1
|
Dehabadi MH, Irani M, Ryde U. Predicting Reduction Potentials of Blue Copper Proteins Using Quantum Mechanical Calculations. Inorg Chem 2025. [PMID: 39979212 DOI: 10.1021/acs.inorgchem.4c05183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
We have calculated redox potentials of 12 blue copper protein sites comparing 64 computational methods, systematically varying the quantum mechanics (QM) system size, dielectric constants, density functional, and basis sets. All methods were based on structures optimized with combined QM and molecular mechanics (QM/MM) approaches. The redox potentials were evaluated using 10 quality metrics. The best results for relative potentials were achieved using a QM system of intermediate size (∼70 atoms), the TPSS density functional, and a SV(P) basis set, using QM-cluster calculations in a continuum solvent with a dielectric constant of 20, yielding a mean absolute deviation of 0.09 V and a maximum deviation of 0.26 V. For absolute redox potentials, methods using larger QM systems (∼340 atoms), the B3LYP density functional, and larger basis sets perform better, achieving mean signed errors down to -0.27 V. Compared to previous studies on iron-sulfur clusters, redox potentials for blue copper proteins show improved accuracy due to their narrower potential range and simpler coordination environments, but systematic errors are system-dependent. This study underscores the challenges of modeling redox-active sites in proteins and highlights the effectiveness of QM-cluster calculations in a continuum solvent in balancing computational cost with predictive power.
Collapse
Affiliation(s)
| | - Mehdi Irani
- Department of Chemistry, University of Kurdistan, Sanandaj 66177-15175, Iran
| | - Ulf Ryde
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, Lund SE-221 00, Sweden
| |
Collapse
|
2
|
Izumi Y, Ugalino R, Miyawaki J, Shibazaki C, Adachi M, Kurahashi N, Kiuchi H, Harada Y, Fujii K. Electronic structures of blue copper centers of amicyanin and azurin in the solution state. Dalton Trans 2025; 54:1980-1985. [PMID: 39676605 DOI: 10.1039/d4dt02891k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
X-ray absorption near edge structure (XANES) spectra of blue copper proteins, amicyanin and azurin, in the solution state were measured in the copper L3-edge energy region. The absorption peak energies were quite similar for both proteins, while the main edge region for azurin was broader than that for amicyanin, owing to more pronounced shoulder spectral features in the former. Ab initio calculations at the whole protein level qualitatively reproduced the experimental spectra well. The relative X-ray absorption intensities suggest that the degree of covalency of the copper-ligand bond at the active site was weaker for amicyanin than that for azurin.
Collapse
Affiliation(s)
- Yudai Izumi
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | - Ralph Ugalino
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
- NanoTerasu Center, National Institutes for Quantum Science and Technology (QST), 6-6-11-901 Aoba, Aoba-ku, Miyagi 980-8579, Japan
| | - Jun Miyawaki
- NanoTerasu Center, National Institutes for Quantum Science and Technology (QST), 6-6-11-901 Aoba, Aoba-ku, Miyagi 980-8579, Japan
| | - Chie Shibazaki
- J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki 319-1195, Japan
| | - Motoyasu Adachi
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | - Naoya Kurahashi
- Synchrotron Radiation Laboratory, The Institute for Solid State Physics, The University of Tokyo, 468-1 Aoba, Aoba-ku, Miyagi 980-8572, Japan
| | - Hisao Kiuchi
- Synchrotron Radiation Laboratory, The Institute for Solid State Physics, The University of Tokyo, 468-1 Aoba, Aoba-ku, Miyagi 980-8572, Japan
| | - Yoshihisa Harada
- Synchrotron Radiation Laboratory, The Institute for Solid State Physics, The University of Tokyo, 468-1 Aoba, Aoba-ku, Miyagi 980-8572, Japan
| | - Kentaro Fujii
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
- NanoTerasu Center, National Institutes for Quantum Science and Technology (QST), 6-6-11-901 Aoba, Aoba-ku, Miyagi 980-8579, Japan
| |
Collapse
|
3
|
Ozuguzel U, Safaltin S, Alpay SP, Alkadry K, Nieman R, Korzeniewski C, Aquino AJA. Influence of Ligand Complexity on the Spectroscopic Properties of Type 1 Copper Sites: A Theoretical Study. J Comput Chem 2025; 46:e70013. [PMID: 39723663 DOI: 10.1002/jcc.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024]
Abstract
Multi-copper oxidases (MCOs) are enzymes of significant interest in biotechnology due to their efficient catalysis of oxygen reduction to water, making them valuable in sustainable energy production and bio-electrochemical applications. This study employs time-dependent density functional theory (TDDFT) to investigate the electronic structure and spectroscopic properties of the Type 1 (T1) copper site in Azurin, which serves as a model for similar sites in MCOs. Four model complexes of varying complexity were derived from the T1 site, including 3 three-coordinate models and 1 four-coordinate model with axial methionine ligation, to explore the impact of molecular branches and axial coordination. Calculations using ωB97X-D3 functional, def2-TZVP basis set, and conductor-like polarizable continuum model (CPCM) solvation model reproduced key experimental spectral features, with increased model complexity improving agreement, particularly for the ~400 cm-1 band splitting in resonance Raman spectra. This work enhances our understanding of T1 copper sites' electronic properties and spectra, bridging the gap between simplified models and complex proteins. The findings contribute to the interpretation of spectroscopic data in blue copper proteins and may inform future studies on similar biological systems.
Collapse
Affiliation(s)
- Umut Ozuguzel
- Department of Chemistry, University of Connecticut, Stamford, Connecticut, USA
| | - Serzat Safaltin
- Department of Materials Science and Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut, USA
| | - S Pamir Alpay
- Department of Materials Science and Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut, USA
- Department of Physics, University of Connecticut, Storrs, Connecticut, USA
| | - Kenda Alkadry
- Department of Chemistry, University of Connecticut, Stamford, Connecticut, USA
| | - Reed Nieman
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Carol Korzeniewski
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Adelia J A Aquino
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
4
|
Riegerová P, Horváth M, Šebesta F, Sýkora J, Šulc M, Vlček A. Single-step purification and characterization of Pseudomonas aeruginosa azurin. Protein Expr Purif 2024; 224:106566. [PMID: 39128594 DOI: 10.1016/j.pep.2024.106566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
Azurin is a small periplasmic blue copper protein found in bacterial strains such as Pseudomonas and Alcaligenes where it facilitates denitrification. Azurin is extensively studied for its ability to mediate electron-transfer processes, but it has also sparked interest of the pharmaceutical community as a potential antimicrobial or anticancer agent. Here we offer a novel approach for expression and single-step purification of azurin in Escherichia coli with high yields and optimal metalation. A fusion tag strategy using an N-terminal GST tag was employed to obtain pure protein without requiring any additional purification steps. After the on-column cleavage by HRV 3C Protease, azurin is collected and additionally incubated with copper sulphate to ensure sufficient metalation. UV-VIS absorption, mass spectroscopy, and circular dichroism analysis all validated the effective production of azurin, appropriate protein folding and the development of an active site with an associated cofactor. MD simulations verified that incorporation of the N-terminal GPLGS segment does not affect azurin structure. In addition, the biological activity of azurin was tested in HeLa cells.
Collapse
Affiliation(s)
- Petra Riegerová
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 2155/3, 182 23, Prague, Czech Republic.
| | - Matej Horváth
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 2155/3, 182 23, Prague, Czech Republic; Department of Cell Biology, Charles University, BIOCEV, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Filip Šebesta
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 2155/3, 182 23, Prague, Czech Republic; Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16, Prague 2, Czech Republic
| | - Jan Sýkora
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 2155/3, 182 23, Prague, Czech Republic
| | - Miroslav Šulc
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43, Prague 2, Czech Republic
| | - Antonín Vlček
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 2155/3, 182 23, Prague, Czech Republic; Queen Mary University of London, Department of Chemistry, Mile End Road, London, E1 4NS, United Kingdom.
| |
Collapse
|
5
|
Lam Q, Van Stappen C, Lu Y, Dikanov SA. HYSCORE and QM/MM Studies of Second Sphere Variants of the Type 1 Copper Site in Azurin: Influence of Mutations on the Hyperfine Couplings of Remote Nitrogens. J Phys Chem B 2024; 128:3350-3359. [PMID: 38564809 DOI: 10.1021/acs.jpcb.3c08194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Secondary coordination sphere (SCS) interactions have been shown to play important roles in tuning reduction potentials and electron transfer (ET) properties of the Type 1 copper proteins, but the precise roles of these interactions are not fully understood. In this work, we examined the influence of F114P, F114N, and N47S mutations in the SCS on the electronic structure of the T1 copper center in azurin (Az) by studying the hyperfine couplings of (i) histidine remote Nε nitrogens and (ii) the amide Np using the two-dimensional (2D) pulsed electron paramagnetic resonance (EPR) technique HYSCORE (hyperfine sublevel correlation) combined with quantum mechanics/molecular mechanics (QM/MM) and DLPNO-CCSD calculations. Our data show that some components of hyperfine tensor and isotropic coupling in N47SAz and F114PAz (but not F114NAz) deviate by up to ∼±20% from WTAz, indicating that these mutations significantly influence the spin density distribution between the CuII site and coordinating ligands. Furthermore, our calculations support the assignment of Np to the backbone amide of residue 47 (both in Asn and Ser variants). Since the spin density distributions play an important role in tuning the covalency of the Cu-Scys bond of Type 1 copper center that has been shown to be crucial in controlling the reduction potentials, this study provides additional insights into the electron spin factor in tuning the reduction potentials and ET properties.
