1
|
Chen W, Chen B, Li X, Xu G, Yang L, Wu J, Yu H. Non-canonical amino acids uncover the significant impact of Tyr671 on Taq DNA polymerase catalytic activity. FEBS J 2024; 291:2876-2896. [PMID: 38362811 DOI: 10.1111/febs.17091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/20/2023] [Accepted: 02/01/2024] [Indexed: 02/17/2024]
Abstract
Responsible for synthesizing the complementary strand of the DNA template, DNA polymerase is a crucial enzyme in DNA replication, recombination and repair. A highly conserved tyrosine (Tyr), located at the C-terminus of the O-helix in family A DNA polymerases, plays a critical role in enzyme activity and fidelity. Here, we combined the technology of genetic code extension to incorporate non-canonical amino acids and molecular dynamics (MD) simulations to uncover the mechanisms by which Tyr671 impacts substrate binding and conformation transitions in a DNA polymerase from Thermus aquaticus. Five non-canonical amino acids, namely l-3,4-dihydroxyphenylalanine (l-DOPA), p-aminophenylalanine (pAF), p-acetylphenylalanine (pAcF), p-cyanophenylalanine (pCNF) and p-nitrophenylalanine (pNTF), were individually incorporated at position 671. Strikingly, Y671pAF and Y671DOPA were active, but with lower activity compared to Y671F and wild-type. Y671pAF showed a higher fidelity than the Y671F, despite both possessing lower fidelity than the wild-type. Metadynamics and long-timescale MD simulations were carried out to probe the role of mutations in affecting protein structure, including open conformation, open-to-closed conformation transition, closed conformation, and closed-to-open conformation transition. The MD simulations clearly revealed that the size of the 671 amino acid residue and interactions with substrate or nearby residues were critical for Tyr671 to determine enzyme activity and fidelity.
Collapse
Affiliation(s)
- Wanyi Chen
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, China
| | - Binbin Chen
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, China
| | - Xinjia Li
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, China
| | - Gang Xu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Lirong Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, China
| | - Jianping Wu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, China
| | - Haoran Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, China
| |
Collapse
|
2
|
Fijen C, Drogalis Beckham L, Terino D, Li Y, Ramsden DA, Wood RD, Doublié S, Rothenberg E. Sequential requirements for distinct Polθ domains during theta-mediated end joining. Mol Cell 2024; 84:1460-1474.e6. [PMID: 38640894 PMCID: PMC11031631 DOI: 10.1016/j.molcel.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 01/10/2024] [Accepted: 03/12/2024] [Indexed: 04/21/2024]
Abstract
DNA polymerase θ (Polθ) plays a central role in a DNA double-strand break repair pathway termed theta-mediated end joining (TMEJ). TMEJ functions by pairing short-sequence "microhomologies" (MHs) in single-stranded DNA at each end of a break and subsequently initiating DNA synthesis. It is not known how the Polθ helicase domain (HD) and polymerase domain (PD) operate to bring together MHs and facilitate repair. To resolve these transient processes in real time, we utilized in vitro single-molecule FRET approaches and biochemical analyses. We find that the Polθ-HD mediates the initial capture of two ssDNA strands, bringing them in close proximity. The Polθ-PD binds and stabilizes pre-annealed MHs to form a synaptic complex (SC) and initiate repair synthesis. Individual synthesis reactions show that Polθ is inherently non-processive, accounting for complex mutational patterns during TMEJ. Binding of Polθ-PD to stem-loop-forming sequences can substantially limit synapsis, depending on the available dNTPs and sequence context.
Collapse
Affiliation(s)
- Carel Fijen
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA.
| | - Lea Drogalis Beckham
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Dante Terino
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yuzhen Li
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
| | - Dale A Ramsden
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Richard D Wood
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
3
|
Liu T, Khanal S, Hertslet GD, Lamichhane R. Single-molecule analysis reveals that a glucagon-bound extracellular domain of the glucagon receptor is dynamic. J Biol Chem 2023; 299:105160. [PMID: 37586587 PMCID: PMC10514447 DOI: 10.1016/j.jbc.2023.105160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023] Open
Abstract
Dynamic information is vital to understanding the activation mechanism of G protein-coupled receptors (GPCRs). Despite the availability of high-resolution structures of different conformational states, the dynamics of those states at the molecular level are poorly understood. Here, we used total internal reflection fluorescence microscopy to study the extracellular domain (ECD) of the glucagon receptor (GCGR), a class B family GPCR that controls glucose homeostasis. Single-molecule fluorescence resonance energy transfer was used to observe the ECD dynamics of GCGR molecules expressed and purified from mammalian cells. We observed that for apo-GCGR, the ECD is dynamic and spent time predominantly in a closed conformation. In the presence of glucagon, the ECD is wide open and also shows more dynamic behavior than apo-GCGR, a finding that was not previously reported. These results suggest that both apo-GCGR and glucagon-bound GCGRs show reversible opening and closing of the ECD with respect to the seven-transmembrane (7TM) domain. This work demonstrates a molecular approach to visualizing the dynamics of the GCGR ECD and provides a foundation for understanding the conformational changes underlying GPCR activation, which is critical in the development of new therapeutics.
Collapse
Affiliation(s)
- Ting Liu
- Department of Biochemistry & Cellular and Molecular Biology, College of Arts & Sciences, University of Tennessee, Knoxville, Tennessee, USA
| | - Susmita Khanal
- Department of Biochemistry & Cellular and Molecular Biology, College of Arts & Sciences, University of Tennessee, Knoxville, Tennessee, USA
| | - Gillian D Hertslet
- Department of Biochemistry & Cellular and Molecular Biology, College of Arts & Sciences, University of Tennessee, Knoxville, Tennessee, USA
| | - Rajan Lamichhane
- Department of Biochemistry & Cellular and Molecular Biology, College of Arts & Sciences, University of Tennessee, Knoxville, Tennessee, USA.
| |
Collapse
|
4
|
Park J, Herrmann GK, Mitchell PG, Sherman MB, Yin YW. Polγ coordinates DNA synthesis and proofreading to ensure mitochondrial genome integrity. Nat Struct Mol Biol 2023; 30:812-823. [PMID: 37202477 PMCID: PMC10920075 DOI: 10.1038/s41594-023-00980-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 03/28/2023] [Indexed: 05/20/2023]
Abstract
Accurate replication of mitochondrial DNA (mtDNA) by DNA polymerase γ (Polγ) is essential for maintaining cellular energy supplies, metabolism, and cell cycle control. To illustrate the structural mechanism for Polγ coordinating polymerase (pol) and exonuclease (exo) activities to ensure rapid and accurate DNA synthesis, we determined four cryo-EM structures of Polγ captured after accurate or erroneous incorporation to a resolution of 2.4-3.0 Å. The structures show that Polγ employs a dual-checkpoint mechanism to sense nucleotide misincorporation and initiate proofreading. The transition from replication to error editing is accompanied by increased dynamics in both DNA and enzyme, in which the polymerase relaxes its processivity and the primer-template DNA unwinds, rotates, and backtracks to shuttle the mismatch-containing primer terminus 32 Å to the exo site for editing. Our structural and functional studies also provide a foundation for analyses of Polγ mutation-induced human diseases and aging.
Collapse
Affiliation(s)
- Joon Park
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Geoffrey K Herrmann
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Patrick G Mitchell
- Division of CryoEM and Bioimaging, Stanford Synchrotron Radiation Lightsource, Stanford Linear Accelerator Center National Accelerator Laboratory, Stanford University, Menlo Park, CA, USA
| | - Michael B Sherman
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Y Whitney Yin
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
5
|
Hu X, Zhao J, Zhao Y, Zhang H, Wang Q, Ge B, Wang X, He H, Nau WM, Wang X, Huang F. Direct Observation and Real-Time Tracking of an Extraordinarily Stable Folding Intermediate in Mitotic Arrest Deficient Protein 2 Folding by Single-Molecule Fluorescence Resonance Energy Transfer. J Phys Chem Lett 2023; 14:763-769. [PMID: 36651986 DOI: 10.1021/acs.jpclett.2c03181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Although ensemble experiments have suggested that mitotic arrest deficient protein 2 (Mad2), a metamorphic protein, has folding intermediates, direct evidence and characterization are not available. It remains an outstanding challenge to capture the folding intermediates in real time, which is crucial to elucidate the folding mechanism, but the folding intermediates are normally unstable and only exist transiently. By combining confocal-microscopy-based and total internal reflection fluorescence (TIRF)-microscopy-based single-molecule Förster resonance energy transfer (sm-FRET) techniques, we have investigated the folding/unfolding process of Mad2 and captured its folding intermediate at the single-molecule level. This provides direct evidence for the existence of an intermediate along the folding pathway of Mad2. The folding intermediate proved to be extraordinarily stable, with an extremely long average dwell time of 2.3 s under the conditions of 3 M GdmCl at ambient temperature. The folding trajectories obtained from TIRF experiments further suggest that the intermediate is on-pathway to native Mad2.
Collapse
Affiliation(s)
- Xiang Hu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
- Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jincheng Zhao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
- Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yuanyuan Zhao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
- Department of Chronic and Non-communicable Disease Control and Prevention, Qingdao Center for Disease Control and Prevention, Qingdao 266033, China
| | - Huiting Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
- Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Qian Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
- Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiaoqiang Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
- Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Hua He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
- Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Werner M Nau
- School of Science, Constructor University, 28759 Bremen, Germany
| | - Xiaojuan Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
- Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
- Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
6
|
Turvey MW, Gabriel KN, Lee W, Taulbee JJ, Kim JK, Chen S, Lau CJ, Kattan RE, Pham JT, Majumdar S, Garcia D, Weiss GA, Collins PG. Single-molecule Taq DNA polymerase dynamics. SCIENCE ADVANCES 2022; 8:eabl3522. [PMID: 35275726 PMCID: PMC8916733 DOI: 10.1126/sciadv.abl3522] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Taq DNA polymerase functions at elevated temperatures with fast conformational dynamics-regimes previously inaccessible to mechanistic, single-molecule studies. Here, single-walled carbon nanotube transistors recorded the motions of Taq molecules processing matched or mismatched template-deoxynucleotide triphosphate pairs from 22° to 85°C. By using four enzyme orientations, the whole-enzyme closures of nucleotide incorporations were distinguished from more rapid, 20-μs closures of Taq's fingers domain testing complementarity and orientation. On average, one transient closure was observed for every nucleotide binding event; even complementary substrate pairs averaged five transient closures between each catalytic incorporation at 72°C. The rate and duration of the transient closures and the catalytic events had almost no temperature dependence, leaving all of Taq's temperature sensitivity to its rate-determining open state.
