1
|
Hourtané O, Smith DS, Fortin C. Natural organic matter (NOM) can increase the uptake fluxes of three critical metals (Ga, La, Pt) in a unicellular green alga. CHEMOSPHERE 2024; 365:143311. [PMID: 39265737 DOI: 10.1016/j.chemosphere.2024.143311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Critical metals such as gallium, lanthanum and platinum are considered essential in a modern economy and for the required energy transition. Their relatively recent and increasing use in new technologies have led to an increase in their environmental mobility. As they reach aquatic systems, these metals can interact with organic ligands and especially Natural Organic Matter (NOM). The formation of organic complexes would be expected to reduce metal bioavailability and uptake by living cells, according to the Biotic Ligand Model (BLM). However, exceptions to this model have been determined for several critical metals in the past. The present work compared internalization kinetics of Ga, La and Pt in the green alga Chlamydomonas reinhardtii in the presence of NOMs from different origins: humic and fulvic acids from Suwannee River as well as NOMs from Ontario (Bannister Lake and Luther Marsh). Complexation was determined using a partial ultrafiltration method allowing for a normalization of data based on speciation to compare all conditions based on the concentration of the metal that was not bound to NOM. While internalization metal fluxes varied greatly from one NOM source to the other, uptake was almost always significantly higher than expected based on metal speciation. Quite often, metal internalization fluxes were even significantly increased in the presence of NOM, for the same total metal exposure concentration. For instance, Pt internalization was twice greater in the presence of Bannister Lake NOM than it was in the absence of NOM. The assumption that such exceptions could be explained by NOM characteristics was contradicted by the variable results from one metal to another. To further explore this phenomenon, internalization mechanisms for these individual metals need to be elucidated. This is a necessary step to accurately estimate the risk posed by the presence of these metals in humic aquatic systems.
Collapse
Affiliation(s)
- Océane Hourtané
- EcotoQ, INRS-Eau Terre Environnement, 490 de la Couronne, Québec, QC G1K 9A9, Canada.
| | - D Scott Smith
- Wilfid-Laurier University, University Ave W, Waterloo, ON N2L 3C5, Canada
| | - Claude Fortin
- EcotoQ, INRS-Eau Terre Environnement, 490 de la Couronne, Québec, QC G1K 9A9, Canada
| |
Collapse
|
2
|
Tsai KP. Toxic effects of thallium (Tl +) on prokaryotic alga Microcystis aeruginosa: Short and long-term influences by potassium and humic acid. CHEMOSPHERE 2024; 346:140618. [PMID: 37949181 DOI: 10.1016/j.chemosphere.2023.140618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Thallium (Tl) is a priority pollutant regulated by the US EPA. It is also a critical element commonly used in high technology industries; with an increasing demand for semiconductors nowadays, wastewater discharges from manufacturing plants or metal mining activities may result in elevated levels of thallium in receiving water harming aquatic organisms. Regarding the impact of thallium on freshwater algae, little attention has been paid to prokaryotic physiology through various exposure periods. In this bench-scale study, prokaryotic alga Microcystis aeruginosa PCC 7806 was cultured in modified BG11 medium and exposed to Tl+ (TlNO3) ranging from 250 to 1250 μg/L for 4 and 14 days. Throughout the experiment using flow cytometry assays, algal population, cell membrane integrity, oxidation stress level, and chlorophyll fluorescence were exacerbated following the exposure to 750 μg Tl/L (approximately 4-day effective concentration of Tl+ for reducing 50% of algal population). Potassium and humic acid (HA) (1-5 mg/L) were added to study their influences on the thallium toxicity. With the additions of potassium, thallium toxicities to algal population and physiology were not significantly changed within 4 days, while they were alleviated within 14 days. With the addition of HA at 1 mg/L, cell membrane integrity was significantly attenuated within 4 days; ameliorating effects on algal population and oxidative stress were not observed until day 14. Thallium toxicities on oxidative stress level and photosynthesis activity were exacerbated in the presence of HA at 3-5 mg/L. The study provides useful information for further studies on the mode of toxic action of Tl+ in prokaryotic algae; it also demonstrates the necessity of considering short and long-term exposure durations while incorporating water chemistry into assessment of thallium toxicity to algae.
Collapse
Affiliation(s)
- Kuo-Pei Tsai
- Department of Agricultural Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
3
|
Shi W, Wang Z, Li F, Xu Y, Chen X. Multilayer adsorption of lead (Pb) and fulvic acid by Chlorella pyrenoidosa: Mechanism and impact of environmental factors. CHEMOSPHERE 2023; 329:138596. [PMID: 37023904 DOI: 10.1016/j.chemosphere.2023.138596] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/26/2023] [Accepted: 04/02/2023] [Indexed: 05/03/2023]
Abstract
When the multilayer adsorption of lead (Pb) and fulvic acid (FA) occurs on algal surface, the adsorption capacity of Pb on the algae will increase dramatically, thus increasing the environmental risk of Pb. However, the corresponding mechanism and the influence of environmental factors on the multilayer adsorption remain unclear. Here, microscopic observation methods and batch adsorption experiments were exactly designed to investigate the adsorption behavior of multilayer adsorption of Pb and FA on algal surface. The results of Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) revealed that carboxyl groups were the major functional groups responsible for the binding of Pb ions in multilayer adsorption, and its number was more than that in monolayer adsorption. The solution pH, with an optimal pH of 7, was a critical factor influencing the occurrence of multilayer adsorption because it influences the protonation of the involved functional groups and determines the concentration of Pb2+ and Pb-FA in the solution. Increasing the temperature was beneficial for multilayer adsorption, with ΔH for Pb and FA varied from +17.12 to +47.68 kJ/mol and +16.19 to +57.74 kJ/mol, respectively. The multilayer adsorption of Pb and FA onto algal surface also followed the pseudo-second order kinetic model, but was extremely slower than the monolayer adsorption of Pb and FA by 30 times and 15 orders of magnitude, respectively. Therefore, the adsorption of Pb and FA in the ternary system had a different adsorption behavior than that in the binary system, which verified the presence of multilayer adsorption of Pb and FA and further support the multilayer adsorption mechanism. This work is important to provide data support for water ecological risk prevention and control of heavy metals.
Collapse
Affiliation(s)
- Wen Shi
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China; Zhejiang University of Technology, College of Environment, Hangzhou, 310014, China
| | - Zhiwei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Feili Li
- Zhejiang University of Technology, College of Environment, Hangzhou, 310014, China.
| | - Yuxin Xu
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xijing Chen
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| |
Collapse
|
4
|
Shi Z, Guo M, Du H, Yang K, Liu X, Xu H. Investigation of cytotoxic cadmium in aquatic green algae by synchrotron radiation-based Fourier transform infrared spectroscopy: Role of dissolved organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161870. [PMID: 36731571 DOI: 10.1016/j.scitotenv.2023.161870] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
The heavy metal Cd can cause severe toxicity on aquatic algae, but there are few studies on the cytotoxicity of heavy metal on algae based on synchrotron radiation technology. In this study, synchrotron radiation-based Fourier transform infrared spectromicroscopy (SR-FTIR) was used to characterize in vivo the toxic effects of Cd on Cosmarium sp. cells, emphasizing the influence of dissolved organic matter (DOM) on Cd toxicity. Results showed that, in the absence of DOM, obvious growth inhibition, cell volume reduction, and photosynthesis disruption could be observed with increasing Cd concentrations (0-500 μg/L). Based on the SR-FTIR imaging and functional group quantification, it was shown that the biosynthesis of biomolecules such as proteins, lipids, and carbohydrates was inhibited in algal cells. However, the addition of DOM caused significant heterogeneities in biomacromolecule biosynthesis that an increased biosynthesis of carbohydrates and structural lipids but an inhibited biosynthesis of proteins and storage lipids were observed. Furthermore, the correlation analysis and principal component analysis showed a good correlation between v(C-OH)/Amide II and biochemical parameters, indicating that changes of carbohydrates could be used as the biomarker to indicate the cytotoxicity of heavy metals to algal cells. These findings provide insight into the mechanisms of heavy metal cytotoxicity to aquatic algae and systematic cytotoxicity assessment under various aquatic conditions.
Collapse
Affiliation(s)
- Zhiqiang Shi
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Mengjing Guo
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, China.
| | - Haiyan Du
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Keli Yang
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Technology Research and Development Center of Comprehensive Utilization of Salt Lakes Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, China
| | - Xin Liu
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Technology Research and Development Center of Comprehensive Utilization of Salt Lakes Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, China
| | - Huacheng Xu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China.
| |
Collapse
|
5
|
Song C, Sun S, Wang J, Gao Y, Yu G, Li Y, Liu Z, Zhang W, Zhou L. Applying fulvic acid for sediment metals remediation: Mechanism, factors, and prospect. Front Microbiol 2023; 13:1084097. [PMID: 36699598 PMCID: PMC9868176 DOI: 10.3389/fmicb.2022.1084097] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Fulvic acid (FA) has been shown to play a decisive role in controlling the environmental geochemical behavior of metals. As a green and natural microbial metabolite, FA is widely used in environmental remediation because of its good adsorption complexation and redox ability. This paper introduces the reaction mechanism and properties of FA with metals, and reviews the progress of research on the remediation of metal pollutant by FA through physicochemical remediation and bioremediation. FA can control the biotoxicity and migration ability of some metals, such as Pb, Cr, Hg, Cd, and As, through adsorption complexation and redox reactions. The concentration, molecular weight, and source are the main factors that determine the remediation ability of FA. In addition, the ambient pH, temperature, metal ion concentrations, and competing components in sediment environments have significant effects on the extent and rate of a reaction between metals and FA during the remediation process. Finally, we summarize the challenges that this promising environmental remediation tool may face. The research directions of FA in the field of metals ecological remediation are also prospected. This review can provide new ideas and directions for the research of remediation of metals contaminants in sediments.
