1
|
Hossain MA, Brahme RR, Miller BC, Amin J, de Barros M, Schneider JL, Auclair JR, Mattos C, Wang Q, Agar NYR, Greenblatt DJ, Manetsch R, Agar JN. Mass spectrometry methods and mathematical PK/PD model for decision tree-guided covalent drug development. Nat Commun 2025; 16:1777. [PMID: 39971904 PMCID: PMC11839910 DOI: 10.1038/s41467-025-56985-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/07/2025] [Indexed: 02/21/2025] Open
Abstract
Covalent drug discovery efforts are growing rapidly but have major unaddressed limitations. These include high false positive rates during hit-to-lead identification; the inherent uncoupling of covalent drug concentration and effect [i.e., uncoupling of pharmacokinetics (PK) and pharmacodynamics (PD)]; and a lack of bioanalytical and modeling methods for determining PK and PD parameters. We present a covalent drug discovery workflow that addresses these limitations. Our bioanalytical methods are based upon a mass spectrometry (MS) assay that can measure the percentage of drug-target protein conjugation (% target engagement) in biological matrices. Further we develop an intact protein PK/PD model (iPK/PD) that outputs PK parameters (absorption and distribution) as well as PD parameters (mechanism of action, protein metabolic half-lives, dose, regimen, effect) based on time-dependent target engagement data. Notably, the iPK/PD model is applicable to any measurement (e.g., bottom-up MS and other drug binding studies) that yields % of target engaged. A Decision Tree is presented to guide researchers through the covalent drug development process. Our bioanalytical methods and the Decision Tree are applied to two approved drugs (ibrutinib and sotorasib); the most common plasma off-target, human serum albumin; three protein targets (KRAS, BTK, SOD1), and to a promising SOD1-targeting ALS drug candidates.
Collapse
Affiliation(s)
- Md Amin Hossain
- Department of Chemistry and Chemical Biology, Northeastern University;Boston, Massachusetts, 02115, USA
- Barnett Institute of Chemical and Biological Analysis;Boston, Massachusetts, 02115, USA
- Department of Neurosurgery and Radiology, Brigham and Women's Hospital, Harvard Medical School;Boston, Massachusetts, 02115, USA
| | - Rutali R Brahme
- Department of Chemistry and Chemical Biology, Northeastern University;Boston, Massachusetts, 02115, USA
- Barnett Institute of Chemical and Biological Analysis;Boston, Massachusetts, 02115, USA
| | - Brandon C Miller
- Department of Chemistry and Chemical Biology, Northeastern University;Boston, Massachusetts, 02115, USA
| | - Jakal Amin
- Department of Chemistry and Chemical Biology, Northeastern University;Boston, Massachusetts, 02115, USA
- Barnett Institute of Chemical and Biological Analysis;Boston, Massachusetts, 02115, USA
| | - Marcela de Barros
- Department of Chemistry and Chemical Biology, Northeastern University;Boston, Massachusetts, 02115, USA
| | - Jaime L Schneider
- Massachusetts General Hospital Cancer Center, Harvard Medical School;Boston, Massachusetts, 02114, USA
| | - Jared R Auclair
- Department of Chemistry and Chemical Biology, Northeastern University;Boston, Massachusetts, 02115, USA
- Barnett Institute of Chemical and Biological Analysis;Boston, Massachusetts, 02115, USA
| | - Carla Mattos
- Department of Chemistry and Chemical Biology, Northeastern University;Boston, Massachusetts, 02115, USA
| | - Qingping Wang
- Sanofi US, Drug Metabolism and Pharmacokinetics;Cambridge, Massachusetts, 02141, USA
| | - Nathalie Y R Agar
- Department of Neurosurgery and Radiology, Brigham and Women's Hospital, Harvard Medical School;Boston, Massachusetts, 02115, USA
| | | | - Roman Manetsch
- Department of Chemistry and Chemical Biology, Northeastern University;Boston, Massachusetts, 02115, USA
- Department of Pharmaceutical Sciences, Northeastern University;Boston, Massachusetts, 02115, USA
| | - Jeffrey N Agar
- Department of Chemistry and Chemical Biology, Northeastern University;Boston, Massachusetts, 02115, USA.
- Barnett Institute of Chemical and Biological Analysis;Boston, Massachusetts, 02115, USA.
- Department of Pharmaceutical Sciences, Northeastern University;Boston, Massachusetts, 02115, USA.
| |
Collapse
|
2
|
Moharram FA, Hamed FM, El-Sayed EK, Mohamed SK, Ahmed AA, Elgayed SH, Abdelrazek M, Lai KH, Mansour YE, Mady MS, Elsayed HE. Chemical characterization, neuroprotective effect, and in-silico evaluation of the petroleum ether extract of three palm tree species against glutamate-induced excitotoxicity in rats. Heliyon 2024; 10:e39207. [PMID: 39640788 PMCID: PMC11620252 DOI: 10.1016/j.heliyon.2024.e39207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 12/07/2024] Open
Abstract
The burden of neurological disorders is growing substantially with limited therapeutic options, urging the consideration and assessment of alternative strategies. In this regard, we aimed to elucidate the phytochemical profile of the petroleum ether extract (PEE) of three palm tree species: Aiphanes eggersii Burret, Carpoxylon macrospermum H. Wendl. & Drude, and Jubaeopsis caffra Becc. (Family Arecaceae), and to evaluate their neuroprotective effect in monosodium glutamate (MSG)-induced excitotoxicity model for the first time. We identified a total of 48, 18, and 45 compounds in A. eggersii, C. macrospermum, and J. caffra, constituting 79.41 %, 60.45 %, and 76.35 % of the total detected compounds, respectively. A. eggersii extract was rich in the methyl esters of fatty acids (65.08 %) especially methyl dodecanoate (17.72 %). C. macrospermum was exclusively prolific by the triterpene 3β-methoxy-d:c-friedo-b':a'-neogammacer-9(11)-ene (40.36 %), while J. caffra was noticeable by hydrocarbons (30.14 %) and lupeol derivatives (19.79 %). The biochemical and histopathological analysis showed that the tested extracts significantly reduced the oxidative stress, especially at the highest tested dose (1000 mg/kg). The extracts also reduced the activity of induced nitric oxide synthetase, Ca+2 level, and NR2B subunit expression and attenuated apoptosis and DNA damage. The docking results show that most active natural compounds bind to SOD-1 and NR2B-NMDARs, verifying the credibility of the biological findings. To sum up, the PEE of the three investigated palm tree species possessed a unique blend of lipophilic bioactive constituents that exert promising neuroprotective potential against MSG-induced excitoneurotoxicity. However, further preclinical investigation and pharmaceutical formulation are needed.
Collapse
Affiliation(s)
- Fatma A. Moharram
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, 11795, Egypt
| | - Fadila M. Hamed
- Department of Pharmacognosy, Faculty of Pharmacy, October 6 University, 6th of October City, Giza, 12585, Egypt
| | - Elsayed K. El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, 11795, Egypt
| | - Shimaa K. Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, 11795, Egypt
| | - Asmaa A. Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, 11795, Egypt
| | - Sabah H. Elgayed
- Department of Pharmacognosy, Faculty of Pharmacy, October 6 University, 6th of October City, Giza, 12585, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Mohammed Abdelrazek
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Kuei-Hung Lai
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
- PhD Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan
| | - Yara E. Mansour
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, 11795, Egypt
| | - Mohamed S. Mady
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, 11795, Egypt
| | - Heba E. Elsayed
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, 11795, Egypt
| |
Collapse
|
3
|
Priyanka, Raymandal B, Mondal S. Native State Stabilization of Amyloidogenic Proteins by Kinetic Stabilizers: Inhibition of Protein Aggregation and Clinical Relevance. ChemMedChem 2024; 19:e202400244. [PMID: 38863235 DOI: 10.1002/cmdc.202400244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
Proteinopathies or amyloidoses are a group of life-threatening disorders that result from misfolding of proteins and aggregation into toxic insoluble amyloid aggregates. Amyloid aggregates have low clearance from the body due to the insoluble nature, leading to their deposition in various organs and consequent organ dysfunction. While amyloid deposition in the central nervous system leads to neurodegenerative diseases that mostly cause dementia and difficulty in movement, several other organs, including heart, liver and kidney are also affected by systemic amyloidoses. Regardless of the site of amyloid deposition, misfolding and structural alteration of the precursor proteins play the central role in amyloid formation. Kinetic stabilizers are an emerging class of drugs, which act like pharmacological chaperones to stabilize the native state structure of amyloidogenic proteins and to increase the activation energy barrier that is required for adopting a misfolded structure or conformation, ultimately leading to the inhibition of protein aggregation. In this review, we discuss the kinetic stabilizers that stabilize the native quaternary structure of transthyretin, immunoglobulin light chain and superoxide dismutase 1 that cause transthyretin amyloidoses, light chain amyloidosis and familial amyotrophic lateral sclerosis, respectively.
Collapse
Affiliation(s)
- Priyanka
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, Hauz Khas, New Delhi, Delhi, 110016, India
| | - Bitta Raymandal
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, Hauz Khas, New Delhi, Delhi, 110016, India
| | - Santanu Mondal
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, Hauz Khas, New Delhi, Delhi, 110016, India
| |
Collapse
|
4
|
Giannakou M, Akrani I, Tsoka A, Myrianthopoulos V, Mikros E, Vorgias C, Hatzinikolaou DG. Discovery of Novel Inhibitors against ALS-Related SOD1(A4V) Aggregation through the Screening of a Chemical Library Using Differential Scanning Fluorimetry (DSF). Pharmaceuticals (Basel) 2024; 17:1286. [PMID: 39458929 PMCID: PMC11510448 DOI: 10.3390/ph17101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Cu/Zn Superoxide Dismutase 1 (SOD1) is a 32 kDa cytosolic dimeric metalloenzyme that neutralizes superoxide anions into oxygen and hydrogen peroxide. Mutations in SOD1 are associated with ALS, a disease causing motor neuron atrophy and subsequent mortality. These mutations exert their harmful effects through a gain of function mechanism, rather than a loss of function. Despite extensive research, the mechanism causing selective motor neuron death still remains unclear. A defining feature of ALS pathogenesis is protein misfolding and aggregation, evidenced by ubiquitinated protein inclusions containing SOD1 in affected motor neurons. This work aims to identify compounds countering SOD1(A4V) misfolding and aggregation, which could potentially aid in ALS treatment. METHODS The approach employed was in vitro screening of a library comprising 1280 pharmacologically active compounds (LOPAC®) in the context of drug repurposing. Using differential scanning fluorimetry (DSF), these compounds were tested for their impact on SOD1(A4V) thermal stability. RESULTS AND CONCLUSIONS Dimer stability was the parameter chosen as the criterion for screening, since the dissociation of the native SOD1 dimer is the step prior to its in vitro aggregation. The screening revealed one compound raising protein-ligand Tm by 6 °C, eleven inducing a higher second Tm, suggesting a stabilization effect, and fourteen reducing Tm from 10 up to 26 °C, suggesting possible interactions or non-specific binding.
