1
|
Jia H, Wu Y, Daolin D, Yuan B, Zhou Z. Effects of different order spiking on bioavailability and ecological risk of phenanthrene in mangrove sediment-biochar system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112951. [PMID: 34739933 DOI: 10.1016/j.ecoenv.2021.112951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/18/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Biochar shows unique advantage in decreasing the bioavailability of phenanthrene and has huge potential into the in-situ remediation of contaminated sediment. The different order spiking influences the bioavailability and ecological risk of phenanthrene, this study provides a comprehensive investigation of biochar (derived from mangrove Kandelia obovata -sediment system under three conditions: I) co-addition of biochar and sediment; II) biochar and subsequently sediment addition (after biochar adsorption reached equilibrium); III) sediment and subsequently biochar addition (after sediment adsorption reached equilibrium). It was observed that the adsorption capability under model I and III was much smaller than that under model II (p < 0.05). Regardless of time, K. obovate - biochar significantly (p < 0.05) increase the sorption of phenanthrene in sediment -water system. The results provide valuable studies for further in-situ remediation of phenanthrene and engineering applications.
Collapse
Affiliation(s)
- Hui Jia
- Institute of Environment and Ecology, Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yifan Wu
- Institute of Environment and Ecology, Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Du Daolin
- Institute of Environment and Ecology, Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Bo Yuan
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.
| | - Zhengkun Zhou
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China; College of Health Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.
| |
Collapse
|
2
|
Silvani L, Hjartardottir S, Bielská L, Škulcová L, Cornelissen G, Nizzetto L, Hale SE. Can polyethylene passive samplers predict polychlorinated biphenyls (PCBs) uptake by earthworms and turnips in a biochar amended soil? THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 662:873-880. [PMID: 30708302 DOI: 10.1016/j.scitotenv.2019.01.202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/09/2019] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
A pot experiment was carried out in which aged polychlorinated biphenyls (PCBs) contaminated soil was amended with biochar, and three phases: earthworms, turnips and polyethylene (PE) passive samplers, were added simultaneously in order to investigate changes in bioavailability of PCB following biochar amendment. Two biochars were used: one made from rice husk in Indonesia using local techniques and the other made from mixed wood shavings using more advanced technology. The biochars were amended at 1 and 4% doses. The overall accumulation of PCBs to the phases followed the order: earthworm lipid > PE > turnip. The rice husk biochar reduced PCB accumulation to a greater degree than the mixed wood biochar for all phases, however there was no effect of dose for either biochar. Earthworm uptake was reduced between 52% and 91% for rice husk biochar and by 19% to 63% for mix wood biochar. Turnip uptake was not significantly reduced by biochar amendment. Phase to soil accumulation factors (PSAF) were around 0.5 for turnips, approximately 5 for PE and exceeded 100 for earthworms. This study demonstrates that both biochars can be a sustainable alternative for in situ soil remediation and that PE can be used as tool to simulate the uptake in earthworms and thus remediation effectiveness.
Collapse
Affiliation(s)
- Ludovica Silvani
- Norwegian Geotechnical Institute (NGI), Department of Environmental Engineering, Oslo, Norway.
| | | | - Lucie Bielská
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Lucia Škulcová
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Gerard Cornelissen
- Norwegian Geotechnical Institute (NGI), Department of Environmental Engineering, Oslo, Norway; Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Luca Nizzetto
- Norwegian Institute for Water Research, Oslo, Norway
| | - Sarah E Hale
- Norwegian Geotechnical Institute (NGI), Department of Environmental Engineering, Oslo, Norway.
| |
Collapse
|
3
|
Abel S, Akkanen J. A Combined Field and Laboratory Study on Activated Carbon-Based Thin Layer Capping in a PCB-Contaminated Boreal Lake. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:4702-4710. [PMID: 29606006 PMCID: PMC6150667 DOI: 10.1021/acs.est.7b05114] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The in situ remediation of aquatic sediments with activated carbon (AC)-based thin layer capping is a promising alternative to traditional methods, such as sediment dredging. Applying a strong sorbent like AC directly to the sediment can greatly reduce the bioavailability of organic pollutants. To evaluate the method under realistic field conditions, a 300 m2 plot in the PCB-contaminated Lake Kernaalanjärvi, Finland, was amended with an AC cap (1.6 kgAC/m2). The study lake showed highly dynamic sediment movements over the monitoring period of 14 months. This led to poor retention and rapid burial of the AC cap under a layer of contaminated sediment from adjacent sites. As a result, the measured impact of the AC amendment was low: Both the benthic community structure and PCB bioaccumulation were similar on the plot and in surrounding reference sites. Corresponding follow-up laboratory studies using Lumbriculus variegatus and Chironomus riparius showed that long-term remediation success is possible, even when an AC cap is covered with contaminated sediment. To retain a measurable effectiveness (reduction in contaminant bioaccumulation), a sufficient intensity and depth of bioturbation is required. On the other hand, the magnitude of the adverse effect induced by AC correlated positively with the measured remediation success.
Collapse
Affiliation(s)
- Sebastian Abel
- Department
of Environmental and Biological Sciences, University of Eastern Finland, P.O.
Box 111, FI-80101 Joensuu, Finland
- E-mail:
| | - Jarkko Akkanen
- Department
of Environmental and Biological Sciences, University of Eastern Finland, P.O.
