1
|
Wen J, Duan L, Wang B, Dong Q, Liu Y, Chen C, Huang J, Yu G. In-sewer stability assessment of 140 pharmaceuticals, personal care products, pesticides and their metabolites: Implications for wastewater-based epidemiology biomarker screening. ENVIRONMENT INTERNATIONAL 2024; 184:108465. [PMID: 38324926 DOI: 10.1016/j.envint.2024.108465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
The monitoring of pharmaceuticals, personal care products (PCPs), pesticides, and their metabolites through wastewater-based epidemiology (WBE) provides timely information on pharmaceutical consumption patterns, chronic disease treatment rates, antibiotic usage, and exposure to harmful chemicals. However, before applying them for quantitative WBE back-estimation, it is necessary to understand their stability in the sewer system to screen suitable WBE biomarkers thereby reducing research uncertainty. This study investigated the in-sewer stability of 140 typical pharmaceuticals, PCPs, pesticides, and their metabolites across 15 subcategories, using a series of laboratory sewer sediment and biofilm reactors. For the first time, stability results for 89 of these compounds were reported. Among the 140 target compounds, 61 biomarkers demonstrated high stability in all sewer reactors, while 41 biomarkers were significantly removed merely by sediment processes. For biomarkers exhibiting notable attenuation, the influence of sediment processes was generally more pronounced than biofilm, due to its stronger microbial activities and more pronounced diffusion or adsorption processes. Adsorption emerged as the predominant factor causing biomarker removal compared to biodegradation and diffusion. Significantly different organic carbon-water partitioning coefficient (Koc) and distribution coefficient at pH = 7 (logD) values were observed between highly stable and unstable biomarkers, with most hydrophobic substances (Koc > 100 or logD > 2) displaying instability. In light of these findings, we introduced a primary biomarker screening process to efficiently exclude inappropriate candidates, achieving a commendable 77 % accuracy. Overall, this study represents the first comprehensive report on the in-sewer stability of 89 pharmaceuticals, PCPs, pesticides, and their metabolites, and provided crucial reference points for understanding the intricate sewer sediment processes.
Collapse
Affiliation(s)
- Jiaqi Wen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing Laboratory for Environmental Frontier Technologies, China
| | - Lei Duan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing Laboratory for Environmental Frontier Technologies, China
| | - Bin Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing Laboratory for Environmental Frontier Technologies, China
| | - Qian Dong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yanchen Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Chao Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jun Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing Laboratory for Environmental Frontier Technologies, China
| | - Gang Yu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing Laboratory for Environmental Frontier Technologies, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University at Zhuhai, 519087, China.
| |
Collapse
|
2
|
Du R, Duan L, Zhang Q, Wang B, Huang J, Deng S, Yu G. Analysis on the attenuation characteristics of PPCPs in surface water and their influencing factors based on a compilation of literature data. WATER RESEARCH 2023; 242:120203. [PMID: 37336183 DOI: 10.1016/j.watres.2023.120203] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
The attenuation characteristics of PPCPs play an important part in predicting their environmental concentrations. However, considerable uncertainty remains in reported laboratory data on the attenuation characteristics of PPCPs. In this analysis, we compile information on laboratory-observed photodegradation half-lives (t1/2), biodegradation t1/2, the organic carbon normalized adsorption constant (KOC) and field-observed overall attenuation t1/2 for PPCPs in water bodies from more than 200 peer-reviewed studies. To mitigate the effects of such uncertainty, we derive representative values (RV) for PPCP degradability from these records to better compare the characteristics of different PPCPs. We further examine the influence of experimental conditions and environmental drivers on the determination of t1/2 using difference analysis and correlation analysis. The results indicate that for laboratory photodegradation tests, different light sources, initial concentration and volume significantly affect t1/2, whereas there is no significant difference between values obtained from tests conducted in pure water and natural water. For biodegradation, laboratory-measured t1/2 values in batch, flume and column studies gradually decrease, marking the controlling role of experimental setup. Redox condition, initial concentration and volume are also recognized as important influencing factors. For adsorption, water-sediment ratio is the primary reaction parameter. As two frequently investigated factors, however, pH and temperature are not significant factors in almost all cases. In field observations, the persistence of carbamazepine, typically used as a tracer, is in doubt. Water depth and latitude are the most correlated drivers of t1/2, indicating the predominant status of photodegradation in the overall attenuation rates. These findings call for caution when selecting experimental parameters and environmental drivers in determining PPCP's attenuation rates and establishing PPCP fate models in the field.
Collapse
Affiliation(s)
- Roujia Du
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Lei Duan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qianxin Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Bin Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jun Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shubo Deng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Gang Yu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China; Advanced Interdisciplinary Institute of Environmental and Ecology, Beijing Normal University, Zhuhai 519000, China.
| |
Collapse
|
3
|
Kashyap A, Nishil B, Thatikonda S. Experimental and numerical elucidation of the fate and transport of antibiotics in aquatic environment: A review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:942. [PMID: 37436551 DOI: 10.1007/s10661-023-11482-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/08/2023] [Indexed: 07/13/2023]
Abstract
This review highlights various experimental and mathematical modeling strategies to investigate the fate and transport of antibiotics that elucidate antimicrobial selective pressure in aquatic environments. Globally, the residual antibiotic concentrations in effluents from bulk drug manufacturing industries were 30- and 1500-fold greater than values reported in municipal and hospital effluents, respectively. The antibiotic concentration from different effluents enters the waterbodies that usually get diluted as they go downstream and undergo various abiotic and biotic reactive processes. In aquatic systems, photolysis is the predominant process for antibiotic reduction in the water matrix, while hydrolysis and sorption are frequently reported in the sediment compartment. The rate of antibiotic reduction varies widely with influencing factors such as the chemical properties of the antibiotics and hydrodynamic conditions of river streams. Among all, tetracycline was found to more unstable (log Kow = - 0.62 to - 1.12) that can readily undergo photolysis and hydrolysis; whereas macrolides were more stable (log Kow = 3.06 to 4.02) that are prone to biodegradation. The processes like photolysis, hydrolysis, and biodegradation followed first-order reaction kinetics while the sorption followed a second-order kinetics for most antibiotic classes with reaction rates occurring in the decreasing order of Fluoroquinolones and Sulphonamides. The reports from various experiments on abiotic and biotic processes serve as input parameters for an integrated mathematical modeling to predict the fate of the antibiotics in the aquatic environment. Various mathematical models viz. Fugacity level IV, RSEMM, OTIS, GREAT-ER, SWAT, QWASI, and STREAM-EU are discussed for their potential capabilities. However, these models do not account for microscale interactions of the antibiotics and microbial community under real-field conditions. Also, the seasonal variations for contaminant concentrations that exert selective pressure for antimicrobial resistance has not been accounted. Addressing these aspects collectively is the key to exploring the emergence of antimicrobial resistance. Therefore, a comprehensive model involving antimicrobial resistance parameters like fitness cost, bacterial population dynamics, conjugation transfer efficiency, etc. is required to predict the fate of antibiotics.
Collapse
Affiliation(s)
- Arun Kashyap
- Environmental Engineering Division, Department of Civil Engineering, IIT Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| | - Benita Nishil
- Environmental Engineering Division, Department of Civil Engineering, IIT Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| | - Shashidhar Thatikonda
- Environmental Engineering Division, Department of Civil Engineering, IIT Hyderabad, Kandi, Sangareddy, Telangana, 502285, India.
| |
Collapse
|
4
|
Wen J, Duan L, Wang B, Dong Q, Liu Y, Huang J, Yu G. Stability and WBE biomarkers possibility of 17 antiviral drugs in sewage and gravity sewers. WATER RESEARCH 2023; 238:120023. [PMID: 37150064 PMCID: PMC10149109 DOI: 10.1016/j.watres.2023.120023] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/31/2023] [Accepted: 04/28/2023] [Indexed: 05/09/2023]
Abstract
Wastewater-based epidemiology (WBE) is a promising technique for monitoring the rapidly increasing use of antiviral drugs during the COVID-19 pandemic. It is essential to evaluate the in-sewer stability of antiviral drugs in order to determine appropriate biomarkers. This study developed an analytical method for quantification of 17 typical antiviral drugs, and investigated the stability of target compounds in sewer through 4 laboratory-scale gravity sewer reactors. Nine antiviral drugs (lamivudine, acyclovir, amantadine, favipiravir, nevirapine, oseltamivir, ganciclovir, emtricitabine and telbivudine) were observed to be stable and recommended as appropriate biomarkers for WBE. As for the other 8 unstable drugs (abacavir, arbidol, ribavirin, zidovudine, ritonavir, lopinavir, remdesivir and efavirenz), their attenuation was driven by adsorption, biodegradation and diffusion. Moreover, reaction kinetics revealed that the effects of sediments and biofilms were regarded to be independent in gravity sewers, and the rate constants of removal by biofilms was directly proportional to the ratio of surface area against wastewater volume. The study highlighted the potential importance of flow velocity for compound stability, since an increased flow velocity significantly accelerated the removal of unstable biomarkers. In addition, a framework for graded evaluation of biomarker stability was proposed to provide reference for researchers to select suitable WBE biomarkers. Compared with current classification method, this framework considered the influences of residence time and different removal mechanisms, which additionally screened four antiviral drugs as viable WBE biomarkers. This is the first study to report the stability of antiviral drugs in gravity sewers.
Collapse
Affiliation(s)
- Jiaqi Wen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing Laboratory for Environmental Frontier Technologies, China
| | - Lei Duan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing Laboratory for Environmental Frontier Technologies, China
| | - Bin Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing Laboratory for Environmental Frontier Technologies, China
| | - Qian Dong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yanchen Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jun Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing Laboratory for Environmental Frontier Technologies, China
| | - Gang Yu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing Laboratory for Environmental Frontier Technologies, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University at Zhuhai, 519087, China.
| |
Collapse
|
5
|
Southwell RV, Hilton SL, Pearson JM, Hand LH, Bending GD. Water flow plays a key role in determining chemical biodegradation in water-sediment systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163282. [PMID: 37023820 DOI: 10.1016/j.scitotenv.2023.163282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023]
Abstract
Before agrochemicals can be registered and sold, the chemical industry is required to perform regulatory tests to assess their environmental persistence, using defined guidelines. Aquatic fate tests (e.g. OECD 308) lack environmental realism as they are conducted under dark conditions and in small-scale static systems, which can affect microbial diversity and functionality. In this study, water-sediment microflumes were used to investigate the impact of these deficiencies in environmental realism on the fate of the fungicide, isopyrazam. Although on a large-scale, these systems aimed to retain the key aspects of OECD 308 tests. Tests were carried out under both a non-UV light-dark cycle and continuous darkness and under both static and flowing water conditions, to investigate how light and water flow affect isopyrazam biodegradation pathways. In static systems, light treatment played a significant role, with faster dissipation in illuminated compared to dark microflumes (DT50s = 20.6 vs. 47.7 days). In flowing systems (DT50s = 16.8 and 15.3 days), light did not play a significant role in dissipation, which was comparable between the two light treatments, and faster than in dark static microflumes. Microbial phototroph biomass was significantly reduced by water flow in the illuminated systems, thereby reducing their contribution to dissipation. Comprehensive analysis of bacterial and eukaryotic community composition identified treatment specific changes following incubation, with light promoting relative abundance of Cyanobacteria and eukaryotic algae, and flow increasing relative abundance of fungi. We conclude that both water velocity and non-UV light increased isopyrazam dissipation, but the contribution of light depended on the flow conditions. These differences may have resulted from impacts on microbial communities and via mixing processes, particularly hyporheic exchange. Inclusion of both light and flow in studies could improve the extent they mimic natural environments and predict chemical environmental persistence, thus bridging the gap between laboratory and field studies.
Collapse
Affiliation(s)
- Rebecca V Southwell
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK; Product Safety, Jealott's Hill International Research Centre, Syngenta, Bracknell, Berkshire RG4 6EY, UK.
| | - Sally L Hilton
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| | - Jonathan M Pearson
- School of Engineering, Library Road, University of Warwick, Coventry CV4 7AL, UK
| | - Laurence H Hand
- Product Safety, Jealott's Hill International Research Centre, Syngenta, Bracknell, Berkshire RG4 6EY, UK
| | - Gary D Bending
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
6
|
Bellver-Domingo Á, Fuentes R, Hernández-Sancho F, Carmona E, Picó Y, Hernández-Chover V. MCDA-DEA approach to construct a composite indicator for effluents from WWTPs considering the influence of PPCPs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:47234-47247. [PMID: 36735130 DOI: 10.1007/s11356-023-25500-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/18/2023] [Indexed: 02/04/2023]
Abstract
Considering current water situation, reuse is an effective solution to meet water demand and reduce pressure on conventional water sources. However, pharmaceutical and personal care products (PPCPs) in effluents from wastewater treatment plants (WWTPs) decrease their quality and suitability. With the aim of identifying and monitoring both the influence of PPCPs and the suitability of effluents to be reused, this study proposes the development of a composite indicator (CI) related to PPCP presence in WWTPs, through the common weight multi-criteria decision analysis (MCDA)-data envelopment analysis (DEA) model. Obtaining a CI for PPCPs is a novel approach in the published literature, showing a new perspective in PPCP management and their influence in wastewater treatment. Furthermore, this study proposes an improvement on MCDA-DEA model which maintains the initial hierarchy obtained for the units analyzed. The development of CI is based on information about the technological, environmental, social, and biological issues of WWTPs. Results show that 4 of the 33 WWTPs analysed had the best CI values, meaning that their effluents have lower environmental impact. The development of a CI related to PPCPs in WWTPs suggests that further steps are needed to manage the WWTP effluents. Hence, the need to implement preventive measures in WWTPs has been shown, even though the removal of PPCPs is not yet part of European law. This work highlights the importance of considering PPCPs as priority pollutants in wastewater management and reuse frameworks, to guarantee low environmental impact and adapt wastewater reuse based on a circular economy approach. HIGHLIGHTS: Emerging contaminants (PPCPs) are used as effluent quality indicators. A composite indicator for PPCPs performance has been developed through MCDA-DEA model. Indicator obtained allow decision makers implementing concrete actions to assess effluent quality. Results show the improvement capacity of the effluents quality through PPCPs removing.
