1
|
Fan M, Mehra M, Yang K, Chadha RS, Anber S, Kovarik ML. Cross-Species Applications of Peptide Substrate Reporters to Quantitative Measurements of Kinase Activity. ACS MEASUREMENT SCIENCE AU 2024; 4:546-555. [PMID: 39430960 PMCID: PMC11487760 DOI: 10.1021/acsmeasuresciau.4c00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 10/22/2024]
Abstract
Peptide substrate reporters are short chains of amino acids designed to act as substrates for enzymes of interest. Combined with capillary electrophoresis and laser-induced fluorescence detection (CE-LIF), they are powerful molecular tools for quantitative measurements of enzyme activity even at the level of single cells. Although most peptide substrate reporters have been optimized for human or murine cells in health-related applications, their performance in nonmammalian organisms remains largely unexplored. In this study, we evaluated three peptide substrate reporters for protein kinase B (PKB) in two eukaryotic microbes, Dictyostelium discoideum and Tetrahymena thermophila, which are evolutionarily distant from mammals and from each other yet express PKB homologues. All three peptide substrate reporters were phosphorylated in lysates from both organisms but with varying phosphorylation kinetics and stability. To demonstrate reporter utility, we used one to screen for and identify the previously unknown stimulus needed to activate PHK5, the PKB homologue in T. thermophila. In D. discoideum, we employed the highly quantitative nature of these assays using CE-LIF to make precise measurements of PKB activity in response to transient stimulation, drug treatment, and genetic mutation. These results underscore the broad applicability of peptide substrate reporters across diverse species while highlighting the need for further research to determine effective peptide stabilization strategies across different biological contexts.
Collapse
Affiliation(s)
| | | | | | | | - Sababa Anber
- Department of Chemistry, Trinity College, 300
Summit St., Hartford, Connecticut 06106, United States
| | - Michelle L. Kovarik
- Department of Chemistry, Trinity College, 300
Summit St., Hartford, Connecticut 06106, United States
| |
Collapse
|
2
|
Davison JR, Hadjithomas M, Romeril SP, Choi YJ, Bentley KW, Biggins JB, Chacko N, Castaldi MP, Chan LK, Cumming JN, Downes TD, Eisenhauer EL, Fei F, Fontaine BM, Endalur Gopinarayanan V, Gurnani S, Hecht A, Hosford CJ, Ibrahim A, Jagels A, Joubran C, Kim JN, Lisher JP, Liu DD, Lyles JT, Mannara MN, Murray GJ, Musial E, Niu M, Olivares-Amaya R, Percuoco M, Saalau S, Sharpe K, Sheahan AV, Thevakumaran N, Thompson JE, Thompson DA, Wiest A, Wyka SA, Yano J, Verdine GL. Genomic Discovery and Structure-Activity Exploration of a Novel Family of Enzyme-Activated Covalent Cyclin-Dependent Kinase Inhibitors. J Med Chem 2024; 67:13147-13173. [PMID: 39078366 PMCID: PMC11320645 DOI: 10.1021/acs.jmedchem.4c01095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/03/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024]
Abstract
Fungi have historically been the source of numerous important medicinal compounds, but full exploitation of their genetic potential for drug development has been hampered in traditional discovery paradigms. Here we describe a radically different approach, top-down drug discovery (TD3), starting with a massive digital search through a database of over 100,000 fully genomicized fungi to identify loci encoding molecules with a predetermined human target. We exemplify TD3 by the selection of cyclin-dependent kinases (CDKs) as targets and the discovery of two molecules, 1 and 2, which inhibit therapeutically important human CDKs. 1 and 2 exhibit a remarkable mechanism, forming a site-selective covalent bond to the CDK active site Lys. We explored the structure-activity relationship via semi- and total synthesis, generating an analog, 43, with improved kinase selectivity, bioavailability, and efficacy. This work highlights the power of TD3 to identify mechanistically and structurally novel molecules for the development of new medicines.
Collapse
Affiliation(s)
- Jack R. Davison
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Michalis Hadjithomas
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Stuart P. Romeril
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Yoon Jong Choi
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Keith W. Bentley
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - John B. Biggins
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Nadia Chacko
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - M. Paola Castaldi
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Lawrence K. Chan
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Jared N. Cumming
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Thomas D. Downes
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Eric L. Eisenhauer
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Fan Fei
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Benjamin M. Fontaine
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | | | - Srishti Gurnani
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Audrey Hecht
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Christopher J. Hosford
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Ashraf Ibrahim
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Annika Jagels
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Camil Joubran
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Ji-Nu Kim
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - John P. Lisher
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Daniel D. Liu
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - James T. Lyles
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Matteo N. Mannara
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Gordon J. Murray
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Emilia Musial
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Mengyao Niu
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Roberto Olivares-Amaya
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Marielle Percuoco
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Susanne Saalau
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Kristen Sharpe
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Anjali V. Sheahan
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Neroshan Thevakumaran
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - James E. Thompson
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Dawn A. Thompson
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Aric Wiest
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Stephen A. Wyka
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Jason Yano
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Gregory L. Verdine
- LifeMine
Therapeutics, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
- Departments
of Chemistry and Chemical Biology, and Stem Cell and Regenerative
Biology, Harvard University and Harvard
Medical School, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
3
|
Pinto MF, Sirina J, Holliday ND, McWhirter CL. High-throughput kinetics in drug discovery. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100170. [PMID: 38964171 DOI: 10.1016/j.slasd.2024.100170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/21/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024]
Abstract
The importance of a drug's kinetic profile and interplay of structure-kinetic activity with PK/PD has long been appreciated in drug discovery. However, technical challenges have often limited detailed kinetic characterization of compounds to the latter stages of projects. This review highlights the advances that have been made in recent years in techniques, instrumentation, and data analysis to increase the throughput of detailed kinetic and mechanistic characterization, enabling its application earlier in the drug discovery process.
Collapse
Affiliation(s)
- Maria Filipa Pinto
- Artios Pharma Ltd, B940, Babraham Research Campus, Cambridge CB22 3FH, United Kingdom
| | - Julija Sirina
- Excellerate Bioscience Ltd, 21 The Triangle, NG2 Business Park, Nottingham, NG2 1AE, United Kingdom
| | - Nicholas D Holliday
- Excellerate Bioscience Ltd, 21 The Triangle, NG2 Business Park, Nottingham, NG2 1AE, United Kingdom; School of Life Sciences, The Medical School, University of Nottingham, Nottingham, NG7 2UH, United Kingdom
| | - Claire L McWhirter
- Artios Pharma Ltd, B940, Babraham Research Campus, Cambridge CB22 3FH, United Kingdom.
| |
Collapse
|
4
|
Sammons RM, Devkota AK, Kaoud TS, Warthaka M, Cho EJ, Dalby KN. Steady State and Time-Dependent Fluorescent Peptide Assays for Protein Kinases. Curr Protoc 2024; 4:e998. [PMID: 38439594 PMCID: PMC10956166 DOI: 10.1002/cpz1.998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Protein kinases catalyze the phosphorylation of proteins most commonly on Ser, Thr, and Tyr residues and regulate many cellular events in eukaryotic cells, such as cell cycle progression, transcription, metabolism, and apoptosis. Protein kinases each have a conserved ATP-binding site and one or more substrate-binding site(s) that exhibit recognition features for different protein substrates. By bringing ATP and a substrate into proximity, each protein kinase can transfer the γ phosphate of the ATP molecule to a hydroxyl group of the target residue on the substrate. In such a way, signaling pathways downstream from the substrate can be regulated based on the phosphorylated versus dephosphorylated status of the substrate. Although there are a number of ways to assay the activity of protein kinases, most of them are technically cumbersome and/or are indirect or based on quenched reactions. This protocol describes an assay employing a fluorescent peptide substrate to detect phosphorylation by protein kinases in real time. The assay is based on the principle that the phosphorylation of the peptide substrate leads to an increase in the fluorescence emission intensity of an appended fluorophore. We extend the application of this assay to an example of how to assess time-dependent covalent inhibition of kinases as well. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Measuring protein kinase activity using fluorescent peptides Alternate Protocol: Measuring protein kinase activity using a fluorescence plate reader Support Protocol: Labeling peptides with sox fluorophore Basic Protocol 2: Measuring time-dependent ATP-competitive inhibition of protein kinases using fluorescent peptides.
Collapse
Affiliation(s)
- Rae M. Sammons
- Targeted Therapeutic Drug Discovery and Development Program, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ashwini K. Devkota
- Targeted Therapeutic Drug Discovery and Development Program, The University of Texas at Austin, Austin, TX 78712, USA
| | - Tamer S. Kaoud
- Targeted Therapeutic Drug Discovery and Development Program, The University of Texas at Austin, Austin, TX 78712, USA
- Division of Chemical Biology and Medicinal Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Mangalika Warthaka
- Targeted Therapeutic Drug Discovery and Development Program, The University of Texas at Austin, Austin, TX 78712, USA
| | - Eun Jeong Cho
- Targeted Therapeutic Drug Discovery and Development Program, The University of Texas at Austin, Austin, TX 78712, USA
- Division of Chemical Biology and Medicinal Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Kevin N. Dalby
- Targeted Therapeutic Drug Discovery and Development Program, The University of Texas at Austin, Austin, TX 78712, USA
- Division of Chemical Biology and Medicinal Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
5
|
Lenchner DS, Petrova ZO, Hunihan L, Ashtekar KD, Walther Z, Wilson FH. A destabilizing Y891D mutation in activated EGFR impairs sensitivity to kinase inhibition. NPJ Precis Oncol 2024; 8:3. [PMID: 38182677 PMCID: PMC10770066 DOI: 10.1038/s41698-023-00490-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/06/2023] [Indexed: 01/07/2024] Open
Abstract
EGFR tyrosine kinase inhibitors (TKIs) have transformed the treatment of EGFR-mutated non-small cell lung carcinoma (NSCLC); however, therapeutic resistance remains a clinical challenge. Acquired secondary EGFR mutations that increase ATP affinity and/or impair inhibitor binding are well-described mediators of resistance. Here we identify a de novo EGFR Y891D secondary alteration in a NSCLC with EGFR L858R. Acquired EGFR Y891D alterations were previously reported in association with resistance to first generation EGFR TKIs. Functional studies in Ba/F3 cells demonstrate reduced TKI sensitivity of EGFR L858R + Y891D, with the greatest reduction observed for first and second generation TKIs. Unlike other EGFR mutations associated with TKI resistance, Y891D does not significantly alter ATP affinity or promote steric hindrance to inhibitor binding. Our data suggest that the Y891D mutation destabilizes EGFR L858R, potentially generating a population of misfolded receptor with preserved signaling capacity but reduced sensitivity to EGFR inhibitors. These findings raise the possibility of protein misfolding as a mechanism of resistance to EGFR inhibition in EGFR-mutated NSCLC.