Box 111, FI-80101 Joensuu, Finland
| |
Collapse
|
4
|
Dang VD, Kroll KJ, Supowit SD, Halden RU, Denslow ND. Activated carbon as a means of limiting bioaccumulation of organochlorine pesticides, triclosan, triclocarban, and fipronil from sediments rich in organic matter. CHEMOSPHERE 2018; 197:627-633. [PMID: 29407826 PMCID: PMC5811353 DOI: 10.1016/j.chemosphere.2018.01.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/08/2018] [Accepted: 01/13/2018] [Indexed: 06/07/2023]
Abstract
Addition of activated carbon to contaminated sediment is an established means of remediation but its applicability to sediments high in organic carbon is presently unknown. We evaluated the effects of adding either granular activated carbon (GAC) or pelletized fine-grained activated carbon (PfAC, containing ∼ 50% AC) to contaminated sediments from Lake Apopka featuring a very high total organic carbon content (∼39% w/w dry). Sediments showing background levels of legacy pesticides were spiked with a mixture of 5 chemicals (p,p'-DDE, dieldrin, triclosan, triclocarban, and fipronil) to a nominal concentration of 2 μg/g sediment for each chemical. Following incubation of spiked sediments with the addition of activated carbon for 30 days, we assessed the success on limiting bioaccumulation using Lumbriculus variegatus (blackworm). In contaminant-spiked sediments amended with PfAC, blackworm body burdens of triclosan, triclocarban, and fipronil decreased by >50% and those of p,p'-DDE and dieldrin decreased by <30%. GAC addition to spiked sediments was less impactful, and yielded notable benefits in worm body burden reduction only for fipronil (40%). Fipronil achieved high treatment efficiency within the 30 day amendment with both GAC and PfAC. This is the first study to examine AC treatment in artificially contaminated sediments intrinsically very rich in organic matter content. PfAC exhibited superior performance over GAC for mitigating the uptake of certain organochlorines by aquatic organisms. These results indicate that further studies focusing on additional types of sediments and a broader spectrum of hydrophobic pollutants are warranted.
Collapse
Affiliation(s)
- Viet D Dang
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA; Department of Veterinary Diagnostic Production and Animal Medicine, Iowa State University, Ames, IA 50010, USA.
| | - Kevin J Kroll
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| | - Samuel D Supowit
- Biodesign Center for Environmental Health Engineering, The Biodesign Institute and School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, USA; Indian Health Services, Department of Health and Human Services, Seattle, WA 98121, USA
| | - Rolf U Halden
- Biodesign Center for Environmental Health Engineering, The Biodesign Institute and School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, USA
| | - Nancy D Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
5
|
Fadaei H, Williams E, Place A, Connolly J, Ghosh U. Assimilation efficiency of sediment-bound PCBs ingested by fish impacted by strong sorption. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:3480-3488. [PMID: 28763114 PMCID: PMC5705292 DOI: 10.1002/etc.3932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 02/13/2017] [Accepted: 07/28/2017] [Indexed: 06/07/2023]
Abstract
Uptake of polychlorinated biphenyls (PCBs) by fish is controlled by the bioavailability of ingested PCBs in the gut and the freely dissolved concentration in the water moving across the gills. The prediction of bioaccumulation in fish relies on models that account for these exposure routes; however, these models typically do not account for incidental ingestion of sediment by fish, which is not well studied. The literature values for the PCB assimilation efficiency in the gut have been reported for compounds in food matrices and not associated with sediment particles. It is also unclear how mitigation strategies that alter PCB bioavailability in sediments affect predictions made by the bioaccumulation models when sediment ingestion is involved. To test the bioavailability of PCBs from treated and untreated sediments, dietary assimilation efficiencies were measured for 16 PCB congeners in mummichogs (Fundulus heteroclitus) that were fed 4 experimental diets. Diets consisted of PCB-spiked earthworms, spiked untreated sediment mixed with earthworms, spiked activated carbon-treated sediment mixed with earthworms, and spiked activated carbon mixed with earthworms. Assimilation efficiencies were determined by calculating the ratio of PCB mass in the fish tissue to the PCB mass in the food after a pulse feeding experiment. Assimilation efficiencies of PCBs associated with earthworm diet were similar to the values reported in the literature. Fish that were fed the PCB-spiked untreated sediment and activated carbon particles exhibited the highest and lowest assimilation efficiencies, respectively, over a wide KOW range. Assimilation efficiencies of sediment-bound PCBs were significantly reduced (31-93% reduction for different congeners) after amendment with activated carbon. The present study indicates that assimilation of PCBs can be reduced by sorption to black carbon. Environ Toxicol Chem 2017;36:3480-3488. © 2017 SETAC.
Collapse
Affiliation(s)
- Hilda Fadaei
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Ernest Williams
- Institute of Marine and Environmental Technology, UMCES, Columbus Center, 701 East Pratt Street, Baltimore, Maryland 21202, United States
| | - Allen Place
- Institute of Marine and Environmental Technology, UMCES, Columbus Center, 701 East Pratt Street, Baltimore, Maryland 21202, United States
| | - John Connolly
- Anchor QEA, LLC, 123 Tice Boulevard, Suite 205, Woodcliff Lake, New Jersey 07677, United States
| | - Upal Ghosh
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| |
Collapse
|
6
|
Abel S, Nybom I, Mäenpää K, Hale SE, Cornelissen G, Akkanen J. Mixing and capping techniques for activated carbon based sediment remediation - Efficiency and adverse effects for Lumbriculus variegatus. WATER RESEARCH 2017; 114:104-112. [PMID: 28229948 DOI: 10.1016/j.watres.2017.02.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 02/02/2017] [Accepted: 02/12/2017] [Indexed: 05/16/2023]
Abstract
Activated carbon (AC) has been proven to be highly effective for the in-situ remediation of sediments contaminated with a wide range of hydrophobic organic contaminants (HOCs). However, adverse biological effects, especially to benthic organisms, can accompany this promising remediation potential. In this study, we compare both the remediation potential and the biological effects of several AC materials for two application methods: mixing with sediment (MIX) at doses of 0.1 and 1.0% based on sediment dw and thin layer capping (TLC) with 0.6 and 1.2 kg AC/m2. Significant dose dependent reductions in PCB bioaccumulation in Lumbriculus variegatus of 35-93% in MIX treatments were observed. Contaminant uptake in TLC treatments was reduced by up to 78% and differences between the two applied doses were small. Correspondingly, significant adverse effects were observed for L. variegatus whenever AC was present in the sediment. The lowest application dose of 0.1% AC in the MIX system reduced L. variegatus growth, and 1.0% AC led to a net loss of organism biomass. All TLC treatments let to a loss of biomass in the test organism. Furthermore, mortality was observed with 1.2 kg AC/m2 doses of pure AC for the TLC treatment. The addition of clay (Kaolinite) to the TLC treatments prevented mortality, but did not decrease the loss in biomass. While TLC treatments pose a less laborious alternative for AC amendments in the field, the results of this study show that it has lower remediation potential and could be more harmful to the benthic fauna.