Collapse
Affiliation(s)
- Chuxuan Song
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China
| | - Shiquan Sun
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China.,Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, China
| | - Jinting Wang
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China
| | - Yang Gao
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China
| | - Guanlong Yu
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China
| | - Yifu Li
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China
| | - Zhengqian Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhang
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China
| | - Lean Zhou
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China
| |
Collapse
|
6
|
Shi Z, Du H, Wang C, Xu H. Quantifying the bioaccumulation of Pb to Chlorella vulgaris in the presence of dissolved organic matters with different molecular weights. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:70921-70932. [PMID: 35593980 DOI: 10.1007/s11356-022-19699-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/09/2022] [Indexed: 06/15/2023]
Abstract
Dissolved organic matter (DOM) is ubiquitous in natural waters which exhibits obvious effects on the toxicity of heavy metals. However, information on the toxicity of heavy metals in the presence of DOMs with different molecular weights (MWs) was still unclear. In this study, Suwannee river humic acid (SRHA) and algae-derived organic matter (ADOM) were selected as typical terrestrial and microbial DOMs, with the bulk DOMs fractionating into high MW (HMW-, 1 kDa ~ 0.45 μm) and low MW (LMW-, < 1 kDa) fractions to explore the MW-dependent heterogeneities in the bioaccumulation of Pb to Chlorella vulgaris. Results showed that, regardless of DOM types, the LMW fraction exhibited more acidic groups and humic-like substances than the HMW counterparts. Presence of bulk DOM can decrease the bioaccumulation of Pb, while the specific effects were MW- and type-dependent. The LMW-SRHA enhanced the bioaccumulation of Pb while the HMW counterpart alleviated the effects. However, both the HMW- and LMW-ADOM can reduce the bioaccumulation of Pb to C. vulgaris. Moreover, the correlation analysis showed a significant positive correlation between the content of phenolic-OH and the adsorbed/internalized amounts of Pb, demonstrating that the phenolic-OH played a critical role in altering the bioaccumulation of Pb. The results obtained in this study suggest that distribution of MWs, number of acidic functional groups, and metal complexation capacity within DOM pool should be considered for the eco-environmental risk assessment of heavy metals in aquatic environments.
Collapse
Affiliation(s)
- Zhiqiang Shi
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haiyan Du
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Changhui Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Huacheng Xu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China.
| |
Collapse
|
7
|
Ran S, He T, Zhou X, Yin D. Effects of fulvic acid and humic acid from different sources on Hg methylation in soil and accumulation in rice. J Environ Sci (China) 2022; 119:93-105. [PMID: 35934469 DOI: 10.1016/j.jes.2022.02.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 06/15/2023]
Abstract
Humus is often used as an organic modifier to reduce the bioaccumulation of heavy metals in plants, but the effects of different humus components from different sources on the fate of mercury (Hg) in paddy fields are still unclear. Here, fulvic acid (FA) and humic acid (HA) extracted from composted straw (CS), composted cow dung (CCD), peat soil (PM) and lignite coal (LC) were used to understand their effects on the methylation and bioaccumulation of Hg in paddy soil by pot experiments. Amendments of both FA and HA largely increased the abundance of Hg-methylating microbes and low-molecular-weight organic matters (e.g, cysteine) in paddy soil. They were also found to change the aromaticity, molecular size and Chromophoric DOM concentration of DOM, and resulted in heterogeneous effects on migration and transformation of Hg. All the FA-amended treatments increased the mobility and methylation of Hg in soil and its absorption in roots. Nevertheless, FA from different sources have heterogeneous effects on transport of Hg between rice tissues. FA-CCD and FA-PM promoted the translocation of MeHg from roots to rice grains by 32.95% and 41.12%, while FA-CS and FA-LC significantly inhibited the translocation of inorganic Hg (IHg) by 52.65% and 66.06% and of MeHg by 46.65% and 36.23%, respectively. In contrast, all HA-amended treatments reduced the mobility of soil Hg, but promoted Hg methylation in soil. Among which, HA-CCD and HA-PM promoted the translocation of MeHg in rice tissues by 88.95% and 64.10%, while its accumulation in rice grains by 28.43% and 28.69%, respectively. In general, the application of some FA and HA as organic modifiers to reduce Hg bioaccumulation in rice is not feasible.
Collapse
Affiliation(s)
- Shu Ran
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang 550025, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China
| | - Tianrong He
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang 550025, China.
| | - Xian Zhou
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang 550025, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China
| | - Deliang Yin
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang 550025, China.
| |
Collapse
|
8
|
Popa DG, Lupu C, Constantinescu-Aruxandei D, Oancea F. Humic Substances as Microalgal Biostimulants—Implications for Microalgal Biotechnology. Mar Drugs 2022; 20:md20050327. [PMID: 35621978 PMCID: PMC9143693 DOI: 10.3390/md20050327] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023] Open
Abstract
Humic substances (HS) act as biostimulants for terrestrial photosynthetic organisms. Their effects on plants are related to specific HS features: pH and redox buffering activities, (pseudo)emulsifying and surfactant characteristics, capacity to bind metallic ions and to encapsulate labile hydrophobic molecules, ability to adsorb to the wall structures of cells. The specific properties of HS result from the complexity of their supramolecular structure. This structure is more dynamic in aqueous solutions/suspensions than in soil, which enhances the specific characteristics of HS. Therefore, HS effects on microalgae are more pronounced than on terrestrial plants. The reported HS effects on microalgae include increased ionic nutrient availability, improved protection against abiotic stress, including against various chemical pollutants and ionic species of potentially toxic elements, higher accumulation of value-added ingredients, and enhanced bio-flocculation. These HS effects are similar to those on terrestrial plants and could be considered microalgal biostimulant effects. Such biostimulant effects are underutilized in current microalgal biotechnology. This review presents knowledge related to interactions between microalgae and humic substances and analyzes the potential of HS to enhance the productivity and profitability of microalgal biotechnology.
Collapse
Affiliation(s)
- Daria Gabriela Popa
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Mărăști Blv, No. 59, Sector 1, 011464 Bucharest, Romania;
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței No. 202, Sector 6, 060021 Bucharest, Romania;
| | - Carmen Lupu
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței No. 202, Sector 6, 060021 Bucharest, Romania;
| | - Diana Constantinescu-Aruxandei
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței No. 202, Sector 6, 060021 Bucharest, Romania;
- Correspondence: (D.C.-A.); (F.O.)
| | - Florin Oancea
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Mărăști Blv, No. 59, Sector 1, 011464 Bucharest, Romania;
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței No. 202, Sector 6, 060021 Bucharest, Romania;
- Correspondence: (D.C.-A.); (F.O.)
| |
Collapse
|
9
|
Zhang G, Yang B, Shao L, Li F, Leng Y, Chen X. Differences in bioaccumulation of Ni and Zn by microalgae in the presence of fulvic acid. CHEMOSPHERE 2022; 291:132838. [PMID: 34762892 DOI: 10.1016/j.chemosphere.2021.132838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/04/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
In the presence of dissolved organic matter, the mechanism of algal bioaccumulation of different metals is complex, and its significance goes far beyond the alga-metal binary system. In the presence of 10 and 20 mg L-1 fulvic acid (FA), the maximum tolerance concentrations of Chlorella pyrenoidosa to Ni were 0.25 and 0.26 mmol L-1, and to Zn were 0.62 and 0.68 mmol L-1, respectively. Within the maximum tolerance concentration ranges, the bioaccumulation behaviors of Ni and Zn were systematically compared in the presence of FA. The presence of FA shortened the adsorption equilibrium time and decreased the maximum bioaccumulation capacity of Ni and Zn. The bioaccumulation mechanism of Ni by C. pyrenoidosa was more inclined to monolayer adsorption, while the bioaccumulation mechanism of Zn was more inclined to multilayer adsorption. More details were revealed after the bioaccumulated metals were separated into adsorption and internalization states by 0.01 M EDTA elution. The presence of FA decreased more adsorbed Zn than the adsorbed Ni, due to the different competitive roles of FA in the ternary system of Ni and Zn, but the presence of FA increased the internalized Ni might due to the stronger complexation of Ni-FA. This research indicated that algae had unique bioaccumulation mechanisms for different metals in the presence of FA, which is of great significance to accurately evaluate the ecological risk posed by heavy metals.
Collapse
Affiliation(s)
- Gaoxiang Zhang
- College of Environment, Zhejiang University of Technology, 310032, Hangzhou, China
| | - Boxuan Yang
- College of Environment, Zhejiang University of Technology, 310032, Hangzhou, China
| | - Luze Shao
- College of Environment, Zhejiang University of Technology, 310032, Hangzhou, China
| | - Feili Li
- College of Environment, Zhejiang University of Technology, 310032, Hangzhou, China.
| | - Yaling Leng
- College of Environment, Zhejiang University of Technology, 310032, Hangzhou, China
| | - Xiaoling Chen
- College of Environment, Zhejiang University of Technology, 310032, Hangzhou, China
| |
Collapse
|
10
|
Gao M, Tang F, Wang K, Zeng F, Wang Y, Tian G. Heterogeneity of humic/fulvic acids derived from composts explains the differences in accelerating soil Cd-hyperaccumulation by Sedum alfredii. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113837. [PMID: 34592668 DOI: 10.1016/j.jenvman.2021.113837] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/07/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
The hyperaccumulating mechanism concerning heavy metal activation or passivation and plant response triggered by fulvic acid (FA) and humic acid (HA) recruitments are investigated herein. We carefully examine the Cd activation effect by various FA and HA, tracing from pig, goat, and duck manure composts to straw compost and commercial materials (i.e., PC, GC, DC, SC, and CM), as well as their roles in plant growth promotion and Cd uptake. Our results indicate that due to the decrease of soil pH and their multiple functional groups, the contents of available Cd (AE-Cd) increased by 4.3-4.8% and 3.6-6.3% when all FA and HA sources were applied for 30 days. A 13.1-19.9% increase in AE-Cd was observed when CFA, DFA, and PFA were applied for five days, and a 9.5% increment was found when PHA was applied for 10 days. In the pot experiment, the Cd accumulation in plants increased by 2.78 and 2.17 folds with PFA and PHA applications, respectively, compared to the blank control group. This result can be attributed to the stimulative effects of the simultaneous Sedum alfredii growth and Cd phytoavailability. Notably, the Cd accumulation increased by 2.26 times with the SFA amendment due to the predominant stimulation effect to the phytoavailable Cd rather than plant growth. However, slight inhibitory effects were observed upon plant growth or Cd uptake, which led to the reduction of the Cd accumulation with DHA, SHA, and CHA employments. Consistently, the corresponding soil Cd removal efficiencies were 43.5% and 34.6% with PFA and PHA, respectively, which hold abundant O- and N-containing groups. Our research aims to gain insights into the ternary interaction in the presence of heavy metal, humic substances, and S. alfredii to simultaneously accelerate Cd activation and hyperaccumulation.
