwait
- Department of Computer Science and Mathematics, Lebanese American University Beirut Lebanon
- Near East University, Operational Research Center in Healthcare TRNC Mersin 10 Nicosia 99138 Turkey
| |
Collapse
|
11
|
Sahoo PK, Kumar N, Jena A, Mishra S, Lee CP, Lee SY, Park SJ. Recent progress in graphene and its derived hybrid materials for high-performance supercapacitor electrode applications. RSC Adv 2024; 14:1284-1303. [PMID: 38174250 PMCID: PMC10763614 DOI: 10.1039/d3ra06904d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Graphene, the most fascinating 2D form of carbon with closely packed carbon atoms arranged in a layer, needs more attention in various fields. For its unique electrical, mechanical, and chemical properties with a large surface area, graphene has been in the limelight since its first report. Graphene has extraordinary properties, making it the most promising electrode component for applications in supercapacitors. However, the persistent re-stacking of carbon layers in graphene, caused by firm interlayer van der Waals attractions, significantly impairs the performance of supercapacitors. As a result, many strategies have been used to get around the aforementioned problems. The utilization of graphene-based nanomaterials has been implemented to surmount the aforementioned constraints and considerably enhance the performance of supercapacitors. This review highlights recent progress in graphene-based nanomaterials with metal oxide, sulfides, phosphides, nitrides, carbides, and conducting polymers, focusing on their synthetic approach, configurations, and electrochemical properties for supercapacitors. It discusses new possibilities that could increase the performance of next-generation supercapacitors.
Collapse
Affiliation(s)
- Prasanta Kumar Sahoo
- Department of Mechanical Engineering, Siksha 'O' Anusandhan, Deemed to be University Bhubneswar 751030 India +91-67-42351880 +91-67-42350181
- Environmental Hydrology Division, National Institute of Hydrology, Jalvigyan Bhawan Roorkee 247667 India
| | - Niraj Kumar
- Sustainable Energy Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DIAT) Pune Maharashtra 411025 India
- Department of Chemistry, Inha University Incheon 22212 Republic of Korea
| | - Anirudha Jena
- School of Applied Sciences, Kalinga Institute of Industrial Technology, Deemed to be University Bhubaneswar 751024 Odisha India
| | - Sujata Mishra
- Department of Chemistry, Institute of Technical Education and Research (FET), Siksha 'O' Anusandhan Deemed to Be University Khandagiri Square Bhubaneswar 751030 Odisha India
| | - Chuan-Pei Lee
- Department of Applied Physics and Chemistry, University of Taipei Taipei 10048 Taiwan
| | - Seul-Yi Lee
- Department of Chemistry, Inha University Incheon 22212 Republic of Korea
| | - Soo-Jin Park
- Department of Chemistry, Inha University Incheon 22212 Republic of Korea
| |
Collapse
|
12
|
Das P, Ibrahim S, Chakraborty K, Ghosh S, Pal T. Stepwise reduction of graphene oxide and studies on defect-controlled physical properties. Sci Rep 2024; 14:294. [PMID: 38168613 PMCID: PMC10762075 DOI: 10.1038/s41598-023-51040-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024] Open
Abstract
Graphene oxide (GO) is a monolayer of oxidized graphene which is a convenient and potential candidate in a wide range of fields of applications like electronics, photonics, optoelectronics, energy storage, catalysis, chemical sensors, and many others. GO is often composed of various oxygen-containing groups such as hydroxyl, carboxyl, and epoxy. One appealing method for achieving graphene-like behavior with sp2 hybridized carbon is the reduction of GO i.e. formation of reduced graphene oxide (RGO). A stepwise reduction GO to form a family of RGO, containing various quantities of oxygen-related defects was carried out. Herein, the defects related chemical and physical properties of GO and the RGO family were studied and reported in an effort to understand how the properties of RGO vary with the reduction rate. Although there are several reports on various features and applications of GO and RGO but a systematic investigation of the variation of the physical and chemical properties in RGO with the varying quantities of oxygeneous defects is imperative for the engineered physical properties in achieving the desired field of applications. We have attempted to look at the role of sp2 and sp3 carbon fractions, which are present in RGO-based systems, and how they affect the electrical, optoelectronic, and adsorption characteristics.
Collapse
Affiliation(s)
- Poulomi Das
- Department of Physics, Midnapore College, Midnapore, WB, 721101, India
| | - Sk Ibrahim
- Department of Physics, Vidyasagar University, Midnapore, WB, 721102, India
| | | | - Surajit Ghosh
- Department of Physics, Vidyasagar University, Midnapore, WB, 721102, India.
| | - Tanusri Pal
- Department of Physics, Midnapore College, Midnapore, WB, 721101, India.
| |
Collapse
|
13
|
Chormey DS, Zaman BT, Borahan Kustanto T, Erarpat Bodur S, Bodur S, Tekin Z, Nejati O, Bakırdere S. Biogenic synthesis of novel nanomaterials and their applications. NANOSCALE 2023; 15:19423-19447. [PMID: 38018389 DOI: 10.1039/d3nr03843b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Despite the many benefits derived from the unique features and practicality of nanoparticles, the release of their toxic by-products or products from the synthesis stage into the environment could negatively impact natural resources and organisms. The physical and chemical methods for nanoparticle synthesis involve high energy consumption and the use of hazardous chemicals, respectively, going against the principles of green chemistry. Biological methods of synthesis that rely on extracts from a broad range of natural plants, and microorganisms, such as fungi, bacteria, algae, and yeast, have emerged as viable alternatives to the physical and chemical methods. Nanoparticles synthesized through biogenic pathways are particularly useful for biological applications that have high concerns about contamination. Herein, we review the physical and chemical methods of nanoparticle synthesis and present a detailed overview of the biogenic methods used for the synthesis of different nanoparticles. The major points discussed in this study are the following: (1) the fundamentals of the physical and chemical methods of nanoparticle syntheses, (2) the use of different biological precursors (microorganisms and plant extracts) to synthesize gold, silver, selenium, iron, and other metal nanoparticles, and (3) the applications of biogenic nanoparticles in diverse fields of study, including the environment, health, material science, and analytical chemistry.