Collapse
Affiliation(s)
- Mackenzie W. Turvey
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697-4575, USA
| | - Kristin N. Gabriel
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697-3900, USA
| | - Wonbae Lee
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697-4575, USA
| | - Jeffrey J. Taulbee
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697-4575, USA
| | - Joshua K. Kim
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA
| | - Silu Chen
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA
| | - Calvin J. Lau
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697-4575, USA
| | - Rebecca E. Kattan
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697-3900, USA
| | - Jenifer T. Pham
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA
| | - Sudipta Majumdar
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA
| | | | - Gregory A. Weiss
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697-3900, USA
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697-3958, USA
| | - Philip G. Collins
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697-4575, USA
| |
Collapse
|
7
|
Wei S, Thakur N, Ray AP, Jin B, Obeng S, McCurdy CR, McMahon LR, Gutiérrez-de-Terán H, Eddy MT, Lamichhane R. Slow conformational dynamics of the human A 2A adenosine receptor are temporally ordered. Structure 2022; 30:329-337.e5. [PMID: 34895472 PMCID: PMC8897252 DOI: 10.1016/j.str.2021.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/26/2021] [Accepted: 11/17/2021] [Indexed: 01/12/2023]
Abstract
A more complete depiction of protein energy landscapes includes the identification of different function-related conformational states and the determination of the pathways connecting them. We used total internal reflection fluorescence (TIRF) imaging to investigate the conformational dynamics of the human A2A adenosine receptor (A2AAR), a class A G protein-coupled receptor (GPCR), at the single-molecule level. Slow, reversible conformational exchange was observed among three different fluorescence emission states populated for agonist-bound A2AAR. Transitions among these states predominantly occurred in a specific order, and exchange between inactive and active-like conformations proceeded through an intermediate state. Models derived from molecular dynamics simulations with available A2AAR structures rationalized the relative fluorescence emission intensities for the highest and lowest emission states but not the transition state. This suggests that the functionally critical intermediate state required to achieve activation is not currently visualized among available A2AAR structures.
Collapse
Affiliation(s)
- Shushu Wei
- Department of Biochemistry & Cellular and Molecular Biology, College of Arts and Sciences, University of Tennessee, 1311 Cumberland Avenue, Knoxville, TN 37932, USA
| | - Naveen Thakur
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | - Arka P Ray
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | - Beining Jin
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | - Samuel Obeng
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; Translational Drug Development Core, Clinical and Translational Sciences Institute, University of Florida, Gainesville, FL 32610, USA
| | - Lance R McMahon
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Hugo Gutiérrez-de-Terán
- Department of Cell and Molecular Biology, Uppsala University, B.M.C., Box 596, Uppsala 751 24, Sweden
| | - Matthew T Eddy
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA.
| | - Rajan Lamichhane
- Department of Biochemistry & Cellular and Molecular Biology, College of Arts and Sciences, University of Tennessee, 1311 Cumberland Avenue, Knoxville, TN 37932, USA.
| |
Collapse
|
8
|
Millar DP. Conformational Dynamics of DNA Polymerases Revealed at the Single-Molecule Level. Front Mol Biosci 2022; 9:826593. [PMID: 35281261 PMCID: PMC8913937 DOI: 10.3389/fmolb.2022.826593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/20/2022] [Indexed: 12/25/2022] Open
Abstract
DNA polymerases are intrinsically dynamic macromolecular machines. The purpose of this review is to describe the single-molecule Förster resonance energy transfer (smFRET) methods that are used to probe the conformational dynamics of DNA polymerases, focusing on E. coli DNA polymerase I. The studies reviewed here reveal the conformational dynamics underpinning the nucleotide selection, proofreading and 5′ nuclease activities of Pol I. Moreover, the mechanisms revealed for Pol I are likely employed across the DNA polymerase family. smFRET methods have also been used to examine other aspects of DNA polymerase activity.
Collapse
|
9
|
Evans GW, Craggs T, Kapanidis AN. The Rate-limiting Step of DNA Synthesis by DNA Polymerase Occurs in the Fingers-closed Conformation. J Mol Biol 2022; 434:167410. [PMID: 34929202 PMCID: PMC8783057 DOI: 10.1016/j.jmb.2021.167410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/22/2021] [Accepted: 12/12/2021] [Indexed: 12/03/2022]
Abstract
DNA polymerases maintain genomic integrity by copying DNA with high fidelity, part of which relies on the polymerase fingers opening-closing transition, a series of conformational changes during the DNA synthesis reaction cycle. Fingers opening and closing has been challenging to study, mainly due to the need to synchronise molecular ensembles. We previously studied fingers opening-closing on single polymerase-DNA complexes using single-molecule FRET; however, our work was limited to pre-chemistry reaction steps. Here, we advance our analysis to extensible substrates, and observe DNA polymerase (Pol) conformational changes across the entire DNA polymerisation reaction in real-time, gaining direct access to an elusive post-chemistry step rate-limiting for DNA synthesis. Our results showed that Pol adopts the fingers-closed conformation during polymerisation, and that the post-chemistry rate-limiting step occurs in the fingers-closed conformation. We found that fingers-opening in the Pol-DNA binary complex in the absence of polymerisation is slow (∼5.3 s-1), and comparable to the rate of fingers-opening after polymerisation (3.4 s-1); this indicates that the fingers-opening step itself could be largely responsible for the slow post-chemistry step, with the residual rate potentially accounted for by pyrophosphase release. We also observed that DNA chain-termination of the 3' end of the primer increases substantially the rate of fingers-opening in the Pol-DNA binary complex (5.3 → 29 s-1), demonstrating that the 3'-OH residue is important for the kinetics of fingers conformational changes. Our observations offer mechanistic insight and tools to offer mechanistic insight for all nucleic acid polymerases.
Collapse
Affiliation(s)
- Geraint W Evans
- Department of Physics and Biological Physics Research Group, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom. https://twitter.com/geraintwe
| | - Timothy Craggs
- Department of Physics and Biological Physics Research Group, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom; Sheffield Institute for Nucleic Acids, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, United Kingdom. https://twitter.com/Craggs_Lab
| | - Achillefs N Kapanidis
- Department of Physics and Biological Physics Research Group, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom.
| |
Collapse
|
10
|
Zhang S, Xiao X, Kong J, Lu K, Dou SX, Wang PY, Ma L, Liu Y, Li G, Li W, Zhang H. DNA polymerase Gp90 activities and regulations on strand displacement DNA synthesis revealed at single-molecule level. FASEB J 2021; 35:e21607. [PMID: 33908664 DOI: 10.1096/fj.202100033rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/18/2021] [Accepted: 04/05/2021] [Indexed: 11/11/2022]
Abstract
Strand displacement DNA synthesis (SDDS) is an essential step in DNA replication. With magnetic tweezers, we investigated SDDS kinetics of wild-type gp90 and its exonuclease-deficient polymerase gp90 exo- at single-molecule level. A novel binding state of gp90 to the fork flap was confirmed prior to SDDS, suggesting an intermediate in the initiation of SDDS. The rate and processivity of SDDS by gp90 exo- or wt-gp90 are increased with force and dNTP concentration. The rate and processivity of exonuclease by wt-gp90 are decreased with force. High GC content decreases SDDS and exonuclease processivity but increases exonuclease rate for wt-gp90. The high force and dNTP concentration and low GC content facilitate the successive SDDS but retard the successive exonuclease for wt-gp90. Furthermore, increasing GC content accelerates the transition from SDDS or exonuclease to exonuclease. This work reveals the kinetics of SDDS in detail and offers a broader cognition on the regulation of various factors on SDDS at single-polymerase level.
Collapse
Affiliation(s)
- Shuming Zhang
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, China.,National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Xue Xiao
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jingwei Kong
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ke Lu
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shuo-Xing Dou
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Peng-Ye Wang
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Songshan Lake Materials Laboratory, Dongguan, China
| | - Lu Ma
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Yuru Liu
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Centre for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.,Songshan Lake Materials Laboratory, Dongguan, China
| | - Huidong Zhang
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, China.,Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
11
|
Wilson H, Wang Q. ABEL-FRET: tether-free single-molecule FRET with hydrodynamic profiling. Nat Methods 2021; 18:816-820. [PMID: 34127856 DOI: 10.1038/s41592-021-01173-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 05/04/2021] [Indexed: 02/03/2023]
Abstract
Single-molecule Förster resonance energy transfer (smFRET) has become a versatile and widespread method to probe nanoscale conformation and dynamics. However, current experimental modalities often resort to molecule immobilization for long observation times and do not always approach the resolution limit of FRET-based nanoscale metrology. Here we present ABEL-FRET, an immobilization-free platform for smFRET measurements with ultrahigh resolving power in FRET efficiency. Importantly, single-molecule diffusivity is used to provide additional size and shape information for hydrodynamic profiling of individual molecules, which, together with the concurrently measured intramolecular conformation through FRET, enables a holistic and dynamic view of biomolecules and their complexes.
Collapse
Affiliation(s)
- Hugh Wilson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Quan Wang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
12
|
Chim N, Meza RA, Trinh AM, Yang K, Chaput JC. Following replicative DNA synthesis by time-resolved X-ray crystallography. Nat Commun 2021; 12:2641. [PMID: 33976175 PMCID: PMC8113479 DOI: 10.1038/s41467-021-22937-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 04/06/2021] [Indexed: 11/09/2022] Open
Abstract
The mechanism of DNA synthesis has been inferred from static structures, but the absence of temporal information raises longstanding questions about the order of events in one of life's most central processes. Here we follow the reaction pathway of a replicative DNA polymerase using time-resolved X-ray crystallography to elucidate the order and transition between intermediates. In contrast to the canonical model, the structural changes observed in the time-lapsed images reveal a catalytic cycle in which translocation precedes catalysis. The translocation step appears to follow a push-pull mechanism where the O-O1 loop of the finger subdomain acts as a pawl to facilitate unidirectional movement along the template with conserved tyrosine residues 714 and 719 functioning as tandem gatekeepers of DNA synthesis. The structures capture the precise order of critical events that may be a general feature of enzymatic catalysis among replicative DNA polymerases.
Collapse
Affiliation(s)
- Nicholas Chim
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Roman A Meza
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Anh M Trinh
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Kefan Yang
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, USA
| | - John C Chaput
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA. .,Department of Chemistry, University of California, Irvine, CA, USA. .,Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA. .,Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, USA.
| |
Collapse
|
13
|
Bocanegra R, Ismael Plaza GA, Pulido CR, Ibarra B. DNA replication machinery: Insights from in vitro single-molecule approaches. Comput Struct Biotechnol J 2021; 19:2057-2069. [PMID: 33995902 PMCID: PMC8085672 DOI: 10.1016/j.csbj.2021.04.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/03/2021] [Accepted: 04/03/2021] [Indexed: 11/16/2022] Open
Abstract
The replisome is the multiprotein molecular machinery that replicates DNA. The replisome components work in precise coordination to unwind the double helix of the DNA and replicate the two strands simultaneously. The study of DNA replication using in vitro single-molecule approaches provides a novel quantitative understanding of the dynamics and mechanical principles that govern the operation of the replisome and its components. ‘Classical’ ensemble-averaging methods cannot obtain this information. Here we describe the main findings obtained with in vitro single-molecule methods on the performance of individual replisome components and reconstituted prokaryotic and eukaryotic replisomes. The emerging picture from these studies is that of stochastic, versatile and highly dynamic replisome machinery in which transient protein-protein and protein-DNA associations are responsible for robust DNA replication.