Collapse
Affiliation(s)
- Daniel S Lenchner
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Zaritza O Petrova
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT, USA
| | - Lisa Hunihan
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Kumar D Ashtekar
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT, USA
| | - Zenta Walther
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Frederick H Wilson
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, CT, USA.
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
6
|
Biosensors for the detection of protein kinases: Recent progress and challenges. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Screening assays for tyrosine kinase inhibitors:A review. J Pharm Biomed Anal 2022; 223:115166. [DOI: 10.1016/j.jpba.2022.115166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/16/2022]
|
8
|
Boron carbon oxynitride quantum dots-based ratio fluorescent nanoprobe assisted with smartphone for visualization detection of phosphate. Mikrochim Acta 2022; 189:238. [PMID: 35639179 DOI: 10.1007/s00604-022-05331-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/08/2022] [Indexed: 01/07/2023]
Abstract
A ratio fluorescence nanoprobe was constructed by simple mixing BCNO QDs with 8-hydroxyquinoline-5-sulfonic acid (HQSA), which had an obvious fluorescence peak at 420 nm and a weak fluorescence peak at 500 nm, corresponding to the BCNO QDs and HQSA, respectively. This fluorescence probe takes stable fluorescence of BCNO QDs as an internal standard, based on HQSA chelating enhanced fluorescence and specificity of phosphate in the presence of Mg2+, which realizes a rapid and sensitive detection of phosphate with good linearity in the range 0.3-50 μM and 50-100 μM and a detection limit of 0.073 μM. The recovery is between 94.1 and 111% and the relative standard deviations (RSDs) below 10%. At the same time, we took color photos of the reaction solution under 310-nm UV lamp with smartphones for visual detection through RGB data image analysis, which make the detection easier and faster. The proposed method provides a new strategy for the intelligent online detection of other targets in complex environment samples.
Collapse
|
9
|
Hu J, Li G. Recent Progress in Fluorescent Chemosensors for Protein Kinases. Chem Asian J 2022; 17:e202200182. [PMID: 35486328 DOI: 10.1002/asia.202200182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/21/2022] [Indexed: 11/10/2022]
Abstract
Protein kinases are involved in almost all biological activities. The activities of different kinases reflect the normal or abnormal status of the human body. Therefore, detecting the activities of different kinases is important for disease diagnosis and drug discovery. Fluorescent probes offer opportunities for studying kinase behaviors at different times and spatial locations. In this review, we summarize different kinds of fluorescent chemosensors that have been used to detect the activities of many different kinases.
Collapse
Affiliation(s)
- Jun Hu
- Fujian Agriculture and Forestry University, College of Life Sciences, No.15 Shangxiadian Road, Cangshan District, 350002, Fuzhou, CHINA
| | - Gao Li
- Minjiang University, College of Material and Chemical Engineering, CHINA
| |
Collapse
|
10
|
Morris MC. A Toolbox of Fluorescent Peptide Biosensors to Highlight Protein Kinases in Complex Samples : focus on cyclin‐dependent kinases. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- May Catherine Morris
- IBMM-UMR5247 Peptide & Proteins Faculté de Pharmacie,15 Av. Charles Flahault 34093 Montpellier FRANCE
| |
Collapse
|
11
|
Shining Light on Protein Kinase Biomarkers with Fluorescent Peptide Biosensors. Life (Basel) 2022; 12:life12040516. [PMID: 35455007 PMCID: PMC9026840 DOI: 10.3390/life12040516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 11/23/2022] Open
Abstract
Protein kinases (PKs) are established gameplayers in biological signalling pathways, and a large body of evidence points to their dysregulation in diseases, in particular cancer, where rewiring of PK networks occurs frequently. Fluorescent biosensors constitute attractive tools for probing biomolecules and monitoring dynamic processes in complex samples. A wide variety of genetically encoded and synthetic biosensors have been tailored to report on PK activities over the last decade, enabling interrogation of their function and insight into their behaviour in physiopathological settings. These optical tools can further be used to highlight enzymatic alterations associated with the disease, thereby providing precious functional information which cannot be obtained through conventional genetic, transcriptomic or proteomic approaches. This review focuses on fluorescent peptide biosensors, recent developments and strategies that make them attractive tools to profile PK activities for biomedical and diagnostic purposes, as well as insights into the challenges and opportunities brought by this unique toolbox of chemical probes.
Collapse
|
12
|
Design, synthesis, spectroscopic, photophysical and computational studies of a C3-symmetric hydroxyquinoline based tripod: TREN2OX and its interaction with Fe(III) and Al(III). J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Lee S, Han MS. An analyte-triggered artificial peroxidase system based on dimanganese complex for a versatile enzyme assay. Chem Commun (Camb) 2021; 57:9450-9453. [PMID: 34528977 DOI: 10.1039/d1cc03638f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We described an analyte-activatable artificial peroxidase system (caged Mn2(bpmp)) by caging a dimanganese complex, exhibiting peroxidase-like activity, with an analyte-reactive trigger. It allowed adjustments of the detection target to be applied depending on the trigger as well as the detection modes, such as fluorescence and colorimetric, as required. This system was successfully applied to a versatile enzyme assay for leucine aminopeptidase and γ-glutamyl transpeptidase based on spectrophotometric change induced from the oxidation of the peroxidase substrate by analyte-triggered peroxidase-like activity.
Collapse
Affiliation(s)
- Suji Lee
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Min Su Han
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| |
Collapse
|
14
|
Khurana P, McWilliams L, Wingfield J, Barratt D, Srinivasan B. A Novel High-Throughput FLIPR Tetra-Based Method for Capturing Highly Confluent Kinetic Data for Structure-Kinetic Relationship Guided Early Drug Discovery. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2021; 26:684-697. [PMID: 33783249 DOI: 10.1177/24725552211000676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Target engagement by small molecules is necessary for producing a physiological outcome. In the past, a lot of emphasis was placed on understanding the thermodynamics of such interactions to guide structure-activity relationships. It is becoming clearer, however, that understanding the kinetics of the interaction between a small-molecule inhibitor and the biological target [structure-kinetic relationship (SKR)] is critical for selection of the optimum candidate drug molecule for clinical trial. However, the acquisition of kinetic data in a high-throughput manner using traditional methods can be labor intensive, limiting the number of molecules that can be tested. As a result, in-depth kinetic studies are often carried out on only a small number of compounds, and usually at a later stage in the drug discovery process. Fundamentally, kinetic data should be used to drive key decisions much earlier in the drug discovery process, but the throughput limitations of traditional methods preclude this. A major limitation that hampers acquisition of high-throughput kinetic data is the technical challenge in collecting substantially confluent data points for accurate parameter estimation from time course analysis. Here, we describe the use of the fluorescent imaging plate reader (FLIPR), a charge-coupled device (CCD) camera technology, as a potential high-throughput tool for generating biochemical kinetic data with smaller time intervals. Subsequent to the design and optimization of the assay, we demonstrate the collection of highly confluent time-course data for various kinase protein targets with reasonable throughput to enable SKR-guided medicinal chemistry. We select kinase target 1 as a special case study with covalent inhibition, and demonstrate methods for rapid and detailed analysis of the resultant kinetic data for parameter estimation. In conclusion, this approach has the potential to enable rapid kinetic studies to be carried out on hundreds of compounds per week and drive project decisions with kinetic data at an early stage in drug discovery.
Collapse
Affiliation(s)
- Puneet Khurana
- Mechanistic Biology and Profiling, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Lisa McWilliams
- Mechanistic Biology and Profiling, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Jonathan Wingfield
- Mechanistic Biology and Profiling, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Derek Barratt
- Mechanistic Biology and Profiling, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Bharath Srinivasan
- Mechanistic Biology and Profiling, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
15
|
A novel GSK-3 inhibitor binds to GSK-3β via a reversible, time and Cys-199-dependent mechanism. Bioorg Med Chem 2021; 40:116179. [PMID: 33991821 DOI: 10.1016/j.bmc.2021.116179] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 11/21/2022]
Abstract
Glycogen synthase kinase-3 (GSK-3) has been implicated in numerous pathologies making GSK-3 an attractive therapeutic target. Our group has identified a compound termed COB-187 that is a potent and selective inhibitor of GSK-3. In this study, we probed the mechanism by which COB-187 inhibits GSK-3β. Progress curves, generated via real-time monitoring of kinase activity, indicated that COB-187 inhibition of GSK-3β is time-dependent and subsequent jump dilution assays revealed that COB-187 binding to GSK-3β is reversible. Further, a plot of the kinetic constant (kobs) versus COB-187 concentration suggested that, within the range of concentrations studied, COB-187 binds to GSK-3β via an induced-fit mechanism. There is a critical cysteine residue at the entry to the active site of GSK-3β (Cys-199). We generated a mutant version of GSK-3β wherein Cys-199 was substituted with an alanine. This mutation caused a dramatic decrease in the activity of COB-187; specifically, an IC50 in the nM range for wild type versus >100 µM for the mutant. A screen of COB-187 against 34 kinases that contain a conserved cysteine in their active site revealed that COB-187 is highly selective for GSK-3 indicating that COB-187's inhibition of GSK-3β via Cys-199 is specific. Combined, these findings suggest that COB-187 inhibits GSK-3β via a specific, reversible, time and Cys-199-dependent mechanism.