Collapse
Affiliation(s)
- Dotse Selali Chormey
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
- Neutec Pharmaceutical, Yıldız Technical University Teknopark, 34220, İstanbul, Türkiye
| | - Buse Tuğba Zaman
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
| | - Tülay Borahan Kustanto
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
- Neutec Pharmaceutical, Yıldız Technical University Teknopark, 34220, İstanbul, Türkiye
| | - Sezin Erarpat Bodur
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
| | - Süleyman Bodur
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
- İstinye University, Faculty of Pharmacy, Department of Analytical Chemistry, 34010 İstanbul, Türkiye
- İstinye University, Scientific and Technological Research Application and Research Center, 34010 İstanbul, Türkiye
| | - Zeynep Tekin
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
- Neutec Pharmaceutical, Yıldız Technical University Teknopark, 34220, İstanbul, Türkiye
| | - Omid Nejati
- İstinye University, Institute of Health Sciences, Department of Stem Cell and Tissue Engineering, 34010, İstanbul, Türkiye
| | - Sezgin Bakırdere
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
- Turkish Academy of Sciences (TÜBA), Vedat Dalokay Street, No: 112, 06670, Çankaya, 06670, Ankara, Türkiye
| |
Collapse
|
14
|
Zhang Y, Fu L, Tian F, Huang Y, Li X, Gu Y, Yang G, Qu L, Yang H. Designing carbon nanotube sponge/Au@MgO 2 for surface-enhanced Raman scattering detection and fenton-like degradation of organic pollutants. Talanta 2023; 265:124835. [PMID: 37385189 DOI: 10.1016/j.talanta.2023.124835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 07/01/2023]
Abstract
With the acceleration of industry and agriculture process, the massive emission of organic pollutants is a major problem which seriously restricts the sustainable development of society. Rapid enrichment, efficient degradation and sensitive detection are three key steps to solve the problem of organic pollutants, while developing a simple method integrating the above three capabilities is still a challenge. Herein, a three-dimensional carbon nanotube sponge decorated with magnesium peroxide and gold nanoparticles (CNTs/Au@MgO2 sponge) was prepared for surface enhanced Raman scattering (SERS) detection and degradation of aromatic organics by advanced oxidation processes. The CNTs/Au@MgO2 sponge with porous structures adsorbed molecules rapidly through π-π and electrostatic interaction, thus more aromatic molecules were driven to the hot-spot areas for highly sensitive SERS detection. A detection of limit with 9.09 × 10-9 M was achieved for rhodamine B (RhB). The adsorbed molecules were degraded by an advanced oxidation process utilizing hydrogen peroxide produced by MgO2 nanoparticles under acidic condition with 99% efficiency. In addition, the CNTs/Au@MgO2 sponge exhibited high reproducibility with the relative standard deviation (RSD) at 1395 cm-1 of approximately 6.25%. The results showed the sponge can be used to effectively track the concentration of pollutants during the degradation process and maintain the SERS activity by re-modifying Au@MgO2 nanomaterials. Furthermore, the proposed CNTs/Au@MgO2 sponge demonstrated the simultaneous functions of enrichment, degradation, and detection for aromatic pollutants, thus significantly expanding the potential applications of nanomaterials in environmental analysis and treatment.
Collapse
Affiliation(s)
- Yingdi Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Lijie Fu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Fei Tian
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Yi Huang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Xialian Li
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Yingqiu Gu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| | - Guohai Yang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| | - Lulu Qu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| | - Haipeng Yang
- College of Materials Science and Engineering, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen, Guangdong, 518060, China
| |
Collapse
|
15
|
Lu K, Hu Q, Zhai L, Zhu Z, Xu Y, Ding Z, Zeng H, Dong S, Gao S, Mao L. Mineralization of Few-Layer Graphene Made It Bioavailable in Chlamydomonas reinhardtii. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15255-15265. [PMID: 37768274 DOI: 10.1021/acs.est.3c04549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Numerous studies have emphasized the toxicity of graphene-based nanomaterials to algae, however, the fundamental behavior and processes of graphene in biological hosts, including its transportation, metabolization, and bioavailability, are still not well understood. As photosynthetic organisms, algae are key contributors to carbon fixation and may play an important role in the fate of graphene. This study investigated the biological fate of 14C-labeled few-layer graphene (14C-FLG) in Chlamydomonas reinhardtii (C. reinhardtii). The results showed that 14C-FLG was taken up by C. reinhardtii and then translocated into its chloroplast. Metabolomic analysis revealed that 14C-FLG altered the metabolic profiles (including sugar metabolism, fatty acid, and tricarboxylic acid cycle) of C. reinhardtii, which promoted the photosynthesis of C. reinhardtii and then enhanced their growth. More importantly, the internalized 14C-FLG was metabolized into 14CO2, which was then used to participate in the metabolic processes required for life. Approximately 61.63%, 25.31%, and 13.06% of the total radioactivity (from 14CO2) was detected in carbohydrates, lipids, and proteins of algae, respectively. Overall, these results reveal the role of algae in the fate of graphene and highlight the potential of available graphene in bringing biological effects to algae, which helps to better assess the environmental risks of graphene.
Collapse
Affiliation(s)
- Kun Lu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Qingyuan Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Li Zhai
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Zhiyu Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Yunsong Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Zhaohui Ding
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Hang Zeng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Shipeng Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Liang Mao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| |
Collapse
|
16
|
Kurmysheva AY, Yanushevich O, Krikheli N, Kramar O, Vedenyapina MD, Podrabinnik P, Solís Pinargote NW, Smirnov A, Kuznetsova E, Malyavin VV, Peretyagin P, Grigoriev SN. Adsorption Ability of Graphene Aerogel and Reduced Graphene Aerogel toward 2,4-D Herbicide and Salicylic Acid. Gels 2023; 9:680. [PMID: 37754362 PMCID: PMC10529785 DOI: 10.3390/gels9090680] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Within this work, new aerogels based on graphene oxide are proposed to adsorb salicylic acid (SA) and herbicide 2,4-Dichlorophenoxyacetic acid (2,4-D) from aqueous media. Graphene oxide aerogel (GOA) and reduced graphene oxide aerogel (rGOA) were obtained by freeze-drying processes and then studied by Raman spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), and Brunauer-Emmett-Teller (BET) analysis. The influence of contact time and the concentration of the adsorbates were also assessed. It was found that equilibrium for high adsorption is reached in 150 min. In a single system, the pseudo-first-order, pseudo-second-order kinetic models, Intraparticle diffusion, and Elovich models were used to discuss the detail of the aerogel adsorbing pollutant. Moreover, the Langmuir, Freundlich, and Temkin adsorption models were applied to describe the equilibrium isotherms and calculate the isotherm constants.
