1
|
Jia TT, Guo D, Meng X, Du H, Qin F, Chen J, Niu H. Development of a fast fluorescent probe for sensitive detection of glutathione in 100 % aqueous solution and its applications in real samples, oxidative stress model and ferroptosis model. Food Chem 2025; 463:141073. [PMID: 39241422 DOI: 10.1016/j.foodchem.2024.141073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/17/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
Glutathione (GSH) plays a crucial role in several physiological processes, including anti-oxidation and heavy metal detoxification. GSH is produced endogenously in the human body and can also be obtained through diet. The development of fast, highly sensitive, and multi-application fluorescent probes remains a challenging task. In this study, we have designed and synthesized a coumarin-based fluorescent probe (NFRF) for the sensitive and rapid detection of GSH in 100 % aqueous solution. By loading probe NFRF on the filter paper, the real-time visual detection of GSH is achieved in both daylight and fluorescence modes, providing a convenient, economical and rapid on-site detection tool. Probe NFRF could be used for the detection of GSH in real samples, with recoveries rates of 81.74 %-115.12 %. Notably, the probe imaged changes in GSH concentrations in oxidative stress environments and during ferroptosis. This work provides a prospective method for GSH detection in food and complex biological systems.
Collapse
Affiliation(s)
- Tong-Tong Jia
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471934, PR China
| | - Dandan Guo
- College of Food and Bioengineering, Henan International Joint Laboratory of Food Green Processing and Safety Control, Henan University of Science and Technology, Luoyang, 471000, PR China
| | - Xin Meng
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471934, PR China
| | - Hetuan Du
- College of Food and Bioengineering, Henan International Joint Laboratory of Food Green Processing and Safety Control, Henan University of Science and Technology, Luoyang, 471000, PR China
| | - Fangyuan Qin
- Institute of Ophthalmology, Henan, Provincial People's Hospital, Zhengzhou, 450003, PR China.
| | - Junliang Chen
- College of Food and Bioengineering, Henan International Joint Laboratory of Food Green Processing and Safety Control, Henan University of Science and Technology, Luoyang, 471000, PR China.
| | - Huawei Niu
- College of Food and Bioengineering, Henan International Joint Laboratory of Food Green Processing and Safety Control, Henan University of Science and Technology, Luoyang, 471000, PR China.
| |
Collapse
|
2
|
Feng R, Wang M, Zhang Z, Hu P, Wu Z, Shi G, Xu B, Liu H, Ma LJ. Polymer-Based Long-Lived Phosphorescence Materials over a Broad Temperature Based on Coumarin Derivatives as Information Anti-Counterfeiting. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37335904 DOI: 10.1021/acsami.3c03207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
The development of new polymer-based room-temperature phosphorescence materials is of great significance. By a special molecule design and a set of feasible property-enhancing strategies, coumarin derivatives (CMDs, Ma-Mf) were doped into polyvinyl alcohol (PVA), polyacrylamide (PAM), corn starch, and polyacrylonitrile (PAN) as information anti-counterfeiting. CMDs-doped PVA and CMDs-doped corn starch films showed long-lived phosphorescence emissions up to 1246 ms (Ma-PVA) and 697 ms (Ma-corn starch), reaching over 10 s afterglow under naked eye observation under ambient conditions. Significantly, CMDs-doped PAM films can display long-lived phosphorescence emissions in a wide temperature range (100-430 K). For example, the Me-PAM film has a phosphorescence lifetime of 16 ms at 430 K. The use of PAM with the strong polarity and rigidity has expanded the temperature range of long-life polymer-based phosphorescent materials. The present long-lived phosphorescent systems provide the possibility for developing new polymer-based organic afterglow materials with robust phosphorescence.
Collapse
Affiliation(s)
- Runcong Feng
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Muxi Wang
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Zhongyan Zhang
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Pengtao Hu
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Zetao Wu
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Guangyi Shi
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Bingjia Xu
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Hong Liu
- School of Environment, South China Normal University, Guangzhou 510006, P. R. China
| | - Li-Jun Ma
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
- Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, P. R. China
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, South China Normal University, Guangzhou 510631, P. R. China
| |
Collapse
|
3
|
Anyama CA, Inah B, Utsu P, Ayi AA. Tailoring the band-gap, optical and fluorescent properties of 3,5-diaminobenzoic acid via functionalization with chemical groups: A DFT study. Talanta 2023; 265:124777. [PMID: 37437395 DOI: 10.1016/j.talanta.2023.124777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 07/14/2023]
Abstract
3,5-diaminobenzoic acid (3,5-DABA) with chemical formula C7H8N2O2 was functionalized with CH3-, OH-, NH2- and NO2- to obtain: CH3-3,5 DABA, OH-3,5 DABA, NH2-3,5DABA and NO2-3,5DABA. These molecules were built with Gauss view 6.0 and their structural, spectroscopic, optoelectronic and molecular properties were investigated using density functional theory (DFT). B3LYP (Becke's 3-parameter exchange functional with Lee-Yang-Parr correlation energy) functional and 6-311+ G (d, p) basis set were used to understand their reactivity, stability and optical activity. Integral equation formalism polarizable continuum model (IEF - PCM) was used to calculate the absorption wavelength, energy required to excite the molecules and oscillator strength. Our results reveal that the functionalization of 3,5 DABA with the groups caused a decrease of the energy gap from 0.1563 eV, to 0.1461 eV, 0.13818 eV and 0.13811 eV in NO2-3,5DABA, OH-3,5DABA and NH2-3,5DABA respectively. The lowest energy gap of 0.13811 eV for NH2-3,5DABA is in good agreement with its highest reactivity value (global softness of 7.240). The most observed significant donor - acceptor NBO interactions where found to occur between *ΠC16-O17 → *ΠC1-C2, *ΠC3-C4→ *ΠC1-C2, *ΠC1-C2 → *ΠC5-C6, *ΠC3-C4 → *ΠC5-C6, *ΠC2-C3 →*ΠC4-C5 natural bond orbitals having second- order stabilization energies of 101.95 kcal/mol, 368.41 kcal/mol, 174.51 kcal/mol, 255.63 kcal/mol and 235.92 kcal/mol in 3,5-DABA, CH3-3,5-DABA, OH-3,5-DABA, NH2-3,5-DABA and NO2-3,5-DABA respectively. The highest perturbation energy was observed in CH3-3,5DABA while the lowest perturbation energy was observed in 3,5DABA. The absorption band of the compounds were observed in the order: NH2-3,5DABA (404 nm) > N02-3,5DABA (393 nm) > OH-3,5DABA (386 nm) > 3,5DABA (349 nm) > CH3-3,5DABA (347 nm).
Collapse
Affiliation(s)
| | - Bassey Inah
- Department of Pure and Applied Chemistry, University of Calabar, Nigeria
| | - Patrick Utsu
- Department of Pure and Applied Chemistry, University of Calabar, Nigeria
| | - Ayi A Ayi
- Department of Pure and Applied Chemistry, University of Calabar, Nigeria
| |
Collapse
|
4
|
Sharma V, Sahu B, Kumar Das U, Kumar Patra G. A reversible fluorescent-colorimetric malononitrile based novel Schiff-base chemosensor for visual detection of bicarbonate ion in aqueous solution. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
5
|
Baby A, Julietraja K, Xavier DA. On Molecular Structural Characterization of Cyclen Cored Dendrimers. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2023.2179641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Annmaria Baby
- Department of Mathematics, Loyola College, University of Madras, Chennai, India
| | - K. Julietraja
- Department of Mathematics, St. Joseph’s College of Engineering, Chennai, India
| | - D. Antony Xavier
- Department of Mathematics, Loyola College, University of Madras, Chennai, India
| |
Collapse
|
6
|
Ju H, Hiraoka T, Horita H, Lee E, Ikeda M, Kuwahara S, Habata Y. Argentivorous molecules with chromophores: dependence of their fluorescence intensities on the distance between a donor and an acceptor. Dalton Trans 2022; 51:15530-15537. [PMID: 36165977 DOI: 10.1039/d2dt01581a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have prepared new argentivorous molecules (L2 and L3) having different linker lengths between cyclen and anthracene units. The structures of Ag+ complexes with the new ligands were investigated in solution and solid states. The silver(I) ion-induced 1H NMR and UV-vis spectral changes of L2 and L3 showed the presence of 1 : 1 complexes. The solid-state structures of the Ag+ complexes with L2 and L3 are stable 1 : 1 complexes because four aromatic side-arms wrap the Ag+ incorporated in the cyclen unit. A photo-induced electron transfer (PET) effect that depends on the length of the linker connecting the nitrogen atoms of cyclen to the chromophore is also investigated. The result indicates a linear (log) correlation between the donor-chromophore average distances of the optimized structures calculated by DFT calculations and fluorescence intensities (log I), and the PET effect becomes ineffective at about 12 Å in this system.