Collapse
|
16
|
Reyes AJF, Kitata RB, Dela Rosa MAC, Wang YT, Lin PY, Yang PC, Friedler A, Yitzchaik S, Chen YJ. Integrating site-specific peptide reporters and targeted mass spectrometry enables rapid substrate-specific kinase assay at the nanogram cell level. Anal Chim Acta 2021; 1155:338341. [PMID: 33766317 DOI: 10.1016/j.aca.2021.338341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/04/2021] [Accepted: 02/16/2021] [Indexed: 11/25/2022]
Abstract
Dysregulation of phosphorylation-mediated signaling drives the initiation and progression of many diseases. A substrate-specific kinase assay capable of quantifying the altered site-specific phosphorylation of its phenotype-dependent substrates provides better specificity to monitor a disease state. We report a sensitive and rapid substrate-specific kinase assay by integrating site-specific peptide reporter and multiple reaction monitoring (MRM)-MS platform for relative and absolute quantification of substrate-specific kinase activity at the sensitivity of nanomolar kinase and nanogram cell lysate. Using non-small cell lung cancer as a proof-of-concept, three substrate peptides selected from constitutive phosphorylation in tumors (HDGF-S165, RALY-S135, and NRD1-S94) were designed to demonstrate the feasibility. The assay showed good accuracy (<15% nominal deviation) and reproducibility (<15% CV). In PC9 cells, the measured activity for HDGF-S165 was 3.2 ± 0.2 fmol μg-1 min-1, while RALY-S135 and NRD1-S94 showed 4- and 20-fold higher activity at the sensitivity of 25 ng and 5 ng lysate, respectively, suggesting different endogenous kinases for each substrate peptide. Without the conventional shotgun phosphoproteomics workflow, the overall pipeline from cell lysate to MS data acquisition only takes 3 h. The multiplexed analysis revealed differences in the phenotype-dependent substrate phosphorylation profiles across six NSCLC cell lines and suggested a potential association of HDGF-S165 and NRD1-S94 with TKI resistance. With the ease of design, sensitivity, accuracy, and reproducibility, this approach may offer rapid and sensitive assays for targeted quantification of the multiplexed substrate-specific kinase activity of small amounts of sample.
Collapse
Affiliation(s)
- Aaron James F Reyes
- Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica and National Tsing Hua University, Taiwan; Institute of Chemistry, Academia Sinica, No. 128, Section 2, Academia Road, Taipei, 115, Taiwan; Department of Chemistry, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Reta Birhanu Kitata
- Institute of Chemistry, Academia Sinica, No. 128, Section 2, Academia Road, Taipei, 115, Taiwan
| | - Mira Anne C Dela Rosa
- Institute of Chemistry, Academia Sinica, No. 128, Section 2, Academia Road, Taipei, 115, Taiwan
| | - Yi-Ting Wang
- Institute of Chemistry, Academia Sinica, No. 128, Section 2, Academia Road, Taipei, 115, Taiwan
| | - Pei-Yi Lin
- Institute of Chemistry, Academia Sinica, No. 128, Section 2, Academia Road, Taipei, 115, Taiwan
| | - Pan-Chyr Yang
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Assaf Friedler
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Shlomo Yitzchaik
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Yu-Ju Chen
- Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica and National Tsing Hua University, Taiwan; Institute of Chemistry, Academia Sinica, No. 128, Section 2, Academia Road, Taipei, 115, Taiwan; Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan.
| |
Collapse
|
17
|
Nourbakhsh K, Yadav S. Kinase Signaling in Dendritic Development and Disease. Front Cell Neurosci 2021; 15:624648. [PMID: 33642997 PMCID: PMC7902504 DOI: 10.3389/fncel.2021.624648] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/06/2021] [Indexed: 01/19/2023] Open
Abstract
Dendrites undergo extensive growth and remodeling during their lifetime. Specification of neurites into dendrites is followed by their arborization, maturation, and functional integration into synaptic networks. Each of these distinct developmental processes is spatially and temporally controlled in an exquisite fashion. Protein kinases through their highly specific substrate phosphorylation regulate dendritic growth and plasticity. Perturbation of kinase function results in aberrant dendritic growth and synaptic function. Not surprisingly, kinase dysfunction is strongly associated with neurodevelopmental and psychiatric disorders. Herein, we review, (a) key kinase pathways that regulate dendrite structure, function and plasticity, (b) how aberrant kinase signaling contributes to dendritic dysfunction in neurological disorders and (c) emergent technologies that can be applied to dissect the role of protein kinases in dendritic structure and function.
Collapse
Affiliation(s)
| | - Smita Yadav
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| |
Collapse
|
18
|
Gómez-González J, Pérez Y, Sciortino G, Roldan-Martín L, Martínez-Costas J, Maréchal JD, Alfonso I, Vázquez López M, Vázquez ME. Dynamic Stereoselection of Peptide Helicates and Their Selective Labeling of DNA Replication Foci in Cells*. Angew Chem Int Ed Engl 2021; 60:8859-8866. [PMID: 33290612 DOI: 10.1002/anie.202013039] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/12/2020] [Indexed: 01/03/2023]
Abstract
Although largely overlooked in peptide engineering, coordination chemistry offers a new set of interactions that opens unexplored design opportunities for developing complex molecular structures. In this context, we report new artificial peptide ligands that fold into chiral helicates in the presence of labile metal ions such as FeII and CoII . Heterochiral β-turn-promoting sequences encode the stereoselective folding of the peptide ligands and define the physicochemical properties of their corresponding metal complexes. Circular dichroism and NMR spectroscopy in combination with computational methods allowed us to identify and determine the structure of two isochiral ΛΛ-helicates, folded as topological isomers. Finally, in addition to the in-vitro characterization of their selective binding to DNA three-way junctions, cell-microscopy experiments demonstrated that a rhodamine-labeled FeII helicate was internalized and selectively stains DNA replication factories in functional cells.
Collapse
Affiliation(s)
- Jacobo Gómez-González
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Spain
| | - Yolanda Pérez
- NMR Facility, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Giuseppe Sciortino
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Cerdanyola, Spain.,Institute of Chemical Research of Catalonia (ICIQ), Avgda. Països Catalans, 16, 43007, Tarragona, Spain
| | - Lorena Roldan-Martín
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Cerdanyola, Spain
| | - José Martínez-Costas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Bioquímica y Biología Molecular, Universidade de Santiago de Compostela, Spain
| | - Jean-Didier Maréchal
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Cerdanyola, Spain
| | - Ignacio Alfonso
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Miguel Vázquez López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Inorgánica, Universidade de Santiago de Compostela, Spain
| | - M Eugenio Vázquez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Spain
| |
Collapse
|
19
|
Gómez‐González J, Pérez Y, Sciortino G, Roldan‐Martín L, Martínez‐Costas J, Maréchal J, Alfonso I, Vázquez López M, Vázquez ME. Dynamic Stereoselection of Peptide Helicates and Their Selective Labeling of DNA Replication Foci in Cells**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Jacobo Gómez‐González
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela Spain
| | - Yolanda Pérez
- NMR Facility Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) Jordi Girona 18–26 08034 Barcelona Spain
| | - Giuseppe Sciortino
- Departament de Química Universitat Autònoma de Barcelona 08193 Cerdanyola Spain
- Institute of Chemical Research of Catalonia (ICIQ) Avgda. Països Catalans, 16 43007 Tarragona Spain
| | | | - José Martínez‐Costas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) Departamento de Bioquímica y Biología Molecular Universidade de Santiago de Compostela Spain
| | | | - Ignacio Alfonso
- Department of Biological Chemistry Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) Jordi Girona 18–26 08034 Barcelona Spain
| | - Miguel Vázquez López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) Departamento de Química Inorgánica Universidade de Santiago de Compostela Spain
| | - M. Eugenio Vázquez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela Spain
| |
Collapse
|
20
|
Maity D. Selected peptide-based fluorescent probes for biological applications. Beilstein J Org Chem 2020; 16:2971-2982. [PMID: 33335605 PMCID: PMC7722625 DOI: 10.3762/bjoc.16.247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/18/2020] [Indexed: 01/07/2023] Open
Abstract
To understand the molecular interactions, present in living organisms and their environments, chemists are trying to create novel chemical tools. In this regard, peptide-based fluorescence techniques have attracted immense interest. Synthetic peptide-based fluorescent probes are advantageous over protein-based sensors, since they are synthetically accessible, more stable, and can be easily modified in a site-specific manner for selective biological applications. Peptide receptors labeled with environmentally sensitive/FRET fluorophores have allowed direct detection/monitoring of biomolecules in aqueous media and in live cells. In this review, key peptide-based approaches for different biological applications are presented.