Collapse
Affiliation(s)
- Alexandra Yu. Kurmysheva
- Laboratory of Electric Current Assisted Sintering Technologies, Moscow State University of Technology “STANKIN”, Vadkovsky per. 1, 127055 Moscow, Russia; (P.P.); (N.W.S.P.); (A.S.); (E.K.); (P.P.); (S.N.G.)
| | - Oleg Yanushevich
- Scientific Department, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Delegatskaya St., 20, p. 1, 127473 Moscow, Russia; (O.Y.); (N.K.); (O.K.)
| | - Natella Krikheli
- Scientific Department, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Delegatskaya St., 20, p. 1, 127473 Moscow, Russia; (O.Y.); (N.K.); (O.K.)
| | - Olga Kramar
- Scientific Department, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Delegatskaya St., 20, p. 1, 127473 Moscow, Russia; (O.Y.); (N.K.); (O.K.)
| | - Marina D. Vedenyapina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia;
| | - Pavel Podrabinnik
- Laboratory of Electric Current Assisted Sintering Technologies, Moscow State University of Technology “STANKIN”, Vadkovsky per. 1, 127055 Moscow, Russia; (P.P.); (N.W.S.P.); (A.S.); (E.K.); (P.P.); (S.N.G.)
| | - Nestor Washington Solís Pinargote
- Laboratory of Electric Current Assisted Sintering Technologies, Moscow State University of Technology “STANKIN”, Vadkovsky per. 1, 127055 Moscow, Russia; (P.P.); (N.W.S.P.); (A.S.); (E.K.); (P.P.); (S.N.G.)
| | - Anton Smirnov
- Laboratory of Electric Current Assisted Sintering Technologies, Moscow State University of Technology “STANKIN”, Vadkovsky per. 1, 127055 Moscow, Russia; (P.P.); (N.W.S.P.); (A.S.); (E.K.); (P.P.); (S.N.G.)
| | - Ekaterina Kuznetsova
- Laboratory of Electric Current Assisted Sintering Technologies, Moscow State University of Technology “STANKIN”, Vadkovsky per. 1, 127055 Moscow, Russia; (P.P.); (N.W.S.P.); (A.S.); (E.K.); (P.P.); (S.N.G.)
| | - Vladislav V. Malyavin
- Laboratory of Petroleum Chemistry and Petrochemical Synthesis, Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, 119991 Moscow, Russia;
| | - Pavel Peretyagin
- Laboratory of Electric Current Assisted Sintering Technologies, Moscow State University of Technology “STANKIN”, Vadkovsky per. 1, 127055 Moscow, Russia; (P.P.); (N.W.S.P.); (A.S.); (E.K.); (P.P.); (S.N.G.)
- Scientific Department, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Delegatskaya St., 20, p. 1, 127473 Moscow, Russia; (O.Y.); (N.K.); (O.K.)
| | - Sergey N. Grigoriev
- Laboratory of Electric Current Assisted Sintering Technologies, Moscow State University of Technology “STANKIN”, Vadkovsky per. 1, 127055 Moscow, Russia; (P.P.); (N.W.S.P.); (A.S.); (E.K.); (P.P.); (S.N.G.)
| |
Collapse
|
17
|
Buu TT, Ngoc BK, Quan VM, Hai ND, Nam NTH, Hieu NH. The removal enhancement of organic contaminations and optimization of the photocatalytic efficiency by Box-Behnken design using ZnO-TiO 2/porous graphene aerogel. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:81206-81225. [PMID: 37314558 DOI: 10.1007/s11356-023-28100-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023]
Abstract
In this study, zinc oxide-titanium dioxide/graphene aerogel (ZnO-TiO2/GA) was successfully synthesized through a simple and cost-effective hydrothermal self-assembly process. Besides, the surface response model and the experimental design according to the Box-Behnken model were selected to determine the optimal removal efficiency for crystal violet (CV) dye and para-nitrophenol (p-NP) phenolic compound. According to the obtained results, the highest degradation efficiency for CV dye of 99.6% was obtained under the following conditions: pH 6.7, CV concentration of 23.0 mg/L, and catalyst dose of 0.30 g/L. For p-NP, the degradation efficiency reached 99.1% under the following conditions: H2O2 volume of 1.25 mL, pH 6.8, and catalyst dose of 0.35 g/L. Therewithal, kinetic models of adsorption-photodegradation, thermodynamic adsorption, and free radical scavenging experiments were also investigated to propose the specific mechanisms involving the removal of CV dye and p-NP. According to the aforementioned results, the study provided a resulting ternary nanocomposite with great removal performance for water pollutants via the synergetic effects of adsorption and photodegradation processes.
Collapse
Affiliation(s)
- Ton That Buu
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Bo Khanh Ngoc
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
- University of Science (HCMUS-VNU), 227 Nguyen Van Cu, District 5, Ho Chi Minh City, Vietnam
| | - Vo Minh Quan
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
- University of Science (HCMUS-VNU), 227 Nguyen Van Cu, District 5, Ho Chi Minh City, Vietnam
| | - Nguyen Duy Hai
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Nguyen Thanh Hoai Nam
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Nguyen Huu Hieu
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam.
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam.
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam.
| |
Collapse
|
18
|
Zhang P, He Z, Luo X, Jia Z, He L. Optimization of graphene oxide modified mesh for separation of O/W emulsions. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
19
|
Han K, Zeng Y, Lu Y, Meng S, Hong Y, Shen L. Mechanistic insights into aggregation process of graphene oxide and bacterial cells in microbial reduction of ferrihydrite. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159321. [PMID: 36216065 DOI: 10.1016/j.scitotenv.2022.159321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Microbial reduction of ferrihydrite is prevalent in natural environments and plays an important role in reductive dissolution of Fe(III) minerals. With consistent release of anthropogenic graphene oxide (GO) into water bodies, new changes in the Fe(III)-reducing microorganisms/ferrihydrite binary system demand attention. Herein, we focused on the interaction of GO and bacterial cells in view of colloidal stability and interfacial forces, and on the consequences for microbial ferrihydrite reduction. The results showed that the addition of GO decreased the bioreduction efficiency of ferrihydrite down to 1/15 of the control. Meanwhile, the GO nanosheets were found not depositing on ferrihydrite but spontaneously aggregating with Shewanella spp., the representative dissimilatory Fe(III) reduction bacterial species. Using the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory and atomic force microscopy (AFM), the aggregation process can be interpreted in three steps according to the interaction energy calculation, namely, colloidal instability, reversible aggregation and irreversible aggregation. The motility of living cells seems the reason inducing the colloidal instability between GO and bacteria. While, the aggregation remains reversible even the secondary minimum achieved at the separation distance of 8.74-9.24 nm from XDLVO. When the separation distance <5.74-6.01 nm, the adhesion work predominates and causes irreversible aggregation, validated by AFM. Additionally, the probable ecological risks raised by this aggregation behavior for the imbalance of iron biogeochemical cycle were demonstrated.
Collapse
Affiliation(s)
- Kaixin Han
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yibo Zeng
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, Fujian 361005, China
| | - Yinghua Lu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shujuan Meng
- School of Space and Environment, Beihang University, Beijing 100083, China
| | - Yanzhen Hong
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Liang Shen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
20
|
Facial One-Pot Synthesis, Characterization, and Photocatalytic Performance of Porous Ceria. Catalysts 2023. [DOI: 10.3390/catal13020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A facial one-step synthesis procedure was applied to prepare porous sponge-like ceria (CeO2). The synthesis was performed by mixing cerium nitrate with citric acid, followed by thermal treatment. The produced solid material was characterized by several techniques, such as XRD, SEM, N2 sorption measurement, DR-UV-vis, and Raman spectroscopy. The characterization data showed that the nanoparticles of the porous ceria were formed with a three-dimensional pore system. Moreover, the measured surface area of the porous sample was eight times higher than the commercially available ceria. The photocatalytic performance of the porous ceria was investigated in two different applications under visible light illumination. The first was the decolorization of a methyl green aqueous solution, while the second was the photocatalytic elimination of a gaseous mixture consisting of five short-chain hydrocarbons (C1–C3). The obtained results showed that the photocatalytic activity of porous ceria was higher than that of the commercial sample. Finally, the recycling of porous ceria showed low deactivation (less than 9%) after four consecutive runs.