Collapse
Affiliation(s)
- Huiyeong Ju
- Western Seoul Center, Korea Basic Science Institute, 150 Bugahyeon-ro, Seodaemun-gu, Seoul 03759, South Korea
| | - Takao Hiraoka
- Department of Chemistry, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Hiroki Horita
- Department of Chemistry, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Eunji Lee
- Department of Chemistry, Gangneung-Wonju National University, Jukheon-gil, Gangneung-si, Gangwon-do 25457, South Korea
| | - Mari Ikeda
- Department of Chemistry, Education Centre, Faculty of Engineering, Chiba Institute of Technology, 2-1-1 Shibazono, Narashino, Chiba 275-0023, Japan
| | - Shunsuke Kuwahara
- Department of Chemistry, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan.,Research Centre for Materials with Integrated Properties, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan.
| | - Yoichi Habata
- Department of Chemistry, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan.,Research Centre for Materials with Integrated Properties, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan.
| |
Collapse
|
7
|
Fashionable Co-operative Sensing of Bivalent Zn 2+ and Cd 2+ in Attendance of OAc - by Use of Simple Sensor: Exploration of Molecular Logic Gate and Docking Studies. J Fluoresc 2022; 32:1263-1277. [PMID: 35708890 DOI: 10.1007/s10895-022-02980-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
Abstract
The Schiff-base probe H2VL [6,6'-((1E,1'E)-hydrazine-1,2 diylidenebis(methanylylidene))bis(2-methoxyphenol)] is synthesized and structurally characterized by single crystal X-ray diffraction (SCXRD). H2VL is able to detect selectively acetate ion (OAc-) colorimetrically over other anions with 1:1 co-ordination. The detection limit is found to be 4.93 µM. On the other hand, fluorescence intensity of the receptor is drastically enhanced with Zn2+ and Cd2+ in the presence of acetate as counter anion. N, N-Dimethyl formamide (DMF) or Dimethylsulphoxide (DMSO) and acetate (OAc-) was the best solvent and counter anion for Zn2+/Cd2+ -sensing compared with other solvents and anions, respectively. Detection limit for Zn2+ and Cd2+ are calculated to be 1.94 µM and 1.99 µM, respectively. The strong selective emissive behavior could be attributed to the CHEF (chelation-enhanced fluorescence) process. According to the changes in output emission intensity in DMSO in response to the set of ions (Zn2+, Cd2+ and OAc¯) as input variables, the function of 3-input multifunctional molecular logic circuits has been demonstrated. The molecular docking studies of H2VL with DNA and BSA are also performed to confirm its possible bioactivity.
Collapse
|
8
|
Dou WT, Han HH, Sedgwick AC, Zhu GB, Zang Y, Yang XR, Yoon J, James TD, Li J, He XP. Fluorescent probes for the detection of disease-associated biomarkers. Sci Bull (Beijing) 2022; 67:853-878. [PMID: 36546238 DOI: 10.1016/j.scib.2022.01.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 01/10/2023]
Abstract
Fluorescent probes have emerged as indispensable chemical tools to the field of chemical biology and medicine. The ability to detect intracellular species and monitor physiological processes has not only advanced our knowledge in biology but has provided new approaches towards disease diagnosis. In this review, we detail the design criteria and strategies for some recently reported fluorescent probes that can detect a wide range of biologically important species in cells and in vivo. In doing so, we highlight the importance of each biological species and their role in biological systems and for disease progression. We then discuss the current problems and challenges of existing technologies and provide our perspective on the future directions of the research area. Overall, we hope this review will provide inspiration for researchers and prove as useful guide for the development of the next generation of fluorescent probes.
Collapse
Affiliation(s)
- Wei-Tao Dou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hai-Hao Han
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Adam C Sedgwick
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712-1224, USA
| | - Guo-Biao Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xin-Rong Yang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China.
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
9
|
Nilam M, Hennig A. Enzyme assays with supramolecular chemosensors - the label-free approach. RSC Adv 2022; 12:10725-10748. [PMID: 35425010 PMCID: PMC8984408 DOI: 10.1039/d1ra08617k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/30/2022] [Indexed: 12/20/2022] Open
Abstract
Enzyme activity measurements are essential for many research areas, e.g., for the identification of inhibitors in drug discovery, in bioengineering of enzyme mutants for biotechnological applications, or in bioanalytical chemistry as parts of biosensors. In particular in high-throughput screening (HTS), sensitive optical detection is most preferred and numerous absorption and fluorescence spectroscopy-based enzyme assays have been developed, which most frequently require time-consuming fluorescent labelling that may interfere with biological recognition. The use of supramolecular chemosensors, which can specifically signal analytes with fluorescence-based read-out methods, affords an attractive and label-free alternative to more established enzyme assays. We provide herein a comprehensive review that summarizes the current state-of-the-art of supramolecular enzyme assays ranging from early examples with covalent chemosensors to the most recent applications of supramolecular tandem enzyme assays, which utilize common and often commercially available combinations of macrocyclic host molecules (e.g. cyclodextrins, calixarenes, and cucurbiturils) and fluorescent dyes as self-assembled reporter pairs for assaying enzyme activity.
Collapse
Affiliation(s)
- Mohamed Nilam
- Department of Biology/Chemistry, Center for Cellular Nanoanalytics (CellNanOs), Universität Osnabrück Barbarastr. 7 D-49076 Osnabrück Germany
| | - Andreas Hennig
- Department of Biology/Chemistry, Center for Cellular Nanoanalytics (CellNanOs), Universität Osnabrück Barbarastr. 7 D-49076 Osnabrück Germany
| |
Collapse
|
10
|
Wen J, Huang N, Wei Z, Yi D, Long Y, Zheng H. Metal-free colorimetric detection of pyrophosphate ions by the peroxidase-like activity of ATP. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120479. [PMID: 34655979 DOI: 10.1016/j.saa.2021.120479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/27/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Pyrophosphate (P2O74-, PPi) plays a vital role in ecological environment. Its elevated levels in water bodies can lead to eutrophication. Hence, its detection is extremely significant. Whereas most of the existing methods for the actual detection of PPi may cause environmental pollution or suffer from operational complexity. In this study, we introduced a sensitive and selective method for detecting PPi based on the fact that PPi can inhibit the peroxidase-like activity of adenosine 5'-triphosphate (ATP). This strategy not only eliminated the complexity of material preparation (ATP is commercialized), but also addressed the general need for metal ions in detecting PPi. The dynamic range of PPi detection was 1.0-200 μM and the detection limit was 74 nM. In addition, this strategy had been successfully applied to the determination of PPi in tap water and lake water. This work extends the application of natural biological small molecule ATP in the analysis and provides an innovative thought for the metal-free detection of PPi.
Collapse
Affiliation(s)
- Jiahui Wen
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, China
| | - Na Huang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, China
| | - Zixuan Wei
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, China
| | - Danyang Yi
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, China
| | - Yijuan Long
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, China
| | - Huzhi Zheng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
11
|
Das A, Das G. A chromone-based multi-selective sensor: applications in paper strips and real sample. NEW J CHEM 2022. [DOI: 10.1039/d2nj04115d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A chromone-based multi-selective sensor: applications in a paper strip and real sample.