Collapse
Affiliation(s)
- Mao Gao
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fan Tang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Kaidi Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fanjian Zeng
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yan Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Guangming Tian
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Organic Recycling Research Institute (Suzhou) of China Agricultural University, Suzhou, 215100, China.
| |
Collapse
|
11
|
Shi W, Zhang G, Li F, Feng J, Chen X. Two-step adsorption model for Pb ion accumulation at the algae-water interface in the presence of fulvic acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140606. [PMID: 32721737 DOI: 10.1016/j.scitotenv.2020.140606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/09/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
The effects of fulvic acid (FA) on heavy metal bioaccumulation by algae have been extensively studied, but the quantitative description on its adsorption behavior is not elaborately illustrated. In the study, the two-step adsorption model is firstly proposed to describe the adsorption of Pb by algae in the presence of FA (R2 > 0.984), which is characterized with two-plateaus in the biosorption curves. The first plateau in the curve represents a monolayer adsorption process of free Pb2+; while the second reveals a multilayer adsorption process of Pb-FA binding to those adsorbed Pb by algae, and the bonding material was called as ternary complex of algae-Pb-(FA-Pb). The formation of the ternary complex caused a sharp increase of the amount of adsorbed Pb by algae which was measured by an atomic absorption spectrophotometry, and a decrease of the toxicity of Pb to algae verified with SEM and TEM images. The ternary phase diagram showed FA could participate in the formation of ternary complexes at very low concentration. The study is important for a comprehensive understanding of the metal-microalgae interaction and its biogeochemical cycle in surface waters.
Collapse
Affiliation(s)
- Wen Shi
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Gaoxiang Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Feili Li
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Jianru Feng
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xiujuan Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
12
|
Chen X, Zheng M, Zhang G, Li F, Chen H, Leng Y. The nature of dissolved organic matter determines the biosorption capacity of Cu by algae. CHEMOSPHERE 2020; 252:126465. [PMID: 32199165 DOI: 10.1016/j.chemosphere.2020.126465] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/08/2020] [Accepted: 03/09/2020] [Indexed: 06/10/2023]
Abstract
The role of dissolved organic matter (DOM) on the biochemical behavior and toxicity of heavy metals in water is very important but complex and unclear. The present work extracted DOM from a natural water and separated it into three fractions, namely humic acid (HA), fulvic acid (FA) and transphilic acid (TPA). Optical detection showed that HA had most aromatic ring skeletons, FA had more aromatic ring hydrophilic groups, and TPA had the largest number of hydroxyl or carboxyl groups. Their effects on the toxicity of Cu by Chlorella pyrenoidosa depended on types and concentration of DOM. In the case of algal exposure to 0.003 mM initial Cu concentration, the final algal optical density increased from 0.317 of the control group to 0.345, 0.645 and 0.435 in the presence of 20, 10 mg L-1 HA, and 10 mg L-1 TPA, respectively, but were suppressed to 0.246, 0.117 and 0.234 in the presence of 10, 20 mg L-1 FA and 20 mg L-1 TPA. Most adsorption isotherms lost the linearity in the presence of HA, FA and TPA. The adsorbed Cu increased from 0.242 to 0.477 mmol g-1, following the order of increased concentration of HA, FA, and TPA. The formation of ternary complex and the multi-layer adsorption were proposed to explain the significant enhancement adsorption of Cu in the presence of FA and TPA. This study showed that the type and the density of effective functional groups in DOM determined its effects on Cu toxicity and bioavailability to algae.
Collapse
Affiliation(s)
- Xiujuan Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Mengmeng Zheng
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Gaoxiang Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Feili Li
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China.
| | - Hexuan Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Yaling Leng
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| |
Collapse
|
13
|
Bai H, Luo M, Wei S, Jiang Z, He M. The vital function of humic acid with different molecular weight in controlling Cd and Pb bioavailability and toxicity to earthworm (Eisenia fetida) in soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114222. [PMID: 32105968 DOI: 10.1016/j.envpol.2020.114222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/02/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
Humic acid (HA) plays vital roles in regulating the environmental behaviors of metals and thus their toxicity to biota. However, the inner relation between metal bioavailability to soil organisms and the presence of HA with different molecular weight (Mw) is not well documented. In this study, we separated HAs into four fractions with Mw range of 5-30k Da, and discussed their ability to alleviating the toxicity of Cd and Pb to earthworm. The bioaccumulation capacities (Cmax) increased in order of: UF1<UF2<UF3<UF4, which is in line with the variations of bioavailable concentrations of Cd and Pb in soil. Variations of Mw and binding capacities of HA determine the accumulation behavior in soil solution. The unsatisfactory of biotic ligand model fitting and the differences in fractions of the total biotic ligand sites (f) in earthworm bound by Cd and Pb suggested that only free species of Cd could be considered as biological available to earthworm, while the Pb-HAs complexes have potential ability to interact with earthworm membrane. Antioxidant enzymes are effective biomarkers, and HA with lower Mw play more important roles in restricting the toxicity of soil Cd and Pb to earthworm. These results reveal the different mechanism for HA controlling metal bioavailability between Cd and Pb in soil environment.
Collapse
Affiliation(s)
- Hongcheng Bai
- Department of Environment Science and Engineering, Southwest University, Chongqing, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Department of Environmental Science, Chongqing University, China
| | - Mei Luo
- Department of Environment Science and Engineering, Southwest University, Chongqing, China
| | - Shiqiang Wei
- Department of Environment Science and Engineering, Southwest University, Chongqing, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, China; State Cultivation Base of Eco-agriculture for Southwest Mountainous Land, Southwest University, Chongqing, 400715, China.
| | - Zhenmao Jiang
- Department of Environment Science and Engineering, Southwest University, Chongqing, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, China; State Cultivation Base of Eco-agriculture for Southwest Mountainous Land, Southwest University, Chongqing, 400715, China
| | - Mingjing He
- Department of Environment Science and Engineering, Southwest University, Chongqing, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, China; State Cultivation Base of Eco-agriculture for Southwest Mountainous Land, Southwest University, Chongqing, 400715, China
| |
Collapse
|
14
|
Jiang B, Fu L, Cao W, Zhang B, Li F, Liu Y. Microbial flocculant produced by a novel Paenibacillus sp., strain A9, using food processing wastewater to replace fermentation medium and its application for the removal of Pb(II) from aqueous solution. ADSORPT SCI TECHNOL 2019. [DOI: 10.1177/0263617419876850] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Due to high production costs, the popularization and application of microbial flocculants in the field of water treatment have been limited. In this study, the capture of lead ions by the fermentation broth of a novel Paenibacillus sp. strain A9 and cultured with food wastewater was further investigated. The results revealed that the production of MBFA9 could be increased significantly by adding a small amount of carbon and nitrogen to food wastewater. Under the best experimental conditions (pH 8.5, culture temperature 30°C, 150 r/min), adding 1% (m/v) carbon and 0.1% (m/v) nitrogen to 1% (v/v) wastewater resulted in a yield of MBFA9 of 6.29 g/l. At a temperature of 30°C, pH of 5, contact time of 35 min, and FBA9 dosage of 5%, the removal rate and removal capacity of Pb(II) reached the highest values of 95.1% and 317 mg/g, respectively. Field emission scanning electron microscopy analysis indicated that bacterial cells, metabolite small molecule acids, and MBFA9 in FBA9 all contributed to the removal of Pb(II). Fourier-transform infrared spectrometry analysis indicated that functional groups such as –OH, –COOH, –CO, and –NH2 existed in MBFA9 and on the cell surface. Various mechanisms involved in Pb(II) removal can occur simultaneously, including cell surface adsorption, microcrystallization, and biological flocculation.
Collapse
Affiliation(s)
- Binhui Jiang
- College of Resource and Civil Engineering, Northeastern University, Shenyang, China
| | - Lili Fu
- College of Petroleum and Gas Engineering, Liaoning Shihua University, Fushun, China
| | | | | | - Fengda Li
- College of Resource and Civil Engineering, Northeastern University, Shenyang, China
| | - Yana Liu
- College of Foreign Languages Department, Shenyang Ligong University, Shenyang, China
| |
Collapse
|
15
|
Beauvais-Flück R, Slaveykova VI, Cosio C. Comparative study of Cu uptake and early transcriptome responses in the green microalga Chlamydomonas reinhardtii and the macrophyte Elodea nuttallii. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:331-337. [PMID: 31003145 DOI: 10.1016/j.envpol.2019.04.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/03/2019] [Accepted: 04/06/2019] [Indexed: 06/09/2023]
Abstract
Microalgae are widely used as representative primary producers in ecotoxicology, while macrophytes are much less studied. Here we compared the bioavailability and cellular toxicity pathways of 2 h-exposure to 10-6 mol L-1 Cu in the macrophyte Elodea nuttallii and the green microalga Chlamydomonas reinhardtii. Uptake rate was similar but faster in the algae than in the macrophyte, while RNA-Sequencing revealed a similar number of regulated genes. Early-regulated genes were congruent with expected adverse outcome pathways for Cu with Gene Ontology terms including gene regulation, energy metabolism, transport, cell processes, stress, antioxidant metabolism and development. However, the gene regulation level was higher in E. nuttallii than in C. reinhardtii and several categories were more represented in the macrophyte than in the microalga. Moreover, several categories including oxidative pentose phosphate pathway (OPP), nitrate metabolism and metal handling were only found for E. nuttallii, whereas categories such as cell motility, polyamine metabolism, mitochondrial electron transport and tricarboxylic acid cycle (TCA) were unique to C. reinhardtii. These differences were attributed to morphological and metabolic differences and highlighted dissimilarities between a sessile and a mobile species. Our results highlight the efficiency of transcriptomics to assess early molecular responses in biota, and the importance of studying more aquatic plants for a better understanding on the impact and fate of environmental contaminants.