Collapse
Affiliation(s)
- Sebastian Abel
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O.Box 111, FI-80101 Joensuu, Finland.
| | - Inna Nybom
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O.Box 111, FI-80101 Joensuu, Finland
| | - Kimmo Mäenpää
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O.Box 111, FI-80101 Joensuu, Finland
| | - Sarah E Hale
- Norwegian Geotechnical Institute (NGI), P.O.Box 3930 Ullevaal, NO-0806 Oslo, Norway
| | - Gerard Cornelissen
- Norwegian Geotechnical Institute (NGI), P.O.Box 3930 Ullevaal, NO-0806 Oslo, Norway; Department of Environmental Sciences (IMV), Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway; Department of Environmental Sciences and Analytical Chemistry (ACES), Stockholm University, 10691 Sweden
| | - Jarkko Akkanen
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O.Box 111, FI-80101 Joensuu, Finland
| |
Collapse
|
7
|
Thompson JM, Hsieh CH, Hoelen TP, Weston DP, Luthy RG. Measuring and Modeling Organochlorine Pesticide Response to Activated Carbon Amendment in Tidal Sediment Mesocosms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:4769-4777. [PMID: 27040592 DOI: 10.1021/acs.est.5b05669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Activated carbon (AC) sediment amendment for hydrophobic organic contaminants (HOCs) is attracting increasing regulatory and industrial interest. However, mechanistic and well-vetted models are needed. Here, we conduct an 18 month field mesocosm trial at a site containing dichlorodiphenyltrichloroethane (DDT) and chlordane. Different AC applications were applied and, for the first time, a recently published mass transfer model was field tested under varying experimental conditions. AC treatment was effective in reducing DDT and chlordane concentration in polyethylene (PE) samplers, and contaminant extractability by Arenicola brasiliensis digestive fluids. A substantial AC particle size effect was observed. For example, chlordane concentration in PE was reduced by 93% 6 months post-treatment in the powdered AC (PAC) mesocosm, compared with 71% in the granular AC (GAC) mesocosm. Extractability of sediment-associated DDT and chlordane by A. brasiliensis digestive fluids was reduced by at least a factor of 10 in all AC treatments. The model reproduced the relative effects of varying experimental conditions (particle size, dose, mixing time) on concentrations in polyethylene passive samplers well, in most cases within 25% of experimental observations. Although uncertainties such as the effect of long-term AC fouling by organic matter remain, the study findings support the use of the model to assess long-term implications of AC amendment.
Collapse
Affiliation(s)
- Jay M Thompson
- Department of Civil and Environmental Engineering, Stanford University , Stanford, California 94305-5080, United States
| | - Ching-Hong Hsieh
- Department of Civil and Environmental Engineering, Stanford University , Stanford, California 94305-5080, United States
| | - Thomas P Hoelen
- Chevron Energy Technology Company , Richmond, California 94801, United States
| | - Donald P Weston
- Department of Integrative Biology, University of California , Berkeley, California 94720-3140, United States
| | - Richard G Luthy
- Department of Civil and Environmental Engineering, Stanford University , Stanford, California 94305-5080, United States
| |
Collapse
|
8
|
Prosser RS, Mahon K, Sibley PK, Poirier D, Watson-Leung T. Bioaccumulation of perfluorinated carboxylates and sulfonates and polychlorinated biphenyls in laboratory-cultured Hexagenia spp., Lumbriculus variegatus and Pimephales promelas from field-collected sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 543:715-726. [PMID: 26615489 DOI: 10.1016/j.scitotenv.2015.11.062] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/12/2015] [Accepted: 11/12/2015] [Indexed: 06/05/2023]
Abstract
Polychlorinated biphenyls (PCBs) and perfluorinated carboxylates and sulfonates (PFASs) are persistent pollutants in sediment that can potentially bioaccumulate in aquatic organisms. The current study investigates variation in the accumulation of PCBs and PFASs in laboratory-cultured Hexagenia spp., Lumbriculus variegatus and Pimephales promelas from contaminated field-collected sediment using 28-day tests. BSAF(lipid) (lipid-normalized biota-sediment accumulation factor) values for total concentration of PCBs were greater in Hexagenia spp. relative to L. variegatus and P. promelas. The distribution of congeners contributing to the total concentration of PCBs in tissue varied among the three species. Trichlorobiphenyl congeners composed the greatest proportion of the total concentration of PCBs in L. variegatus while tetra- and pentabiphenyl congeners dominated in Hexagenia spp. and P. promelas. Perfluorooctane sulfonate (PFOS) was present in all three species at concentrations greater than all other PFASs analyzed. Hexagenia spp. also produced the greatest BSAF(lipid) and BSAF(ww) (non-lipid-normalized biota-sediment accumulation factor) values for PFOS relative to the other two species. However, this was not the case for all PFASs. The trend of BSAF values and number of carbon atoms in the perfluoroalkyl chain of perfluorinated carboxylates varied among the three species but was similar for perfluorinated sulfonates. Differences in the dominant pathways of exposure (e.g., water, sediment ingestion) likely explain a large proportion of the variation in accumulation observed across the three species.