Collapse
Affiliation(s)
- Quan Lam
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Casey Van Stappen
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Sergei A Dikanov
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
6
|
Wang JX, Vilbert AC, Cui C, Mirts EN, Williams LH, Kim W, Jessie Zhang Y, Lu Y. Increasing Reduction Potentials of Type 1 Copper Center and Catalytic Efficiency of Small Laccase from Streptomyces coelicolor through Secondary Coordination Sphere Mutations. Angew Chem Int Ed Engl 2023; 62:e202314019. [PMID: 37926680 PMCID: PMC10842694 DOI: 10.1002/anie.202314019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
The key to type 1 copper (T1Cu) function lies in the fine tuning of the CuII/I reduction potential (E°'T1Cu ) to match those of its redox partners, enabling efficient electron transfer in a wide range of biological systems. While the secondary coordination sphere (SCS) effects have been used to tune E°'T1Cu in azurin over a wide range, these principles are yet to be generalized to other T1Cu-containing proteins to tune catalytic properties. To this end, we have examined the effects of Y229F, V290N and S292F mutations around the T1Cu of small laccase (SLAC) from Streptomyces coelicolor to match the high E°'T1Cu of fungal laccases. Using ultraviolet-visible absorption and electron paramagnetic resonance spectroscopies, together with X-ray crystallography and redox titrations, we have probed the influence of SCS mutations on the T1Cu and corresponding E°'T1Cu . While minimal and small E°'T1Cu increases are observed in Y229F- and S292F-SLAC, the V290N mutant exhibits a major E°'T1Cu increase. Moreover, the influence of these mutations on E°'T1Cu is additive, culminating in a triple mutant Y229F/V290N/S292F-SLAC with the highest E°'T1Cu of 556 mV vs. SHE reported to date. Further activity assays indicate that all mutants retain oxygen reduction reaction activity, and display improved catalytic efficiencies (kcat /KM ) relative to WT-SLAC.
Collapse
Affiliation(s)
- Jing-Xiang Wang
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Austin, TX 78712, USA
| | - Avery C Vilbert
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99354, USA
| | - Chang Cui
- Department of Chemistry, The University of Illinois at Urbana-Champaign, 600 South Matthews Avenue, Urbana, IL 61801, USA
| | - Evan N Mirts
- Department of Chemistry, The University of Illinois at Urbana-Champaign, 600 South Matthews Avenue, Urbana, IL 61801, USA
| | - Lucas H Williams
- Department of Molecular Biosciences, The University of Texas at Austin, 100 East 24th St., Austin, TX 78712, USA
| | - Wantae Kim
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 East Dean Keeton Street, Austin, TX 78712, USA
| | - Y Jessie Zhang
- Department of Molecular Biosciences, The University of Texas at Austin, 100 East 24th St., Austin, TX 78712, USA
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, 100 East 24th St., Austin, TX 78712, USA
| | - Yi Lu
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Austin, TX 78712, USA
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99354, USA
- Department of Chemistry, The University of Illinois at Urbana-Champaign, 600 South Matthews Avenue, Urbana, IL 61801, USA
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 East Dean Keeton Street, Austin, TX 78712, USA
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, 100 East 24th St., Austin, TX 78712, USA
| |
Collapse
|
7
|
Van Stappen C, Dai H, Jose A, Tian S, Solomon EI, Lu Y. Primary and Secondary Coordination Sphere Effects on the Structure and Function of S-Nitrosylating Azurin. J Am Chem Soc 2023; 145:20610-20623. [PMID: 37696009 PMCID: PMC10539042 DOI: 10.1021/jacs.3c07399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Much progress has been made in understanding the roles of the secondary coordination sphere (SCS) in tuning redox potentials of metalloproteins. In contrast, the impact of SCS on reactivity is much less understood. A primary example is how copper proteins can promote S-nitrosylation (SNO), which is one of the most important dynamic post-translational modifications, and is crucial in regulating nitric oxide storage and transportation. Specifically, the factors that instill CuII with S-nitrosylating capabilities and modulate activity are not well understood. To address this issue, we investigated the influence of the primary and secondary coordination sphere on CuII-catalyzed S-nitrosylation by developing a series of azurin variants with varying catalytic capabilities. We have employed a multidimensional approach involving electronic absorption, S and Cu K-edge XAS, EPR, and resonance Raman spectroscopies together with QM/MM computational analysis to examine the relationships between structure and molecular mechanism in this reaction. Our findings have revealed that kinetic competency is correlated with three balancing factors, namely Cu-S bond strength, Cu spin localization, and relative S(ps) vs S(pp) contributions to the ground state. Together, these results support a reaction pathway that proceeds through the attack of the Cu-S bond rather than electrophilic addition to CuII or radical attack of SCys. The insights gained from this work provide not only a deeper understanding of SNO in biology but also a basis for designing artificial and tunable SNO enzymes to regulate NO and prevent diseases due to SNO dysregulation.
Collapse
Affiliation(s)
- Casey Van Stappen
- Department of Chemistry, University of Texas at Austin, 105 E 24th St., Austin, Texas 78712, United States
| | - Huiguang Dai
- Department of Chemistry, University of Texas at Austin, 105 E 24th St., Austin, Texas 78712, United States
- Department of Chemistry, University of Urbana-Champaign, Champaign, Illinois 61801, United States
| | - Anex Jose
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Shiliang Tian
- Department of Chemistry, University of Urbana-Champaign, Champaign, Illinois 61801, United States
| | - Edward I Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, 105 E 24th St., Austin, Texas 78712, United States
- Department of Chemistry, University of Urbana-Champaign, Champaign, Illinois 61801, United States
| |
Collapse
|
8
|
McNicholas BJ, Tong ZJ, Bím D, Turro RF, Kazmierczak NP, Chalupský J, Reisman SE, Hadt RG. Electronic Structures of Nickel(II)-Bis(indanyloxazoline)-dihalide Catalysts: Understanding Ligand Field Contributions That Promote C(sp 2)-C(sp 3) Cross-Coupling. Inorg Chem 2023; 62:14010-14027. [PMID: 37584501 PMCID: PMC10530056 DOI: 10.1021/acs.inorgchem.3c02048] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
NiII(IB) dihalide [IB = (3aR,3a'R,8aS,8a'S)-2,2'-(cyclopropane-1,1-diyl)bis(3a,8a-dihydro-8H-indeno[1,2-d]-oxazole)] complexes are representative of a growing class of first-row transition-metal catalysts for the enantioselective reductive cross-coupling of C(sp2) and C(sp3) electrophiles. Recent mechanistic studies highlight the complexity of these ground-state cross-couplings but also illuminate new reactivity pathways stemming from one-electron redox and their significant sensitivities to reaction conditions. For the first time, a diverse array of spectroscopic methods coupled to electrochemistry have been applied to NiII-based precatalysts to evaluate specific ligand field effects governing key Ni-based redox potentials. We also experimentally demonstrate DMA solvent coordination to catalytically relevant Ni complexes. Coordination is shown to favorably influence key redox-based reaction steps and prevent other deleterious Ni-based equilibria. Combined with electronic structure calculations, we further provide a direct correlation between reaction intermediate frontier molecular orbital energies and cross-coupling yields. Considerations developed herein demonstrate the use of synergic spectroscopic and electrochemical methods to provide concepts for catalyst ligand design and rationalization of reaction condition optimization.
Collapse
Affiliation(s)
- Brendon J. McNicholas
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Z. Jaron Tong
- Division of Chemistry and Chemical Engineering, The Warren and Katherine Schlinger Laboratory for Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Daniel Bím
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Raymond F. Turro
- Division of Chemistry and Chemical Engineering, The Warren and Katherine Schlinger Laboratory for Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Nathanael P. Kazmierczak
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Jakub Chalupský
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 3, Prague 8, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| | - Sarah E. Reisman
- Division of Chemistry and Chemical Engineering, The Warren and Katherine Schlinger Laboratory for Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Ryan G. Hadt
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
9
|
Singha A, Sekretareva A, Tao L, Lim H, Ha Y, Braun A, Jones SM, Hedman B, Hodgson KO, Britt RD, Kosman DJ, Solomon EI. Tuning the Type 1 Reduction Potential of Multicopper Oxidases: Uncoupling the Effects of Electrostatics and H-Bonding to Histidine Ligands. J Am Chem Soc 2023. [PMID: 37294874 PMCID: PMC10392966 DOI: 10.1021/jacs.3c03241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In multicopper oxidases (MCOs), the type 1 (T1) Cu accepts electrons from the substrate and transfers these to the trinuclear Cu cluster (TNC) where O2 is reduced to H2O. The T1 potential in MCOs varies from 340 to 780 mV, a range not explained by the existing literature. This study focused on the ∼350 mV difference in potential of the T1 center in Fet3p and Trametes versicolor laccase (TvL) that have the same 2His1Cys ligand set. A range of spectroscopies performed on the oxidized and reduced T1 sites in these MCOs shows that they have equivalent geometric and electronic structures. However, the two His ligands of the T1 Cu in Fet3p are H-bonded to carboxylate residues, while in TvL they are H-bonded to noncharged groups. Electron spin echo envelope modulation spectroscopy shows that there are significant differences in the second-sphere H-bonding interactions in the two T1 centers. Redox titrations on type 2-depleted derivatives of Fet3p and its D409A and E185A variants reveal that the two carboxylates (D409 and E185) lower the T1 potential by 110 and 255-285 mV, respectively. Density functional theory calculations uncouple the effects of the charge of the carboxylates and their difference in H-bonding interactions with the His ligands on the T1 potential, indicating 90-150 mV for anionic charge and ∼100 mV for a strong H-bond. Finally, this study provides an explanation for the generally low potentials of metallooxidases relative to the wide range of potentials of the organic oxidases in terms of different oxidized states of their TNCs involved in catalytic turnover.
