1
|
Al-Ghamdi S. Design and Characterization of Ni(II) and Cu(II) Complexes With Methionine and 1,10-Phenanthroline: Antibacterial and Anti-Fungal Properties. Chem Biodivers 2024:e202402540. [PMID: 39670746 DOI: 10.1002/cbdv.202402540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 12/14/2024]
Abstract
This research focused on the design and characterization of two new transition metal complexes, NiMetPhe and CuMetPhe, derived from methionine (Met) and 1,10-phenanthroline (Phe), coordinated with Ni(II) and Cu(II) ions, respectively. Structural elucidation through analytical techniques, conductivity, elemental analysis, FTIR spectra, electronic spectra, magnetic moment, mass spectra, and thermal degradation, confirmed their octahedral geometries with the formulas [Ni(Met)(Phe)(Cl)(H₂O)] and [Cu(Met)(Phe)(Cl)(H₂O)]. Thermal analysis revealed their stability and decomposition patterns, whereas density functional theory (DFT) calculations validated the structures and provided insights into quantum chemical parameters, such as highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) energies, molecular orbitals, and electronic distributions. In vitro antibacterial and anti-fungal assays showed significantly enhanced bioactivity for both complexes compared to the free ligands, indicating that metal coordination boosts biological efficacy. Molecular docking studies targeting the Escherichia coli FabH-CoA complex (PDB ID: 1HNJ), a key enzyme in fatty acid biosynthesis, revealed strong binding affinities, interaction energies, and involvement of critical amino acid residues. These findings highlight NiMetPhe and CuMetPhe as promising candidates for antimicrobial therapies, particularly against resistant strains, underscoring their potential for future medical applications.
Collapse
Affiliation(s)
- Saleh Al-Ghamdi
- Biology Department, Faculty of Science, Al-Baha University, Al-Baha, Saudi Arabia
| |
Collapse
|
2
|
Khalaf MM, El-Lateef HMA, Abdou A. Structural, DFT, Molecular Docking and Biological Activity of New Albendazole-Norfloxacin Mixed-Ligand Complexes: Promising Metal Complexes for Combating Microbial Resistance and Inflammation. Chem Biodivers 2024:e202402646. [PMID: 39571085 DOI: 10.1002/cbdv.202402646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
This study presents a comprehensive characterization of the Fe(III) (C1) and Co(II) (C2) complexes that were synthesized from the Albendazole (Alb) and Norfloxacin (Nor) ligands. The complexes exhibit remarkable thermal stability, low water solubility, and a non-electrolytic nature, characteristics that enhance their suitability for diverse applications. Conductivity measurements indicate molar conductivities of 9.85 and 8.59 Ω-1 cm2 mol-1, confirming their status as neutral molecules. Fourier Transform Infrared (FTIR) spectroscopy reveals significant ligand-metal interactions, marked by shifts in vibrational frequencies that confirm chelation, while Ultraviolet-Visible (UV-Vis) spectroscopy supports the identification of octahedral geometries for both complexes. Magnetic moment assessments align with their electronic configurations, and stoichiometric analysis consistently shows a 1:1:1 ratio, further validated by mass spectrometry. Thermal stability studies highlight anhydrous characteristics and distinct thermal decomposition behaviors, underscoring their structural integrity. Employing Density Functional Theory (DFT) calculations using the B3LYP functional, we evaluate the electronic properties of the ligands and their metal complexes, revealing reduced energy gaps (ΔE) of 2.29 eV for C1 and 2.15 eV for C2, significantly lower than those of the ligands (Alb: 4.61 eV, Nor: 4.17 eV), indicating enhanced reactivity and potential biological activity. Additionally, molecular electrostatic potential (MEP) maps provide insights into charge distributions, suggesting critical regions for interactions with biomolecules. Notably, the results demonstrate that metal coordination significantly enhances antibacterial/anti-fungal activity surpassing both the free ligands and the standard antibiotic Ofloxacin/Fluconazole. Furthermore, the complexes show significant improvement in anti-inflammatory activity by inhibiting protein denaturation more effectively than their ligand counterparts. Molecular docking studies reveal stronger binding affinities and interactions with antimicrobial target proteins 1HNJ and 5IKT, attributed to enhanced hydrophobic interactions and hydrogen bonding. These findings position C1 and C2 as promising candidates for developing effective antimicrobial therapies, highlighting the crucial role of metal ions in enhancing biological reactivity and addressing resistant strains of pathogens.
Collapse
Affiliation(s)
- Mai M Khalaf
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, Egypt
| | - Hany M Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, Egypt
| | - Aly Abdou
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, Egypt
| |
Collapse
|
3
|
Hchicha K, Msalmi R, Korb M, Wahbi H, Čižmár E, Hamdi M, Naïli H. Comprehensive Exploration of Optics and Magnetism in a Hydrothermally Synthesized Nickel(II) Complex. ACS OMEGA 2024; 9:29310-29319. [PMID: 39005785 PMCID: PMC11238314 DOI: 10.1021/acsomega.4c00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/31/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024]
Abstract
The hydrothermal reaction of 2-MeIm (2-MeIm: 2-methylimidazole) with nickel sulfate hexahydrate in methanol afforded a mononuclear complex formulated as [Ni(SO4)(2-MeIm)2(H2O)3]·CH3OH (1). The title compound was described by X-ray single-crystal diffraction, thermal assessment, IR, and UV-vis spectroscopy. The crystal structure of 1 is composed of segregated [Ni(SO4)(2-MeIm)2(H2O)3] neutral entities and a solvent methanol molecule. Two (2-MeIm) ligands, a sulfate group, and a water molecule reside in the equatorial positions of the vertices in this 6-fold coordination. Two aqua ligands lay in the apical positions, resulting in a subtly distorted octahedral framework, as was supported by spectroscopic analysis. The complex's self-assembly is firmly governed by robust O-H···O/N-H···O interactions. Further details on these bonds have been furnished via Hirshfeld surface scrutiny and 2D fingerprint plots. As proven by TGA/DSC analysis, raising the temperature of 1 above 60 °C instigates progressive decomposition stages, which culminates in the production of metal oxide as the ultimate product at 700 °C. The optical analysis suggests the dielectric nature of the material with large direct and indirect gap energies of 5.25 and 4.96 eV, respectively. The results of magnetic studies suggest that 1 undergoes a transition to a magnetically ordered state below 6 K.
Collapse
Affiliation(s)
- Khouloud Hchicha
- Laboratory
Physico Chemistry of the Solid State, Department of Chemistry, Faculty
of Sciences, University of Sfax, BP 1171, 3000 Sfax, Tunisia
| | - Rawia Msalmi
- Laboratory
Physico Chemistry of the Solid State, Department of Chemistry, Faculty
of Sciences, University of Sfax, BP 1171, 3000 Sfax, Tunisia
| | - Marcus Korb
- Faculty
of Sciences, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, Western Australia 6009, Australia
| | - Hajir Wahbi
- Department
of Chemistry, College of Sciences and Arts, Turaif, Northern Border University, Arar, Saudi Arabia
| | - Erik Čižmár
- Faculty
of Science, Institute of Physics, P.J. Šafárik
University in Košice, Park Angelinum 9, SK-041 54 Košice, Slovakia
| | - Mohamed Hamdi
- Department
of Chemistry, College of Sciences and Arts, Turaif, Northern Border University, Arar, Saudi Arabia
| | - Houcine Naïli
- Laboratory
Physico Chemistry of the Solid State, Department of Chemistry, Faculty
of Sciences, University of Sfax, BP 1171, 3000 Sfax, Tunisia
| |
Collapse
|
4
|
Goswami B, Khatua M, Devi A, Hans S, Chatterjee R, Samanta S. Ligand redox controlled amine dehydrogenation and imine hemilability in singlet diradical azo-aromatic Ni(II) complexes: characterization of the electron transfer series of azo-imine complexes of Ni(II). Dalton Trans 2024; 53:10250-10260. [PMID: 38829194 DOI: 10.1039/d3dt03414c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Herein, using azo-amine (H2L) and azo-imine (L1-3) ligands, singlet diradical Ni(II) complexes [1] and [2] were synthesized from Ni(0)(COD)2 in THF. In separate reactions, homoleptic NiII complexes, [3a]2+-[3c]2+, were synthesized from [NiII(H2O)6](ClO4)2 and L1-3, respectively. All these complexes were characterized thoroughly. The X-ray structures of [1] and [2] showed that the amine side arm in [1] and the imine side arm in [2] are de-coordinated. The dN-N lengths in these two complexes were found to be ∼1.32 Å, which corresponds to the one-electron reduced azo-bond length. These complexes, [1] and [2], showed 1H NMR signals characteristic of diamagnetic compounds. These studies, along with DFT calculations, indicated that the unpaired spins on ligands coupled antiferromagnetically with the two unpaired spins on NiII to result in s = 0 ground states. Complex [1] showed ligand-based redox-induced dehydrogenation of the distal amine side arm to result in L1. Complexes [3a]2+-[3c]2+ have dN-N lengths of ∼1.27 Å and dC-N lengths of ∼1.28 Å. In cyclic voltammetry, complex [3a]2+ showed four well-resolved reversible reductive waves at 0.5 V to -1.6 V in dichloromethane. The first two waves became irreversible when they were measured in acetonitrile solution. The electron transfer series of [3a]2+ was further characterized by spectro-electrochemistry, EPR, and DFT calculations. These showed that all the reductions were associated with the ligand. It was further probed by redox events in complexes [3b]2+ and [3c]2+. While the electron donor -OMe group on the phenyl ring of the azo moiety in [3b]2+ showed a prominent cathodic shift of the potentials, the -F substitution on the phenyl group on the imine side arm of [3c]2+ has almost no effect. It has to be noted here that the oxidation of [2] by two electrons returns it back to complex [3a]2+. Reduction of [3a]2+ by two electrons also resulted in complex [2], indicating reversible ligand redox-induced hemilability of the imine moiety between [3a]2+ and [2]. Moreover, characterization of the electron transfer series of [3a]2+ and [2] has shown superior redox non-innocent behaviour and coordination ability of the azo-pyridine moiety in nickel(II) complexes over the imino-pyridine moiety of the ligand.