Collapse
Affiliation(s)
- Asesh Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Gopal Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| |
Collapse
|
12
|
Li Y, Deng B, Yang S, Tian H, Sun B. A colorimetric fluorescent probe for the detection of tyrosinase and its application for the food industry. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Rathinam B, Liu BT. Highly efficient probe of dinuclear zinc complex for selective detection of oxalic acid. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Li Y, Deng B, Yang S, Tian H, Liu Y, Sun B. A Fluorescent Probe for The Visible Colorimetric Detection of Tyrosinase. ChemistrySelect 2021. [DOI: 10.1002/slct.202102473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yanan Li
- Beijing Key laboratory of Flavor Chemistry Beijing Technology and Business University Beijing 100048 PR China
| | - Bing Deng
- Beijing Key laboratory of Flavor Chemistry Beijing Technology and Business University Beijing 100048 PR China
| | - Shaoxiang Yang
- Beijing Key laboratory of Flavor Chemistry Beijing Technology and Business University Beijing 100048 PR China
| | - Hongyu Tian
- Beijing Key laboratory of Flavor Chemistry Beijing Technology and Business University Beijing 100048 PR China
| | - Yongguo Liu
- Beijing Key laboratory of Flavor Chemistry Beijing Technology and Business University Beijing 100048 PR China
| | - Baoguo Sun
- Beijing Key laboratory of Flavor Chemistry Beijing Technology and Business University Beijing 100048 PR China
| |
Collapse
|
15
|
Fluorescein Based Three-channel Probe for the Selective and Sensitive Detection of CO 32- Ions in an Aqueous Environment and Real Water Samples. J Fluoresc 2021; 31:1617-1625. [PMID: 34357494 DOI: 10.1007/s10895-021-02779-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/05/2021] [Indexed: 12/27/2022]
Abstract
We have constructed a novel fluorescein-based fluorescent chemosensor, FL-In, functionalised with an indole moiety and capable of sensing by both the optical "turn-on" and electrochemical detection of carbonate ions (CO32-) in aqueous media. The probe exhibits excellent selectivity and a low detection limit (0.27 µM) regarding carbonate ions by a possible coordination and hydrolysis reaction mechanism. The developed probe successfully detected CO32- ions in different samples of water. Also, in a simple filter paper experiment, we documented its ability to allow the monitoring of CO32- with the naked eye.
Collapse
|
16
|
Syed A, Battula H, Mishra S, Jayanty S. Distinct Tetracyanoquinodimethane Derivatives: Enhanced Fluorescence in Solutions and Unprecedented Cation Recognition in the Solid State. ACS OMEGA 2021; 6:3090-3105. [PMID: 33553926 PMCID: PMC7860107 DOI: 10.1021/acsomega.0c05486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Tetracyanoquinodimethane (TCNQ) is known to react with various amines to generate substituted TCNQ derivatives with remarkable optical and nonlinear optical characteristics. The choice of amine plays a crucial role in the outcome of molecular material attributes. Especially, mono/di-substituted TCNQ's possessing strong fluorescence in solutions than solids are deficient. Furthermore, cation recognition in the solid-state TCNQ derivatives is yet undetermined. In this article, we present solution-enhanced fluorescence and exclusive solid-state recognition of K+ ion achieved through the selection of 4-(4-aminophenyl)morpholin-3-one (APM) having considerable π-conjugation and carbonyl (C=O) functionality, particularly in the ring. TCNQ when reacted with APM, in a single-step reaction, resulted in two well-defined distinct compounds, namely, 7,7-bis(4-(4-aminophenyl)morpholin-3-ono)dicyanoquinodimethane (BAPMDQ [1], yellow) and 7,7,8-(4-(4-aminophenyl)morpholin-3-ono)tricyanoquinodimethane (APMTQ [2], red), with increased fluorescence intensity in solutions than their solids. Crystal structure investigation revealed extensive C-H-π interactions and strong H-bonding in [1], whereas moderate to weak interactions in [2]. Surprisingly, simple mechanical grinding during KBr pellet preparation with [1, 2] triggered unidentified cation recognition with a profound color change (in ∼1 min) detected by the naked eye, accompanied by a drastic enhancement of fluorescence, proposed due to the presence of carbonyl functionality, noncovalent intermolecular interactions, and molecular assemblies in [1, 2] solids. Cation recognition was also noted with various other salts as well (KCl, KI, KSCN, NH4Cl, NH4Br, etc.). Currently, the recognition mechanism of K+ ion in [1, 2] is demonstrated by the strong electrostatic interaction of K+ ion with CO and simultaneously cation-π interaction of K+ with the phenyl ring of APM, supported by experimental and computational studies. Computational analysis also revealed that a strong cation-π interaction occurred between the K+ ion and the phenyl ring (APM) in [2] than in [1] (ΔG binding calculated as ∼16.3 and ∼25.2 kcal mol-1 for [1] and [2], respectively) providing additional binding free energy. Thus, both electrostatic and cation-π interactions lead to the recognition. Scanning electron microscopy of drop-cast films showed microcrystalline "roses" in [1] and micro/nano "aggregates" in [2]. Optical band gap (∼3.565 eV) indicated [1, 2] as wide-band-gap materials. The current study demonstrates fascinating novel products obtained by single-pot reaction, resulting in contrasting optical properties in solutions and experiencing cation recognition capability exclusively in the solid state.
Collapse
Affiliation(s)
- Anwarhussaini Syed
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Jawaharnagar, Shameerpet Mandal, Medchal Dist., Hyderabad 500078, Telangana State, India
| | - Himabindu Battula
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Jawaharnagar, Shameerpet Mandal, Medchal Dist., Hyderabad 500078, Telangana State, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Subbalakshmi Jayanty
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Jawaharnagar, Shameerpet Mandal, Medchal Dist., Hyderabad 500078, Telangana State, India
| |
Collapse
|
17
|
|
18
|
Yang J, Huo F, Yue Y, Zhang Y, Yin C. ESIPT silent and mitochondrial-targeted rapid response for SO 2 regulated by pyridinium and its real-time detection in living cells. NEW J CHEM 2021. [DOI: 10.1039/d1nj04077d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
ESIPT has been widely used in fluorescence recognition because of its advantages such as large Stokes shift.
Collapse
Affiliation(s)
- Jialu Yang
- Department of Chemistry, Xinzhou Teachers University, Xinzhou 034000, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006, China
| | - Yongkang Yue
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China
| | - Yongbin Zhang
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006, China
| | - Caixia Yin
- Department of Chemistry, Xinzhou Teachers University, Xinzhou 034000, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
19
|
Sahoo J, Jaiswar S, Chatterjee PB, Subramanian PS, Jena HS. Mechanistic Insight of Sensing Hydrogen Phosphate in Aqueous Medium by Using Lanthanide(III)-Based Luminescent Probes. NANOMATERIALS 2020; 11:nano11010053. [PMID: 33379340 PMCID: PMC7824681 DOI: 10.3390/nano11010053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 11/16/2022]
Abstract
The development of synthetic lanthanide luminescent probes for selective sensing or binding anions in aqueous medium requires an understanding of how these anions interact with synthetic lanthanide probes. Synthetic lanthanide probes designed to differentiate anions in aqueous medium could underpin exciting new sensing tools for biomedical research and drug discovery. In this direction, we present three mononuclear lanthanide-based complexes, EuLCl3 (1), SmLCl3 (2), and TbLCl3 (3), incorporating a hexadentate aminomethylpiperidine-based nitrogen-rich heterocyclic ligand L for sensing anion and establishing mechanistic insight on their binding activities in aqueous medium. All these complexes are meticulously studied for their preferential selectivities towards different anions such as HPO42−, SO42−, CH3COO−, I−, Br−, Cl−, F−, NO3−, CO32−/HCO3−, and HSO4− at pH 7.4 in aqueous HEPES (2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid) buffer. Among the anions scanned, HPO42− showed an excellent luminescence change with all three complexes. Job’s plot and ESI-MS support the 1:2 association between the receptors and HPO42−. Systematic spectrophotometric titrations of 1–3 against HPO42− demonstrates that the emission intensities of 1 and 2 were enhanced slightly upon the addition of HPO42− in the range 0.01–1 equiv and 0.01–2 equiv., respectively. Among the three complexes, complex 3 showed a steady quenching of luminescence throughout the titration of hydrogen phosphate. The lower and higher detection limits of HPO42− by complexes 1 and 2 were determined as 0.1–4 mM and 0.4–3.2 mM, respectively, while complex 3 covered 0.2–100 μM. This concludes that all complexes demonstrated a high degree of sensitivity and selectivity towards HPO42−.