Collapse
Affiliation(s)
- Maria Giannakou
- Biochemistry and Molecular Biology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
| | - Ifigeneia Akrani
- Laboratory of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15784 Zografou, Greece; (I.A.)
| | - Angeliki Tsoka
- Biochemistry and Molecular Biology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
| | - Vassilios Myrianthopoulos
- Laboratory of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15784 Zografou, Greece; (I.A.)
| | - Emmanuel Mikros
- Laboratory of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15784 Zografou, Greece; (I.A.)
| | - Constantinos Vorgias
- Biochemistry and Molecular Biology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
| | - Dimitris G. Hatzinikolaou
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
| |
Collapse
|
5
|
Wang S, Yuan S, Hu H, Zhang J, Cao K, Wang Y, Liu Y. Reactions of Cisplatin with Thioredoxin-1 Regulate Intracellular Redox Homeostasis. Inorg Chem 2024; 63:11779-11787. [PMID: 38850241 DOI: 10.1021/acs.inorgchem.4c01472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2024]
Abstract
Cisplatin is a widely used anticancer drug. In addition to inducing DNA damage, increased levels of reactive oxygen species (ROS) play a significant role in cisplatin-induced cell death. Thioredoxin-1 (Trx1), a redox regulatory protein that can scavenge ROS, has been found to eliminate cisplatin-induced ROS, while elevated Trx1 levels are associated with cisplatin resistance. However, it is unknown whether the effect of Trx1 on the cellular response to cisplatin is due to its direct reaction and how this reaction influences the activity of Trx1. In this work, we performed detailed studies of the reaction between Trx1 and cisplatin. Trx1 is highly reactive to cisplatin, and the catalytic motif of Trx1 (CGPC) is the primary binding site of cisplatin. Trx1 can bind up to 6 platinum moieties, resulting in the structural alteration and oligomerization of Trx1 depending on the degree of platination. Platination of Trx1 inhibits its interaction with ASK1, a Trx1-binding protein that regulates cell apoptosis. Furthermore, the reaction with cisplatin suppresses drug-induced ROS generation, which could be associated with drug resistance. This study provides more insight into the mechanism of action of cisplatin.
Collapse
Affiliation(s)
- Shenghu Wang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
- Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Siming Yuan
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hongze Hu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jiahai Zhang
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Kaiming Cao
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Yu Wang
- School of Chemistry & Chemical Engineering and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Yangzhong Liu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
- Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
6
|
Wei Y, Zhong S, Yang H, Wang X, Lv B, Bian Y, Pei Y, Xu C, Zhao Q, Wu Y, Luo D, Wang F, Sun H, Chen Y. Current therapy in amyotrophic lateral sclerosis (ALS): A review on past and future therapeutic strategies. Eur J Med Chem 2024; 272:116496. [PMID: 38759454 DOI: 10.1016/j.ejmech.2024.116496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/11/2024] [Accepted: 05/11/2024] [Indexed: 05/19/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that affects the first and second motoneurons (MNs), associated with muscle weakness, paralysis and finally death. The exact etiology of the disease still remains unclear. Currently, efforts to develop novel ALS treatments which target specific pathomechanisms are being studied. The mechanisms of ALS pathogenesis involve multiple factors, such as protein aggregation, glutamate excitotoxicity, oxidative stress, mitochondrial dysfunction, apoptosis, inflammation etc. Unfortunately, to date, there are only two FDA-approved drugs for ALS, riluzole and edavarone, without curative treatment for ALS. Herein, we give an overview of the many pathways and review the recent discovery and preclinical characterization of neuroprotective compounds. Meanwhile, drug combination and other therapeutic approaches are also reviewed. In the last part, we analyze the reasons of clinical failure and propose perspective on the treatment of ALS in the future.
Collapse
Affiliation(s)
- Yuqing Wei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Sheng Zhong
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Huajing Yang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xueqing Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Bingbing Lv
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yaoyao Bian
- Jiangsu Provincial Engineering Center of TCM External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuqiong Pei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chunlei Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qun Zhao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yulan Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Daying Luo
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Fan Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
7
|
Tsekrekou M, Giannakou M, Papanikolopoulou K, Skretas G. Protein aggregation and therapeutic strategies in SOD1- and TDP-43- linked ALS. Front Mol Biosci 2024; 11:1383453. [PMID: 38855322 PMCID: PMC11157337 DOI: 10.3389/fmolb.2024.1383453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/02/2024] [Indexed: 06/11/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with severe socio-economic impact. A hallmark of ALS pathology is the presence of aberrant cytoplasmic inclusions composed of misfolded and aggregated proteins, including both wild-type and mutant forms. This review highlights the critical role of misfolded protein species in ALS pathogenesis, particularly focusing on Cu/Zn superoxide dismutase (SOD1) and TAR DNA-binding protein 43 (TDP-43), and emphasizes the urgent need for innovative therapeutic strategies targeting these misfolded proteins directly. Despite significant advancements in understanding ALS mechanisms, the disease remains incurable, with current treatments offering limited clinical benefits. Through a comprehensive analysis, the review focuses on the direct modulation of the misfolded proteins and presents recent discoveries in small molecules and peptides that inhibit SOD1 and TDP-43 aggregation, underscoring their potential as effective treatments to modify disease progression and improve clinical outcomes.
Collapse
Affiliation(s)
- Maria Tsekrekou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Maria Giannakou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina Papanikolopoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre “Alexander Fleming”, Vari, Greece
- ResQ Biotech, Patras Science Park, Rio, Greece
| | - Georgios Skretas
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- ResQ Biotech, Patras Science Park, Rio, Greece
- Institute for Bio-innovation, Biomedical Sciences Research Centre “Alexander Fleming”, Vari, Greece
| |
Collapse
|
8
|
Unni S, Kommu P, Aouti S, Nalli Y, Bharath MMS, Ali A, Padmanabhan B. Structural insights into the modulation Of SOD1 aggregation By a fungal metabolite Phialomustin-B: Therapeutic potential in ALS. PLoS One 2024; 19:e0298196. [PMID: 38446760 PMCID: PMC10917278 DOI: 10.1371/journal.pone.0298196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/19/2024] [Indexed: 03/08/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal human motor neuron disease leading to muscle atrophy and paralysis. Mutations in superoxide dismutase 1 (SOD1) are associated with familial ALS (fALS). The SOD1 mutants in ALS have a toxic-gain of function by destabilizing the functional SOD1 homodimer, consequently inducing fibril-like aggregation with a cytotoxic non-native trimer intermediate. Therefore, reducing SOD1 oligomerization via chemical modulators is an optimal therapy in ALS. Here, we report the discovery of Phialomustin-B, an unsaturated secondary metabolite from the endophytic fungus Phialophora mustea, as a modulator of SOD1 aggregation. The crystal structure of the SOD1-Phialomustin complex refined to 1.90 Å resolution demonstrated for the first time that the ligand binds to the dimer interface and the lateral region near the electrostatic loop. The aggregation analyses of SOD1WT and the disease mutant SOD1A4V revealed that Phialomustin-B reduces cytotoxic trimerization. We propose that Phialomustin-B is a potent lead molecule with therapeutic potential in fALS.
Collapse
Affiliation(s)
- Sruthi Unni
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Padmini Kommu
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Snehal Aouti
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Yedukondalu Nalli
- CSIR-Indian Institute of Integrative Medicine, Natural Product Division, Jammu, India
| | - M. M. Srinivas Bharath
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Asif Ali
- CSIR-Indian Institute of Integrative Medicine, Natural Product Division, Jammu, India
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, India
| | - Balasundaram Padmanabhan
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bengaluru, India
| |
Collapse
|
9
|
Potenza RL, Armida M, Popoli P. Can Some Anticancer Drugs Be Repurposed to Treat Amyotrophic Lateral Sclerosis? A Brief Narrative Review. Int J Mol Sci 2024; 25:1751. [PMID: 38339026 PMCID: PMC10855887 DOI: 10.3390/ijms25031751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rare progressive motor neuron disease that, due to its high complexity, still lacks effective treatments. Development of a new drug is a highly costly and time-consuming process, and the repositioning of approved drugs can represent an efficient strategy to provide therapeutic opportunities. This is particularly true for rare diseases, which are characterised by small patient populations and therefore attract little commercial interest. Based on the overlap between the biological background of cancer and neurodegeneration, the repurposing of antineoplastic drugs for ALS has been suggested. The objective of this narrative review was to summarise the current experimental evidence on the use of approved anticancer drugs in ALS. Specifically, anticancer drugs belonging to different classes were found to act on mechanisms involved in the ALS pathogenesis, and some of them proved to exert beneficial effects in ALS models. However, additional studies are necessary to confirm the real therapeutic potential of anticancer drugs for repositioning in ALS treatment.
Collapse
Affiliation(s)
- Rosa Luisa Potenza
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.A.); (P.P.)
| | | | | |
Collapse
|
10
|
Hossain MA, Sarin R, Donnelly DP, Miller BC, Weiss A, McAlary L, Antonyuk SV, Salisbury JP, Amin J, Conway JB, Watson SS, Winters JN, Xu Y, Alam N, Brahme RR, Shahbazian H, Sivasankar D, Padmakumar S, Sattarova A, Ponmudiyan AC, Gawde T, Verrill DE, Yang W, Kannapadi S, Plant LD, Auclair JR, Makowski L, Petsko GA, Ringe D, Agar NYR, Greenblatt DJ, Ondrechen MJ, Chen Y, Yerbury JJ, Manetsch R, Hasnain SS, Brown RH, Agar JN. Evaluating protein cross-linking as a therapeutic strategy to stabilize SOD1 variants in a mouse model of familial ALS. PLoS Biol 2024; 22:e3002462. [PMID: 38289969 PMCID: PMC10826971 DOI: 10.1371/journal.pbio.3002462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 12/05/2023] [Indexed: 02/01/2024] Open
Abstract
Mutations in the gene encoding Cu-Zn superoxide dismutase 1 (SOD1) cause a subset of familial amyotrophic lateral sclerosis (fALS) cases. A shared effect of these mutations is that SOD1, which is normally a stable dimer, dissociates into toxic monomers that seed toxic aggregates. Considerable research effort has been devoted to developing compounds that stabilize the dimer of fALS SOD1 variants, but unfortunately, this has not yet resulted in a treatment. We hypothesized that cyclic thiosulfinate cross-linkers, which selectively target a rare, 2 cysteine-containing motif, can stabilize fALS-causing SOD1 variants in vivo. We created a library of chemically diverse cyclic thiosulfinates and determined structure-cross-linking-activity relationships. A pre-lead compound, "S-XL6," was selected based upon its cross-linking rate and drug-like properties. Co-crystallographic structure clearly establishes the binding of S-XL6 at Cys 111 bridging the monomers and stabilizing the SOD1 dimer. Biophysical studies reveal that the degree of stabilization afforded by S-XL6 (up to 24°C) is unprecedented for fALS, and to our knowledge, for any protein target of any kinetic stabilizer. Gene silencing and protein degrading therapeutic approaches require careful dose titration to balance the benefit of diminished fALS SOD1 expression with the toxic loss-of-enzymatic function. We show that S-XL6 does not share this liability because it rescues the activity of fALS SOD1 variants. No pharmacological agent has been proven to bind to SOD1 in vivo. Here, using a fALS mouse model, we demonstrate oral bioavailability; rapid engagement of SOD1G93A by S-XL6 that increases SOD1G93A's in vivo half-life; and that S-XL6 crosses the blood-brain barrier. S-XL6 demonstrated a degree of selectivity by avoiding off-target binding to plasma proteins. Taken together, our results indicate that cyclic thiosulfinate-mediated SOD1 stabilization should receive further attention as a potential therapeutic approach for fALS.