Collapse
|
21
|
Oxygenated Hydrocarbons from Catalytic Hydrogenation of Carbon Dioxide. Catalysts 2023. [DOI: 10.3390/catal13010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Once fundamental difficulties such as active sites and selectivity are fully resolved, metal-free catalysts such as 3D graphene or carbon nanotubes (CNT) are very cost-effective substitutes for the expensive noble metals used for catalyzing CO2. A viable method for converting environmental wastes into useful energy storage or industrial wealth, and one which also addresses the environmental and energy problems brought on by emissions of CO2, is CO2 hydrogenation into hydrocarbon compounds. The creation of catalytic compounds and knowledge about the reaction mechanisms have received considerable attention. Numerous variables affect the catalytic process, including metal–support interaction, metal particle sizes, and promoters. CO2 hydrogenation into different hydrocarbon compounds like lower olefins, alcoholic composites, long-chain hydrocarbon composites, and fuels, in addition to other categories, have been explained in previous studies. With respect to catalyst design, photocatalytic activity, and the reaction mechanism, recent advances in obtaining oxygenated hydrocarbons from CO2 processing have been made both through experiments and through density functional theory (DFT) simulations. This review highlights the progress made in the use of three-dimensional (3D) nanomaterials and their compounds and methods for their synthesis in the process of hydrogenation of CO2. Recent advances in catalytic performance and the conversion mechanism for CO2 hydrogenation into hydrocarbons that have been made using both experiments and DFT simulations are also discussed. The development of 3D nanomaterials and metal catalysts supported on 3D nanomaterials is important for CO2 conversion because of their stability and the ability to continuously support the catalytic processes, in addition to the ability to reduce CO2 directly and hydrogenate it into oxygenated hydrocarbons.
Collapse
|
22
|
Perumal S, Atchudan R, Ramalingam S, Aldawood S, Devarajan N, Lee W, Lee YR. Silver nanoparticles loaded graphene-poly-vinylpyrrolidone composites as an effective recyclable antimicrobial agent. ENVIRONMENTAL RESEARCH 2023; 216:114706. [PMID: 36336094 DOI: 10.1016/j.envres.2022.114706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/19/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Silver nanoparticles (AgNPs) are often used as antibacterial agents. Here, graphene-silver nanoparticles (G-Ag) and graphene-silver nanoparticles poly-vinylpyrrolidone (G-AgPVPy) were prepared by chemical reduction and in-situ polymerization of vinylpyrrolidone (VPy). The prepared G-Ag and G-AgPVPy composites were characterized using various techniques. The size of the AgNPs on the graphene surface in the prepared G-Ag and G-AgPVPy composites was measured as ∼20 nm. The graphene sheets size in the G-Ag and G-AgPVPy composites were measured as 6.0-2.0 μm and 4.0-0.10 μm, respectively, which are much smaller than graphene sheets in graphite powder (GP) (10.0-3.0 μm). The physicochemical analysis confirmed the formation of G-Ag and G-AgPVPy composites and even the distribution of AgNPs and PVPy on the graphene sheets. The synthesized composites (G-AgPVPy, G-Ag) exhibited a broad-spectrum antibacterial potential against both Gram-negative and Gram-positive bacteria. The lowest minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values were calculated as >40 μg/mL using G-Ag and GP, while G-AgPVPy showed as 10 μg/mL against Staphylococcus aureus. Among GP, G-Ag, and G-AgPVPy, G-AgPVPy disturbs the cell permeability, damages the cell walls, and causes cell death efficiently. Also, G-AgPVPy was delivered as a significant reusable antibacterial potential candidate. The MIC value (10 μg/mL) did not change up to six subsequent MIC analysis cycles.
Collapse
Affiliation(s)
- Suguna Perumal
- Department of Chemistry, Sejong University, Seoul, 143-747, Republic of Korea; School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| | - Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea; Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, Tamil Nadu, India
| | - Srinivasan Ramalingam
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea
| | - S Aldawood
- Department of Physics and Astronomy, College of Science, P.O. BOX 2455, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Natarajan Devarajan
- Natural Drug Research Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Salem, 636011, Tamil Nadu, India
| | - Wonmok Lee
- Department of Chemistry, Sejong University, Seoul, 143-747, Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| |
Collapse
|
23
|
Bin Y, Liang Q, Luo H, Chen Y, Wang T. One-step synthesis of nitrogen-functionalized graphene aerogel for efficient removal of hexavalent chromium in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:6746-6757. [PMID: 36002790 DOI: 10.1007/s11356-022-22591-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
The efficient removal of hexavalent chromium (Cr(VI)) with high toxicity has attracted widespread concern since it causes serious harm to ecological environment and public health. Herein, we report a novel nitrogen-functionalized graphene aerogel with stereoscopic structure through a simple hydrothermal method and freeze drying for Cr(VI) removal from water. Graphene oxide (GO) and nitrogenous organics polyethyleneimine (PEI) and pyrrole are used as raw materials for preparing PEI/polypyrrole/GO aerogel (PPGA) adsorbent. PEI and pyrrole act as nitrogen sources to introduce nitrogenous functional groups, and also take on the role of cross-linkers for helping GO sheets to form stereoscopic structure. The obtained PPGA has a fast adsorption rate, excellent reusability, and shows a remarkable adsorption capacity for Cr(VI) up to 458.24 mg/g under the optimal conditions (pH 2.0, 298 K, Cr(VI): 600 mg/L, dosage: 0.4 g/L). The adsorption process of Cr(VI) on PPGA can fit the pseudo-second-order kinetic model well. Analysis of intraparticle diffusion shows that the Cr(VI) removal process is a multi-step process. Adsorption thermodynamic and isotherm results demonstrate Cr(VI) adsorption on PPGA is a spontaneous endothermic process. The adsorption mechanism involves electrostatic attraction, redox, and chelation. In general, this work provides a simple and eco-friendly way to prepare PPGA, which has a great potential for actual application of Cr(VI) removal in effluent.