Collapse
Affiliation(s)
- Águeda Bellver-Domingo
- Institute of Local Development (ILD-WATER). Water Economics Group, University of Valencia, Avda. Tarongers S/N, 46022, Valencia, Spain.
| | - Ramón Fuentes
- Department of Applied Economic Analysis, University of Alicante, P.O. Box 99, 03080, Alicante, Spain
| | - Francesc Hernández-Sancho
- Institute of Local Development (ILD-WATER). Water Economics Group, University of Valencia, Avda. Tarongers S/N, 46022, Valencia, Spain
| | - Eric Carmona
- Environmental and Food Safety Research Group (SAMA-UV), Desertification Research Centre, CIDE-GV-UV), University of Valencia, Avda. Vicent Andrés, S/N, 46100, Burjassot, Valencia, Spain
- Department Effect-Directed Analysis, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr, 15 04318, Leipzig, Germany
| | - Yolanda Picó
- Environmental and Food Safety Research Group (SAMA-UV), Desertification Research Centre, CIDE-GV-UV), University of Valencia, Avda. Vicent Andrés, S/N, 46100, Burjassot, Valencia, Spain
| | - Vicent Hernández-Chover
- Institute of Local Development (ILD-WATER). Water Economics Group, University of Valencia, Avda. Tarongers S/N, 46022, Valencia, Spain
| |
Collapse
|
7
|
Cheng Z, Dong Q, Yuan Z, Huang X, Liu Y. Fate characteristics, exposure risk, and control strategy of typical antibiotics in Chinese sewerage system: A review. ENVIRONMENT INTERNATIONAL 2022; 167:107396. [PMID: 35944287 DOI: 10.1016/j.envint.2022.107396] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/09/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
In China, the sewerage system plays an essential role in antibiotic removal; however, the fate profiles of antibiotics in sewers are not well understood, and risk identification throughout the sewerage system is inadequate. Based on the extensive detection results for typical groups of antibiotics in the discharge sources, influent and effluent from wastewater treatment plants (WWTPs), and excess sludge, a comprehensive evaluation was conducted to reveal the elimination profiles of the antibiotics, identify the fate characteristics in both sewers and WWTPs, assess the exposure risk levels, and propose a control strategy. The total concentration (based on the median concentrations of the target antibiotics) in aqueous waters was estimated to decrease from 7383.4 ng/L at the discharge source to 886.6 ng/L in the WWTP effluent, among which 69.6% was reduced by sewers and 18.4% was reduced by WWTPs. Antibiotic reduction in sewers was a combined effect of dilution, physiochemical reactions, sorption, biodegradation, and retransformation, and the A2O-MBR + ozonation process in the WWTPs exhibited superior performance in diminishing antibiotics. Notably, accumulated antibiotics in the excess sludge posed a high risk to natural environments (with a risk quotient of approximately 13.0), and the potential risk during combined sewer overflows (CSOs) was undetermined. Thus, enhanced sludge treatment techniques, accurate risk prediction, and proper precautions at CSOs are required to mitigate potential risk. A novel scheme involving an accurate estimation of discharge loads, preliminary treatment of highly concentrated discharge sources, and synergic control in sewers was proposed to eliminate antibiotics at the front end of pipes.
Collapse
Affiliation(s)
- Zhao Cheng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qian Dong
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yanchen Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
8
|
Biswas P, Vellanki BP, Kazmi AA. Investigating a broad range of emerging contaminants in a set of anthropogenically impacted environmental compartments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153757. [PMID: 35151754 DOI: 10.1016/j.scitotenv.2022.153757] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Environmental compartments are repositories of probably thousands of emerging contaminants (ECs) released along with treated/untreated wastewater. Despite extensive studies on the detection of ECs in surface water, other environmental compartments such as sediments and groundwater are yet to be thoroughly investigated. To assess the heavy anthropogenic impact on the environment, 24 environmental samples comprising of surface water, sediment and groundwater collected from the Yamuna River basin of India were analyzed via target and suspect screening. The surface water and sediment samples were collected from upstream and downstream of densely populated cities and towns situated along the heavily contaminated river Yamuna. The groundwater samples were collected from shallow drinking water wells of the catchment. Liquid chromatography tandem mass-spectroscopy was used to quantify 10 widely consumed pharmaceuticals in the samples. The study also analyzed the potential health hazards posed by the quantified contaminants. In order to evaluate further, the surface water and groundwater samples were subjected to high resolution mass spectrometry (HRMS) screening against a library resulting in a list of 450 ECs in the surface water and 309 ECs in the groundwater. Agricultural chemicals and pharmaceuticals found abundantly in the samples and half of whom were reported first time. The risk quotient was calculated to assess the potential hazard of the target analytes.
Collapse
Affiliation(s)
- Pinakshi Biswas
- Department of Civil Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.
| | - Bhanu Prakash Vellanki
- Department of Civil Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.
| | - Absar Ahmad Kazmi
- Department of Civil Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
9
|
Zind H, Mondamert L, Remaury QB, Cleon A, Leitner NKV, Labanowski J. Occurrence of carbamazepine, diclofenac, and their related metabolites and transformation products in a French aquatic environment and preliminary risk assessment. WATER RESEARCH 2021; 196:117052. [PMID: 33774347 DOI: 10.1016/j.watres.2021.117052] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/12/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
With questions emerging on the presence and risks associated with metabolites and transformation products (TPs) of organic contaminants in the aquatic environment, progress has been made in terms of monitoring and regulation of pesticide metabolites. However, less interest is shown for pharmaceutical residues, although their pseudo-persistence and adverse effects on non-target organisms are proven. This study provides original knowledge about the contamination of ten sites located along three French rivers (water, sediments, biofilms, clams) by pharmaceutical metabolites and TPs, as well as a preliminary environmental risk assessment. Studied compounds included carbamazepine with five metabolites and TPs, and diclofenac with three metabolites and TPs. Results show that metabolites and TPs are present in all studied compartments, with mean concentrations up to 0.52 µg L-1 in water, 229 ng g-1 in sediments, 2153 ng g-1 in biofilms, and 1149 ng g-1 in clams. QSAR estimations (OECD toolbox) were involved to predict the studied compounds ecotoxicities. QSAR models showed that diclofenac and its metabolites and TPs could be more toxic than carbamazepine and its metabolites and TPs to three aquatic species representing green algae, invertebrates, and fish. However, real ecotoxicological effects are still to be determined. The environmental risk assessment showed that hydroxydiclofenac, 2-[(2-chlorophenyl)-amino]-benzaldehyde and dibenzazepine could present a greater risk than other studied compounds for aquatic organisms. In addition, the risk associated with a mixture of diclofenac and its related metabolites and TPs has been found to be greater than that of the compounds considered individually.
Collapse
Affiliation(s)
- Hiba Zind
- Institut de Chimie des Milieux et Matériaux de Poitiers, UMR CNRS 7285, University of Poitiers, France
| | - Leslie Mondamert
- Institut de Chimie des Milieux et Matériaux de Poitiers, UMR CNRS 7285, University of Poitiers, France
| | - Quentin Blancart Remaury
- Institut de Chimie des Milieux et Matériaux de Poitiers, UMR CNRS 7285, University of Poitiers, France
| | - Alexis Cleon
- Institut de Chimie des Milieux et Matériaux de Poitiers, UMR CNRS 7285, University of Poitiers, France
| | | | - Jérôme Labanowski
- Institut de Chimie des Milieux et Matériaux de Poitiers, UMR CNRS 7285, University of Poitiers, France.
| |
Collapse
|
10
|
Joachim S, Beaudouin R, Daniele G, Geffard A, Bado-Nilles A, Tebby C, Palluel O, Dedourge-Geffard O, Fieu M, Bonnard M, Palos-Ladeiro M, Turiès C, Vulliet E, David V, Baudoin P, James A, Andres S, Porcher JM. Effects of diclofenac on sentinel species and aquatic communities in semi-natural conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111812. [PMID: 33472112 DOI: 10.1016/j.ecoenv.2020.111812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 05/14/2023]
Abstract
Due to the potential hazard of diclofenac on aquatic organisms and the lack of higher-tier ecotoxicological studies, a long-term freshwater mesocosm experiment was set up to study the effects of this substance on primary producers and consumers at environmentally realistic nominal concentrations 0.1, 1 and 10 µg/L (average effective concentrations 0.041, 0.44 and 3.82 µg/L). During the six-month exposure period, the biovolume of two macrophyte species (Nasturtium officinale and Callitriche platycarpa) significantly decreased at the highest treatment level. Subsequently, a decrease in dissolved oxygen levels was observed. High mortality rates, effects on immunity, and high genotoxicity were found for encaged zebra mussels (Dreissena polymorpha) in all treatments. In the highest treatment level, one month after the beginning of the exposure, mortality of adult fish (Gasterosteus aculeatus) caused effects on the final population structure. Total abundance of fish and the percentage of juveniles decreased whereas the percentage of adults increased. This led to an overall shift in the length frequency distribution of the F1 generation compared to the control. Consequently, indirect effects on the community structure of zooplankton and macroinvertebrates were observed in the highest treatment level. The No Observed Effect Concentration (NOEC) value at the individual level was < 0.1 µg/L and 1 µg/L at the population and community levels. Our study showed that in more natural conditions, diclofenac could cause more severe effects compared to those observed in laboratory conditions. The use of our results for regulatory matters is also discussed.
Collapse
Affiliation(s)
- S Joachim
- Unité d'écotoxicologie in vitro et in vivo(ECOT)/UMR-I 02 SEBIO, INERIS, Parc ALATA, BP2, 60550 Verneuil-en-Halatte,France.
| | - R Beaudouin
- Unit of Models for Ecotoxicology and Toxicology (METO), INERIS, 60550 Verneuil-en-Halatte, France
| | - G Daniele
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - A Geffard
- Université de Reims Champagne Ardenne, UMR-I 02 SEBIO, Moulin de la Housse BP 1039, 51687 Reims
| | - A Bado-Nilles
- Unité d'écotoxicologie in vitro et in vivo(ECOT)/UMR-I 02 SEBIO, INERIS, Parc ALATA, BP2, 60550 Verneuil-en-Halatte,France
| | - C Tebby
- Unit of Models for Ecotoxicology and Toxicology (METO), INERIS, 60550 Verneuil-en-Halatte, France
| | - O Palluel
- Unité d'écotoxicologie in vitro et in vivo(ECOT)/UMR-I 02 SEBIO, INERIS, Parc ALATA, BP2, 60550 Verneuil-en-Halatte,France
| | - O Dedourge-Geffard
- Université de Reims Champagne Ardenne, UMR-I 02 SEBIO, Moulin de la Housse BP 1039, 51687 Reims
| | - M Fieu
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - M Bonnard
- Université de Reims Champagne Ardenne, UMR-I 02 SEBIO, Moulin de la Housse BP 1039, 51687 Reims
| | - M Palos-Ladeiro
- Université de Reims Champagne Ardenne, UMR-I 02 SEBIO, Moulin de la Housse BP 1039, 51687 Reims
| | - C Turiès
- Unité d'écotoxicologie in vitro et in vivo(ECOT)/UMR-I 02 SEBIO, INERIS, Parc ALATA, BP2, 60550 Verneuil-en-Halatte,France
| | - E Vulliet
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - V David
- Unit of Models for Ecotoxicology and Toxicology (METO), INERIS, 60550 Verneuil-en-Halatte, France
| | - P Baudoin
- Unité d'écotoxicologie in vitro et in vivo(ECOT)/UMR-I 02 SEBIO, INERIS, Parc ALATA, BP2, 60550 Verneuil-en-Halatte,France
| | - A James
- Expertise entoxicologie/écotoxicologie des substances chimiques (ETES), INERIS, Parc ALATA, BP2, 60550 Verneuil-en-Halatte, France
| | - S Andres
- Expertise entoxicologie/écotoxicologie des substances chimiques (ETES), INERIS, Parc ALATA, BP2, 60550 Verneuil-en-Halatte, France
| | - J M Porcher
- Unité d'écotoxicologie in vitro et in vivo(ECOT)/UMR-I 02 SEBIO, INERIS, Parc ALATA, BP2, 60550 Verneuil-en-Halatte,France
| |
Collapse
|
11
|
Fate of Trace Organic Compounds in Hyporheic Zone Sediments of Contrasting Organic Carbon Content and Impact on the Microbiome. WATER 2020. [DOI: 10.3390/w12123518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The organic carbon in streambed sediments drives multiple biogeochemical reactions, including the attenuation of organic micropollutants. An attenuation assay using sediment microcosms differing in the initial total organic carbon (TOC) revealed higher microbiome and sorption associated removal efficiencies of trace organic compounds (TrOCs) in the high-TOC compared to the low-TOC sediments. Overall, the combined microbial and sorption associated removal efficiencies of the micropollutants were generally higher than by sorption alone for all compounds tested except propranolol whose removal efficiency was similar via both mechanisms. Quantitative real-time PCR and time-resolved 16S rRNA gene amplicon sequencing revealed that higher bacterial abundance and diversity in the high-TOC sediments correlated with higher microbial removal efficiencies of most TrOCs. The bacterial community in the high-TOC sediment samples remained relatively stable against the stressor effects of TrOC amendment compared to the low-TOC sediment community that was characterized by a decline in the relative abundance of most phyla except Proteobacteria. Bacterial genera that were significantly more abundant in amended relative to unamended sediment samples and thus associated with biodegradation of the TrOCs included Xanthobacter, Hyphomicrobium, Novosphingobium, Reyranella and Terrimonas. The collective results indicated that the TOC content influences the microbial community dynamics and associated biotransformation of TrOCs as well as the sorption potential of the hyporheic zone sediments.
Collapse
|
12
|
Coll C, Bier R, Li Z, Langenheder S, Gorokhova E, Sobek A. Association between Aquatic Micropollutant Dissipation and River Sediment Bacterial Communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14380-14392. [PMID: 33104348 PMCID: PMC7676288 DOI: 10.1021/acs.est.0c04393] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Assessment of micropollutant biodegradation is essential to determine the persistence of potentially hazardous chemicals in aquatic ecosystems. We studied the dissipation half-lives of 10 micropollutants in sediment-water incubations (based on the OECD 308 standard) with sediment from two European rivers sampled upstream and downstream of wastewater treatment plant (WWTP) discharge. Dissipation half-lives (DT50s) were highly variable between the tested compounds, ranging from 1.5 to 772 days. Sediment from one river sampled downstream from the WWTP showed the fastest dissipation of all micropollutants after sediment RNA normalization. By characterizing sediment bacteria using 16S rRNA sequences, bacterial community composition of a sediment was associated with its capacity for dissipating micropollutants. Bacterial amplicon sequence variants of the genera Ralstonia, Pseudomonas, Hyphomicrobium, and Novosphingobium, which are known degraders of contaminants, were significantly more abundant in the sediment incubations where fast dissipation was observed. Our study illuminates the limitations of the OECD 308 standard to account for variation of dissipation rates of micropollutants due to differences in bacterial community composition. This limitation is problematic particularly for those compounds with DT50s close to regulatory persistence criteria. Thus, it is essential to consider bacterial community composition as a source of variability in regulatory biodegradation and persistence assessments.