Collapse
Affiliation(s)
- Asmita Singha
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Alina Sekretareva
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Lizhi Tao
- Department of Chemistry, University of California at Davis, Davis, California 95616, United States
| | - Hyeongtaek Lim
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Yang Ha
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Augustin Braun
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Stephen M Jones
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Britt Hedman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Keith O Hodgson
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - R David Britt
- Department of Chemistry, University of California at Davis, Davis, California 95616, United States
| | - Daniel J Kosman
- Department of Biochemistry, The University at Buffalo, Buffalo, New York 14214, United States
| | - Edward I Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| |
Collapse
|
10
|
Kontkanen OV, Biriukov D, Futera Z. Reorganization Free Energy of Copper Proteins in Solution, in Vacuum, and on Metal Surfaces. J Chem Phys 2022; 156:175101. [DOI: 10.1063/5.0085141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Metalloproteins, known to efficiently transfer electronic charge in biological systems, recently found their utilization in nanobiotechnological devices where the protein is placed into direct contact with metal surfaces. The feasibility of oxidation/reduction of the protein redox sites is affected by the reorganization free energies, one of the key parameters determining the transfer rates. While their values have been measured and computed for proteins in their native environments, i.e., in aqueous solution, the reorganization free energies of dry proteins or proteins adsorbed to metal surfaces remain unknown. Here, we investigate the redox properties of blue copper protein azurin, a prototypical redox-active metalloprotein previously probed by various experimental techniques both in solution and on metal/vacuum interfaces. We used a hybrid QM/MM computational technique based on DFT to explore protein dynamics, flexibility, and corresponding reorganization free energies in aqueous solution, vacuum, and on vacuum gold interfaces. Somewhat surprisingly, the reorganization free energy only slightly decreases when azurin is dried because the loss of the hydration shell leads to larger flexibility of the protein near its redox site. At the vacuum gold surfaces, the energetics of the structure relaxation depends on the adsorption geometry, however, significant reduction of the reorganization free energy was not observed. These findings have important consequences for the charge transport mechanism in vacuum devices, showing that the free energy barriers for protein oxidation remain significant even under ultra-high vacuum conditions.
Collapse
Affiliation(s)
| | - Denys Biriukov
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences, Czech Republic
| | - Zdenek Futera
- University of South Bohemia in Ceske Budejovice Faculty of Science, Czech Republic
| |
Collapse
|
11
|
Fedoretz-Maxwell BP, Shin CH, MacNeil GA, Worrall LJ, Park R, Strynadka NCJ, Walsby CJ, Warren JJ. The Impact of Second Coordination Sphere Methionine-Aromatic Interactions in Copper Proteins. Inorg Chem 2022; 61:5563-5571. [DOI: 10.1021/acs.inorgchem.2c00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Brooklyn P. Fedoretz-Maxwell
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Catherine H. Shin
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Gregory A. MacNeil
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Liam J. Worrall
- Department of Biochemistry and Molecular Biology and Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Rachel Park
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Natalie C. J. Strynadka
- Department of Biochemistry and Molecular Biology and Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Charles J. Walsby
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Jeffrey J. Warren
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
12
|
Zhao X, Zhao J, Sun Y, Ouyang H, Chen N, Ren J, Li Y, Chen S, Yang D, Xing B. Selenite capture by MIL-101 (Fe) through FeOSe bonds at free coordination Fe sites. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127715. [PMID: 34836691 DOI: 10.1016/j.jhazmat.2021.127715] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/23/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Selective immobilization of SeO32- is highly desired for the remediation of Se-contaminated water. Thus, the irreversible sorption of SeO32- ions by adsorbents through unique coordination bonds with high affinity is needed. Herein, we demonstrated that Fe-based metal-organic framework (MOF) (Fe-MIL-101) with free coordination sites (FCSs) enabled selective and irreversible capture of SeO32- ions from aqueous solution with fast kinetics and a high uptake capacity of 183.7 mg∙g-1, owing to large MOF apertures and substantial numbers of FCSs as capture sites through forming Fe-O-Se bonds. Meanwhile, Fe-MIL-101 maintained excellent performance in a broad pH range (4-11) and high selectivity for SeO32- ions in the presence of excessive competitive anions (e.g., CO32-, PO43-). Density functional theory (DFT) calculation, extended X-ray absorption fine structure (EXAFS), and Mössbauer fittings confirmed that the capture on Fe-MIL-101 was through the Fe-O-Se coordination bonds between FCSs and SeO32-. Moreover, Fe-MIL-101 could effectively remove SeO32- in simulated natural water and sewage by overcoming the influence of co-existing ions and organic matters. This study highlights new opportunities for the design of MOF-based materials for removing toxic and radioactive anions with irreversibility and high selectivity from natural and waste water.
Collapse
Affiliation(s)
- Xiaoliang Zhao
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative In-novation Center for Marine Biomass Fibers, Qingdao University, Qingdao 266071, PR China
| | - Jian Zhao
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, PR China
| | - Yuanyuan Sun
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative In-novation Center for Marine Biomass Fibers, Qingdao University, Qingdao 266071, PR China
| | - Huan Ouyang
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative In-novation Center for Marine Biomass Fibers, Qingdao University, Qingdao 266071, PR China
| | - Ning Chen
- Canadian Light Source, Saskatoon S7N 0X4, SK, Canada
| | - Jun Ren
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, PR China
| | - Yue Li
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative In-novation Center for Marine Biomass Fibers, Qingdao University, Qingdao 266071, PR China
| | - Shuai Chen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Science, Taiyuan 030001, PR China
| | - Dongjiang Yang
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative In-novation Center for Marine Biomass Fibers, Qingdao University, Qingdao 266071, PR China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
13
|
Solomon EI, Jose A. Spiers Memorial Lecture: Activating Metal Sites for Biological Electron Transfer. Faraday Discuss 2022; 234:9-30. [DOI: 10.1039/d2fd00001f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal sites in biology often exhibit unique spectroscopic features that reflect novel geometric and electronic structures imposed by the protein that are key to reactivity. The Blue copper active site...
Collapse
|
14
|
Vilbert AC, Liu Y, Dai H, Lu Y. Recent advances in tuning redox properties of electron transfer centers in metalloenzymes catalyzing oxygen reduction reaction and H 2 oxidation important for fuel cells design. CURRENT OPINION IN ELECTROCHEMISTRY 2021; 30:100780. [PMID: 34435160 PMCID: PMC8382256 DOI: 10.1016/j.coelec.2021.100780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Current fuel-cell catalysts for oxygen reduction reaction (ORR) and H2 oxidation use precious metals and, for ORR, require high overpotentials. In contrast, metalloenzymes perform their respective reaction at low overpotentials using earth-abundant metals, making metalloenzymes ideal candidates for inspiring electrocatalytic design. Critical to the success of these enzymes are redox-active metal centers surrounding the enzyme active sites that ensure fast electron transfer (ET) to or away from the active site, by tuning the catalytic potential of the reaction as observed in multicopper oxidases but also in dictating the catalytic bias of the reaction as realized in hydrogenases. This review summarizes recent advances in studying these ET centers in multicopper oxidases and heme-copper oxidases that perform ORR and hydrogenases in carrying out H2 oxidation. Insights gained from understanding how the reduction potential of the ET centers effects reactivity at the active site in both the enzymes and their models are provided.