Collapse
Affiliation(s)
- Yuliang Bin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Qianwei Liang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Hanjin Luo
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
- The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters of Ministry of Education, Guangzhou, 510006, China.
| | - Yuyu Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Tao Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
24
|
Zheng C, Song X, Gan Q, Lin J. High-efficiency removal of organic pollutants by visible-light-driven tubular heterogeneous micromotors through a photocatalytic Fenton process. J Colloid Interface Sci 2023; 630:121-133. [DOI: 10.1016/j.jcis.2022.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/15/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022]
|
25
|
Zhang Y, Luo J, Zhang H, Li T, Xu H, Sun Y, Gu X, Hu X, Gao B. Synthesis and adsorption performance of three-dimensional gels assembled by carbon nanomaterials for heavy metal removal from water: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158201. [PMID: 36028029 DOI: 10.1016/j.scitotenv.2022.158201] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/08/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
This review focuses on the removal of heavy metals from water by three-dimensional gels with carbon nanomaterials as the main building units. It highlights the fundamental knowledge, most recent advances, and future prospects of carbon nanomaterial-assembled gels (CNAGs) as effective adsorbents for heavy metals in water. Various synthesis methods of CNAGs including template-assisted, self-assembly and other methods are systematically summarized and evaluated. Adsorption performances of CNAGs to typical cationic and anionic heavy metals, especially lead, cadmium, mercury, chromium, and arsenic, are thoroughly examined and discussed in detail. These analyses bring out that composite CNAGs constructed from carbon nanomaterials with polymers or other engineered nanoparticles are the most promising adsorbents for heavy metal removal from water. Current challenges and future research directions that are critical to the applications of CNAGs in the removal of heavy metals from contaminated water are outlined at the end of the review.
Collapse
Affiliation(s)
- Yuxuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China..
| | - Hanshuo Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Tianxiao Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Hongxia Xu
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, PR China
| | - Yuanyuan Sun
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, PR China
| | - Xueyuan Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Xin Hu
- State Key Laboratory of Analytical Chemistry for Life Science, Centre of Materials Analysis and School of Chemistry & Chemical Engineering, Nanjing University, 22 Hankou Road, Nanjing 210023, PR China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
26
|
Yang F, Zhang J, Lin T, Ke L, Huang L, Deng SP, Zhang J, Tan S, Xiong Y, Lu M. Fabrication of waste paper/graphene oxide three-dimensional aerogel with dual adsorption capacity toward methylene blue and ciprofloxacin. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02714-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Wang J, Wang Z, Yu H, Wu W, Zhang J, Li J. Designing a novel type of multifunctional bamboo surface based on an RGO/Ag coating. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
28
|
Chen Z, Li X, Wu Y, Duan A, Wang D, Yang Q, Fan Y. Achieving simultaneous hydrogen evolution and organic pollutants degradation through the modification of Ag3PO4 using Cs2AgBiBr6 quantum dots and graphene hydrogel. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
29
|
Ag3PO4 and Ag3PO4–based visible light active photocatalysts: Recent progress, synthesis, and photocatalytic applications. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
30
|
Qiao L, Du K. Magnetic field-induced self-assembly of urchin-like polymeric particles: mechanism, dispersity, and application in wastewater treatment. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
31
|
Chen Y, Yang J, Yao B, Zhi D, Luo L, Zhou Y. Endocrine disrupting chemicals in the environment: Environmental sources, biological effects, remediation techniques, and perspective. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119918. [PMID: 35952990 DOI: 10.1016/j.envpol.2022.119918] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/06/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Endocrine disrupting chemicals (EDCs) have been identified as emerging contaminants, which poses a great threat to human health and ecosystem. Pesticides, polycyclic aromatic hydrocarbons, dioxins, brominated flame retardants, steroid hormones and alkylphenols are representative of this type of contaminant, which are closely related to daily life. Unfortunately, many wastewater treatment plants (WWTPs) do not treat EDCs as targets in the normal treatment process, resulting in EDCs entering the environment. Few studies have systematically reviewed the related content of EDCs in terms of occurrence, harm and remediation. For this reason, in this article, the sources and exposure routes of common EDCs are systematically described. The existence of EDCs in the environment is mainly related to human activities (Wastewater discharges and industrial activities). The common hazards of these EDCs are clarified based on available toxicological data. At the same time, the mechanism and effect of some mainstream EDCs remediation technologies (such as adsorption, advanced oxidation, membrane bioreactor, constructed wetland, etc.) are separately mentioned. Moreover, our perspectives are provided for further research of EDCs.
Collapse
Affiliation(s)
- Yuxin Chen
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Jian Yang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Bin Yao
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Dan Zhi
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Lin Luo
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
32
|
Hou Y, Ma S, Hao J, Lin C, Zhao J, Sui X. Construction and Ion Transport-Related Applications of the Hydrogel-Based Membrane with 3D Nanochannels. Polymers (Basel) 2022; 14:polym14194037. [PMID: 36235985 PMCID: PMC9571189 DOI: 10.3390/polym14194037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Hydrogel is a type of crosslinked three-dimensional polymer network structure gel. It can swell and hold a large amount of water but does not dissolve. It is an excellent membrane material for ion transportation. As transport channels, the chemical structure of hydrogel can be regulated by molecular design, and its three-dimensional structure can be controlled according to the degree of crosslinking. In this review, our prime focus has been on ion transport-related applications based on hydrogel materials. We have briefly elaborated the origin and source of hydrogel materials and summarized the crosslinking mechanisms involved in matrix network construction and the different spatial network structures. Hydrogel structure and the remarkable performance features such as microporosity, ion carrying capability, water holding capacity, and responsiveness to stimuli such as pH, light, temperature, electricity, and magnetic field are discussed. Moreover, emphasis has been made on the application of hydrogels in water purification, energy storage, sensing, and salinity gradient energy conversion. Finally, the prospects and challenges related to hydrogel fabrication and applications are summarized.
Collapse
|
33
|
Insights into heteroaggregation of polystyrene nanoplastics with hematite nanoparticles and configuration-dependent adsorption for PFOA and PFOS. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Removal of Methylene Blue by Crosslinked Egg White Protein/Graphene Oxide Bionanocomposite Aerogels. NANOMATERIALS 2022; 12:nano12152659. [PMID: 35957090 PMCID: PMC9370759 DOI: 10.3390/nano12152659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 11/22/2022]
Abstract
Egg white protein is a non-toxic and biodegradable biopolymer that forms a gel easily via simple thermal denaturation treatment. A novel aerogel on the basis of egg white protein crosslinked with graphene oxide was prepared via a facile freeze-drying method. The structure and physicochemical characteristics of the aerogels were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and Brunauer–Emmett–Teller (BET) analysis. The adsorption properties of the aerogels were investigated by studying the influencing factors such as the solution pH, dose, temperature and contact time. The adsorption capacity of methylene blue onto the aerogels was tested, whose maximum adsorption capacity, calculated by the Langmuir isotherm equation, reached 91.7 mg/g. Adsorption kinetics studies showed that the adsorption followed the pseudo-second-order kinetic model. Thermodynamic data implied that methylene blue adsorbed by the aerogels was an exothermic and spontaneous process.