Collapse
Affiliation(s)
- Md Amin Hossain
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
- Barnett Institute of Chemical and Biological Analysis, Boston, Massachusetts, United States of America
- Department of Neurosurgery and Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Richa Sarin
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
- Biogen Inc, Cambridge, Massachusetts, United States of America
| | - Daniel P. Donnelly
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
- Barnett Institute of Chemical and Biological Analysis, Boston, Massachusetts, United States of America
| | - Brandon C. Miller
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Alexandra Weiss
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Luke McAlary
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
| | - Svetlana V. Antonyuk
- Molecular Biophysics Group, Department of Biochemistry & Systems Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Joseph P. Salisbury
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Jakal Amin
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
- Barnett Institute of Chemical and Biological Analysis, Boston, Massachusetts, United States of America
| | - Jeremy B. Conway
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Samantha S. Watson
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Jenifer N. Winters
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Yu Xu
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, United States of America
| | - Novera Alam
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
- Barnett Institute of Chemical and Biological Analysis, Boston, Massachusetts, United States of America
| | - Rutali R. Brahme
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
- Barnett Institute of Chemical and Biological Analysis, Boston, Massachusetts, United States of America
| | - Haneyeh Shahbazian
- School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Durgalakshmi Sivasankar
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
- Barnett Institute of Chemical and Biological Analysis, Boston, Massachusetts, United States of America
| | - Swathi Padmakumar
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Aziza Sattarova
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, United States of America
| | - Aparna C. Ponmudiyan
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Tanvi Gawde
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - David E. Verrill
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
- Barnett Institute of Chemical and Biological Analysis, Boston, Massachusetts, United States of America
| | - Wensheng Yang
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
- Barnett Institute of Chemical and Biological Analysis, Boston, Massachusetts, United States of America
| | - Sunanda Kannapadi
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Leigh D. Plant
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, United States of America
| | - Jared R. Auclair
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
- Barnett Institute of Chemical and Biological Analysis, Boston, Massachusetts, United States of America
| | - Lee Makowski
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, United States of America
| | - Gregory A. Petsko
- Ann Romney Center for Neurologic Diseases at Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Departments of Chemistry and Biochemistry, and Rosenstiel Center for Basic Medical Research, Brandeis University, Waltham, Massachusetts, United States of America
| | - Dagmar Ringe
- Departments of Chemistry and Biochemistry, and Rosenstiel Center for Basic Medical Research, Brandeis University, Waltham, Massachusetts, United States of America
| | - Nathalie Y. R. Agar
- Department of Neurosurgery and Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David J. Greenblatt
- School of Medicine, Tufts University, Boston, Massachusetts, United States of America
| | - Mary Jo Ondrechen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Yunqiu Chen
- Biogen Inc, Cambridge, Massachusetts, United States of America
| | - Justin J. Yerbury
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
| | - Roman Manetsch
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, United States of America
| | - S. Samar Hasnain
- Molecular Biophysics Group, Department of Biochemistry & Systems Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Robert H. Brown
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jeffrey N. Agar
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
- Barnett Institute of Chemical and Biological Analysis, Boston, Massachusetts, United States of America
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, United States of America
| |
Collapse
|
11
|
Elmansy MF, Reidl CT, Rahaman M, Özdinler PH, Silverman RB. Small molecules targeting different cellular pathologies for the treatment of amyotrophic lateral sclerosis. Med Res Rev 2023; 43:2260-2302. [PMID: 37243319 PMCID: PMC10592673 DOI: 10.1002/med.21974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 02/28/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease in which the motor neuron circuitry displays progressive degeneration, affecting mostly the motor neurons in the brain and in the spinal cord. There are no effective cures, albeit three drugs, riluzole, edaravone, and AMX0035 (a combination of sodium phenylbutyrate and taurursodiol), have been approved by the Food and Drug Administration, with limited improvement in patients. There is an urgent need to build better and more effective treatment strategies for ALS. Since the disease is very heterogenous, numerous approaches have been explored, such as targeting genetic mutations, decreasing oxidative stress and excitotoxicity, enhancing mitochondrial function and protein degradation mechanisms, and inhibiting neuroinflammation. In addition, various chemical libraries or previously identified drugs have been screened for potential repurposing in the treatment of ALS. Here, we review previous drug discovery efforts targeting a variety of cellular pathologies that occur from genetic mutations that cause ALS, such as mutations in SOD1, C9orf72, FUS, and TARDP-43 genes. These mutations result in protein aggregation, which causes neuronal degeneration. Compounds used to target cellular pathologies that stem from these mutations are discussed and comparisons among different preclinical models are presented. Because the drug discovery landscape for ALS and other motor neuron diseases is changing rapidly, we also offer recommendations for a novel, more effective, direction in ALS drug discovery that could accelerate translation of effective compounds from animals to patients.
Collapse
Affiliation(s)
- Mohamed F. Elmansy
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois, USA
- Department of Organometallic and Organometalloid Chemistry, National Research Centre, Cairo, Egypt
| | - Cory T. Reidl
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois, USA
| | - Mizzanoor Rahaman
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois, USA
| | - P. Hande Özdinler
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Richard B. Silverman
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois, USA
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
12
|
Wang X, Zhang Y, Wang C. Discovery of cisplatin-binding proteins by competitive cysteinome profiling. RSC Chem Biol 2023; 4:670-674. [PMID: 37654507 PMCID: PMC10467758 DOI: 10.1039/d3cb00042g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/22/2023] [Indexed: 09/02/2023] Open
Abstract
Cisplatin is a widely used cancer metallodrug that induces cytotoxicity by targeting DNA and chelating cysteines in proteins. Here we applied a competitive activity-based protein profiling strategy to identify cisplatin-binding cysteines in cancer proteomes. A novel cisplatin target, MetAP1, was identified and functionally validated to contribute to cisplatin's cytotoxicity.
Collapse
Affiliation(s)
- Xianghe Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing China
| | - Yihai Zhang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing China
| | - Chu Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University Beijing China
| |
Collapse
|
13
|
Jiang H, Hong Y, Fan G. Bismuth Reduces Cisplatin-Induced Nephrotoxicity Via Enhancing Glutathione Conjugation and Vesicular Transport. Front Pharmacol 2022; 13:887876. [PMID: 35784696 PMCID: PMC9243339 DOI: 10.3389/fphar.2022.887876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Bismuth drugs have long been used against gastrointestinal diseases, especially the gastric infection of Helicobacter pylori. Cisplatin is a widely used anticancer drug that tends to accumulate at renal proximal tubules and causes severe nephrotoxicity. It was found that bismuth pretreatment reduces cisplatin-induced nephrotoxicity, but the mechanism of action remains unclear. To understand bismuth’s effect on renal tubules, we profiled the proteomic changes in human proximal tubular cells (HK-2) upon bismuth treatment. We found that bismuth induced massive glutathione biosynthesis, glutathione S-transferase activity, and vesicular transportation, which compartmentalizes bismuth to the vesicles and forms bismuth–sulfur nanoparticles. The timing of glutathione induction concurs that of bismuth-induced cisplatin toxicity mitigation in HK-2, and bismuth enhanced cisplatin sequestration to vesicles and incorporation into bismuth–sulfur nanoparticles. Finally, we found that bismuth mitigates the toxicity of general soft metal compounds but not hard metal compounds or oxidants. It suggests that instead of through oxidative stress reduction, bismuth reduces cisplatin-induced toxicity by direct sequestration.
Collapse
Affiliation(s)
- Hui Jiang
- Tongji University School of Medicine, Shanghai, China
| | - Yifan Hong
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
- *Correspondence: Yifan Hong, ; Guorong Fan,
| | - Guorong Fan
- Tongji University School of Medicine, Shanghai, China
- Department of Clinical Pharmacy, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Yifan Hong, ; Guorong Fan,
| |
Collapse
|
14
|
Hnath B, Dokholyan NV. Toxic SOD1 trimers are off-pathway in the formation of amyloid-like fibrils in ALS. Biophys J 2022; 121:2084-2095. [PMID: 35505609 DOI: 10.1016/j.bpj.2022.04.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/01/2022] [Accepted: 04/28/2022] [Indexed: 11/26/2022] Open
Abstract
Accumulation of insoluble amyloid fibrils is widely studied as a critical factor in the pathology of multiple neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease. Misfolded Cu, Zn superoxide dismutase (SOD1) was the first protein linked to ALS, and non-native SOD1 trimeric oligomers were recently linked to cytotoxicity, while larger oligomers were protective to cells. The balance between trimers and larger aggregates in the process of SOD1 aggregation is, thus, a critical determinant of potential therapeutic approaches to treat ALS. Yet, it is unknown whether these trimeric oligomers are a necessary intermediate for larger aggregate formation or a distinct off-pathway species competing with fibril formation. Depending on the on- or off-pathway scenario of trimer formation, we expect drastically different therapeutic approaches. Here, we show that the toxic SOD1 trimer is an off-pathway intermediate competing with protective fibril formation. We design mutant SOD1 constructs that remain in a trimeric state (super stable trimers) and show that stabilizing the trimeric SOD1 prevents formation of fibrils in vitro and in a motor neuron like cell model (NSC-34). Using size exclusion chromatography, we track the aggregation kinetics of purified SOD1 and show direct competition of trimeric SOD1 with larger oligomer and fibril formation. Finally, we show the trimer is structurally independent of both larger soluble oligomers and insoluble fibrils using circular dichroism spectroscopy and limited proteolysis.