Collapse
Affiliation(s)
- Debabrata Maity
- Department of Chemistry, New York University, New York, NY 10003, USA
| |
Collapse
|
21
|
Baker BR, Ives CM, Bray A, Caffrey M, Cochrane SA. Undecaprenol kinase: Function, mechanism and substrate specificity of a potential antibiotic target. Eur J Med Chem 2020; 210:113062. [PMID: 33310291 DOI: 10.1016/j.ejmech.2020.113062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
The bifunctional undecaprenol kinase/phosphatase (UdpK) is a small, prokaryotic, integral membrane kinase, homologous with Escherichia coli diacylglycerol kinase and expressed by the dgkA gene. In Gram-positive bacteria, UdpK is involved in the homeostasis of the bacterial undecaprenoid pool, where it converts undecaprenol to undecaprenyl phosphate (C55P) and also catalyses the reverse process. C55P is the universal lipid carrier and critical to numerous glycopolymer and glycoprotein biosynthetic pathways in bacteria. DgkA gene expression has been linked to facilitating bacterial growth and survival in response to environmental stressors, as well being implicated as a resistance mechanism to the topical antibiotic bacitracin, by providing an additional route to C55P. Therefore, identification of UdpK inhibitors could lead to novel antibiotic treatments. A combination of homology modelling and mutagenesis experiments on UdpK have been used to identify residues that may be involved in kinase/phosphatase activity. In this review, we will summarise recent work on the mechanism and substrate specificity of UdpK.
Collapse
Affiliation(s)
- Brad R Baker
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK
| | - Callum M Ives
- School of Medicine and School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin 2, D02 R590, Ireland; Division of Computational Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Ashley Bray
- School of Medicine and School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin 2, D02 R590, Ireland
| | - Martin Caffrey
- School of Medicine and School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin 2, D02 R590, Ireland.
| | - Stephen A Cochrane
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK.
| |
Collapse
|
22
|
Rohini, Paul K, Luxami V. 8-Hydroxyquinoline Fluorophore for Sensing of Metal Ions and Anions. CHEM REC 2020; 20:1430-1473. [PMID: 33151013 DOI: 10.1002/tcr.202000082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 11/11/2022]
Abstract
Among various known hydroxyquinolines, 8-hydroxyquinoline (8-HQ) is the most prevalent moiety due to excellent property for the formation of the complex with different metal ions and anions, and utilized in a wide variety of applications in pharmacological and medicinal fields. 8-Hydroxyquinoline moiety and its analogues acts as fluorophoric ligands on complex formation with alkali and alkaline as well as transition metal ions and anions, thus, considered as an ideal building block in metallo-supramolecular chemistry for recognition, separation, and quantitative investigation of cations. 8-Hydroxyquinoline moiety is also used in various applications for the advancement of novel fluorescent chemosensors in a wide variety of areas viz., material chemistry, bioorganic chemistry, molecular imaging, analytical chemistry, molecular recognition, medical and biological science communities. The present review emphasises on the progress of sensing properties of 8-HQ centred small-molecule fluorescent chemosensors towards several metal ions viz., Fe3+ , Al3+ , Ag+ , Hg2+ , Cu2+ , Pd2+ , Zn2+ , Cr3+ , Cd2+ , Mn2+ , Ca2+ , and K+ and anions such as F- , CN- and PPi, from 2008 to 2020, because of their sensitivity and selectivity in terms of diverse colour changes for different species. This critical and comprehensive review might facilitate the improvement of more prevailing chemosensors for future exciting and broad applications.
Collapse
Affiliation(s)
- Rohini
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, 147 001, India
| | - Kamaldeep Paul
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, 147 001, India
| | - Vijay Luxami
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, 147 001, India
| |
Collapse
|
23
|
Casey GR, Stains CI. A fluorescent probe for monitoring PTP-PEST enzymatic activity. Analyst 2020; 145:6713-6718. [PMID: 32812952 DOI: 10.1039/d0an00993h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Phosphatase non-receptor type 12 (PTPN12 or PTP-PEST) is a critical regulator of cell migration, acting as a tumor suppressor in cancer. Decreases in PTP-PEST expression correlate with aggressive phenotypes in hepatocellular carcinoma (HCC). Despite the importance of PTP-PEST in cellular signaling, methods to directly monitor its enzymatic activity are lacking. Herein, we report the design, synthesis, and optimization of a probe to directly monitor PTP-PEST enzymatic activity via a fluorescent readout. This activity sensor, termed pPEST1tide, is capable of detecting as little as 0.2 nM recombinant PTP-PEST. In addition, we demonstrate that this probe can selectively report on PTP-PEST activity using a panel of potential off-target enzymes. In the long-term, this activity probe could be utilized to identify small molecule modulators of PTP-PEST activity as well as provide a prognostic readout for HCC.
Collapse
Affiliation(s)
- Garrett R Casey
- Department of Chemistry, University of Nebraska - Lincoln, Lincoln, NE 68588, USA.
| | | |
Collapse
|
24
|
Mousavi M, Heravi MM, Tajabadi J. One-pot nitrodebromination and methyl bi-functionalization of 5-bromo 6-methylpyrimidines: a unique simultaneous transformation. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02658-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Jia C, Bai J, Liu Z, Gao S, Han Y, Yan H. Application of a titanium-based metal-organic framework to protein kinase activity detection and inhibitor screening. Anal Chim Acta 2020; 1128:99-106. [DOI: 10.1016/j.aca.2020.06.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 05/31/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023]
|
26
|
Chang JW, Bhuiyan M, Tsai H, Zhang HJ, Li G, Fathi S, McCutcheon DC, Leoni L, Freifelder R, Chen C, Moellering RE. In Vivo Imaging of the Tumor‐Associated Enzyme NCEH1 with a Covalent PET Probe. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jae Won Chang
- Department of Chemistry The University of Chicago 929 E. 57th St. Chicago IL 60637 USA
- Current address: Department of Pharmacology and Chemical Biology, Hematology and Medical Oncology Winship Cancer Institute Emory University 1510 Clifton Rd NE Atlanta GA 30322 USA
| | - Mohammed Bhuiyan
- Department of Radiology The University of Chicago 5735 S. Ellis Ave Chicago IL 60637 USA
| | - Hsiu‐Ming Tsai
- Integrated Small Animal Imaging Research Resource The University of Chicago 5735 S. Ellis Ave Chicago IL 60637 USA
| | - Hannah J. Zhang
- Integrated Small Animal Imaging Research Resource The University of Chicago 5735 S. Ellis Ave Chicago IL 60637 USA
- Department of Radiology The University of Chicago 5735 S. Ellis Ave Chicago IL 60637 USA
| | - Gang Li
- Department of Chemistry The University of Chicago 929 E. 57th St. Chicago IL 60637 USA
| | - Shaghayegh Fathi
- Department of Chemistry The University of Chicago 929 E. 57th St. Chicago IL 60637 USA
| | - David C. McCutcheon
- Department of Chemistry The University of Chicago 929 E. 57th St. Chicago IL 60637 USA
| | - Lara Leoni
- Integrated Small Animal Imaging Research Resource The University of Chicago 5735 S. Ellis Ave Chicago IL 60637 USA
| | - Richard Freifelder
- Department of Radiology The University of Chicago 5735 S. Ellis Ave Chicago IL 60637 USA
| | - Chin‐Tu Chen
- Integrated Small Animal Imaging Research Resource The University of Chicago 5735 S. Ellis Ave Chicago IL 60637 USA
- Department of Radiology The University of Chicago 5735 S. Ellis Ave Chicago IL 60637 USA
| | - Raymond E. Moellering
- Department of Chemistry The University of Chicago 929 E. 57th St. Chicago IL 60637 USA
| |
Collapse
|
27
|
Zhang Y, Yan X, Cao J, Weng P, Miao D, Li Z, Jiang YB. Turn Conformation of β-Amino Acid-Based Short Peptides Promoted by an Amidothiourea Moiety at C-Terminus. J Org Chem 2020; 85:9844-9849. [PMID: 32584574 DOI: 10.1021/acs.joc.0c01139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A C-terminal amidothiourea motif is shown to promote a β-turn-like folded conformation in a series of β-amino acid-based short peptides in both the solid state and solution phase by an intramolecular 11-membered ring hydrogen bond.
Collapse
Affiliation(s)
- Yanhan Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China
| | - Xiaosheng Yan
- Department of Chemistry, College of Chemistry and Chemical Engineering, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China
| | - Jinlian Cao
- Department of Chemistry, College of Chemistry and Chemical Engineering, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China
| | - Peimin Weng
- Department of Chemistry, College of Chemistry and Chemical Engineering, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China
| | - Daiyu Miao
- Department of Chemistry, College of Chemistry and Chemical Engineering, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China
| | - Zhao Li
- Department of Chemistry, College of Chemistry and Chemical Engineering, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China
| | - Yun-Bao Jiang
- Department of Chemistry, College of Chemistry and Chemical Engineering, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China
| |
Collapse
|
28
|
Chang JW, Bhuiyan M, Tsai HM, Zhang HJ, Li G, Fathi S, McCutcheon DC, Leoni L, Freifelder R, Chen CT, Moellering RE. In Vivo Imaging of the Tumor-Associated Enzyme NCEH1 with a Covalent PET Probe. Angew Chem Int Ed Engl 2020; 59:15161-15165. [PMID: 32415874 DOI: 10.1002/anie.202004762] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Indexed: 12/14/2022]
Abstract
Herein, we report the development of an 18 F-labeled, activity-based small-molecule probe targeting the cancer-associated serine hydrolase NCEH1. We undertook a focused medicinal chemistry campaign to simultaneously preserve potent and specific NCEH1 labeling in live cells and animals, while permitting facile 18 F radionuclide incorporation required for PET imaging. The resulting molecule, [18 F]JW199, labels active NCEH1 in live cells at nanomolar concentrations and greater than 1000-fold selectivity relative to other serine hydrolases. [18 F]JW199 displays rapid, NCEH1-dependent accumulation in mouse tissues. Finally, we demonstrate that [18 F]JW199 labels aggressive cancer tumor cells in vivo, which uncovered localized NCEH1 activity at the leading edge of triple-negative breast cancer tumors, suggesting roles for NCEH1 in tumor aggressiveness and metastasis.