Collapse
Affiliation(s)
- R S Prosser
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada.
| | - K Mahon
- Aquatic Toxicology Unit, Ontario Ministry of the Environment and Climate Change, Toronto, Ontario, Canada
| | - P K Sibley
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - D Poirier
- Aquatic Toxicology Unit, Ontario Ministry of the Environment and Climate Change, Toronto, Ontario, Canada
| | - T Watson-Leung
- Aquatic Toxicology Unit, Ontario Ministry of the Environment and Climate Change, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Choi H, Lawal W, Al-Abed SR. Desorption, partitioning, and dechlorination characteristics of PCBs in sediments in interaction with reactive activated carbon. JOURNAL OF HAZARDOUS MATERIALS 2015; 287:118-125. [PMID: 25636140 DOI: 10.1016/j.jhazmat.2015.01.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/26/2014] [Accepted: 01/12/2015] [Indexed: 06/04/2023]
Abstract
Sediment (WHS) in Waukegan Harbor, Illinois, heavily contaminated and aged with polychlorinated biphenyls (PCBs), was treated with reactive activated carbon (RAC) impregnated with palladized iron nanoparticles. Lab test proceeded in a direct mixing configuration of RAC and WHS. A compartment configuration, where RAC was physically separated from WHS, was also designed to trace the sequential transport and fate of PCBs, including desorption, adsorption, dechlorination, and re-partitioning. PCBs, once desorbed from WHS, were immediately sequestrated to RAC and subject to dechlorination. Direct mixing of WHS with RAC was one-order of magnitude more effective for dechlorination than compartment configuration. Compared to their desorption-followed by-adsorption route, direct physical contact of RAC with PCBs bound to WHS exhibited negligible contribution to the availability of PCBs for dechlorination reaction. Addition of RAC even in compartment configuration facilitated PCBs desorption from WHS. However, slow desorption of PCBs limited overall performance, resulting in a five-order of magnitude lower dechlorination yield when compared with treatment of purely aqueous PCBs. The low dechlorination yield reflected real world complexities in treating 3.19% organic carbon-containing WHS aged with PCBs for 40 years. These observations were further supported when compared with results on clean Cesar Creek sediment spiked with 2-chlorinated biphenyls.
Collapse
Affiliation(s)
- Hyeok Choi
- Department of Civil Engineering, The University of Texas at Arlington, 416 Yates Street, Arlington, TX 76019-0308, USA; Environmental and Earth Sciences Program, The University of Texas at Arlington, 500 Yates Street, Arlington, TX 76019-0049, USA.
| | - Wasiu Lawal
- Environmental and Earth Sciences Program, The University of Texas at Arlington, 500 Yates Street, Arlington, TX 76019-0049, USA
| | - Souhail R Al-Abed
- National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 W. Martin Luther King Dr., Cincinnati, OH 45268, USA
| |
Collapse
|
10
|
Patmont CR, Ghosh U, LaRosa P, Menzie CA, Luthy RG, Greenberg MS, Cornelissen G, Eek E, Collins J, Hull J, Hjartland T, Glaza E, Bleiler J, Quadrini J. In situ sediment treatment using activated carbon: a demonstrated sediment cleanup technology. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2015; 11:195-207. [PMID: 25323491 PMCID: PMC4409844 DOI: 10.1002/ieam.1589] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/16/2014] [Accepted: 10/08/2014] [Indexed: 05/18/2023]
Abstract
This paper reviews general approaches for applying activated carbon (AC) amendments as an in situ sediment treatment remedy. In situ sediment treatment involves targeted placement of amendments using installation options that fall into two general approaches: 1) directly applying a thin layer of amendments (which potentially incorporates weighting or binding materials) to surface sediment, with or without initial mixing; and 2) incorporating amendments into a premixed, blended cover material of clean sand or sediment, which is also applied to the sediment surface. Over the past decade, pilot- or full-scale field sediment treatment projects using AC-globally recognized as one of the most effective sorbents for organic contaminants-were completed or were underway at more than 25 field sites in the United States, Norway, and the Netherlands. Collectively, these field projects (along with numerous laboratory experiments) have demonstrated the efficacy of AC for in situ treatment in a range of contaminated sediment conditions. Results from experimental studies and field applications indicate that in situ sequestration and immobilization treatment of hydrophobic organic compounds using either installation approach can reduce porewater concentrations and biouptake significantly, often becoming more effective over time due to progressive mass transfer. Certain conditions, such as use in unstable sediment environments, should be taken into account to maximize AC effectiveness over long time periods. In situ treatment is generally less disruptive and less expensive than traditional sediment cleanup technologies such as dredging or isolation capping. Proper site-specific balancing of the potential benefits, risks, ecological effects, and costs of in situ treatment technologies (in this case, AC) relative to other sediment cleanup technologies is important to successful full-scale field application. Extensive experimental studies and field trials have shown that when applied correctly, in situ treatment via contaminant sequestration and immobilization using a sorbent material such as AC has progressed from an innovative sediment remediation approach to a proven, reliable technology.
Collapse
Affiliation(s)
| | - Upal Ghosh
- University of Maryland Baltimore CountyBaltimore, Maryland, USA
| | | | | | | | | | - Gerard Cornelissen
- Norwegian Geotechnical Institute, OsloNorway
- Norwegian University of Life SciencesÅs, Norway
| | - Espen Eek
- Norwegian Geotechnical Institute, OsloNorway
| | | | | | | | | | | | | |
Collapse
|
11
|
Denyes MJ, Parisien MA, Rutter A, Zeeb BA. Physical, chemical and biological characterization of six biochars produced for the remediation of contaminated sites. J Vis Exp 2014:e52183. [PMID: 25489663 DOI: 10.3791/52183] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The physical and chemical properties of biochar vary based on feedstock sources and production conditions, making it possible to engineer biochars with specific functions (e.g. carbon sequestration, soil quality improvements, or contaminant sorption). In 2013, the International Biochar Initiative (IBI) made publically available their Standardized Product Definition and Product Testing Guidelines (Version 1.1) which set standards for physical and chemical characteristics for biochar. Six biochars made from three different feedstocks and at two temperatures were analyzed for characteristics related to their use as a soil amendment. The protocol describes analyses of the feedstocks and biochars and includes: cation exchange capacity (CEC), specific surface area (SSA), organic carbon (OC) and moisture percentage, pH, particle size distribution, and proximate and ultimate analysis. Also described in the protocol are the analyses of the feedstocks and biochars for contaminants including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), metals and mercury as well as nutrients (phosphorous, nitrite and nitrate and ammonium as nitrogen). The protocol also includes the biological testing procedures, earthworm avoidance and germination assays. Based on the quality assurance / quality control (QA/QC) results of blanks, duplicates, standards and reference materials, all methods were determined adequate for use with biochar and feedstock materials. All biochars and feedstocks were well within the criterion set by the IBI and there were little differences among biochars, except in the case of the biochar produced from construction waste materials. This biochar (referred to as Old biochar) was determined to have elevated levels of arsenic, chromium, copper, and lead, and failed the earthworm avoidance and germination assays. Based on these results, Old biochar would not be appropriate for use as a soil amendment for carbon sequestration, substrate quality improvements or remediation.