Collapse
Affiliation(s)
- Bappaditya Goswami
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Manas Khatua
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Ambika Devi
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, Jammu, Jammu and Kashmir 181221, India.
| | - Shivali Hans
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, Jammu, Jammu and Kashmir 181221, India.
| | - Robindo Chatterjee
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, Jammu, Jammu and Kashmir 181221, India.
| | - Subhas Samanta
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, Jammu, Jammu and Kashmir 181221, India.
| |
Collapse
|
5
|
Plyuta N, Barra AL, Novitchi G, Avarvari N. Six-coordinated nickel(II) complexes with benzothiadiazole Schiff-base ligands: synthesis, crystal structure, magnetic and HFEPR study. Dalton Trans 2024; 53:8835-8842. [PMID: 38716673 DOI: 10.1039/d4dt01143k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Two new nickel(II) complexes, namely Ni(L1)2 (1) and Ni(L2)2·CH2Cl2(2) were obtained by reacting nickel(II) acetate tetrahydrate with the benzothiadiazole Schiff base ligands HL1 = 2-[4-(2,1,3-benzothiadiazole)imino]methyl-phenol or HL2 = 2-[(2,1,3-benzothiadiazol-4-ylimino)methyl]-6-methoxyphenol in the presence of Et3N. The tridentate NNO chelate ligands induce a distorted octahedral environment around the nickel(II) ions. Single crystal X-ray diffraction analysis reveals elongated Ni-N bonds with the nitrogen atom of the benzothiadiazole ring in both complexes. Intermolecular hydrogen bonds and π-π stacking interactions create two-dimensional and three-dimensional supramolecular arrays, respectively, for complexes 1 and 2. Magnetic susceptibility and high-field electron paramagnetic resonance measurements show the presence of significant magnetic anisotropy, with an axial distortion parameter D of -8--10 cm-1.
Collapse
Affiliation(s)
- Nataliya Plyuta
- Univ Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, F-49000 Angers, France.
| | - Anne-Laure Barra
- Laboratoire National des Champs Magnétiques Intenses, UPR CNRS 3228, Université Grenoble-Alpes, B.P. 166, 38042 Grenoble Cedex 9, France
| | - Ghenadie Novitchi
- Laboratoire National des Champs Magnétiques Intenses, UPR CNRS 3228, Université Grenoble-Alpes, B.P. 166, 38042 Grenoble Cedex 9, France
| | - Narcis Avarvari
- Univ Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, F-49000 Angers, France.
| |
Collapse
|
6
|
Heczko M, Nowicka B. Switching of magnetic properties by topotactic reaction in a 1D CN-bridged Ni(II)-Nb(IV) system. Dalton Trans 2024; 53:5788-5795. [PMID: 38328876 DOI: 10.1039/d3dt03891b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Two 1D CN-bridged assemblies: the nearly straight Li2[Ni(cyclam)][Nb(CN)8]·7.5H2O (1) chains and the zigzag-shaped Li2[Ni(cyclam)][Nb(CN)8]·2H2O (2) chains, are obtained in the reaction between [Ni(cyclam)]2+ and [Nb(CN)8]4- in warm concentrated LiCl water solution. Both compounds are composed of alternating bimetallic Ni(II)-Nb(IV) chains and contain incorporated lithium cations, which compensate the negative charge of the coordination skeleton. The straight chain 1 (Ni-Nb-Ni angle = 153.2°) can be reversibly dehydrated under dry nitrogen flow at room temperature to an intermediate dihydrate phase 1d and further transformed to the zigzag-shaped chain 2 (Ni-Nb-Ni angle = 86.6°) by annealing at 150 °C. The process can be reversed by exposure to high humidity at room temperature, upon which 2 is converted back to 1. This water sorption-induced breathing effect is accompanied by changes in magnetic properties, most notably reflected in different values of saturation magnetization and critical field of metamagnetic transition, which indicate that both intra- and inter-chain interactions are affected by the structure reorganization.
Collapse
Affiliation(s)
- Michał Heczko
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Beata Nowicka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| |
Collapse
|
7
|
Chen M, Zhao MY, Liu FM, Li MT, Zhang ML, Qian X, Yuan ZY, Li CS, Wan R. Self-Catalyzed Synthesis of Length-Controlled One-Dimensional Nickel Oxide@N-Doped Porous Carbon Nanostructures from Metal Ion Modified Nitrogen Heterocycles for Efficient Lithium Storage. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4852-4859. [PMID: 38382061 DOI: 10.1021/acs.langmuir.3c03742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Transition metal oxides with the merits of high theoretical capacities, natural abundance, low cost, and environmental benignity have been regarded as a promising anodic material for lithium ion batteries (LIBs). However, the severe volume expansion upon cycling and poor conductivity limit their cycling stability and rate capability. To address this issue, NiO embedded and N-doped porous carbon nanorods (NiO@NCNR) and nanotubes (NiO@NCNT) are synthesized by the metal-catalyzed graphitization and nitridization of monocrystalline Ni(II)-triazole coordinated framework and Ni(II)/melamine mixture, respectively, and the following oxidation in air. When applied as an anodic material for LIBs, the NiO@NCNR and NiO@NCNT hybrids exhibit a decent capacity of 895/832 mA h g-1 at 100 mA g-1, high rate capability of 484/467 mA h g-1 at 5.0 A g-1, and good long-term cycling stability of 663/634 mA h g-1 at 600th cycle at 1 A g-1, which are much better than those of NiO@carbon black (CB) control sample (701, 214, and 223 mA h g-1). The remarkable electrochemical properties benefit from the advanced nanoarchitecture of NiO@NCNR and NiO@NCNT, which offers a length-controlled one-dimensional porous carbon nanoarchitecture for effective e-/Li+ transport, affords a flexible carbon skeleton for spatial confinement, and forms abundant nanocavities for stress buffering and structure reinforcement during discharge/charging processes. The rational structural design and synthesis may pave a way for exploring advanced metal oxide based anodic materials for next-generation LIBs.