Collapse
Affiliation(s)
- Brianna Hnath
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA; Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Nikolay V Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA; Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA; Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA
| |
Collapse
|
15
|
Grifagni D, Calderone V, Giuntini S, Cantini F, Fragai M, Banci L. SARS-CoV-2 M pro inhibition by a zinc ion: structural features and hints for drug design. Chem Commun (Camb) 2021; 57:7910-7913. [PMID: 34278402 DOI: 10.1039/d1cc02956h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Structural data on the SARS-CoV-2 main protease in complex with a zinc-containing organic inhibitor are already present in the literature and gave hints on the presence of a zinc binding site involving the catalytically relevant cysteine and histidine residues. In this paper, the structural basis of ionic zinc binding to the SARS-CoV-2 main protease has been elucidated by X-ray crystallography. The zinc binding affinity and its ability to inhibit the SARS-CoV-2 main protease have been investigated. These findings provide solid ground for the design of potent and selective metal-conjugated inhibitors of the SARS-CoV-2 main protease.
Collapse
Affiliation(s)
- Deborah Grifagni
- Magnetic Resonance Center (CERM), University of Florence, via Sacconi 6, Sesto Fiorentino, 50019, Italy.
| | - Vito Calderone
- Magnetic Resonance Center (CERM), University of Florence, via Sacconi 6, Sesto Fiorentino, 50019, Italy. and Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino, 50019, Italy and Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), via Sacconi 6, Sesto Fiorentino, 50019, Italy
| | - Stefano Giuntini
- Magnetic Resonance Center (CERM), University of Florence, via Sacconi 6, Sesto Fiorentino, 50019, Italy.
| | - Francesca Cantini
- Magnetic Resonance Center (CERM), University of Florence, via Sacconi 6, Sesto Fiorentino, 50019, Italy. and Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino, 50019, Italy and Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), via Sacconi 6, Sesto Fiorentino, 50019, Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM), University of Florence, via Sacconi 6, Sesto Fiorentino, 50019, Italy. and Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino, 50019, Italy and Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), via Sacconi 6, Sesto Fiorentino, 50019, Italy
| | - Lucia Banci
- Magnetic Resonance Center (CERM), University of Florence, via Sacconi 6, Sesto Fiorentino, 50019, Italy. and Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino, 50019, Italy and Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), via Sacconi 6, Sesto Fiorentino, 50019, Italy
| |
Collapse
|
16
|
Ferraro G, Loreto D, Merlino A. Interaction of Platinum-based Drugs with Proteins: An Overview of Representative Crystallographic Studies. Curr Top Med Chem 2021; 21:6-27. [PMID: 32579504 DOI: 10.2174/1568026620666200624162213] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/27/2022]
Abstract
Pt-based drugs are widely used in clinics for the treatment of cancer. The mechanism of action of these molecules relies on their interaction with DNA. However, the recognition of these metal compounds by proteins plays an important role in defining pharmacokinetics, side effects and their overall pharmacological profiles. Single crystal X-ray diffraction studies provided important information on the molecular mechanisms at the basis of this process. Here, the molecular structures of representative adducts obtained upon reaction with proteins of selected Pt-based drugs, including cisplatin, carboplatin and oxaliplatin, are briefly described and comparatively examined. Data indicate that metal ligands play a significant role in driving the reaction of Pt compounds with proteins; non-covalent interactions that occur in the early steps of Pt compound/protein recognition process play a crucial role in defining the structure of the final Pt-protein adduct. In the metallated protein structures, Pt centers coordinate few protein side chains, such as His, Met, Cys, Asp, Glu and Lys residues upon releasing labile ligands.
Collapse
Affiliation(s)
- Giarita Ferraro
- Department of Chemistry Ugo Schiff, University of Florence, Sesto Fiorentino, Firenze, Italy
| | - Domenico Loreto
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| |
Collapse
|
17
|
Molecular and pharmacological chaperones for SOD1. Biochem Soc Trans 2021; 48:1795-1806. [PMID: 32794552 PMCID: PMC7458393 DOI: 10.1042/bst20200318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/25/2022]
Abstract
The efficacy of superoxide dismutase-1 (SOD1) folding impacts neuronal loss in motor system neurodegenerative diseases. Mutations can prevent SOD1 post-translational processing leading to misfolding and cytoplasmic aggregation in familial amyotrophic lateral sclerosis (ALS). Evidence of immature, wild-type SOD1 misfolding has also been observed in sporadic ALS, non-SOD1 familial ALS and Parkinson's disease. The copper chaperone for SOD1 (hCCS) is a dedicated and specific chaperone that assists SOD1 folding and maturation to produce the active enzyme. Misfolded or misfolding prone SOD1 also interacts with heat shock proteins and macrophage migration inhibitory factor to aid folding, refolding or degradation. Recognition of specific SOD1 structures by the molecular chaperone network and timely dissociation of SOD1-chaperone complexes are, therefore, important steps in SOD1 processing. Harnessing these interactions for therapeutic benefit is actively pursued as is the modulation of SOD1 behaviour with pharmacological and peptide chaperones. This review highlights the structural and mechanistic aspects of a selection of SOD1-chaperone interactions together with their impact on disease models.
Collapse
|
18
|
Kumar A, Balbach J. Inactivation of parathyroid hormone: perspectives of drug discovery to combating hyperparathyroidism. Curr Mol Pharmacol 2021; 15:292-305. [PMID: 33573587 DOI: 10.2174/1874467214666210126112839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 11/22/2022]
Abstract
Hormonal coordination is tightly regulated within the human body and thus regulates human physiology. The parathyroid hormone (PTH), a member of the endocrine system, regulates the calcium and phosphate level within the human body. Under non-physiological conditions, PTH levels get upregulated (hyperparathyroidism) or downregulated (hypoparathyroidism) due to external or internal factors. In the case of hyperparathyroidism, elevated PTH stimulates cellular receptors present in the bones, kidneys, and intestines to increase the blood calcium level, leading to calcium deposition. This eventually causes various symptoms including kidney stones. Currently, there is no known medication that directly targets PTH in order to suppress its function. Therefore, it is of great interest to find novel small molecules or any other means that can modulate PTH function. The molecular signaling of PTH starts by binding of its N-terminus to the G-protein coupled PTH1/2 receptor. Therefore, any intervention that affects the N-terminus of PTH could be a lead candidate for treating hyperparathyroidism. As a proof-of-concept, there are various possibilities to inhibit molecular PTH function by (i) a small molecule, (ii) N-terminal PTH phosphorylation, (iii) fibril formation and (iv) residue-specific mutations. These modifications put PTH into an inactive state, which will be discussed in detail in this review article. We anticipate that exploring small molecules or other means that affect the N-terminus of PTH could be lead candidates in combating hyperparathyroidism.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College of Science, Technology and Medicine London, South Kensington, London SW7 2BU. United Kingdom
| | - Jochen Balbach
- Institute of Physics, Biophysics, Martin-Luther-University Halle- Wittenberg. Germany
| |
Collapse
|
19
|
Abstract
Recent advances in structural studies unveiling the basis of the metal compounds/protein recognition process are discussed.
Collapse
Affiliation(s)
- Antonello Merlino
- Department of Chemical Sciences
- University of Naples Federico II
- Complesso Universitario di Monte Sant’Angelo
- Napoli
- Italy
| |
Collapse
|
20
|
Musteikyte G, Ziaunys M, Smirnovas V. Methylene blue inhibits nucleation and elongation of SOD1 amyloid fibrils. PeerJ 2020; 8:e9719. [PMID: 32864220 PMCID: PMC7430317 DOI: 10.7717/peerj.9719] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022] Open
Abstract
Protein aggregation into highly-structured amyloid fibrils is linked to several neurodegenerative diseases. Such fibril formation by superoxide dismutase I (SOD1) is considered to be related to amyotrophic lateral sclerosis, a late-onset and fatal disorder. Despite much effort and the discovery of numerous anti-amyloid compounds, no effective cure or treatment is currently available. Methylene blue (MB), a phenothiazine dye, has been shown to modulate the aggregation of multiple amyloidogenic proteins. In this work we show its ability to inhibit both the spontaneous amyloid aggregation of SOD1 as well as elongation of preformed fibrils.
Collapse
Affiliation(s)
- Greta Musteikyte
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.,Life Sciences Center, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - Mantas Ziaunys
- Life Sciences Center, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - Vytautas Smirnovas
- Life Sciences Center, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
21
|
Amporndanai K, Rogers M, Watanabe S, Yamanaka K, O'Neill PM, Hasnain SS. Novel Selenium-based compounds with therapeutic potential for SOD1-linked amyotrophic lateral sclerosis. EBioMedicine 2020; 59:102980. [PMID: 32862101 PMCID: PMC7456458 DOI: 10.1016/j.ebiom.2020.102980] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022] Open
Abstract
Background Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease as well as Lou Gehrig's disease, is a progressive neurological disorder selectively affecting motor neurons with no currently known cure. Around 20% of the familial ALS cases arise from dominant mutations in the sod1 gene encoding superoxide dismutase1 (SOD1) enzyme. Aggregation of mutant SOD1 in familial cases and of wild-type SOD1 in at least some sporadic ALS cases is one of the known causes of the disease. Riluzole, approved in 1995 and edaravone in 2017 remain the only drugs with limited therapeutic benefits. Methods We have utilised the ebselen template to develop novel compounds that redeem stability of mutant SOD1 dimer and prevent aggregation. Binding modes of compounds have been visualised by crystallography. In vitro neuroprotection and toxicity of lead compounds have been performed in mouse neuronal cells and disease onset delay of ebselen has been demonstrated in transgenic ALS mice model. Finding We have developed a number of ebselen-based compounds with improvements in A4V SOD1 stabilisation and in vitro therapeutic effects with significantly better potency than edaravone. Structure-activity relationship of hits has been guided by high resolution structures of ligand-bound A4V SOD1. We also show clear disease onset delay of ebselen in transgenic ALS mice model holding encouraging promise for potential therapeutic compounds. Interpretation Our finding established the new generation of organo-selenium compounds with better in vitro neuroprotective activity than edaravone. The potential of this class of compounds may offer an alternative therapeutic agent for ALS treatment. The ability of these compounds to target cysteine 111 in SOD may have wider therapeutic applications targeting cysteines of enzymes involved in pathogenic and viral diseases including main protease of SARS-Cov-2 (COVID-19). Funding Project funding was supported by the 10.13039/100000971ALS Association grant (WA1128) and Fostering Joint International Research (19KK0214) from the 10.13039/100009950Ministry of Education, Culture, Sports, Science and Technology (10.13039/501100001700MEXT), Japan.