Collapse
Affiliation(s)
- Mackenzie J Denyes
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada;
| | - Michèle A Parisien
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada
| | - Allison Rutter
- Analytical Services Unit, School of Environmental Studies, Queen's University
| | - Barbara A Zeeb
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada
| |
Collapse
|
12
|
Kjellerup BV, Naff C, Edwards SJ, Ghosh U, Baker JE, Sowers KR. Effects of activated carbon on reductive dechlorination of PCBs by organohalide respiring bacteria indigenous to sediments. WATER RESEARCH 2014; 52:1-10. [PMID: 24440760 DOI: 10.1016/j.watres.2013.12.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 12/11/2013] [Accepted: 12/23/2013] [Indexed: 06/03/2023]
Abstract
Polychlorinated biphenyls (PCBs) have accumulated in aquatic sediments due to their inherent chemical stability and their presence poses a risk due to their potential toxicity in humans and animals. Granular activated carbon (GAC) has been applied to PCB contaminated sediment sites to reduce the aqueous concentration by sequestration thus reducing the PCB exposure and toxicity to both benthic and aquatic organisms. However, it is not known how the reduction of PCB bioavailability by adsorption to GAC affects bacterial transformation of PCBs by indigenous organohalide respiring bacteria. In this study, the impact of GAC on anaerobic dechlorination by putative organohalide respiring bacteria indigenous to sediment from Baltimore Harbor was examined. It was shown that the average Cl/biphenyl after dehalogenation of Aroclor 1260 was similar between treatments with and without GAC amendment. However, GAC caused a substantial shift in the congener distribution whereby a smaller fraction of highly chlorinated congeners was more extensively dechlorinated to mono- through tri-chlorinated congeners compared to the formation of tri- through penta-chlorinated congeners in unamended sediment. The results combined with comparative sequence analysis of 16S rRNA gene sequences suggest that GAC caused a community shift to putative organohalide respiring phylotypes that coincided with more extensive dechlorination of ortho and unflanked chlorines. This shift in activity by GAC shown here for the first time has the potential to promote greater degradation in situ by promoting accumulation of less chlorinated congeners that are generally more susceptible to complete mineralization by aerobic PCB degrading bacteria.
Collapse
Affiliation(s)
- B V Kjellerup
- Goucher College, Department of Biological Sciences, 1021 Dulaney Valley Road, Baltimore, MD 21204, USA.
| | - C Naff
- Institute of Marine and Environmental Technology, Columbus Center, University of Maryland, 701 E. Pratt Street, Baltimore, MD 21202, USA
| | - S J Edwards
- Goucher College, Department of Biological Sciences, 1021 Dulaney Valley Road, Baltimore, MD 21204, USA
| | - U Ghosh
- University of Maryland Baltimore County, Department of Civil and Environmental Engineering, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - J E Baker
- Center for Urban Waters, University of Washington-Tacoma, 326 East D Street, Tacoma, WA 98421, USA
| | - K R Sowers
- Institute of Marine and Environmental Technology, Columbus Center, University of Maryland, 701 E. Pratt Street, Baltimore, MD 21202, USA
| |
Collapse
|
13
|
Rakowska MI, Kupryianchyk D, Smit MPJ, Koelmans AA, Grotenhuis JTC, Rijnaarts HHM. Kinetics of hydrophobic organic contaminant extraction from sediment by granular activated carbon. WATER RESEARCH 2014; 51:86-95. [PMID: 24397912 DOI: 10.1016/j.watres.2013.12.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 12/11/2013] [Accepted: 12/17/2013] [Indexed: 06/03/2023]
Abstract
Ex situ solid phase extraction with granular activated carbon (GAC) is a promising technique to remediate contaminated sediments. The methods' efficiency depends on the rate by which contaminants are transferred from the sediment to the surface of GAC. Here, we derive kinetic parameters for extraction of polycyclic aromatic hydrocarbons (PAH) from sediment by GAC, using a first-order multi-compartment kinetic model. The parameters were obtained by modeling sediment-GAC exchange kinetic data following a tiered model calibration approach. First, parameters for PAH desorption from sediment were calibrated using data from systems with 50% (by weight) GAC acting as an infinite sink. Second, the estimated parameters were used as fixed input to obtain GAC uptake kinetic parameters in sediment slurries with 4% GAC, representing the ex situ remediation scenario. PAH uptake rate constants (kGAC) by GAC ranged from 0.44 to 0.0005 d(-1), whereas GAC sorption coefficients (KGAC) ranged from 10(5.57) to 10(8.57) L kg(-1). These values are the first provided for GAC in the presence of sediment and show that ex situ extraction with GAC is sufficiently fast and effective to reduce the risks of the most available PAHs among those studied, such as fluorene, phenanthrene and anthracene.