Collapse
Affiliation(s)
- Ming Chen
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Ming-Yang Zhao
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Feng-Ming Liu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Meng-Ting Li
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Meng-Lei Zhang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Xing Qian
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| | - Zhong-Yong Yuan
- School of Materials Science and Engineering, Nankai University, Tianjin 300071, China
| | - Chun-Sheng Li
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215000, China
| | - Rong Wan
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
8
|
Hagen WR. Broadband EPR Spectroscopy of the Triplet State: Multi-Frequency Analysis of Copper Acetate Monohydrate. Int J Mol Sci 2023; 24:14793. [PMID: 37834243 PMCID: PMC10572876 DOI: 10.3390/ijms241914793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Electron paramagnetic resonance spectroscopy is a long-standing method for the exploration of electronic structures of transition ion complexes. The difficulty of its analysis varies considerably, not only with the nature of the spin system, but more so with the relative magnitudes of the magnetic interactions to which the spin is subject, where particularly challenging cases ensue when two interactions are of comparable magnitude. A case in point is the triplet system S = 1 of coordination complexes with two unpaired electrons when the electronic Zeeman interaction and the electronic zero-field interaction are similar in strength. This situation occurs in the X-band spectra of the thermally excited triplet state of dinuclear copper(II) complexes, exemplified by copper acetate monohydrate. In this study, applicability of the recently developed low-frequency broadband EPR spectrometer to S = 1 systems is investigated on the analysis of multi-frequency, 0.5-16 GHz, data from [Cu(CH3COO)2H2O]2. Global fitting affords the spin Hamiltonian parameters gz = 2.365 ± 0.008; gy = 2.055 ± 0.010; gx = 2.077 ± 0.005; Az = 64 gauss; D = 0.335 ± 0.002 cm-1; E = 0.0105 ± 0.0003 cm-1. The latter two define zero-field absorptions at ca. 630, 7730, and 10,360 MHz, which show up in the spectra as one half of a sharpened symmetrical line. Overall, the EPR line shape is Lorentzian, reflecting spin-lattice relaxation, which is a combination of an unusual, essentially temperature-independent, inverted Orbach process via the S = 0 ground state, and a Raman process proportional to T2. Other broadening mechanisms are limited to at best minor contributions from a distribution in E values, and from dipolar interaction with neighboring copper pairs. Monitoring of a first-order double-quantum transition between 8 and 35 GHz shows a previously unnoticed very complex line shape behavior, which should be the subject of future research.
Collapse
Affiliation(s)
- Wilfred R Hagen
- Department of Biotechnology, Delft University of Technology, Building 58, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
9
|
Muthuramalingam S, Velusamy M, Singh Rajput S, Alam M, Mayilmurugan R. Nickel(II) Complexes of Tripodal Ligands as Catalysts for Fixation of Atmospheric CO 2 as Organic Carbonates. Chem Asian J 2023; 18:e202201204. [PMID: 36734191 DOI: 10.1002/asia.202201204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
The fixation of atmospheric CO2 into value-added products is a promising methodology. A series of novel nickel(II) complexes of the type [Ni(L)(CH3 CN)2 ](BPh4 )2 1-5, where L=N,N-bis(2-pyridylmethyl)-N', N'-dimethylpropane-1,3-diamine (L1), N,N-dimethyl-N'-(2-(pyridin-2-yl)ethyl)-N'-(pyridin-2-ylmethyl) propane-1,3-diamine (L2), N,N-bis((4-methoxy-3,5-dimethylpyridin-2-ylmethyl)-N',N'-dimethylpropane-1,3-diamine (L3), N-(2-(dimethylamino) benzyl)-N',N'-dimethyl-N-(pyridin-2-ylmethyl) propane-1,3-diamine (L4) and N,N-bis(2-(dimethylamino)benzyl)-N', N'-dimethylpropane-1,3-diamine (L5) have been synthesized and characterized as the catalysts for the conversion of atmospheric CO2 into organic cyclic carbonates. The single-crystal X-ray structure of 2 was determined and exhibited distorted octahedral coordination geometry with cis-α configuration. The complexes have been used as a catalyst for converting CO2 and epoxides into five-membered cyclic carbonates under 1 atmospheric (atm) pressure at room temperature in the presence of Bu4 NBr. The catalyst containing electron-releasing -Me and -OMe groups afforded the maximum yield of cyclic carbonates, 34% (TON, 680) under 1 atm air. It was drastically enhanced to 89% (TON, 1780) under pure CO2 gas at 1 atm. It is the highest catalytic efficiency known for CO2 fixation using nickel-based catalysts at room temperature and 1 atm pressure. The electronic and steric factors of the ligands strongly influence the catalytic efficiency. Furthermore, all the catalysts can convert a wide range of epoxides (ten examples) into corresponding cyclic carbonate with excellent selectivity (>99%) under this mild condition.
Collapse
Affiliation(s)
- Sethuraman Muthuramalingam
- Department of Chemistry, Indian Institute of Technology Bhilai, Raipur, 492015 Chattisgarh, India.,Institut de Química Computacional i Catalisì (IQCC) and Departament de Química, Universitat de Girona, Girona, E-17003 Catalonia, Spain
| | - Marappan Velusamy
- Department of Chemistry, North Eastern Hill University, Shillong, 793022, India
| | - Swati Singh Rajput
- Department of Chemistry, Indian Institute of Technology Bhilai, Raipur, 492015 Chattisgarh, India
| | - Mehboob Alam
- Department of Chemistry, Indian Institute of Technology Bhilai, Raipur, 492015 Chattisgarh, India
| | - Ramasamy Mayilmurugan
- Department of Chemistry, Indian Institute of Technology Bhilai, Raipur, 492015 Chattisgarh, India
| |
Collapse
|
10
|
An investigation into the coordination chemistry of tripodal “click” triazole ligands with Mn, Ni, Co and Zn ions. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Helmich-Paris B. A trust-region augmented Hessian implementation for state-specific and state-averaged CASSCF wave functions. J Chem Phys 2022; 156:204104. [DOI: 10.1063/5.0090447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, we present a one-step second-order converger for state-specific (SS) and state-averaged (SA) complete active space self-consistent field (CASSCF) wave functions. Robust convergence is achieved through step restrictions using a trust-region augmented Hessian (TRAH) algorithm. To avoid numerical instabilities, an exponential parameterization of variational configuration parameters is employed, which works with a nonredundant orthogonal complement basis. This is a common approach for SS-CASSCF and is extended to SA-CASSCF wave functions in this work. Our implementation is integral direct and based on intermediates that are formulated in either the sparse atomic-orbital or small active molecular-orbital basis. Thus, it benefits from a combination with efficient integral decomposition techniques, such as the resolution-of-the-identity or the chain-of-spheres for exchange approximations. This facilitates calculations on large molecules, such as a Ni(II) complex with 231 atoms and 5154 basis functions. The runtime performance of TRAH-CASSCF is competitive with the other state-of-the-art implementations of approximate and full second-order algorithms. In comparison with a sophisticated first-order converger, TRAH-CASSCF calculations usually take more iterations to reach convergence and, thus, have longer runtimes. However, TRAH-CASSCF calculations still converge reliably to a true minimum even if the first-order algorithm fails.
Collapse
Affiliation(s)
- Benjamin Helmich-Paris
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
12
|
Campanella AJ, Ozvat TM, Zadrozny JM. Ligand design of zero-field splitting in trigonal prismatic Ni(II) cage complexes. Dalton Trans 2022; 51:3341-3348. [PMID: 35137732 PMCID: PMC8992015 DOI: 10.1039/d1dt02156g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Complexes of encapsulated metal ions are promising potential metal-based electron paramagnetic resonance imaging (EPRI) agents due to zero-field splitting. Herein, we synthesize and magnetically characterize a series of five new Ni(II) complexes based on a clathrochelate ligand to provide a new design strategy for zero-field splitting in an encaged environment. UV-Vis and X-ray single-crystal diffraction experiments demonstrate slight physical and electronic structure changes as a function of the differing substituents. The consequence of these changes at the remote apical and sidearm positions of the encaging ligands is a zero-field splitting parameter (D) that varies over a large range of 11 cm-1. These results demonstrate a remarkable flexibility of the zero-field splitting and electronic structure in nickelous cages and give a clear toolkit for modifying zero-field splitting in highly stable ligand shells.
Collapse
Affiliation(s)
- Anthony J Campanella
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| | - Tyler M Ozvat
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| | - Joseph M Zadrozny
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
13
|
Singh K, Siwach P. Synthesis, spectroscopic, theoretical and biological evaluation of novel Schiff base complexes of divalent transition metals. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kiran Singh
- Department of Chemistry Kurukshetra University Kurukshetra India
| | - Preeti Siwach
- Department of Chemistry Kurukshetra University Kurukshetra India
| |
Collapse
|
14
|
Nößler M, Hunger D, Reichert F, Winkler M, Reimann M, Klein J, Suhr S, Suntrup L, Beerhues J, Kaupp M, van Slageren J, Sarkar B. Spin-state control of cobalt(II) and iron(II) complexes with click-derived tripodal ligands through non-covalent and fluorine-specific interactions. Dalton Trans 2021; 50:18097-18106. [PMID: 34851330 DOI: 10.1039/d1dt03535e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fine-tuning of intermolecular or intramolecular non-covalent interactions (NCIs) and thus the precise synthesis of metal complexes in which the spin states can be controlled by NCIs remains challenging, even though several such complexes have been intensively studied. In this regard, we present mononuclear cobalt(II) and iron(II) complexes with "click"-derived tripodal ligands that contain fluorinated benzyl substituents in the secondary coordination sphere. The complexes were co-crystallized with different solvent molecules to decipher the effect of the crystallized solvents on NCIs, and on the spin state of the metal ion. Additionally, the fluorine-specific interactions in the secondary coordination sphere were examined. We present a first structure-property correlation between the nature of interaction of the (per)fluorinated aromatic substituents on the ligand periphery, and the spin state of the metal complexes. In particular, the TF5TA containing ligand show interesting stacking motifs depending on the used solvent, and these interactions have an influence on the spin state of the cobalt(II) complexes. Furthermore, the iron(II) complex thereof, Fe(TF5TA)2(BF4)2·2EtOH displays spin crossover (SCO).