Collapse
Affiliation(s)
- Rebecca Beauvais-Flück
- Department F.-A. Forel for Environmental and Aquatic Sciences, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, 66, Boulevard Carl-Vogt, CH-1211, Geneva 4, Switzerland
| | - Vera I Slaveykova
- Department F.-A. Forel for Environmental and Aquatic Sciences, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, 66, Boulevard Carl-Vogt, CH-1211, Geneva 4, Switzerland
| | - Claudia Cosio
- Department F.-A. Forel for Environmental and Aquatic Sciences, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, 66, Boulevard Carl-Vogt, CH-1211, Geneva 4, Switzerland.
| |
Collapse
|
16
|
Bai H, Wei S, Jiang Z, He M, Ye B, Liu G. Pb (II) bioavailability to algae (Chlorella pyrenoidosa) in relation to its complexation with humic acids of different molecular weight. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 167:1-9. [PMID: 30292970 DOI: 10.1016/j.ecoenv.2018.09.114] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 09/21/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
Humic acid (HA) has a major influence on the environmental fate of metal ions due to its heterogeneity in chemical compositions, structure and functional groups. In this study, we investigated the effect of humic acid (HA) with different molecular weight (Mw) on the bioavailability of Pb for a representative algae-Chlorella pyrenoidosa. The results showed that HA with larger Mw had stronger inhibitory effects on the bioavailability of Pb to algae, and the biosorption capacity of Pb decreased with increasing Mw, which is in accordance with the variations of complexation capacities of Pb for HA fraction. In addition, we found that HA with Mw lower than 10 kDa could increase the biosorption capacity of Pb. The considerable differences among the Mw fractions on Pb biosorption were mainly attributed to their properties and corresponding complexation capacities. Phenolic groups were responsible for the variations of binding capacities among different Mw fractions, and it could also better explain the bioaccumulation of Pb to the membranes of algae. By using NICA-Donnan model, we found that over 60% of Pb ions were bound by HAs through specific binding, and the formation of Pb-HAs complex were non-bioavailable to algae, which was proved by the considerably decreasing percentage of internalized Pb. This study provided further insight into the bioavailability of Pb to algae as influenced by the complexation of HA with metal ion such as Pb.
Collapse
Affiliation(s)
- Hongcheng Bai
- College of Resources and Environment, Department of Environment Science and Engineering, Southwest University, Chongqing, China
| | - Shiqiang Wei
- College of Resources and Environment, Department of Environment Science and Engineering, Southwest University, Chongqing, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, China; China Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, China.
| | - Zhenmao Jiang
- College of Resources and Environment, Department of Environment Science and Engineering, Southwest University, Chongqing, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, China; China Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, China
| | - Mingjing He
- College of Resources and Environment, Department of Environment Science and Engineering, Southwest University, Chongqing, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, China; China Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, China
| | - Biying Ye
- College of Resources and Environment, Department of Environment Science and Engineering, Southwest University, Chongqing, China
| | - Gaoyun Liu
- College of Resources and Environment, Department of Environment Science and Engineering, Southwest University, Chongqing, China
| |
Collapse
|
17
|
Shi W, Fang X, Wu X, Zhang G, Que W, Li F. Alteration of bioaccumulation mechanisms of Cu by microalgae in the presence of natural fulvic acids. CHEMOSPHERE 2018; 211:717-725. [PMID: 30099156 DOI: 10.1016/j.chemosphere.2018.07.200] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 07/24/2018] [Accepted: 07/31/2018] [Indexed: 06/08/2023]
Abstract
The impact of natural fulvic acids (FAs) on the toxicity and bioaccumulation of Cu by Chlorella pyrenoidosa was studied. FAs extracted from Taihu Lake were separated into three fractions using dialysis bags: F1 (<500 Da), F2 (500-1000 Da) and F3 (>1000 Da). The results showed that the F3 fraction with a larger molecular weight contained less acidic groups and unsaturated aliphatic structures than F1 and F2, and it showed stronger alleviation of the toxicity of Cu to algae. In the presence of F1∼F3, the bioaccumulation curve of Cu in algae intersected with the straight line in the binary system of Cu-algae at approximately 5.3 × 10-3-6.0 × 10-3 mM of Cu equilibrium concentration, showing an inhibition of bioaccumulation of Cu in lower concentrations but an enhancement in higher Cu concentrations. The ratio of {Cu}ads/{Cu}int was used to clarify the transformation mechanism on adsorption; the transition interval occurred at a ratio of 3.5-4.4. This ratio indicated a shift from a mechanism of slow trending to equilibrium to a mechanism with rapid increase, which may be due to the bridging action of Cu to form a ternary complex of FA-Cu-algae and the occurrence of multilayer adsorption. The promotion order of F1> F3> F2 was consistent with percentages of the carboxyl group in total acidic functional groups in the FAs. This research is helpful for improving the accuracy of present models for the prediction of heavy metal risks in aqueous environments.
Collapse
Affiliation(s)
- Wen Shi
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Xiaoman Fang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xingfei Wu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Gaoxiang Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Weiyan Que
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Feili Li
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
18
|
Angel BM, Goodwyn K, Jolley DF, Simpson SL. The use of time-averaged concentrations of metals to predict the toxicity of pulsed complex effluent exposures to a freshwater alga. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 238:607-616. [PMID: 29609172 DOI: 10.1016/j.envpol.2018.03.095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/26/2018] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
Intermittent, fluctuating and pulsed contaminant discharges may result in organisms receiving highly variable toxicant exposures. This study investigated the toxicity of continuous and pulsed exposures of a complex, neutralised drainage water (NDW) and dissolved copper-spiked dilute NDW to the green alga, Pseudokirchneriella subcapitata. The effects of single pulses of between 1 and 48 h duration and continuous exposures (72 h) on algal growth rate inhibition were compared on a time-averaged concentration (TAC) basis. Algal growth rates generally recovered to control levels within 24-48 h of the pulse removal. Continuous exposures to NDW resulted in similar or marginally higher toxicity to the algae when compared to pulsed exposures of equivalent TAC (% NDW). The toxicity of the NDW was attributed mostly to the metals, with the major cations potentially causing effects that are both additive (direct toxicity) and antagonistic (lower bioavailability of trace metals). For dissolved copper in dilute NDW, the pulsed exposures caused slightly higher toxicity than continuous exposures of equivalent dissolved copper TAC, with much of the difference explained by differences in labile copper concentrations between treatments. The results indicate that water quality guideline values for toxicants derived from continuous chronic exposures may be relaxed for pulsed exposures by a factor related to the TAC with the intent to provide an adequately protective but not overly-conservative outcome. The study highlights the influence that natural water quality parameters such as water hardness and DOC can have metal speciation and toxicity, and indicates that these parameters are particularly important for site-specific water quality guideline value derivation where, on a TAC basis, pulsed exposures may be more toxic than continuous exposures typically used in guideline value derivation.
Collapse
Affiliation(s)
- Brad M Angel
- Centre for Environmental Contaminants Research, CSIRO Land and Water Locked Bag 2007, Kirrawee, NSW 2232, Australia.
| | - Kathryn Goodwyn
- Centre for Medical and Molecular Biosciences, School of Chemistry, University of Wollongong, Australia
| | - Dianne F Jolley
- Centre for Medical and Molecular Biosciences, School of Chemistry, University of Wollongong, Australia
| | - Stuart L Simpson
- Centre for Environmental Contaminants Research, CSIRO Land and Water Locked Bag 2007, Kirrawee, NSW 2232, Australia
| |
Collapse
|
19
|
Xing Y, Meng X, Wang L, Zhang J, Wu Z, Gong X, Wang C, Sun H. Effects of benzotriazole on copper accumulation and toxicity in earthworm (Eisenia fetida). JOURNAL OF HAZARDOUS MATERIALS 2018; 351:330-336. [PMID: 29554530 DOI: 10.1016/j.jhazmat.2018.03.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 02/13/2018] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
Triazole contaminants in water and soil environments can form complexes with metal ions, and therefore affect the bioavailability and toxicity of some heavy metals. In present study, significant increase of copper (Cu) uptake by earthworm (Eisenia fetida) was observed when combined pollution of benzotriazole (BTR) presented in soil. For instance, Cu accumulation in earthworms increased 55% approximately when BTR presented at the BTR/Cu molar ratio of 1:2.5. While the single Cu exposure (at 32 mg kg-1 in soil) resulted in increased malondialdehyde (MDA) content in earthworms from 0.319 to 0.668 nmol mg protein-1, joint exposure to BTR at BTR/Cu molar ratio of 1:10 significantly decreased the MDA content to 0.405 nmol mg protein-1. This indicates a potential detoxification effect of BTR to Cu induced oxidative damage in earthworms. Varied Cu subcellular distribution can be observed in earthworms of the single and combined exposure treatments. With the combined exposure of BTR, the proportion of Cu associated with granular fraction, the toxically inert fraction in earthworms, increased from 25% to 39%. This phenomenon can be used to explain the protective effects of BTR against oxidative damage.
Collapse
Affiliation(s)
- Yanshuai Xing
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering at Nankai University, Tianjin 300071, China
| | - Xiaoshuang Meng
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering at Nankai University, Tianjin 300071, China
| | - Lei Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering at Nankai University, Tianjin 300071, China.
| | - Junjie Zhang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering at Nankai University, Tianjin 300071, China
| | - Zijing Wu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering at Nankai University, Tianjin 300071, China
| | - Xinying Gong
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering at Nankai University, Tianjin 300071, China
| | - Chenye Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering at Nankai University, Tianjin 300071, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering at Nankai University, Tianjin 300071, China
| |
Collapse
|
20
|
Kováčik J, Bujdoš M, Babula P. Impact of humic acid on the accumulation of metals by microalgae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:10792-10798. [PMID: 29396826 DOI: 10.1007/s11356-018-1362-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/22/2018] [Indexed: 06/07/2023]
Abstract
Indirect impact of humic acid (HA) on metal accumulation and toxicity (Cd, Ni, Pb, and Hg; 100 μM; 24 h of exposure) in Scenedesmus quadricauda was studied. Algae were pre-cultured on solid (10 and 100 mg HA/L) or in liquid media (1, 5, and 10 mg HA/L) over 30 days and then exposed to metals mentioned above. Accumulation of applied metals irrespective of pre-culture increased in the order Ni < Cd < Pb < Hg. Algae pre-cultured on solid HA-enriched media accumulated more Cd (+ 46% at 10 mg HA/L), Ni (+ 50 and + 81% at 10 and 100 mg HA/L, respectively), and Pb (+ 15% at 100 mg HA/L) but the impact on Hg amount was not detected. Potassium and calcium decreased in response to all metals (K strongly under Hg excess) and HA had negligible impact. Interestingly, fluorescence microscopy detection of reactive oxygen species/nitric oxide (ROS/NO) balance showed that HA pre-culture suppressed ROS signal and stimulated NO signal in response to Cd (indicating positive impact of HA) while ROS signal in Ni and Pb treatments rather increased but NO signal decreased as expected from elevated Ni and Pb accumulation. Hg had clearly the most toxic impact on the ROS/NO balance. Algae pre-cultured in liquid HA-enriched media showed significantly increased Ni accumulation only (+ 14% at a dose 10 mg HA/L). Present study for the first time showed that humic acid may indirectly affect accumulation of metals and that solid HA-enriched medium used for pre-culture is more suitable to increase accumulation of metals by algae.