Collapse
|
35
|
Dutta V, Devasia J, Chauhan A, M J, L VV, Jha A, Nizam A, Lin KYA, Ghotekar S. Photocatalytic nanomaterials: Applications for remediation of toxic polycyclic aromatic hydrocarbons and green management. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
36
|
Three-dimensional and Flexible Carbon Nanofiber Mat by One-step Electrospinning for Efficient Oil/Water Separation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
37
|
Khaliha S, Bianchi A, Kovtun A, Tunioli F, Boschi A, Zambianchi M, Paci D, Bocchi L, Valsecchi S, Polesello S, Liscio A, Bergamini M, Brunetti M, Luisa Navacchia M, Palermo V, Melucci M. Graphene oxide nanosheets for drinking water purification by tandem adsorption and microfiltration. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
38
|
Liu X, Xu J, Jing K, Lu L, Liu H. Facile Synthesis of Ag/AgCl/3D-rGO with Rapid Catalytic Degradation toward Methyl Orange and Rhodamine B. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Li L, Li Y, Yang K, Li M, Luan X, Sun Y, Wang H, Sun Q, Tang K, Zheng H, Cui M, Xu W. Adsorption of methylene blue by Nicandra physaloides(L.) Gaertn seed gum/graphene oxide aerogel. ENVIRONMENTAL TECHNOLOGY 2022; 43:2342-2351. [PMID: 33446065 DOI: 10.1080/09593330.2021.1877361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
In this study, a novel composite aerogel of Nicandra physaloides(L.) Gaertn seed, gum/graphene oxide (NPG/GO), was prepared by using a vacuum freeze drying method for methylene blue (MB) adsorption. The techniques, including Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), were adopted for studying the structure and surface characteristics of NPG/GO, with thermogravimetric analysis (TGA) being adopted for testing thermal properties. The effects of pH value, initial dye concentration, temperature and adsorbent dosage on adsorption performance were elaborately analysed. The adsorption kinetic studies showed that the process of adsorption follows Langmuir isotherm and a pseudo-second-order kinetic model. When the mass ratio of NPG to GO was 1.25:1, the adsorption capacity was the highest. According to Langmuir isotherm, the maximum adsorption capacity of 408.16 mg/g was higher than that of NPG. The specific surface area and average pore diameter of NPG/GO was measured as 2.70 m2/g and 4.8 nm, respectively. Thermodynamic analysis revealed that the adsorption process of methylene blue on NPG/GO was a spontaneous and endothermic process. In general, the prepared nanocomposites were excellent candidates for adsorption and removal process because of simple synthesis, low cost, high efficiency, non-toxicity, environment protection and degradability.
Collapse
Affiliation(s)
- Liubo Li
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Mechanical and Electrical Engineering, Qingdao University, Qingdao, People's Republic of China
| | - Yanhui Li
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Mechanical and Electrical Engineering, Qingdao University, Qingdao, People's Republic of China
- College of Materials Science and Engineering, Qingdao University, Qingdao, People's Republic of China
| | - Kai Yang
- College of Materials Science and Engineering, Qingdao University, Qingdao, People's Republic of China
| | - Meixiu Li
- College of Materials Science and Engineering, Qingdao University, Qingdao, People's Republic of China
| | - Xinyu Luan
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Mechanical and Electrical Engineering, Qingdao University, Qingdao, People's Republic of China
| | - Yong Sun
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Mechanical and Electrical Engineering, Qingdao University, Qingdao, People's Republic of China
| | - Huimin Wang
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Mechanical and Electrical Engineering, Qingdao University, Qingdao, People's Republic of China
| | - Qinye Sun
- College of Materials Science and Engineering, Qingdao University, Qingdao, People's Republic of China
| | - Kaili Tang
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Mechanical and Electrical Engineering, Qingdao University, Qingdao, People's Republic of China
| | - Heng Zheng
- College of Materials Science and Engineering, Qingdao University, Qingdao, People's Republic of China
| | - Mingfei Cui
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Mechanical and Electrical Engineering, Qingdao University, Qingdao, People's Republic of China
| | - Wenshuo Xu
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Mechanical and Electrical Engineering, Qingdao University, Qingdao, People's Republic of China
| |
Collapse
|
40
|
Xu J, Zhang Y, Li B, Fan S, Xu H, Guan DX. Improved adsorption properties of tetracycline on KOH/KMnO 4 modified biochar derived from wheat straw. CHEMOSPHERE 2022; 296:133981. [PMID: 35176301 DOI: 10.1016/j.chemosphere.2022.133981] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/11/2022] [Accepted: 02/11/2022] [Indexed: 05/09/2023]
Abstract
Modification of pristine biochars has received increasing attentions due to the significant potential in enhancing adsorption performance. In this work, the co-modification of KOH and KMnO4 on biochar (K-Mn-BC) was performed, with the effect of KOH/KMnO4 modification on biochar properties and their adsorption toward tetracycline (TC) being extensively explored. Results showed that KOH/KMnO4 modification can significantly regulate biochars to form hierarchical structure. The obtained K-Mn-BC was characterized with a high specific surface area (1524.6 m2 g-1) and total pore volume (0.85 cm3 g-1). In addition, the K-Mn-BC exhibited a high adsorption capacity of 584.19 mg g-1 toward TC at 318 K, and pseudo-second-order (R2:0.993~0.998) and Langmuir (R2: 0.834~0.874) models can fit well with the adsorption behavior. Moreover, the obtained K-Mn-BC can efficiently adsorb TC within a wide pH range (3.0-10.0), and were not affected by the co-existing ions. The possible mechanisms for the high adsorption capacity were ascribed to the pore filling and π-π interaction, following by hydrogen bonding and metal complexation. The obtained K-Mn-BC is a suitable adsorbent for TC removal from water due to the hierarchical structure, high adsorption capacity, and stable adsorption effect.
Collapse
Affiliation(s)
- Jin Xu
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Yin Zhang
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Bin Li
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Shisuo Fan
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China.