Collapse
Affiliation(s)
- Jae Won Chang
- Department of Chemistry, The University of Chicago, 929 E. 57th St., Chicago, IL, 60637, USA.,Current address: Department of Pharmacology and Chemical Biology, Hematology and Medical Oncology, Winship Cancer Institute, Emory University, 1510 Clifton Rd NE, Atlanta, GA, 30322, USA
| | - Mohammed Bhuiyan
- Department of Radiology, The University of Chicago, 5735 S. Ellis Ave, Chicago, IL, 60637, USA
| | - Hsiu-Ming Tsai
- Integrated Small Animal Imaging Research Resource, The University of Chicago, 5735 S. Ellis Ave, Chicago, IL, 60637, USA
| | - Hannah J Zhang
- Integrated Small Animal Imaging Research Resource, The University of Chicago, 5735 S. Ellis Ave, Chicago, IL, 60637, USA.,Department of Radiology, The University of Chicago, 5735 S. Ellis Ave, Chicago, IL, 60637, USA
| | - Gang Li
- Department of Chemistry, The University of Chicago, 929 E. 57th St., Chicago, IL, 60637, USA
| | - Shaghayegh Fathi
- Department of Chemistry, The University of Chicago, 929 E. 57th St., Chicago, IL, 60637, USA
| | - David C McCutcheon
- Department of Chemistry, The University of Chicago, 929 E. 57th St., Chicago, IL, 60637, USA
| | - Lara Leoni
- Integrated Small Animal Imaging Research Resource, The University of Chicago, 5735 S. Ellis Ave, Chicago, IL, 60637, USA
| | - Richard Freifelder
- Department of Radiology, The University of Chicago, 5735 S. Ellis Ave, Chicago, IL, 60637, USA
| | - Chin-Tu Chen
- Integrated Small Animal Imaging Research Resource, The University of Chicago, 5735 S. Ellis Ave, Chicago, IL, 60637, USA.,Department of Radiology, The University of Chicago, 5735 S. Ellis Ave, Chicago, IL, 60637, USA
| | - Raymond E Moellering
- Department of Chemistry, The University of Chicago, 929 E. 57th St., Chicago, IL, 60637, USA
| |
Collapse
|
29
|
Fluorescent amino acids as versatile building blocks for chemical biology. Nat Rev Chem 2020; 4:275-290. [PMID: 37127957 DOI: 10.1038/s41570-020-0186-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2020] [Indexed: 12/13/2022]
Abstract
Fluorophores have transformed the way we study biological systems, enabling non-invasive studies in cells and intact organisms, which increase our understanding of complex processes at the molecular level. Fluorescent amino acids have become an essential chemical tool because they can be used to construct fluorescent macromolecules, such as peptides and proteins, without disrupting their native biomolecular properties. Fluorescent and fluorogenic amino acids with unique photophysical properties have been designed for tracking protein-protein interactions in situ or imaging nanoscopic events in real time with high spatial resolution. In this Review, we discuss advances in the design and synthesis of fluorescent amino acids and how they have contributed to the field of chemical biology in the past 10 years. Important areas of research that we review include novel methodologies to synthesize building blocks with tunable spectral properties, their integration into peptide and protein scaffolds using site-specific genetic encoding and bioorthogonal approaches, and their application to design novel artificial proteins, as well as to investigate biological processes in cells by means of optical imaging.
Collapse
|
30
|
Choroba K, Raposo LR, Palion-Gazda J, Malicka E, Erfurt K, Machura B, Fernandes AR. In vitro antiproliferative effect of vanadium complexes bearing 8-hydroxyquinoline-based ligands – the substituent effect. Dalton Trans 2020; 49:6596-6606. [DOI: 10.1039/d0dt01017k] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This is the first comprehensive study demonstrating the antiproliferative effect of vanadium complexes bearing 8-hydroxyquinoline (quinH) ligands, including the parent and –CH3 (Me), –NO2, –Cl and –I substituted ligands, on HCT116 and A2780 cancer cell lines.
Collapse
Affiliation(s)
| | - Luis R. Raposo
- UCIBIO
- Departamento de Ciências da Vida
- Faculdade de Ciências e Tecnologia
- Universidade NOVA de Lisboa
- 2829-516 Caparica
| | | | - Ewa Malicka
- Institute of Chemistry
- University of Silesia
- 40-006 Katowice
- Poland
| | - Karol Erfurt
- Department of Chemical Organic Technology and Petrochemistry
- Silesian University of Technology
- 44-100 Gliwice
- Poland
| | - Barbara Machura
- Institute of Chemistry
- University of Silesia
- 40-006 Katowice
- Poland
| | - Alexandra R. Fernandes
- UCIBIO
- Departamento de Ciências da Vida
- Faculdade de Ciências e Tecnologia
- Universidade NOVA de Lisboa
- 2829-516 Caparica
| |
Collapse
|
31
|
Smolko CM, Janes KA. An ultrasensitive fiveplex activity assay for cellular kinases. Sci Rep 2019; 9:19409. [PMID: 31857650 PMCID: PMC6923413 DOI: 10.1038/s41598-019-55998-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023] Open
Abstract
Protein kinases are enzymes whose abundance, protein-protein interactions, and posttranslational modifications together determine net signaling activity in cells. Large-scale data on cellular kinase activity are limited, because existing assays are cumbersome, poorly sensitive, low throughput, and restricted to measuring one kinase at a time. Here, we surmount the conventional hurdles of activity measurement with a multiplexing approach that leverages the selectivity of individual kinase-substrate pairs. We demonstrate proof of concept by designing an assay that jointly measures activity of five pleiotropic signaling kinases: Akt, IκB kinase (IKK), c-jun N-terminal kinase (JNK), mitogen-activated protein kinase (MAPK)-extracellular regulated kinase kinase (MEK), and MAPK-activated protein kinase-2 (MK2). The assay operates in a 96-well format and specifically measures endogenous kinase activation with coefficients of variation less than 20%. Multiplex tracking of kinase-substrate pairs reduces input requirements by 25-fold, with ~75 µg of cellular extract sufficient for fiveplex activity profiling. We applied the assay to monitor kinase signaling during coxsackievirus B3 infection of two different host-cell types and identified multiple differences in pathway dynamics and coordination that warrant future study. Because the Akt-IKK-JNK-MEK-MK2 pathways regulate many important cellular functions, the fiveplex assay should find applications in inflammation, environmental-stress, and cancer research.
Collapse
Affiliation(s)
- Christian M Smolko
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - Kevin A Janes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA.
- Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
32
|
Liu Y, Peng S, Angelova L, Nau WM, Hennig A. Label-Free Fluorescent Kinase and Phosphatase Enzyme Assays with Supramolecular Host-Dye Pairs. ChemistryOpen 2019; 8:1350-1354. [PMID: 31741820 PMCID: PMC6848908 DOI: 10.1002/open.201900299] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Indexed: 12/21/2022] Open
Abstract
The combination of the macrocyclic hosts p-sulfonatocalix[4]arene and cucurbit[7]uril with the fluorescent dyes lucigenin and berberine affords two label-free enzyme assays for the detection of kinase and phosphatase activity by fluorescence monitoring. In contrast to established assays, no substrate labeling is required. Since phosphorylation is one of the most important regulatory mechanisms in biological signal transduction, the assays should be useful for identification of inhibitors and activators in high-throughput screening (HTS) format for drug discovery.
Collapse
Affiliation(s)
- Yan‐Cen Liu
- Department of Life Sciences and ChemistryJacobs University Bremen gGmbHCampus Ring 128759BremenGermany
| | - Shu Peng
- Department of Life Sciences and ChemistryJacobs University Bremen gGmbHCampus Ring 128759BremenGermany
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials, Ministry of EducationNankai UniversityTianjin300071 TianjinChina
| | - Lora Angelova
- Department of Life Sciences and ChemistryJacobs University Bremen gGmbHCampus Ring 128759BremenGermany
| | - Werner M. Nau
- Department of Life Sciences and ChemistryJacobs University Bremen gGmbHCampus Ring 128759BremenGermany
| | - Andreas Hennig
- Department of Life Sciences and ChemistryJacobs University Bremen gGmbHCampus Ring 128759BremenGermany
| |
Collapse
|
33
|
Eskonen V, Tong-Ochoa N, Valtonen S, Kopra K, Härmä H. Thermal Dissociation Assay for Time-Resolved Fluorescence Detection of Protein Post-Translational Modifications. ACS OMEGA 2019; 4:16501-16507. [PMID: 31616828 PMCID: PMC6787904 DOI: 10.1021/acsomega.9b02134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
Post-translational modifications (PTMs) of proteins provide an important mechanism for cell signal transduction control. Impaired PTM control is a key feature in multiple different disease states, and thus the enzyme-controlling PTMs have drawn attention as highly promising drug targets. Due to the importance of PTMs, various methods to monitor PTM enzyme activity have been developed, but universal high-throughput screening (HTS), a compatible method for different PTMs, remains elusive. Here, we present a homogeneous single-label thermal dissociation assay for the detection of enzymatic PTM removal. The developed method allows the use of micromolar concentration of substrate peptide, which is expected to be beneficial when monitoring enzymes with low activity and peptide binding affinity. We prove the thermal dissociation concept functionality using peptides for dephosphorylation, deacetylation, and demethylation and demonstrate the HTS-compatible flash isothermal method for PTM enzyme activity monitoring. Using specific inhibitors, we detected literature-comparable IC50 values and Z' factors from 0.61 to 0.72, proving the HTS compatibility of the thermal peptide-break technology.