Collapse
Affiliation(s)
- Claudia Coll
- Department
of Environmental Science (ACES), Stockholm
University, 10691 Stockholm, Sweden
- Eawag, Swiss Federal Institute of Aquatic
Science and Technology, 8600 Dübendorf, Switzerland
| | - Raven Bier
- Department
of Ecology and Genetics/Limnology, Uppsala
University, Norbyvägen 18D, 752 36 Uppsala, Sweden
- Stroud Water Research Center, AvondalePennsylvania, 19311, United States
| | - Zhe Li
- Department
of Environmental Science (ACES), Stockholm
University, 10691 Stockholm, Sweden
| | - Silke Langenheder
- Department
of Ecology and Genetics/Limnology, Uppsala
University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| | - Elena Gorokhova
- Department
of Environmental Science (ACES), Stockholm
University, 10691 Stockholm, Sweden
| | - Anna Sobek
- Department
of Environmental Science (ACES), Stockholm
University, 10691 Stockholm, Sweden
| |
Collapse
|
13
|
Li J, Gao J, Thai PK, Mueller JF, Yuan Z, Jiang G. Transformation of Illicit Drugs and Pharmaceuticals in Sewer Sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13056-13065. [PMID: 32951431 DOI: 10.1021/acs.est.0c04266] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In-sewer stability of human excreted biomarkers is a critical factor of wastewater-based epidemiology in back-estimating illicit drug and pharmaceutical use in the community. Biomarker stability has been investigated in sewers with the presence of biofilms, but the understanding in sewer sediments is still lacking. This study for the first time employed a laboratory sediment reactor to measure 18 illicit drug and pharmaceutical biomarkers under gravity sewer environments with the presence of sediments. Biomarkers exhibited various stability patterns due to transformation processes occurring in the bulk wastewater and sediments. The attenuation of a biomarker by sediments is driven by complex processes involving biodegradation, diffusion, and sorption, which is directly proportional to the ratio of sediment surface area against wastewater volume. The sediment-driven transformation coefficients of biomarkers are higher than the accordingly biofilm-mediated rates because of stronger microbial activities in sediments. Additionally, the stability of most biomarkers was insensitive to the natural pH variation in sewers, except for a few compounds (e.g., methadone, ketamine, and paracetamol) susceptible to pH changes. In general, this study delineates the stability data of various biomarkers in gravity sewers with sediments, which are novel and long-missing information for wastewater-based epidemiology and improve the reliability of back-estimation in complex sewer networks.
Collapse
Affiliation(s)
- Jiaying Li
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jianfa Gao
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, QLD 4102, Australia
- College of Chemistry and Environmental Engineering, Shenzhen University, 1066 Xueyuan Avenue, Shenzhen 518060, China
| | - Phong K Thai
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Guangming Jiang
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong 2522, Australia
| |
Collapse
|
14
|
Rutere C, Knoop K, Posselt M, Ho A, Horn MA. Ibuprofen Degradation and Associated Bacterial Communities in Hyporheic Zone Sediments. Microorganisms 2020; 8:E1245. [PMID: 32824323 PMCID: PMC7464344 DOI: 10.3390/microorganisms8081245] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 01/29/2023] Open
Abstract
Ibuprofen, a non-steroidal anti-inflammatory pain reliever, is among pharmaceutical residues of environmental concern ubiquitously detected in wastewater effluents and receiving rivers. Thus, ibuprofen removal potentials and associated bacteria in the hyporheic zone sediments of an impacted river were investigated. Microbially mediated ibuprofen degradation was determined in oxic sediment microcosms amended with ibuprofen (5, 40, 200, and 400 µM), or ibuprofen and acetate, relative to an un-amended control. Ibuprofen was removed by the original sediment microbial community as well as in ibuprofen-enrichments obtained by re-feeding of ibuprofen. Here, 1-, 2-, 3-hydroxy- and carboxy-ibuprofen were the primary transformation products. Quantitative real-time PCR analysis revealed a significantly higher 16S rRNA abundance in ibuprofen-amended relative to un-amended incubations. Time-resolved microbial community dynamics evaluated by 16S rRNA gene and 16S rRNA analyses revealed many new ibuprofen responsive taxa of the Acidobacteria, Actinobacteria, Bacteroidetes, Gemmatimonadetes, Latescibacteria, and Proteobacteria. Two ibuprofen-degrading strains belonging to the genera Novosphingobium and Pseudomonas were isolated from the ibuprofen-enriched sediments, consuming 400 and 300 µM ibuprofen within three and eight days, respectively. The collective results indicated that the hyporheic zone sediments sustain an efficient biotic (micro-)pollutant degradation potential, and hitherto unknown microbial diversity associated with such (micro)pollutant removal.
Collapse
Affiliation(s)
- Cyrus Rutere
- Department of Ecological Microbiology, University of Bayreuth, 95448 Bayreuth, Germany;
| | - Kirsten Knoop
- Institute of Microbiology, Leibniz University Hannover, 30419 Hannover, Germany; (K.K.); (A.H.)
| | - Malte Posselt
- Department of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden;
| | - Adrian Ho
- Institute of Microbiology, Leibniz University Hannover, 30419 Hannover, Germany; (K.K.); (A.H.)
| | - Marcus A. Horn
- Department of Ecological Microbiology, University of Bayreuth, 95448 Bayreuth, Germany;
- Institute of Microbiology, Leibniz University Hannover, 30419 Hannover, Germany; (K.K.); (A.H.)
| |
Collapse
|
15
|
Guo R, Liu H, Yang K, Wang S, Sun P, Gao H, Wang B, Chen F. β-Cyclodextrin Polymerized in Cross-Flowing Channels of Biomass Sawdust for Rapid and Highly Efficient Pharmaceutical Pollutants Removal from Water. ACS APPLIED MATERIALS & INTERFACES 2020; 12:32817-32826. [PMID: 32603085 DOI: 10.1021/acsami.0c08729] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Water pollution arising from pharmaceuticals has raised great concerns about the potential risks for biosphere and human health. However, rapid and efficient removal of pharmaceutical contaminants from water remains challenging. Wood sawdust, a byproduct of the wood-processing industry, is an abundant, cost-effective, and sustainable material with a unique hierarchically porous microstructure. These features make wood sawdust quite interesting as a filtration material. Here, we report a novel cross-flow filtration composite based on β-cyclodextrin-polymer-functionalized wood sawdust (β-CD/WS) in which the pharmaceutical contaminant water flows through the sawn-off vessel channels and the micropores on the surface of the cell walls, generating the turbulence. Such water flow characteristics ensure full contact between pharmaceutical pollutants and β-CD grafted on the cellulose backbone of wood sawdust, thereby enhancing the water treatment efficiency. Consequently, the β-CD/WS filter device shows a high removal efficiency of over 97.5% within 90 s for various pharmaceutical contaminants including propranolol, amitriptyline, chlortetracycline, diclofenac, and levofloxacin, and a high saturation uptake capacity of 170, 156, 257, 159, and 185 mg g-1, respectively. The high-performance wood-sawdust-based cross-flow filtration opens new avenues for solving the global water pollution issues, especially those caused by pharmaceutical contaminants.
Collapse
Affiliation(s)
- Ruixue Guo
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Gansu, Lanzhou 730000, China
| | - Hanwen Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Gansu, Lanzhou 730000, China
| | - Ke Yang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Gansu, Lanzhou 730000, China
| | - Shutao Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Gansu, Lanzhou 730000, China
| | - Panpan Sun
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Gansu, Lanzhou 730000, China
| | - Hong Gao
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Gansu, Lanzhou 730000, China
| | - Baodui Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Gansu, Lanzhou 730000, China
| | - Fengjuan Chen
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Gansu, Lanzhou 730000, China
| |
Collapse
|
16
|
Kibuye FA, Gall HE, Veith TL, Elkin KR, Elliott HA, Harper JP, Watson JE. Influence of hydrologic and anthropogenic drivers on emerging organic contaminants in drinking water sources in the Susquehanna River Basin. CHEMOSPHERE 2020; 245:125583. [PMID: 31869673 DOI: 10.1016/j.chemosphere.2019.125583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 12/02/2019] [Accepted: 12/07/2019] [Indexed: 05/08/2023]
Abstract
Occurrence of emerging organic contaminants (EOCs) in surface water bodies can cause adverse effects on non-target organisms. When surface waters are used as drinking water sources, temporal variability in EOC concentrations can potentially impact drinking water quality and human health. To better understand spatiotemporal variability of EOCs in drinking water sources in Central Pennsylvania, EOCs were evaluated in six drinking water sources during a two-year study period (April 2016-June 2018) in the Susquehanna River Basin (SRB). The study was conducted in two phases: Phase I was a spatially distributed sampling approach within the SRB focusing on seven human pharmaceuticals and Phase II was a temporally intensive sampling regime at a single site focusing on a broader range of EOCs. Concentration-discharge relationships were utilized to classify EOC transport dynamics and understand the extent to which hydrologic and anthropogenic factors, such as surface runoff and wastewater effluent, may contribute to EOC occurrence. Overall, EOCs were present at higher concentrations in colder seasons than warmer seasons. Thiamethoxam, a neonicotinoid insecticide, and caffeine exhibited accretion dynamics during high-flow periods, suggesting higher transport during surface runoff events. Human pharmaceuticals known to persist in wastewater effluent were inversely correlated with discharge, indicating dilution characteristics consistent with diminished wastewater signals during high-flow periods. Acetaminophen exhibited near-chemostatic transport dynamics, indicating nonpoint source inputs during high-flow periods. Risk calculations revealed that although EOCs posed medium-to-high risk to aquatic organisms, human health risk through fish consumption was low.
Collapse
Affiliation(s)
- Faith A Kibuye
- The Pennsylvania State University, Department of Agricultural and Biological Engineering, University Park, PA, 16802, USA
| | - Heather E Gall
- The Pennsylvania State University, Department of Agricultural and Biological Engineering, University Park, PA, 16802, USA.
| | - Tamie L Veith
- USDA-ARS Pasture Systems and Watershed Management Research Unit, University Park, PA, 16802, USA
| | - Kyle R Elkin
- USDA-ARS Pasture Systems and Watershed Management Research Unit, University Park, PA, 16802, USA
| | - Herschel A Elliott
- The Pennsylvania State University, Department of Agricultural and Biological Engineering, University Park, PA, 16802, USA
| | - Jeremy P Harper
- The Pennsylvania State University, Energy and Environmental Sustainability Laboratories, University Park, PA, 16802, USA
| | - John E Watson
- The Pennsylvania State University, Department of Ecosystem Science and Management, University Park, PA, 16802, USA
| |
Collapse
|
17
|
Shrestha P, Meisterjahn B, Hughes CB, Mayer P, Birch H, Hennecke D. Biodegradation testing of volatile hydrophobic chemicals in water-sediment systems - Experimental developments and challenges. CHEMOSPHERE 2020; 238:124516. [PMID: 31445331 DOI: 10.1016/j.chemosphere.2019.124516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/02/2019] [Accepted: 08/03/2019] [Indexed: 06/10/2023]
Abstract
Degradation data are crucial for the persistence assessment of chemicals and they are generated using standard OECD guidelines. The OECD 308 describes a simulation biodegradation test of chemicals in water-sediment systems. This guideline is not applicable for testing highly volatile chemicals and recommends a closed biometer test setup for testing slightly volatile chemicals. However, proper details on system geometries, construction and monitoring of aerobic conditions are not provided. The choice of system geometry and sediment:water ratio influences the partitioning of test chemicals between different compartments (water, sediment and headspace) and can therefore affect their degradation. The guideline recommends the addition of test chemical via aqueous solutions, which however is not possible for hydrophobic volatile chemicals due to their volatilization losses and low solubility. Thus, the use of a co-solvent is necessary for the application of such chemicals but its effects in a closed setup has not been studied. We recently developed an improved closed test setup for testing volatile chemicals in soil. The objective was to adapt this improved test setup to conduct OECD 308 tests using 14C labelled chemicals with different volatilities. Using the adapted test setup it was possible to obtain a complete mass balance even for n-decane and tetralin having the highest Henry's constants of the tested chemicals. However, the use of co-solvent affected the oxygen levels, which in turn affected microbial activity and likely also the degradation of test chemicals. Therefore, the adapted test setup needs further developments for the testing of volatile hydrophobic chemicals.
Collapse
Affiliation(s)
- Prasit Shrestha
- Fraunhofer IME-AE, Auf dem Aberg 1, 57392, Schmallenberg, Germany; Department of Environmental Engineering, Technical University Denmark, 2800, Kgs. Lyngby, Denmark.
| | | | | | - Philipp Mayer
- Department of Environmental Engineering, Technical University Denmark, 2800, Kgs. Lyngby, Denmark
| | - Heidi Birch
- Department of Environmental Engineering, Technical University Denmark, 2800, Kgs. Lyngby, Denmark
| | - Dieter Hennecke
- Fraunhofer IME-AE, Auf dem Aberg 1, 57392, Schmallenberg, Germany
| |
Collapse
|
18
|
Low Altitude Unmanned Aerial Vehicles (UAVs) and Satellite Remote Sensing Are Used to Calculated River Discharge Attenuation Coefficients of Ungauged Catchments in Arid Desert. WATER 2019. [DOI: 10.3390/w11122633] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The arid desert ecosystem is very fragile, and the change of its river discharge has a direct impact on irrigation and natural environment. River discharge attenuation coefficients is a key index to reveal the stability of desert river ecosystem. However, due to the harsh conditions in desert areas, it is difficult to establish a hydrological station to obtain data and calculate the attenuation coefficients, so it is urgent to develop new methods to master the attenuation coefficients of rivers. In this study, Taklamakan desert river was selected as the research area, and the river discharge of the desert river were estimated by combining low-altitude UAV and satellite remote sensing technology, so as to calculate the attenuation status of the river in its natural state. Combined with satellite remote sensing, the surface runoff in the desert reaches of the Hotan River from 1993 to 2017 were estimated. The results showed that the base of runoff attenuation in the lower reaches of the Hotan River is 40%. Coupled UAV and satellite remote sensing technology can provide technical support for the study of surface runoff in desert rivers within ungauged basins. Using UAV and satellite remote sensing can monitor surface runoff effectively providing important reference for river discharge monitoring in ungauged catchments.