Collapse
Affiliation(s)
- Maite Nößler
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin, Germany.
| | - David Hunger
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | - Felix Reichert
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | - Mario Winkler
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | - Marc Reimann
- Institut für Theoretische Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Johannes Klein
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin, Germany.
| | - Simon Suhr
- Lehrstuhl für Anorganische Koordinationschemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Lisa Suntrup
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin, Germany.
| | - Julia Beerhues
- Lehrstuhl für Anorganische Koordinationschemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Martin Kaupp
- Institut für Theoretische Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Joris van Slageren
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin, Germany. .,Lehrstuhl für Anorganische Koordinationschemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
15
|
Reczyński M, Akaki M, Fukuda T, Sawada Y, Nishii K, Hagiwara M, Nitek W, Sieklucka B, Nowicka B. Hepta-coordinated Ni(II) assemblies - structure and magnetic studies. Dalton Trans 2021; 50:5251-5261. [PMID: 33881078 DOI: 10.1039/d1dt00479d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two mononuclear complexes [Ni(dapsc)(H2O)2]Cl(NO3)·H2O (1) and [Ni(dapsc)(NCS)2] (2), and a bimetallic CN-bridged trinuclear molecule [NiII(dapsc)(H2O)]2[WIV(CN)8]·11H2O (3) (dapsc = 2,6-diacetylpyridine-bis(semicarbazone)) were synthesised and characterised in terms of structure and magnetic properties. All three compounds contain Ni(ii) ions in a pentagonal bipyramid coordination geometry afforded by the equatorial pentadentate ligand (dapsc) and two O- or N-donating axial ligands. The compounds differ in the relative arrangement of the complexes, intermolecular interactions and distortion from the ideal coordination geometry. The high-field EPR and magnetometric studies show large anisotropy of the Ni(ii) centres with the D parameters in the range of -10.5 to -21.2 cm-1 and negligible antiferromagnetic interactions. The easy-axis magnetic anisotropies of 1-3 were reproduced by ab initio CASSCF/NEVPT2 calculations. The ground states consist mainly of the |MS = |±1 states, which is consistent with the fact that no out-of-phase signal can be detected in the AC magnetic susceptibility measurements.
Collapse
Affiliation(s)
- Mateusz Reczyński
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Mitsuru Akaki
- Center for Advanced High Magnetic Field Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Takamitsu Fukuda
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Yuya Sawada
- Center for Advanced High Magnetic Field Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Kengo Nishii
- Center for Advanced High Magnetic Field Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Masayuki Hagiwara
- Center for Advanced High Magnetic Field Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Wojciech Nitek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Barbara Sieklucka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Beata Nowicka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| |
Collapse
|
16
|
Ang ZZ, Laxmi S, León F, Kooij JEM, García F, England J. Mechanochemical Synthesis of Tripodal Tris[4-(1,2,3-triazol-5-ylidene)methyl]amine Mesoionic Carbene Ligands and Their Complexation with Silver(I). Inorg Chem 2021; 60:3556-3564. [PMID: 33629844 DOI: 10.1021/acs.inorgchem.0c02429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The conjugate acids of 1,2,3-triazolylidene mesoionic carbenes can be prepared in a straightforward fashion by alkylation of 1-substituted 1,2,3-triazoles. However, this becomes a much more challenging proposition when other nucleophilic centers are present, which has curtailed the development of ligands containing multiple 1,2,3-triazolylidene donors. Herein, methylation of a series of tris[(1-aryl-1,2,3-triazol-4-yl)methyl]amines possessing both electron-rich and electron-deficient aromatic substituents, using Me3OBF4, is shown to proceed with much higher chemoselectivity under mechanochemical conditions than when conducted in solution. This provides a means to reliably access a series of tricationic tris[4-(1,2,3-triazolium)methyl]amines in good yields. DFT calculations suggest that a potential reason for this change in regioselectivity is the difference between the background dielectric of the DCM solution versus the solid state, which is predicted to have a large effect on the relative thermodynamic driving force for alkylation of the tertiary amine center versus the triazole rings. Homoleptic silver complexes of the triazolylidene ligands derived therefrom, of formulas [Ag3(1a-d)2](X)3 (X- = BF4-, TfO-), have been isolated and fully characterized. In the case of the ligand bearing the smallest aryl substituents, 1b, argentophilic interactions yield a triangular Ag3 core. The [Ag3(1a-d)2](X)3 silver salts are viable agents for transmetalation to other transition metals, demonstrated here for cobalt. In the case of 1a, the complex [CoII(1a)(NCMe)](OTf)2 was obtained. Therein, the bulky mesityl substituents enforce a tetrahedral geometry, in which only the triazolylidene donors of 1a coordinate (i.e., it acts as a tridentate ligand). Transmetalation of the less sterically encumbered ligand 1b yields six-coordinate cobalt(III) complexes, [CoIII(1b)(Cl)(NCMe)](OTf)2 and [CoIII(1b)(NCMe)2](OTf)3, in which the ligand coordinates in a tetradentate fashion. These are the first examples of tris(1,2,3-triazolylidene) ligands containing an additional coordinating heteroatom and, more generally, of tetradentate 1,2,3-triazolylidene ligands. Crucially, we believe that the divergent chemoselectivity under mechanochemical conditions (vs conventional solution-based chemistry) demonstrated herein offers a pathway by which other challenging synthetic targets, including further multidentate carbene ligands, can be prepared in superior yields.
Collapse
Affiliation(s)
- Zhi Zhong Ang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Shoba Laxmi
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Félix León
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Josephine E M Kooij
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Felipe García
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Jason England
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| |
Collapse
|
17
|
Rad ZS, Pordel M, Davoodnia A. New Fluorescent Nickel(II) Complexes as a Catalyst for Biodiesel
Formation: Synthesis, Structure, Spectral Properties, and DFT
Calculations. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428020120234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Metallosupramolecular helices constructed from nickel(II) and multidentate “click” triazole ligands. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Pantalon Juraj N, Krklec M, Novosel T, Perić B, Vianello R, Raić-Malić S, Kirin SI. Copper(ii) and zinc(ii) complexes of mono- and bis-1,2,3-triazole-substituted heterocyclic ligands. Dalton Trans 2020; 49:9002-9015. [PMID: 32558875 DOI: 10.1039/d0dt01244k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chelating 1,4-disubstituted mono- (8a-8d) and bis-1,2,3-triazole-based (9a-11a) ligands were prepared by regioselective copper(i)-catalysed 1,3-dipolar cycloaddition of terminal alkynes with aromatic azides, together with bioconjugate 13a synthesized by amide coupling of l-phenylalanine methyl ester to 11a. Cu(ii) and Zn(ii) complexes were prepared and single crystal structures were determined for complexes 8aCu, 8dCu, 9cCu and 10cCu, as well as the free ligands 10a and 10c. The in situ prepared Zn(ii) complexes were studied by NMR spectroscopy, while the stoichiometry of the Cu(ii) complexes in solution was determined by UV-Vis titrations and confirmed by the electronic structure DFT calculations at the (SMD)/M05-2X/6-31+G(d)/LanL2DZ+ECP level of theory.
Collapse
|
20
|
Zhang YJ, Yin L, Li J, Hu ZB, Ouyang ZW, Song Y, Wang Z. Synthesis, crystal structures, HF-EPR, and magnetic properties of six-coordinate transition metal (Co, Ni, and Cu) compounds with a 4-amino-1,2,4-triazole Schiff-base ligand. RSC Adv 2020; 10:12833-12840. [PMID: 35492139 PMCID: PMC9051221 DOI: 10.1039/c9ra10851c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/10/2020] [Indexed: 12/15/2022] Open
Abstract
We have synthesized a series of transition metal compounds [M(L)2(H2O)2] (M = Co (1), Ni (2), and Cu (3)) by using the 4-amino-1,2,4-triazole Schiff-base ligand via the hydrothermal methods. They are all mononuclear compounds with the octahedral geometry. Direct-current magnetic and HF-EPR measurements were combined to reveal the negative D values (-28.78 cm-1, -10.79 cm-1) of complexes 1 and 2, showing the easy-axis magnetic anisotropies of compounds 1 and 2. Applying a dc field of 800 Oe at 2.0 K, the slow magnetic relaxation effects were observed in compound 1, which is a remarkable feature of single-ion magnets.