Collapse
Affiliation(s)
- Rebeca Bocanegra
- IMDEA Nanociencia, Faraday 9, Campus Cantoblanco, 28049 Madrid, Spain
| | - G A Ismael Plaza
- IMDEA Nanociencia, Faraday 9, Campus Cantoblanco, 28049 Madrid, Spain
| | - Carlos R Pulido
- IMDEA Nanociencia, Faraday 9, Campus Cantoblanco, 28049 Madrid, Spain
| | - Borja Ibarra
- IMDEA Nanociencia, Faraday 9, Campus Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
14
|
Deng Y, Hammond JA, Pauszek R, Ozog S, Chai I, Rabuck-Gibbons J, Lamichhane R, Henderson SC, Millar DP, Torbett BE, Williamson JR. Discrimination between Functional and Non-functional Cellular Gag Complexes involved in HIV-1 Assembly. J Mol Biol 2021; 433:166842. [PMID: 33539875 DOI: 10.1016/j.jmb.2021.166842] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023]
Abstract
HIV-1 Gag and Gag-Pol are responsible for viral assembly and maturation and represent a major paradigm for enveloped virus assembly. Numerous intracellular Gag-containing complexes (GCCs) have been identified in cellular lysates using sucrose gradient ultracentrifugation. While these complexes are universally present in Gag-expressing cells, their roles in virus assembly are not well understood. Here we demonstrate that most GCC species are predominantly comprised of monomeric or dimeric Gag molecules bound to ribosomal complexes, and as such, are not on-pathway intermediates in HIV assembly. Rather, these GCCs represent a population of Gag that is not yet functionally committed for incorporation into a viable virion precursor. We hypothesize that these complexes act as a reservoir of monomeric Gag that can incorporate into assembling viruses, and serve to mitigate non-specific intracellular Gag oligomerization. We have identified a subset of large GCC complexes, comprising more than 20 Gag molecules, that may be equivalent to membrane-associated puncta previously shown to be bona fide assembling-virus intermediates. This work provides a clear rationale for the existence of diverse GCCs, and serves as the foundation for characterizing on-pathway intermediates early in virus assembly.
Collapse
Affiliation(s)
- Yisong Deng
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - John A Hammond
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Raymond Pauszek
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Stosh Ozog
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Ilean Chai
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Jessica Rabuck-Gibbons
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Rajan Lamichhane
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Scott C Henderson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - David P Millar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Bruce E Torbett
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - James R Williamson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States; Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, United States; The Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, United States.
| |
Collapse
|
15
|
Pauszek RF, Lamichhane R, Rajkarnikar Singh A, Millar DP. Single-molecule view of coordination in a multi-functional DNA polymerase. eLife 2021; 10:e62046. [PMID: 33704066 PMCID: PMC7952088 DOI: 10.7554/elife.62046] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/28/2020] [Indexed: 01/01/2023] Open
Abstract
Replication and repair of genomic DNA requires the actions of multiple enzymatic functions that must be coordinated in order to ensure efficient and accurate product formation. Here, we have used single-molecule FRET microscopy to investigate the physical basis of functional coordination in DNA polymerase I (Pol I) from Escherichia coli, a key enzyme involved in lagging-strand replication and base excision repair. Pol I contains active sites for template-directed DNA polymerization and 5' flap processing in separate domains. We show that a DNA substrate can spontaneously transfer between polymerase and 5' nuclease domains during a single encounter with Pol I. Additionally, we show that the flexibly tethered 5' nuclease domain adopts different positions within Pol I-DNA complexes, depending on the nature of the DNA substrate. Our results reveal the structural dynamics that underlie functional coordination in Pol I and are likely relevant to other multi-functional DNA polymerases.
Collapse
Affiliation(s)
- Raymond F Pauszek
- Department of Integrative Structural and Computational Biology, The Scripps Research InstituteLa JollaUnited States
| | - Rajan Lamichhane
- Department of Integrative Structural and Computational Biology, The Scripps Research InstituteLa JollaUnited States
| | - Arishma Rajkarnikar Singh
- Department of Integrative Structural and Computational Biology, The Scripps Research InstituteLa JollaUnited States
| | - David P Millar
- Department of Integrative Structural and Computational Biology, The Scripps Research InstituteLa JollaUnited States
| |
Collapse
|
16
|
Abstract
DNA polymerases play a central role in biology by transferring genetic information from one generation to the next during cell division. Harnessing the power of these enzymes in the laboratory has fueled an increase in biomedical applications that involve the synthesis, amplification, and sequencing of DNA. However, the high substrate specificity exhibited by most naturally occurring DNA polymerases often precludes their use in practical applications that require modified substrates. Moving beyond natural genetic polymers requires sophisticated enzyme-engineering technologies that can be used to direct the evolution of engineered polymerases that function with tailor-made activities. Such efforts are expected to uniquely drive emerging applications in synthetic biology by enabling the synthesis, replication, and evolution of synthetic genetic polymers with new physicochemical properties.
Collapse
|
17
|
Fijen C, Mahmoud MM, Kronenberg M, Kaup R, Fontana M, Towle-Weicksel JB, Sweasy JB, Hohlbein J. Using single-molecule FRET to probe the nucleotide-dependent conformational landscape of polymerase β-DNA complexes. J Biol Chem 2020; 295:9012-9020. [PMID: 32385112 PMCID: PMC7335799 DOI: 10.1074/jbc.ra120.013049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/07/2020] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic DNA polymerase β (Pol β) plays an important role in cellular DNA repair, as it fills short gaps in dsDNA that result from removal of damaged bases. Since defects in DNA repair may lead to cancer and genetic instabilities, Pol β has been extensively studied, especially its mechanisms for substrate binding and a fidelity-related conformational change referred to as "fingers closing." Here, we applied single-molecule FRET to measure distance changes associated with DNA binding and prechemistry fingers movement of human Pol β. First, using a doubly labeled DNA construct, we show that Pol β bends the gapped DNA substrate less than indicated by previously reported crystal structures. Second, using acceptor-labeled Pol β and donor-labeled DNA, we visualized dynamic fingers closing in single Pol β-DNA complexes upon addition of complementary nucleotides and derived rates of conformational changes. We further found that, while incorrect nucleotides are quickly rejected, they nonetheless stabilize the polymerase-DNA complex, suggesting that Pol β, when bound to a lesion, has a strong commitment to nucleotide incorporation and thus repair. In summary, the observation and quantification of fingers movement in human Pol β reported here provide new insights into the delicate mechanisms of prechemistry nucleotide selection.
Collapse
Affiliation(s)
- Carel Fijen
- Laboratory of Biophysics, Wageningen University & Research, Wageningen, The Netherlands; Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut, USA.
| | - Mariam M Mahmoud
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Meike Kronenberg
- Laboratory of Biophysics, Wageningen University & Research, Wageningen, The Netherlands
| | - Rebecca Kaup
- Laboratory of Biophysics, Wageningen University & Research, Wageningen, The Netherlands
| | - Mattia Fontana
- Laboratory of Biophysics, Wageningen University & Research, Wageningen, The Netherlands
| | - Jamie B Towle-Weicksel
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Joann B Sweasy
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Johannes Hohlbein
- Laboratory of Biophysics, Wageningen University & Research, Wageningen, The Netherlands; Microspectroscopy Research Facility, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
18
|
Marx A, Betz K. The Structural Basis for Processing of Unnatural Base Pairs by DNA Polymerases. Chemistry 2020; 26:3446-3463. [PMID: 31544987 PMCID: PMC7155079 DOI: 10.1002/chem.201903525] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/17/2019] [Indexed: 12/16/2022]
Abstract
Unnatural base pairs (UBPs) greatly increase the diversity of DNA and RNA, furthering their broad range of molecular biological and biotechnological approaches. Different candidates have been developed whereby alternative hydrogen-bonding patterns and hydrophobic and packing interactions have turned out to be the most promising base-pairing concepts to date. The key in many applications is the highly efficient and selective acceptance of artificial base pairs by DNA polymerases, which enables amplification of the modified DNA. In this Review, computational as well as experimental studies that were performed to characterize the pairing behavior of UBPs in free duplex DNA or bound to the active site of KlenTaq DNA polymerase are highlighted. The structural studies, on the one hand, elucidate how base pairs lacking hydrogen bonds are accepted by these enzymes and, on the other hand, highlight the influence of one or several consecutive UBPs on the structure of a DNA double helix. Understanding these concepts facilitates optimization of future UBPs for the manifold fields of applications.
Collapse
Affiliation(s)
- Andreas Marx
- Department of ChemistryKonstanz Research School Chemical BiologyUniversity of KonstanzUniversitätsstrasse 1078464KonstanzGermany
| | - Karin Betz
- Department of ChemistryKonstanz Research School Chemical BiologyUniversity of KonstanzUniversitätsstrasse 1078464KonstanzGermany
| |
Collapse
|
19
|
Singh A, Pandey M, Nandakumar D, Raney KD, Yin YW, Patel SS. Excessive excision of correct nucleotides during DNA synthesis explained by replication hurdles. EMBO J 2020; 39:e103367. [PMID: 32037587 PMCID: PMC7073461 DOI: 10.15252/embj.2019103367] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/23/2019] [Accepted: 01/07/2020] [Indexed: 11/25/2022] Open
Abstract
The proofreading exonuclease activity of replicative DNA polymerase excises misincorporated nucleotides during DNA synthesis, but these events are rare. Therefore, we were surprised to find that T7 replisome excised nearly 7% of correctly incorporated nucleotides during leading and lagging strand syntheses. Similar observations with two other DNA polymerases establish its generality. We show that excessive excision of correctly incorporated nucleotides is not due to events such as processive degradation of nascent DNA or spontaneous partitioning of primer‐end to the exonuclease site as a “cost of proofreading”. Instead, we show that replication hurdles, including secondary structures in template, slowed helicase, or uncoupled helicase–polymerase, increase DNA reannealing and polymerase backtracking, and generate frayed primer‐ends that are shuttled to the exonuclease site and excised efficiently. Our studies indicate that active‐site shuttling occurs at a high frequency, and we propose that it serves as a proofreading mechanism to protect primer‐ends from mutagenic extensions.