Collapse
Affiliation(s)
- Ville Eskonen
- Materials Chemistry and Chemical
Analysis, Department of Chemistry, University
of Turku, Vatselankatu 2, FI-20014 Turku, Finland
| | - Natalia Tong-Ochoa
- Materials Chemistry and Chemical
Analysis, Department of Chemistry, University
of Turku, Vatselankatu 2, FI-20014 Turku, Finland
| | - Salla Valtonen
- Materials Chemistry and Chemical
Analysis, Department of Chemistry, University
of Turku, Vatselankatu 2, FI-20014 Turku, Finland
| | - Kari Kopra
- Materials Chemistry and Chemical
Analysis, Department of Chemistry, University
of Turku, Vatselankatu 2, FI-20014 Turku, Finland
| | - Harri Härmä
- Materials Chemistry and Chemical
Analysis, Department of Chemistry, University
of Turku, Vatselankatu 2, FI-20014 Turku, Finland
| |
Collapse
|
34
|
Beck JR, Cabral F, Rasineni K, Casey CA, Harris EN, Stains CI. A Panel of Protein Kinase Chemosensors Distinguishes Different Types of Fatty Liver Disease. Biochemistry 2019; 58:3911-3917. [PMID: 31433166 DOI: 10.1021/acs.biochem.9b00547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The worldwide incidence of fatty liver disease continues to rise, which may account for concurrent increases in the frequencies of more aggressive liver ailments. Given the existence of histologically identical fatty liver disease subtypes, there is a critical need for the identification of methods that can classify disease and potentially predict progression. Herein, we show that a panel of protein kinase chemosensors can distinguish fatty liver disease subtypes. These direct activity measurements highlight distinct differences between histologically identical fatty liver diseases arising from diets rich in fat versus alcohol and identify a previously unreported decrease in p38α activity associated with a high-fat diet. In addition, we have profiled kinase activities in both benign (diet-induced) and progressive (STAM) disease models. These experiments provide temporal insights into kinase activity during disease development and progression. Altogether, this work provides the basis for the future development of clinical diagnostics and potential treatment strategies.
Collapse
Affiliation(s)
- Jon R Beck
- Department of Chemistry , University of Nebraska-Lincoln , Lincoln , Nebraska 68588 , United States
| | - Fatima Cabral
- Department of Biochemistry , University of Nebraska-Lincoln , Lincoln , Nebraska 68588 , United States
| | - Karuna Rasineni
- Division of Gastroenterology-Hepatology , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States.,Research Service, Veterans' Affairs , Nebraska-Western Iowa Health Care System , Omaha , Nebraska 68105 , United States
| | - Carol A Casey
- Division of Gastroenterology-Hepatology , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States.,Research Service, Veterans' Affairs , Nebraska-Western Iowa Health Care System , Omaha , Nebraska 68105 , United States.,Nebraska Center for Integrated Biomolecular Communication , University of Nebraska-Lincoln , Lincoln , Nebraska 68588 , United States
| | - Edward N Harris
- Department of Biochemistry , University of Nebraska-Lincoln , Lincoln , Nebraska 68588 , United States.,Nebraska Center for Integrated Biomolecular Communication , University of Nebraska-Lincoln , Lincoln , Nebraska 68588 , United States.,Cancer Genes and Molecular Regulation Program, Fred & Pamela Buffet Cancer Center , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| | - Cliff I Stains
- Department of Chemistry , University of Nebraska-Lincoln , Lincoln , Nebraska 68588 , United States.,Nebraska Center for Integrated Biomolecular Communication , University of Nebraska-Lincoln , Lincoln , Nebraska 68588 , United States.,Cancer Genes and Molecular Regulation Program, Fred & Pamela Buffet Cancer Center , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States.,Department of Chemistry , University of Virginia , Charlottesville , Virginia 22904 , United States
| |
Collapse
|
35
|
Safety profiling of genetically engineered Pim-1 kinase overexpression for oncogenicity risk in human c-kit+ cardiac interstitial cells. Gene Ther 2019; 26:324-337. [PMID: 31239537 DOI: 10.1038/s41434-019-0084-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/19/2019] [Accepted: 05/14/2019] [Indexed: 12/11/2022]
Abstract
Advancement of stem cell-based treatment will involve next-generation approaches to enhance therapeutic efficacy which is often modest, particularly in the context of myocardial regenerative therapy. Our group has previously demonstrated the beneficial effect of genetic modification of cardiac stem cells with Pim-1 kinase overexpression to rejuvenate aged cells as well as potentiate myocardial repair. Despite these encouraging findings, concerns were raised regarding potential for oncogenic risk associated with Pim-1 kinase overexpression. Testing of Pim-1 engineered c-kit+ cardiac interstitial cells (cCIC) derived from heart failure patient samples for indices of oncogenic risk was undertaken using multiple assessments including soft agar colony formation, micronucleation, gamma-Histone 2AX foci, and transcriptome profiling. Collectively, findings demonstrate comparable phenotypic and biological properties of cCIC following Pim-1 overexpression compared with using baseline control cells with no evidence for oncogenic phenotype. Using a highly selective and continuous sensor for quantitative assessment of PIM1 kinase activity revealed a sevenfold increase in Pim-1 engineered vs. control cells. Kinase activity profiling using a panel of sensors for other kinases demonstrates elevation of IKKs), AKT/SGK, CDK1-3, p38, and ERK1/2 in addition to Pim-1 consistent with heightened kinase activity correlating with Pim-1 overexpression that may contribute to Pim-1-mediated effects. Enhancement of cellular survival, proliferation, and other beneficial properties to augment stem cell-mediated repair without oncogenic risk is a feasible, logical, and safe approach to improve efficacy and overcome current limitations inherent to cellular adoptive transfer therapeutic interventions.
Collapse
|
36
|
Jung H, Choi Y, Lee D, Seo JK, Kee JM. Distinct phosphorylation and dephosphorylation dynamics of protein arginine kinases revealed by fluorescent activity probes. Chem Commun (Camb) 2019; 55:7482-7485. [PMID: 31184653 DOI: 10.1039/c9cc03285a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Protein arginine (Arg) phosphorylation regulates stress responses and virulence in bacteria. With fluorescent activity probes, we show that McsB, a protein Arg kinase, can dephosphorylate phosphoarginine (pArg) residues to produce ATP from ADP, implicating the dynamic control of protein pArg levels by the kinase even without a phosphatase.
Collapse
Affiliation(s)
- Hoyoung Jung
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea.
| | - Yigun Choi
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea.
| | - Donghee Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea.
| | - Jeong Kon Seo
- UNIST Central Research Facilities (UCRF), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Jung-Min Kee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea.
| |
Collapse
|
37
|
Choi Y, Shin SH, Jung H, Kwon O, Seo JK, Kee JM. Specific Fluorescent Probe for Protein Histidine Phosphatase Activity. ACS Sens 2019; 4:1055-1062. [PMID: 30912641 DOI: 10.1021/acssensors.9b00242] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein histidine phosphorylation plays a vital role in cell signaling and metabolic processes, and phosphohistidine (pHis) phosphatases such as protein histidine phosphatase 1 (PHPT1) and LHPP have been linked to cancer and diabetes, making them novel drug targets and biomarkers. Unlike the case for other classes of phosphatases, further studies of PHPT1 and other pHis phosphatases have been hampered by the lack of specific activity assays in complex biological mixtures. Previous methods relying on radiolabeling are hazardous and technically laborious, and small-molecule phosphatase probes are not selective toward pHis phosphatases. To address these issues, we herein report a fluorescent probe based on chelation-enhanced fluorescence (CHEF) to continuously measure the pHis phosphatase activity of PHPT1. Our probe exhibited excellent sensitivity and specificity toward PHPT1, enabling the first specific measurement of PHPT1 activity in cell lysates. Using this probe, we also obtained more physiologically relevant kinetic parameters of PHPT1, overcoming the limitations of previously used methods.