Collapse
Affiliation(s)
| | - Yiwei Liu
- Department of Chemistry and Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Huiguang Dai
- Department of Chemistry and Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yi Lu
- Pacific Northwest National Laboratory, Richland, WA 99352, USA
- Department of Chemistry and Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
15
|
Di Rocco G, Battistuzzi G, Borsari M, Bortolotti CA, Ranieri A, Sola M. The enthalpic and entropic terms of the reduction potential of metalloproteins: Determinants and interplay. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Blaschek L, Pesquet E. Phenoloxidases in Plants-How Structural Diversity Enables Functional Specificity. FRONTIERS IN PLANT SCIENCE 2021; 12:754601. [PMID: 34659324 PMCID: PMC8517187 DOI: 10.3389/fpls.2021.754601] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/09/2021] [Indexed: 05/23/2023]
Abstract
The metabolism of polyphenolic polymers is essential to the development and response to environmental changes of organisms from all kingdoms of life, but shows particular diversity in plants. In contrast to other biopolymers, whose polymerisation is catalysed by homologous gene families, polyphenolic metabolism depends on phenoloxidases, a group of heterogeneous oxidases that share little beyond the eponymous common substrate. In this review, we provide an overview of the differences and similarities between phenoloxidases in their protein structure, reaction mechanism, substrate specificity, and functional roles. Using the example of laccases (LACs), we also performed a meta-analysis of enzyme kinetics, a comprehensive phylogenetic analysis and machine-learning based protein structure modelling to link functions, evolution, and structures in this group of phenoloxidases. With these approaches, we generated a framework to explain the reported functional differences between paralogs, while also hinting at the likely diversity of yet undescribed LAC functions. Altogether, this review provides a basis to better understand the functional overlaps and specificities between and within the three major families of phenoloxidases, their evolutionary trajectories, and their importance for plant primary and secondary metabolism.
Collapse
|
17
|
Bím D, Alexandrova AN. Electrostatic regulation of blue copper sites. Chem Sci 2021; 12:11406-11413. [PMID: 34667549 PMCID: PMC8447924 DOI: 10.1039/d1sc02233d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/26/2021] [Indexed: 01/06/2023] Open
Abstract
In the last 50 years, the blue copper proteins became central targets of investigation. Extensive experiments focused on the Cu coordination to probe the effect of local perturbations on its properties. We found that local electric fields, generated by charged residues evolutionarily placed throughout the protein edifice, mainly second sphere, but also more remotely, constitute an additional significant factor regulating blue copper proteins. These fields are not random, but exhibit a highly specific directionality, negative with respect to the and vectors in the Cu first shell. The field magnitude contributes to fine-tuning of the geometric and electronic properties of Cu sites in individual blue copper proteins. Specifically, the local electric fields evidently control the Cu–SMet bond distance, Cu(ii)–SCys bond covalency, and the energies of the frontier molecular orbitals, which, in turn, govern the Cu(ii/i) reduction potential and the relative absorption intensities at 450 nm and 600 nm. Intramolecular electric fields in blue copper proteins are oriented in a fixed way to modulate properties of their copper sites: they control the first-shell copper interactions to influence geometric, spectroscopic, and redox behavior.![]()
Collapse
Affiliation(s)
- Daniel Bím
- Department of Chemistry and Biochemistry, University of California, Los Angeles 607 Charles E. Young Drive East Los Angeles CA 90095-1569 USA
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles 607 Charles E. Young Drive East Los Angeles CA 90095-1569 USA .,California NanoSystems Institute, University of California, Los Angeles 570 Westwood Plaza Los Angeles California 90095-1569 USA
| |
Collapse
|
18
|
Bruzzese PC, Salvadori E, Jäger S, Hartmann M, Civalleri B, Pöppl A, Chiesa M. 17O-EPR determination of the structure and dynamics of copper single-metal sites in zeolites. Nat Commun 2021; 12:4638. [PMID: 34330914 PMCID: PMC8324863 DOI: 10.1038/s41467-021-24935-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
The bonding of copper ions to lattice oxygens dictates the activity and selectivity of copper exchanged zeolites. By 17O isotopic labelling of the zeolite framework, in conjunction with advanced EPR methodologies and DFT modelling, we determine the local structure of single site CuII species, we quantify the covalency of the metal-framework bond and we assess how this scenario is modified by the presence of solvating H216O or H217O molecules. This enables to follow the migration of CuII species as a function of hydration conditions, providing evidence for a reversible transfer pathway within the zeolite cage as a function of the water pressure. The results presented in this paper establish 17O EPR as a versatile tool for characterizing metal-oxide interactions in open-shell systems.
Collapse
Affiliation(s)
- Paolo Cleto Bruzzese
- grid.9647.c0000 0004 7669 9786Felix Bloch Institute for Solid State Physics, Universität Leipzig, Leipzig, Germany ,grid.7605.40000 0001 2336 6580Department of Chemistry and NIS Centre of Excellence, University of Turin, Torino, Italy
| | - Enrico Salvadori
- grid.7605.40000 0001 2336 6580Department of Chemistry and NIS Centre of Excellence, University of Turin, Torino, Italy
| | - Stefan Jäger
- Erlangen Center for Interface Research and Catalysis (ECRC), Erlangen, Germany
| | - Martin Hartmann
- Erlangen Center for Interface Research and Catalysis (ECRC), Erlangen, Germany
| | - Bartolomeo Civalleri
- grid.7605.40000 0001 2336 6580Department of Chemistry and NIS Centre of Excellence, University of Turin, Torino, Italy
| | - Andreas Pöppl
- grid.9647.c0000 0004 7669 9786Felix Bloch Institute for Solid State Physics, Universität Leipzig, Leipzig, Germany
| | - Mario Chiesa
- grid.7605.40000 0001 2336 6580Department of Chemistry and NIS Centre of Excellence, University of Turin, Torino, Italy
| |
Collapse
|
19
|
Schulz C, van Gastel M, Pantazis DA, Neese F. Converged Structural and Spectroscopic Properties for Refined QM/MM Models of Azurin. Inorg Chem 2021; 60:7399-7412. [PMID: 33939922 PMCID: PMC8154437 DOI: 10.1021/acs.inorgchem.1c00640] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 12/27/2022]
Abstract
Blue copper proteins continue to challenge experiment and theory with their electronic structure and spectroscopic properties that respond sensitively to the coordination environment of the copper ion. In this work, we report state-of-the art electronic structure studies for geometric and spectroscopic properties of the archetypal "Type I" copper protein azurin in its Cu(II) state. A hybrid quantum mechanics/molecular mechanics (QM/MM) approach is used, employing both density functional theory (DFT) and coupled cluster with singles, doubles, and perturbative triples (CCSD(T)) methods for the QM region, the latter method making use of the domain-based local pair natural orbital (DLPNO) approach. Models of increasing QM size are employed to investigate the convergence of critical geometric parameters. It is shown that convergence is slow and that a large QM region is critical for reproducing the short experimental Cu-SCys112 distance. The study of structural convergence is followed by investigation of spectroscopic parameters using both DFT and DLPNO-CC methods and comparing these to the experimental spectrum using simulations. The results allow us to examine for the first time the distribution of spin densities and hyperfine coupling constants at the coupled cluster level, leading us to revisit the experimental assignment of the 33S hyperfine splitting. The wavefunction-based approach to obtain spin-dependent properties of open-shell systems demonstrated here for the case of azurin is transferable and applicable to a large array of bioinorganic systems.
Collapse
Affiliation(s)
- Christine
E. Schulz
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Maurice van Gastel
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Dimitrios A. Pantazis
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
20
|
Osella S. Artificial Photosynthesis: Is Computation Ready for the Challenge Ahead? NANOMATERIALS 2021; 11:nano11020299. [PMID: 33498961 PMCID: PMC7911014 DOI: 10.3390/nano11020299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022]
Abstract
A tremendous effort is currently devoted to the generation of novel hybrid materials with enhanced electronic properties for the creation of artificial photosynthetic systems. This compelling and challenging problem is well-defined from an experimental point of view, as the design of such materials relies on combining organic materials or metals with biological systems like light harvesting and redox-active proteins. Such hybrid systems can be used, e.g., as bio-sensors, bio-fuel cells, biohybrid photoelectrochemical cells, and nanostructured photoelectronic devices. Despite these efforts, the main bottleneck is the formation of efficient interfaces between the biological and the organic/metal counterparts for efficient electron transfer (ET). It is within this aspect that computation can make the difference and improve the current understanding of the mechanisms underneath the interface formation and the charge transfer efficiency. Yet, the systems considered (i.e., light harvesting protein, self-assembly monolayer and surface assembly) are more and more complex, reaching (and often passing) the limit of current computation power. In this review, recent developments in computational methods for studying complex interfaces for artificial photosynthesis will be provided and selected cases discussed, to assess the inherent ability of computation to leave a mark in this field of research.
Collapse
Affiliation(s)
- Silvio Osella
- Chemical and Biological Systems Simulation Lab, Center of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| |
Collapse
|
21
|
Yu SS, Li JJ, Cui C, Tian S, Chen JJ, Yu HQ, Hou C, Nilges MJ, Lu Y. Structural Basis for a Quadratic Relationship between Electronic Absorption and Electronic Paramagnetic Resonance Parameters of Type 1 Copper Proteins. Inorg Chem 2020; 59:10620-10627. [PMID: 32689800 DOI: 10.1021/acs.inorgchem.0c01065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Type 1 copper (T1Cu) proteins play important roles in electron transfer in biology, largely due to the unique structure of the T1Cu center, which is reflected by its spectroscopic properties. Previous reports have suggested a correlation between a high ratio of electronic absorbance at ∼450 nm to that at ∼600 nm (R = A450/A600) and a large copper(II) hyperfine coupling in the z direction (Az) in electron paramagnetic resonance (EPR). However, this correlation does not have a clear physical meaning, nor does it hold for many proteins with a perturbed T1Cu center. To address this issue, a new parameter of R' [A450/(A450 + A600)] with a better physical meaning of a fractional SCys pseudo-σ to Cu(II) charge transfer transition intensity is defined and a quadratic relationship between R' and Az is found on the basis of a comprehensive analysis of ultraviolet-visible absorption, EPR, and structural parameters of T1Cu proteins. We are able to find good correlations between R' and the displacement of copper from the trigonal plane defined by the His2Cys ligands and the angle between the NHis1-Cu-NHis2 plane and the SCys-Cu-axial ligand plane, providing a structural basis for the observed correlation. These findings and analyses provide a new framework for a deeper understanding of the spectroscopic and electronic properties of T1Cu proteins, which may allow better design and applications of this important class of proteins for redox and electron transfer functions.