Collapse
Affiliation(s)
- Anupam Singh
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Manjula Pandey
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Divya Nandakumar
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Kevin D Raney
- Department of Biochemistry and Molecular Biology, The University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Y Whitney Yin
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Smita S Patel
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
20
|
Lamichhane R, Liu JJ, White KL, Katritch V, Stevens RC, Wüthrich K, Millar DP. Biased Signaling of the G-Protein-Coupled Receptor β 2AR Is Governed by Conformational Exchange Kinetics. Structure 2020; 28:371-377.e3. [PMID: 31978323 DOI: 10.1016/j.str.2020.01.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/11/2019] [Accepted: 01/03/2020] [Indexed: 01/14/2023]
Abstract
G-protein-coupled receptors (GPCRs) mediate a wide range of human physiological functions by transducing extracellular ligand binding events into intracellular responses. GPCRs can activate parallel, independent signaling pathways mediated by G proteins or β-arrestins. Whereas "balanced" agonists activate both pathways equally, "biased" agonists dominantly activate one pathway, which is of interest for designing GPCR-targeting drugs because it may mitigate undesirable side effects. Previous studies demonstrated that β-arrestin activation is associated with transmembrane helix VII (TM VII) of GPCRs. Here, single-molecule fluorescence spectroscopy with the β2-adrenergic receptor (β2AR) in the ligand-free state showed that TM VII spontaneously fluctuates between one inactive and one active-like conformation. The presence of the β-arrestin-biased agonist isoetharine prolongs the dwell time of TM VII in the active-like conformation compared with the balanced agonist formoterol, suggesting that ligands can induce signaling bias by modulating the kinetics of receptor conformational exchange.
Collapse
Affiliation(s)
- Rajan Lamichhane
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jeffrey J Liu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Kate L White
- Departments of Biological Sciences and Chemistry, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Childs Way, MC3502, Los Angeles, CA 90089, USA
| | - Vsevolod Katritch
- Departments of Biological Sciences and Chemistry, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Childs Way, MC3502, Los Angeles, CA 90089, USA
| | - Raymond C Stevens
- Departments of Biological Sciences and Chemistry, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Childs Way, MC3502, Los Angeles, CA 90089, USA
| | - Kurt Wüthrich
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - David P Millar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
21
|
Stern HR, Sefcikova J, Chaparro VE, Beuning PJ. Mammalian DNA Polymerase Kappa Activity and Specificity. Molecules 2019; 24:E2805. [PMID: 31374881 PMCID: PMC6695781 DOI: 10.3390/molecules24152805] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/27/2019] [Accepted: 07/30/2019] [Indexed: 12/31/2022] Open
Abstract
DNA polymerase (pol) kappa is a Y-family translesion DNA polymerase conserved throughout all domains of life. Pol kappa is special6 ized for the ability to copy DNA containing minor groove DNA adducts, especially N2-dG adducts, as well as to extend primer termini containing DNA damage or mismatched base pairs. Pol kappa generally cannot copy DNA containing major groove modifications or UV-induced photoproducts. Pol kappa can also copy structured or non-B-form DNA, such as microsatellite DNA, common fragile sites, and DNA containing G quadruplexes. Thus, pol kappa has roles both in maintaining and compromising genomic integrity. The expression of pol kappa is altered in several different cancer types, which can lead to genome instability. In addition, many cancer-associated single-nucleotide polymorphisms have been reported in the POLK gene, some of which are associated with poor survival and altered chemotherapy response. Because of this, identifying inhibitors of pol kappa is an active area of research. This review will address these activities of pol kappa, with a focus on lesion bypass and cellular mutagenesis.
Collapse
Affiliation(s)
- Hannah R Stern
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Jana Sefcikova
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Victoria E Chaparro
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Penny J Beuning
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
22
|
Yang M, Peng S, Sun R, Lin J, Wang N, Chen C. The Conformational Dynamics of Cas9 Governing DNA Cleavage Are Revealed by Single-Molecule FRET. Cell Rep 2019; 22:372-382. [PMID: 29320734 DOI: 10.1016/j.celrep.2017.12.048] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 10/28/2017] [Accepted: 12/14/2017] [Indexed: 12/27/2022] Open
Abstract
Off-target binding and cleavage by Cas9 pose major challenges in its application. How the conformational dynamics of Cas9 govern its nuclease activity under on- and off-target conditions remains largely unknown. Here, using intra-molecular single-molecule fluorescence resonance energy transfer measurements, we revealed that Cas9 in apo, sgRNA-bound, and dsDNA/sgRNA-bound forms spontaneously transits among three major conformational states, mainly reflecting significant conformational mobility of the catalytic HNH domain. We also uncovered surprising long-range allosteric communication between the HNH domain and the RNA/DNA heteroduplex at the PAM-distal end to ensure correct positioning of the catalytic site, which demonstrated that a unique proofreading mechanism served as the last checkpoint before DNA cleavage. Several Cas9 residues were likely to mediate the allosteric communication and proofreading step. Modulating interactions between Cas9 and heteroduplex at the PAM-distal end by introducing mutations on these sites provides an alternative route to improve and optimize the CRISPR/Cas9 toolbox.
Collapse
Affiliation(s)
- Mengyi Yang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China; Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
| | - Sijia Peng
- School of Life Sciences, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China; Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
| | - Ruirui Sun
- School of Life Sciences, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China; Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
| | - Jingdi Lin
- School of Life Sciences, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China; Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
| | - Nan Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China; Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
| | - Chunlai Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China; Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
23
|
Sowers ML, Anderson APP, Wrabl JO, Yin YW. Networked Communication between Polymerase and Exonuclease Active Sites in Human Mitochondrial DNA Polymerase. J Am Chem Soc 2019; 141:10821-10829. [PMID: 31251605 PMCID: PMC7119269 DOI: 10.1021/jacs.9b04655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
High fidelity human mitochondrial DNA polymerase (Pol γ) contains two active sites, a DNA polymerization site (pol) and a 3'-5' exonuclease site (exo) for proofreading. Although separated by 35 Å, coordination between the pol and exo sites is crucial to high fidelity replication. The biophysical mechanisms for this coordination are not completely understood. To understand the communication between the two active sites, we used a statistical-mechanical model of the protein ensemble to calculate the energetic landscape and local stability. We compared a series of structures of Pol γ, complexed with primer/template DNA, and either a nucleotide substrate or a series of nucleotide analogues, which are differentially incorporated and excised by pol and exo activity. Despite the nucleotide or its analogues being bound in the pol, Pol γ residue stability varied across the protein, particularly in the exo domain. This suggests that substrate presence in the pol can be "sensed" in the exo domain. Consistent with this hypothesis, in silico mutations made in one active site mutually perturbed the energetics of the other. To identify specific regions of the polymerase that contributed to this communication, we constructed an allosteric network connectivity map that further demonstrates specific pol-exo cooperativity. Thus, a cooperative network underlies energetic connectivity. We propose that Pol γ and other dual-function polymerases exploit an energetic coupling network that facilitates domain-domain communication to enhance discrimination between correct and incorrect nucleotides.
Collapse
Affiliation(s)
- Mark L. Sowers
- MD-PhD Combined Degree Program, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Andrew P. P. Anderson
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Program of Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, Texas 71115, United States
| | - James O. Wrabl
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Y. Whitney Yin
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Program of Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, Texas 71115, United States
| |
Collapse
|
24
|
Döring J, Hurek T. Dual coding potential of a 2',5'-branched ribonucleotide in DNA. RNA (NEW YORK, N.Y.) 2019; 25:105-120. [PMID: 30361268 PMCID: PMC6298571 DOI: 10.1261/rna.068486.118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/15/2018] [Indexed: 06/08/2023]
Abstract
Branchpoints in RNA templates are highly mutagenic, but it is not known yet whether this also applies to branchpoints in DNA templates. Here, we report how nucleic acid polymerases replicate a 2',5'-branched DNA (bDNA) molecule. We constructed long-chained bDNA templates containing a branch guanosine and T7 promoters at both arms by splinted ligation. Quantitative real-time PCR analysis was used to investigate whether a branchpoint blocks DNA synthesis from the two arms in the same manner. We find that the blocking effect of a branchpoint is arm-specific. DNA synthesis from the 2'-arm is more than 20,000-fold decreased, whereas from the 3'-arm only 15-fold. Our sequence analysis of full-length nucleic acid generated by Taq DNA polymerase, Moloney murine leukemia virus reverse transcriptase, and T7 RNA polymerase from the 2'-arm of bDNA shows that the branched guanine has a dual coding potential and can base-pair with cytosine and guanine. We find that branchpoint templating is influenced by the type of the surrounding nucleic acid and is probably modulated by polymerase and RNase H active sites. We show that the branchpoint bypass by the polymerases from the 3'-arm of bDNA is predominantly error-free, indicating that bDNA is not as highly mutagenic as 2',5'-branched RNA.
Collapse
Affiliation(s)
- Jessica Döring
- Department of Microbe-Plant Interactions, CBIB (Center for Biomolecular Interactions Bremen), University of Bremen, D-28334 Bremen, Germany
| | - Thomas Hurek
- Department of Microbe-Plant Interactions, CBIB (Center for Biomolecular Interactions Bremen), University of Bremen, D-28334 Bremen, Germany
| |
Collapse
|
25
|
Wickersham CE, Lipman EA. Tracking DNA Synthesis with Single-Molecule Strand Displacement. J Phys Chem B 2018; 122:11546-11553. [PMID: 30284831 DOI: 10.1021/acs.jpcb.8b07440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have previously shown that double-stranded DNA labeled with a periodic series of fluorescent dyes can be used to track a single helicase. Here we demonstrate how this technique can be adapted to follow processive DNA synthesis. By monitoring strand displacement, we track the motion of a single ϕ29 DNA polymerase without labeling or altering the enzyme or the template strand, and without applying any force. We observe a wide range of speeds, with the highest exceeding by several times those observed in earlier in vitro single-molecule experiments. Because this method enables repeated observations of the same polymerase traversing identical segments of DNA, it should prove useful for determining the effects of sequence on DNA replication and transcription. In addition, future measurements of this type may allow us to examine in detail the interactions of individual DNA polymerases with other components of the replisome.