Collapse
|
19
|
Jaeger A, Coll C, Posselt M, Mechelke J, Rutere C, Betterle A, Raza M, Mehrtens A, Meinikmann K, Portmann A, Singh T, Blaen PJ, Krause S, Horn MA, Hollender J, Benskin JP, Sobek A, Lewandowski J. Using recirculating flumes and a response surface model to investigate the role of hyporheic exchange and bacterial diversity on micropollutant half-lives. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:2093-2108. [PMID: 31631204 DOI: 10.1039/c9em00327d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Enhancing the understanding of the fate of wastewater-derived organic micropollutants in rivers is crucial to improve risk assessment, regulatory decision making and river management. Hyporheic exchange and sediment bacterial diversity are two factors gaining increasing importance as drivers for micropollutant degradation, but are complex to study in field experiments and usually ignored in laboratory tests aimed to estimate environmental half-lives. Flume mesocosms are useful to investigate micropollutant degradation processes, bridging the gap between the field and batch experiments. However, few studies have used flumes in this context. We present a novel experimental setup using 20 recirculating flumes and a response surface model to study the influence of hyporheic exchange and sediment bacterial diversity on half-lives of the anti-epileptic drug carbamazepine (CBZ) and the artificial sweetener acesulfame (ACS). The effect of bedform-induced hyporheic exchange was tested by three treatment levels differing in number of bedforms (0, 3 and 6). Three levels of sediment bacterial diversity were obtained by diluting sediment from the River Erpe in Berlin, Germany, with sand (1 : 10, 1 : 1000 and 1 : 100 000). Our results show that ACS half-lives were significantly influenced by sediment dilution and number of bedforms. Half-lives of CBZ were higher than ACS, and were significantly affected only by the sediment dilution variable, and thus by bacterial diversity. Our results show that (1) the flume-setup is a useful tool to study the fate of micropollutants in rivers, and that (2) higher hyporheic exchange and bacterial diversity in the sediment can increase the degradation of micropollutants in rivers.
Collapse
Affiliation(s)
- Anna Jaeger
- Department Ecohydrology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Mechelke J, Vermeirssen ELM, Hollender J. Passive sampling of organic contaminants across the water-sediment interface of an urban stream. WATER RESEARCH 2019; 165:114966. [PMID: 31437634 DOI: 10.1016/j.watres.2019.114966] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
Passive sampling is a well-established tool for monitoring time-weighted average concentrations of polar and semi-polar organic contaminants in streams at flow velocities between 0.1 and 0.4 m s-1. However, its application under low-flow conditions (10-5 to 0.01 m s-1) - as encountered in hyporheic zones - has been scarcely reported. In this study, 3 novel passive sampler configurations were developed for the monitoring of (semi-)polar organic pollutants and related transformation products across the water-sediment interface and thus across varying hydrodynamic conditions. Their design was inspired by Chemcatcher and diffusive gradients in thin films for organics. To determine the most optimal sampler design, an uptake experiment was completed involving the 3 novel passive sampler configurations and a reference Chemcatcher in polar configuration. The experiments consisted of a circular flume that simulated the main channel of a stream and an aquarium with stagnant water that represented the underlying hyporheic zone. The systems were exposed to 192 organic pollutants at environmental concentrations, and the samplers were then collected, extracted and analyzed using liquid chromatography high-resolution mass spectrometry after 2, 6 and 14 days. The configuration that was most insensitive to different hydrodynamic conditions consisted of a reversed-phase sulfonated styrenedivinylbenzene disk as the receiving phase that was covered by an agarose diffusion gel and topped with a polyethersulfone membrane filter. To further evaluate its environmental application, samplers were installed downstream of a sewage treatment plant located at an urban stream in Berlin, Germany (Erpe). The samplers were mounted on custom-made holders which were subsequently embedded in the stream bed to position samplers above (0.30 m) and within the sediment (-0.15/-0.30/-0.45 m) for 11 days. Target and suspect screening workflows were then applied to identify common concentration patterns and link parent attenuation to transformation product formation. A total of 104 concentration profiles were determined, suggesting the efficiency of the proposed sampling strategy in the water-sediment interface. Valsartan acid was the only known transformation product indicative of hyporheic zone-driven attenuation as its concentration in porewater by far exceeded its concentration in surface water. Similar patterns were observed for a larger list of suspected transformation products, of which a sotalol transformation product was tentatively identified. Overall, the established sampling methodology can be effectively used to quantify organic contaminants during low-flow conditions and is suitable for the characterization of attenuation patterns of organic pollutants in hyporheic zones.
Collapse
Affiliation(s)
- Jonas Mechelke
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092, Zürich, Switzerland
| | | | - Juliane Hollender
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092, Zürich, Switzerland.
| |
Collapse
|
21
|
Kollarahithlu SC, Balakrishnan RM. Adsorption of ibuprofen using cysteine-modified silane-coated magnetic nanomaterial. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:34117-34126. [PMID: 30293104 DOI: 10.1007/s11356-018-3272-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/17/2018] [Indexed: 06/08/2023]
Abstract
Industrialization and growth of the pharmaceutical companies have been a boon to the mankind in our day to day life in myriad ways. However, due to the uninhibited release of these active pharmaceutical compounds into the water systems has caused detrimental effects to the genetic pool. In this study, L-cysteine-modified 3-glycidyloxypropyltrimethoxysilane-coated magnetic nanomaterial showed a maximum removal of the efficiency of 82.90% for the nanomaterial dosage of 30 mg at an initial concentration of 50 mg L-1 at pH 6.0. Further, the nanomaterial showed reusability efficiency up to 80% for three cycles. The adsorption kinetics follow the pseudo-second-order reaction and the adsorption isotherm model best fits the Langmuir isotherm proving the adsorption process to be a monolayer sorption on a monolayer surface. This magnetic nanomaterial could serve as a promising tool for the removal of pharmaceutical compounds from aqueous solutions. Graphical abstract ᅟ.
Collapse
Affiliation(s)
| | - Raj Mohan Balakrishnan
- Department of Chemical Engineering, National Institute of Technology Karnataka, Mangalore, India.
| |
Collapse
|
22
|
Yamindago A, Lee N, Woo S, Yum S. Transcriptomic profiling of Hydra magnipapillata after exposure to naproxen. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 71:103215. [PMID: 31301532 DOI: 10.1016/j.etap.2019.103215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/12/2019] [Accepted: 06/23/2019] [Indexed: 06/10/2023]
Abstract
The extensive use in humans and animals of nonsteroidal anti-inflammatory drugs (NSAIDs) increases their possible impact on aquatic organisms. In the present study, we investigated acute toxicity, morphological responses, and potential physiological and metabolic impacts of naproxen exposure on Hydra magnipapillata. The median lethal concentrations (LC50) of naproxen in H. magnipapillata were 51.999 mg/L, 44.935 mg/L, and 42.500 mg/L after exposure for 24, 48, and 72 h, respectively. Morphological observation of the exposed Hydra showed that 40 mg/L naproxen stimulated the contraction of body column and tentacles after 24 h. A KEGG pathway analysis of the genes differentially expressed in the Hydra after exposure to naproxen for 6, 24, or 48 h demonstrated various cellular and metabolic effects, including protein processing in the endoplasmic reticulum, Wnt signaling, and tryptophan metabolism. These results suggest that exposure to naproxen affects the genetic material, inflammatory processes, and metabolic processes of aquatic organisms.
Collapse
Affiliation(s)
- Ade Yamindago
- Ecological Risk Research Division, Korea Institute of Ocean Science and Technology (KIOST), Geoje, 53201, Republic of Korea; The Faculty of Applied Ocean Science, University of Science and Technology (UST), Geoje, 53201, Republic of Korea; Faculty of Fisheries and Marine Science, Brawijaya University, Malang, 65145, Indonesia
| | - Nayun Lee
- Ecological Risk Research Division, Korea Institute of Ocean Science and Technology (KIOST), Geoje, 53201, Republic of Korea
| | - Seonock Woo
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology (KIOST), Busan, 49111, Republic of Korea
| | - Seungshic Yum
- Ecological Risk Research Division, Korea Institute of Ocean Science and Technology (KIOST), Geoje, 53201, Republic of Korea; The Faculty of Applied Ocean Science, University of Science and Technology (UST), Geoje, 53201, Republic of Korea.
| |
Collapse
|
23
|
Zhao Y, Liu D, Huang W, Yang Y, Ji M, Nghiem LD, Trinh QT, Tran NH. Insights into biofilm carriers for biological wastewater treatment processes: Current state-of-the-art, challenges, and opportunities. BIORESOURCE TECHNOLOGY 2019; 288:121619. [PMID: 31202712 DOI: 10.1016/j.biortech.2019.121619] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
Biofilm carriers play an important role in attached growth systems for wastewater treatment processes. This study systematically summarizes the traditional and novel biofilm carriers utilized in biofilm-based wastewater treatment technology. The advantages and disadvantages of traditional biofilm carriers are evaluated and discussed in light of basic property, biocompatibility and applicability. The characteristics, applications performance, and mechanism of novel carriers (including slow-release carriers, hydrophilic/electrophilic modified carriers, magnetic carriers and redox mediator carriers) in wastewater biological treatment were deeply analyzed. Slow release biofilm carriers are used to provide a solid substrate and electron donor for the growth of microorganisms and denitrification for anoxic and/or anaerobic bioreactors. Carriers with hydrophilic/electrophilic modified surface are applied for promoting biofilm formation. Magnetic materials-based carriers are employed to shorten the start-up time of bioreactor. Biofilm carriers acting as redox mediators are used to accelerate biotransformation of recalcitrant pollutants in industrial wastewater.
Collapse
Affiliation(s)
- Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Duo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Wenli Huang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ying Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Long Duc Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Quang Thang Trinh
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam
| | - Ngoc Han Tran
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; NUS Environmental Research Institute, National University of Singapore, 1-Create Way, #15-02 Create Tower, Singapore 138602, Singapore.
| |
Collapse
|
24
|
Brunsch AF, Langenhoff AAM, Rijnaarts HHM, Ahring A, Ter Laak TL. In situ removal of four organic micropollutants in a small river determined by monitoring and modelling. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:758-766. [PMID: 31195176 DOI: 10.1016/j.envpol.2019.05.150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 06/09/2023]
Abstract
Organic micropollutants (OMPs) are widely detected in surface waters. So far, the removal processes of these compounds in situ in river systems are not yet totally revealed. In this study, a combined monitoring and modelling approach was applied to determine the behaviour of 1-H benzotriazole, carbamazepine, diclofenac and galaxolide in a small river system. Sewage treatment plant effluents and the receiving waters of the river Swist were monitored in 9 dry weather sampling campaigns (precipitation < 1 mm on the sampling day itself and <5 mm total precipitation two days before the sampling) during different seasons over a period of 3 years. With the results gained through monitoring, mass balances have been calculated to assess fate in the river. With the DWA Water Quality Model, OMP concentrations in the river were successfully simulated with OMP characteristics gained through literature studies. No removal was determined for 1-H benzotriazole and carbamazepine, whereas diclofenac showed removal that coincided with light intensity. Moreover, modelling based on light sensitivity of diclofenac also suggested relevant degradation at natural light conditions. These two approaches suggest removal by photodegradation. The highest removal in the river was detected for galaxolide, presumably due to volatilisation, sorption and biodegradation. Furthermore, short-term concentration variability in the river was determined, showing that daily concentration patterns are influenced by dynamics of sewage treatment plant effluent volumes and removal processes in the river.
Collapse
Affiliation(s)
- Andrea F Brunsch
- Erftverband, Department of River Basin Management, Am Erftverband 6, 50126, Bergheim, Germany; Wageningen University and Research, Environmental Technology, P.O. Box 17, 6700 AA, Wageningen, the Netherlands.
| | - Alette A M Langenhoff
- Wageningen University and Research, Environmental Technology, P.O. Box 17, 6700 AA, Wageningen, the Netherlands
| | - Huub H M Rijnaarts
- Wageningen University and Research, Environmental Technology, P.O. Box 17, 6700 AA, Wageningen, the Netherlands
| | - Alexander Ahring
- Erftverband, Department of River Basin Management, Am Erftverband 6, 50126, Bergheim, Germany
| | - Thomas L Ter Laak
- KWR Watercycle Research Institute, P.O. Box 1072, 3430 BB, Nieuwegein, the Netherlands
| |
Collapse
|
25
|
Peter KT, Herzog S, Tian Z, Wu C, McCray JE, Lynch K, Kolodziej EP. Evaluating emerging organic contaminant removal in an engineered hyporheic zone using high resolution mass spectrometry. WATER RESEARCH 2019; 150:140-152. [PMID: 30508711 DOI: 10.1016/j.watres.2018.11.050] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/16/2018] [Accepted: 11/17/2018] [Indexed: 06/09/2023]
Abstract
The hyporheic zone (HZ), located at the interface of surface and groundwater, is a natural bioreactor for attenuation of chemical contaminants. Engineered HZs can be incorporated into stream restoration projects to enhance hyporheic exchange, with flowpaths optimized to promote biological habitat, water quantity, and water quality improvements. Designing HZs for in-stream treatment of stormwater, a significant source of flow and contaminant loads to urban creeks, requires assessment of both the hydrology and biogeochemical capacity for water quality improvement. Here, we applied tracer tests and high resolution mass spectrometry (HRMS) to characterize an engineered hyporheic zone unit process, called a hyporheic design element (HDE), in the Thornton Creek Watershed in Seattle, WA. Dye, NaCl, and bromide were used to hydrologically link downwelling and upwelling zones and estimate the hydraulic retention time (HRT) of hyporheic flowpaths. We then compared water quality improvements across hydrologically-linked surface and hyporheic flowpaths (3-5 m length; ∼30 min to >3 h) during baseflow and stormflow conditions. We evaluated fate outcomes for 83 identified contaminants during stormflow, including those correlated with an urban runoff mortality syndrome in coho salmon. Non-target HRMS analysis was used to assess holistic water quality improvements and evaluate attenuation mechanisms. The data indicated substantial water quality improvement in hyporheic flowpaths relative to surface flow and improved contaminant removal with longer hyporheic HRT (for ∼1900 non-target compounds detected during stormflow, <17% were attenuated >50% via surface flow vs. 59% and 78% via short and long hyporheic residence times, respectively), and strong contributions of hydrophobic sorption towards observed contaminant attenuation.