Collapse
Affiliation(s)
- M I Rakowska
- Subdepartment of Environmental Technology, Department of Agrotechnology and Food Science, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| | - D Kupryianchyk
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - M P J Smit
- Subdepartment of Environmental Technology, Department of Agrotechnology and Food Science, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - A A Koelmans
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands; IMARES - Institute for Marine Resources & Ecosystem Studies, Wageningen UR, P.O. Box 68, 1970 AB IJmuiden, The Netherlands
| | - J T C Grotenhuis
- Subdepartment of Environmental Technology, Department of Agrotechnology and Food Science, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - H H M Rijnaarts
- Subdepartment of Environmental Technology, Department of Agrotechnology and Food Science, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
14
|
Friedman CL, Lohmann R. Comparing sediment equilibrium partitioning and passive sampling techniques to estimate benthic biota PCDD/F concentrations in Newark Bay, New Jersey (U.S.A.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 186:172-179. [PMID: 24378814 DOI: 10.1016/j.envpol.2013.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/01/2013] [Accepted: 12/03/2013] [Indexed: 06/03/2023]
Abstract
Sediment and polyethylene sampler-based estimates of polychlorinated dibenzo-p-dioxin/dibenzofuran (PCDD/F) concentrations in Newark Bay, New Jersey (USA) benthic biota were compared. Biota concentrations based on sediment were estimated using an organic carbon (OC)-water partitioning model and an OC and black carbon (BC)-water dual model. Biota concentrations based on polyethylene were estimated from samplers deployed in the Newark Bay water column and samplers immersed in a sediment/porewater slurry in the laboratory. Porewater samplers provided the best estimates of biota concentrations (within 3.1×), with best results achieved for deposit-feeders (within 1.6×). Polyethylene deployed in deep water also provided good estimates of biota concentrations (within 4×). By contrast, OC-water partitioning overestimated biota concentrations by up to 7×, while OC and BC combined underestimated biota concentrations by up to 13×. We recommend passive samplers such as polyethylene for estimating concentrations of hydrophobic organic contaminants in field biota given its simplicity and relatively lower uncertainty compared to sediment equilibrium partitioning.
Collapse
Affiliation(s)
- Carey L Friedman
- University of Rhode Island Graduate School of Oceanography (URI-GSO), University of Rhode Island Narragansett Bay Campus, 215 South Ferry Road, Narragansett, RI 02882, USA(2).
| | - Rainer Lohmann
- University of Rhode Island Graduate School of Oceanography (URI-GSO), University of Rhode Island Narragansett Bay Campus, 215 South Ferry Road, Narragansett, RI 02882, USA(2)
| |
Collapse
|
15
|
Lin D, Cho YM, Werner D, Luthy RG. Bioturbation delays attenuation of DDT by clean sediment cap but promotes sequestration by thin-layered activated carbon. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:1175-83. [PMID: 24359108 DOI: 10.1021/es404108h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The effects of bioturbation on the performance of attenuation by sediment deposition and activated carbon to reduce risks from DDT-contaminated sediment were assessed for DDT sediment-water flux, biouptake, and passive sampler (PE) uptake in microcosm experiments with a freshwater worm, Lumbriculus variegatus. A thin-layer of clean sediment (0.5 cm) did not reduce the DDT flux when bioturbation was present, while a thin (0.3 cm) AC cap was still capable of reducing the DDT flux by 94%. Bioturbation promoted AC sequestration by reducing the 28-day DDT biouptake (66%) and DDT uptake into PE (>99%) compared to controls. Bioturbation further promoted AC-sediment contact by mixing AC particles into underlying sediment layers, reducing PE uptake (55%) in sediment compared to the AC cap without bioturbation. To account for the observed effects from bioturbation, a mass transfer model together with a biodynamic model were developed to simulate DDT flux and biouptake, respectively, and models confirmed experimental results. Both experimental measurements and modeling predictions imply that thin-layer activated carbon placement on sediment is effective in reducing the risks from contaminated sediments in the presence of bioturbation, while natural attenuation process by clean sediment deposition may be delayed by bioturbation.
Collapse
Affiliation(s)
- Diana Lin
- Department of Civil and Environmental Engineering, Stanford University , Stanford, California 94305, United States
| | | | | | | |
Collapse
|
16
|
Janssen EML, Beckingham BA. Biological responses to activated carbon amendments in sediment remediation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:7595-607. [PMID: 23745511 DOI: 10.1021/es401142e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Sorbent amendment with activated carbon (AC) is a novel in situ management strategy for addressing human and ecological health risks posed by hydrophobic organic chemicals (HOCs) in sediments and soils. A large body of literature shows that AC amendments can reduce bioavailability of sediment-associated HOCs by more than 60-90%. Empirically derived biodynamic models can predict bioaccumulation in benthic invertebrates within a factor of 2, allowing for future scenarios under AC amendment to be estimated. Higher AC dose and smaller AC particle size further reduce bioaccumulation of HOCs but may induce stress in some organisms. Adverse ecotoxicity response to AC exposure was observed in one-fifth of 82 tests, including changes in growth, lipid content, behavior, and survival. Negative effects on individual species and benthic communities appear to depend on the characteristics of the sedimentary environment and the AC amendment strategy (e.g., dose and particle size). More research is needed to evaluate reproductive end points, bacterial communities, and plants, and to link species- and community-level responses to amendment. In general, the ability of AC to effectively limit the mobility of HOCs in aquatic environments may outshine potential negative secondary effects, and these outcomes must be held in comparison to traditional remediation approaches.
Collapse
Affiliation(s)
- Elisabeth M-L Janssen
- Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology (ETH), Universitätsstrasse 16, 8092 Zürich, Switzerland.
| | | |
Collapse
|
17
|
Nybom I, Werner D, Leppänen MT, Siavalas G, Christanis K, Karapanagioti HK, Kukkonen JVK, Akkanen J. Responses of Lumbriculus variegatus to activated carbon amendments in uncontaminated sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:12895-903. [PMID: 23153215 DOI: 10.1021/es303430j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Activated carbon (AC) amendment is a recently developed sediment remediation method. The strong hydrophobic organic contaminant sorption efficiency of AC has been shown in several studies, but effects on benthic organisms require more investigation. The AC induced effects on egestion rate, growth and reproduction of Lumbriculus variegatus were studied by applying bituminous coal based AC in three different particle size fractions, namely <63 μm (90%, AC(p)), 63-200 μm (AC(m)) and 1000 μm (AC(g)), to natural uncontaminated (HS) and artificial sediment (AS). Egestion rate, growth and reproduction decreased with increasing AC concentration and finer AC particle fractions, effects being stronger on HS than on AS sediment. Lipid content in AS was reduced already at the lowest AC doses applied (AC(p) and AC(m) 0.05%, AC(g) 0.25%). In addition, hormesis-like response was observed in growth (AS) and reproduction (AS, HS) indicating that AC may disturb organisms even at very low doses. Potential ecological effects need to be further evaluated in an amendment- and site-specific manner.