Collapse
|
26
|
Christian TV, Konigsberg WH. Single-molecule FRET reveals proofreading complexes in the large fragment of Bacillus stearothermophilus DNA polymerase I. AIMS BIOPHYSICS 2018; 5:144-154. [PMID: 29888335 PMCID: PMC5990039 DOI: 10.3934/biophy.2018.2.144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There is increasing interest in the use of DNA polymerases (DNA pols) in next-generation sequencing strategies. These methodologies typically rely on members of the A and B family of DNA polymerases that are classified as high-fidelity DNA polymerases. These enzymes possess the ability to selectively incorporate the correct nucleotide opposite a templating base with an error frequency of only 1 in 106 insertion events. How they achieve this remarkable fidelity has been the subject of numerous investigations, yet the mechanism by which these enzymes achieve this level of accuracy remains elusive. Several smFRET assays were designed to monitor the conformational changes associated with the nucleotide selection mechanism(s) employed by DNA pols. smFRET has also been used to monitor the movement of DNA pols along a DNA substrate as well as to observe the formation of proof-reading complexes. One member among this class of enzymes, the large fragment of Bacillus stearothermophilus DNA polymerase I (Bst pol I LF), contains both 5'→3' polymerase and 3'→5' exonuclease domains, but reportedly lacks exonuclease activity. We have designed a smFRET assay showing that Bst pol I LF forms proofreading complexes. The formation of proofreading complexes at the single molecule level is strongly influenced by the presence of the 3' hydroxyl at the primer-terminus of the DNA substrate. Our assays also identify an additional state, observed in the presence of a mismatched primer-template terminus, that may be involved in the transfer of the primer-terminus from the polymerase to the exonuclease active site.
Collapse
Affiliation(s)
- Thomas V Christian
- Konigsberg Laboratory, Yale University, 333 Cedar Street, New Haven, CT 06520, USA
| | - William H Konigsberg
- Konigsberg Laboratory, Yale University, 333 Cedar Street, New Haven, CT 06520, USA
| |
Collapse
|
27
|
Hammond JA, Zhou L, Lamichhane R, Chu HY, Millar DP, Gerace L, Williamson JR. A Survey of DDX21 Activity During Rev/RRE Complex Formation. J Mol Biol 2018; 430:537-553. [PMID: 28705764 PMCID: PMC5762417 DOI: 10.1016/j.jmb.2017.06.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 01/17/2023]
Abstract
HIV-1 requires a specialized nuclear export pathway to transport unspliced and partially spliced viral transcripts to the cytoplasm. Central to this pathway is the viral protein Rev, which binds to the Rev response element in stem IIB located on unspliced viral transcripts and subsequently oligomerizes in a cooperative manner. Previous work identified a number of cellular DEAD-box helicases as in vivo binding partners of Rev, and siRNA experiments indicated a functional role for many in the HIV replication cycle. Two DEAD-box proteins, DDX1 and DDX3, had previously been shown to play a role in HIV pathogenesis. In this study, another protein identified in that screen, DDX21, is tested for protein and RNA binding and subsequent enzymatic activities in the context of the Rev/RRE pathway. We found that DDX21 can bind to the RRE with high affinity, and this binding stimulates ATPase activity with an enzymatic efficiency similar to DDX1. Furthermore, DDX21 is both an ATP-dependent and ATP-independent helicase, and both ATPase and ATP-dependent helicase activities are inhibited by Rev in a dose-dependent manner, although ATP-independent helicase activity is not. A conserved binding interaction between DDX protein's DEAD domain and Rev was identified, with Rev's nuclear diffusion inhibitory signal motif playing a significant role in binding. Finally, DDX21 was shown to enhance Rev binding to the RRE in a manner similar to that previously described for DDX1, although DDX3 does not. These data indicate that DDX1 and DDX21 have similar biochemical activities with regard to the Rev/RRE system, while DDX3 differs.
Collapse
Affiliation(s)
- John A Hammond
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Li Zhou
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rajan Lamichhane
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hui-Yi Chu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - David P Millar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Larry Gerace
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James R Williamson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
28
|
Teng FY, Hou XM, Fan SH, Rety S, Dou SX, Xi XG. Escherichia coli DNA polymerase I can disrupt G-quadruplex structures during DNA replication. FEBS J 2017; 284:4051-4065. [PMID: 28986969 DOI: 10.1111/febs.14290] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/24/2017] [Accepted: 10/03/2017] [Indexed: 12/14/2022]
Abstract
Non-canonical four-stranded G-quadruplex (G4) DNA structures can form in G-rich sequences that are widely distributed throughout the genome. The presence of G4 structures can impair DNA replication by hindering the progress of replicative polymerases (Pols), and failure to resolve these structures can lead to genetic instability. In the present study, we combined different approaches to address the question of whether and how Escherichia coli Pol I resolves G4 obstacles during DNA replication and/or repair. We found that E. coli Pol I-catalyzed DNA synthesis could be arrested by G4 structures at low protein concentrations and the degree of inhibition was strongly dependent on the stability of the G4 structures. Interestingly, at high protein concentrations, E. coli Pol I was able to overcome some kinds of G4 obstacles without the involvement of other molecules and could achieve complete replication of G4 DNA. Mechanistic studies suggested that multiple Pol I proteins might be implicated in G4 unfolding, and the disruption of G4 structures requires energy derived from dNTP hydrolysis. The present work not only reveals an unrealized function of E. coli Pol I, but also presents a possible mechanism by which G4 structures can be resolved during DNA replication and/or repair in E. coli.
Collapse
Affiliation(s)
- Fang-Yuan Teng
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xi-Miao Hou
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - San-Hong Fan
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Stephane Rety
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, LBMC, Lyon, France
| | - Shuo-Xing Dou
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xu-Guang Xi
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.,LBPA, Ecole normale supérieure Paris-Saclay, CNRS, Université Paris Saclay, Cachan, France
| |
Collapse
|
29
|
Recent progress in dissecting molecular recognition by DNA polymerases with non-native substrates. Curr Opin Chem Biol 2017; 41:43-49. [PMID: 29096323 DOI: 10.1016/j.cbpa.2017.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/05/2017] [Indexed: 11/22/2022]
Abstract
DNA polymerases must discriminate the correct Watson-Crick base pair-forming deoxynucleoside triphosphate (dNTP) substrate from three other dNTPs and additional triphosphates found in the cell. The rarity of misincorporations in vivo, then, belies the high tolerance for dNTP analogs observed in vitro. Advances over the last 10 years in single-molecule fluorescence and electronic detection of dNTP analog incorporation enable exploration of the mechanism and limits to base discrimination by DNA polymerases. Such studies reveal transient motions of DNA polymerase during substrate recognition and mutagenesis in the context of erroneous dNTP incorporation that can lead to evolution and genetic disease. Further improvements in time resolution and noise reduction of single-molecule studies will uncover deeper mechanistic understanding of this critical, first step in evolution.
Collapse
|
30
|
Park J, Jergic S, Jeon Y, Cho WK, Lee R, Dixon NE, Lee JB. Dynamics of Proofreading by the E. coli Pol III Replicase. Cell Chem Biol 2017; 25:57-66.e4. [PMID: 29104063 DOI: 10.1016/j.chembiol.2017.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 08/09/2017] [Accepted: 09/27/2017] [Indexed: 02/05/2023]
Abstract
The αɛθ core of Escherichia coli DNA polymerase III (Pol III) associates with the β2 sliding clamp to processively synthesize DNA and remove misincorporated nucleotides. The α subunit is the polymerase while ɛ is the 3' to 5' proofreading exonuclease. In contrast to the polymerase activity of Pol III, dynamic features of proofreading are poorly understood. We used single-molecule assays to determine the excision rate and processivity of the β2-associated Pol III core, and observed that both properties are enhanced by mutational strengthening of the interaction between ɛ and β2. Thus, the ɛ-β2 contact is maintained in both the synthesis and proofreading modes. Remarkably, single-molecule real-time fluorescence imaging revealed the dynamics of transfer of primer-template DNA between the polymerase and proofreading sites, showing that it does not involve breaking of the physical interaction between ɛ and β2.
Collapse
Affiliation(s)
- Jonghyun Park
- Department of Physics, Pohang University of Science & Technology (POSTECH), Pohang 37673, Korea
| | - Slobodan Jergic
- Centre for Medical and Molecular Bioscience, University of Wollongong & Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Yongmoon Jeon
- Department of Physics, Pohang University of Science & Technology (POSTECH), Pohang 37673, Korea
| | - Won-Ki Cho
- Department of Physics, Pohang University of Science & Technology (POSTECH), Pohang 37673, Korea
| | - Ryanggeun Lee
- Department of Physics, Pohang University of Science & Technology (POSTECH), Pohang 37673, Korea
| | - Nicholas E Dixon
- Centre for Medical and Molecular Bioscience, University of Wollongong & Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
| | - Jong-Bong Lee
- Department of Physics, Pohang University of Science & Technology (POSTECH), Pohang 37673, Korea; School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang 37673, Korea.
| |
Collapse
|
31
|
Lamichhane R, Hammond JA, Pauszek RF, Anderson RM, Pedron I, van der Schans E, Williamson JR, Millar DP. A DEAD-box protein acts through RNA to promote HIV-1 Rev-RRE assembly. Nucleic Acids Res 2017; 45:4632-4641. [PMID: 28379444 PMCID: PMC5416872 DOI: 10.1093/nar/gkx206] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/28/2017] [Indexed: 12/22/2022] Open
Abstract
The HIV-1 Rev protein activates nuclear export of unspliced and partially spliced viral RNA transcripts, which encode the viral genome and the genes encoding viral structural proteins, by binding to and oligomerizing on the Rev Response Element (RRE). The human DEAD-box protein 1 (DDX1) enhances the RNA export activity of Rev through an unknown mechanism. Using a single-molecule assembly assay and various DDX1 mutants, we show that DDX1 acts through the RRE RNA to specifically accelerate the nucleation step of the Rev-RRE assembly process. Single-molecule Förster resonance energy transfer (smFRET) experiments using donor-labeled Rev and acceptor-labeled DDX1 show that both proteins can associate with a single RRE molecule. However, simultaneous interaction is only observed in a subset of binding events and does not explain the extent to which DDX1 promotes the nucleation step of Rev-RRE assembly. Together, these results are consistent with a model wherein DDX1 acts as an RNA chaperone, remodeling the RRE into a conformation that is pre-organized to bind the first Rev monomer, thereby promoting the overall Rev-RRE assembly process.