Collapse
Affiliation(s)
- Katherine T Peter
- Interdisciplinary Arts and Science, University of Washington Tacoma, Tacoma, WA, 98421, USA; Center for Urban Waters, Tacoma, WA, 98421, USA.
| | - Skuyler Herzog
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, 80401, USA
| | - Zhenyu Tian
- Interdisciplinary Arts and Science, University of Washington Tacoma, Tacoma, WA, 98421, USA; Center for Urban Waters, Tacoma, WA, 98421, USA
| | - Christopher Wu
- Interdisciplinary Arts and Science, University of Washington Tacoma, Tacoma, WA, 98421, USA; Center for Urban Waters, Tacoma, WA, 98421, USA
| | - John E McCray
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, 80401, USA
| | | | - Edward P Kolodziej
- Interdisciplinary Arts and Science, University of Washington Tacoma, Tacoma, WA, 98421, USA; Center for Urban Waters, Tacoma, WA, 98421, USA; Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
26
|
Noutsopoulos C, Koumaki E, Sarantopoulos V, Mamais D. Analytical and mathematical assessment of emerging pollutants fate in a river system. JOURNAL OF HAZARDOUS MATERIALS 2019; 364:48-58. [PMID: 30339932 DOI: 10.1016/j.jhazmat.2018.10.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 06/08/2023]
Abstract
The fate of several emerging pollutants in a Greek river system was assessed through analytical measurements and mathematical modelling. Target compounds selected in this study consist of five endocrine disrupting chemicals and four non-steroidal anti-inflammatory drugs. Two sampling campaigns were implemented to assess target compounds concentrations along the river system during dry period. Furthermore a mathematical model was developed in order to simulate the spatial distribution of target compounds concentration. The mathematical model describes several abiotic and biotic processes (sorption, photodegradation, biodegradation, biotransformation) in order to account for the removal of target compounds. Following sensitivity analysis, the model was calibrated and validated against measured values. Environmental risk assessment was performed based on both analytical measurements and simulation results. Uncertainty analysis was also conducted by applying Monte Carlo technique. According to the results the simulation data matched very satisfactorily with the analytical measurements, thus confirming the main experimental observations showing that the primary removal mechanism for the photo-sensitive chemicals is photodegradation, the latter being mostly influenced by weather conditions and river general quality characteristics (e.g. chlorophyll, turbidity). Model results demonstrate a gradual increase of uncertainty from the upstream to the downstream of the river system for all target compounds.
Collapse
Affiliation(s)
- Constantinos Noutsopoulos
- Sanitary Engineering Laboratory, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 5 Iroon Polytechniou, Zografou, 15780, Athens, Greece.
| | - Elena Koumaki
- Sanitary Engineering Laboratory, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 5 Iroon Polytechniou, Zografou, 15780, Athens, Greece
| | - Vasileios Sarantopoulos
- Sanitary Engineering Laboratory, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 5 Iroon Polytechniou, Zografou, 15780, Athens, Greece
| | - Daniel Mamais
- Sanitary Engineering Laboratory, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 5 Iroon Polytechniou, Zografou, 15780, Athens, Greece
| |
Collapse
|
27
|
Mandaric L, Kalogianni E, Skoulikidis N, Petrovic M, Sabater S. Contamination patterns and attenuation of pharmaceuticals in a temporary Mediterranean river. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:561-569. [PMID: 30089278 DOI: 10.1016/j.scitotenv.2018.07.308] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 07/22/2018] [Accepted: 07/22/2018] [Indexed: 06/08/2023]
Abstract
The contamination patterns and fate of pharmaceutically active compounds (PhACs) were investigated in the Evrotas River (Southern Greece). This is a temporary river with differing levels of water stress and water quality impairment in a number of its reaches. Three sampling campaigns were conducted in order to capture different levels of water stress and water quality. Four sampling sites located on the main channel of the Evrotas River were sampled in July 2015 (moderate stream flow), and June and September 2016 (low stream flow). Discharge of urban wastewater has been determined as the main source of pollution, with PhACs, nutrients and other physicochemical parameters considerably increasing downstream the wastewater treatment plant (WWTP) of Sparta city. Due to the pronounced hydrological variation of the Evrotas River, generally, the highest concentrations of PhACs have been detected during low flow conditions. Simultaneously, low flow resulted in an increased water travel time and consequently longer residence time that accounted for the higher attenuation of most PhACs. The average decrease in total concentration of PhACs within the studied waterbody segment (downstream of Sparta city) increased from 22% in July 2015 to 25% in June 2016 and 77% in September 2016. The PhACs with the highest average concentration decrease throughout the sampling campaigns were hydrochlorothiazide, followed by sotalol, carbamazepine, valsartan, and naproxen.
Collapse
Affiliation(s)
- Ladislav Mandaric
- Catalan Institute for Water Research (ICRA), C/Emili Grahit 101, E-17003 Girona, Spain
| | - Eleni Kalogianni
- Institute of Marine Biological Resources and Inland Waters (IMBRIW), Hellenic Centre for Marine Research (HCMR), 46.7 km Athens-Souniou Av., 190 13, P.O. Box 712, Anavissos, Greece
| | - Nikolaos Skoulikidis
- Institute of Marine Biological Resources and Inland Waters (IMBRIW), Hellenic Centre for Marine Research (HCMR), 46.7 km Athens-Souniou Av., 190 13, P.O. Box 712, Anavissos, Greece
| | - Mira Petrovic
- Catalan Institute for Water Research (ICRA), C/Emili Grahit 101, E-17003 Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Lluis Company 25, 08010 Barcelona, Spain.
| | - Sergi Sabater
- Catalan Institute for Water Research (ICRA), C/Emili Grahit 101, E-17003 Girona, Spain; Institute of Aquatic Ecology (IEA), Faculty of Science, University of Girona (UdG), Campus de Montilivi, M. Aurélia Capmany 69, 17003 Girona, Spain
| |
Collapse
|
28
|
Nurmi TMA, Kiljunen TK, Knuutinen JS. A fugacity model assessment of ibuprofen, diclofenac, carbamazepine, and their transformation product concentrations in an aquatic environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:328-341. [PMID: 30397752 PMCID: PMC6318256 DOI: 10.1007/s11356-018-3485-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/16/2018] [Indexed: 05/11/2023]
Abstract
An updated version of FATEMOD, a multimedia fugacity model for environmental fate of organic chemicals, was set up to assess environmental behaviour of three pharmaceuticals in northern Lake Päijänne, Finland. Concentrations of ibuprofen, diclofenac, and carbamazepine were estimated at various depths at two sites: near a wastewater treatment plant and 3.5 km downstream the plant. When compared with environmental sampling data from corresponding depths and sites, the predicted concentrations, ranging from nanograms to hundreds of nanograms per litre, were found to be in good agreement. Weather data were utilised with the model to rationalise the effects of various environmental parameters on the sampling results, and, e.g. the roles of various properties of lake dynamics and photodegradation were identified. The new model also enables simultaneous assessment of transformation products. Environmentally formed transformation product concentrations were estimated to be at highest an order of magnitude lower than those of the parent compounds, and unlikely to reach a detectable level. However, a possibility that conjugates of ibuprofen are present at higher levels than the parent compound was identified. Simulation results suggest that environmental degradation half-lives of the inspected contaminants under stratified lake conditions are in the range of some weeks to months.
Collapse
Affiliation(s)
- Tuomas M A Nurmi
- Department of Chemistry, University of Jyvaskyla, P.O. Box 35, FI-40014, Jyväskylä, Finland.
| | - Toni K Kiljunen
- Department of Chemistry, University of Jyvaskyla, P.O. Box 35, FI-40014, Jyväskylä, Finland
| | - Juha S Knuutinen
- Department of Chemistry, University of Jyvaskyla, P.O. Box 35, FI-40014, Jyväskylä, Finland
| |
Collapse
|
29
|
Koumaki E, Mamais D, Noutsopoulos C. Assessment of the environmental fate of endocrine disrupting chemicals in rivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 628-629:947-958. [PMID: 30045583 DOI: 10.1016/j.scitotenv.2018.02.110] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/09/2018] [Accepted: 02/09/2018] [Indexed: 06/08/2023]
Abstract
Laboratory tests were conducted with five endocrine disruptors (bishenol A, triclosan. nonylphenol, nonylphenol monoethoxylate and nonylphenol diethoxylate) under different redox conditions (aerobic, anoxic, anaerobic and sulfate-reducing conditions) to assess abiotic and biotic degradation in a river water/sediment system. The river water sample was collected from Spercheios River while the sediment was collected from the banks of a tributary of the river at the point where the discharge point of a wastewater treatment plant is located. To describe quantitatively elimination kinetics of the target compounds, pseudo first-order kinetics were adopted. According to the results from the microcosms studies, it can be stated that the substances are eliminated from the aqueous phase with relatively high rates under aerobic conditions due to both sorption and biotransformation processes. However, when reduced oxygen conditions were established in the microcosms incubations, biotransformation decreased, indicating the almost complete cease of the EDCs microbial degradation, while substances' sorption onto sediments showed no significant differences. All compounds were found to be biodegradable under aerobic conditions, and the low to high order of the calculated dissipation rate constants was 0.064±0.004d-1 (TCS)→0.067±0.006d-1 (NP)→0.076±0.009d-1 (NP2EO)→0.081±0.007d-1 (NP1EO)→0.103±0.011d-1 (BPA). Finally, regarding the biotransformation experiments, the elimination of the compounds limited in the absence of oxygen as compared to aerobic.
Collapse
Affiliation(s)
- Elena Koumaki
- Sanitary Engineering Laboratory, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 5 Iroon Polytechniou, Zografou, 15780, Athens, Greece.
| | - Daniel Mamais
- Sanitary Engineering Laboratory, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 5 Iroon Polytechniou, Zografou, 15780, Athens, Greece
| | - Constantinos Noutsopoulos
- Sanitary Engineering Laboratory, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 5 Iroon Polytechniou, Zografou, 15780, Athens, Greece
| |
Collapse
|
30
|
Ma L, Liu Y, Zhang J, Yang Q, Li G, Zhang D. Impacts of irrigation water sources and geochemical conditions on vertical distribution of pharmaceutical and personal care products (PPCPs) in the vadose zone soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 626:1148-1156. [PMID: 29898521 DOI: 10.1016/j.scitotenv.2018.01.168] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/17/2018] [Accepted: 01/17/2018] [Indexed: 06/08/2023]
Abstract
Groundwater pollution by emerging contaminants, such as pharmaceutical and personal care products (PPCPs), has caused increasing concerns around the world. The vadose zone is an active zone where lithosphere, hydrosphere and biosphere interact. It is an important medium for PPCPs removal and entry into groundwater from irrigation using wastewater or polluted surface water. In the present study, the occurrence and distribution of eleven PPCPs in areas with a vadose zone (up to 16 m) was investigated from wastewater irrigated farmland, groundwater irrigated farmland and a seasonal river course in Beijing (China). Nine out of eleven PPCPs were detectable, and carbamazepine and caffeine had the highest detection frequencies, above 50%. The PPCPs were detectable deep in 16 m below ground level (bgl), and their concentrations ranged from <LOD (limit of detection) to 12.5 μg/kg. Compared to the vadose zone soils irrigated with groundwater, wastewater-irrigated vadose zone soils had significantly higher PPCPs detection frequencies and contamination levels, suggesting the important roles of irrigation water sources on PPCPs accumulation and transport in the vadose zone. Additionally, PPCPs vertical distribution presented a bell-shape pattern in the vadose zone soils with wastewater irrigation, peaking at 3-6 m bgl. Redundancy analysis (RDA) indicated a significant correlation between PPCPs concentrations in the vadose zone soils and geochemical variables, including available potassium and silt content. This study provides important evidence on the influential factors of PPCPs accumulation and migration in the vadose zone soils resulted from wastewater irrigation. The incomplete removal of PPCPs poses certain risks in subsurface environment, potentially challenging groundwater quality and drinking water safety.
Collapse
Affiliation(s)
- Lin Ma
- School of Environment, Tsinghua University, Beijing 100084, China; State Key Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Yifei Liu
- School of Environment, Tsinghua University, Beijing 100084, China; State Key Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Jing Zhang
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
| | - Qing Yang
- Beijing Institute of Hydrogeology and Engineering Geology, Beijing 100195, China
| | - Guanghe Li
- School of Environment, Tsinghua University, Beijing 100084, China; State Key Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China.
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing 100084, China; State Key Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
31
|
Vione D, Encinas A, Fabbri D, Calza P. A model assessment of the potential of river water to induce the photochemical attenuation of pharmaceuticals downstream of a wastewater treatment plant (Guadiana River, Badajoz, Spain). CHEMOSPHERE 2018; 198:473-481. [PMID: 29425948 DOI: 10.1016/j.chemosphere.2018.01.156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 01/18/2018] [Accepted: 01/28/2018] [Indexed: 05/27/2023]
Abstract
We predicted the possible direct and indirect phototransformation kinetics of carbamazepine (CBZ), ibuprofen (IBU) and diclofenac (DIC) in river water, based on data of water chemistry obtained for the Guadiana River near Badajoz (Southwestern Spain) during a year-round sampling campaign. The three compounds were chosen, (i) because they occurred at the outlet of the wastewater treatment plant (WWTP) in Badajoz, as well as in river water sampled 1 km downstream of the WWTP, and (ii) because their photochemical fate in surface waters is known well enough to be modelled. The predicted phototransformation kinetics would be negligible in winter and fastest in April-August, with comparable rate constants in April through August despite differences in sunlight irradiance. Favourable water chemistry would in fact offset the lower irradiance, and vice versa. Half-life times of at least three weeks - one month are predicted for CBZ and IBU. Photodegradation may be an important attenuation pathway for biorecalcitrant CBZ, while IBU photochemistry is unlikely to be competitive with other processes including biodegradation. The predicted DIC photochemical half-life times of 7-10 days in April-August would be comparable with the biodegradation kinetics data reported in the literature. Photochemistry might not induce extensive phototransformation of xenobiotics in the Guadiana River under normal flow conditions, but it could become important in the case of low flow produced by water scarcity.