Collapse
Affiliation(s)
- Ya-Jie Zhang
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| | - Lei Yin
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| | - Jing Li
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| | - Zhao-Bo Hu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Zhong-Wen Ouyang
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| | - You Song
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Zhenxing Wang
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| |
Collapse
|
21
|
DFT studies on the structure and stability of tetraaza macrocyclic nickel(II) complexes containing dicarbinolamine ligand moiety. J CHEM SCI 2019. [DOI: 10.1007/s12039-019-1688-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Spielvogel KD, Coughlin EJ, Petras H, Luna JA, Benson A, Donahue CM, Kibasa A, Lee K, Salacinski R, Bart SC, Shaw SK, Shepherd JJ, Daly SR. The Influence of Redox-Innocent Donor Groups in Tetradentate Ligands Derived from o-Phenylenediamine: Electronic Structure Investigations with Nickel. Inorg Chem 2019; 58:12756-12774. [DOI: 10.1021/acs.inorgchem.9b01675] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Kyle D. Spielvogel
- Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242-1294, United States
| | - Ezra J. Coughlin
- H.C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Hayley Petras
- Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242-1294, United States
| | - Javier A. Luna
- Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242-1294, United States
| | - Austin Benson
- Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242-1294, United States
| | - Courtney M. Donahue
- Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242-1294, United States
| | - Amani Kibasa
- Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242-1294, United States
| | - Kyounghoon Lee
- Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242-1294, United States
| | - Ryan Salacinski
- Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242-1294, United States
| | - Suzanne C. Bart
- H.C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Scott K. Shaw
- Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242-1294, United States
| | - James J. Shepherd
- Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242-1294, United States
| | - Scott R. Daly
- Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242-1294, United States
| |
Collapse
|
23
|
Buta CM, Radu MM, Mischie A, Zălaru CM, Ioniţă G, Ferbinteanu M. Experimental and computational characterization of structural and spectroscopic features of mixed ligand copper complexes-prototypes for square-pyramidal stereochemistry. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.06.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Helmich-Paris B. CASSCF linear response calculations for large open-shell molecules. J Chem Phys 2019; 150:174121. [PMID: 31067879 DOI: 10.1063/1.5092613] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The complete active space self-consistent-field (CASSCF) linear response method for the simulation of ultraviolet-visible (UV/Vis) absorption and electronic circular dichroism (ECD) spectra of large open-shell molecules is presented. By using a one-index transformed Hamiltonian, the computation of the most time-consuming intermediates can be pursued in an integral-direct fashion, which allows us to employ the efficient resolution-of-the-identity and overlap-fitted chain-of-spheres approximation. For the iterative diagonalization, pairs of Hermitian and anti-Hermitian trial vectors are used which facilitate, on the one hand, an efficient solution of the pair-structured generalized eigenvalue problem in the reduced space, and on the other hand, make the full multiconfigurational random phase approximation as efficient as the corresponding Tamm-Dancoff approximation. Electronic transitions are analyzed and characterized in the particle-hole picture by natural transition orbitals that are introduced for CASSCF linear response theory. For a small organic radical, we can show that the accuracy of simulated UV/Vis absorption spectra with the CASSCF linear response approach is significantly improved compared to the popular state-averaged CASSCF method. To demonstrate the efficiency of the implementation, the 50 lowest roots of a large Ni triazole complex with 231 atoms are computed for the simulated UV/Vis and ECD spectra.
Collapse
Affiliation(s)
- Benjamin Helmich-Paris
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
25
|
Saha E, Mitra J. Multistimuli-Responsive Self-Healable and Moldable Nickel(II)-Based Gels for Reversible Gas Adsorption and Palladium Sequestration via Gel-to-Gel Transformation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:10718-10728. [PMID: 30807089 DOI: 10.1021/acsami.8b21606] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We report the in situ formation of Ni-based supramolecular organogel and organic-aqueous gels using amine appended triazole ligand, having varying morphology and rheological properties. These gels are self-healable and moldable or injectable respectively depending on the absence or presence of water in the gelation medium. Our studies reveal that the formation and rupture of hydrogen bonds assisted by the solvent movement is responsible for the self-healing nature of the gels. The porous structure of the gel has been observed from the migration of dye molecules on the self-healed gel. In addition, the gels show dual function of reversible adsorption of toxic gases and sequestration of heavy metal ions, especially palladium via gel-to-gel transformation. It is imperative to stress that such transformation is extremely rare for small molecule based metallogels. The dynamic nature of Ni-Ntriazole interactions has been utilized in achieving the reversible gas/vapor responsive behavior of the metallogels, which could be suitable in developing colorimetric probes for the detection of toxic gases and heavy metal ions. Such multifunctional gels are exceptional in contemporary literature and are expected to find utility in fabricating smart multistimuli-responsive gel-based materials in the future.
Collapse
Affiliation(s)
- Ekata Saha
- CSIR-Central Salt & Marine Chemicals Research Institute , Gijubhai Badheka Marg , Bhavnagar 364002 , Gujarat , India
- Academy of Scientific and Innovative Research (AcSIR) , Ghaziabad 201002 , India
| | - Joyee Mitra
- CSIR-Central Salt & Marine Chemicals Research Institute , Gijubhai Badheka Marg , Bhavnagar 364002 , Gujarat , India
- Academy of Scientific and Innovative Research (AcSIR) , Ghaziabad 201002 , India
| |
Collapse
|
26
|
Heczko M, Sumińska E, Sieklucka B, Nowicka B. A two-fold 3D interpenetrating cyanido-bridged network based on the octa-coordinated [Mo(CN)8]4− building block. CrystEngComm 2019. [DOI: 10.1039/c9ce00851a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By varying the reaction conditions, three CN-bridged coordination polymers of different dimensionalities and topologies are obtained from the same building blocks.
Collapse
Affiliation(s)
- Michał Heczko
- Jagiellonian University in Kraków
- Faculty of Chemistry
- 30-387 Kraków
- Poland
| | - Ewa Sumińska
- Jagiellonian University in Kraków
- Faculty of Chemistry
- 30-387 Kraków
- Poland
| | - Barbara Sieklucka
- Jagiellonian University in Kraków
- Faculty of Chemistry
- 30-387 Kraków
- Poland
| | - Beata Nowicka
- Jagiellonian University in Kraków
- Faculty of Chemistry
- 30-387 Kraków
- Poland
| |
Collapse
|
27
|
Miron CE, Colden Leung MR, Kennedy EI, Fleischel O, Khorasani MA, Wu N, Mergny J, Petitjean A. Closing the Loop: Triazolylpyridine Coordination Drives the Self‐Assembly of Metallomacrocycles with Tunable Topologies for Small‐Molecule and Guanine‐Quadruplex Recognition. Chemistry 2018; 24:18718-18734. [DOI: 10.1002/chem.201803731] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/13/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Caitlin E. Miron
- Department of ChemistryQueen's University 90 Bader Lane Kingston ON K7L 3N6 Canada
| | | | - Emily I. Kennedy
- Department of ChemistryQueen's University 90 Bader Lane Kingston ON K7L 3N6 Canada
| | | | | | - Nan Wu
- Department of ChemistryQueen's University 90 Bader Lane Kingston ON K7L 3N6 Canada
| | - Jean‐Louis Mergny
- ARNA laboratoryIECBUniversité de Bordeaux, CNRS UMR5320, Inserm U1212 Pessac France
| | - Anne Petitjean
- Department of ChemistryQueen's University 90 Bader Lane Kingston ON K7L 3N6 Canada
| |
Collapse
|
28
|
Hosseinnejad T, Ebrahimpour-Malmir F, Fattahi B. Computational investigations of click-derived 1,2,3-triazoles as keystone ligands for complexation with transition metals: a review. RSC Adv 2018; 8:12232-12259. [PMID: 35539398 PMCID: PMC9079615 DOI: 10.1039/c8ra00283e] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 01/04/2019] [Accepted: 03/02/2018] [Indexed: 01/05/2023] Open
Abstract
In recent years, metal complexes of organo 1,2,3-triazole click-derived ligands have attracted significant attention as catalysts in many chemical transformations and also as biological and pharmaceutical active agents. Regarding the important applications of these metal-organo 1,2,3-triazole-based complexes, in this review, we focused on the recently reported investigations of the structural, electronic, and spectroscopic aspects of the complexation process in transition metal complexes of 1,2,3-triazole-based click ligands. In line with this, the coordination properties of these triazole-based click ligands with transition metals were studied via several quantum chemistry calculations. Moreover, considering the complexation process, we have presented comparative discussions between the computational results and the available experimental data.