Collapse
Affiliation(s)
- Jozef Kováčik
- Department of Biology, University of Trnava, Priemyselná 4, 918 43, Trnava, Slovak Republic.
| | - Marek Bujdoš
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina - Ilkovičova 6, 842 15, Bratislava 4, Slovak Republic
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| |
Collapse
|
21
|
Jiang T, Kaal J, Liang J, Zhang Y, Wei S, Wang D, Green NW. Composition of dissolved organic matter (DOM) from periodically submerged soils in the Three Gorges Reservoir areas as determined by elemental and optical analysis, infrared spectroscopy, pyrolysis-GC-MS and thermally assisted hydrolysis and methylation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017. [PMID: 28641186 DOI: 10.1016/j.scitotenv.2017.06.114] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Soil-derived dissolved organic matter (DOM) has a major influence in biogeochemical processes related to contaminant dynamics and greenhouse gas emissions, due to its reactivity and its bridging role between the soil and aquatic systems. Within the Three Gorges Reservoir (TGR, China) area, an extensive water-fluctuation zone periodically submerges the surrounding soils. Here we report a characterization study of soil-derived DOM across the TGR areas, using elemental and optical analysis, infrared spectroscopy (FTIR), pyrolysis-GC-MS (Py-GC-MS) and thermally assisted hydrolysis and methylation (THM-GC-MS). The results showed that the soil DOM from the TGR area is a mixture of "allochthonous" (i.e., plant-derived/terrigenous) and "autochthonous" (i.e., microbial) origins. The terrigenous DOM is composed primarily of phenolic and aliphatic structures from lignin and aliphatic biopolymers (i.e. cutin, suberin), respectively. Multivariate statistics differentiated between two fractions of the microbial DOM, i.e. chitin-derived, perhaps from fungi and arthropods in soil, and protein-derived, partially sourced from algal or aquatic organisms. Molecular proxies of source and degradation state were in good agreement with optical parameters such as SUVA254, the fluorescence index (FI) and the humification index (HIX). The combined use of elemental analysis, fluorescence spectroscopy, and Py-GC-MS provides rigorous and detailed DOM characterization, whereas THM-GC-MS is useful for more precise but qualitative identification of the different phenolic (cinnamyl, p-hydroxyphenyl, guaiacyl, syringyl and tannin-derived) and aliphatic materials. With the multi-methodological approach used in this study, FTIR was the least informative, in part, because of the interference of inorganic matter in the soil DOM samples. The soil DOM from the TGR's water fluctuation zone exhibited considerable compositional diversity, mainly related to the balance between DOM source (microbial- or plant-derived), local vegetation and anthropogenic activities (e.g., agriculture). Finally, the relationship between DOM composition and its potential reactivity with substances of environmental concerns in the TGR area are also discussed.
Collapse
Affiliation(s)
- Tao Jiang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing 400716, China; Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå SE-90183, Sweden.
| | - Joeri Kaal
- Ciencia do Sistema Terra, Departamento de Edafoloxía e Química Agrícola, Universidade de Santiago de Compostela, Campus Sur s/n, Santiago de Compostela 15782, Spain; Instituto de Ciencias del Patrimonio (Incipit), Consejo Superior de Investigaciones Científicas (CSIC), Avda. de Vigo sn, 15705 Santiago de Compostela, Spain
| | - Jian Liang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Yaoling Zhang
- Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China
| | - Shiqiang Wei
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Dingyong Wang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Nelson W Green
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| |
Collapse
|
22
|
Shi W, Jin Z, Hu S, Fang X, Li F. Dissolved organic matter affects the bioaccumulation of copper and lead in Chlorella pyrenoidosa: A case of long-term exposure. CHEMOSPHERE 2017; 174:447-455. [PMID: 28187391 DOI: 10.1016/j.chemosphere.2017.01.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/21/2017] [Accepted: 01/23/2017] [Indexed: 06/06/2023]
Abstract
This study evaluated the impact of dissolved organic matter (DOM) of varying molecule weights (MWs) on long-term exposure to Cu and Pb in Chlorella pyrenoidosa. Citric acid, fulvic acid, and humic acid, in the order of increasing MWs, were selected to represent DOM. The results showed that DOM with larger MWs had stronger inhibitory effects on the bioavailability of Cu to algae. However, the biosorption isotherm of Pb in the presence of DOM was different: as Pb equilibrium concentration increased, the biosorption capacity increased sharply to a maximum, then decreased. The maximum values ranged between 0.186 and 0.398 mmol g-1, as the solution DOM concentration and MW changed, exhibiting a stoichiometric relationship between DOM, Pb and algae. The ternary complex of Pb-DOM-alga formed in a limited Pb concentration range, and increased the percentage of internalized Pb. This research helps to understand the role of DOM in metal uptake in phytoplankton.
Collapse
Affiliation(s)
- Wen Shi
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zanfang Jin
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Shiyin Hu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xiaoman Fang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Feili Li
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
23
|
Shen YT, Song YF. Effects of organic ligands on Pb absorption and speciation changes in Arabidopsis as determined by micro X-ray fluorescence and X-ray absorption near-edge structure analysis. JOURNAL OF SYNCHROTRON RADIATION 2017; 24:463-468. [PMID: 28244441 DOI: 10.1107/s1600577517001941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 02/06/2017] [Indexed: 06/06/2023]
Abstract
Pb can pass through the food chain via plants and threaten human health, which has attracted widespread attention. Changes in Pb speciation affect its bioavailability in soils and water. However, whether organic ligands can change the uptake and mobility of Pb in plants and increase or decrease Pb bioavailability remains uncertain. To reveal the roles of organic and inorganic Pb in Pb metabolism in plants, the localization and speciation changes of Pb in Arabidopsis thaliana plants grown in organic and inorganic Pb were characterized by synchrotron radiation micro X-ray fluorescence and X-ray absorption near-edge structure, respectively. These results demonstrated that Arabidopsis absorbed more Pb from Pb(NO3)2 than Pb(CH3COO)2 at the same exposure concentration. A higher percentage of Pb-citrate was found in Arabidopsis exposed to inorganic Pb solution, which suggested that Pb-citrate was the main complex for root-to-shoot transportation in Arabidopsis exposed to inorganic Pb solutions. Pb complexed with the organic ligand CH3COO- significantly inhibited primary root growth and lateral root development, while, at the same time, Pb was blocked by root hairs, which represented another way to reduce Pb absorption and protect the plant from biotoxicity.
Collapse
Affiliation(s)
- Ya Ting Shen
- National Research Center of Geoanalysis, 26# Xicheng District, Beijing 100037, People's Republic of China
| | - Yu Fang Song
- National Research Center of Geoanalysis, 26# Xicheng District, Beijing 100037, People's Republic of China
| |
Collapse
|
24
|
Turpin-Nagel K, Vadas TM. Controls on metal exposure to aquatic organisms in urban streams. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2016; 18:956-967. [PMID: 27170052 DOI: 10.1039/c6em00151c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Streams in urban ecosystems receive metal inputs primarily from stormwater runoff and wastewater effluent. The relative contribution of these metal sources to stream impairment is difficult to discern based on simple water characteristics and biological surveys. Stream impairment in these systems is often indicated by reduced abundance and diversity of aquatic insects, which tend to be more sensitive to chronic metal exposures. Metal species and controls on metal species in both the waterborne and dietborne exposure pathways to aquatic organisms are reviewed here. In addition, ecological changes that can control dietborne species are discussed. A main focus is on how organic matter from different anthropogenic sources may control both aqueous metal speciation as well as interaction with various inorganic or microbiological surfaces in streams. Most of the reviewed research focuses on Cu, Zn or Pb as those are the primary metals of concern in developed systems and Cu and Pb have unique and strong interactions with organic matter. Recommendations for further research are described in the context of exposure species, dynamics of exposure, stoichiometry, or advanced analytical tools, and regulatory implications are discussed.
Collapse
Affiliation(s)
- Katelyn Turpin-Nagel
- Department of Civil and Environmental Engineering, University of Connecticut, 261 Glenbrook Rd. Unit 3037, Storrs, CT 06269, USA.
| | - Timothy M Vadas
- Department of Civil and Environmental Engineering, University of Connecticut, 261 Glenbrook Rd. Unit 3037, Storrs, CT 06269, USA. and Center for Environmental Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
25
|
Koman VB, von Moos NR, Santschi C, Slaveykova VI, Martin OJF. New insights into ROS dynamics: a multi-layered microfluidic chip for ecotoxicological studies on aquatic microorganisms. Nanotoxicology 2016; 10:1041-50. [DOI: 10.3109/17435390.2016.1144826] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Volodymyr B. Koman
- Nanophotonics and Metrology Laboratory (NAM), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Nadia R. von Moos
- Department of Environmental Biogeochemistry and Ecotoxicology, Faculty of Sciences, Institute F.-a. Forel, Earth and Environmental Sciences, University of Geneva, Geneva, Switzerland
| | - Christian Santschi
- Nanophotonics and Metrology Laboratory (NAM), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Vera I. Slaveykova
- Department of Environmental Biogeochemistry and Ecotoxicology, Faculty of Sciences, Institute F.-a. Forel, Earth and Environmental Sciences, University of Geneva, Geneva, Switzerland
| | - Olivier J. F. Martin
- Nanophotonics and Metrology Laboratory (NAM), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| |
Collapse
|
26
|
Dao LHT, Beardall J. Effects of lead on growth, photosynthetic characteristics and production of reactive oxygen species of two freshwater green algae. CHEMOSPHERE 2016; 147:420-9. [PMID: 26774308 DOI: 10.1016/j.chemosphere.2015.12.117] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/23/2015] [Accepted: 12/27/2015] [Indexed: 05/23/2023]
Abstract
In the natural environment, heavy metal contamination can occur as long-term pollution of sites or as pulses of pollutants from wastewater disposal. In this study two freshwater green algae, Chlorella sp. FleB1 and Scenedesmus YaA6, were isolated from lead-polluted water samples and the effects of 24 h vs 4 and 8 d exposure of cultures to lead on growth, photosynthetic physiology and production of reactive oxygen species (ROS) of these algae were investigated. In Chlorella sp. FleB1, there was agreement between lead impacts on chlorophyll content, photosynthesis and growth in most case. However, in Scenedesmus acutus YaA6 growth was inhibited at lower lead concentrations (0.03-0.87 × 10(-9) M), under which ROS, measured by 2',7' dichlorodihydrofluorescein diacetate fluorescence, were 4.5 fold higher than in controls but photosynthesis was not affected, implying that ROS had played a role in the growth inhibition that did not involve direct effects on photosynthesis. Effects of short-term (5 h, 24 h) vs long-term (4 d and 8 d) exposure to lead were also compared between the two algae. The results contribute to our understanding of the mechanisms of lead toxicity to algae.