Collapse
Affiliation(s)
- Rajan Lamichhane
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John A Hammond
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Raymond F Pauszek
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rae M Anderson
- Department of Physics, University of San Diego, San Diego, CA 92110, USA
| | - Ingemar Pedron
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Edwin van der Schans
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James R Williamson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - David P Millar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
32
|
Hammond JA, Lamichhane R, Millar DP, Williamson JR. A DEAD-Box Helicase Mediates an RNA Structural Transition in the HIV-1 Rev Response Element. J Mol Biol 2017; 429:697-714. [PMID: 28153748 PMCID: PMC5510989 DOI: 10.1016/j.jmb.2017.01.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/04/2017] [Accepted: 01/21/2017] [Indexed: 01/17/2023]
Abstract
Nuclear export of partially spliced or unspliced HIV-1 RNA transcripts requires binding of the viral protein regulator of expression of virion (Rev) to the Rev response element (RRE) and subsequent oligomerization in a cooperative manner. Cellular DEAD-box helicase DEAD-box protein 1 (DDX1) plays a role in HIV replication, interacting with and affecting Rev-containing HIV transcripts in vivo, interacting directly with the RRE and Rev in vitro, and promoting Rev oligomerization in vitro. Binding of DDX1 results in enhancement of Rev oligomerization on the RRE that is correlated with an RNA structural change within the RRE that persists even after dissociation of DDX1. Furthermore, this structural transition is likely located within the three-way junction of stem II of the RRE that is responsible for initial Rev binding. This discovery of the stem II structural transition leads to a model wherein DDX1 can act as an RNA chaperone, folding stem IIB into a proper Rev binding conformation.
Collapse
Affiliation(s)
- John A Hammond
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rajan Lamichhane
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - David P Millar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James R Williamson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
33
|
Kim E, Baaske MD, Schuldes I, Wilsch PS, Vollmer F. Label-free optical detection of single enzyme-reactant reactions and associated conformational changes. SCIENCE ADVANCES 2017; 3:e1603044. [PMID: 28435868 PMCID: PMC5371424 DOI: 10.1126/sciadv.1603044] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/09/2017] [Indexed: 05/21/2023]
Abstract
Monitoring the kinetics and conformational dynamics of single enzymes is crucial to better understand their biological functions because these motions and structural dynamics are usually unsynchronized among the molecules. However, detecting the enzyme-reactant interactions and associated conformational changes of the enzyme on a single-molecule basis remains as a challenge to established optical techniques because of the commonly required labeling of the reactants or the enzyme itself. The labeling process is usually nontrivial, and the labels themselves might skew the physical properties of the enzyme. We demonstrate an optical, label-free method capable of observing enzymatic interactions and associated conformational changes on a single-molecule level. We monitor polymerase/DNA interactions via the strong near-field enhancement provided by plasmonic nanorods resonantly coupled to whispering gallery modes in microcavities. Specifically, we use two different recognition schemes: one in which the kinetics of polymerase/DNA interactions are probed in the vicinity of DNA-functionalized nanorods, and the other in which these interactions are probed via the magnitude of conformational changes in the polymerase molecules immobilized on nanorods. In both approaches, we find that low and high polymerase activities can be clearly discerned through their characteristic signal amplitude and signal length distributions. Furthermore, the thermodynamic study of the monitored interactions suggests the occurrence of DNA polymerization. This work constitutes a proof-of-concept study of enzymatic activities using plasmonically enhanced microcavities and establishes an alternative and label-free method capable of investigating structural changes in single molecules.
Collapse
Affiliation(s)
- Eugene Kim
- Corresponding author. (E.K.); (M.D.B.); (F.V.)
| | | | | | | | | |
Collapse
|
34
|
Lamichhane R, Liu JJ, Pauszek RF, Millar DP. Fluorophore Labeling, Nanodisc Reconstitution and Single-molecule Observation of a G Protein-coupled Receptor. Bio Protoc 2017; 7:e2332. [PMID: 29170748 DOI: 10.21769/bioprotoc.2332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Activation of G protein-coupled receptors (GPCRs) by agonist ligands is mediated by a transition from an inactive to active receptor conformation. We describe a novel single-molecule assay that monitors activation-linked conformational transitions in individual GPCR molecules in real-time. The receptor is site-specifically labeled with a Cy3 fluorescence probe at the end of trans-membrane helix 6 and reconstituted in phospholipid nanodiscs tethered to a microscope slide. Individual receptor molecules are then monitored over time by single-molecule total internal reflection fluorescence microscopy, revealing spontaneous transitions between inactive and active-like conformations. The assay provides information on the equilibrium distribution of inactive and active receptor conformations and the rate constants for conformational exchange. The experiments can be performed in the absence of ligands, revealing the spontaneous conformational transitions responsible for basal signaling activity, or in the presence of agonist or inverse agonist ligands, revealing how the ligands alter the dynamics of the receptor to either stimulate or repress signaling activity. The resulting mechanistic information is useful for the design of improved GPCR-targeting drugs. The single-molecule assay is described in the context of the β2 adrenergic receptor, but can be extended to a variety of GPCRs.
Collapse
Affiliation(s)
- Rajan Lamichhane
- Department of Integrative Structural & Computational Biology, the Scripps Research Institute, La Jolla, CA, USA
| | - Jeffrey J Liu
- Department of Integrative Structural & Computational Biology, the Scripps Research Institute, La Jolla, CA, USA.,Max Planck Institute for Biochemistry, Martinsried, Germany
| | - Raymond F Pauszek
- Department of Integrative Structural & Computational Biology, the Scripps Research Institute, La Jolla, CA, USA
| | - David P Millar
- Department of Integrative Structural & Computational Biology, the Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
35
|
Raper AT, Reed AJ, Gadkari VV, Suo Z. Advances in Structural and Single-Molecule Methods for Investigating DNA Lesion Bypass and Repair Polymerases. Chem Res Toxicol 2016; 30:260-269. [PMID: 28092942 DOI: 10.1021/acs.chemrestox.6b00342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Innovative advances in X-ray crystallography and single-molecule biophysics have yielded unprecedented insight into the mechanisms of DNA lesion bypass and damage repair. Time-dependent X-ray crystallography has been successfully applied to view the bypass of 8-oxo-7,8-dihydro-2'-deoxyguanine (8-oxoG), a major oxidative DNA lesion, and the incorporation of the triphosphate form, 8-oxo-dGTP, catalyzed by human DNA polymerase β. Significant findings of these studies are highlighted here, and their contributions to the current mechanistic understanding of mutagenic translesion DNA synthesis (TLS) and base excision repair are discussed. In addition, single-molecule Förster resonance energy transfer (smFRET) techniques have recently been adapted to investigate nucleotide binding and incorporation opposite undamaged dG and 8-oxoG by Sulfolobus solfataricus DNA polymerase IV (Dpo4), a model Y-family DNA polymerase. The mechanistic response of Dpo4 to a DNA lesion and the complex smFRET technique are described here. In this perspective, we also describe how time-dependent X-ray crystallography and smFRET can be used to achieve the spatial and temporal resolutions necessary to answer some of the mechanistic questions that remain in the fields of TLS and DNA damage repair.
Collapse
Affiliation(s)
- Austin T Raper
- Department of Chemistry and Biochemistry and The Ohio State Biochemistry Program, The Ohio State University , Columbus, Ohio 43210, United States
| | - Andrew J Reed
- Department of Chemistry and Biochemistry and The Ohio State Biochemistry Program, The Ohio State University , Columbus, Ohio 43210, United States
| | - Varun V Gadkari
- Department of Chemistry and Biochemistry and The Ohio State Biochemistry Program, The Ohio State University , Columbus, Ohio 43210, United States
| | - Zucai Suo
- Department of Chemistry and Biochemistry and The Ohio State Biochemistry Program, The Ohio State University , Columbus, Ohio 43210, United States
| |
Collapse
|
36
|
Lamichhane R, Mukherjee S, Smolin N, Pauszek RF, Bradley M, Sastri J, Robia SL, Millar D, Campbell EM. Dynamic conformational changes in the rhesus TRIM5α dimer dictate the potency of HIV-1 restriction. Virology 2016; 500:161-168. [PMID: 27821283 DOI: 10.1016/j.virol.2016.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/01/2016] [Accepted: 10/05/2016] [Indexed: 11/26/2022]
Abstract
The TRIM5α protein from rhesus macaques (rhTRIM5α) mediates a potent inhibition of HIV-1 infection via a mechanism that involves the abortive disassembly of the viral core. We have demonstrated that alpha-helical elements within the Linker 2 (L2) region, which lies between the SPRY domain and the Coiled-Coil domain, influence the potency of restriction. Here, we utilize single-molecule FRET analysis to reveal that the L2 region of the TRIM5α dimer undergoes dynamic conformational changes, which results in the displacement of L2 regions by 25 angstroms relative to each other. Analysis of restriction enhancing or abrogating mutations in the L2 region reveal that restriction defective mutants are unable to undergo dynamic conformational changes and do not assume compact, alpha-helical conformations in the L2 region. These data suggest a model in which conformational changes in the L2 region mediate displacement of CA bound SPRY domains to induce the destabilization of assembled capsid during restriction.
Collapse
Affiliation(s)
- Rajan Lamichhane
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Santanu Mukherjee
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Chicago, IL, USA
| | - Nikolai Smolin
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Chicago, IL, USA
| | - Raymond F Pauszek
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Margret Bradley
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Chicago, IL, USA
| | - Jaya Sastri
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Seth L Robia
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Chicago, IL, USA
| | - David Millar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Edward M Campbell
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Chicago, IL, USA
| |
Collapse
|
37
|
Hohlbein J, Kapanidis AN. Probing the Conformational Landscape of DNA Polymerases Using Diffusion-Based Single-Molecule FRET. Methods Enzymol 2016; 581:353-378. [PMID: 27793286 DOI: 10.1016/bs.mie.2016.08.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Monitoring conformational changes in DNA polymerases using single-molecule Förster resonance energy transfer (smFRET) has provided new tools for studying fidelity-related mechanisms that promote the rejection of incorrect nucleotides before DNA synthesis. In addition to the previously known open and closed conformations of DNA polymerases, our smFRET assays utilizing doubly labeled variants of Escherichia coli DNA polymerase I were pivotal in identifying and characterizing a partially closed conformation as a primary checkpoint for nucleotide selection. Here, we provide a comprehensive overview of the methods we used for the conformational analysis of wild-type DNA polymerase and some of its low-fidelity derivatives; these methods include strategies for protein labeling and our procedures for solution-based single-molecule fluorescence data acquisition and data analysis. We also discuss alternative single-molecule fluorescence strategies for analyzing the conformations of DNA polymerases in vitro and in vivo.