| | - Huacheng Xu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Dong-Xing Guan
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
41
|
Feng X, Qiu B, Sun D. Enhanced naproxen adsorption by a novel β-cyclodextrin immobilized the three-dimensional macrostructure of reduced graphene oxide and multiwall carbon nanotubes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Ihsanullah I, Sajid M, Khan S, Bilal M. Aerogel-based adsorbents as emerging materials for the removal of heavy metals from water: Progress, challenges, and prospects. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Md Rahim SAN, Lee CS, Abnisa F, Wan Daud WMA, Aroua MK, Cognet P, Pérès Y. Activated carbon-based electrodes for two-steps catalytic/ electrocatalytic reduction of glycerol in Amberlyst-15 mediator. CHEMOSPHERE 2022; 295:133949. [PMID: 35157890 DOI: 10.1016/j.chemosphere.2022.133949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Redox mediators supply an effective way to promote electrons (and protons) transport between the electrode and substrate without being in direct physical contact with the electrode. Here, the carbon-based electrodes with Amberlyst-15 as the redox mediator were used in the electrocatalytic reduction to investigate their ability to indirectly convert glycerol into 1,2-propanediol. The process aims to study the influence of different activated carbon compositions (60%, 70%, 80%, and 90% of total weight) in the activated carbon composite (ACC) electrodes on the electrochemical properties, reaction mechanisms, and selectivity of the yielded products. Their electrochemical behavior and physicochemical properties were determined by cyclic voltammetry (CV) and chronoamperometry (CA), followed by FESEM-EDX for the selected ACC electrode. Electroactive surface area (EASA) plays a role in glycerol mass transport and electrons transfer. EASA of 60ACC, 70ACC, 80ACC, and 90ACC (geometrical surface area of 0.50 cm2) were 19.62, 24.50, 36.74 and 30.83 cm2, respectively. With the highest EASA, 80ACC enhanced the mass transport and electrons transfer process that eventually improved its electrocatalytic activity. It outperformed other ACC electrodes by generating Amberlyst-15 radicals (A-15•-) with high current density at low potential (-0.5 V vs. Ag/AgCl). A-15•- served as the electron-donor for the homogeneous redox reaction with glycerol in delivering highly reactive glycerol radical for further intermediates development and generated 1,2-propanediol at -2.5 V vs. Ag/AgCl (current density of -0.2018 A cm-2). High activated carbon content portrayed a dominant role in controlling EASA and favored consecutive acetol-1,2-propanediol production through the C-O bond breakage. From the galvanostatic electrolysis, 1,2-propanediol selectivity was higher on 80ACC (88.6%) compared to 60ACC (61.4%), 70ACC (70.4%) and 90ACC (72.5%). Diethylene glycol formation was found to be the side reaction but preferred low activated carbon percentage in 60ACC and 70ACC.
Collapse
Affiliation(s)
| | - Ching Shya Lee
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Faisal Abnisa
- Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Rabigh, 21911, Saudi Arabia.
| | - Wan Mohd Ashri Wan Daud
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Mohamed Kheireddine Aroua
- Centre for Carbon Dioxide Capture and Utilisation (CCDCU), School of Engineering and Technology, Sunway University, Bandar Sunway, 47500, Petaling Jaya, Malaysia; Department of Engineering, Lancaster University, Lancaster, LA1 4YW, UK; Sunway Materials Smart Science & Engineering Research Cluster (SMS2E), Sunway University, No. 5 Jalan Universiti, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia.
| | - Patrick Cognet
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, Toulouse, France
| | - Yolande Pérès
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, Toulouse, France
| |
Collapse
|
44
|
Han J, Johnson I, Chen M. 3D Continuously Porous Graphene for Energy Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108750. [PMID: 34870863 DOI: 10.1002/adma.202108750] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/01/2021] [Indexed: 06/13/2023]
Abstract
Constructing bulk graphene materials with well-reserved 2D properties is essential for device and engineering applications of atomically thick graphene. In this article, the recent progress in the fabrications and applications of sterically continuous porous graphene with designable microstructures, chemistries, and properties for energy storage and conversion are reviewed. Both template-based and template-free methods have been developed to synthesize the 3D continuously porous graphene, which typically has the microstructure reminiscent of pseudo-periodic minimal surfaces. The 3D graphene can well preserve the properties of 2D graphene of being highly conductive, surface abundant, and mechanically robust, together with unique 2D electronic behaviors. Additionally, the bicontinuous porosity and large curvature offer new functionalities, such as rapid mass transport, ample open space, mechanical flexibility, and tunable electric/thermal conductivity. Particularly, the 3D curvature provides a new degree of freedom for tailoring the catalysis and transport properties of graphene. The 3D graphene with those extraordinary properties has shown great promises for a wide range of applications, especially for energy conversion and storage. This article overviews the recent advances made in addressing the challenges of developing 3D continuously porous graphene, the benefits and opportunities of the new materials for energy-related applications, and the remaining challenges that warrant future study.
Collapse
Affiliation(s)
- Jiuhui Han
- WPI Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Sendai, 980-8578, Japan
| | - Isaac Johnson
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Mingwei Chen
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
45
|
Hao X, Yang S, E T, Li Y. High efficiency and selective removal of Cu(Ⅱ) via regulating the pore size of graphene oxide/montmorillonite composite aerogel. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127680. [PMID: 34799171 DOI: 10.1016/j.jhazmat.2021.127680] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/11/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
In this study, based on the differences in the coordination configurations of various alkaline earth metal ions (Ca(Ⅱ) and Sr(Ⅱ)) and sodium alginate (SA), the aerogel is functionalized with controllable slit-shaped pores structure, contributing by nanosheet stacking impact of graphene oxide (GO) and montmorillonite (MMT), which is able to selectively remove plane hydrate copper ions in complex wastewater systems. Sr-G/M is endowed with denser slit-shaped pores and could achieve more efficient selective removal of Cu(Ⅱ), together with a best removal efficiency of 97.1%, proving by systematic adsorption tests. The selectivity tests show that Sr-G/M exhibits preferential adsorption for Cu(Ⅱ) with a distribution coefficient of 41.85 L g-1. Furthermore, Sr-G/M has excellent regeneration performance to be 86.4% after 8 recycles. Considering its cost-effectiveness, eco-friendliness, easy preparation and efficient selective removal performance, Sr-G/M holds great promise in selective removal of Cu(Ⅱ) from complex wastewater systems.
Collapse
Affiliation(s)
- Xin Hao
- Liaoning Province Key Laboratory for Synthesis and Application of Functional Compounds, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China
| | - Shuyi Yang
- Liaoning Province Key Laboratory for Synthesis and Application of Functional Compounds, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China.
| | - Tao E
- Liaoning Province Key Laboratory for Synthesis and Application of Functional Compounds, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China; Institute of Ocean Research, Bohai University, Jinzhou 121013, Liaoning, China.
| | - You Li
- Feixiang Leather Products Co., Ltd, Fuxin 123000, Liaoning, China
| |
Collapse
|
46
|
Adeola AO, Forbes PBC. Antiretroviral Drugs in African Surface Waters: Prevalence, Analysis, and Potential Remediation. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:247-262. [PMID: 34033688 DOI: 10.1002/etc.5127] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/24/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
The sources, ecotoxicological impact, and potential remediation strategies of antiretroviral drugs (ARVDs) as emerging contaminants in surface waters are reviewed based on recent literature. The occurrence of ARVDs in water bodies raises concern because many communities in Africa depend on rivers for water resources. Southern Africa is a potential hotspot regarding ARVD contamination due to relatively high therapeutic application and detection thereof in water bodies. Efavirenz and nevirapine are the most persistent in effluents and are prevalent in surface water based on environmental concentrations. Whereas the highest concentration of efavirenz reported in Kenya was 12.4 µg L-1 , concentrations as high as 119 and 140 µg L-1 have been reported in Zambia and South Africa, respectively. Concentrations of ARVDs ranging from 670 to 34 000 ng L-1 (influents) and 540 to 34 000 ng L-1 (effluents) were determined in wastewater treatment plants in South Africa, compared with Europe, where reported concentrations range from less than limit of detection (LOD) to 32 ng L-1 (influents) and less than LOD to 22 ng L-1 (effluents). The present African-based review suggests the need for comprehensive toxicological and risk assessment of these emerging pollutants in Africa, with the intent of averting environmental hazards and the development of sustainable remediation strategies. Environ Toxicol Chem 2022;41:247-262. © 2021 SETAC.