Collapse
|
38
|
Gao F, Thornley BS, Tressler CM, Naduthambi D, Zondlo NJ. Phosphorylation-dependent protein design: design of a minimal protein kinase-inducible domain. Org Biomol Chem 2019; 17:3984-3995. [PMID: 30942803 PMCID: PMC6668337 DOI: 10.1039/c9ob00502a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein kinases and phosphatases modulate protein structure and function, which in turn regulate cellular activities. The development of novel proteins and protein motifs that are responsive to protein phosphorylation provides new ways to probe the functions of individual protein kinases and the intracellular effects of their activation and downregulation. Herein we develop a minimal motif that is responsive to protein phosphorylation, termed a minimal protein kinase-inducible domain. The encodable protein motif comprises a 7- or 8-residue sequence (DKDADXW or DKDADXXW), derived from EF-Hand calcium-binding domains, that is necessary but not sufficient for binding terbium, combined with a protein phosphorylation site (Ser or Thr at residue 9) that, upon phosphorylation, completes the metal-binding motif. Thus, the motif binds metal poorly and exhibits weak terbium luminescence when not phosphorylated. Upon phosphorylation, the peptide binds metal with significantly higher affinity and exhibits robust terbium luminescence. Phosphorylation results in up to a 23× increase in terbium luminescence. Minimal phosphorylation-dependent motifs as small as 9 residues (DKDADGWIS) were developed. NMR spectroscopy on this lanthanum(iii)·phosphopeptide complex confirmed that binding occurs in a manner similar to that in an EF-Hand, despite the absence of the conserved Glu12 typically present in an EF-Hand. By combining molecular design with known protein kinase recognition sequences, minimal protein kinase-inducible domains were developed that were responsive to phosphorylation by Protein Kinase A (PKA: DKDADRRW(S/pS)IIAK), Protein Kinase C (PKC: DKDADGWI(T/pT)FRRKA), and Casein Kinase 1 (CK1: DKDADDWA(S/pS)I). Phosphorylation by PKA was quantified in HeLa cell extracts, with a 4.4× increase in fluorescence (terbium luminescence) observed at 544 nm. The optimized minimal motif includes alternating aspartate residues at positions 1, 3, and 5, plus binding through the main-chain carbonyl at position 7; a lysine at position 2 to provide electrostatic balance and reduce binding in the absence of phosphorylation; an alanine at residue 4 to promote the αL conformation observed at that position of the EF Hand; a tryptophan at residue 7 or 8 to sensitize terbium luminescence; and a phosphorylation site with serine or threonine at residue 9. Residues at positions 6; 7 or 8; and 10 or later may be changed to provide kinase specificity. In the CK1-responsive peptide, the acidic residues in the proto-terbium-binding motif are employed as part of the kinase recognition sequence. This work thus presents fundamental rules for the design of compact phosphorylation-responsive terbium-binding motifs, with potential further application to motifs responsive to other protein post-translational modifications.
Collapse
Affiliation(s)
- Feng Gao
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA.
| | | | | | | | | |
Collapse
|
39
|
Marrocco V, Bogomolovas J, Ehler E, Dos Remedios CG, Yu J, Gao C, Lange S. PKC and PKN in heart disease. J Mol Cell Cardiol 2019; 128:212-226. [PMID: 30742812 PMCID: PMC6408329 DOI: 10.1016/j.yjmcc.2019.01.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/22/2022]
Abstract
The protein kinase C (PKC) and closely related protein kinase N (PKN) families of serine/threonine protein kinases play crucial cellular roles. Both kinases belong to the AGC subfamily of protein kinases that also include the cAMP dependent protein kinase (PKA), protein kinase B (PKB/AKT), protein kinase G (PKG) and the ribosomal protein S6 kinase (S6K). Involvement of PKC family members in heart disease has been well documented over the years, as their activity and levels are mis-regulated in several pathological heart conditions, such as ischemia, diabetic cardiomyopathy, as well as hypertrophic or dilated cardiomyopathy. This review focuses on the regulation of PKCs and PKNs in different pathological heart conditions and on the influences that PKC/PKN activation has on several physiological processes. In addition, we discuss mechanisms by which PKCs and the closely related PKNs are activated and turned-off in hearts, how they regulate cardiac specific downstream targets and pathways, and how their inhibition by small molecules is explored as new therapeutic target to treat cardiomyopathies and heart failure.
Collapse
Affiliation(s)
- Valeria Marrocco
- Division of Cardiology, School of Medicine, University of California-San Diego, La Jolla, USA
| | - Julius Bogomolovas
- Division of Cardiology, School of Medicine, University of California-San Diego, La Jolla, USA; Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Elisabeth Ehler
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, School of Cardiovascular Medicine and Sciences, British Heart Foundation Research Excellence Centre, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | | | - Jiayu Yu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Gao
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at UCLA, University of California-Los Angeles, Los Angeles, USA.
| | - Stephan Lange
- Division of Cardiology, School of Medicine, University of California-San Diego, La Jolla, USA; University of Gothenburg, Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg, Sweden.
| |
Collapse
|
40
|
Chen Z, Liu Y, Hao L, Zhu Z, Li F, Liu S. Reduced Graphene Oxide-Zirconium Dioxide–Thionine Nanocomposite Integrating Recognition, Amplification, and Signaling for an Electrochemical Assay of Protein Kinase Activity and Inhibitor Screening. ACS APPLIED BIO MATERIALS 2018; 1:1557-1565. [DOI: 10.1021/acsabm.8b00451] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhiqiang Chen
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| | - Ying Liu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| | - Lijie Hao
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| | - Zhencai Zhu
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| | - Fang Li
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| | - Shufeng Liu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| |
Collapse
|
41
|
Liu Y, Lee J, Perez L, Gill AD, Hooley RJ, Zhong W. Selective Sensing of Phosphorylated Peptides and Monitoring Kinase and Phosphatase Activity with a Supramolecular Tandem Assay. J Am Chem Soc 2018; 140:13869-13877. [PMID: 30269482 DOI: 10.1021/jacs.8b08693] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Simple tuning of a host:guest pair allows selective sensing of different peptide modifications, exploiting orthogonal recognition mechanisms. Excellent selectivity for either lysine trimethylations or alcohol phosphorylations is possible by simply varying the fluorophore guest. The phosphorylation sensor can be modulated by the presence of small (μM) concentrations of metal ions, allowing array-based sensing. Phosphorylation at serine, threonine, and tyrosine can be selectively sensed via discriminant analysis. The phosphopeptide sensing is effective in the presence of small-molecule phosphates such as ATP, which in turn enables the sensor to be employed in continuous optical assays of both serine kinase and tyrosine phosphatase activity. The activity of multiple different kinases can be monitored, and the sensor is capable of detecting the phosphorylation of peptides containing multiple different modifications, including lysine methylations and acetylation. A single deep cavitand can be used as a "one size fits all" sensor that can selectively detect multiple different modifications to oligopeptides, as well as monitoring the function of their post-translational modification writer and eraser enzymes in complex systems.
Collapse
|
42
|
Direct and Continuous Measurement of Phospholipase D Activities Using the Chelation-Enhanced Fluorescence Property of 8-Hydroxyquinoline. Methods Mol Biol 2018. [PMID: 30109649 DOI: 10.1007/978-1-4939-8672-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Phospholipase D (PLD) hydrolyzes phospholipids to form phosphatidic acid (PA) and the corresponding headgroup. To date, PLD has been linked to several pathologies, such as cancer, making this enzyme an important therapeutic target. However, most PLD assays developed so far are either discontinuous or based on the indirect determination of choline released upon phosphatidylcholine (PC) hydrolysis. Therefore, we designed a PLD assay that is based on the chelation-enhanced fluorescence property of 8-hydroxyquinoline. This assay exhibits a strong fluorescence signal upon Ca2+ complexation with the PLD-generated PA and is not limited to PC as the substrate but allows the use of natural phospholipids with various headgroups. Besides, this easy-to-handle assay allows to monitor prokaryotic and eukaryotic PLD activities in a continuous way and on a microplate scale.
Collapse
|
43
|
Samanta S, Halder S, Das G. Twisted-Intramolecular-Charge-Transfer-Based Turn-On Fluorogenic Nanoprobe for Real-Time Detection of Serum Albumin in Physiological Conditions. Anal Chem 2018; 90:7561-7568. [PMID: 29792032 DOI: 10.1021/acs.analchem.8b01181] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Two cyanine-based fluorescent probes, ( E)-2-(4-(diethylamino)-2-hydroxystyryl)-3-ethyl-1,1-dimethyl-1 H-benzo[ e]indol-3-ium iodide (L) and ( E)-3-ethyl-1,1-dimethyl-2-(4-nitrostyryl)-1 H-benzo[ e]indol-3-ium iodide (L1), have been designed and synthesized. Of these two probes, the twisted-intramolecular-charge-transfer (TICT)-based probe, L, can preferentially self-assemble to form nanoaggregates. L displayed a selective turn-on fluorescence response toward human and bovine serum albumin (HSA and BSA) in ∼100% aqueous PBS medium, which is noticeable with the naked eye, whereas L1 failed to sense these albumin proteins. The selective turn-on fluorescence response of L toward HSA and BSA can be attributed to the selective binding of probe L with HSA and BSA without its interfering with known drug-binding sites. The specific binding of L with HSA led to the disassembly of the self-assembled nanoaggregates of L, which was corroborated by dynamic-light-scattering (DLS) and transmission-electron-microscopy (TEM) analysis. Probe L has a limit of detection as low as ∼6.5 nM. The sensing aptitude of probe L to detect HSA in body fluid and an artificial-urine sample has been demonstrated.
Collapse
Affiliation(s)
- Soham Samanta
- Department of Chemistry , Indian Institute of Technology Guwahati 781039 , India
| | - Senjuti Halder
- Department of Chemistry , Indian Institute of Technology Guwahati 781039 , India
| | - Gopal Das
- Department of Chemistry , Indian Institute of Technology Guwahati 781039 , India
| |
Collapse
|
44
|
Casey GR, Stains CI. Interrogating Protein Phosphatases with Chemical Activity Probes. Chemistry 2018; 24:7810-7824. [PMID: 29338103 PMCID: PMC5986605 DOI: 10.1002/chem.201705194] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Indexed: 12/30/2022]
Abstract
Protein phosphatases, while long overlooked, have recently become appreciated as drivers of both normal- and disease-associated signaling events. As a result, the spotlight is now turning torwards this enzyme family and efforts geared towards the development of modern chemical tools for studying these enzymes are well underway. This Minireview focuses on the evolution of chemical activity probes, both optical and covalent, for the study of protein phosphatases. Small-molecule probes, global monitoring of phosphatase activity through the use of covalent modifiers, and targeted fluorescence-based activity probes are discussed. We conclude with an overview of open questions in the field and highlight the potential impact of chemical tools for studying protein phosphatases.