Collapse
Affiliation(s)
- Davide Vione
- Università di Torino, Dipartimento di Chimica, Via Pietro Giuria 5, 10125 Torino, Italy; Università di Torino, Centro Interdipartimentale NatRisk, Largo Paolo Braccini 2, 10095 Grugliasco TO, Italy.
| | - Angel Encinas
- FCC Aqualia S.A., C/ Montesinos 28, 06002, Badajoz, Spain
| | - Debora Fabbri
- Università di Torino, Dipartimento di Chimica, Via Pietro Giuria 5, 10125 Torino, Italy
| | - Paola Calza
- Università di Torino, Dipartimento di Chimica, Via Pietro Giuria 5, 10125 Torino, Italy
| |
Collapse
|
32
|
Al-Khazrajy OSA, Bergström E, Boxall ABA. Factors affecting the dissipation of pharmaceuticals in freshwater sediments. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:829-838. [PMID: 29068472 DOI: 10.1002/etc.4015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/08/2017] [Accepted: 10/17/2017] [Indexed: 06/07/2023]
Abstract
Degradation is one of the key processes governing the impact of pharmaceuticals in the aquatic environment. Most studies on the degradation of pharmaceuticals have focused on soil and sludge, with fewer exploring persistence in aquatic sediments. We investigated the dissipation of 6 pharmaceuticals from different therapeutic classes in a range of sediment types. Dissipation of each pharmaceutical was found to follow first-order exponential decay. Half-lives in the sediments ranged from 9.5 (atenolol) to 78.8 (amitriptyline) d. Under sterile conditions, the persistence of pharmaceuticals was considerably longer. Stepwise multiple linear regression analysis was performed to explore the relationships between half-lives of the pharmaceuticals, sediment physicochemical properties, and sorption coefficients for the compounds. Sediment clay, silt, and organic carbon content and microbial activity were the predominant factors related to the degradation rates of diltiazem, cimetidine, and ranitidine. Regression analysis failed to highlight a key property which may be responsible for observed differences in the degradation of the other pharmaceuticals. The present results suggest that the degradation rate of pharmaceuticals in sediments is determined by different factors and processes and does not exclusively depend on a single sediment parameter. Environ Toxicol Chem 2018;37:829-838. © 2017 SETAC.
Collapse
Affiliation(s)
- Omar S A Al-Khazrajy
- Environment Department, University of York, Heslington, York, UK
- Department of Chemistry, College of Ibn al-Haitham, University of Baghdad, Baghdad, Iraq
| | - Ed Bergström
- Centre of Excellence in Mass Spectrometry and Department of Chemistry, University of York, Heslington, York, UK
| | | |
Collapse
|
33
|
Grenni P, Patrolecco L, Ademollo N, Di Lenola M, Barra Caracciolo A. Assessment of gemfibrozil persistence in river water alone and in co-presence of naproxen. Microchem J 2018. [DOI: 10.1016/j.microc.2016.11.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
34
|
Greskowiak J, Hamann E, Burke V, Massmann G. The uncertainty of biodegradation rate constants of emerging organic compounds in soil and groundwater - A compilation of literature values for 82 substances. WATER RESEARCH 2017; 126:122-133. [PMID: 28938146 DOI: 10.1016/j.watres.2017.09.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/04/2017] [Accepted: 09/05/2017] [Indexed: 05/12/2023]
Abstract
The present study reports on biodegradation rate constants of emerging organic compounds (EOCs) in soil and groundwater available in the literature. The major aim of this compilation was to provide an assessment of the uncertainty of hydrological models with respect to the fate of EOCs. The literature search identified a total number of 82 EOCs for which 1st-order rate constants could be derived. It was found that for the majority of compounds degradation rate constants vary over more than three orders of magnitude. Correlation to factors that are well known to affect the degradation rate, such as temperature or redox condition was weak. No correlation at all was found with results from available quantitative structure-activity relationship models. This suggests that many unknown site specific or experimentally specific factors influence the degradation behavior of EOCs in the environment. Thus, local and catchment scale predictive models to estimate EOC concentration at receptors, e.g., receiving waters or drinking water wells, need to consider the large uncertainty in 1st-order rate constants. As a consequence, applying rate constants that were derived from one experiment or field site investigation to other experiments or field sites should be done with extreme caution.
Collapse
Affiliation(s)
- Janek Greskowiak
- Working Group Hydrogeology and Landscape Hydrology, Carl von Ossietzky University of Oldenburg, Germany.
| | - Enrico Hamann
- Geodienste GmbH, Leinestr. 33, D-30827 Garbsen, Germany
| | - Victoria Burke
- Working Group Hydrogeology and Landscape Hydrology, Carl von Ossietzky University of Oldenburg, Germany
| | - Gudrun Massmann
- Working Group Hydrogeology and Landscape Hydrology, Carl von Ossietzky University of Oldenburg, Germany
| |
Collapse
|
35
|
von Schiller D, Acuña V, Aristi I, Arroita M, Basaguren A, Bellin A, Boyero L, Butturini A, Ginebreda A, Kalogianni E, Larrañaga A, Majone B, Martínez A, Monroy S, Muñoz I, Paunović M, Pereda O, Petrovic M, Pozo J, Rodríguez-Mozaz S, Rivas D, Sabater S, Sabater F, Skoulikidis N, Solagaistua L, Vardakas L, Elosegi A. River ecosystem processes: A synthesis of approaches, criteria of use and sensitivity to environmental stressors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 596-597:465-480. [PMID: 28458222 DOI: 10.1016/j.scitotenv.2017.04.081] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/11/2017] [Accepted: 04/11/2017] [Indexed: 06/07/2023]
Abstract
River ecosystems are subject to multiple stressors that affect their structure and functioning. Ecosystem structure refers to characteristics such as channel form, water quality or the composition of biological communities, whereas ecosystem functioning refers to processes such as metabolism, organic matter decomposition or secondary production. Structure and functioning respond in contrasting and complementary ways to environmental stressors. Moreover, assessing the response of ecosystem functioning to stressors is critical to understand the effects on the ecosystem services that produce direct benefits to humans. Yet, there is more information on structural than on functional parameters, and despite the many approaches available to measure river ecosystem processes, structural approaches are more widely used, especially in management. One reason for this discrepancy is the lack of synthetic studies analyzing river ecosystem functioning in a way that is useful for both scientists and managers. Here, we present a synthesis of key river ecosystem processes, which provides a description of the main characteristics of each process, including criteria guiding their measurement as well as their respective sensitivity to stressors. We also discuss the current limitations, potential improvements and future steps that the use of functional measures in rivers needs to face.
Collapse
Affiliation(s)
- Daniel von Schiller
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country, 48080 Bilbao, Spain.
| | - Vicenç Acuña
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain
| | - Ibon Aristi
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country, 48080 Bilbao, Spain
| | - Maite Arroita
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country, 48080 Bilbao, Spain
| | - Ana Basaguren
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country, 48080 Bilbao, Spain
| | - Alberto Bellin
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, I-38123 Trento, Italy
| | - Luz Boyero
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country, 48080 Bilbao, Spain; IKERBASQUE, Basque Foundation for Science, María Díaz Haroko 3, 48013 Bilbao, Spain; College of Marine and Environmental Sciences, James Cook University, 4811 Townsville, Queensland, Australia
| | - Andrea Butturini
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Antoni Ginebreda
- Water and Soil Quality Research Group, Department of Environmental Chemistry (IDAEA-CSIC), Carrer Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Eleni Kalogianni
- Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland Waters, P.O. Box 712, 19013 Anavissos Attica, Greece
| | - Aitor Larrañaga
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country, 48080 Bilbao, Spain
| | - Bruno Majone
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, I-38123 Trento, Italy
| | - Aingeru Martínez
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country, 48080 Bilbao, Spain
| | - Silvia Monroy
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country, 48080 Bilbao, Spain
| | - Isabel Muñoz
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Momir Paunović
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevardespota Stefana 142, 11000 Belgrade, Serbia
| | - Olatz Pereda
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country, 48080 Bilbao, Spain
| | - Mira Petrovic
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain; ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Jesús Pozo
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country, 48080 Bilbao, Spain
| | - Sara Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain
| | - Daniel Rivas
- Water and Soil Quality Research Group, Department of Environmental Chemistry (IDAEA-CSIC), Carrer Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Sergi Sabater
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain; GRECO, Institute of Aquatic Ecology, University of Girona, Campus Montilivi, 17071 Girona, Spain
| | - Francesc Sabater
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Nikolaos Skoulikidis
- Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland Waters, P.O. Box 712, 19013 Anavissos Attica, Greece
| | - Libe Solagaistua
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country, 48080 Bilbao, Spain
| | - Leonidas Vardakas
- Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland Waters, P.O. Box 712, 19013 Anavissos Attica, Greece
| | - Arturo Elosegi
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country, 48080 Bilbao, Spain
| |
Collapse
|
36
|
Yang L, He JT, Su SH, Cui YF, Huang DL, Wang GC. Occurrence, distribution, and attenuation of pharmaceuticals and personal care products in the riverside groundwater of the Beiyun River of Beijing, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:15838-15851. [PMID: 28534270 DOI: 10.1007/s11356-017-8999-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/05/2017] [Indexed: 06/07/2023]
Abstract
This study investigated the occurrence, seasonal-spatial distribution characteristics, and attenuation process of 15 pharmaceuticals and personal care products (PPCPs) in riverside sections of Beiyun River of Beijing. The overall PPCP levels both in surface water and riverside groundwater were moderate on the global scale, and showed higher concentrations in the dry season mainly caused by water temperature variation. Caffeine (CF), carbamazepine (CBZ), metoprolol (MTP), N,N-diethyl-meta-toluamide (DEET), diclofenac (DF), bezafibrate (BF), and gemfibrozil (GF) were seven representative PPCPs, because the rest eight studied compounds occurred in low concentrations and less than 15% of the total concentration of PPCPs. Caffeine and bezafibrate, respectively, was the most abundant compound in surface water and riverside groundwater, with median concentrations of 3020.0 and 125.0 ng L-1. Total concentrations of PPCPs in surface water were much higher than those in the riverside groundwater spatially. Attenuation of PPCPs during riverbank filtration was largely depending on the sources, site hydrogeological conditions, and physical-chemical properties of PPCPs, also was influenced by dissolved organic matter and environmental physicochemical parameters. CF, MTP, DEET, and CBZ were potential groundwater attenuation contaminants; DF, BF, and GF were groundwater-enriched contaminants based on their removal rates. Predominant removal mechanism of PPCPs like CF was biodegradation. Attenuation simulation showed that the one-way supply between Beiyun River and riverside groundwater, and further confirmed Beiyun River, was the main source of pharmaceutical compounds in the riverside groundwater.
Collapse
Affiliation(s)
- Lei Yang
- Beijing Key Laboratory of Water Resources & Environmental Engieering, China University of Geosciences(Beijing), Beijing, 100083, P.R. China
| | - Jiang-Tao He
- Beijing Key Laboratory of Water Resources & Environmental Engieering, China University of Geosciences(Beijing), Beijing, 100083, P.R. China.
| | - Si-Hui Su
- Beijing Key Laboratory of Water Resources & Environmental Engieering, China University of Geosciences(Beijing), Beijing, 100083, P.R. China
| | - Ya-Feng Cui
- Beijing Key Laboratory of Water Resources & Environmental Engieering, China University of Geosciences(Beijing), Beijing, 100083, P.R. China
| | - De-Liang Huang
- Beijing Key Laboratory of Water Resources & Environmental Engieering, China University of Geosciences(Beijing), Beijing, 100083, P.R. China
| | - Guang-Cai Wang
- Beijing Key Laboratory of Water Resources & Environmental Engieering, China University of Geosciences(Beijing), Beijing, 100083, P.R. China
| |
Collapse
|
37
|
Sgroi M, Roccaro P, Korshin GV, Vagliasindi FGA. Monitoring the Behavior of Emerging Contaminants in Wastewater-Impacted Rivers Based on the Use of Fluorescence Excitation Emission Matrixes (EEM). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4306-4316. [PMID: 28351133 DOI: 10.1021/acs.est.6b05785] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This study investigated the applicability of fluorescence indexes based on the interpretation of excitation emission matrices (EEMs) by PARAFAC analysis and by selecting fluorescence intensities at a priori defined excitation/emission pairs as surrogates for monitoring the behavior of emerging organic compounds (EOCs) in two catchment basins impacted by wastewater discharges. Relevant EOC and EEM data were obtained for a 90 km stretch of the Simeto River, the main river in Sicily, and the smaller San Leonardo River, which was investigated for a 17 km stretch. The use of fluorescence indexes developed by these two different approaches resulted in similar observations. Changes of the fluorescence indexes that correspond to a group of humic-like fluorescing species were determined to be highly correlated with the concentrations of recalcitrant contaminants such as sucralose, sulfamethoxazole and carbamazepine, which are typical wastewater markers in river water. Changes of the fluorescence indexes related to tyrosine-like substances were well correlated with the concentrations of ibuprofen and caffeine, anthropogenic indicators of untreated wastewater discharges. Chemical oxygen demand and dissolved organic carbon concentrations were correlated with humic-like fluorescence indexes. The observed correlations were site-specific and characterized by different regression parameters for every collection event. Caffeine and carbamazepine showed correlations with florescence indexes in the San Leonardo River and in the alluvial plain stretch of the Simeto River, whereas sucralose, sulfamethoxazole and ibuprofen have always been well correlated in all the investigated river stretches. However, when data of different collection events from river stretches where correlations were observed were combined, good linear correlations were obtained for data sets generated via the normalization of the measured concentrations by the average value for the corresponding collection event. These results show that fluorescence based indexes can be used to monitor the behavior of some trace organic contaminants in wastewater impacted rivers and to track wastewater discharges in streams and rivers.
Collapse
Affiliation(s)
- Massimiliano Sgroi
- Department of Civil Engineering and Architecture, University of Catania , Viale A. Doria 6, 95125, Catania, Italy
| | - Paolo Roccaro
- Department of Civil Engineering and Architecture, University of Catania , Viale A. Doria 6, 95125, Catania, Italy
| | - Gregory V Korshin
- Department Civil and Environmental Engineering, University of Washington , Box 352700, Seattle, Washington 98195-2700, United States
| | - Federico G A Vagliasindi
- Department of Civil Engineering and Architecture, University of Catania , Viale A. Doria 6, 95125, Catania, Italy
| |
Collapse
|
38
|
Koumaki E, Mamais D, Noutsopoulos C. Environmental fate of non-steroidal anti-inflammatory drugs in river water/sediment systems. JOURNAL OF HAZARDOUS MATERIALS 2017; 323:233-241. [PMID: 27021262 DOI: 10.1016/j.jhazmat.2016.03.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 05/25/2023]
Abstract
Laboratory tests were conducted with four non-steroidal anti-inflammatory drugs (naproxen, ibuprofen, diclofenac and ketoprofen) under different redox conditions (aerobic, anoxic, anaerobic and sulfate-reducing conditions) in order to assess abiotic and biotic degradation in a river water/sediment system. The river water was sampled from Sperchios River and the sediment was collected from the banks of a rural stream where the discharge point of a wastewater treatment plant is located. To quantitatively describe degradation kinetics of the selected compounds, pseudo first-order kinetics were adopted. According to the results, it can be stated that the concentration of the substances remained constant or decreased only marginally (p≥0.05) in the sterile experiments and this excludes abiotic processes such as hydrolysis or sorption as major removal mechanisms of the target compounds from the water phase and assign their removal to microbial action. Results showed that the removal rate of the compounds decreases as dissolved oxygen concentration in the river water/sediment system decreases. All compounds were found to be biodegradable under aerobic conditions at dissipation half-lives between 1.6 and 20.1days, while dissipation half-lives for naproxen and ketoprofen increase by a factor of 2 under all tested conditions in the absence of oxygen.