Collapse
Affiliation(s)
- Jashobanta Sahoo
- Inorganic Materials and Catalysis Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364 002, India;
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CSMCRI, Bhavnagar, Gujarat 364 002, India;
- Department of Chemistry, Hindol College, Khajuriakata, Higher Education Department, State Government of Odisha, Bhubaneswar, Odisha 751001, India
| | - Santlal Jaiswar
- Discipline of Marine Biotechnology and Ecology, CSIR-CSMCRI, Bhavnagar, Gujarat 364 002, India;
| | - Pabitra B. Chatterjee
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CSMCRI, Bhavnagar, Gujarat 364 002, India;
- Analytical Discipline and Centralized Instrument Facility, CSIR-CSMCRI, Bhavnagar, Gujarat 364 002, India
| | - Palani S. Subramanian
- Inorganic Materials and Catalysis Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364 002, India;
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CSMCRI, Bhavnagar, Gujarat 364 002, India;
- Correspondence: or (P.S.S.); or (H.S.J.)
| | - Himanshu Sekhar Jena
- Department of Chemistry, Ghent University, Krijgslaan 281-S3 B, 9000 Ghent, Belgium
- Correspondence: or (P.S.S.); or (H.S.J.)
| |
Collapse
|
20
|
Singh S, Coulomb B, Boudenne JL, Bonne D, Dumur F, Simon B, Robert-Peillard F. Sub-ppb mercury detection in real environmental samples with an improved rhodamine-based detection system. Talanta 2020; 224:121909. [PMID: 33379113 DOI: 10.1016/j.talanta.2020.121909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 01/06/2023]
Abstract
A new procedure is described for the determination of Hg2+ ions in water samples. A Rhodamine based fluorescent sensor was synthesized and the experimental conditions were specifically optimized for application to environmental samples, which requires low detection limits and high selectivity in competitive experiments with realistic concentrations of other metal ions. Incorporation of a Rhodamine-6G fluorophore to a previously described sensor and optimization of the buffer system (detection with acetic acid at pH 5.25) enabled significant enhancement of the sensitivity (detection limit = 0.27 μg L-1) and selectivity. The optimized procedure using high-throughput microplates has been applied to tap and river waters with good results.
Collapse
Affiliation(s)
- Sukhdev Singh
- Aix Marseille Université, CNRS, Centrale Marseille, ISm2, Marseille, France
| | | | | | - Damien Bonne
- Aix Marseille Université, CNRS, Centrale Marseille, ISm2, Marseille, France
| | - Frédéric Dumur
- Aix Marseille Univ, CNRS, ICR, UMR 7273, F-13397, Marseille, France
| | - Bertrand Simon
- Institut D'Optique & CNRS, Laboratoire Photonique Numérique et Nanoscience, UMR 5298, Talence, France
| | | |
Collapse
|
21
|
Sahoo J, Jaiswar S, Jena HS, Subramanian PS. Sensing of Phosphate and ATP by Lanthanide Complexes in Aqueous Medium and Its Application on Living Cells. ChemistrySelect 2020. [DOI: 10.1002/slct.202002714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Jashobanta Sahoo
- Institution: CSIR-Central Salt and Marine Chemicals Research Institute Address 1 Gijubhai Badhega Marg Bhavnagar Gujarat 364 002 India
- Institution Academy of Scientific and Innovative Research (AcSIR) CSIR-CSMCRI Address 2 Bhavnagar Gujarat. 364 002 India
- Department of Chemistry, Hindol College, Khajuriakata Higher Education Department, State Government of Odisha India
| | - Santlal Jaiswar
- Department: Discipline of Marine Biotechnology and Ecology Institution: CSIR-Central Salt and Marine Chemicals Research Institute, Address 3: Gijubhai Badhega Marg, Bhavnagar Gujarat 364 002 India
| | - Himanshu Sekhar Jena
- Department: Department of Chemistry Institution: Ghent University, Address 4 Krijgslaan 281 - S3 B 9000 Ghent Belgium
| | - Palani S. Subramanian
- Institution: CSIR-Central Salt and Marine Chemicals Research Institute Address 1 Gijubhai Badhega Marg Bhavnagar Gujarat 364 002 India
- Institution Academy of Scientific and Innovative Research (AcSIR) CSIR-CSMCRI Address 2 Bhavnagar Gujarat. 364 002 India
| |
Collapse
|
22
|
Moro AJ, Santos M, Outis M, Mateus P, Pereira PM. Selective Coordination of Cu 2+ and Subsequent Anion Detection Based on a Naphthalimide-Triazine-(DPA) 2 Chemosensor. BIOSENSORS-BASEL 2020; 10:bios10090129. [PMID: 32971802 PMCID: PMC7558417 DOI: 10.3390/bios10090129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/10/2020] [Accepted: 09/18/2020] [Indexed: 01/27/2023]
Abstract
A new fluorescent chemosensor for copper (II) and subsequent anion sensing was designed and fully characterized. The sensor consisted of a 1,8-naphthalimide core, bearing two terminal dipicolylamine (DPA) receptor units for binding metal cations, and an ethoxyethanol moiety for enhanced water solubility. The DPA units are connected to position 4 of the fluorophore via a triazine-ethylenediamine spacer. Fluorescence titration studies of the chemosensor revealed a high selectivity for Cu2+ over other divalent ions, the emissions were strongly quenched upon binding, and a stability constant of 5.52 log units was obtained. Given the distance from DPA chelating units and the fluorophore, quenching from the Cu2+ complexation suggests an electron transfer or an electronic energy transfer mechanism. Furthermore, the Cu2+-sensor complex proved to be capable of sensing anionic phosphate derivatives through the displacement of the Cu2+ cation, which translated into a full recovery of the luminescence from the naphthalimide. Super-resolution fluorescence microscopy studies performed in HeLa cells showed there was a high intracellular uptake of the chemosensor. Incubation in Cu2+ spiked media revealed a strong fluorescent signal from mitochondria and cell membranes, which is consistent with a high concentration of ATP at these intracellular sites.
Collapse
Affiliation(s)
- Artur J. Moro
- LAQV-REQUIMTE, Departamento de Química, CQFB, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (M.S.); (M.O.); (P.M.)
- Correspondence:
| | - Miguel Santos
- LAQV-REQUIMTE, Departamento de Química, CQFB, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (M.S.); (M.O.); (P.M.)
| | - Mani Outis
- LAQV-REQUIMTE, Departamento de Química, CQFB, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (M.S.); (M.O.); (P.M.)
| | - Pedro Mateus
- LAQV-REQUIMTE, Departamento de Química, CQFB, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (M.S.); (M.O.); (P.M.)