Collapse
Affiliation(s)
- J Hohlbein
- Laboratory of Biophysics, Wageningen University and Research, Wageningen, The Netherlands; Microspectroscopy Centre, Wageningen University and Research, Wageningen, The Netherlands.
| | - A N Kapanidis
- Clarendon Laboratory, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
38
|
Gül OT, Pugliese KM, Choi Y, Sims PC, Pan D, Rajapakse AJ, Weiss GA, Collins PG. Single Molecule Bioelectronics and Their Application to Amplification-Free Measurement of DNA Lengths. BIOSENSORS-BASEL 2016; 6:bios6030029. [PMID: 27348011 PMCID: PMC5039648 DOI: 10.3390/bios6030029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/08/2016] [Accepted: 06/15/2016] [Indexed: 01/17/2023]
Abstract
As biosensing devices shrink smaller and smaller, they approach a scale in which single molecule electronic sensing becomes possible. Here, we review the operation of single-enzyme transistors made using single-walled carbon nanotubes. These novel hybrid devices transduce the motions and catalytic activity of a single protein into an electronic signal for real-time monitoring of the protein’s activity. Analysis of these electronic signals reveals new insights into enzyme function and proves the electronic technique to be complementary to other single-molecule methods based on fluorescence. As one example of the nanocircuit technique, we have studied the Klenow Fragment (KF) of DNA polymerase I as it catalytically processes single-stranded DNA templates. The fidelity of DNA polymerases makes them a key component in many DNA sequencing techniques, and here we demonstrate that KF nanocircuits readily resolve DNA polymerization with single-base sensitivity. Consequently, template lengths can be directly counted from electronic recordings of KF’s base-by-base activity. After measuring as few as 20 copies, the template length can be determined with <1 base pair resolution, and different template lengths can be identified and enumerated in solutions containing template mixtures.
Collapse
Affiliation(s)
- O Tolga Gül
- Department of Physics and Astronomy, University of California at Irvine, Irvine, CA 92697, USA
- Department of Physics, Polatlı Faculty of Science and Arts, Gazi University, Polatlı 06900, Turkey
| | - Kaitlin M Pugliese
- Department of Chemistry, University of California at Irvine, Irvine, CA 92697, USA
| | - Yongki Choi
- Department of Physics and Astronomy, University of California at Irvine, Irvine, CA 92697, USA
- Department of Physics, North Dakota State University, Fargo, ND 58108, USA
| | - Patrick C Sims
- Department of Physics and Astronomy, University of California at Irvine, Irvine, CA 92697, USA
| | - Deng Pan
- Department of Physics and Astronomy, University of California at Irvine, Irvine, CA 92697, USA
| | - Arith J Rajapakse
- Department of Physics and Astronomy, University of California at Irvine, Irvine, CA 92697, USA
| | - Gregory A Weiss
- Department of Chemistry, University of California at Irvine, Irvine, CA 92697, USA.
- Department of Molecular Biology and Biochemistry, University of California at Irvine, Irvine, CA 92697, USA.
| | - Philip G Collins
- Department of Physics and Astronomy, University of California at Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
39
|
Raper AT, Gadkari VV, Maxwell BA, Suo Z. Single-Molecule Investigation of Response to Oxidative DNA Damage by a Y-Family DNA Polymerase. Biochemistry 2016; 55:2187-96. [PMID: 27002236 DOI: 10.1021/acs.biochem.6b00166] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Y-family DNA polymerases are known to bypass DNA lesions in vitro and in vivo and rescue stalled DNA replication machinery. Dpo4, a well-characterized model Y-family DNA polymerase, is known to catalyze translesion synthesis across a variety of DNA lesions including 8-oxo-7,8-dihydro-2'-deoxyguanine (8-oxo-dG). Our previous X-ray crystallographic, stopped-flow Förster resonance energy transfer (FRET), and computational simulation studies have revealed that Dpo4 samples a variety of global conformations as it recognizes and binds DNA. Here we employed single-molecule FRET (smFRET) techniques to investigate the kinetics and conformational dynamics of Dpo4 when it encountered 8-oxo-dG, a major oxidative lesion with high mutagenic potential. Our smFRET data indicated that Dpo4 bound the DNA substrate in multiple conformations, as suggested by three observed FRET states. An incoming correct or incorrect nucleotide affected the distribution and stability of these states with the correct nucleotide completely shifting the equilibrium toward a catalytically competent complex. Furthermore, the presence of the 8-oxo-dG lesion in the DNA stabilized both the binary and ternary complexes of Dpo4. Thus, our smFRET analysis provided a basis for the enhanced efficiency which Dpo4 is known to exhibit when replicating across from 8-oxo-dG.
Collapse
Affiliation(s)
- Austin T Raper
- Department of Chemistry and Biochemistry, †Ohio State Biochemistry Program and ‡Ohio State Biophysics Program, The Ohio State University , Columbus, Ohio 43210, United States
| | - Varun V Gadkari
- Department of Chemistry and Biochemistry, †Ohio State Biochemistry Program and ‡Ohio State Biophysics Program, The Ohio State University , Columbus, Ohio 43210, United States
| | - Brian A Maxwell
- Department of Chemistry and Biochemistry, †Ohio State Biochemistry Program and ‡Ohio State Biophysics Program, The Ohio State University , Columbus, Ohio 43210, United States
| | - Zucai Suo
- Department of Chemistry and Biochemistry, †Ohio State Biochemistry Program and ‡Ohio State Biophysics Program, The Ohio State University , Columbus, Ohio 43210, United States
| |
Collapse
|
40
|
Single-molecule view of basal activity and activation mechanisms of the G protein-coupled receptor β2AR. Proc Natl Acad Sci U S A 2015; 112:14254-9. [PMID: 26578769 DOI: 10.1073/pnas.1519626112] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Binding of extracellular ligands to G protein-coupled receptors (GPCRs) initiates transmembrane signaling by inducing conformational changes on the cytoplasmic receptor surface. Knowledge of this process provides a platform for the development of GPCR-targeting drugs. Here, using a site-specific Cy3 fluorescence probe in the human β2-adrenergic receptor (β2AR), we observed that individual receptor molecules in the native-like environment of phospholipid nanodiscs undergo spontaneous transitions between two distinct conformational states. These states are assigned to inactive and active-like receptor conformations. Individual receptor molecules in the apo form repeatedly sample both conformations, with a bias toward the inactive conformation. Experiments in the presence of drug ligands show that binding of the full agonist formoterol shifts the conformational distribution in favor of the active-like conformation, whereas binding of the inverse agonist ICI-118,551 favors the inactive conformation. Analysis of single-molecule dwell-time distributions for each state reveals that formoterol increases the frequency of activation transitions, while also reducing the frequency of deactivation events. In contrast, the inverse agonist increases the frequency of deactivation transitions. Our observations account for the high level of basal activity of this receptor and provide insights that help to rationalize, on the molecular level, the widely documented variability of the pharmacological efficacies among GPCR-targeting drugs.
Collapse
|
41
|
Abstract
All biological information, since the last common ancestor of all life on Earth, has been encoded by a genetic alphabet consisting of only four nucleotides that form two base pairs. Long-standing efforts to develop two synthetic nucleotides that form a third, unnatural base pair (UBP) have recently yielded three promising candidates, one based on alternative hydrogen bonding, and two based on hydrophobic and packing forces. All three of these UBPs are replicated and transcribed with remarkable efficiency and fidelity, and the latter two thus demonstrate that hydrogen bonding is not unique in its ability to underlie the storage and retrieval of genetic information. This Review highlights these recent developments as well as the applications enabled by the UBPs, including the expansion of the evolution process to include new functionality and the creation of semi-synthetic life that stores increased information.
Collapse
Affiliation(s)
- Denis A Malyshev
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA)
| | - Floyd E Romesberg
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA).
| |
Collapse
|
42
|
|
43
|
Pugliese KM, Gul OT, Choi Y, Olsen TJ, Sims PC, Collins PG, Weiss GA. Processive Incorporation of Deoxynucleoside Triphosphate Analogs by Single-Molecule DNA Polymerase I (Klenow Fragment) Nanocircuits. J Am Chem Soc 2015; 137:9587-94. [PMID: 26147714 DOI: 10.1021/jacs.5b02074] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
DNA polymerases exhibit a surprising tolerance for analogs of deoxyribonucleoside triphosphates (dNTPs), despite the enzymes' highly evolved mechanisms for the specific recognition and discrimination of native dNTPs. Here, individual DNA polymerase I Klenow fragment (KF) molecules were tethered to a single-walled carbon nanotube field-effect transistor (SWCNT-FET) to investigate accommodation of dNTP analogs with single-molecule resolution. Each base incorporation accompanied a change in current with its duration defined by τclosed. Under Vmax conditions, the average time of τclosed was similar for all analog and native dNTPs (0.2 to 0.4 ms), indicating no kinetic impact on this step due to analog structure. Accordingly, the average rates of dNTP analog incorporation were largely determined by durations with no change in current defined by τopen, which includes molecular recognition of the incoming dNTP. All α-thio-dNTPs were incorporated more slowly, at 40 to 65% of the rate for the corresponding native dNTPs. During polymerization with 6-Cl-2APTP, 2-thio-dTTP, or 2-thio-dCTP, the nanocircuit uncovered an alternative conformation represented by positive current excursions that does not occur with native dNTPs. A model consistent with these results invokes rotations by the enzyme's O-helix; this motion can test the stability of nascent base pairs using nonhydrophilic interactions and is allosterically coupled to charged residues near the site of SWCNT attachment. This model with two opposing O-helix motions differs from the previous report in which all current excursions were solely attributed to global enzyme closure and covalent-bond formation. The results suggest the enzyme applies a dynamic stability-checking mechanism for each nascent base pair.
Collapse
Affiliation(s)
- Kaitlin M Pugliese
- Departments of †Chemistry, §Physics and Astronomy, and ⊥Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| | - O Tolga Gul
- Departments of †Chemistry, §Physics and Astronomy, and ⊥Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| | - Yongki Choi
- Departments of †Chemistry, §Physics and Astronomy, and ⊥Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| | - Tivoli J Olsen
- Departments of †Chemistry, §Physics and Astronomy, and ⊥Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| | - Patrick C Sims
- Departments of †Chemistry, §Physics and Astronomy, and ⊥Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| | - Philip G Collins
- Departments of †Chemistry, §Physics and Astronomy, and ⊥Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| | - Gregory A Weiss
- Departments of †Chemistry, §Physics and Astronomy, and ⊥Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
44
|
Walsh MT, Roller EE, Ko KS, Huang X. Measurement of DNA Polymerase Incorporation Kinetics of Dye-Labeled Nucleotides Using Total Internal Reflection Fluorescence Microscopy. Biochemistry 2015; 54:4019-21. [PMID: 26096371 DOI: 10.1021/acs.biochem.5b00269] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a method for the rapid and automated measurements of the incorporation kinetics of fluorescent dye-labeled nucleotides by DNA polymerases without using stopped-flow and quench-flow methods. Total internal reflection fluorescence microscopy is used to monitor the incorporation of fluorescently labeled nucleotides by DNA polymerase into surface-bound primed DNA templates, and a microfluidic system is used to perform the reactions. We successfully demonstrated the method using Bst DNA polymerase and a set of coumarin-labeled nucleotides. Our method allows the rapid acquisition of polymerase kinetics for implementing and improving DNA sequencing technologies that rely on labeled nucleotides and DNA polymerases.