Collapse
Affiliation(s)
- Kangsa Amporndanai
- Molecular Biophysics Group, Department of Biochemistry and System Biology, Institute of System, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, L69 7ZB, United Kingdom
| | - Michael Rogers
- Department of Chemistry, Faculty of Science and Engineering, University of Liverpool, Liverpool, L69 7ZD, United Kingdom
| | - Seiji Watanabe
- Department of Neuroscience & Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan; Department of Neuroscience and Pathobiology, Nagoya University Graduate School of Medicine, Aichi, 466-8550, Japan
| | - Koji Yamanaka
- Department of Neuroscience & Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan; Department of Neuroscience and Pathobiology, Nagoya University Graduate School of Medicine, Aichi, 466-8550, Japan
| | - Paul M O'Neill
- Department of Chemistry, Faculty of Science and Engineering, University of Liverpool, Liverpool, L69 7ZD, United Kingdom
| | - S Samar Hasnain
- Molecular Biophysics Group, Department of Biochemistry and System Biology, Institute of System, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, L69 7ZB, United Kingdom
| |
Collapse
|
22
|
Abazari O, Shafaei Z, Divsalar A, Eslami-Moghadam M, Ghalandari B, Saboury AA, Moradi A. Interaction of the synthesized anticancer compound of the methyl-glycine 1,10-phenanthroline platinum nitrate with human serum albumin and human hemoglobin proteins by spectroscopy methods and molecular docking. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01879-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Bhatia NK, Modi P, Sharma S, Deep S. Quercetin and Baicalein Act as Potent Antiamyloidogenic and Fibril Destabilizing Agents for SOD1 Fibrils. ACS Chem Neurosci 2020; 11:1129-1138. [PMID: 32208672 DOI: 10.1021/acschemneuro.9b00677] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that has been associated with the deposition of aggregates of superoxide dismutase 1 (SOD1). Effective therapeutics against SOD1 fibrillation is still an area of active research. Herein, we demonstrate the potential of two naturally occurring flavonoids (quercetin and baicalein) to inhibit fibrillation of wild-type SOD1 with the aid of a series of biophysical techniques. Our seeding experiments reveal that both of these flavonoids significantly affect the fibril elongation. Interestingly, our ThT binding assay, TEM, and SDS-PAGE experiments suggest that these flavonoids also disintegrate the fibrils into shorter fragments but do not completely depolymerize them into monomers. Binding parameters obtained from the analysis of UV-vis spectra suggest that these flavonoids bind moderately to native SOD1 dimer and have different binding sites. Docking of these flavonoids with a non-native monomer, non-native trimer, and oligomer derived from the 11-residue segment of SOD1 indicates that both quercetin and baicalein can bind to these species and thus can arrest the elongation of fibrils by blocking the fibrillar core regions on the intermediate species formed during aggregation of SOD1. MTT assay data revealed that both the flavonoids reduced the cytotoxicity of SOD1 fibrils. Experimental data also show the antiamyloidogenic potential of both flavonoids against A4V SOD1 mutant fibrillation. Thus, our findings may provide a direction for designing effective therapeutic agents against ALS which can act as promising antiamyloidogenic and fibril destabilizing agents.
Collapse
Affiliation(s)
- Nidhi K. Bhatia
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Priya Modi
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Shilpa Sharma
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
24
|
Synthetic Lethality Screening Identifies FDA-Approved Drugs that Overcome ATP7B-Mediated Tolerance of Tumor Cells to Cisplatin. Cancers (Basel) 2020; 12:cancers12030608. [PMID: 32155756 PMCID: PMC7139527 DOI: 10.3390/cancers12030608] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 12/26/2022] Open
Abstract
Tumor resistance to chemotherapy represents an important challenge in modern oncology. Although platinum (Pt)-based drugs have demonstrated excellent therapeutic potential, their effectiveness in a wide range of tumors is limited by the development of resistance mechanisms. One of these mechanisms includes increased cisplatin sequestration/efflux by the copper-transporting ATPase, ATP7B. However, targeting ATP7B to reduce Pt tolerance in tumors could represent a serious risk because suppression of ATP7B might compromise copper homeostasis, as happens in Wilson disease. To circumvent ATP7B-mediated Pt tolerance we employed a high-throughput screen (HTS) of an FDA/EMA-approved drug library to detect safe therapeutic molecules that promote cisplatin toxicity in the IGROV-CP20 ovarian carcinoma cells, whose resistance significantly relies on ATP7B. Using a synthetic lethality approach, we identified and validated three hits (Tranilast, Telmisartan, and Amphotericin B) that reduced cisplatin resistance. All three drugs induced Pt-mediated DNA damage and inhibited either expression or trafficking of ATP7B in a tumor-specific manner. Global transcriptome analyses showed that Tranilast and Amphotericin B affect expression of genes operating in several pathways that confer tolerance to cisplatin. In the case of Tranilast, these comprised key Pt-transporting proteins, including ATOX1, whose suppression affected ability of ATP7B to traffic in response to cisplatin. In summary, our findings reveal Tranilast, Telmisartan, and Amphotericin B as effective drugs that selectively promote cisplatin toxicity in Pt-resistant ovarian cancer cells and underscore the efficiency of HTS strategy for identification of biosafe compounds, which might be rapidly repurposed to overcome resistance of tumors to Pt-based chemotherapy.
Collapse
|
25
|
Chantadul V, Wright GSA, Amporndanai K, Shahid M, Antonyuk SV, Washbourn G, Rogers M, Roberts N, Pye M, O'Neill PM, Hasnain SS. Ebselen as template for stabilization of A4V mutant dimer for motor neuron disease therapy. Commun Biol 2020; 3:97. [PMID: 32139772 PMCID: PMC7058017 DOI: 10.1038/s42003-020-0826-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/13/2020] [Indexed: 11/09/2022] Open
Abstract
Mutations to the gene encoding superoxide dismutase-1 (SOD1) were the first genetic elements discovered that cause motor neuron disease (MND). These mutations result in compromised SOD1 dimer stability, with one of the severest and most common mutations Ala4Val (A4V) displaying a propensity to monomerise and aggregate leading to neuronal death. We show that the clinically used ebselen and related analogues promote thermal stability of A4V SOD1 when binding to Cys111 only. We have developed a A4V SOD1 differential scanning fluorescence-based assay on a C6S mutation background that is effective in assessing suitability of compounds. Crystallographic data show that the selenium atom of these compounds binds covalently to A4V SOD1 at Cys111 at the dimer interface, resulting in stabilisation. This together with chemical amenability for hit expansion of ebselen and its on-target SOD1 pharmacological chaperone activity holds remarkable promise for structure-based therapeutics for MND using ebselen as a template.
Collapse
Affiliation(s)
- Varunya Chantadul
- Faculty of Health and Life Sciences, Molecular Biophysics Group, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
- Faculty of Dentistry, Department of Anatomy, Mahidol University, Bangkok, 10400, Thailand
| | - Gareth S A Wright
- Faculty of Health and Life Sciences, Molecular Biophysics Group, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Kangsa Amporndanai
- Faculty of Health and Life Sciences, Molecular Biophysics Group, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Munazza Shahid
- Department of Chemistry and Chemical Engineering, Lahore University of Management Sciences, Punjab, 54792, Pakistan
| | - Svetlana V Antonyuk
- Faculty of Health and Life Sciences, Molecular Biophysics Group, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Gina Washbourn
- Faculty of Science and Engineering, Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Michael Rogers
- Faculty of Science and Engineering, Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Natalie Roberts
- Faculty of Science and Engineering, Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Matthew Pye
- Faculty of Science and Engineering, Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Paul M O'Neill
- Faculty of Science and Engineering, Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - S Samar Hasnain
- Faculty of Health and Life Sciences, Molecular Biophysics Group, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| |
Collapse
|
26
|
Symmetry-breaking transitions in the early steps of protein self-assembly. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:175-191. [PMID: 32123956 DOI: 10.1007/s00249-020-01424-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/22/2020] [Accepted: 02/10/2020] [Indexed: 10/24/2022]
Abstract
Protein misfolding and subsequent self-association are complex, intertwined processes, resulting in development of a heterogeneous population of aggregates closely related to many chronic pathological conditions including Type 2 Diabetes Mellitus and Alzheimer's disease. To address this issue, here, we develop a theoretical model in the general framework of linear stability analysis. According to this model, self-assemblies of peptides with pronounced conformational flexibility may become, under particular conditions, unstable and spontaneously evolve toward an alternating array of partially ordered and disordered monomers. The predictions of the theory were verified by atomistic molecular dynamics (MD) simulations of islet amyloid polypeptide (IAPP) used as a paradigm of aggregation-prone polypeptides (proteins). Simulations of dimeric, tetrameric, and hexameric human-IAPP self-assemblies at physiological electrolyte concentration reveal an alternating distribution of the smallest domains (of the order of the peptide mean length) formed by partially ordered (mainly β-strands) and disordered (turns and coil) arrays. Periodicity disappears upon weakening of the inter-peptide binding, a result in line with the predictions of the theory. To further probe the general validity of our hypothesis, we extended the simulations to other peptides, the Aβ(1-40) amyloid peptide, and the ovine prion peptide as well as to other proteins (SOD1 dimer) that do not belong to the broad class of intrinsically disordered proteins. In all cases, the oligomeric aggregates show an alternate distribution of partially ordered and disordered monomers. We also carried out Surface Enhanced Raman Scattering (SERS) measurements of hIAPP as an experimental validation of both the theory and in silico simulations.
Collapse
|
27
|
Abstract
Few proteins have come under such intense scrutiny as superoxide dismutase-1 (SOD1). For almost a century, scientists have dissected its form, function and then later its malfunction in the neurodegenerative disease amyotrophic lateral sclerosis (ALS). We now know SOD1 is a zinc and copper metalloenzyme that clears superoxide as part of our antioxidant defence and respiratory regulation systems. The possibility of reduced structural integrity was suggested by the first crystal structures of human SOD1 even before deleterious mutations in the sod1 gene were linked to the ALS. This concept evolved in the intervening years as an impressive array of biophysical studies examined the characteristics of mutant SOD1 in great detail. We now recognise how ALS-related mutations perturb the SOD1 maturation processes, reduce its ability to fold and reduce its thermal stability and half-life. Mutant SOD1 is therefore predisposed to monomerisation, non-canonical self-interactions, the formation of small misfolded oligomers and ultimately accumulation in the tell-tale insoluble inclusions found within the neurons of ALS patients. We have also seen that several post-translational modifications could push wild-type SOD1 down this toxic pathway. Recently we have come to view ALS as a prion-like disease where both the symptoms, and indeed SOD1 misfolding itself, are transmitted to neighbouring cells. This raises the possibility of intervention after the initial disease presentation. Several small-molecule and biologic-based strategies have been devised which directly target the SOD1 molecule to change the behaviour thought to be responsible for ALS. Here we provide a comprehensive review of the many biophysical advances that sculpted our view of SOD1 biology and the recent work that aims to apply this knowledge for therapeutic outcomes in ALS.