| | - Pedro M. Pereira
- Bacterial Cell Biology, MOSTMICRO, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal;
| |
Collapse
|
23
|
Khanapurmath N, Prabhu MD, Tonannavar J, Tonannavar J, Kulkarni MV. Bis-7-hydroxy coumarinyl 1,2,3-triazole derived from benzimidazol-2-one as a water sensor: A fluorescence investigation. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Adak P, Ghosh B, Bauzá A, Frontera A, Herron SR, Chattopadhyay SK. Binuclear and tetranuclear Zn(ii) complexes with thiosemicarbazones: synthesis, X-ray crystal structures, ATP-sensing, DNA-binding, phosphatase activity and theoretical calculations. RSC Adv 2020; 10:12735-12746. [PMID: 35492083 PMCID: PMC9051056 DOI: 10.1039/c9ra10549b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/13/2020] [Indexed: 11/21/2022] Open
Abstract
Two Zinc(ii) complexes [Zn4(L1)4]·2H2O (1) and [Zn2(L2)2]·2H2O (2) of pyruvaldehydethiosemicarbazone ligands are reported. The complexes were characterized by elemental analysis, IR, NMR, UV-vis spectroscopy and by single-crystal X-ray crystallography. X-ray crystal structure determinations of the complexes show that though Zn : ligand stoichiometry is 1 : 1 in both the complexes, the molecular unit is tetranuclear for 1 and binuclear for 2. Both the complexes show selective sensing of ATP at pH 7.4 (0.01 M HEPES) in CH3CN–H2O (9 : 1) medium in the presence of other anions like AcO−, NO3−, F−, Cl−, H2PO4−, HPO42− and P2O72−. The UV-titration experiments of complexes 1 and 2 with ATP results in binding constants of 2.0(±0.07) × 104 M−1 and 7.1(±0.05) × 103 M−1 respectively. The calculated detection limits of 6.7 μM and 1.7 μM for 1 and 2 respectively suggest that the complexes are sensitive detectors of ATP. High selectivity of the complexes is confirmed by the addition of ATP in presence of an excess of other anions. DFT studies confirm that the ATP complexes are more favorable than those with the other inorganic phosphate anions, in agreement with the experimental results. Phosphatase like activity of both complexes is investigated spectrophotometrically using 4-nitrophenylphosphate (NPP) as a substrate, indicating the complexes possess significant phosphate ester hydrolytic efficiency. The kinetics for the hydrolysis of the substrate NPP was studied by the initial rate method at 25 °C. Michaelis–Menten derived kinetic parameters indicate that rate of hydrolysis of the P–O bond by complex 1 is much greater than that of complex 2, the kcat values being 212(±5) and 38(±2) h−1 respectively. The DNA binding studies of the complexes were investigated using electronic absorption spectroscopy and fluorescence quenching. The absorption spectral titrations of the complexes with DNA indicate that the CT-DNA binding affinity (Kb) of complex 1 (2.10(±0.07) × 106 M−1) is slightly greater than that of 2 (1.11(±0.04) × 106 M−1). From fluorescence spectra the apparent binding constant (Kapp) values were calculated and they are found to be 5.41(±0.01) × 105 M−1 for 1 and 3.93(±0.02) × 105 M−1 for 2. The molecular dynamics simulation demonstrates that the Zn(ii) complex 1 is a good intercalator of DNA. A binuclear and a tetranuclear zinc(ii) of pyruvaldehyde thiosemicarbazone show selective sensing of ATP at pH 7.4 (0.01 M HEPES) in CH3CN–H2O (9 : 1) medium. The DNA binding and phosphatase activities of the complexes are also reported.![]()
Collapse
Affiliation(s)
- Piyali Adak
- Department of Chemistry, Indian Institute of Engineering Science and Technology Shibpur Howarh-711 103 India
| | - Bipinbihari Ghosh
- Department of Chemistry, Indian Institute of Engineering Science and Technology Shibpur Howarh-711 103 India
| | - Antonio Bauzá
- Department of Chemistry, University of the Balearic Islands Carretera de Valldemossa km 7.5 07122 Palma de Mallorca IllesBalears Spain
| | - Antonio Frontera
- Department of Chemistry, University of the Balearic Islands Carretera de Valldemossa km 7.5 07122 Palma de Mallorca IllesBalears Spain
| | - Steven R Herron
- Department of Chemistry, Utah Valley University 800W University Pkwy Orem UT 84058 USA
| | - Shyamal Kumar Chattopadhyay
- Department of Chemistry, Indian Institute of Engineering Science and Technology Shibpur Howarh-711 103 India
| |
Collapse
|
25
|
Savastano M, Fiaschi M, Ferraro G, Gratteri P, Mariani P, Bianchi A, Bazzicalupi C. Sensing Zn 2+ in Aqueous Solution with a Fluorescent Scorpiand Macrocyclic Ligand Decorated with an Anthracene Bearing Tail. Molecules 2020; 25:E1355. [PMID: 32192025 PMCID: PMC7146481 DOI: 10.3390/molecules25061355] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 01/16/2023] Open
Abstract
Synthesis of the new scorpiand ligand L composed of a [9]aneN3 macrocyclic ring bearing a CH2CH2NHCH2-anthracene tail is reported. L forms both cation (Zn2+) and anion (phosphate, benzoate) complexes. In addition, the zinc complexes of L bind these anions. The equilibrium constants for ligand protonation and complex formation were determined in 0.1 M NaCl aqueous solution at 298.1 ± 0.1 K by means of potentiometric (pH-metric) titrations. pH Controlled coordination/detachment of the ligand tail to Zn2+ switch on and off the fluorescence emission from the anthracene fluorophore. Accordingly, L is able to sense Zn2+ in the pH range 6-10 down to nM concentrations of the metal ion. L can efficiently sense Zn2+ even in the presence of large excess of coordinating anions, such as cyanide, sulphide, phosphate and benzoate, despite their ability to bind the metal ion.
Collapse
Affiliation(s)
- Matteo Savastano
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia, 3-13, 50019 Sesto Fiorentino, Italy; (M.S.); (M.F.); (G.F.); (P.M.); (C.B.)
| | - Matteo Fiaschi
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia, 3-13, 50019 Sesto Fiorentino, Italy; (M.S.); (M.F.); (G.F.); (P.M.); (C.B.)
| | - Giovanni Ferraro
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia, 3-13, 50019 Sesto Fiorentino, Italy; (M.S.); (M.F.); (G.F.); (P.M.); (C.B.)
| | - Paola Gratteri
- Department of NEUROFARBA-Pharmaceutical and Nutraceutical section, and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy;
| | - Palma Mariani
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia, 3-13, 50019 Sesto Fiorentino, Italy; (M.S.); (M.F.); (G.F.); (P.M.); (C.B.)
| | - Antonio Bianchi
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia, 3-13, 50019 Sesto Fiorentino, Italy; (M.S.); (M.F.); (G.F.); (P.M.); (C.B.)
| | - Carla Bazzicalupi
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia, 3-13, 50019 Sesto Fiorentino, Italy; (M.S.); (M.F.); (G.F.); (P.M.); (C.B.)
| |
Collapse
|
26
|
Second sphere coordination in orthonitrophenolate binding: Synthesis, biological, cytotoxic and X-ray structural studies of [Co(bpy)2CO3](C6H4NO3)·3H2O. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Shinoda T, Nishimura Y, Arai T. A Dual Emissive Coumarin-urea Derivative with an Electron-withdrawing Substituent in the Presence of Acetate Anion. Photochem Photobiol 2019; 96:21-27. [PMID: 31560412 DOI: 10.1111/php.13165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 09/18/2019] [Indexed: 12/11/2022]
Abstract
We investigated the fluorescent properties, including the excited-state intermolecular proton transfer, of urea derivatives comprising a coumarin ring, which is a widely used fluorophore. We prepared two different coumarin-urea derivatives, 6CU and 7CU, which bear a urea-based substituent at the 6 and 7 positions of a coumarin ring, respectively. In the presence of the acetate ion, 7CU showed additional tautomer fluorescence emission with respect to 6CU, indicating that tautomer formation depends on the positions of the urea-based substituent on the coumarin ring. Thus, the resonance structures of urea derivatives might play an important role in the behavior of dual fluorescence, which is an important phenomenon applicable to photochemical anion sensing. Moreover, in order to further improve the fluorescence properties of the mentioned derivatives, a CF3 group was introduced in a phenyl ring opposite to a coumarin ring. The fluorescence quantum yield of 7CUCF3 thus synthesized was 65 times as large as that of 7CU, an observation that renders 7CUCF3 a suitable anion sensor candidate. The results of this study will contribute to the development of new molecular designs for highly fluorescent sensing.
Collapse
Affiliation(s)
- Tomoyuki Shinoda
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yoshinobu Nishimura
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tatsuo Arai
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
28
|
Xu H, Yu L, Zhang S, Xu X, Chen T, Ye H, Zhu X. Signal-on fluorescence assay for pyrophosphate ions based on DNA-stabilized silver nanoclusters. LUMINESCENCE 2019; 34:774-778. [PMID: 31304666 DOI: 10.1002/bio.3673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/10/2019] [Accepted: 05/31/2019] [Indexed: 01/17/2023]
Abstract
Pyrophosphate anion (P2 O7 4- , PPi) is considered as a potential biomarker for arthritic diseases because high levels of PPi may result in calcium pyrophosphate dehydrate crystal deposition diseases. In this study, a simple fluorescence method for PPi was demonstrated by organic integration of the efficient fluorescence quenching ability of copper ions to DNA-scaffolded silver nanoclusters and the strong affinity of PPi towards copper ions. This simple fluorescence sensor showed a low detection limit (0.28 μM based on signal/noise = 3) towards the detection of PPi. Practical application of this method was also validated by detection of PPi in the synovial fluid.