Collapse
Affiliation(s)
- Sheng-Song Yu
- Department of Applied Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jun-Jie Li
- Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Chang Cui
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shiliang Tian
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jie-Jie Chen
- Department of Applied Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Han-Qing Yu
- Department of Applied Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Changjun Hou
- Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China
| | - Mark J Nilges
- School of Chemical Sciences Electron Paramagnetic Resonance Lab, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
22
|
Szuster J, Zitare UA, Castro MA, Leguto AJ, Morgada MN, Vila AJ, Murgida DH. Cu A-based chimeric T1 copper sites allow for independent modulation of reorganization energy and reduction potential. Chem Sci 2020; 11:6193-6201. [PMID: 32953013 PMCID: PMC7480511 DOI: 10.1039/d0sc01620a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/01/2020] [Indexed: 01/19/2023] Open
Abstract
Attaining rational modulation of thermodynamic and kinetic redox parameters of metalloproteins is a key milestone towards the (re)design of proteins with new or improved redox functions. Here we report that implantation of ligand loops from natural T1 proteins into the scaffold of a CuA protein leads to a series of distorted T1-like sites that allow for independent modulation of reduction potentials (E°') and electron transfer reorganization energies (λ). On the one hand E°' values could be fine-tuned over 120 mV without affecting λ. On the other, λ values could be modulated by more than a factor of two while affecting E°' only by a few millivolts. These results are in sharp contrast to previous studies that used T1 cupredoxin folds, thus highlighting the importance of the protein scaffold in determining such parameters.
Collapse
Affiliation(s)
- Jonathan Szuster
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE, CONICET-UBA) , Argentina .
- Departamento de Química Inorgánica, Analítica y Química-Física , Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , Buenos Aires , Argentina
| | - Ulises A Zitare
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE, CONICET-UBA) , Argentina .
- Departamento de Química Inorgánica, Analítica y Química-Física , Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , Buenos Aires , Argentina
| | - María A Castro
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE, CONICET-UBA) , Argentina .
- Departamento de Química Inorgánica, Analítica y Química-Física , Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , Buenos Aires , Argentina
| | - Alcides J Leguto
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) , Argentina
- Departamento de Química Biológica , Facultad de Ciencias Bioquímicas y Farmacéuticas , Universidad Nacional de Rosario , Rosario , Argentina
| | - Marcos N Morgada
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) , Argentina
- Departamento de Química Biológica , Facultad de Ciencias Bioquímicas y Farmacéuticas , Universidad Nacional de Rosario , Rosario , Argentina
| | - Alejandro J Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) , Argentina
- Departamento de Química Biológica , Facultad de Ciencias Bioquímicas y Farmacéuticas , Universidad Nacional de Rosario , Rosario , Argentina
| | - Daniel H Murgida
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE, CONICET-UBA) , Argentina .
- Departamento de Química Inorgánica, Analítica y Química-Física , Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , Buenos Aires , Argentina
| |
Collapse
|
23
|
North ML, Wilcox DE. Shift from Entropic Cu 2+ Binding to Enthalpic Cu + Binding Determines the Reduction Thermodynamics of Blue Copper Proteins. J Am Chem Soc 2019; 141:14329-14339. [PMID: 31433629 DOI: 10.1021/jacs.9b06836] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The enthalpic and entropic components of Cu2+ and Cu+ binding to the blue copper protein azurin have been quantified with isothermal titration calorimetry (ITC) measurements and analysis, providing the first such experimental values for Cu+ binding to a protein. The high affinity of azurin for Cu2+ is entirely due to a very favorable binding entropy, while its even higher affinity for Cu+ is due to a favorable binding enthalpy and entropy. The binding thermodynamics provide insight into bond enthalpies at the blue copper site and entropic contributions from desolvation and proton displacement. These values were used in thermodynamic cycles to determine the enthalpic and entropic contributions to the free energy of reduction and thus the reduction potential. The reduction thermodynamics obtained with this method are in good agreement with previous results from temperature-dependent electrochemical measurements. The calorimetry method, however, provides new insight into contributions from the initial (oxidized) and final (reduced) states of the reduction. Since ITC measurements quantify the protons that are displaced upon metal binding, the proton transfer that is coupled with electron transfer is also determined with this method. Preliminary results for Cu2+ and Cu+ binding to the Phe114Pro variant of azurin demonstrate the insight about protein tuning of the reduction potential that is provided by the binding thermodynamics of each metal oxidation state.
Collapse
Affiliation(s)
- Molly L North
- Department of Chemistry , Dartmouth College , Hanover , New Hampshire 03755 , United States
| | - Dean E Wilcox
- Department of Chemistry , Dartmouth College , Hanover , New Hampshire 03755 , United States
| |
Collapse
|
24
|
Lee HB, Agapie T. Redox Tuning via Ligand-Induced Geometric Distortions at a YMn 3O 4 Cubane Model of the Biological Oxygen Evolving Complex. Inorg Chem 2019; 58:14998-15003. [PMID: 31095368 PMCID: PMC6876925 DOI: 10.1021/acs.inorgchem.9b00510] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
The function of proteins
involved in electron transfer is dependent
on cofactors attaining the necessary reduction potentials. We establish
a mode of cluster redox tuning through steric pressure on a synthetic
model related to Photosystem II. Resembling the cuboidal [CaMn3O4] subsite of the biological oxygen evolving complex
(OEC), [Mn4O4] and [YMn3O4] complexes featuring ligands of different basicity and chelating
properties were characterized by cyclic voltammetry. In the absence
of ligand-induced distortions, increasing the basicity of the ligands
results in a decrease of cluster reduction potential. Contraction
of Y-oxo/Y–Mn distances by 0.1/0.15 Å enforced by a chelating
ligand results in an increase of cluster reduction potential even
in the presence of strongly basic donors. Related protein-induced
changes in Ca-oxo/Ca–Mn distances may have similar effects
in tuning the redox potential of the OEC through entatic states and
may explain the cation size dependence on the progression of the S-state
cycle. The redox properties of [YMn3O4] and
[Mn4O4] complexes featuring bridging ligands
of different basicity and chelating properties are reported. In the
absence of ligand-induced geometric distortions, increasing the basicity
of the ligands results in a decrease of cluster reduction potential.
A chelating ligand results in contractions of Y-oxo distances by ∼0.1
Å, which correlates with an increase of cluster reduction potential
even in the presence of strongly basic donors.
Collapse
Affiliation(s)
- Heui Beom Lee
- Department of Chemistry and Chemical Engineering , California Institute of Technology , 1200 E. California Blvd MC 127-72 , Pasadena , California 91125 , United States
| | - Theodor Agapie
- Department of Chemistry and Chemical Engineering , California Institute of Technology , 1200 E. California Blvd MC 127-72 , Pasadena , California 91125 , United States
| |
Collapse
|
25
|
Mateljak I, Monza E, Lucas MF, Guallar V, Aleksejeva O, Ludwig R, Leech D, Shleev S, Alcalde M. Increasing Redox Potential, Redox Mediator Activity, and Stability in a Fungal Laccase by Computer-Guided Mutagenesis and Directed Evolution. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00531] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Ivan Mateljak
- Department of Biocatalysis, Institute of Catalysis, CSIC, Cantoblanco, 28094 Madrid, Spain
| | - Emanuele Monza
- Barcelona Supercomputing Center, Jordi Girona 29, 08034 Barcelona, Spain
- Zymvol, C/Almogavers 165, 08018 Barcelona, Spain
| | - Maria Fatima Lucas
- Barcelona Supercomputing Center, Jordi Girona 29, 08034 Barcelona, Spain
- Zymvol, C/Almogavers 165, 08018 Barcelona, Spain
| | - Victor Guallar
- Barcelona Supercomputing Center, Jordi Girona 29, 08034 Barcelona, Spain
- ICREA: Institució Catalana de Recerca i Estudis Avancats, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Olga Aleksejeva
- Biomedical Sciences, Health and Society, Malmö University, 20560 Malmö, Sweden
| | - Roland Ludwig
- Department of Food Sciences and Technology, VIBT—Vienna Institute of Biotechnology, BOKU—University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Donal Leech
- Department of Chemistry, National University of Ireland, Galway University Road, SW4 794 Galway, Ireland
| | - Sergey Shleev
- Biomedical Sciences, Health and Society, Malmö University, 20560 Malmö, Sweden
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, Cantoblanco, 28094 Madrid, Spain
| |
Collapse
|
26
|
Shen L, Zeng X, Hu H, Hu X, Yang W. Accurate Quantum Mechanical/Molecular Mechanical Calculations of Reduction Potentials in Azurin Variants. J Chem Theory Comput 2018; 14:4948-4957. [PMID: 30040901 DOI: 10.1021/acs.jctc.8b00403] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Understanding the regulation mechanism and molecular determinants of the reduction potential of metalloprotein is a major challenge. An ab initio quantum mechanical/molecular mechanical (QM/MM) method combining the minimum free energy path (MFEP) and fractional number of electron (FNE) approaches has been developed in our group to simulate the redox processes of large systems. The FNE scheme provides an efficient unique description for the redox process, while the MFEP method provides improved conformational sampling on complex environments such as protein in the QM/MM calculations. The reduction potentials of wild-type and seven mutants of azurin, a type 1 copper metalloprotein, were simulated with the QM/MM-MFEP+FNE approach in this paper. A range of 350 mV for the variations of the reduction potentials of these azurin proteins was reproduced faithfully with relative errors around 20 mV. The correlation between structural interactions and reduction potentials observed in simulations provides in-depth insight into the regulation of reduction potentials, which potentially can also be very useful to the engineering of metalloprotein-based electrocatalysts in artificial photosynthesis. The excellent accuracy and efficiency of the QM/MM-MFEP+FNE approach demonstrate the potential for simulations of many electron transfer processes in condensed phases and biochemical systems.