Collapse
Affiliation(s)
- Matthew T Walsh
- Department of Bioengineering, University of California at San Diego, La Jolla, California 92093-0412, United States
| | - Eric E Roller
- Department of Bioengineering, University of California at San Diego, La Jolla, California 92093-0412, United States
| | - Kwang-Seuk Ko
- Department of Bioengineering, University of California at San Diego, La Jolla, California 92093-0412, United States
| | - Xiaohua Huang
- Department of Bioengineering, University of California at San Diego, La Jolla, California 92093-0412, United States
| |
Collapse
|
45
|
Evans GW, Hohlbein J, Craggs T, Aigrain L, Kapanidis AN. Real-time single-molecule studies of the motions of DNA polymerase fingers illuminate DNA synthesis mechanisms. Nucleic Acids Res 2015; 43:5998-6008. [PMID: 26013816 PMCID: PMC4499156 DOI: 10.1093/nar/gkv547] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/13/2015] [Indexed: 12/30/2022] Open
Abstract
DNA polymerases maintain genomic integrity by copying DNA with high fidelity. A conformational change important for fidelity is the motion of the polymerase fingers subdomain from an open to a closed conformation upon binding of a complementary nucleotide. We previously employed intra-protein single-molecule FRET on diffusing molecules to observe fingers conformations in polymerase-DNA complexes. Here, we used the same FRET ruler on surface-immobilized complexes to observe fingers-opening and closing of individual polymerase molecules in real time. Our results revealed the presence of intrinsic dynamics in the binary complex, characterized by slow fingers-closing and fast fingers-opening. When binary complexes were incubated with increasing concentrations of complementary nucleotide, the fingers-closing rate increased, strongly supporting an induced-fit model for nucleotide recognition. Meanwhile, the opening rate in ternary complexes with complementary nucleotide was 6 s(-1), much slower than either fingers closing or the rate-limiting step in the forward direction; this rate balance ensures that, after nucleotide binding and fingers-closing, nucleotide incorporation is overwhelmingly likely to occur. Our results for ternary complexes with a non-complementary dNTP confirmed the presence of a state corresponding to partially closed fingers and suggested a radically different rate balance regarding fingers transitions, which allows polymerase to achieve high fidelity.
Collapse
Affiliation(s)
- Geraint W Evans
- Department of Physics and Biological Physics Research Group, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Johannes Hohlbein
- Department of Physics and Biological Physics Research Group, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Timothy Craggs
- Department of Physics and Biological Physics Research Group, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Louise Aigrain
- Department of Physics and Biological Physics Research Group, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Achillefs N Kapanidis
- Department of Physics and Biological Physics Research Group, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
46
|
Morin JA, Cao FJ, Lázaro JM, Arias-Gonzalez JR, Valpuesta JM, Carrascosa JL, Salas M, Ibarra B. Mechano-chemical kinetics of DNA replication: identification of the translocation step of a replicative DNA polymerase. Nucleic Acids Res 2015; 43:3643-52. [PMID: 25800740 PMCID: PMC4402526 DOI: 10.1093/nar/gkv204] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/14/2015] [Accepted: 02/27/2015] [Indexed: 11/25/2022] Open
Abstract
During DNA replication replicative polymerases move in discrete mechanical steps along the DNA template. To address how the chemical cycle is coupled to mechanical motion of the enzyme, here we use optical tweezers to study the translocation mechanism of individual bacteriophage Phi29 DNA polymerases during processive DNA replication. We determine the main kinetic parameters of the nucleotide incorporation cycle and their dependence on external load and nucleotide (dNTP) concentration. The data is inconsistent with power stroke models for translocation, instead supports a loose-coupling mechanism between chemical catalysis and mechanical translocation during DNA replication. According to this mechanism the DNA polymerase works by alternating between a dNTP/PPi-free state, which diffuses thermally between pre- and post-translocated states, and a dNTP/PPi-bound state where dNTP binding stabilizes the post-translocated state. We show how this thermal ratchet mechanism is used by the polymerase to generate work against large opposing loads (∼50 pN).
Collapse
Affiliation(s)
- José A Morin
- Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA Nanociencia, 28049 Madrid, Spain
| | - Francisco J Cao
- Departamento Física Atómica, Molecular y Nuclear, Universidad Complutense, 28040 Madrid, Spain
| | - José M Lázaro
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | - J Ricardo Arias-Gonzalez
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia) & CNB-CSIC-IMDEA Nanociencia Associated Unit 'Unidad de Nanobiotecnología', 28049 Madrid, Spain
| | - José M Valpuesta
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - José L Carrascosa
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia) & CNB-CSIC-IMDEA Nanociencia Associated Unit 'Unidad de Nanobiotecnología', 28049 Madrid, Spain Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Margarita Salas
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | - Borja Ibarra
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia) & CNB-CSIC-IMDEA Nanociencia Associated Unit 'Unidad de Nanobiotecnología', 28049 Madrid, Spain
| |
Collapse
|
47
|
Miller BR, Parish CA, Wu EY. Molecular dynamics study of the opening mechanism for DNA polymerase I. PLoS Comput Biol 2014; 10:e1003961. [PMID: 25474643 PMCID: PMC4256020 DOI: 10.1371/journal.pcbi.1003961] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/02/2014] [Indexed: 11/18/2022] Open
Abstract
During DNA replication, DNA polymerases follow an induced fit mechanism in order to rapidly distinguish between correct and incorrect dNTP substrates. The dynamics of this process are crucial to the overall effectiveness of catalysis. Although X-ray crystal structures of DNA polymerase I with substrate dNTPs have revealed key structural states along the catalytic pathway, solution fluorescence studies indicate that those key states are populated in the absence of substrate. Herein, we report the first atomistic simulations showing the conformational changes between the closed, open, and ajar conformations of DNA polymerase I in the binary (enzyme:DNA) state to better understand its dynamics. We have applied long time-scale, unbiased molecular dynamics to investigate the opening process of the fingers domain in the absence of substrate for B. stearothermophilis DNA polymerase in silico. These simulations are biologically and/or physiologically relevant as they shed light on the transitions between states in this important enzyme. All closed and ajar simulations successfully transitioned into the fully open conformation, which is known to be the dominant binary enzyme-DNA conformation from solution and crystallographic studies. Furthermore, we have detailed the key stages in the opening process starting from the open and ajar crystal structures, including the observation of a previously unknown key intermediate structure. Four backbone dihedrals were identified as important during the opening process, and their movements provide insight into the recognition of dNTP substrate molecules by the polymerase binary state. In addition to revealing the opening mechanism, this study also demonstrates our ability to study biological events of DNA polymerase using current computational methods without biasing the dynamics.
Collapse
Affiliation(s)
- Bill R. Miller
- Department of Biology, University of Richmond, Richmond, Virginia, United States of America
- Department of Chemistry, University of Richmond, Richmond, Virginia, United States of America
| | - Carol A. Parish
- Department of Chemistry, University of Richmond, Richmond, Virginia, United States of America
| | - Eugene Y. Wu
- Department of Biology, University of Richmond, Richmond, Virginia, United States of America
| |
Collapse
|
48
|
Xu C, Maxwell BA, Suo Z. Conformational dynamics of Thermus aquaticus DNA polymerase I during catalysis. J Mol Biol 2014; 426:2901-2917. [PMID: 24931550 DOI: 10.1016/j.jmb.2014.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 06/02/2014] [Accepted: 06/07/2014] [Indexed: 11/15/2022]
Abstract
Despite the fact that DNA polymerases have been investigated for many years and are commonly used as tools in a number of molecular biology assays, many details of the kinetic mechanism they use to catalyze DNA synthesis remain unclear. Structural and kinetic studies have characterized a rapid, pre-catalytic open-to-close conformational change of the Finger domain during nucleotide binding for many DNA polymerases including Thermus aquaticus DNA polymerase I (Taq Pol), a thermostable enzyme commonly used for DNA amplification in PCR. However, little has been performed to characterize the motions of other structural domains of Taq Pol or any other DNA polymerase during catalysis. Here, we used stopped-flow Förster resonance energy transfer to investigate the conformational dynamics of all five structural domains of the full-length Taq Pol relative to the DNA substrate during nucleotide binding and incorporation. Our study provides evidence for a rapid conformational change step induced by dNTP binding and a subsequent global conformational transition involving all domains of Taq Pol during catalysis. Additionally, our study shows that the rate of the global transition was greatly increased with the truncated form of Taq Pol lacking the N-terminal domain. Finally, we utilized a mutant of Taq Pol containing a de novo disulfide bond to demonstrate that limiting protein conformational flexibility greatly reduced the polymerization activity of Taq Pol.
Collapse
Affiliation(s)
- Cuiling Xu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Brian A Maxwell
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Ohio State Biophysics Program, The Ohio State University, Columbus, OH 43210, USA
| | - Zucai Suo
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Ohio State Biophysics Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
49
|
Turunen P, Rowan AE, Blank K. Single-enzyme kinetics with fluorogenic substrates: lessons learnt and future directions. FEBS Lett 2014; 588:3553-63. [DOI: 10.1016/j.febslet.2014.06.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 01/05/2023]
|
50
|
Maxwell BA, Suo Z. Recent insight into the kinetic mechanisms and conformational dynamics of Y-Family DNA polymerases. Biochemistry 2014; 53:2804-14. [PMID: 24716482 PMCID: PMC4018064 DOI: 10.1021/bi5000405] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
![]()
The
kinetic mechanisms by which DNA polymerases catalyze DNA replication
and repair have long been areas of active research. Recently discovered
Y-family DNA polymerases catalyze the bypass of damaged DNA bases
that would otherwise block replicative DNA polymerases and stall replication
forks. Unlike DNA polymerases from the five other families, the Y-family
DNA polymerases have flexible, solvent-accessible active sites that
are able to tolerate various types of damaged template bases and allow
for efficient lesion bypass. Their promiscuous active sites, however,
also lead to fidelities that are much lower than those observed for
other DNA polymerases and give rise to interesting mechanistic properties.
Additionally, the Y-family DNA polymerases have several other unique
structural features and undergo a set of conformational changes during
substrate binding and catalysis different from those observed for
replicative DNA polymerases. In recent years, pre-steady-state kinetic
methods have been extensively employed to reveal a wealth of information
about the catalytic properties of these fascinating noncanonical DNA
polymerases. Here, we review many of the recent findings on the kinetic
mechanisms of DNA polymerization with undamaged and damaged DNA substrates
by the Y-family DNA polymerases, and the conformational dynamics employed
by these error-prone enzymes during catalysis.
Collapse
Affiliation(s)
- Brian A Maxwell
- Ohio State Biophysics Program and ‡Department of Chemistry and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States
| | | |
Collapse
|