Collapse
Affiliation(s)
- Huifeng Xu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Lishuang Yu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Shiqi Zhang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Xueya Xu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Tingting Chen
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Hongzhi Ye
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Xi Zhu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
29
|
Lee WL, Hsu TW, Hung WC, Fang JM. A copper(ii)-dipicolylamine-coumarin sensor for maltosyltransferase assay. Dalton Trans 2019; 48:8026-8029. [PMID: 31070632 DOI: 10.1039/c9dt01339c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Cu(ii)-[di(2-methylpyridyl)methylamino]coumarin fluorescence turn-on sensor (Cu-1b) is designed to detect phosphate ions with Kass = 1.4 × 105 M-1 in HEPES buffer. Cu-1b is applied to probe the GlgE-catalyzed maltose-transfer reaction of α-maltose-1-phosphate to α-1,4-glucan with concomitant release of phosphate ions in Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Wei-Li Lee
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.
| | - Tse-Wei Hsu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.
| | - Wei-Cheng Hung
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.
| | - Jim-Min Fang
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan. and The Genomics Research Centre, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
30
|
Oshchepkov AS, Shumilova TA, Zerson M, Magerle R, Khrustalev VN, Kataev EA. Conformational Selection in Anion Recognition: cGMP-Selective Binding by a Naphthalimide-Functionalized Amido-Amine Macrocycle. J Org Chem 2019; 84:9034-9043. [PMID: 31117577 DOI: 10.1021/acs.joc.9b00947] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Amido-amine macrocycles with two and four naphthalimide dyes were designed to bind nucleoside monophosphates and oligonucleotides in an aqueous buffered solution. Anion-templated synthesis was used to direct the macrocyclization reaction to the [2+2] product, while high dilution conditions favored the formation of the [4+4] macrocycle with an unprecedented geometry, as revealed from the X-ray analysis. The [2+2] product was found to exhibit a remarkable binding strength and fluorescence response for cyclic guanosine monophosphate (cGMP) in an aqueous solution. To our knowledge, this is the first synthetic receptor for cGMP, which also demonstrates a high preference to bind guanine-rich sequences accomplished by a strong fluorescence quenching. The receptor conformation is very sensitive to the guest structure in an aqueous solution, thus modeling the adaptive behavior of proteins. The study of synthetic systems with a detectable conformational equilibrium represents a great potential for understanding highly specific and tightly regulated interactions in biological systems.
Collapse
Affiliation(s)
- Aleksandr S Oshchepkov
- Faculty of Natural Sciences , Technische Universität Chemnitz , Chemnitz 09107 , Germany.,Peoples' Friendship University of Russia (RUDN University) , Moscow 117198 , Russia
| | - Tatiana A Shumilova
- Faculty of Natural Sciences , Technische Universität Chemnitz , Chemnitz 09107 , Germany
| | - Mario Zerson
- Faculty of Natural Sciences , Technische Universität Chemnitz , Chemnitz 09107 , Germany
| | - Robert Magerle
- Faculty of Natural Sciences , Technische Universität Chemnitz , Chemnitz 09107 , Germany
| | - Victor N Khrustalev
- Peoples' Friendship University of Russia (RUDN University) , Moscow 117198 , Russia.,National Research Center (Kurchatov Institute) , Moscow 123098 , Russia
| | - Evgeny A Kataev
- Faculty of Natural Sciences , Technische Universität Chemnitz , Chemnitz 09107 , Germany
| |
Collapse
|
31
|
Keşan G, Topaloğlu B, Özcan E, Kazan HH, Eçik ET, Şenkuytu E, Sengul IF, Kandemir H, Çoşut B. Azaindole-BODIPYs: Synthesis, fluorescent recognition of hydrogen sulfate anion and biological evaluation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 213:73-82. [PMID: 30684882 DOI: 10.1016/j.saa.2019.01.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 12/07/2018] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
The synthesized and sensing capability of two novel azaindole substituted mono and distyryl BODIPY dyes against bisulfate anion were reported. Structural characterizations of the targeted compounds were conducted by using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, 1H and 13C NMR spectroscopies. Photophysical properties of the azaindole substituted BODIPY compounds were investigated employing absorption and fluorescence spectroscopies in acetonitrile solution. It was found that the final compounds 3 and 4 exhibited exclusively selective and sensitive turn-off sensor behavior on HSO4- anion. Additionally, the stoichiometry ratio of the targeted compounds to bisulfate anion was measured 0.5 by Job's method. Also, density function theory was performed to the optical response of the sensor for targeted compounds. Furthermore, the cytotoxicity of Azaindole-BODIPYs was examined against living human leukemia K562 cell lines.
Collapse
Affiliation(s)
- Gürkan Keşan
- Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Burcu Topaloğlu
- Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Emrah Özcan
- Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Hasan Hüseyin Kazan
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Esra Tanrıverdi Eçik
- Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Elif Şenkuytu
- Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Ibrahim F Sengul
- Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Hakan Kandemir
- Department of Chemistry, Faculty of Art and Science, Namık Kemal University, Tekirdag, Turkey
| | - Bünyemin Çoşut
- Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze, Kocaeli, Turkey.
| |
Collapse
|
32
|
Jonaghani MZ, Zali-Boeini H, Moradi H. A coumarin based highly sensitive fluorescent chemosensor for selective detection of zinc ion. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 207:16-22. [PMID: 30195181 DOI: 10.1016/j.saa.2018.08.061] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 06/08/2023]
Abstract
A very effective and highly sensitive fluorescent chemosensor, based on 4-hydroxycoumarin skeleton substituted by benzothiazole moiety was synthesized and investigated for the detection of zinc ion. This chemosensor displays highly selective and sensitive fluorescence enhancement to Zn2+ over other metal ions examined in solution and in biological systems. The detection limit for the fluorescent chemosensor 1 toward Zn2+ was 3.58 × 10-8 M. A simple and efficient approach was improved for the synthesis of chemosensor 1 starting from 4-hydroxycoumarin.
Collapse
Affiliation(s)
| | - Hassan Zali-Boeini
- Department of Chemistry, University of Isfahan, 81746-73441 Isfahan, Iran.
| | - Hassan Moradi
- Department of Chemistry, University of Isfahan, 81746-73441 Isfahan, Iran
| |
Collapse
|
33
|
Krishnaveni K, Iniya M, Jeyanthi D, Siva A, Chellappa D. A new multifunctional benzimidazole tagged coumarin as ratiometric fluorophore for the detection of Cd 2+/F - ions and imaging in live cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 205:557-567. [PMID: 30075436 DOI: 10.1016/j.saa.2018.07.075] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 06/08/2023]
Abstract
A novel multifunctional ratiometric fluorescent probe has been designed and synthesized for the selective recognition of Cd2+/F- ions. The probe (3)-((2)-(1H-benzoimidazole-2-yl)-phenylimino) methyl-4-chloro-methyl-2H-chromen-2-ene (BIMC) displays excellent ratiometric responses towards Cd2+/F- ions over the tested cations/anions. The lowest detection limits observed for Cd2+ and F- are 1.5 × 10-10 mol/l and 1.2 × 10-10 mol/l respectively. Job's plot and Electro spray Ionization mass spectral (ESI-MS) studies confirms 1:1 binding stoichiometry of BIMC with Cd2+/F- ions, which is further evidenced by 1H NMR titration studies. The reversibility studies of BIMC with Cd2+ have been investigated using ethylenediaminetetraacetic acid (EDTA). Upon binding to Cd2+/F- ions, the probe features strong ratiometric response in both UV-Visible and fluorescence spectra due to the inhibition of intramolecular charge transfer (ICT). Furthermore, the mechanism of ICT has been rationalized via solvatochromism and DFT calculations.