Collapse
Affiliation(s)
- Lin Shen
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
| | - Xiancheng Zeng
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
| | - Hao Hu
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
| | - Xiangqian Hu
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
| | - Weitao Yang
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
| |
Collapse
|
27
|
Mazmanian K, Dudev T, Lim C. How First Shell–Second Shell Interactions and Metal Substitution Modulate Protein Function. Inorg Chem 2018; 57:14052-14061. [DOI: 10.1021/acs.inorgchem.8b01029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Karine Mazmanian
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 10617, Taiwan
- Taiwan and Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University, Sofia 1164, Bulgaria
| | - Carmay Lim
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
28
|
Fluctuating hydrogen-bond networks govern anomalous electron transfer kinetics in a blue copper protein. Proc Natl Acad Sci U S A 2018; 115:6129-6134. [PMID: 29844178 PMCID: PMC6004490 DOI: 10.1073/pnas.1805719115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We combine experimental and computational methods to address the anomalous kinetics of long-range electron transfer (ET) in mutants of Pseudomonas aeruginosa azurin. ET rates and driving forces for wild type (WT) and three N47X mutants (X = L, S, and D) of Ru(2,2'-bipyridine)2 (imidazole)(His83) azurin are reported. An enhanced ET rate for the N47L mutant suggests either an increase of the donor-acceptor (DA) electronic coupling or a decrease in the reorganization energy for the reaction. The underlying atomistic features are investigated using a recently developed nonadiabatic molecular dynamics method to simulate ET in each of the azurin mutants, revealing unexpected aspects of DA electronic coupling. In particular, WT azurin and all studied mutants exhibit more DA compression during ET (>2 Å) than previously recognized. Moreover, it is found that DA compression involves an extended network of hydrogen bonds, the fluctuations of which gate the ET reaction, such that DA compression is facilitated by transiently rupturing hydrogen bonds. It is found that the N47L mutant intrinsically disrupts this hydrogen-bond network, enabling particularly facile DA compression. This work, which reveals the surprisingly fluctional nature of ET in azurin, suggests that hydrogen-bond networks can modulate the efficiency of long-range biological ET.
Collapse
|
29
|
Romero-Muñiz C, Ortega M, Vilhena JG, Díez-Pérez I, Cuevas JC, Pérez R, Zotti LA. Ab initio electronic structure calculations of entire blue copper azurins. Phys Chem Chem Phys 2018; 20:30392-30402. [DOI: 10.1039/c8cp06862c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We present a theoretical study of the blue-copper azurin extracted from Pseudomonas aeruginosa and several of its single amino acid mutants.
Collapse
Affiliation(s)
- Carlos Romero-Muñiz
- Departamento de Física Teórica de la Materia Condensada
- Universidad Autónoma de Madrid
- E-28049 Madrid
- Spain
| | - María Ortega
- Departamento de Física Teórica de la Materia Condensada
- Universidad Autónoma de Madrid
- E-28049 Madrid
- Spain
| | - J. G. Vilhena
- Departamento de Física Teórica de la Materia Condensada
- Universidad Autónoma de Madrid
- E-28049 Madrid
- Spain
- Department of Physics
| | - I. Díez-Pérez
- Department of Materials Science and Physical Chemistry & Institute of Theoretical and Computational Chemistry (IQTCUB)
- University of Barcelona
- Barcelona 08028
- Spain
- Department of Chemistry
| | - Juan Carlos Cuevas
- Departamento de Física Teórica de la Materia Condensada
- Universidad Autónoma de Madrid
- E-28049 Madrid
- Spain
- Condensed Matter Physics Center (IFIMAC)
| | - Rubén Pérez
- Departamento de Física Teórica de la Materia Condensada
- Universidad Autónoma de Madrid
- E-28049 Madrid
- Spain
- Condensed Matter Physics Center (IFIMAC)
| | - Linda A. Zotti
- Departamento de Física Teórica de la Materia Condensada
- Universidad Autónoma de Madrid
- E-28049 Madrid
- Spain
- Condensed Matter Physics Center (IFIMAC)
| |
Collapse
|
30
|
Sinicropi A. DFT modeling of structures and redox potentials of wild-type, Nickel-substituted and mutated (N47S/M121L, HPAz) Azurin. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.08.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Fowler NJ, Blanford CF, Warwicker J, de Visser SP. Prediction of Reduction Potentials of Copper Proteins with Continuum Electrostatics and Density Functional Theory. Chemistry 2017; 23:15436-15445. [PMID: 28815759 PMCID: PMC5698706 DOI: 10.1002/chem.201702901] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Indexed: 12/20/2022]
Abstract
Blue copper proteins, such as azurin, show dramatic changes in Cu2+/Cu+ reduction potential upon mutation over the full physiological range. Hence, they have important functions in electron transfer and oxidation chemistry and have applications in industrial biotechnology. The details of what determines these reduction potential changes upon mutation are still unclear. Moreover, it has been difficult to model and predict the reduction potential of azurin mutants and currently no unique procedure or workflow pattern exists. Furthermore, high‐level computational methods can be accurate but are too time consuming for practical use. In this work, a novel approach for calculating reduction potentials of azurin mutants is shown, based on a combination of continuum electrostatics, density functional theory and empirical hydrophobicity factors. Our method accurately reproduces experimental reduction potential changes of 30 mutants with respect to wildtype within experimental error and highlights the factors contributing to the reduction potential change. Finally, reduction potentials are predicted for a series of 124 new mutants that have not yet been investigated experimentally. Several mutants are identified that are located well over 10 Å from the copper center that change the reduction potential by more than 85 mV. The work shows that secondary coordination sphere mutations mostly lead to long‐range electrostatic changes and hence can be modeled accurately with continuum electrostatics.
Collapse
Affiliation(s)
- Nicholas J Fowler
- Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Christopher F Blanford
- Manchester Institute of Biotechnology and School of Materials, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Jim Warwicker
- Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Sam P de Visser
- Manchester Institute of Biotechnology, and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| |
Collapse
|
32
|
Ha Y, Arnold AR, Nuñez NN, Bartels PL, Zhou A, David SS, Barton JK, Hedman B, Hodgson KO, Solomon EI. Sulfur K-Edge XAS Studies of the Effect of DNA Binding on the [Fe 4S 4] Site in EndoIII and MutY. J Am Chem Soc 2017; 139:11434-11442. [PMID: 28715891 DOI: 10.1021/jacs.7b03966] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
S K-edge X-ray absorption spectroscopy (XAS) was used to study the [Fe4S4] clusters in the DNA repair glycosylases EndoIII and MutY to evaluate the effects of DNA binding and solvation on Fe-S bond covalencies (i.e., the amount of S 3p character mixed into the Fe 3d valence orbitals). Increased covalencies in both iron-thiolate and iron-sulfide bonds would stabilize the oxidized state of the [Fe4S4] clusters. The results are compared to those on previously studied [Fe4S4] model complexes, ferredoxin (Fd), and to new data on high-potential iron-sulfur protein (HiPIP). A limited decrease in covalency is observed upon removal of solvent water from EndoIII and MutY, opposite to the significant increase observed for Fd, where the [Fe4S4] cluster is solvent exposed. Importantly, in EndoIII and MutY, a large increase in covalency is observed upon DNA binding, which is due to the effect of its negative charge on the iron-sulfur bonds. In EndoIII, this change in covalency can be quantified and makes a significant contribution to the observed decrease in reduction potential found experimentally in DNA repair proteins, enabling their HiPIP-like redox behavior.