Collapse
|
28
|
Petruzzelli R, Polishchuk RS. Activity and Trafficking of Copper-Transporting ATPases in Tumor Development and Defense against Platinum-Based Drugs. Cells 2019; 8:E1080. [PMID: 31540259 PMCID: PMC6769697 DOI: 10.3390/cells8091080] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023] Open
Abstract
Membrane trafficking pathways emanating from the Golgi regulate a wide range of cellular processes. One of these is the maintenance of copper (Cu) homeostasis operated by the Golgi-localized Cu-transporting ATPases ATP7A and ATP7B. At the Golgi, these proteins supply Cu to newly synthesized enzymes which use this metal as a cofactor to catalyze a number of vitally important biochemical reactions. However, in response to elevated Cu, the Golgi exports ATP7A/B to post-Golgi sites where they promote sequestration and efflux of excess Cu to limit its potential toxicity. Growing tumors actively consume Cu and employ ATP7A/B to regulate the availability of this metal for oncogenic enzymes such as LOX and LOX-like proteins, which confer higher invasiveness to malignant cells. Furthermore, ATP7A/B activity and trafficking allow tumor cells to detoxify platinum (Pt)-based drugs (like cisplatin), which are used for the chemotherapy of different solid tumors. Despite these noted activities of ATP7A/B that favor oncogenic processes, the mechanisms that regulate the expression and trafficking of Cu ATPases in malignant cells are far from being completely understood. This review summarizes current data on the role of ATP7A/B in the regulation of Cu and Pt metabolism in malignant cells and outlines questions and challenges that should be addressed to understand how ATP7A and ATP7B trafficking mechanisms might be targeted to counteract tumor development.
Collapse
Affiliation(s)
- Raffaella Petruzzelli
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy.
| | - Roman S Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy.
| |
Collapse
|
29
|
Nardella MI, Rosato A, Belviso BD, Caliandro R, Natile G, Arnesano F. Oxidation of Human Copper Chaperone Atox1 and Disulfide Bond Cleavage by Cisplatin and Glutathione. Int J Mol Sci 2019; 20:ijms20184390. [PMID: 31500118 PMCID: PMC6769983 DOI: 10.3390/ijms20184390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 01/11/2023] Open
Abstract
Cancer cells cope with high oxidative stress levels, characterized by a shift toward the oxidized form (GSSG) of glutathione (GSH) in the redox couple GSSG/2GSH. Under these conditions, the cytosolic copper chaperone Atox1, which delivers Cu(I) to the secretory pathway, gets oxidized, i.e., a disulfide bond is formed between the cysteine residues of the Cu(I)-binding CxxC motif. Switching to the covalently-linked form, sulfur atoms are not able to bind the Cu(I) ion and Atox1 cannot play an antioxidant role. Atox1 has also been implicated in the resistance to platinum chemotherapy. In the presence of excess GSH, the anticancer drug cisplatin binds to Cu(I)-Atox1 but not to the reduced apoprotein. With the aim to investigate the interaction of cisplatin with the disulfide form of the protein, we performed a structural characterization in solution and in the solid state of oxidized human Atox1 and explored its ability to bind cisplatin under conditions mimicking an oxidizing environment. Cisplatin targets a methionine residue of oxidized Atox1; however, in the presence of GSH as reducing agent, the drug binds irreversibly to the protein with ammine ligands trans to Cys12 and Cys15. The results are discussed with reference to the available literature data and a mechanism is proposed connecting platinum drug processing to redox and copper homeostasis.
Collapse
Affiliation(s)
- Maria I Nardella
- Department of Chemistry, University of Bari, via Orabona, 4, 70125 Bari, Italy
| | - Antonio Rosato
- Department of Chemistry, University of Bari, via Orabona, 4, 70125 Bari, Italy
| | - Benny D Belviso
- Institute of Crystallography, CNR, via Amendola, 122/o, 70126 Bari, Italy
| | - Rocco Caliandro
- Institute of Crystallography, CNR, via Amendola, 122/o, 70126 Bari, Italy
| | - Giovanni Natile
- Department of Chemistry, University of Bari, via Orabona, 4, 70125 Bari, Italy
| | - Fabio Arnesano
- Department of Chemistry, University of Bari, via Orabona, 4, 70125 Bari, Italy.
| |
Collapse
|
30
|
Massai L, Pratesi A, Gailer J, Marzo T, Messori L. The cisplatin/serum albumin system: A reappraisal. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.118983] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Siegal G, Selenko P. Cells, drugs and NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 306:202-212. [PMID: 31358370 DOI: 10.1016/j.jmr.2019.07.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/08/2019] [Accepted: 07/08/2019] [Indexed: 05/18/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a versatile tool for investigating cellular structures and their compositions. While in vivo and whole-cell NMR have a long tradition in cell-based approaches, high-resolution in-cell NMR spectroscopy is a new addition to these methods. In recent years, technological advancements in multiple areas provided converging benefits for cellular MR applications, especially in terms of robustness, reproducibility and physiological relevance. Here, we review the use of cellular NMR methods for drug discovery purposes in academia and industry. Specifically, we discuss how developments in NMR technologies such as miniaturized bioreactors and flow-probe perfusion systems have helped to consolidate NMR's role in cell-based drug discovery efforts.
Collapse
Affiliation(s)
- Gregg Siegal
- ZoBio B.V., BioPartner 2 Building, J.H. Oortweg 19, 2333 Leiden, the Netherlands
| | - Philipp Selenko
- Department of Biological Regulation, Weizmann Institute of Science, 234 Herzl Street, 761000 Rehovot, Israel.
| |
Collapse
|
32
|
Wu F, Liu R, Shen X, Xu H, Sheng L. Study on the interaction and antioxidant activity of theophylline and theobromine with SOD by spectra and calculation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 215:354-362. [PMID: 30852283 DOI: 10.1016/j.saa.2019.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 06/09/2023]
Abstract
Theophylline (TP) and theobromine (TB) are the methyl derivatives of xanthine. The antioxidation of TP and TB as well as the effect of the antioxidation and activity of copper‑zinc superoxide dismutase (SOD) with TP and TB were investigated. The contents of MDA in cells showed that both TP (14.49 μmol/g) and TB (14.25 μmol/g) are active in oxidation resistance and closed to the antioxidant effect of SOD (13.77 μmol/g). With the formation of TP-SOD and TB-SOD, the antioxidant ability can be superimposed. The interactions between TP/TB and SOD were studied by ultraviolet spectrum, fluorescence spectrum and molecular docking. The results showed that the complex of TP/TB and SOD with 1:1 component was stabilized by hydrogen bonding and van der Waals forces. The analysis also indicated that the microenvironment and structure of SOD were changed. All of the results indicate that the complex formation of TP-SOD and TB-SOD can maintain their respective antioxidant effects without changes in the activity of SOD.
Collapse
Affiliation(s)
- Fufang Wu
- School of Chemistry and Materials Engineering, Fuyang Normal College, Fuyang 236037, China; Engineering Research Center of Biomass Conversion and Pollution Prevention Control of Anhui Provincial Department of Education, Fuyang 236037, China
| | - Ruirui Liu
- School of Chemistry and Materials Engineering, Fuyang Normal College, Fuyang 236037, China; Engineering Research Center of Biomass Conversion and Pollution Prevention Control of Anhui Provincial Department of Education, Fuyang 236037, China
| | - Xiaobao Shen
- School of Chemistry and Materials Engineering, Fuyang Normal College, Fuyang 236037, China; Engineering Research Center of Biomass Conversion and Pollution Prevention Control of Anhui Provincial Department of Education, Fuyang 236037, China
| | - Huajie Xu
- School of Chemistry and Materials Engineering, Fuyang Normal College, Fuyang 236037, China; Engineering Research Center of Biomass Conversion and Pollution Prevention Control of Anhui Provincial Department of Education, Fuyang 236037, China
| | - Liangquan Sheng
- School of Chemistry and Materials Engineering, Fuyang Normal College, Fuyang 236037, China; Engineering Research Center of Biomass Conversion and Pollution Prevention Control of Anhui Provincial Department of Education, Fuyang 236037, China.
| |
Collapse
|
33
|
Cantini F, Calderone V, Di Cesare Mannelli L, Korsak M, Gonnelli L, Francesconi O, Ghelardini C, Banci L, Nativi C. Interaction of Half Oxa-/Half cis-Platin Complex with Human Superoxide Dismutase and Induced Reduction of Neurotoxicity. ACS Med Chem Lett 2018; 9:1094-1098. [PMID: 30429951 DOI: 10.1021/acsmedchemlett.8b00199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 10/01/2018] [Indexed: 12/13/2022] Open
Abstract
The formation of amorphous protein aggregates containing human superoxide dismutase (hSOD1) is thought to be involved in amyotrophic lateral sclerosis onset. cis-Platin inhibits the oligomerization of apo hSOD1, but its toxicity precludes any possible use in therapy. Herein, we propose a less toxic platinum complex, namely oxa/cis-platin, as hSOD1 antiaggregation lead compound. Oxa/cis-platin is able to interact with hSOD1 in the disulfide oxidized apo form by binding cysteine 111 (Cys111). The mild neurotoxic phenomena induced in vitro and in vivo by oxa/cis-platin can be successfully reverted by using lypoyl derivatives, which do not interfere with the antiaggregation properties of the platin derivative.