Collapse
Affiliation(s)
- Elena Koumaki
- Sanitary Engineering Laboratory, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 5 Iroon Polytechniou, Zografou 15780, Athens, Greece
| | - Daniel Mamais
- Sanitary Engineering Laboratory, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 5 Iroon Polytechniou, Zografou 15780, Athens, Greece.
| | - Constantinos Noutsopoulos
- Sanitary Engineering Laboratory, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 5 Iroon Polytechniou, Zografou 15780, Athens, Greece
| |
Collapse
|
39
|
Park JY, Ruidisch M, Huwe B. Transport of sulfonamide antibiotics in crop fields during monsoon season. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:22980-22992. [PMID: 27581045 DOI: 10.1007/s11356-016-7465-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/11/2016] [Indexed: 05/03/2023]
Abstract
Previous studies have documented the occurrence of veterinary sulfonamide antibiotics in groundwater and rivers located far from pollution sources, although their transport and fate is relatively unknown. In mountainous agricultural fields, the transport behaviour can be influenced by climate, slope and physico-chemical properties of the sulfonamides. The objective of this research is to describe the transport behaviour of three sulfonamide antibiotics (sulfamethoxazole, sulfadimethoxine and sulfamethazine) in sloped agricultural fields located in the Haean catchment, South Korea. During dry and monsoon seasons, a solute transport experiment was conducted in two typical sandy loam agricultural fields after application of antibiotics and potassium bromide as conservative tracers. Field measurement and modelling revealed that frequency and amount of runoff generation indicate a relation between slope and rain intensity during monsoon season. Since the steepness of slope influenced partitioning of precipitation between runoff and subsurface flow, higher loss of sulfonamide antibiotics and bromide by runoff was observed at the steeper sloped field. Bromide on topsoil rapidly infiltrated at high infiltration rates. On the contrary, the sulfonamides were relatively retarded in the upper soil layer due to adsorption onto soil particles. Presence of furrows and ridges affected the distribution of sulfonamide antibiotics in the subsurface due to gradient from wetter furrows to drier ridges induced by topography. Modelling results with HydroGeoSphere matched with background studies that describe physico-chemical properties of the sulfonamides interaction between soil and the antibiotic group, solute transport through vadose zone and runoff generation by storm events.
Collapse
Affiliation(s)
- Jong Yol Park
- Soil Physics Group, Division of Geoscience, University of Bayreuth, Bayreuth, Germany.
| | - Marianne Ruidisch
- Soil Physics Group, Division of Geoscience, University of Bayreuth, Bayreuth, Germany
| | - Bernd Huwe
- Soil Physics Group, Division of Geoscience, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
40
|
Maier MP, Prasse C, Pati SG, Nitsche S, Li Z, Radke M, Meyer A, Hofstetter TB, Ternes TA, Elsner M. Exploring Trends of C and N Isotope Fractionation to Trace Transformation Reactions of Diclofenac in Natural and Engineered Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:10933-10942. [PMID: 27635778 DOI: 10.1021/acs.est.6b02104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Although diclofenac ranks among the most frequently detected pharmaceuticals in the urban water cycle, its environmental transformation reactions remain imperfectly understood. Biodegradation-induced changes in 15N/14N ratios (εN = -7.1‰ ± 0.4‰) have indicated that compound-specific isotope analysis (CSIA) may detect diclofenac degradation. This singular observation warrants exploration for further transformation reactions. The present study surveys carbon and nitrogen isotope fractionation in other environmental and engineered transformation reactions of diclofenac. While carbon isotope fractionation was generally small, observed nitrogen isotope fractionation in degradation by MnO2 (εN = -7.3‰ ± 0.3‰), photolysis (εN = +1.9‰ ± 0.1‰), and ozonation (εN = +1.5‰ ± 0.2‰) revealed distinct trends for different oxidative transformation reactions. The small, secondary isotope effect associated with ozonation suggests an attack of O3 in a molecular position distant from the N atom. Model reactants for outer-sphere single electron transfer generated large inverse nitrogen isotope fractionation (εN = +5.7‰ ± 0.3‰), ruling out this mechanism for biodegradation and transformation by MnO2. In a river model, isotope fractionation-derived degradation estimates agreed well with concentration mass balances, providing a proof-of-principle validation for assessing micropollutant degradation in river sediment. Our study highlights the prospect of combining CSIA with transformation product analysis for a better assessment of transformation reactions within the environmental life of diclofenac.
Collapse
Affiliation(s)
- Michael P Maier
- Helmholtz Zentrum Muenchen, German Research Center, Institute of Groundwater Ecology, Ingolstädter Landstrasse 1, Neuherberg D-85764, Germany
| | - Carsten Prasse
- German Federal Institute of Hydrology (BfG) , Am Mainzer Tor 1, 56068 Koblenz, Germany
- Department of Civil & Environmental Engineering, University of California , Berkeley, California, 94720 United States
| | - Sarah G Pati
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich , 8092 Zürich, Switzerland
| | - Sebastian Nitsche
- Helmholtz Zentrum Muenchen, German Research Center, Institute of Groundwater Ecology, Ingolstädter Landstrasse 1, Neuherberg D-85764, Germany
| | - Zhe Li
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University , 10691 Stockholm, Sweden
| | - Michael Radke
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University , 10691 Stockholm, Sweden
| | - Armin Meyer
- Helmholtz Zentrum Muenchen, German Research Center, Institute of Groundwater Ecology, Ingolstädter Landstrasse 1, Neuherberg D-85764, Germany
| | - Thomas B Hofstetter
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich , 8092 Zürich, Switzerland
| | - Thomas A Ternes
- German Federal Institute of Hydrology (BfG) , Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Martin Elsner
- Helmholtz Zentrum Muenchen, German Research Center, Institute of Groundwater Ecology, Ingolstädter Landstrasse 1, Neuherberg D-85764, Germany
| |
Collapse
|
41
|
Bradley PM, Barber LB, Clark JM, Duris JW, Foreman WT, Furlong ET, Givens CE, Hubbard LE, Hutchinson KJ, Journey CA, Keefe SH, Kolpin DW. Pre/post-closure assessment of groundwater pharmaceutical fate in a wastewater-facility-impacted stream reach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 568:916-925. [PMID: 27350092 DOI: 10.1016/j.scitotenv.2016.06.104] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 06/07/2016] [Accepted: 06/14/2016] [Indexed: 05/22/2023]
Abstract
Pharmaceutical contamination of contiguous groundwater is a substantial concern in wastewater-impacted streams, due to ubiquity in effluent, high aqueous mobility, designed bioactivity, and to effluent-driven hydraulic gradients. Wastewater treatment facility (WWTF) closures are rare environmental remediation events; offering unique insights into contaminant persistence, long-term wastewater impacts, and ecosystem recovery processes. The USGS conducted a combined pre/post-closure groundwater assessment adjacent to an effluent-impacted reach of Fourmile Creek, Ankeny, Iowa, USA. Higher surface-water concentrations, consistent surface-water to groundwater concentration gradients, and sustained groundwater detections tens of meters from the stream bank demonstrated the importance of WWTF effluent as the source of groundwater pharmaceuticals as well as the persistence of these contaminants under effluent-driven, pre-closure conditions. The number of analytes (110 total) detected in surface water decreased from 69 prior to closure down to 8 in the first post-closure sampling event approximately 30 d later, with a corresponding 2 order of magnitude decrease in the cumulative concentration of detected analytes. Post-closure cumulative concentrations of detected analytes were approximately 5 times higher in proximal groundwater than in surface water. About 40% of the 21 contaminants detected in a downstream groundwater transect immediately before WWTF closure exhibited rapid attenuation with estimated half-lives on the order of a few days; however, a comparable number exhibited no consistent attenuation during the year-long post-closure assessment. The results demonstrate the potential for effluent-impacted shallow groundwater systems to accumulate pharmaceutical contaminants and serve as long-term residual sources, further increasing the risk of adverse ecological effects in groundwater and the near-stream ecosystem.
Collapse
|
42
|
Shrestha P, Junker T, Fenner K, Hahn S, Honti M, Bakkour R, Diaz C, Hennecke D. Simulation Studies to Explore Biodegradation in Water-Sediment Systems: From OECD 308 to OECD 309. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:6856-64. [PMID: 27337495 DOI: 10.1021/acs.est.6b01095] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Studies according to OECD 308 and OECD 309 are performed to simulate the biodegradation of chemicals in water-sediment systems in support of persistence assessment and exposure modeling. However, several shortcomings of OECD 308 have been identified that hamper data evaluation and interpretation, and its relation to OECD 309 is still unclear. The present study systematically compares OECD 308 and OECD 309 and two variants thereof to derive recommendations on how to experimentally address any shortcomings and improve data for persistence and risk assessment. To this end, four (14)C-labeled compounds with different biodegradation and sorption behavior were tested across standard OECD 308 and 309 test systems and two modified versions thereof. The well-degradable compounds showed slow equilibration and the least mineralization in OECD 308, whereas the modified systems provided the highest degree of mineralization. Different lines of evidence suggest that this was due to increased oxygenation of the sediment in the modified systems. Particularly for rapidly degrading compounds, non-extractable residue formation was in line with degradation and did not follow the sediment-water ratio. For the two more slowly degrading compounds, sorption in OECD 309 (standard and modified) increased with time beyond levels proposed by equilibrium partitioning, which could be attributed to the grinding of the sediment through the stirring of the sediment suspension. Overall, the large differences in degradation observed across the four test systems suggest that refined specifications in test guidelines are required to reduce variability in test outcomes. At the same time, the amount of sediment and its degree of oxygenation emerged as drivers across all test systems. This suggests that a unified description of the systems was possible and would pave the way toward a more consistent consideration of degradation in the water-sediment systems across different exposure situations and regulatory frameworks.
Collapse
Affiliation(s)
- Prasit Shrestha
- Fraunhofer IME-AE , Auf dem Aberg 1, 57392 Schmallenberg, Germany
| | - Thomas Junker
- ECT Oekotoxikologie GmbH , Böttgerstrasse 2-14, 65439 Flörsheim am Main, Germany
| | - Kathrin Fenner
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Stefan Hahn
- Fraunhofer ITEM , Nikolai-Fuchs-Strasse 1, 30625 Hannover, Germany
| | - Mark Honti
- MTA-BME Water Research Group, Hungarian Academy of Sciences , Mügyetem rkp. 3, 1111 Budapest, Hungary
| | - Rani Bakkour
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Cecilia Diaz
- Fraunhofer IME-AE , Auf dem Aberg 1, 57392 Schmallenberg, Germany
| | - Dieter Hennecke
- Fraunhofer IME-AE , Auf dem Aberg 1, 57392 Schmallenberg, Germany
| |
Collapse
|
43
|
Zemann M, Majewsky M, Wolf L. Accumulation of pharmaceuticals in groundwater under arid climate conditions - Results from unsaturated column experiments. CHEMOSPHERE 2016; 154:463-471. [PMID: 27085060 DOI: 10.1016/j.chemosphere.2016.03.136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/28/2016] [Accepted: 03/30/2016] [Indexed: 06/05/2023]
Abstract
Intense reuse of treated wastewater in agriculture is practiced all over the world, especially in arid and water-scarce regions. In doing so, pharmaceutical residues in the water are irrigated to the soil and subsequently can percolate into the local aquifers. Since evaporation rates in these areas are typically high, persistent substances might enrich in the groundwater recharge of closed catchments like the Jordan Valley. Against this background, unsaturated column tests were conducted to investigate the potential for evaporative accumulation of the two pharmaceuticals bezafibrate and carbamazepine under simulated arid climate conditions. Parallel tests were conducted with inhibited microbiological activity where both substances showed an increase in the effluent concentrations proportional to the evaporation loss of the inflow solution. The mean accumulation factors of the pharmaceuticals correspond to the evaporated water loss. The experiments indicate the accumulation potential for pharmaceuticals with high persistence against biodegradation. For the first time, the overall potential for evaporative enrichment could be demonstrated for pharmaceuticals. Under the given experimental conditions, the two investigated pharmaceuticals did not enrich faster than chloride, which might result in soil salting prior to reaching harmful pharmaceutical concentrations in soil water. The findings are relevant to future assessments of environmental impacts of persistent trace substances, which need to take into account that concentrations in the aquatic cycle might increase further due to evaporative enrichment.
Collapse
Affiliation(s)
- M Zemann
- Karlsruhe Institute of Technology (KIT), Institute of Applied Geosciences, Division of Hydrogeology, Kaiserstraße 12, 76131 Karlsruhe, Germany.
| | - M Majewsky
- Karlsruhe Institute of Technology (KIT), Engler-Bunte-Institut, Chair of Water Chemistry and Water Technology, Engler-Bunte-Ring 1, 76327 Karlsruhe, Germany
| | - L Wolf
- Karlsruhe Institute of Technology (KIT), Project Management Agency Karlsruhe (PTKA), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
44
|
Li Z, Sobek A, Radke M. Fate of Pharmaceuticals and Their Transformation Products in Four Small European Rivers Receiving Treated Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:5614-21. [PMID: 27152425 DOI: 10.1021/acs.est.5b06327] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A considerable knowledge gap exists with respect to the fate and environmental relevance of transformation products (TPs) of polar organic micropollutants in surface water. To narrow this gap we investigated the fate of 20 parent compounds (PCs) and 11 characteristic TPs in four wastewater-impacted rivers. Samples were obtained from time-integrated active sampling as well as passive sampling using polar organic chemical integrative samplers (POCIS). Seventeen out of the 20 PCs were detected in at least one of the rivers. All the PCs except acesulfame, carbamazepine, and fluconazole were attenuated along the studied river stretches, with the largest decrease found in the smallest river which had an intense surface water-pore water exchange. Seven TPs were detected, all of which were already present directly downstream of the WWTP outfall, suggesting that the WWTPs were a major source of TPs to the recipients. For anionic compounds, attenuation was the highest in the two rivers with the lowest discharge, while the pattern was not as clear for neutral or cationic compounds. For most compounds the results obtained from active sampling were not significantly different from those using POCIS, demonstrating that the cost and labor efficient POCIS is suitable to determine the attenuation of organic micropollutants in rivers.