Collapse
Affiliation(s)
- Yang Ha
- Department of Chemistry, Stanford University , Stanford, California 94035, United States.,Stanford Synchrotron Radiation Lightsource, SLAC, Stanford University , Menlo Park, California 94025, United States
| | - Anna R Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| | - Nicole N Nuñez
- Department of Chemistry, University of California Davis , Davis, California 95616, United States
| | - Phillip L Bartels
- Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| | - Andy Zhou
- Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| | - Sheila S David
- Department of Chemistry, University of California Davis , Davis, California 95616, United States
| | - Jacqueline K Barton
- Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| | - Britt Hedman
- Stanford Synchrotron Radiation Lightsource, SLAC, Stanford University , Menlo Park, California 94025, United States
| | - Keith O Hodgson
- Department of Chemistry, Stanford University , Stanford, California 94035, United States.,Stanford Synchrotron Radiation Lightsource, SLAC, Stanford University , Menlo Park, California 94025, United States
| | - Edward I Solomon
- Department of Chemistry, Stanford University , Stanford, California 94035, United States.,Stanford Synchrotron Radiation Lightsource, SLAC, Stanford University , Menlo Park, California 94025, United States
| |
Collapse
|
33
|
Manesis AC, O'Connor MJ, Schneider CR, Shafaat HS. Multielectron Chemistry within a Model Nickel Metalloprotein: Mechanistic Implications for Acetyl-CoA Synthase. J Am Chem Soc 2017; 139:10328-10338. [PMID: 28675928 DOI: 10.1021/jacs.7b03892] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The acetyl coenzyme A synthase (ACS) enzyme plays a central role in the metabolism of anaerobic bacteria and archaea, catalyzing the reversible synthesis of acetyl-CoA from CO and a methyl group through a series of nickel-based organometallic intermediates. Owing to the extreme complexity of the native enzyme systems, the mechanism by which this catalysis occurs remains poorly understood. In this work, we have developed a protein-based model for the NiP center of acetyl coenzyme A synthase using a nickel-substituted azurin protein (NiAz). NiAz is the first model nickel protein system capable of accessing three (NiI/NiII/NiIII) distinct oxidation states within a physiological potential range in aqueous solution, a critical feature for achieving organometallic ACS activity, and binds CO and -CH3 groups with biologically relevant affinity. Characterization of the NiI-CO species through spectroscopic and computational techniques reveals fundamentally similar features between the model NiAz system and the native ACS enzyme, highlighting the potential for related reactivity in this model protein. This work provides insight into the enzymatic process, with implications toward engineering biological catalysts for organometallic processes.
Collapse
Affiliation(s)
- Anastasia C Manesis
- The Ohio State University , 100 West 18th Avenue, Newman & Wolfrom Laboratory of Chemistry, Columbus, Ohio 43210, United States
| | - Matthew J O'Connor
- The Ohio State University , 100 West 18th Avenue, Newman & Wolfrom Laboratory of Chemistry, Columbus, Ohio 43210, United States
| | - Camille R Schneider
- The Ohio State University , 100 West 18th Avenue, Newman & Wolfrom Laboratory of Chemistry, Columbus, Ohio 43210, United States
| | - Hannah S Shafaat
- The Ohio State University , 100 West 18th Avenue, Newman & Wolfrom Laboratory of Chemistry, Columbus, Ohio 43210, United States
| |
Collapse
|
34
|
Van Kuiken BE, Ross MR, Strader ML, Cordones AA, Cho H, Lee JH, Schoenlein RW, Khalil M. Picosecond sulfur K-edge X-ray absorption spectroscopy with applications to excited state proton transfer. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:044021. [PMID: 28529962 PMCID: PMC5422206 DOI: 10.1063/1.4983157] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/26/2017] [Indexed: 05/10/2023]
Abstract
Picosecond X-ray absorption (XA) spectroscopy at the S K-edge (∼2.4 keV) is demonstrated and used to monitor excited state dynamics in a small organosulfur molecule (2-Thiopyridone, 2TP) following optical excitation. Multiple studies have reported that the thione (2TP) is converted into the thiol (2-Mercaptopyridine, 2MP) following photoexcitation. However, the timescale and photochemical pathway of this reaction remain uncertain. In this work, time-resolved XA spectroscopy at the S K-edge is used to monitor the formation and decay of two transient species following 400 nm excitation of 2TP dissolved in acetonitrile. The first transient species forms within the instrument response time (70 ps) and decays within 6 ns. The second transient species forms on a timescale of ∼400 ps and decays on a 15 ns timescale. Time-dependent density functional theory is used to identify the first and second transient species as the lowest-lying triplet states of 2TP and 2MP, respectively. This study demonstrates transient S K-edge XA spectroscopy as a sensitive and viable probe of time-evolving charge dynamics near sulfur sites in small molecules with future applications towards studying complex biological and material systems.
Collapse
Affiliation(s)
| | - Matthew R Ross
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Matthew L Strader
- Ultrafast X-ray Science Laboratory, Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Amy A Cordones
- Ultrafast X-ray Science Laboratory, Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Hana Cho
- Ultrafast X-ray Science Laboratory, Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Jae Hyuk Lee
- Ultrafast X-ray Science Laboratory, Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Robert W Schoenlein
- Ultrafast X-ray Science Laboratory, Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Munira Khalil
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
35
|
Ramirez Cohen M, Mendelman N, Radoul M, Wilson TD, Savelieff MG, Zimmermann H, Kaminker I, Feintuch A, Lu Y, Goldfarb D. Thiolate Spin Population of Type I Copper in Azurin Derived from 33S Hyperfine Coupling. Inorg Chem 2017; 56:6163-6174. [DOI: 10.1021/acs.inorgchem.7b00167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Marie Ramirez Cohen
- Department of Chemical
Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Netanel Mendelman
- Department of Chemical
Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Marina Radoul
- Department of Chemical
Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tiffany D. Wilson
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Masha G. Savelieff
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Herbert Zimmermann
- Abteilung Biophysik, Max Planck-Institut für Medizinische Forschung, Heidelberg 69120, Germany
| | - Ilia Kaminker
- Department of Chemical
Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Akiva Feintuch
- Department of Chemical
Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yi Lu
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Daniella Goldfarb
- Department of Chemical
Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
36
|
Sekretaryova AN, Vagin MY, Turner APF, Eriksson M. Correspondence on “Can Nanoimpacts Detect Single-Enzyme Activity? Theoretical Considerations and an Experimental Study of Catalase Impacts”. ACS Catal 2017. [DOI: 10.1021/acscatal.7b00742] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Alina N. Sekretaryova
- Department
of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
- Department
of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Mikhail Yu. Vagin
- Department
of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
- Department
of Science and Technology, Linköping University, SE-601 74 Norrköping, Sweden
| | - Anthony P. F. Turner
- Department
of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | - Mats Eriksson
- Department
of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| |
Collapse
|
37
|
Chizhov YV, Krauklis IV, Maslov VG, Stefanov VE, Moshkov KA. Quantum chemical modeling of mutation-induced amino acid substitutions in the copper-binding site of azurin. J EVOL BIOCHEM PHYS+ 2017. [DOI: 10.1134/s1234567816060100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Hadt RG, Hayes D, Brodsky CN, Ullman AM, Casa DM, Upton MH, Nocera DG, Chen LX. X-ray Spectroscopic Characterization of Co(IV) and Metal-Metal Interactions in Co4O4: Electronic Structure Contributions to the Formation of High-Valent States Relevant to the Oxygen Evolution Reaction. J Am Chem Soc 2016; 138:11017-30. [PMID: 27515121 DOI: 10.1021/jacs.6b04663] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The formation of high-valent states is a key factor in making highly active transition-metal-based catalysts of the oxygen evolution reaction (OER). These high oxidation states will be strongly influenced by the local geometric and electronic structures of the metal ion, which are difficult to study due to spectroscopically active and complex backgrounds, short lifetimes, and limited concentrations. Here, we use a wide range of complementary X-ray spectroscopies coupled to DFT calculations to study Co(III)4O4 cubanes and their first oxidized derivatives, which provide insight into the high-valent Co(IV) centers responsible for the activity of molecular and heterogeneous OER catalysts. The combination of X-ray absorption and 1s3p resonant inelastic X-ray scattering (Kβ RIXS) allows Co(IV) to be isolated and studied against a spectroscopically active Co(III) background. Co K- and L-edge X-ray absorption data allow for a detailed characterization of the 3d-manifold of effectively localized Co(IV) centers and provide a direct handle on the t2g-based redox-active molecular orbital. Kβ RIXS is also shown to provide a powerful probe of Co(IV), and specific spectral features are sensitive to the degree of oxo-mediated metal-metal coupling across Co4O4. Guided by the data, calculations show that electron-hole delocalization can actually oppose Co(IV) formation. Computational extension of Co4O4 to CoM3O4 structures (M = redox-inactive metal) defines electronic structure contributions to Co(IV) formation. Redox activity is shown to be linearly related to covalency, and M(III) oxo inductive effects on Co(IV) oxo bonding can tune the covalency of high-valent sites over a large range and thereby tune E(0) over hundreds of millivolts. Additionally, redox-inactive metal substitution can also switch the ground state and modify metal-metal and antibonding interactions across the cluster.