Collapse
Affiliation(s)
| | - Murugan Iniya
- School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu 625021, India
| | - Dharmaraj Jeyanthi
- School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu 625021, India
| | - Ayyanar Siva
- School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu 625021, India.
| | - Duraisamy Chellappa
- School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu 625021, India.
| |
Collapse
|
34
|
Zhu W, Dai L, Liu Z, Yang W, Zhao C, Li Y, Chen Y. Hairpin-shaped DNA Templated Copper Nanoparticles for Fluorescence Detection of Adenosine Triphosphate Based on Ligation-mediated Exonuclease Cleavage. ANAL SCI 2018; 33:203-207. [PMID: 28190841 DOI: 10.2116/analsci.33.203] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
DNA-templated copper nanoparticles (CuNPs) have recently received considerable interest as functional fluorescent probes for biochemical analysis. In this work, a novel ATP-dependent ligation reactions (ATP-DLR) based ATP assay strategy was proposed by using hairpin-shaped (HS) DNA templated CuNPs as a fluorescent probe. Nick sealing by T4 DNA ligase leads to the formation of intact HS DNA, which can resist the exonuclease cleavage and be taken as the template for CuNPs formation, resulting in strong fluorescence. The proposed ATP detection is label free, sensitive and highly selective, and it has good linearity from 0.02 to 4 μM and a detection limit of 7 nM. This strategy is expected to promote the exploitation and application of DNA-templated CuNPs in biochemical and biomedical studies, and holds great promise in fluorescence detection for other ligation-related biomolecules.
Collapse
Affiliation(s)
- Wenping Zhu
- College of Chemistry and Chemical Engineering, Zhoukou Normal University
| | | | | | | | | | | | | |
Collapse
|
35
|
Özcan E, Çoşut B. Fluorescent Sensing of Cesium Ions by an Amide‐Linked BODIPY Dye: Synthesis and Photophysical Properties. ChemistrySelect 2018. [DOI: 10.1002/slct.201801135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Emrah Özcan
- Department of ChemistryFaculty of Science, GebzeTechnical University Fabrikalar Street, P.O.Box: 141 Gebze 41400, Kocaeli Turkey
| | - Bünyemin Çoşut
- Department of ChemistryFaculty of Science, GebzeTechnical University Fabrikalar Street, P.O.Box: 141 Gebze 41400, Kocaeli Turkey
| |
Collapse
|
36
|
Singh H, Sharma R, Bhargava G, Kumar S, Singh P. ESIPT‐Based Dual Chemosensor for Sequential Detection of Cd
2+
/Zn
2+
and Nucleoside Triphosphates in Water: Application in Logic Gates. ChemistrySelect 2018. [DOI: 10.1002/slct.201801196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Harminder Singh
- Department of ChemistryUGC Centre for advanced studies –IIGuru Nanak Dev University Amritsar 143005 India
| | - Rashmi Sharma
- Department of ChemistryTrinity College Jalandhar 144006 India
| | - Gaurav Bhargava
- Department of Chemical SciencesIK Gujral Punjab Technical University Kapurthala 144601 India
| | - Subodh Kumar
- Department of ChemistryUGC Centre for advanced studies –IIGuru Nanak Dev University Amritsar 143005 India
| | - Prabhpreet Singh
- Department of ChemistryUGC Centre for advanced studies –IIGuru Nanak Dev University Amritsar 143005 India
| |
Collapse
|
37
|
Karuk Elmas ŞN, Ozen F, Koran K, Gorgulu AO, Sadi G, Yilmaz I, Erdemir S. Selective and sensitive fluorescent and colorimetric chemosensor for detection of CO 32- anions in aqueous solution and living cells. Talanta 2018; 188:614-622. [PMID: 30029421 DOI: 10.1016/j.talanta.2018.06.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/08/2018] [Accepted: 06/10/2018] [Indexed: 12/22/2022]
Abstract
A new colorimetric and fluorescent chemosensor for visual determination of carbonate ions was developed by the microwave assisted solvent free synthesis of 7,8-dihydroxy-3-(4-methylphenyl) coumarin (DHMC). The structural characterization of DHMC was confirmed by microanalysis and spectroscopy methods (MALDI-TOF, FT-IR, 1H NMR, 13C NMR, and 2D HETCOR). The binding behaviors of DHMC were investigated towards various anions by UV-vis and fluorescence spectroscopy. DHMC showed a selective and sensitive fluorometric and colorimetric responses towards carbonate ion over other anions. The detection limit of CO32- was found to be 1.03 µM. Moreover, the fluorescence imaging in living cells suggests that DHMC has a great potential in the biological imaging application. It has been demonstrated that DHMC can be used as a rapid and reliable sensor for the determination of carbonate anion in a variety of practical applications.
Collapse
Affiliation(s)
- Şükriye Nihan Karuk Elmas
- Karamanoglu Mehmetbey University, Kamil Ozdag Faculty of Science, Department of Chemistry, Karaman 70100, Turkey
| | - Furkan Ozen
- Akdeniz University, Faculty of Education, Department of Mathematics and Science, Antalya, Turkey
| | - Kenan Koran
- Firat University, Faculty of Science, Department of Chemistry, Elazıg 23119, Turkey
| | - Ahmet Orhan Gorgulu
- Firat University, Faculty of Science, Department of Chemistry, Elazıg 23119, Turkey
| | - Gokhan Sadi
- Karamanoglu Mehmetbey University, Kamil Ozdag Faculty of Science, Department of Biology, Karaman 70100, Turkey
| | - Ibrahim Yilmaz
- Karamanoglu Mehmetbey University, Kamil Ozdag Faculty of Science, Department of Chemistry, Karaman 70100, Turkey.
| | - Serkan Erdemir
- Selcuk University, Faculty of Science, Department of Chemistry, Konya 42075, Turkey
| |
Collapse
|
38
|
Wang Q, Wen X, Fan Z. A Schiff base fluorescent chemsensor for the double detection of Al3+ and PPi through aggregation induced emission in environmental physiology. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
39
|
Mohammad H, Islam ASM, Prodhan C, Chaudhuri K, Ali M. A hydrazone based probe for selective sensing of Al(iii) and Al(iii)-probe complex mediated secondary sensing of PPi: framing of molecular logic circuit and memory device and computational studies. Photochem Photobiol Sci 2018; 17:200-212. [DOI: 10.1039/c7pp00286f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A hydrazone-based conjugate acts as a dual channel sensor towards Al3+and PPi in H2O–MeOH with excellent sensing capability in live cells.
Collapse
Affiliation(s)
- Hasan Mohammad
- Department of Chemistry
- Jadavpur University
- Kolkata 700 032
- India
| | | | - Chandraday Prodhan
- Department of Molecular & Human Genetics Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
| | - Keya Chaudhuri
- Department of Molecular & Human Genetics Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
| | - Mahammad Ali
- Department of Chemistry
- Jadavpur University
- Kolkata 700 032
- India
| |
Collapse
|
40
|
Gabr MT, Pigge FC. A fluorescent turn-on probe for cyanide anion detection based on an AIE active cobalt(ii) complex. Dalton Trans 2018; 47:2079-2085. [DOI: 10.1039/c7dt04242f] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A Co(ii) complex based on an AIE-active tetraarylethylene ligand displays selective fluorescence enhancement in the presence of cyanide anion in aqueous solution.
Collapse
|
41
|
Synthesis of new triazole based imidazo[1,2-a]pyrazine-benzimidazole conjugates: H-bonding assisted FRET efficient ratiometric detection of pyrophosphate. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2017.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Yu H, Zheng J, Yang S, Asiri AM, Alamry KA, Sun M, Zhang K, Wang S, Yang R. Use of a small molecule as an initiator for interchain staudinger reaction: A new ATP sensing platform using product fluorescence. Talanta 2017; 178:282-286. [PMID: 29136823 DOI: 10.1016/j.talanta.2017.09.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/15/2017] [Accepted: 09/17/2017] [Indexed: 10/18/2022]
Abstract
We demonstrated that a small molecule induced interchain Staudinger reaction can be employed for highly selective detection of adenosine triphosphate (ATP), an important energy-storage biomolecule. A designed ATP split aptamer (A1) was first functionalized with a weakly fluorescent coumarin derivative due to an azide group (azido-coumarin). The second DNA strand (A2) was covalently linked with triphenylphosphine, which could selectively and efficiently reduce azido to amino group through the Staudinger reaction. The A2 was then hybridized with a half of another designed longer DNA strand (T1). The second half of T1 was a split aptamer and selectively recognized ATP with A1 to form a sandwich structure. The specific interaction between ATP and the aptamers drew the two functionalized DNA strands (A1 and A2) together to initiate the interchain Staudinger reduction at fmol-nmol concentration level, hence produced fluorescent 7-aminocoumarin which could be used as an indicator for the presence of trace ATP. The reaction process had a concentration dependent manner with ATP in a large concentration range. Such a strategy of interchain Staudinger reaction can be extended to construct biosensors for other small functional molecules on the basis of judiciously designed aptamers.