Collapse
Affiliation(s)
- Zhe Li
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University , 10691 Stockholm, Sweden
| | - Anna Sobek
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University , 10691 Stockholm, Sweden
| | - Michael Radke
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University , 10691 Stockholm, Sweden
| |
Collapse
|
45
|
Souchier M, Benali-Raclot D, Casellas C, Ingrand V, Chiron S. Enantiomeric fractionation as a tool for quantitative assessment of biodegradation: The case of metoprolol. WATER RESEARCH 2016; 95:19-26. [PMID: 26978718 DOI: 10.1016/j.watres.2016.03.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/03/2016] [Accepted: 03/04/2016] [Indexed: 06/05/2023]
Abstract
An efficient chiral liquid chromatography high resolution mass spectrometry method has been developed for the determination of metoprolol (MTP) and three of its major metabolites, namely O-desmethylmetoprolol (O-DMTP), α-hydroxymetoprolol (α-HMTP) and metoprolol acid (MTPA) in wastewater treatment plant (WWTP) influents and effluents. The optimized analytical method has been validated with good quality parameters including resolution >1.3 and method quantification limits down to the ng/L range except for MTPA. On the basis of this newly developed analytical method, the stereochemistry of MTP and its metabolites was studied over time in effluent/sediment biotic and sterile microcosms under dark and light conditions and in influents and effluents of 5 different WWTPs. MTP stereoselective degradation was exclusively observed under biotic conditions, confirming the specificity of enantiomeric fraction variations to biodegradation processes. MTP was always biotransformed into MTPA with a (S)-enantiomer enrichment. The results of enantiomeric enrichment pointed the way for a quantitative assessment of in situ biodegradation processes due to a good fit (R(2) > 0.98) of the aerobic MTP biodegradation to the Rayleigh dependency in all the biotic microcosms and in WWTPs because both MTP enantiomers followed the same biodegradation kinetic profiles. These results demonstrate that enantiomeric fractionation constitutes a very interesting quantitative indicator of MTP biodegradation in WWTPs and probably in the environment.
Collapse
Affiliation(s)
- Marine Souchier
- Veolia Recherche et Innovation, Chemin de la digue, BP 76, 78603 Maisons-Laffitte Cedex, France; UMR HydroSciences 5569, Faculté de Pharmacie, 15 Avenue Ch. Flahault, 34093 Montpellier Cedex 5, France
| | - Dalel Benali-Raclot
- UMR HydroSciences 5569, Faculté de Pharmacie, 15 Avenue Ch. Flahault, 34093 Montpellier Cedex 5, France
| | - Claude Casellas
- Veolia Recherche et Innovation, Chemin de la digue, BP 76, 78603 Maisons-Laffitte Cedex, France
| | - Valérie Ingrand
- UMR HydroSciences 5569, Faculté de Pharmacie, 15 Avenue Ch. Flahault, 34093 Montpellier Cedex 5, France
| | - Serge Chiron
- Veolia Recherche et Innovation, Chemin de la digue, BP 76, 78603 Maisons-Laffitte Cedex, France.
| |
Collapse
|
46
|
Bácsi I, B-Béres V, Kókai Z, Gonda S, Novák Z, Nagy SA, Vasas G. Effects of non-steroidal anti-inflammatory drugs on cyanobacteria and algae in laboratory strains and in natural algal assemblages. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 212:508-518. [PMID: 26967537 DOI: 10.1016/j.envpol.2016.02.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/21/2016] [Accepted: 02/17/2016] [Indexed: 06/05/2023]
Abstract
In recent years measurable concentrations of non-steroidal anti-inflammatory drugs (NSAIDs) have been shown in the aquatic environment as a result of increasing human consumption. Effects of five frequently used non-steroidal anti-inflammatory drugs (diclofenac, diflunisal, ibuprofen, mefenamic acid and piroxicam in 0.1 mg ml(-1) concentration) in batch cultures of cyanobacteria (Synechococcus elongatus, Microcystis aeruginosa, Cylindrospermopsis raciborskii), and eukaryotic algae (Desmodesmus communis, Haematococcus pluvialis, Cryptomonas ovata) were studied. Furthermore, the effects of the same concentrations of NSAIDs were investigated in natural algal assemblages in microcosms. According to the changes of chlorophyll-a content, unicellular cyanobacteria seemed to be more tolerant to NSAIDs than eukaryotic algae in laboratory experiments. Growth of eukaryotic algae was reduced by all drugs, the cryptomonad C. ovata was the most sensitive to NSAIDs, while the flagellated green alga H. pluvialis was more sensitive than the non-motile green alga D. communis. NSAID treatments had weaker impact in the natural assemblages dominated by cyanobacteria than in the ones dominated by eukaryotic algae, confirming the results of laboratory experiments. Diversity and number of functional groups did not change notably in cyanobacteria dominated assemblages, while they decreased significantly in eukaryotic algae dominated ones compared to controls. The results highlight that cyanobacteria (especially unicellular ones) are less sensitive to the studied, mostly hardly degradable NSAIDs, which suggest that their accumulation in water bodies may contribute to the expansion of cyanobacterial mass productions in appropriate environmental circumstances by pushing back eukaryotic algae. Thus, these contaminants require special attention during wastewater treatment and monitoring of surface waters.
Collapse
Affiliation(s)
- István Bácsi
- University of Debrecen, Department of Hydrobiology, P.O. Box 57, 4010 Debrecen, Hungary.
| | - Viktória B-Béres
- Hajdú-Bihar County Government Office, Department of Environment and Conservation, Environmental Laboratory, 4025 Debrecen, Hatvan Street 16, Hungary
| | - Zsuzsanna Kókai
- Hajdú-Bihar County Government Office, Department of Environment and Conservation, Environmental Laboratory, 4025 Debrecen, Hatvan Street 16, Hungary
| | - Sándor Gonda
- University of Debrecen, Department of Botany, Division of Pharmacognosy, P.O. Box 14, 4010 Debrecen, Hungary
| | - Zoltán Novák
- University of Debrecen, Department of Hydrobiology, P.O. Box 57, 4010 Debrecen, Hungary
| | - Sándor Alex Nagy
- University of Debrecen, Department of Hydrobiology, P.O. Box 57, 4010 Debrecen, Hungary
| | - Gábor Vasas
- University of Debrecen, Department of Botany, Division of Pharmacognosy, P.O. Box 14, 4010 Debrecen, Hungary
| |
Collapse
|
47
|
Huerta B, Rodriguez-Mozaz S, Nannou C, Nakis L, Ruhí A, Acuña V, Sabater S, Barcelo D. Determination of a broad spectrum of pharmaceuticals and endocrine disruptors in biofilm from a waste water treatment plant-impacted river. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 540:241-9. [PMID: 26087856 DOI: 10.1016/j.scitotenv.2015.05.049] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/13/2015] [Accepted: 05/13/2015] [Indexed: 05/25/2023]
Abstract
Wastewater treatment plants (WWTPs) are one of the main sources of pharmaceuticals and endocrine disrupting compounds in freshwater ecosystems, and several studies have reported bioaccumulation of these compounds in different organisms in those ecosystems. River biofilms are exceptional indicators of pollution, but very few studies have focused on the accumulation of these emerging contaminants. The objectives of this study were first to develop an efficient analytical methodology for the simultaneous analysis of 44 pharmaceuticals and 13 endocrine disrupting compounds in biofilm, and second, to assess persistence, distribution, and bioaccumulation of these contaminants in natural biofilms inhabiting a WWTP-impacted river. The method is based on pressurized liquid extraction, purification by solid-phase extraction, and analysis by ultra performance liquid chromatography coupled to a mass spectrometer (UPLC-MS/MS) in tandem. Recoveries for pharmaceuticals were 31-137%, and for endocrine disruptors 32-93%. Method detection limits for endocrine disruptors were in the range of 0.2-2.4 ng g(-1), and for pharmaceuticals, 0.07-6.7 ng g(-1). A total of five endocrine disruptors and seven pharmaceuticals were detected in field samples at concentrations up to 100 ng g(-1).
Collapse
Affiliation(s)
- B Huerta
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain
| | - S Rodriguez-Mozaz
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain.
| | - C Nannou
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain
| | - L Nakis
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain
| | - A Ruhí
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain; Julie Ann Wrigley Global Institute of Sustainability, Arizona State University, Tempe AZ 85287, USA
| | - V Acuña
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain
| | - S Sabater
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain; Institute of Aquatic Ecology, University of Girona, Campus de Montivili, 17071 Girona, Spain
| | - D Barcelo
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain; Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA, CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
48
|
Zou H, Radke M, Kierkegaard A, McLachlan MS. Temporal Variation of Chemical Persistence in a Swedish Lake Assessed by Benchmarking. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:9881-8. [PMID: 26171662 DOI: 10.1021/acs.est.5b01720] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Chemical benchmarking was used to investigate the temporal variation of the persistence of chemical contaminants in a Swedish lake. The chemicals studied included 12 pharmaceuticals, an artificial sweetener, and an X-ray contrast agent. Measurements were conducted in late spring, late autumn, and winter. The transformation half-life in the lake could be quantified for 7 of the chemicals. It ranged from several days to hundreds of days. For 5 of the chemicals (bezafibrate, climbazole, diclofenac, furosemide, and hydrochlorothiazide), the measured persistence was lower in late spring than in late autumn. This may have been caused by lower temperatures and/or less irradiation during late autumn. The seasonality in chemical persistence contributed to changes in chemical concentrations in the lake during the year. The impact of seasonality of persistence was compared with the impact of other important variables determining concentrations in the lake: chemical inputs and water flow/dilution. The strongest seasonal variability in chemical concentration in lake water was observed for hydrochlorothiazide (over a factor of 10), and this was attributable to the seasonality in its persistence.
Collapse
Affiliation(s)
- Hongyan Zou
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, SE-106 91 Stockholm, Sweden
| | - Michael Radke
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, SE-106 91 Stockholm, Sweden
| | - Amelie Kierkegaard
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, SE-106 91 Stockholm, Sweden
| | - Michael S McLachlan
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
49
|
Li Z, Sobek A, Radke M. Flume experiments to investigate the environmental fate of pharmaceuticals and their transformation products in streams. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:6009-17. [PMID: 25901906 DOI: 10.1021/acs.est.5b00273] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The hyporheic zone—the transition region beneath and alongside the stream bed—is a central compartment for attenuation of organic micropollutants in rivers. It provides abundant sorption sites and excellent conditions for biotransformation. We used a bench-scale flume to study the fate of 19 parent pharmaceuticals (PPs) and the formation of 11 characteristic transformation products (TPs) under boundary conditions similar to those in hyporheic zones. The persistence of PPs ranged from readily degradable with a dissipation half-life (DT50) as short as 1.8 days (acetaminophen, ibuprofen) to not degradable (chlorthalidone, fluconazole). The temporal and spatial patterns of PP and TP concentrations in pore water were heterogeneous, reflecting the complex hydraulic and biogeochemical conditions in hyporheic zones. Four TPs (carbamazepine-10,11-epoxide, metoprolol acid, 1-naphthol, and saluamine) were exclusively formed in the sediment compartment and released to surface water, highlighting their potential to be used as indicators for characterizing hyporheic transformation of micropollutants in streams. The accumulation of certain TPs over the experimental period illustrates that we might face a peak of secondary contamination by TPs far from the point of release of the original contaminants into a stream. Such TPs should be considered as priority candidates for a higher-tier environmental risk assessment.
Collapse
Affiliation(s)
- Zhe Li
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, 10691 Stockholm, Sweden
| | - Anna Sobek
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, 10691 Stockholm, Sweden
| | - Michael Radke
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
50
|
Nham HTT, Greskowiak J, Nödler K, Rahman MA, Spachos T, Rusteberg B, Massmann G, Sauter M, Licha T. Modeling the transport behavior of 16 emerging organic contaminants during soil aquifer treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 514:450-458. [PMID: 25687671 DOI: 10.1016/j.scitotenv.2015.01.096] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/27/2015] [Accepted: 01/27/2015] [Indexed: 06/04/2023]
Abstract
In this study, four one-dimensional flow and transport models based on the data of a field scale experiment in Greece were constructed to investigate the transport behavior of sixteen organic trace pollutants during soil aquifer treatment. At the site, tap water and treated wastewater were intermittently infiltrated into a porous aquifer via a small pilot pond. Electrical conductivity data was used to calibrate the non-reactive transport models. Transport and attenuation of the organic trace pollutants were simulated assuming 1st order degradation and linear adsorption. Sorption was found to be largely insignificant at this site for the compounds under investigation. In contrast, flow path averaged first order degradation rate constants were mostly higher compared to the literature and lay between 0.036 d(-1) for clofibric acid and 0.9 d(-1) for ibuprofen, presumably owing to the high temperatures and a well adapted microbial community originating from the wastewater treatment process. The study highlights the necessity to obtain intrinsic attenuation parameters at each site, as findings cannot easily be transferred from one site to another.
Collapse
Affiliation(s)
- Hang Thuy Thi Nham
- Department of Biology and Environmental Sciences, Carl von Ossietzky University of Oldenburg, Ammerländer Heerstraβe 114-118, 26129 Oldenburg, Germany.
| | - Janek Greskowiak
- Department of Biology and Environmental Sciences, Carl von Ossietzky University of Oldenburg, Ammerländer Heerstraβe 114-118, 26129 Oldenburg, Germany
| | - Karsten Nödler
- Geoscience Centre, Department of Applied Geology, Georg-August-University of Göttingen, Goldschmidstr. 3, 37077 Göttingen, Germany
| | - Mohammad Azizur Rahman
- Institute of Fluid Mechanics in Civil Engineering, Leibniz University of Hannover, Appelstr. 9 A, 30167 Hannover, Germany
| | - Thomas Spachos
- Thessaloniki Water Supply and Sewerage Co S.A, Egnatia St. 127, 546 45 Thessaloniki, Greece
| | - Bernd Rusteberg
- Geoscience Centre, Department of Applied Geology, Georg-August-University of Göttingen, Goldschmidstr. 3, 37077 Göttingen, Germany
| | - Gudrun Massmann
- Department of Biology and Environmental Sciences, Carl von Ossietzky University of Oldenburg, Ammerländer Heerstraβe 114-118, 26129 Oldenburg, Germany
| | - Martin Sauter
- Geoscience Centre, Department of Applied Geology, Georg-August-University of Göttingen, Goldschmidstr. 3, 37077 Göttingen, Germany
| | - Tobias Licha
- Geoscience Centre, Department of Applied Geology, Georg-August-University of Göttingen, Goldschmidstr. 3, 37077 Göttingen, Germany
| |
Collapse
|