Collapse
Affiliation(s)
- Ly H T Dao
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia; Faculty of Biology, Hanoi National University of Education, Hanoi, Viet Nam.
| | - John Beardall
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
27
|
Worms IAM, Adenmatten D, Miéville P, Traber J, Slaveykova VI. Photo-transformation of pedogenic humic acid and consequences for Cd(II), Cu(II) and Pb(II) speciation and bioavailability to green microalga. CHEMOSPHERE 2015; 138:908-915. [PMID: 25563161 DOI: 10.1016/j.chemosphere.2014.10.093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 10/01/2014] [Accepted: 10/21/2014] [Indexed: 06/04/2023]
Abstract
Humic substances (HS) play key role in toxic metal binding and protecting aquatic microorganisms from metal-induced stress. Any environmental changes that could alter HS concentration and reactivity can be expected to modify metal complexation and thus affect metal speciation and bioavailability to microalgae. The present study explores the influence of increased solar irradiance on the chemical structures and molecular weight of Elliott soil humic acid (EHA) and the associated consequences for Cd(II), Cu(II) and Pb(II) complexation and intracellular metal content in microalga. The results demonstrate that high radiance doses induce an oxidation of EHA with a formation of low molecular weight acids, an increase of -OH and -COOH group abundance, and a drop in EHA hydrodynamic size and molecular weight. The photo-induced structural changes are accompanied with a release of metal from M-EHA complexes and narrowing their size distribution, which in turn results in an increase of the intracellular Cd, Cu and Pb contents in microalga Chlamydomonas reinhardtii in agreement with the measured free metal ions concentrations.
Collapse
Affiliation(s)
- Isabelle A M Worms
- Environmental Biogeochemistry and Ecotoxicology, Institute F.-A. Forel, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, 10, route de Suisse, CH-1290 Versoix, Switzerland.
| | - David Adenmatten
- Environmental Biogeochemistry and Ecotoxicology, Institute F.-A. Forel, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, 10, route de Suisse, CH-1290 Versoix, Switzerland
| | - Pascal Miéville
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne EPFL, Station 6, Switzerland
| | - Jacqueline Traber
- Process Engineering, Eawag, Ueberlandstrasse 133, 8600 Duebendorf, Switzerland
| | - Vera I Slaveykova
- Environmental Biogeochemistry and Ecotoxicology, Institute F.-A. Forel, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, 10, route de Suisse, CH-1290 Versoix, Switzerland.
| |
Collapse
|
28
|
Zhou F, Wang H, Fang S, Zhang W, Qiu R. Pb(II), Cr(VI) and atrazine sorption behavior on sludge-derived biochar: role of humic acids. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:16031-16039. [PMID: 26062468 DOI: 10.1007/s11356-015-4818-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 06/01/2015] [Indexed: 06/04/2023]
Abstract
Pyrolyzing municipal wastewater treatment sludge into biochar can be a promising sludge disposal approach, especially as the produced sludge-derived biochar (SDBC) is found to be an excellent sorbent for heavy metals and atrazine. The aim of this study was to investigate how and why the coexisting humic acids influence the sorption capacity, kinetic, and binding of these contaminants on SDBC surface. Results showed humic acids enhanced Pb(II)/Cr(VI) sorption binding, and increased the corresponding Pb(II) Langmuir sorption capacity at pH 5.0 from 197 to 233 μmol g(-1), and from 688 to 738 μmol g(-1) for Cr(VI) at pH 2.0. It can be mainly attributed to the sorbed humic acids, whose active functional groups can offer the additional sites to form stronger inner-sphere complexes with Pb(2+), and supply more reducing agent to facilitate the transformation of Cr(VI) to Cr(III). However, humic acids reduced the atrazine adsorption Freundlich constant from 1.085 to 0.616 μmol g(-1). The pore blockage, confirmed by the decreased BET-specific surface area, as well as the more hydrophilic surface with more sorbed water molecules may be the main reasons for that suppression. Therefore, the coexisting humic acids may affect heavy metal stabilization or pesticide immobilization during SDBC application to contaminated water or soils, and its role thus should be considered especially when organic residues are also added significantly to increase the humic acid content there.
Collapse
Affiliation(s)
- Fengsa Zhou
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Hong Wang
- China Energy Conservation DADI Environmental Remediation Co. Ltd, Beijing, 100082, China
| | - Sheng'en Fang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Weihua Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, China.
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, China
| |
Collapse
|
29
|
Stewart TJ, Szlachetko J, Sigg L, Behra R, Nachtegaal M. Tracking the Temporal Dynamics of Intracellular Lead Speciation in a Green Alga. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:11176-81. [PMID: 26320742 DOI: 10.1021/acs.est.5b02603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Organisms have developed metal regulatory mechanisms in response to changes in the bioavailability of trace metals. Just as metal bioavailability dictates cellular uptake, intracellular metal speciation determines the availability of metals to exert biological effects. However, the missing link in understanding the relationship between metal uptake and biological responses is the ability to accurately measure intracellular metal speciation. We conducted Pb exposure studies on the well-characterized model green alga Chlamydomonas reinhardtii and identified temporal changes in intracellular Pb speciation under conditions relevant for fresh water ecosystems using resonant X-ray emission spectroscopy (RXES), which possesses enhanced sensitivity to functional group chemistry relative to X-ray absorption spectroscopy (XAS). Analysis of RXES maps show that only a small fraction of total intracellular Pb was complexed by thiol groups. Initial sequestration of Pb in oxides and inorganic phosphate was followed by binding of Pb to organic phosphate, suggesting potential interference in vital cellular functions. These results contrast proposed detoxification responses involving complexation by thiol groups from peptides.
Collapse
Affiliation(s)
- T J Stewart
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , CH-8600 Dübendorf, Switzerland
- ETH , Institute of Biogeochemistry and Pollutant Dynamics IBP, CH-8092 Zurich, Switzerland
| | - J Szlachetko
- Paul Scherrer Institute , 5232 Villigen PSI, Switzerland
- Institute of Physics, Jan Kochanowski University , P-25-406 Kielce, Poland
| | - L Sigg
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , CH-8600 Dübendorf, Switzerland
- ETH , Institute of Biogeochemistry and Pollutant Dynamics IBP, CH-8092 Zurich, Switzerland
| | - R Behra
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , CH-8600 Dübendorf, Switzerland
| | - M Nachtegaal
- Paul Scherrer Institute , 5232 Villigen PSI, Switzerland
| |
Collapse
|
30
|
Tang Y, Li S, Lu Y, Li Q, Yu S. The influence of humic acid on the toxicity of nano-ZnO and Zn2+ to the Anabaena sp. ENVIRONMENTAL TOXICOLOGY 2015; 30:895-903. [PMID: 24519877 DOI: 10.1002/tox.21964] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 01/21/2014] [Accepted: 01/24/2014] [Indexed: 06/03/2023]
Abstract
This study explored the effects of humic acid (HA) on the toxicity of ZnO nanoparticles (nano-ZnO) and Zn(2+) to Anabaena sp. Typical chlorophyll fluorescence parameters, including effective quantum yield, photosynthetic efficiency and maximal electron transport rate, were measured by a pulse-amplitude modulated fluorometer. Results showed that nano-ZnO and Zn(2+) could inhibit Anabaena sp. growth with the EC50 (concentration for 50% of maximal effect) of 0.74 ± 0.01 and 0.3 ± 0.01 mg/L, respectively. In the presence of 3.0 mg/L of HA, EC50 of nano-ZnO increased to 1.15 ± 0.04 mg/L and EC50 of Zn(2+) was still 0.3 ± 0.01 mg/L. Scanning electron microscopy observation revealed that HA prevented the adhesion of nano-ZnO on the algae cells due to the increased electrostatic repulsion. The generation of intracellular reactive oxygen species and cellular lipid peroxidation were significantly limited by HA. Nano-ZnO had more damage to the cell membrane than Zn(2+) did, which could be proven by the malondialdehyde content in Anabaena sp. cells. © 2014 Wiley Periodicals, Inc. Environ Toxicol 30: 895-903, 2015.
Collapse
Affiliation(s)
- Yulin Tang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Shuyan Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Yao Lu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Qian Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Shuili Yu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| |
Collapse
|
31
|
Michael-Kordatou I, Michael C, Duan X, He X, Dionysiou DD, Mills MA, Fatta-Kassinos D. Dissolved effluent organic matter: Characteristics and potential implications in wastewater treatment and reuse applications. WATER RESEARCH 2015; 77:213-248. [PMID: 25917290 DOI: 10.1016/j.watres.2015.03.011] [Citation(s) in RCA: 253] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 02/19/2015] [Accepted: 03/16/2015] [Indexed: 06/04/2023]
Abstract
Wastewater reuse is currently considered globally as the most critical element of sustainable water management. The dissolved effluent organic matter (dEfOM) present in biologically treated urban wastewater, consists of a heterogeneous mixture of refractory organic compounds with diverse structures and varying origin, including dissolved natural organic matter, soluble microbial products, endocrine disrupting compounds, pharmaceuticals and personal care products residues, disinfection by-products, metabolites/transformation products and others, which can reach the aquatic environment through discharge and reuse applications. dEfOM constitutes the major fraction of the effluent organic matter (EfOM) and due to its chemical complexity, it is necessary to utilize a battery of complementary techniques to adequately describe its structural and functional character. dEfOM has been shown to exhibit contrasting effects towards various aquatic organisms. It decreases metal uptake, thus potentially reducing their bioavailability to exposed organisms. On the other hand, dEfOM can be adsorbed on cell membranes inducing toxic effects. This review paper evaluates the performance of various advanced treatment processes (i.e., membrane filtration and separation processes, activated carbon adsorption, ion-exchange resin process, and advanced chemical oxidation processes) in removing dEfOM from wastewater effluents. In general, the literature findings reveal that dEfOM removal by advanced treatment processes depends on the type and the amount of organic compounds present in the aqueous matrix, as well as the operational parameters and the removal mechanisms taking place during the application of each treatment technology.