Collapse
Affiliation(s)
- Francesca Cantini
- Dipartimento di Chimica “Ugo Schiff”, University of Florence, via della Lastruccia, 3-13 50019 Sesto Fiorentino (FI), Italy
- CERM, University of Florence, via L. Sacconi, 6, 50019 Sesto Fiorentino (FI), Italy
| | - Vito Calderone
- Dipartimento di Chimica “Ugo Schiff”, University of Florence, via della Lastruccia, 3-13 50019 Sesto Fiorentino (FI), Italy
- CERM, University of Florence, via L. Sacconi, 6, 50019 Sesto Fiorentino (FI), Italy
| | | | - Magdalena Korsak
- CERM, University of Florence, via L. Sacconi, 6, 50019 Sesto Fiorentino (FI), Italy
| | - Leonardo Gonnelli
- Dipartimento di Chimica “Ugo Schiff”, University of Florence, via della Lastruccia, 3-13 50019 Sesto Fiorentino (FI), Italy
- CERM, University of Florence, via L. Sacconi, 6, 50019 Sesto Fiorentino (FI), Italy
| | - Oscar Francesconi
- Dipartimento di Chimica “Ugo Schiff”, University of Florence, via della Lastruccia, 3-13 50019 Sesto Fiorentino (FI), Italy
| | - Carla Ghelardini
- NEUROFARBA, University of Florence, v.le Pieraccini, 50, 50134 Firenze, Italy
| | - Lucia Banci
- Dipartimento di Chimica “Ugo Schiff”, University of Florence, via della Lastruccia, 3-13 50019 Sesto Fiorentino (FI), Italy
- CERM, University of Florence, via L. Sacconi, 6, 50019 Sesto Fiorentino (FI), Italy
| | - Cristina Nativi
- Dipartimento di Chimica “Ugo Schiff”, University of Florence, via della Lastruccia, 3-13 50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
34
|
Kumar A, Kuhn LT, Balbach J. A Cu 2+ complex induces the aggregation of human papillomavirus oncoprotein E6 and stabilizes p53. FEBS J 2018; 285:3013-3025. [PMID: 29931810 DOI: 10.1111/febs.14591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/14/2018] [Accepted: 06/20/2018] [Indexed: 12/13/2022]
Abstract
Papillomavirus oncoprotein E6 is a critical factor in the modulation of cervical cancer in humans. At the molecular level, formation of the E6-E6AP-p53 ternary complex, which directs p53's degradation, is the key instigator of cancer transforming properties. Herein, a Cu2+ anthracenyl-terpyridine complex is described which specifically induces the aggregation of E6 in vitro and in cultured cells. For a hijacking mechanism, both E6 and E6AP are required for p53 ubiquitination and degradation. The Cu2+ complex interacts with E6 at the E6AP and p53 binding sites. We show that E6 function is suppressed by aggregation, rendering it incapable of hijacking p53 and thus increasing its cellular level. Therapeutic treatments of cervical cancer are currently unavailable to infected individuals. We anticipate that this Cu2+ complex might open up a new therapeutic avenue for the design and development of new chemical entities for the diagnosis and treatment of HPV-induced cancers.
Collapse
Affiliation(s)
- Amit Kumar
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, UK.,Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, Germany.,Institute of Technical Biochemistry e.V., Martin-Luther-University Halle-Wittenberg, Germany
| | - Lars T Kuhn
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, UK
| | - Jochen Balbach
- Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, Germany.,Institute of Technical Biochemistry e.V., Martin-Luther-University Halle-Wittenberg, Germany
| |
Collapse
|
35
|
Manjula R, Wright GSA, Strange RW, Padmanabhan B. Assessment of ligand binding at a site relevant to
SOD
1 oxidation and aggregation. FEBS Lett 2018; 592:1725-1737. [DOI: 10.1002/1873-3468.13055] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Ramu Manjula
- Department of Biophysics National Institute of Mental Health and Neurosciences (NIMHANS) Bangalore India
| | - Gareth S. A. Wright
- Molecular Biophysics Group Institute of Integrative Biology Faculty of Health and Life Sciences University of Liverpool UK
| | | | - Balasundaram Padmanabhan
- Department of Biophysics National Institute of Mental Health and Neurosciences (NIMHANS) Bangalore India
| |
Collapse
|
36
|
The cysteine-reactive small molecule ebselen facilitates effective SOD1 maturation. Nat Commun 2018; 9:1693. [PMID: 29703933 PMCID: PMC5923229 DOI: 10.1038/s41467-018-04114-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 04/04/2018] [Indexed: 11/20/2022] Open
Abstract
Superoxide dismutase-1 (SOD1) mutants, including those with unaltered enzymatic activity, are known to cause amyotrophic lateral sclerosis (ALS). Several destabilizing factors contribute to pathogenicity including a reduced ability to complete the normal maturation process which comprises folding, metal cofactor acquisition, intra-subunit disulphide bond formation and dimerization. Immature SOD1 forms toxic oligomers and characteristic large insoluble aggregates within motor system cells. Here we report that the cysteine-reactive molecule ebselen efficiently confers the SOD1 intra-subunit disulphide and directs correct SOD1 folding, depopulating the globally unfolded precursor associated with aggregation and toxicity. Assisted formation of the unusual SOD1 cytosolic disulphide bond could have potential therapeutic applications. In less reducing environments, ebselen forms a selenylsulphide with Cys111 and restores the monomer–dimer equilibrium of A4V SOD1 to wild-type. Ebselen is therefore a potent bifunctional pharmacological chaperone for SOD1 that combines properties of the SOD1 chaperone hCCS and the recently licenced antioxidant drug, edaravone. Mutations in superoxide dismutase-1 (SOD1) cause amyotrophic lateral sclerosis (ALS). Here the authors present the SOD1 crystal structure bound to the small cysteine-reactive molecule ebselen and show that ebselen is a chaperone for SOD1.
Collapse
|
37
|
Alemasov NA, Ivanisenko NV, Ivanisenko VA. Regression model for predicting pathogenic properties of SOD1 mutants based on the analysis of conformational stability and conservation of hydrogen bonds. J Mol Graph Model 2017; 77:378-385. [DOI: 10.1016/j.jmgm.2017.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/07/2017] [Accepted: 09/15/2017] [Indexed: 10/18/2022]
|
38
|
Ferraro G, De Benedictis I, Malfitano A, Morelli G, Novellino E, Marasco D. Interactions of cisplatin analogues with lysozyme: a comparative analysis. Biometals 2017; 30:733-746. [DOI: 10.1007/s10534-017-0041-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/07/2017] [Indexed: 10/19/2022]
|
39
|
Ferraro G, Ciambellotti S, Messori L, Merlino A. Cisplatin Binding Sites in Human H-Chain Ferritin. Inorg Chem 2017; 56:9064-9070. [PMID: 28737381 DOI: 10.1021/acs.inorgchem.7b01072] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The aim of this work is to identify the cisplatin binding sites on human H-chain ferritin. High-resolution X-ray crystallography reveals that cisplatin binds four distinct protein sites, that is, the side chains of His136 and Lys68, the side chain of His105, the side chain of Cys90 and the side chain of Cys102. These Pt binding sites are compared with those observed for the adduct that cisplatin forms upon encapsulation within horse spleen L-chain ferritin (87% identity with human L-chain ferritin).
Collapse
Affiliation(s)
- Giarita Ferraro
- Department of Chemical Sciences, University of Naples Federico II , Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126 Naples, Italy
| | - Silvia Ciambellotti
- Dipartimento di Chimica, Università di Firenze , Via Della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| | - Luigi Messori
- Dipartimento di Chimica, Università di Firenze , Via Della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II , Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126 Naples, Italy.,Institute of Biostructures and Bioimages , Naples, Italy
| |
Collapse
|
40
|
Medical history of chemotherapy or immunosuppressive drug treatment and risk of amyotrophic lateral sclerosis (ALS). J Neurol 2017; 264:1763-1767. [DOI: 10.1007/s00415-017-8564-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/26/2017] [Accepted: 06/29/2017] [Indexed: 12/12/2022]
|
41
|
Kumar A, Balbach J. Targeting the molecular chaperone SlyD to inhibit bacterial growth with a small molecule. Sci Rep 2017; 7:42141. [PMID: 28176839 PMCID: PMC5296862 DOI: 10.1038/srep42141] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/03/2017] [Indexed: 12/23/2022] Open
Abstract
Molecular chaperones are essential molecules for cell growth, whereby they maintain protein homeostasis. Because of their central cellular function, bacterial chaperones might be potential candidates for drug targets. Antimicrobial resistance is currently one of the greatest threats to human health, with gram-negative bacteria being of major concern. We found that a Cu2+ complex readily crosses the bacterial cell wall and inhibits SlyD, which is a molecular chaperone, cis/trans peptidyl prolyl isomerise (PPIase) and involved in various other metabolic pathways. The Cu2+ complex binds to the active sites of SlyD, which suppresses its PPIase and chaperone activities. Significant cell growth retardation could be observed for pathogenic bacteria (e.g., Staphylococcus aureus and Pseudomonas aeruginosa). We anticipate that rational development of drugs targeting molecular chaperones might help in future control of pathogenic bacterial growth, in an era of rapidly increasing antibiotic resistance.
Collapse
Affiliation(s)
- Amit Kumar
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
- Institute of Physics, Biophysics, Martin Luther University, Halle, Wittenberg, Germany
| | - Jochen Balbach
- Institute of Physics, Biophysics, Martin Luther University, Halle, Wittenberg, Germany
- Centre for Structure und Dynamics of Proteins (MZP), Martin Luther University Halle, Wittenberg, Germany
| |
Collapse
|
42
|
Valle C, Carrì MT. Cysteine Modifications in the Pathogenesis of ALS. Front Mol Neurosci 2017; 10:5. [PMID: 28167899 PMCID: PMC5253364 DOI: 10.3389/fnmol.2017.00005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/06/2017] [Indexed: 12/13/2022] Open
Abstract
Several proteins are found misfolded and aggregated in sporadic and genetic forms of amyotrophic lateral sclerosis (ALS). These include superoxide dismutase (SOD1), transactive response DNA-binding protein (TDP-43), fused in sarcoma/translocated in liposarcoma protein (FUS/TLS), p62, vasolin-containing protein (VCP), Ubiquilin-2 and dipeptide repeats produced by unconventional RAN-translation of the GGGGCC expansion in C9ORF72. Up to date, functional studies have not yet revealed a common mechanism for the formation of such diverse protein inclusions. Consolidated studies have demonstrated a fundamental role of cysteine residues in the aggregation process of SOD1 and TDP43, but disturbance of protein thiols homeostatic factors such as protein disulfide isomerases (PDI), glutathione, cysteine oxidation or palmitoylation might contribute to a general aberration of cysteine residues proteostasis in ALS. In this article we review the evidence that cysteine modifications may have a central role in many, if not all, forms of this disease.