Collapse
Affiliation(s)
- Inna Nybom
- Department of Biology, University of Eastern Finland (UEF), P.O. Box 111, FI-80101 Joensuu, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Importance of dietary uptake of trace elements in the benthic deposit-feeding Lumbriculus variegatus. Trends Analyt Chem 2012. [DOI: 10.1016/j.trac.2012.02.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Rakowska MI, Kupryianchyk D, Harmsen J, Grotenhuis T, Koelmans AA. In situ remediation of contaminated sediments using carbonaceous materials. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2012; 31:693-704. [PMID: 22389227 DOI: 10.1002/etc.1763] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 12/04/2011] [Accepted: 12/21/2011] [Indexed: 05/16/2023]
Abstract
Carbonaceous materials (CM), such as activated carbons or biochars, have been shown to significantly reduce porewater concentrations and risks by binding hydrophobic organic compounds (HOCs) present in aquatic sediments. In the present study, the authors review the current state-of-the-art use of CM as an extensive method for sediment remediation, covering both technical and ecological angles. The review addresses how factors such as CM type, particle size and dosage, sediment characteristics, and properties of contaminants affect the effectiveness of CM amendment to immobilize HOCs in aquatic sediments. The authors also review the extent to which CM may reduce bioaccumulation and toxicity of HOCs and whether CM itself has negative effects on benthic species and communities. The review is based on literature and datasets from laboratory as well as field trials with CM amendments. The presence of phases such as natural black carbon, oil, or organic matter in the sediment reduces the effectiveness of CM amendments. Carbonaceous material additions appear to improve the habitat quality for benthic organisms by reducing bioavailable HOC concentrations and toxicity in sediment. The negative effects of CM itself on benthic species, if any, have been shown to be mild. The beneficial effects of reducing toxicity at low CM concentrations most probably outweigh the mild negative effects observed at higher CM concentrations.
Collapse
Affiliation(s)
- M I Rakowska
- Subdepartment of Environmental Technology, Department of Agrotechnology and Food Science, Wageningen University, Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
20
|
Oen AMP, Beckingham B, Ghosh U, Kruså ME, Luthy RG, Hartnik T, Henriksen T, Cornelissen G. Sorption of organic compounds to fresh and field-aged activated carbons in soils and sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:810-817. [PMID: 22128748 DOI: 10.1021/es202814e] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Activated carbon (AC) amendment to polluted sediment or soil is an emerging in situ treatment technique that reduces freely dissolved porewater concentrations and subsequently reduces the ecological and human health risk of hydrophobic organic compounds (HOCs). An important question is the capacity of the amended AC after prolonged exposure in the field. To address this issue, sorption of freshly spiked and native HOCs to AC aged under natural field conditions and fresh AC amendments was compared for one soil and two sediments. After 12-32 months of field aging, all AC amendments demonstrated effectiveness for reducing pore water concentrations of both native (30-95%) and spiked (10-90%) HOCs compared to unamended sediment or soil. Values of K(AC) for field-aged AC were lower than freshly added AC for spiked HOCs up to a factor of 10, while the effect was less for native HOCs. The different behavior in sorbing native HOCs compared to freshly spiked HOCs was attributed to differences in the sorption kinetics and degree of competition for sorption sites between the contaminants and pore-clogging natural organic matter. The implications of these findings are that amended AC can still be effective in sorbing additional HOCs some years following amendment in the field. Thus, a certain level of long-term sustainability of this remediation approach is observed, but conclusions for decade-long periods cannot be drawn solely based on the present study.
Collapse
Affiliation(s)
- Amy M P Oen
- Norwegian Geotechnical Institute (NGI), P.O. Box 3930, Ullevål Stadium, N-0806 Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Bushnaf KM, Puricelli S, Saponaro S, Werner D. Effect of biochar on the fate of volatile petroleum hydrocarbons in an aerobic sandy soil. JOURNAL OF CONTAMINANT HYDROLOGY 2011; 126:208-215. [PMID: 22115086 DOI: 10.1016/j.jconhyd.2011.08.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 08/19/2011] [Accepted: 08/22/2011] [Indexed: 05/31/2023]
Abstract
Biochar addition to soil is currently being investigated as a novel technology to remediate polluted sites. A critical consideration is the impact of biochar on the intrinsic microbial pollutant degradation, in particular at sites polluted with a mixture of readily biodegradable and more persistent organic pollutants. We therefore studied the impact of biochar (2% on dry weight basis) on the fate of volatile petroleum hydrocarbons in an aerobic sandy soil with batch and column studies. The soil-water partitioning coefficient, K(d), was enhanced in the biochar-amended soil up to a factor 36, and petroleum hydrocarbon vapor migration was retarded accordingly. Despite increased sorption, in particular of monoaromatic hydrocarbons, the overall microbial respiration was comparable in the biochar-amended and unamended soil. This was due to more rapid biodegradation of linear, cyclic and branched alkanes in the biochar amended soil. We concluded that the total petroleum hydrocarbon degradation rate was controlled by a factor other than substrate availability and the reduced availability of monoaromatic hydrocarbons in the biochar amended soil led to greater biodegradation of the other petroleum compounds.