Collapse
Affiliation(s)
- Tayebeh Hosseinnejad
- Department of Chemistry, Faculty of Physics & Chemistry, Alzahra University Vanak Tehran Iran +98-21-8804-1344 +98-9124775800
| | - Fatemeh Ebrahimpour-Malmir
- Department of Chemistry, Faculty of Physics & Chemistry, Alzahra University Vanak Tehran Iran +98-21-8804-1344 +98-9124775800
| | - Bahareh Fattahi
- Department of Chemistry, Faculty of Physics & Chemistry, Alzahra University Vanak Tehran Iran +98-21-8804-1344 +98-9124775800
| |
Collapse
|
29
|
Coughtrie DJ, Giereth R, Kats D, Werner HJ, Köhn A. Embedded Multireference Coupled Cluster Theory. J Chem Theory Comput 2018; 14:693-709. [DOI: 10.1021/acs.jctc.7b01144] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- David J. Coughtrie
- Institute for Theoretical
Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Robin Giereth
- Institute for Theoretical
Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Daniel Kats
- Institute for Theoretical
Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Hans-Joachim Werner
- Institute for Theoretical
Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Andreas Köhn
- Institute for Theoretical
Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
30
|
Gupta T, Rajaraman G. Modelling spin Hamiltonian parameters of molecular nanomagnets. Chem Commun (Camb) 2018; 52:8972-9008. [PMID: 27366794 DOI: 10.1039/c6cc01251e] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular nanomagnets encompass a wide range of coordination complexes possessing several potential applications. A formidable challenge in realizing these potential applications lies in controlling the magnetic properties of these clusters. Microscopic spin Hamiltonian (SH) parameters describe the magnetic properties of these clusters, and viable ways to control these SH parameters are highly desirable. Computational tools play a proactive role in this area, where SH parameters such as isotropic exchange interaction (J), anisotropic exchange interaction (Jx, Jy, Jz), double exchange interaction (B), zero-field splitting parameters (D, E) and g-tensors can be computed reliably using X-ray structures. In this feature article, we have attempted to provide a holistic view of the modelling of these SH parameters of molecular magnets. The determination of J includes various class of molecules, from di- and polynuclear Mn complexes to the {3d-Gd}, {Gd-Gd} and {Gd-2p} class of complexes. The estimation of anisotropic exchange coupling includes the exchange between an isotropic metal ion and an orbitally degenerate 3d/4d/5d metal ion. The double-exchange section contains some illustrative examples of mixed valance systems, and the section on the estimation of zfs parameters covers some mononuclear transition metal complexes possessing very large axial zfs parameters. The section on the computation of g-anisotropy exclusively covers studies on mononuclear Dy(III) and Er(III) single-ion magnets. The examples depicted in this article clearly illustrate that computational tools not only aid in interpreting and rationalizing the observed magnetic properties but possess the potential to predict new generation MNMs.
Collapse
Affiliation(s)
- Tulika Gupta
- Department of Chemistry, IIT Powai, Mumbai-400076, India.
| | | |
Collapse
|
31
|
Chen SY, Cui HH, Zhang YQ, Wang Z, Ouyang ZW, Chen L, Chen XT, Yan H, Xue ZL. Magnetic anisotropy and relaxation behavior of six-coordinate tris(pivalato)-Co(ii) and -Ni(ii) complexes. Dalton Trans 2018; 47:10162-10171. [DOI: 10.1039/c8dt01554f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Magnetic measurements, HFEPR and theoretical calculations have been used to study the magnetic anisotropy of the six-coordinate field-induced single ion magnet (NBu4)[Co(piv)3] and its Ni analogue.
Collapse
Affiliation(s)
- Shu-Yang Chen
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Hui-Hui Cui
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS
- School of Physical Science and Technology
- Nanjing Normal University
- Nanjing 210023
- China
| | - Zhenxing Wang
- Wuhan National High Magnetic Field Center & School of Physics
- Huazhong University of Science and Technology
- Wuhan 430074
- China
| | - Zhong-Wen Ouyang
- Wuhan National High Magnetic Field Center & School of Physics
- Huazhong University of Science and Technology
- Wuhan 430074
- China
| | - Lei Chen
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- China
| | - Xue-Tai Chen
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Zi-Ling Xue
- Department of Chemistry
- University of Tennessee
- Knoxville
- USA
| |
Collapse
|
32
|
Schweinfurth D, Krzystek J, Atanasov M, Klein J, Hohloch S, Telser J, Demeshko S, Meyer F, Neese F, Sarkar B. Tuning Magnetic Anisotropy Through Ligand Substitution in Five-Coordinate Co(II) Complexes. Inorg Chem 2017; 56:5253-5265. [DOI: 10.1021/acs.inorgchem.7b00371] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- David Schweinfurth
- Institut für
Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße
34-36, D-14195 Berlin, Germany
| | - J. Krzystek
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Mihail Atanasov
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, D-45470 Mülheim an der Ruhr, Germany
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Johannes Klein
- Institut für
Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße
34-36, D-14195 Berlin, Germany
| | - Stephan Hohloch
- Institut für
Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße
34-36, D-14195 Berlin, Germany
| | - Joshua Telser
- Department of Biological, Chemical, and Physical Sciences, Roosevelt University, Chicago, Illinois 60605, United States
| | - Serhiy Demeshko
- Universität Göttingen, Institut
für Anorganische Chemie, Tammanstraße 4, D-37077 Göttingen, Germany
| | - Franc Meyer
- Universität Göttingen, Institut
für Anorganische Chemie, Tammanstraße 4, D-37077 Göttingen, Germany
| | - Frank Neese
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Biprajit Sarkar
- Institut für
Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße
34-36, D-14195 Berlin, Germany
| |
Collapse
|
33
|
Schweinfurth D, Hettmanczyk L, Suntrup L, Sarkar B. Metal Complexes of Click-Derived Triazoles and Mesoionic Carbenes: Electron Transfer, Photochemistry, Magnetic Bistability, and Catalysis. Z Anorg Allg Chem 2017. [DOI: 10.1002/zaac.201700030] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- David Schweinfurth
- Institut für Chemie und Biochemie, Anorganische Chemie; Freie Universität Berlin; Fabeckstraße 34-36 14195 Berlin Germany
| | - Lara Hettmanczyk
- Institut für Chemie und Biochemie, Anorganische Chemie; Freie Universität Berlin; Fabeckstraße 34-36 14195 Berlin Germany
| | - Lisa Suntrup
- Institut für Chemie und Biochemie, Anorganische Chemie; Freie Universität Berlin; Fabeckstraße 34-36 14195 Berlin Germany
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie, Anorganische Chemie; Freie Universität Berlin; Fabeckstraße 34-36 14195 Berlin Germany
| |
Collapse
|
34
|
Gup R, Erer O, Dilek N. One-pot synthesis of a new 2-substituted 1,2,3-triazole 1-oxide derivative from dipyridyl ketone and isonitrosoacetophenone hydrazone: Nickel(II) complex, DNA binding and cleavage properties. Bioorg Chem 2017; 71:325-334. [PMID: 28285876 DOI: 10.1016/j.bioorg.2017.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 02/22/2017] [Accepted: 03/02/2017] [Indexed: 11/16/2022]
Abstract
An efficient and simple one-pot synthesis of a new 1,2,3-triazole-1-oxide via reaction between isonitrosoacetophenone hydrazone and dipyridyl ketone in the EtOH/AcOH at room temperature has been developed smoothly in high yield. The reaction proceeds via metal salt free, in-situ formation of asymmetric azine followed by cyclization to provide 1,2,3-triazole 1-oxide compound. It has been structurally characterized. The 1:1 ratio reaction of the 1,2,3-triazole 1-oxide ligand with nickel(II) chloride gives the mononuclear complex [Ni(L)(DMF)Cl2], hexa-coordinated within an octahedral geometry. Characterization of the 1,2,3-triazole compound and its Ni(II) complex with FTIR, 1H and 13C NMR, UV-vis and elemental analysis also confirms the proposed structures of the compounds. The interactions of the compounds with Calf thymus DNA (CT-DNA) have been investigated by UV-visible spectra and viscosity measurements. The results suggested that both ligand and Ni(II) complex bind to DNA in electrostatic interaction and/or groove binding, also with a slight partial intercalation in the case of ligand. DNA cleavage experiments have been also investigated by agarose gel electrophoresis in the presence and absence of an oxidative agent (H2O2). Both 1,2,3-triazole 1-oxide ligand and its nickel(II) complex show nuclease activity in the presence of hydrogen peroxide. DNA binding and cleavage affinities of the 1,2,3-triazole 1-oxide ligand is stronger than that of the Ni(II) complex.