Collapse
Affiliation(s)
- I Michael-Kordatou
- Department of Civil and Environmental Engineering and Nireas-International Water Research Centre, School of Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - C Michael
- Department of Civil and Environmental Engineering and Nireas-International Water Research Centre, School of Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - X Duan
- Department of Civil and Environmental Engineering and Nireas-International Water Research Centre, School of Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus; Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH 45221-0071, USA
| | - X He
- Department of Civil and Environmental Engineering and Nireas-International Water Research Centre, School of Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus; Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH 45221-0071, USA
| | - D D Dionysiou
- Department of Civil and Environmental Engineering and Nireas-International Water Research Centre, School of Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus; Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH 45221-0071, USA
| | - M A Mills
- US EPA, Office of Research and Development, 26 W, Martin Luther King Drive, Cincinnati, OH 45268, USA
| | - D Fatta-Kassinos
- Department of Civil and Environmental Engineering and Nireas-International Water Research Centre, School of Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus.
| |
Collapse
|
32
|
Verheyen L, Versieren L, Smolders E. Natural dissolved organic matter mobilizes Cd but does not affect the Cd uptake by the green algae Pseudokirchneriella subcapitata (Korschikov) in resin buffered solutions. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 154:80-86. [PMID: 24874007 DOI: 10.1016/j.aquatox.2014.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/06/2014] [Accepted: 05/10/2014] [Indexed: 06/03/2023]
Abstract
Natural dissolved organic matter (DOM) can have contrasting effects on metal bioaccumulation in algae because of complexation reactions that reduce free metal ion concentrations and because of DOM adsorption to algal surfaces which promote metal adsorption. This study was set up to reveal the role of different natural DOM samples on cadmium (Cd) uptake by the green algae Pseudokirchneriella subcapitata (Korschikov). Six different DOM samples were collected from natural freshwater systems and isolated by reverse osmosis. In addition, one (13)C enriched DOM sample was isolated from soil to trace DOM adsorption to algae. Algae were exposed to standardized solutions with or without these DOM samples, each exposed at equal DOM concentrations and at equal non-toxic Cd(2+) activity (∼4 nM) that was buffered with a resin. The DOM increased total dissolved Cd by factors 3-16 due to complexation reactions at equal Cd(2+) activity. In contrast, the Cd uptake was unaffected by DOM or increased maximally 1.6 fold ((13)C enriched DOM). The (13)C analysis revealed that maximally 6% of algal C was derived from DOM and that this can explain the small increase in biomass Cd. It is concluded that free Cd(2+) and not DOM-complexed Cd is the main bioavailable form of Cd when solution Cd(2+) is well buffered.
Collapse
Affiliation(s)
- Liesbeth Verheyen
- Division Soil and Water Management, Department of Earth and Environmental Science, KU Leuven, Belgium.
| | - Liske Versieren
- Division Soil and Water Management, Department of Earth and Environmental Science, KU Leuven, Belgium.
| | - Erik Smolders
- Division Soil and Water Management, Department of Earth and Environmental Science, KU Leuven, Belgium.
| |
Collapse
|
33
|
Tonietto AE, Lombardi AT, Vieira AAH, Parrish CC, Choueri RB. Cylindrospermopsis raciborskii (Cyanobacteria) exudates: chemical characterization and complexation capacity for Cu, Zn, Cd and Pb. WATER RESEARCH 2014; 49:381-390. [PMID: 24169513 DOI: 10.1016/j.watres.2013.10.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 10/05/2013] [Accepted: 10/08/2013] [Indexed: 06/02/2023]
Abstract
Cylindrospermopsis raciborskii is a cosmopolitan and potentially toxic planktonic Cyanobacteria that produces and exudes copious amounts of dissolved organic materials. This organism dominates the eutrophic reservoir Barra Bonita (Brazil), where it normally blooms throughout the year. This investigation focused on the characterization of such exudates analyzing their capacity to complex copper, zinc, lead and cadmium through the determination of ligand concentration (CL) and conditional stability constant (logK'ML), as well as elemental composition (C, H, N and S), the content of carbohydrates, proteins, lipids and dissolved organic carbon (DOC). The dissolved organic material was fractionated into 3 molecular weights (>30 kDa; 30-10 kDa; 10-3 kDa) and each fraction was analyzed. The results showed that in the >30 kDa and 30-10 kDa fractions carbohydrates dominate over proteins and lipids. Different CL and logK'ML were obtained for the different molecular weight fractions of the excreted organic materials, suggesting high diversity of ligands. In the >30 kDa, there were more complexing sites (CL) for Cu, but higher affinity (K') for Zn. In the 30-10 kDa fraction, the higher CL was for Cd, but the greatest affinities were for Cu and Zn. In the 10-3 kDa fraction, higher CL was obtained for Cd and Zn, while Cu and Cd had the highest strengths of association. In the environment, such diversity of ligands and strengths of association can result in a displacement of metals weakly bound to the EOM, and increase metal buffering capacity of the environment, supporting higher metal inputs before toxic effects are detected in the biota.
Collapse
Affiliation(s)
- Alessandra Emanuele Tonietto
- Department of Chemistry, Federal University of São Carlos, Via Washington Luis km 235, PO Box 676, CEP 13565-905 São Carlos, São Paulo, Brazil.
| | - Ana Teresa Lombardi
- Department of Botany, Federal University of São Carlos, Via Washington Luis km 235, PO Box 676, CEP 13565-905 São Carlos, São Paulo, Brazil
| | - Armando Augusto Henriques Vieira
- Department of Botany, Federal University of São Carlos, Via Washington Luis km 235, PO Box 676, CEP 13565-905 São Carlos, São Paulo, Brazil
| | - Christopher C Parrish
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Rodrigo Brasil Choueri
- Federal University of São Paulo, Santos Campus, Avenue D. Ana Costa, 95, Vila Mathias, CEP 11060-001 Santos, São Paulo, Brazil; Department of Ecotoxicology, University Santa Cecília, Via Oswaldo Cruz, 266, CEP 11045-907 Santos, São Paulo, Brazil
| |
Collapse
|
34
|
Chen H, Meng W, Lei K. Modeling metal binding by dissolved humic substance: a revisit to the fluorometric titration approach. APPLIED SPECTROSCOPY 2014; 68:421-427. [PMID: 24694698 DOI: 10.1366/13-07231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
It is desirable to directly investigate metal cation binding by dissolved humic substance (HS) in environmental samples without isolation and purification of the HS. This is commonly achieved by the fluorometric titration approach, in which the variations of the HS components' fluorescence when titrated with metal cations, such as cupric ions (Cu(2+)), were commonly resolved by a well-established chemometric tool called parallel factor analysis and fit to a classical nonlin ear equation to obtain cation binding parameters. The nonlinear expression was derived based on the two assumptions that a given HS component (e.g., L) binds Cu(2+) with a 1:1 stoichiometry, forming only the complex LCu, and that other ligands competing with L for Cu(2+) are not explicitly considered. Given the deviations (e.g., the presence of multiple HS components competing for Cu(2+) and a likely 2:1 binding stoichiometry in addition to the 1:1 binding) from the assumptions, the fitting-derived binding parameters reported in past studies are questionable; those studies commonly reported high goodness-of-fit (R(2)) as a support of the validity of the assumptions. This study deconstructed the current equation and examined it with two organic ligand components in a simulated study to see what conditions could also yield a good fit. It turned out that high a R(2) value ranging between 0.9971 and 1.0 was observed despite the deviations from the above-mentioned assumptions. In addition, this study re-evaluated some published experimental data from these past studies and found that the fitting-derived parameters could not be accounted for based on the above-mentioned assumptions. The findings in this study therefore indicate that the current fluorometric titration approach is problematic when investigating HS component interactions with metal ions in situ. The combination of ion-selective electrode and fluorometric titration may be an alternative to the current fluorometric titration approach alone.
Collapse
Affiliation(s)
- Hao Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wei Meng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Kun Lei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
35
|
|
36
|
Mostofa KMG, Liu CQ, Feng X, Yoshioka T, Vione D, Pan X, Wu F. Complexation of Dissolved Organic Matter with Trace Metal Ions in Natural Waters. PHOTOBIOGEOCHEMISTRY OF ORGANIC MATTER 2013. [DOI: 10.1007/978-3-642-32223-5_9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
37
|
Fechner LC, Dufour M, Gourlay-Francé C. Pollution-induced community tolerance of freshwater biofilms: measuring heterotrophic tolerance to Pb using an enzymatic toxicity test. ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:2123-2131. [PMID: 22729786 DOI: 10.1007/s10646-012-0964-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/07/2012] [Indexed: 06/01/2023]
Abstract
This study aims at investigating the impacts of Pb on freshwater biofilms with a pollution-induced community tolerance (PICT) approach using a recently developed short-term toxicity test based on β-glucosidase activity to measure biofilms' tolerance to Pb. We first investigated more closely the influence of the total suspended solids (TSS) concentrations of biofilm suspensions used for short-term toxicity tests performed to assess Pb tolerance. The Pb EC(50) values of four dilutions of the same biofilm suspension increased with their TSS concentrations. TSS-normalization allowed to obtain a unique measure of Pb tolerance, thus confirming that TSS-normalization of EC(50) values is a good means to estimate biofilm tolerance to Pb. The experiment was repeated with three different biofilm samples collected at different sites and dates. Second, biofilms were exposed to Pb (0, 1, 10 and 100 μg/L) for 3 weeks in microcosms to assess the impacts of Pb exposure on the communities. An increase in Pb tolerance was observed for the biofilm exposed to 100 μg/L. Automated Ribosomal Intergenic Spacer Analysis revealed modifications of bacterial and eukaryotic community structure with Pb exposure. Moreover, exposure to 100 μg/L Pb also led to an increase in Zn tolerance but not Cu tolerance. This study shows that tolerance acquisition to Pb can be detected after exposure to environmental concentrations of Pb using a PICT methodology and normalized EC(50) values as measures of Pb tolerance.