Collapse
Affiliation(s)
- Khaled M Bushnaf
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, NE1 7RU England, United Kingdom
| | | | | | | |
Collapse
|
22
|
Van Geest JL, Mackay D, Poirier DG, Sibley PK, Solomon KR. Accumulation and depuration of polychlorinated biphenyls from field-collected sediment in three freshwater organisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:7011-7018. [PMID: 21740035 DOI: 10.1021/es1043744] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
As laboratory-based bioaccumulation methods are standardized and expanded to include other test species, kinetic studies assessing the major classes of contaminants with these species are needed to adequately select the standard duration for bioaccumulation tests. In the present study we measured the uptake (28-d exposure) of polychlorinated biphenyls (PCBs; total and selected congeners) from field-contaminated sediment in the oligochaete Lumbriculus variegatus, mayfly nymph Hexagenia spp., and fathead minnow Pimephales promelas. Depuration (25 d) of PCBs was measured in organisms that had been transferred to clean sediment after the 28-d exposure. Uptake and elimination of PCBs was rapid in L. variegatus and Hexagenia spp. Tissue residues reached steady-state concentrations within 28 d; elimination rates and biota-sediment accumulation factors (BSAFs) of the PCB congeners were not correlated with K(OW). Uptake and elimination rates of PCBs were slower in P. promelas, and it is not clear whether steady-state was reached in fish tissues. Elimination rates of the PCB congeners significantly decreased with increasing K(OW) in fish. The appropriateness of a 28-d exposure for measuring steady-state concentrations in tissue of the invertebrates was confirmed, but further study is required for fish.
Collapse
Affiliation(s)
- Jordana L Van Geest
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | | | | | | | | |
Collapse
|
23
|
Ghosh U, Luthy RG, Cornelissen G, Werner D, Menzie CA. In-situ sorbent amendments: a new direction in contaminated sediment management. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:1163-8. [PMID: 21247210 PMCID: PMC3037809 DOI: 10.1021/es102694h] [Citation(s) in RCA: 247] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The accumulation of harmful and persistent organic molecules in soils and sediment is a major environmental concern. Removal by physical means such as riverine, lacustrine, or marine dredging can be prohibitively difficult, expensive, and may not ultimately prove effective. An alternative is to locally change the geochemistry to stabilize and sequester the contaminants and render them biologically unavailable. Ghosh et al. report on pilot projects to determine whether activated carbon would be so useful. Their Feature concludes with what more needs to be done to minimize anthropogenic chemical blights in soil and sediments.
Collapse
Affiliation(s)
- Upal Ghosh
- University of Maryland, Baltimore, MD 21250, USA.
| | | | | | | | | |
Collapse
|
24
|
Janssen EML, Oen AMP, Luoma SN, Luthy RG. Assessment of field-related influences on polychlorinated biphenyl exposures and sorbent amendment using polychaete bioassays and passive sampler measurements. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:173-180. [PMID: 20872900 DOI: 10.1002/etc.367] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Field-related influences on polychlorinated biphenyl (PCB) exposure were evaluated by employing caged deposit-feeders, Neanthes arenaceodentata, along with polyoxymethylene (POM) samplers using parallel in situ and ex situ bioassays with homogenized untreated or activated carbon (AC) amended sediment. The AC amendment achieved a remedial efficiency in reducing bioaccumulation by 90% in the laboratory and by 44% in the field transplants. In situ measurements showed that PCB uptake by POM samplers was greater for POM placed in the surface sediment compared with the underlying AC amendment, suggesting that tidal exchange of surrounding material with similar PCB availability as untreated sediment was redeposited in the cages. Polychlorinated biphenyls bioaccumulation with caged polychaetes from untreated sediment was half as large under field conditions compared with laboratory conditions. A biodynamic model was used to confirm and quantify the different processes that could have influenced these results. Three factors appeared most influential in the bioassays: AC amendment significantly reduces bioavailability under laboratory and field conditions; sediment deposition within test cages in the field partially masks the remedial benefit of underlying AC-amended sediment; and deposit-feeders exhibit less PCB uptake from untreated sediment when feeding is reduced. Ex situ and in situ experiments inevitably show some differences that are associated with measurement methods and effects of the environment. Parallel ex situ and in situ bioassays, passive sampler measurements, and quantifying important processes with a model can tease apart these field influences.
Collapse
Affiliation(s)
- Elisabeth M-L Janssen
- Department of Civil and Environmental Engineering, Stanford University, California 94305-4020, USA
| | | | | | | |
Collapse
|
25
|
Cui X, Hunter W, Yang Y, Chen Y, Gan J. Bioavailability of sorbed phenanthrene and permethrin in sediments to Chironomus tentans. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 98:83-90. [PMID: 20170969 DOI: 10.1016/j.aquatox.2010.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 01/14/2010] [Accepted: 01/19/2010] [Indexed: 05/15/2023]
Abstract
The availability of sorbed hydrophobic organic contaminants (HOCs) to benthic organisms is important for characterizing sediment toxicity. While many studies show a correlation between the rapid desorption HOC pool and bioavailability to benthic organisms, bioavailability of the slow or very slow desorption fraction is still poorly understood. In this study, Chironomus tentans were exposed to phenanthrene (PHE) or permethrin (PM) to derive biota-sediment accumulation factors (BSAFs) in a sediment that was sequentially desorbed with Tenax extraction or amended with a charcoal to modify the distribution of PHE and PM among the rapid (f(rapid)), slow (f(slow)) and very slow (f(vslow)) desorption pools. As the desorption interval was increased, the f(rapid) quickly decreased to zero and became negligible after 12h desorption for PHE and 48h desorption for PM. However, in samples with depleted f(rapid), BSAF values were substantially greater than zero, suggesting availability of f(slow) and f(vslow). A multivariate linear regression model was further used to estimate BSAFs specific to the different desorption pools, i.e., BSAF(rapid), BSAF(slow) or BSAF(vslow). The slow desorption pool was found to be readily available to C. tentans, with BSAF(slow) values ranging from 25.3 to 73.9% of BSAF(rapid). In comparison, BSAF(vslow) ranged from 0 to 5.9% of BSAF(rapid), suggesting a lack of availability. Therefore, the kinetically slow desorption fraction is relatively bioavailable and should not be ignored in sediment toxicity assessment.
Collapse
Affiliation(s)
- Xinyi Cui
- Institute of Environmental Science and Technology, Zhejiang University, Hangzhou 310029, PR China
| | | | | | | | | |
Collapse
|