Collapse
Affiliation(s)
- Ramazan Gup
- Department of Chemistry, Mugla Sıtkı Koçman University, 48100 Mugla, Turkey.
| | - Oktay Erer
- Department of Chemistry, Mugla Sıtkı Koçman University, 48100 Mugla, Turkey
| | - Nefise Dilek
- Department of Physics, Arts and Sciences Faculty, Aksaray University, 68100 Aksaray, Turkey
| |
Collapse
|
35
|
Cahier B, Perfetti M, Zakhia G, Naoufal D, El‐Khatib F, Guillot R, Rivière E, Sessoli R, Barra A, Guihéry N, Mallah T. Magnetic Anisotropy in Pentacoordinate Ni
II
and Co
II
Complexes: Unraveling Electronic and Geometrical Contributions. Chemistry 2017; 23:3648-3657. [DOI: 10.1002/chem.201604872] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Benjamin Cahier
- Institut de Chimie Moléculaire et des Matériaux O'Orsay, CNRS Université Paris Sud 11, Université Paris Saclay 91405 Orsay Cedex France
| | - Mauro Perfetti
- Dipartimento di Chimica “U. Schiff” Università degli studi di Firenze & INSTM UdR Firenze Via della Lastruccia 3–13 50019 Sesto Fiorentino Italy
- Universität Stuttgart Institut für Physikalische Chemie Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Georges Zakhia
- Institut de Chimie Moléculaire et des Matériaux O'Orsay, CNRS Université Paris Sud 11, Université Paris Saclay 91405 Orsay Cedex France
| | - Daoud Naoufal
- Laboratoire de Chimie de Coordination Inorganique et Organométallique, LCIO Université Libanaise, Faculté des Sciences I Hadath Lebanon
| | - Fatima El‐Khatib
- Institut de Chimie Moléculaire et des Matériaux O'Orsay, CNRS Université Paris Sud 11, Université Paris Saclay 91405 Orsay Cedex France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux O'Orsay, CNRS Université Paris Sud 11, Université Paris Saclay 91405 Orsay Cedex France
| | - Eric Rivière
- Institut de Chimie Moléculaire et des Matériaux O'Orsay, CNRS Université Paris Sud 11, Université Paris Saclay 91405 Orsay Cedex France
| | - Roberta Sessoli
- Dipartimento di Chimica “U. Schiff” Università degli studi di Firenze & INSTM UdR Firenze Via della Lastruccia 3–13 50019 Sesto Fiorentino Italy
| | - Anne‐Laure Barra
- Laboratoire National des Champs Magnétiques Intenses, UPR CNRS 3228 Université J. Fourier 25, avenue des Martyrs, B.P. 166 38042 Grenoble Cedex 9 France
| | - Nathalie Guihéry
- Laboratoire de Chimie et Physique Quantiques Université de Toulouse III 118, route de Narbonne 31062 Toulouse France
| | - Talal Mallah
- Institut de Chimie Moléculaire et des Matériaux O'Orsay, CNRS Université Paris Sud 11, Université Paris Saclay 91405 Orsay Cedex France
| |
Collapse
|
36
|
A rapid synthesis of 2-substituted 1,2,3- triazole-1-oxide derivative starting from 4-(methyl)isonitrosoacetophenone and its Ni(II) complex: Characterization, DNA binding and cleavage properties. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.09.066] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
37
|
Kar P, Yoshida M, Shigeta Y, Usui A, Kobayashi A, Minamidate T, Matsunaga N, Kato M. Methanol-Triggered Vapochromism Coupled with Solid-State Spin Switching in a Nickel(II)-Quinonoid Complex. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611085] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Paramita Kar
- Department of Chemistry; Faculty of Science; Hokkaido University; North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Masaki Yoshida
- Department of Chemistry; Faculty of Science; Hokkaido University; North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Yasuhiro Shigeta
- Department of Chemistry; Faculty of Science; Hokkaido University; North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Akane Usui
- Department of Chemistry; Faculty of Science; Hokkaido University; North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Atsushi Kobayashi
- Department of Chemistry; Faculty of Science; Hokkaido University; North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Takaaki Minamidate
- Department of Physics; Faculty of Science; Hokkaido University; North-10 West-8,Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Noriaki Matsunaga
- Department of Physics; Faculty of Science; Hokkaido University; North-10 West-8,Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Masako Kato
- Department of Chemistry; Faculty of Science; Hokkaido University; North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| |
Collapse
|
38
|
Kar P, Yoshida M, Shigeta Y, Usui A, Kobayashi A, Minamidate T, Matsunaga N, Kato M. Methanol-Triggered Vapochromism Coupled with Solid-State Spin Switching in a Nickel(II)-Quinonoid Complex. Angew Chem Int Ed Engl 2017; 56:2345-2349. [PMID: 28111863 DOI: 10.1002/anie.201611085] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 12/11/2016] [Indexed: 01/31/2023]
Affiliation(s)
- Paramita Kar
- Department of Chemistry; Faculty of Science; Hokkaido University; North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Masaki Yoshida
- Department of Chemistry; Faculty of Science; Hokkaido University; North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Yasuhiro Shigeta
- Department of Chemistry; Faculty of Science; Hokkaido University; North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Akane Usui
- Department of Chemistry; Faculty of Science; Hokkaido University; North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Atsushi Kobayashi
- Department of Chemistry; Faculty of Science; Hokkaido University; North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Takaaki Minamidate
- Department of Physics; Faculty of Science; Hokkaido University; North-10 West-8,Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Noriaki Matsunaga
- Department of Physics; Faculty of Science; Hokkaido University; North-10 West-8,Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Masako Kato
- Department of Chemistry; Faculty of Science; Hokkaido University; North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| |
Collapse
|
39
|
SANKARAN ANURADHA, PADMA MALAR EJ, VIJAYARAGHAVAN VENKATAPURAMRAMANUJAM. Study of behaviour of Ni(III) macrocyclic complexes in acidic aqueous medium through kinetic measurement involving hydrogen peroxide oxidation and DFT calculations. J CHEM SCI 2017. [DOI: 10.1007/s12039-017-1222-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Sommer MG, Marx R, Schweinfurth D, Rechkemmer Y, Neugebauer P, van der Meer M, Hohloch S, Demeshko S, Meyer F, van Slageren J, Sarkar B. Control of Complex Formation through Peripheral Substituents in Click-Tripodal Ligands: Structural Diversity in Homo- and Heterodinuclear Cobalt-Azido Complexes. Inorg Chem 2016; 56:402-413. [DOI: 10.1021/acs.inorgchem.6b02330] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Michael G. Sommer
- Institut für Chemie und Biochemie, Anorganische Chemie, Fabeckstraße 34-36, D-14195, Berlin, Germany
| | - Raphael Marx
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569, Stuttgart, Germany
| | - David Schweinfurth
- Institut für Chemie und Biochemie, Anorganische Chemie, Fabeckstraße 34-36, D-14195, Berlin, Germany
| | - Yvonne Rechkemmer
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569, Stuttgart, Germany
| | - Petr Neugebauer
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569, Stuttgart, Germany
| | - Margarethe van der Meer
- Institut für Chemie und Biochemie, Anorganische Chemie, Fabeckstraße 34-36, D-14195, Berlin, Germany
| | - Stephan Hohloch
- Institut für Chemie und Biochemie, Anorganische Chemie, Fabeckstraße 34-36, D-14195, Berlin, Germany
| | - Serhiy Demeshko
- Institut
für Anorganische Chemie, Georg-August-Universität Göttingen, Tammanstraße
4, D-37077, Göttingen, Germany
| | - Franc Meyer
- Institut
für Anorganische Chemie, Georg-August-Universität Göttingen, Tammanstraße
4, D-37077, Göttingen, Germany
| | - Joris van Slageren
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569, Stuttgart, Germany
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie, Anorganische Chemie, Fabeckstraße 34-36, D-14195, Berlin, Germany
| |
Collapse
|
41
|
Manck S, Röger M, van der Meer M, Sarkar B. Heterotri‐ and Heteropentanuclear Copper(I)–Ferrocenyl Complexes Assembled through a “Click” Strategy: A Structural, Electrochemical, and Spectroelectrochemical Investigation. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201601075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sinja Manck
- Institut für Chemie und Biochemie, Anorganische ChemieFreie Universität BerlinFabeckstraße 34‐3614195BerlinGermany
| | - Marc Röger
- Institut für Chemie und Biochemie, Anorganische ChemieFreie Universität BerlinFabeckstraße 34‐3614195BerlinGermany
| | - Margarethe van der Meer
- Institut für Chemie und Biochemie, Anorganische ChemieFreie Universität BerlinFabeckstraße 34‐3614195BerlinGermany
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie, Anorganische ChemieFreie Universität BerlinFabeckstraße 34‐3614195BerlinGermany
| |
Collapse
|
42
|
Kumar SV, Scottwell SØ, Waugh E, McAdam CJ, Hanton LR, Brooks HJL, Crowley JD. Antimicrobial Properties of Tris(homoleptic) Ruthenium(II) 2-Pyridyl-1,2,3-triazole “Click” Complexes against Pathogenic Bacteria, Including Methicillin-Resistant Staphylococcus aureus (MRSA). Inorg Chem 2016; 55:9767-9777. [DOI: 10.1021/acs.inorgchem.6b01574] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Sreedhar V. Kumar
- Department
of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
- Department
of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Synøve Ø. Scottwell
- Department
of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
- Department
of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Emily Waugh
- Department
of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, PO Box 56, Dunedin, New Zealand
| | - C. John McAdam
- Department
of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Lyall R. Hanton
- Department
of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Heather J. L. Brooks
- Department
of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, PO Box 56, Dunedin, New Zealand
| | - James D. Crowley
- Department
of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
| |
Collapse
|
43
|
A new click-derived tripodal receptor for fluorescence recognition of Ni2+ in aqueous solution. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.07.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
Yang HY. Crystal structure of aquadichloridobis(1-((2-methyl-1 H-imidazol-1-yl)methyl)-1 H-benotriazole-κN)mercury(II), C 22H 24Cl 2HgN 10O. Z KRIST-NEW CRYST ST 2016. [DOI: 10.1515/ncrs-2015-0226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractC22H24HgCl2N10O, monoclinic,C2/c(no. 15),a= 7.8093(3) Å,b= 23.167(3) Å,c= 14.0254(4) Å,β= 91.747(3)°,V= 2536.3(3) Å3,Z= 4,Rgt(F)= 0.0283,wRref(F2)= 0.0469,T= 291.15 K.