Collapse
Affiliation(s)
- Adedapo O Adeola
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Hatfield, Pretoria, South Africa
| | - Patricia B C Forbes
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Hatfield, Pretoria, South Africa
| |
Collapse
|
47
|
Kong H, Chen Y, Yang G, Liu B, Guo L, Wang Y, Zhou X, Wei G. Two-dimensional material-based functional aerogels for treating hazards in the environment: synthesis, functional tailoring, applications, and sustainability analysis. NANOSCALE HORIZONS 2022; 7:112-140. [PMID: 35044403 DOI: 10.1039/d1nh00633a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Environmental pollution is a global problem that endangers human health and ecological balance. As a new type of functional material, two-dimensional material (2DM)-based aerogel is one of the most promising candidates for pollutant detection and environmental remediation. The porous, network-like, interconnected three-dimensional (3D) structure of 2DM-based aerogels can not only preserve the characteristics of the original 2DMs, but also bring many distinct physical and chemical properties to offer abundant active sites for adsorbing and combining pollutants, thereby facilitating highly efficient monitoring and treatment of hazardous pollutants. In this review, the synthesis methods of 2DM aerogels and their broad environmental applications, including various sensors, adsorbents, and photocatalysts for the detection and treatment of pollutants, are summarized and discussed. In addition, the sustainability of 2DM aerogels compared to other water purification materials, such as activated carbon, 2DMs, and other aerogels are analyzed by the Sustainability Footprint method. According to the characteristics of different 2DMs, special focuses and perspectives are given on the adsorption properties of graphene, MXene, and boron nitride aerogels, as well as the sensing and photocatalytic properties of transition metal dichalcogenide/oxide and carbon nitride aerogels. This comprehensive work introduces the synthesis, modification, and functional tailoring strategies of different 2DM aerogels, as well as their unique characteristics of adsorption, photocatalysis, and recovery, which will be useful for the readers in various fields of materials science, nanotechnology, environmental science, bioanalysis, and others.
Collapse
Affiliation(s)
- Hao Kong
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, P. R. China.
| | - Yun Chen
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, P. R. China.
| | - Guozheng Yang
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, P. R. China.
| | - Bin Liu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, P. R. China.
| | - Lei Guo
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, 266071 Qingdao, P. R. China
| | - Yan Wang
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, P. R. China.
| | - Xin Zhou
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, P. R. China.
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, P. R. China.
| |
Collapse
|
48
|
Alharbi A, Gouda AA, Atia BM, Gado MA, Alluhaybi AA, Alkabli J. The Role of Modified Chelating Graphene Oxide for Vanadium Separation from Its Bearing Samples. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622040027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Jahandideh H, Macairan JR, Bahmani A, Lapointe M, Tufenkji N. Fabrication of graphene-based porous materials: traditional and emerging approaches. Chem Sci 2022; 13:8924-8941. [PMID: 36091205 PMCID: PMC9365090 DOI: 10.1039/d2sc01786e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/04/2022] [Indexed: 11/21/2022] Open
Abstract
The anisotropic nature of ‘graphenic’ nanosheets enables them to form stable three-dimensional porous materials. The use of these porous structures has been explored in several applications including electronics and batteries, environmental remediation, energy storage, sensors, catalysis, tissue engineering, and many more. As method of fabrication greatly influences the final pore architecture, and chemical and mechanical characteristics and performance of these porous materials, it is essential to identify and address the correlation between property and function. In this review, we report detailed analyses of the different methods of fabricating porous graphene-based structures – with a focus on graphene oxide as the base material – and relate these with the resultant morphologies, mechanical responses, and common applications of use. We discuss the feasibility of the synthesis approaches and relate the GO concentrations used in each methodology against their corresponding pore sizes to identify the areas not explored to date. Due to their anisotropic nature, graphene nanosheets can be used to form 3-dimensional porous materials using template-free and template-directed methodologies. These fabrication strategies are found to influence the properties of the final structure.![]()
Collapse
Affiliation(s)
- Heidi Jahandideh
- Department of Chemical Engineering, McGill University, Montreal, QC H3A 0C5, Canada
- McGill Institute for Advanced Materials (MIAM), McGill University, Montreal, Quebec, Canada
| | - Jun-Ray Macairan
- Department of Chemical Engineering, McGill University, Montreal, QC H3A 0C5, Canada
| | - Aram Bahmani
- Department of Mechanical Engineering, McGill University, Montreal, QC H3A 0C3, Canada
| | - Mathieu Lapointe
- Department of Chemical Engineering, McGill University, Montreal, QC H3A 0C5, Canada
| | - Nathalie Tufenkji
- Department of Chemical Engineering, McGill University, Montreal, QC H3A 0C5, Canada
- McGill Institute for Advanced Materials (MIAM), McGill University, Montreal, Quebec, Canada
| |
Collapse
|
50
|
Wong LY, Lau SY, Pan S, Lam MK. 3D graphene-based adsorbents: Synthesis, proportional analysis and potential applications in oil elimination. CHEMOSPHERE 2022; 287:132129. [PMID: 34509009 DOI: 10.1016/j.chemosphere.2021.132129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
The suitability and efficacy of three-dimensional (3D) graphene, including its derivatives, have garnered widespread attention towards the development of novel, sustainable materials with ecological amenability. This is especially relevant towards its utilization as adsorbents of wastewater contaminants, such as heavy metals, dyes, and oil, which could be majorly attributed to its noteworthy physicochemical features, particularly elevated chemical and mechanical robustness, advanced permeability, as well as large specific surface area. In this review, we emphasize on the adsorptive elimination of oil particles from contaminated water. Specifically, we assess and collate recent literature on the conceptualization and designing stages of 3D graphene-based adsorbents (3DGBAs) towards oil adsorption, including their applications in either batch or continuous modes. In addition, we analytically evaluate the adsorption mechanism, including sorption sites, physical properties, surface chemistry of 3DGBA and interactions between the adsorbent and adsorbate involving the adsorptive removal of oil, as well as numerous effects of adsorption conditions on the adsorption performance, i.e. pH, temperature, initial concentration of oil contaminants and adsorbent dosage. Furthermore, we focus on the equilibrium isotherms and kinetic studies, in order to comprehend the oil elimination procedures. Lastly, we designate encouraging avenues and recommendations for a perpetual research thrust, and outline the associated future prospects and perspectives.
Collapse
Affiliation(s)
- Lee Yi Wong
- Department of Chemical Engineering, Curtin University, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Sie Yon Lau
- Department of Chemical Engineering, Curtin University, CDT 250, 98009, Miri, Sarawak, Malaysia.
| | - Sharadwata Pan
- TUM School of Life Sciences, Technical University of Munich, Freising, 85354, Germany
| | - Man Kee Lam
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| |
Collapse
|