Collapse
Affiliation(s)
- Huan Yu
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Jing Zheng
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Sheng Yang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Abdullah M Asiri
- NAAM Research Group, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Khalid A Alamry
- NAAM Research Group, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mingtai Sun
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Kui Zhang
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Suhua Wang
- School of Environment and Chemical Engineering, North China Electric Power University, Beijing 102206, China.
| | - Ronghua Yang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410114, PR China.
| |
Collapse
|
43
|
Wang Y, Wang X, Meng Q, Jia H, Zhang R, Zhu P, Song R, Feng H, Zhang Z. A gadolinium(III)-coumarin complex based MRI/Fluorescence bimodal probe for the detection of fluoride ion in aqueous medium. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Kanazawa K, Komiya Y, Nakamura K, Kobayashi N. Red luminescence control of Eu(iii) complexes by utilizing the multi-colored electrochromism of viologen derivatives. Phys Chem Chem Phys 2017; 19:16979-16988. [PMID: 28425522 DOI: 10.1039/c6cp08528h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The electroresponsive switching of red photoluminescence based on the electrochemical coloration of cyan-magenta-green (CMG) viologen components was achieved by combining a luminescent Eu3+ chelate and viologen derivatives, resulting in CMG coloration in a single cell. The cell coloration was controlled by an electrochromic (EC) reaction, which also modulated the photoluminescence of the Eu3+ chelate with high contrast, by transferring energy from the excited state of the Eu3+ ion to the colored states of EC molecules. Cyclic voltammograms, photoluminescence spectra, absorption spectra, luminescence quantum yields, and luminescence lifetimes were measured to clarify the differences between the luminescence quenching and energy transfer efficiencies for each C, M, and G coloration associated with the electrochromism. Thus, the spectral overlap between the luminescence band of the Eu3+ chelate and the absorption band of the colored EC molecules was proven to affect the efficiency of luminescence modulation.
Collapse
Affiliation(s)
- Kenji Kanazawa
- Department of Image and Materials Science, Graduate School of Advanced Integration Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| | | | | | | |
Collapse
|
45
|
Jeong HY, Lee SY, Han J, Lim MH, Kim C. Thiophene and diethylaminophenol-based “turn-on” fluorescence chemosensor for detection of Al 3+ and F − in a near-perfect aqueous solution. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.03.069] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Synthesis of Novel Thiazole Based Carbaldehyde as Potential Sensor for Fluoride Anion and their Spectroscopic Properties. J Fluoresc 2017; 27:1117-1128. [DOI: 10.1007/s10895-017-2047-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 02/09/2017] [Indexed: 11/25/2022]
|
47
|
Jeong HY, Lee SY, Kim C. Furan and Julolidine-Based "Turn-on" Fluorescence Chemosensor for Detection of F - in a Near-Perfect Aqueous Solution. J Fluoresc 2017; 27:1457-1466. [PMID: 28401409 DOI: 10.1007/s10895-017-2085-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/04/2017] [Indexed: 10/19/2022]
Abstract
A new fluorescent sensor 1, containing furan and julolidine moieties linked through a Schiff-base, has been synthesized. Distinct "turn-on" fluorescence enhancement of 1 was observed upon the addition of F- in a near-perfect aqueous solution. The binding capabilities of 1 with F- were studied by using fluorescent spectroscopic techniques, ESI-mass analysis and NMR titration measurements. The detection limit for the analysis of F- was found to be 10.02 μM, which is below the WHO guideline (79 μM) for drinking water. Practically, the sensing ability of 1 for F- was successfully applied in real water samples. The sensing mechanism for F- was proposed to be the ICT mechanism via the hydrogen bonding, which was well explained by theoretical calculations.
Collapse
Affiliation(s)
- Ha Young Jeong
- Department of Fine Chemistry and Department of Interdisciplinary Bio IT Materials, Seoul National University of Science and Technology, Seoul, 139-743, South Korea
| | - Seong Youl Lee
- Department of Fine Chemistry and Department of Interdisciplinary Bio IT Materials, Seoul National University of Science and Technology, Seoul, 139-743, South Korea
| | - Cheal Kim
- Department of Fine Chemistry and Department of Interdisciplinary Bio IT Materials, Seoul National University of Science and Technology, Seoul, 139-743, South Korea.
| |
Collapse
|
48
|
Litecká M, Gyepes R, Vargová Z, Vilková M, Almáši M, Walko M, Imrich J. Toxic metal complexes of macrocyclic cyclen molecule – synthesis, structure and complexing properties. J COORD CHEM 2017. [DOI: 10.1080/00958972.2017.1305493] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- M. Litecká
- Faculty of Science, Department of Inorganic Chemistry, P. J. Šafárik University, Košice, Slovak Republic
| | - R. Gyepes
- Faculty of Science, Department of Inorganic Chemistry, Charles University, Praha, Czech Republik
- Faculty of Education, Department of Chemistry, J. Selye University, Komárno, Slovak Republic
| | - Z. Vargová
- Faculty of Science, Department of Inorganic Chemistry, P. J. Šafárik University, Košice, Slovak Republic
| | - M. Vilková
- NMR Laboratory, Faculty of Science, Department of Organic Chemistry, P.J.Šafárik University, Košice, Slovak Republic
| | - M. Almáši
- Faculty of Science, Department of Inorganic Chemistry, P. J. Šafárik University, Košice, Slovak Republic
| | - M. Walko
- Faculty of Science, Department of Organic Chemistry, P.J. Šafárik University, Košice, Slovak Republic
| | - J. Imrich
- NMR Laboratory, Faculty of Science, Department of Organic Chemistry, P.J.Šafárik University, Košice, Slovak Republic
| |
Collapse
|
49
|
Wongkongkatep J, Ojida A, Hamachi I. Fluorescence Sensing of Inorganic Phosphate and Pyrophosphate Using Small Molecular Sensors and Their Applications. Top Curr Chem (Cham) 2017; 375:30. [PMID: 28251566 DOI: 10.1007/s41061-017-0120-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/01/2017] [Indexed: 01/08/2023]
Abstract
The aim of this contribution is to provide an introduction and a brief summary of the principle of fluorescence molecular sensors specific to inorganic phosphate (Pi) and inorganic pyrophosphate (PPi) as well as their applications. In our introduction we describe the impact of both Pi and PPi in the living organism and in the environment, followed by a description of the principle of fluorescence molecular sensors and the sensing mechanism in solution. We then focus on exciting research which has emerged in recent years on the development of fluorescent sensors specific to Pi and PPi, categorized by chemical interactions between the sensor and the target molecule, such as hydrogen bonding, coordination chemistry, displacement assay, aggregation induced emission or quenching, and chemical reactions.
Collapse
Affiliation(s)
- Jirarut Wongkongkatep
- Department of Biotechnology, Faculty of Science, Mahidol University, 272 Rama 6 Road, Bangkok, 10400, Thailand
| | - Akio Ojida
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan.
| |
Collapse
|
50
|
Counsell AJ, Jones AT, Todd MH, Rutledge PJ. A direct method for the N-tetraalkylation of azamacrocycles. Beilstein J Org Chem 2017; 12:2457-2461. [PMID: 28144313 PMCID: PMC5238601 DOI: 10.3762/bjoc.12.239] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/01/2016] [Indexed: 11/23/2022] Open
Abstract
An efficient protocol for the direct synthesis of N-tetraalkylated derivatives of the azamacrocycles cyclam and cyclen has been developed, using a partially miscible aqueous–organic solvent system with propargyl bromide, benzyl bromide, and related halides. The method works most effectively when the reaction mixture is shaken, not stirred. A crystal structure of the N-tetrapropargyl cyclam derivative 1,4,8,11-tetra(prop-2-yn-1-yl)-1,4,8,11-tetraazacyclotetradecane diperchlorate is reported.
Collapse
Affiliation(s)
- Andrew J Counsell
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Angus T Jones
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Matthew H Todd
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Peter J Rutledge
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|