Collapse
Affiliation(s)
- Hai-Yan Yang
- School of Materials and Chemical Engineering, Zhongyuan University of Technology , Zhengzhou, 450007, P. R. China
| |
Collapse
|
45
|
Guo Y, Sivalingam K, Valeev EF, Neese F. SparseMaps—A systematic infrastructure for reduced-scaling electronic structure methods. III. Linear-scaling multireference domain-based pair natural orbital N-electron valence perturbation theory. J Chem Phys 2016; 144:094111. [DOI: 10.1063/1.4942769] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yang Guo
- Max Planck Institut für Chemische Energiekonversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Kantharuban Sivalingam
- Max Planck Institut für Chemische Energiekonversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Edward F. Valeev
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24014, USA
| | - Frank Neese
- Max Planck Institut für Chemische Energiekonversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
46
|
Schweinfurth D, Demeshko S, Sommer MG, Dechert S, Meyer F, Sarkar B. FeII and CoII Complexes with Click-Derived Tripodal Ligands: Influence of the Peripheral Substituents on Geometric Structures and Magnetic Properties. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201501385] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- David Schweinfurth
- Institut für Chemie und Biochemie; Anorganische Chemie; Freie Universität Berlin; Fabeckstraße 34-36 14195 Berlin Germany
| | - Serhiy Demeshko
- Institut für Anorganische Chemie; Anorganische Chemie; Georg-August-Universität Göttingen; Tammannstraße 4 37077 Göttingen Germany
| | - Michael G. Sommer
- Institut für Chemie und Biochemie; Anorganische Chemie; Freie Universität Berlin; Fabeckstraße 34-36 14195 Berlin Germany
| | - Sebastian Dechert
- Institut für Anorganische Chemie; Anorganische Chemie; Georg-August-Universität Göttingen; Tammannstraße 4 37077 Göttingen Germany
| | - Franc Meyer
- Institut für Anorganische Chemie; Anorganische Chemie; Georg-August-Universität Göttingen; Tammannstraße 4 37077 Göttingen Germany
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie; Anorganische Chemie; Freie Universität Berlin; Fabeckstraße 34-36 14195 Berlin Germany
| |
Collapse
|
47
|
Sommer MG, Rechkemmer Y, Suntrup L, Hohloch S, van der Meer M, van Slageren J, Sarkar B. Structural snapshots in the copper(ii) induced azide–nitrile cycloaddition: effects of peripheral ligand substituents on the formation of unsupported μ1,1-azido vs. μ1,4-tetrazolato bridged complexes. Dalton Trans 2016; 45:17770-17781. [DOI: 10.1039/c6dt03073d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Peripheral substituents on click-derived tripodal ligands dictate the reactivity of their copper(ii) azido complexes.
Collapse
Affiliation(s)
- Michael G. Sommer
- Institut für Chemie und Biochemie
- Anorganische Chemie
- Freie Universität Berlin
- Berlin
- Germany
| | - Yvonne Rechkemmer
- Institut für Physikalische Chemie
- Universität Stuttgart
- Stuttgart
- Germany
| | - Lisa Suntrup
- Institut für Chemie und Biochemie
- Anorganische Chemie
- Freie Universität Berlin
- Berlin
- Germany
| | - Stephan Hohloch
- Institut für Chemie und Biochemie
- Anorganische Chemie
- Freie Universität Berlin
- Berlin
- Germany
| | | | | | - Biprajit Sarkar
- Institut für Chemie und Biochemie
- Anorganische Chemie
- Freie Universität Berlin
- Berlin
- Germany
| |
Collapse
|
48
|
Hohloch S, Suntrup L, Sarkar B. Exploring potential cooperative effects in dicopper(i)-di-mesoionic carbene complexes: applications in click catalysis. Inorg Chem Front 2016. [DOI: 10.1039/c5qi00163c] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dicopper(i) dimesoionic carbene complexes are active catalysts for the azide–alkyne cycloaddition reaction and are more active than their mononuclear counterparts.
Collapse
Affiliation(s)
- Stephan Hohloch
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- Berlin
- Germany
| | - Lisa Suntrup
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- Berlin
- Germany
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- Berlin
- Germany
| |
Collapse
|
49
|
Brazzolotto D, Gennari M, Yu S, Pécaut J, Rouzières M, Clérac R, Orio M, Duboc C. An Experimental and Theoretical Investigation on Pentacoordinated Cobalt(III) Complexes with an Intermediate S=
1 Spin State: How Halide Ligands Affect their Magnetic Anisotropy. Chemistry 2015; 22:925-33. [DOI: 10.1002/chem.201502997] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Shengying Yu
- Univ. Grenoble Alpes, DCM, CNRS UMR 5250; 38000 Grenoble France
| | - Jacques Pécaut
- Univ. Grenoble Alpes, CEA, INAC-SCIB; 38000 Grenoble France
| | - Mathieu Rouzières
- CNRS, CRPP, UPR 8641; F-33600 Pessac France
- Univ. Bordeaux, CRPP, UPR 8641; F-33600 Pessac France
| | - Rodolphe Clérac
- CNRS, CRPP, UPR 8641; F-33600 Pessac France
- Univ. Bordeaux, CRPP, UPR 8641; F-33600 Pessac France
| | - Maylis Orio
- Aix Marseille Université, ISM2, CNRS UMR 7313; 13397 Marseille France
| | - Carole Duboc
- Univ. Grenoble Alpes, DCM, CNRS UMR 5250; 38000 Grenoble France
| |
Collapse
|
50
|
Alvarez S. Distortion Pathways of Transition Metal Coordination Polyhedra Induced by Chelating Topology. Chem Rev 2015; 115:13447-83. [PMID: 26575868 DOI: 10.1021/acs.chemrev.5b00537] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A continuous shape measures analysis of the coordination polyhedra of a host of transition metal complexes with bi- and multidentate ligands discloses the distortion pathway associated with each particular topology of the chelate rings formed. The basic parameter that controls the degree of distortion is the metal-donor atom bond distance that induces nonideal bond angles due to the rigidity of the ligands. Thus, the degree of distortion within each family of complexes depends on the atomic size, on which the high- or low-spin state has a large effect. Special attention is therefore paid to several spin-crossover systems and to the enhanced distortions that go along with the transition from low- to high-spin state affected by temperature, light, or pressure. Several families of complexes show deviations from the expected distortion pathways in the high-spin state that can be associated to the onset of intermolecular interactions such as secondary coordination of counterions or solvent molecules. Also, significant displacement of counterions in an extended solid may result from the changes in metal-ligand bond distances when ligands are involved in intermolecular hydrogen bonding.
Collapse
Affiliation(s)
- Santiago Alvarez
- Departament de Química Inorgànica and Institut de Química Teòrica i Computacional, Universitat de Barcelona , Martí i Franquès 1-11, 08028 Barcelona, Spain
| |
Collapse
|