Collapse
Affiliation(s)
- Cristiana Valle
- Institute for Cell Biology and Neurobiology, CNRRome, Italy
- Fondazione Santa Lucia IRCCSRome, Italy
| | - Maria Teresa Carrì
- Fondazione Santa Lucia IRCCSRome, Italy
- Department of Biology, University of Rome Tor VergataRome, Italy
| |
Collapse
|
43
|
Sijbrandi NJ, Merkul E, Muns JA, Waalboer DCJ, Adamzek K, Bolijn M, Montserrat V, Somsen GW, Haselberg R, Steverink PJGM, Houthoff HJ, van Dongen GAMS. A Novel Platinum(II)-Based Bifunctional ADC Linker Benchmarked Using 89Zr-Desferal and Auristatin F-Conjugated Trastuzumab. Cancer Res 2016; 77:257-267. [PMID: 27872093 DOI: 10.1158/0008-5472.can-16-1900] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 11/16/2022]
Abstract
Greater control is desirable in the stochastic conjugation technology used to synthesize antibody-drug conjugates (ADC). We have shown recently that a fluorescent dye can be stably conjugated to a mAb using a bifunctional platinum(II) linker. Here, we describe the general applicability of this novel linker technology for the preparation of stable and efficacious ADCs. The ethylenediamine platinum(II) moiety, herein called Lx, was coordinated to Desferal (DFO) or auristatin F (AF) to provide storable "semifinal" products, which were directly conjugated to unmodified mAbs. Conjugation resulted in ADCs with unimpaired mAb-binding characteristics, DAR in the range of 2.5 to 2.7 and approximately 85% payload bound to the Fc region, presumably to histidine residues. To evaluate the in vivo stability of Lx and its effect on pharmacokinetics and tumor targeting of an ADC, Lx-DFO was conjugated to the HER2 mAb trastuzumab, followed by radiolabeling with 89Zr. Trastuzumab-Lx-DFO-89Zr was stable in vivo and exhibited pharmacokinetic and tumor-targeting properties similar to parental trastuzumab. In a xenograft mouse model of gastric cancer (NCI-N87) or an ado-trastuzumab emtansine-resistant breast cancer (JIMT-1), a single dose of trastuzumab-Lx-AF outperformed its maleimide benchmark trastuzumab-Mal-AF and FDA-approved ado-trastuzumab emtansine. Overall, our findings show the potential of the Lx technology as a robust conjugation platform for the preparation of anticancer ADCs. Cancer Res; 77(2); 257-67. ©2016 AACR.
Collapse
Affiliation(s)
| | | | | | - Dennis C J Waalboer
- Department of Radiology and Nuclear Medicine, VU Medical Center, Amsterdam, the Netherlands
| | - Kevin Adamzek
- Department of Radiology and Nuclear Medicine, VU Medical Center, Amsterdam, the Netherlands
| | - Marije Bolijn
- Department of Radiology and Nuclear Medicine, VU Medical Center, Amsterdam, the Netherlands
| | | | - Govert W Somsen
- Division of BioAnalytical Chemistry, AIMMS Research Group BioMolecular Analysis, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Rob Haselberg
- Division of BioAnalytical Chemistry, AIMMS Research Group BioMolecular Analysis, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | | | | | - Guus A M S van Dongen
- Department of Radiology and Nuclear Medicine, VU Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
44
|
Anzai I, Toichi K, Tokuda E, Mukaiyama A, Akiyama S, Furukawa Y. Screening of Drugs Inhibiting In vitro Oligomerization of Cu/Zn-Superoxide Dismutase with a Mutation Causing Amyotrophic Lateral Sclerosis. Front Mol Biosci 2016; 3:40. [PMID: 27556028 PMCID: PMC4977284 DOI: 10.3389/fmolb.2016.00040] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 07/27/2016] [Indexed: 12/14/2022] Open
Abstract
Dominant mutations in Cu/Zn-superoxide dismutase (SOD1) gene have been shown to cause a familial form of amyotrophic lateral sclerosis (SOD1-ALS). A major pathological hallmark of this disease is abnormal accumulation of mutant SOD1 oligomers in the affected spinal motor neurons. While no effective therapeutics for SOD1-ALS is currently available, SOD1 oligomerization will be a good target for developing cures of this disease. Recently, we have reproduced the formation of SOD1 oligomers abnormally cross-linked via disulfide bonds in a test tube. Using our in vitro model of SOD1 oligomerization, therefore, we screened 640 FDA-approved drugs for inhibiting the oligomerization of SOD1 proteins, and three effective classes of chemical compounds were identified. Those hit compounds will provide valuable information on the chemical structures for developing a novel drug candidate suppressing the abnormal oligomerization of mutant SOD1 and possibly curing the disease.
Collapse
Affiliation(s)
- Itsuki Anzai
- Laboratory for Mechanistic Chemistry of Biomolecules, Department of Chemistry, Keio University Yokohama, Japan
| | - Keisuke Toichi
- Laboratory for Mechanistic Chemistry of Biomolecules, Department of Chemistry, Keio University Yokohama, Japan
| | - Eiichi Tokuda
- Laboratory for Mechanistic Chemistry of Biomolecules, Department of Chemistry, Keio University Yokohama, Japan
| | - Atsushi Mukaiyama
- Research Center of Integrative Molecular Systems, Institute for Molecular ScienceOkazaki, Japan; Department of Functional Molecular Science, SOKENDAI (The Graduate University for Advanced Studies)Okazaki, Japan
| | - Shuji Akiyama
- Research Center of Integrative Molecular Systems, Institute for Molecular ScienceOkazaki, Japan; Department of Functional Molecular Science, SOKENDAI (The Graduate University for Advanced Studies)Okazaki, Japan
| | - Yoshiaki Furukawa
- Laboratory for Mechanistic Chemistry of Biomolecules, Department of Chemistry, Keio University Yokohama, Japan
| |
Collapse
|
45
|
Russo Krauss I, Ferraro G, Merlino A. Cisplatin-Protein Interactions: Unexpected Drug Binding to N-Terminal Amine and Lysine Side Chains. Inorg Chem 2016; 55:7814-6. [PMID: 27482735 DOI: 10.1021/acs.inorgchem.6b01234] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Literature studies carried out by mass spectrometry and X-ray crystallography have demonstrated that cisplatin is able to bind proteins mainly close to Met, His, and free Cys side chains. To identify possible alternative modes of cisplatin binding to proteins at the molecular level, here we have solved the high-resolution X-ray structure of the adduct formed in the reaction between the drug and the model protein thaumatin, which does not contain any His and free Cys residues and possesses just one buried Met. Our data reveal unexpected cisplatin binding sites on the protein surface that could have general significance: cisplatin fragments -[Pt(NH3)2Cl](+), -[Pt(NH3)Cl2], and -[Pt(NH3)2(OH2)](2+) bind to a protein N-terminus and close to Lys and Glu side chains.
Collapse
Affiliation(s)
- Irene Russo Krauss
- Department of Chemical Sciences, University of Naples Federico II , Via Cintia, I-80126 Naples, Italy
| | - Giarita Ferraro
- Department of Chemical Sciences, University of Naples Federico II , Via Cintia, I-80126 Naples, Italy
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II , Via Cintia, I-80126 Naples, Italy
| |
Collapse
|
46
|
Wright GSA, Antonyuk SV, Hasnain SS. A faulty interaction between SOD1 and hCCS in neurodegenerative disease. Sci Rep 2016; 6:27691. [PMID: 27282955 PMCID: PMC4901319 DOI: 10.1038/srep27691] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/19/2016] [Indexed: 01/12/2023] Open
Abstract
A proportion of Amyotrophic lateral sclerosis (ALS) cases result from impaired mutant superoxide dismutase-1 (SOD1) maturation. The copper chaperone for SOD1 (hCCS) forms a transient complex with SOD1 and catalyses the final stages of its maturation. We find that a neurodegenerative disease-associated hCCS mutation abrogates the interaction with SOD1 by inhibiting hCCS zinc binding. Analogously, SOD1 zinc loss has a detrimental effect on the formation, structure and disassociation of the hCCS-SOD1 heterodimer. This suggests that hCCS functionality is impaired by ALS mutations that reduce SOD1 zinc affinity. Furthermore, stabilization of wild-type SOD1 by chemical modification including cisplatination, inhibits complex formation. We hypothesize that drug molecules designed to stabilize ALS SOD1 mutants that also target the wild-type form will lead to characteristics common in SOD1 knock-outs. Our work demonstrates the applicability of chromatographic SAXS when studying biomolecules predisposed to aggregation or dissociation; attributes frequently reported for complexes involved in neurodegenerative disease.
Collapse
Affiliation(s)
- Gareth S. A. Wright
- Molecular Biophysics Group, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, UK
| | - Svetlana V. Antonyuk
- Molecular Biophysics Group, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, UK
| | - S. Samar Hasnain
- Molecular Biophysics Group, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, UK
| |
Collapse
|
47
|
|
48
|
Ferraro G, Massai L, Messori L, Merlino A. Cisplatin binding to human serum albumin: a structural study. Chem Commun (Camb) 2016; 51:9436-9. [PMID: 25873085 DOI: 10.1039/c5cc01751c] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The reaction between cisplatin and human serum albumin (HSA) was investigated by X-ray crystallography and crystal structures of the cisplatin/HSA adduct were eventually solved for the first time. Structural data unambiguously prove that cisplatin mainly binds to His105 and Met329 side chains; additional binding sites are detected at His288, Met298, and Met548 and at His535, His67 and His247.
Collapse
Affiliation(s)
- Giarita Ferraro
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy.
| | | | | | | |
Collapse
|
49
|
Ma R, Wang Y, Yan L, Ma L, Wang Z, Chan HC, Chiu SK, Chen X, Zhu G. Efficient co-delivery of a Pt(IV) prodrug and a p53 activator to enhance the anticancer activity of cisplatin. Chem Commun (Camb) 2016; 51:7859-62. [PMID: 25854514 DOI: 10.1039/c4cc09879j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A nanoplatform targeting DNA and p53 simultaneously is assembled. Layered double hydroxide nanoparticles are co-loaded with a Pt(IV) prodrug and a p53 activator. Once inside cells, cisplatin is released to attack genomic DNA and kill cancer cells; simultaneously, the p53 activator results in active p53, a key protein involved in the apoptotic pathways initiated by platinum drugs. The anticancer efficacy of cisplatin is significantly improved through this synergistic application.
Collapse
Affiliation(s)
- Rong Ma
- Department of Biology and Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Glutathione selectively modulates the binding of platinum drugs to human copper chaperone Cox17. Biochem J 2015; 472:217-23. [PMID: 26399480 DOI: 10.1042/bj20150634] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 09/22/2015] [Indexed: 12/31/2022]
Abstract
The copper chaperone Cox17 (cytochrome c oxidase copper chaperone) has been shown to facilitate the delivery of cisplatin to mitochondria, which contributes to the overall cytotoxicity of the drug [Zhao et al. (2014) Chem. Commun. 50: , 2667-2669]. Kinetic data indicate that Cox17 has reactivity similar to glutathione (GSH), the most abundant thiol-rich molecule in the cytoplasm. In the present study, we found that GSH significantly modulates the reaction of platinum complexes with Cox17. GSH enhances the reactivity of three anti-cancer drugs (cisplatin, carboplatin and oxaliplatin) to Cox17, but suppresses the reaction of transplatin. Surprisingly, the pre-formed cisplatin-GSH adducts are highly reactive to Cox17; over 90% platinum transfers from GSH to Cox17. On the other hand, transplatin-GSH adducts are inert to Cox17. These different effects are consistent with the drug activity of these platinum complexes. In addition, GSH attenuates the protein aggregation of Cox17 induced by platination. These results indicate that the platinum-protein interactions could be substantially influenced by the cellular environment.
Collapse
|