Collapse
Affiliation(s)
- Garrett R Casey
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Cliff I Stains
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
45
|
Yan XS, Luo H, Zou KS, Cao JL, Li Z, Jiang YB. Short Azapeptides of Folded Structures in Aqueous Solutions. ACS OMEGA 2018; 3:4786-4790. [PMID: 31458696 PMCID: PMC6641869 DOI: 10.1021/acsomega.8b00041] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/06/2018] [Indexed: 06/10/2023]
Abstract
Building folded short peptides that are driven by the intramolecular hydrogen bonding in aqueous solutions remains challenging because of their highly competitive intermolecular hydrogen-bonding interactions with water solvent molecules that would have favored the extended conformations. Here, we show folded β-turn structures in acyl amino acid-based N-amidothioureas, the nonclassic azapeptides, in aqueous solutions, as well as in solid-state and organic solvents, by X-ray crystal structures, DFT calculations, 1D and 2D NMR spectra, and absorption and CD spectra. The achiral phenylthiourea chromophore acts as a CD reporter for the β-turn structure that communicates the chirality of the amino acid residue to the achiral thiourea moiety and the relative intensity of the intramolecular hydrogen bond that stabilizes the turn structure. The amidothiourea moiety represents a versatile structural framework for folded short peptides in aqueous environments.
Collapse
|
46
|
González-Vera JA, Bouzada D, Bouclier C, Eugenio Vázquez M, Morris MC. Lanthanide-based peptide biosensor to monitor CDK4/cyclin D kinase activity. Chem Commun (Camb) 2018; 53:6109-6112. [PMID: 28530267 DOI: 10.1039/c6cc09948c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We describe a lanthanide biosensor that responds to CDK4 kinase activity in melanoma cell extracts through a significant and dose dependent increase in luminescence, thanks to sensitization of a DOTA[Tb3+] complex incorporated into a CDK4 substrate peptide by a unique tryptophan residue in an adjacent phosphoaminoacid binding moiety.
Collapse
Affiliation(s)
- Juan A González-Vera
- Institut des Biomolécules Max Mousseron, CNRS, IBMM-UMR 5247, Université de Montpellier, 15 Av. Charles Flahault, 34093 Montpellier, France.
| | | | | | | | | |
Collapse
|
47
|
Härmä H, Tong-Ochoa N, van Adrichem AJ, Jelesarov I, Wennerberg K, Kopra K. Toward universal protein post-translational modification detection in high throughput format. Chem Commun (Camb) 2018; 54:2910-2913. [PMID: 29498735 DOI: 10.1039/c7cc09575a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Post-translational modification (PTM) of proteins plays essential regulatory roles in a variety of pathological conditions. Reliable and practical assays are required to accelerate the discovery of inhibitors and activators for PTM related diseases. Today, methodologies are based on specific or group-specific PTM recognition of e.g. phosphate for kinase activity without extending to other type of PTMs. Here we have established a universal time-resolved luminescence assay on a peptide-break platform for the direct detection of wide variety of PTMs. The developed assay is based on the leucine zipper concept wherein a europium-chelate labeled detection peptide and a non-labeled peptide substrate form a highly luminescent dimer. As an active PTM enzyme at sub or low nanomolar concentration modifies the substrate peptide, the luminescent signal of the detached detection peptide is quenched in the presence of soluble quenchers. The functionality of this universal assay technique has been demonstrated for the monitoring of phosphorylation, dephosphorylation, deacetylation, and citrullination with high applicability also to other PTMs in a high throughput format.
Collapse
Affiliation(s)
- Harri Härmä
- Materials Chemistry and Chemical Analysis, University of Turku, Turku, Finland.
| | | | | | | | | | | |
Collapse
|
48
|
Xu Y, Shi W, He X, Wu X, Li X, Ma H. Facile and Sensitive Method for Protein Kinase A Activity Assay Based on Fluorescent Off-On PolyU-peptide Assembly. Anal Chem 2017; 89:10980-10984. [PMID: 28937207 DOI: 10.1021/acs.analchem.7b02815] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Phosphorylation mediated by protein kinases plays a pivotal role in metabolic and cell-signaling processes, and the dysfunction of protein kinases such as protein kinase A (PKA) may induce several human diseases. Therefore, it is of great significance to develop a facile and effective method for PKA activity assay and high-throughput screening of inhibitors. Herein, we develop a new fluorescent off-on method for PKA assay based on the assembly of anionic polyuridylic acid (polyU) and cationic fluorescent peptide. The phosphorylation of the peptide disrupts its electrostatic binding with polyU, suppresses the concentration quenching effect of polyU, and thus causes fluorescence recovery. The recovered fluorescence intensity at 585 nm is directly proportional to the PKA activity in the range of 0.1-3.2 U/mL with a detection limit of 0.05 U/mL. Using our method, the PKA activity in HeLa cell lysate is determined to be 58.2 ± 5.1 U/mg protein. The method has also been employed to evaluate the inhibitory effect of PKA inhibitors with satisfactory results and may be expected to be a promising candidate for facile and cost-effective assay of kinase activity and high-throughput inhibitor screening.
Collapse
Affiliation(s)
- Yanhui Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Wen Shi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Xinyuan He
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Xiaofeng Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Xiaohua Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Huimin Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| |
Collapse
|
49
|
Wheeler JI, Wong A, Marondedze C, Groen AJ, Kwezi L, Freihat L, Vyas J, Raji MA, Irving HR, Gehring C. The brassinosteroid receptor BRI1 can generate cGMP enabling cGMP-dependent downstream signaling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:590-600. [PMID: 28482142 DOI: 10.1111/tpj.13589] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 05/24/2023]
Abstract
The brassinosteroid receptor brassinosteroid insensitive 1 (BRI1) is a member of the leucine-rich repeat receptor-like kinase family. The intracellular kinase domain of BRI1 is an active kinase and also encapsulates a guanylate cyclase catalytic centre. Using liquid chromatography tandem mass spectrometry, we confirmed that the recombinant cytoplasmic domain of BRI1 generates pmol amounts of cGMP per μg protein with a preference for magnesium over manganese as a co-factor. Importantly, a functional BRI1 kinase is essential for optimal cGMP generation. Therefore, the guanylate cyclase activity of BRI1 is modulated by the kinase while cGMP, the product of the guanylate cyclase, in turn inhibits BRI1 kinase activity. Furthermore, we show using Arabidopsis root cell cultures that cGMP rapidly potentiates phosphorylation of the downstream substrate brassinosteroid signaling kinase 1 (BSK1). Taken together, our results suggest that cGMP acts as a modulator that enhances downstream signaling while dampening signal generation from the receptor.
Collapse
Affiliation(s)
- Janet I Wheeler
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, 3052, Australia
- AgriBio, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Aloysius Wong
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- College of Natural, Applied and Health Sciences, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province, China, 325060
| | - Claudius Marondedze
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Arnoud J Groen
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Lusisizwe Kwezi
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, 3052, Australia
- Council for Scientific and Industrial Research, Biosciences, Brummeria, Pretoria, 0001, South Africa
| | - Lubna Freihat
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, 3052, Australia
| | - Jignesh Vyas
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, 3052, Australia
| | - Misjudeen A Raji
- Analytical Chemistry Core Laboratory, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Helen R Irving
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, 3052, Australia
| | - Chris Gehring
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
50
|
Saarbach J, Lindberg E, Folliet S, Georgeon S, Hantschel O, Winssinger N. Kinase-templated abiotic reaction. Chem Sci 2017; 8:5119-5125. [PMID: 28970898 PMCID: PMC5615226 DOI: 10.1039/c7sc01416c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/20/2017] [Indexed: 12/16/2022] Open
Abstract
Protein kinases are quintessential regulators of cellular function. Numerous pathologies are intimately linked to the dysregulated activity of a particular protein kinase. Herein we report a technology based on a proximity-induced chemical transformation that enables the detection and imaging of specific kinases. Using two probes that target the nucleotide-binding site and substrate binding site of a target kinase respectively, the reagents appended on the probes are brought within reactive distance thereby enabling the chemical transformation. The reaction used for sensing is a ruthenium-photocatalyzed reduction of a pyridinium immolative linker, which uncages a fluorophore (rhodamine). We demonstrate that this technology can be used to discriminate between closely related kinases with a high signal to noise ratio. We further demonstrate that the technology operates within the complexity of a cellular context with a good correlation between the level of kinase activity and fluorescence output.
Collapse
Affiliation(s)
- J Saarbach
- Faculty of Science , Department of Organic Chemistry , NCCR Chemical Biology , University of Geneva , 30 quai Ernest Ansermet , Geneva , Switzerland .
| | - E Lindberg
- Faculty of Science , Department of Organic Chemistry , NCCR Chemical Biology , University of Geneva , 30 quai Ernest Ansermet , Geneva , Switzerland .
| | - S Folliet
- Faculty of Science , Department of Organic Chemistry , NCCR Chemical Biology , University of Geneva , 30 quai Ernest Ansermet , Geneva , Switzerland .
| | - S Georgeon
- Swiss Institute for Experimental Cancer Research (ISREC) , NCCR Chemical Biology , School of Life Sciences , École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - O Hantschel
- Swiss Institute for Experimental Cancer Research (ISREC) , NCCR Chemical Biology , School of Life Sciences , École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - N Winssinger
- Faculty of Science , Department of Organic Chemistry , NCCR Chemical Biology , University of Geneva , 30 quai Ernest Ansermet , Geneva , Switzerland .
| |
Collapse
|