Collapse
Affiliation(s)
- Lise C Fechner
- Irstea, UR HBAN, 1 rue Pierre-Gilles de Gennes - CS 10030, 92761, Antony, France.
| | | | | |
Collapse
|
38
|
Yang WW, Li Y, Miao AJ, Yang LY. Cd2+ toxicity as affected by bare TiO2 nanoparticles and their bulk counterpart. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 85:44-51. [PMID: 22975689 DOI: 10.1016/j.ecoenv.2012.08.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/19/2012] [Accepted: 08/20/2012] [Indexed: 06/01/2023]
Abstract
Toxicity of engineered nanoparticles has received extensive attention in recent years. However, nanoparticles always co-exist with other pollutants in natural environment. Whether there are any interactions between these classical pollutants and nanoparticles; and how these interactions may influence the environmental behavior, effects and fate of each other remain largely unclear. For this purpose, effects of bare titanium dioxide engineered nanoparticles (TiO(2)-NP) and their bulk counterpart (TiO(2)-BC) on Cd(2+) bioavailability and toxicity to the green alga Chlamydomonas reinhardtii were examined in the present study. We first investigated the kinetics and equilibrium isotherm of Cd(2+) adsorption on both particles in the algal culture medium. Pseudo-first-order adsorption kinetics was observed with equilibrium rate constant ranging from 0.19 to 0.33min(-1). Increase in Cd(2+) adsorption with its ambient concentration at equilibrium followed a single Langmuir isotherm for different concentrations of TiO(2). Furthermore, surface-area-based Cd(2+) adsorption by TiO(2)-BC was higher than that by TiO(2)-NP in most Cd(2+) concentration treatments suggesting that particle size was not the only cause for different adsorption. Both forms of TiO(2) could alleviate Cd(2+) inhibitive effects on C. reinhardtii. However, Cd(2+) toxicity and its bioaccumulation were comparable as long as its free ion concentration in ambient toxicity media was similar regardless the particle size and concentration of TiO(2). There was no TiO(2) inside the algal cells either. Therefore, it was Cd(2+) adsorption by TiO(2) which decreased its ambient free ion concentration and further its intracellular accumulation as well as toxicity.
Collapse
Affiliation(s)
- Wei-Wan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210093, China
| | | | | | | |
Collapse
|
39
|
Olguín EJ, Sánchez-Galván G. Heavy metal removal in phytofiltration and phycoremediation: the need to differentiate between bioadsorption and bioaccumulation. N Biotechnol 2012; 30:3-8. [DOI: 10.1016/j.nbt.2012.05.020] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 05/22/2012] [Accepted: 05/25/2012] [Indexed: 11/29/2022]
|
40
|
Worms IAM, Boltzman J, Garcia M, Slaveykova VI. Cell-wall-dependent effect of carboxyl-CdSe/ZnS quantum dots on lead and copper availability to green microalgae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2012; 167:27-33. [PMID: 22522315 DOI: 10.1016/j.envpol.2012.03.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 03/07/2012] [Accepted: 03/08/2012] [Indexed: 05/31/2023]
Abstract
The present study examines the effect of carboxyl-CdSe/ZnS quantum dots (QDs) on Cu and Pb availability to microalgae with different cell wall characteristics: Chlorella kesslerii possessing a cellulosic cell wall and two strains of Chlamydomonas reinhardtii, a wall-less and a walled strain containing glycoproteins as the main cell wall component. Results demonstrated that QDs decreased Pb and Cu intracellular contents ({Cu}(int) and {Pb}(int)) in walled strains by a factor of 2.5 and 2, respectively, as expected by the decrease of about 70% and 40% in the dissolved Cu and Pb concentrations. QDs increased {Cu}(int) and {Pb}(int) in wall-less strain by a factor of 4 and 3.5. These observations were consistent with the observed association of QDs to the wall-less C. reinhardtii, and lack of association to walled algal strains. Suwannee River humic acid did not influence metal association to QDs, but decreased {Cu}(int) and {Pb}(int) in all microalgae.
Collapse
Affiliation(s)
- Isabelle A M Worms
- Aquatic Biogeochemistry and Ecotoxicology, Institute F-A Forel, Faculty of Sciences, University of Geneva, 10 route de Suisse, 1290 Versoix, Switzerland
| | | | | | | |
Collapse
|
41
|
Verheyen L, Merckx R, Smolders E. A resin-buffered nutrient solution for controlling metal speciation in the algal bottle assay. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 114-115:200-205. [PMID: 22447105 DOI: 10.1016/j.aquatox.2012.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 02/16/2012] [Accepted: 02/18/2012] [Indexed: 05/31/2023]
Abstract
Metal speciation in solution is uncontrolled during algal growth in the traditional algal bottle assay. A resin-buffered nutrient solution was developed to overcome this problem and this was applied to test the effect of chloride (Cl⁻) on cadmium (Cd) uptake. Standard nutrient solution was enriched with 40 mM of either NaNO₃ or NaCl, and was prepared to contain equal Cd²⁺ but varying dissolved Cd due to the presence of CdCl(n)(2-n) complexes. Both solutions were subsequently used in an algal assay in 100 mL beakers that contained only the solution (designated "-R") or contained the solution together with a cation exchange sulfonate resin (2 g L⁻¹, designated "+R") as a deposit on the bottom of the beaker. Pseudokirchneriella subcapitata was grown for 72 h (1.4 × 10⁵-1.4 × 10⁶ cells mL⁻¹) in stagnant solution and shaken three times a day. Growth was unaffected by the presence of the resin (p>0.05). The Cd concentrations in solution of the -R devices decreased with 50-58% of initial values due to Cd uptake. No such changes were found in the +R devices or in abiotic controls. Cd uptake was unaffected by either NaNO₃ or NaCl treatment in the +R device, confirming that Cd²⁺ is the preferred Cd species in line with the general concept of metal bioavailability. In contrast, Cd uptake in the -R devices was two-fold larger in the NaCl treatment than in the NaNO₃ treatment (p<0.001), suggesting that CdCl(n)(2-n) complexes are bioavailable in this traditional set-up. However this bioavailability is partially, but not completely, an apparent one, because of the considerable depletion of solution ¹⁰⁹Cd in this set-up. Resin-buffered solutions are advocated in the algal bottle assay to control trace metal supply and to better identify the role of metal complexes on bioavailability.
Collapse
Affiliation(s)
- L Verheyen
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, K.U.Leuven, Kasteelpark Arenberg 20-Box 2459, 3001 Heverlee, Belgium.
| | | | | |
Collapse
|
42
|
Li ZH, Zeng JF, Li S, Ji XQ, Wang XC. [Effect of size and number of aerobic granules on nitrification and denitrification]. HUAN JING KE XUE= HUANJING KEXUE 2012; 33:903-909. [PMID: 22624386 DOI: 10.1016/s1001-0742(11)60977-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Based on experimental results, a one dimension dynamic model was developed for describing the growth, maintenance and decay processes of microbes using multi substances, and consequently, the effect of size and number of aerobic granules on nitrification and denitrification were investigated. It was found that the consuming of ammonia nitrogen increased with the larger number of granules given the same biomass amount, indicating that the consumption of ammonia was dependent on the surface area of granules. The resulting amount of NO2(-) -N and NO3(-) -N was dependent not only on the amount but also on the diameter of granules, and the effect of the diameter became negligible only when the ammonia concentration was very low, suggesting the penetration depth of oxygen determines the production of NO2(-) -N and NO3(-) -N. Regarding on denitrification, for those granules with the diameter more than 1 000 microm, the denitrification increased with the increase of diameter, however, for those ones less than 1 000 microm the effect of diameter became negligible, indicating that the limitation of oxygen diffusion in granules of big granules more than 1 000 microm could help the process of denitrification.
Collapse
Affiliation(s)
- Zhi-Hua Li
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | | | | | | | | |
Collapse
|
43
|
Spierings J, Worms IAM, Miéville P, Slaveykova VI. Effect of humic substance photoalteration on lead bioavailability to freshwater microalgae. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:3452-3458. [PMID: 21351764 DOI: 10.1021/es104288y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The present study provides results on the influence of humic substance (HS) photoalteration on lead availability to the freshwater microalga Chlorella kesslerii . The evolution of the free lead-ion concentrations measured by the ion exchange technique [Pb](IET) and intracellular lead contents was explored in the presence of Suwannee River humic (SRHA) and fulvic (SRFA) acids, as well as Aldrich humic acid (AHA) exposed at increasing radiance doses under a solar simulator. Modifications of HS characteristics highly relevant to Pb complexation and accumulation of HS to algal surfaces, including Fourier transform infrared spectroscopy, were followed. It was demonstrated that simulated sunlight exposure of HS increased [Pb](IET) in the medium for SRFA and SRHA, but had no effect for AHA. No clear relationship was observed between the changes in free lead-ion concentrations and intracellular content in alga for all studied HS, suggesting that HS photodegradation products also exhibit Pb complexation properties, and that direct interactions between HS and alga are affected. Indeed, photoalteration of humic substances reduced the adsorption of HS to the algal surface; the effect was more pronounced for SRFA and AHA and less significant for SRHA. The bioavailability results were consistent with the characterization of the phototransformation of humic substances: Pb speciation changes followed the modification of the relative abundance of the carboxylic groups and their molecular environment, while the reduced HS adsorption to the alga correlated with losses of the double bond abundance and aromaticity.
Collapse
Affiliation(s)
- Julian Spierings
- Aquatic Biogeochemistry and Ecotoxicology, Institute F.-A. Forel, Faculty of Sciences, University of Geneva , 10, route de Suisse, 1290 Versoix, Geneva, Switzerland
| | | | | | | |
Collapse
|
44
|
Worms IAM, Traber J, Kistler D, Sigg L, Slaveykova VI. Uptake of Cd(II) and Pb(II) by microalgae in presence of colloidal organic matter from wastewater treatment plant effluents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2010; 158:369-374. [PMID: 19800156 DOI: 10.1016/j.envpol.2009.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 09/01/2009] [Accepted: 09/03/2009] [Indexed: 05/28/2023]
Abstract
The present study addresses the key issue of linking the chemical speciation to the uptake of priority pollutants Cd(II) and Pb(II) in the wastewater treatment plant effluents, with emphasis on the role of the colloidal organic matter (EfOM). Binding of Cd(II) and Pb(II) by EfOM was examined by an ion exchange technique and flow field-flow fractionation coupled to inductively coupled plasma mass spectrometry in parallel to bioassays with green microalga Chlorella kesslerii in ultrafiltrate (<1 kDa) and colloidal isolates (1 kDa to 0.45 mum). The uptake of Cd by C. kesslerii was consistent with the speciation analysis and measured free metal ion concentrations, while Pb uptake was much greater than that expected from the speciation measurement. Better understanding of the differences in the effects of the EfOM on Cd(II) and Pb(II) uptake required to take into account the size dependence of metal binding by EfOM.
Collapse
Affiliation(s)
- Isabelle A M Worms
- Environmental Biophysical Chemistry, IIE-ENAC, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 2, CH-1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|