Collapse
Affiliation(s)
| | | | - Casey N Brodsky
- Department of Chemistry and Chemical Biology, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Andrew M Ullman
- Department of Chemistry and Chemical Biology, Harvard University , Cambridge, Massachusetts 02138, United States
| | | | | | - Daniel G Nocera
- Department of Chemistry and Chemical Biology, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Lin X Chen
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| |
Collapse
|
39
|
Abstract
This review focuses on the unique spectroscopic features of the blue copper active sites. These reflect a novel electronic structure that activates the site for rapid long-range electron transfer in its biological function. The role of the protein in determining the geometric and electronic structure of this site is defined, as is its contribution to function. This has been referred to as the entatic/rack-induced state. These concepts are then extended to cytochrome c, which is also determined to be in an entatic state.
Collapse
Affiliation(s)
- Edward I Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Ryan G Hadt
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Benjamin E R Snyder
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
40
|
Bhagi-Damodaran A, Hosseinzadeh P, Mirts E, Reed J, Petrik ID, Lu Y. Design of Heteronuclear Metalloenzymes. Methods Enzymol 2016; 580:501-37. [PMID: 27586347 PMCID: PMC5156654 DOI: 10.1016/bs.mie.2016.05.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Heteronuclear metalloenzymes catalyze some of the most fundamentally interesting and practically useful reactions in nature. However, the presence of two or more metal ions in close proximity in these enzymes makes them more difficult to prepare and study than homonuclear metalloenzymes. To meet these challenges, heteronuclear metal centers have been designed into small and stable proteins with rigid scaffolds to understand how these heteronuclear centers are constructed and the mechanism of their function. This chapter describes methods for designing heterobinuclear metal centers in a protein scaffold by giving specific examples of a few heme-nonheme bimetallic centers engineered in myoglobin and cytochrome c peroxidase. We provide step-by-step procedures on how to choose the protein scaffold, design a heterobinuclear metal center in the protein scaffold computationally, incorporate metal ions into the protein, and characterize the resulting metalloproteins, both structurally and functionally. Finally, we discuss how an initial design can be further improved by rationally tuning its secondary coordination sphere, electron/proton transfer rates, and the substrate affinity.
Collapse
Affiliation(s)
- A Bhagi-Damodaran
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - P Hosseinzadeh
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - E Mirts
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - J Reed
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - I D Petrik
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Y Lu
- University of Illinois at Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
41
|
Hosseinzadeh P, Lu Y. Design and fine-tuning redox potentials of metalloproteins involved in electron transfer in bioenergetics. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1857:557-581. [PMID: 26301482 PMCID: PMC4761536 DOI: 10.1016/j.bbabio.2015.08.006] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 08/20/2015] [Indexed: 12/25/2022]
Abstract
Redox potentials are a major contributor in controlling the electron transfer (ET) rates and thus regulating the ET processes in the bioenergetics. To maximize the efficiency of the ET process, one needs to master the art of tuning the redox potential, especially in metalloproteins, as they represent major classes of ET proteins. In this review, we first describe the importance of tuning the redox potential of ET centers and its role in regulating the ET in bioenergetic processes including photosynthesis and respiration. The main focus of this review is to summarize recent work in designing the ET centers, namely cupredoxins, cytochromes, and iron-sulfur proteins, and examples in design of protein networks involved these ET centers. We then discuss the factors that affect redox potentials of these ET centers including metal ion, the ligands to metal center and interactions beyond the primary ligand, especially non-covalent secondary coordination sphere interactions. We provide examples of strategies to fine-tune the redox potential using both natural and unnatural amino acids and native and nonnative cofactors. Several case studies are used to illustrate recent successes in this area. Outlooks for future endeavors are also provided. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.
Collapse
Affiliation(s)
- Parisa Hosseinzadeh
- Department of Chemistry and Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews St., Urbana, IL, 61801, USA
| | - Yi Lu
- Department of Chemistry and Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews St., Urbana, IL, 61801, USA.
| |
Collapse
|
42
|
|
43
|
Jin H, Goyal P, Das AK, Gaus M, Meuwly M, Cui Q. Copper Oxidation/Reduction in Water and Protein: Studies with DFTB3/MM and VALBOND Molecular Dynamics Simulations. J Phys Chem B 2015; 120:1894-910. [PMID: 26624804 DOI: 10.1021/acs.jpcb.5b09656] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We apply two recently developed computational methods, DFTB3 and VALBOND, to study copper oxidation/reduction processes in solution and protein. The properties of interest include the coordination structure of copper in different oxidation states in water or in a protein (plastocyanin) active site, the reduction potential of the copper ion in different environments, and the environmental response to copper oxidation. The DFTB3/MM and VALBOND simulation results are compared to DFT/MM simulations and experimental results whenever possible. For a copper ion in aqueous solution, DFTB3/MM results are generally close to B3LYP/MM with a medium basis, including both solvation structure and reduction potential for Cu(II); for Cu(I), however, DFTB3/MM finds a two-water coordination, similar to previous Born-Oppenheimer molecular dynamics simulations using BLYP and HSE, whereas B3LYP/MM leads to a tetrahedron coordination. For a tetraammonia copper complex in aqueous solution, VALBOND and DFTB3/MM are consistent in terms of both structural and dynamical properties of solvent near copper for both oxidation states. For copper reduction in plastocyanin, DFTB3/MM simulations capture the key properties of the active site, and the computed reduction potential and reorganization energy are in fair agreement with experiment, especially when the periodic boundary condition is used. Overall, the study supports the value of VALBOND and DFTB3(/MM) for the analysis of fundamental copper redox chemistry in water and protein, and the results also help highlight areas where further improvements in these methods are desirable.
Collapse
Affiliation(s)
- Haiyun Jin
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Puja Goyal
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Akshaya Kumar Das
- Department of Chemistry, University of Basel , Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Michael Gaus
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Markus Meuwly
- Department of Chemistry, University of Basel , Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Qiang Cui
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
44
|
Design of a single protein that spans the entire 2-V range of physiological redox potentials. Proc Natl Acad Sci U S A 2015; 113:262-7. [PMID: 26631748 DOI: 10.1073/pnas.1515897112] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The reduction potential (E°') is a critical parameter in determining the efficiency of most biological and chemical reactions. Biology employs three classes of metalloproteins to cover the majority of the 2-V range of physiological E°'s. An ultimate test of our understanding of E°' is to find out the minimal number of proteins and their variants that can cover this entire range and the structural features responsible for the extreme E°'. We report herein the design of the protein azurin to cover a range from +970 mV to -954 mV vs. standard hydrogen electrode (SHE) by mutating only five residues and using two metal ions. Spectroscopic methods have revealed geometric parameters important for the high E°'. The knowledge gained and the resulting water-soluble redox agents with predictable E°'s, in the same scaffold with the same surface properties, will find wide applications in chemical, biochemical, biophysical, and biotechnological fields.
Collapse
|
45
|
Zanetti-Polzi L, Bortolotti CA, Daidone I, Aschi M, Amadei A, Corni S. A few key residues determine the high redox potential shift in azurin mutants. Org Biomol Chem 2015; 13:11003-13. [PMID: 26381463 DOI: 10.1039/c5ob01819f] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The wide range of variability of the reduction potential (E(0)) of blue-copper proteins has been the subject of a large number of studies in the past several years. In particular, a series of azurin mutants have been recently rationally designed tuning E(0) over a very broad range (700 mV) without significantly altering the redox-active site [Marshall et al., Nature, 2009, 462, 113]. This clearly suggests that interactions outside the primary coordination sphere are relevant to determine E(0) in cupredoxins. However, the molecular determinants of the redox potential variability are still undisclosed. Here, by means of atomistic molecular dynamics simulations and hybrid quantum/classical calculations, the mechanisms that determine the E(0) shift of two azurin mutants with high potential shifts are unravelled. The reduction potentials of native azurin and of the mutants are calculated obtaining results in good agreement with the experiments. The analysis of the simulations reveals that only a small number of residues (including non-mutated ones) are relevant in determining the experimentally observed E(0) variation via site-specific, but diverse, mechanisms. These findings open the path to the rational design of new azurin mutants with different E(0).
Collapse
Affiliation(s)
- Laura Zanetti-Polzi
- Center S3, CNR-Institute of Nanoscience, Via Campi 213/A, 41125, Modena, Italy.
| | | | | | | | | | | |
Collapse
|
46
|
Jones SM, Solomon EI. Electron transfer and reaction mechanism of laccases. Cell Mol Life Sci 2015; 72:869-83. [PMID: 25572295 PMCID: PMC4323859 DOI: 10.1007/s00018-014-1826-6] [Citation(s) in RCA: 312] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 12/30/2014] [Indexed: 11/25/2022]
Abstract
Laccases are part of the family of multicopper oxidases (MCOs), which couple the oxidation of substrates to the four electron reduction of O2 to H2O. MCOs contain a minimum of four Cu's divided into Type 1 (T1), Type 2 (T2), and binuclear Type 3 (T3) Cu sites that are distinguished based on unique spectroscopic features. Substrate oxidation occurs near the T1, and electrons are transferred approximately 13 Å through the protein via the Cys-His pathway to the T2/T3 trinuclear copper cluster (TNC), where dioxygen reduction occurs. This review outlines the electron transfer (ET) process in laccases, and the mechanism of O2 reduction as elucidated through spectroscopic, kinetic, and computational data. Marcus theory is used to describe the relevant factors which impact ET rates including the driving force, reorganization energy, and electronic coupling matrix element. Then, the mechanism of O2 reaction is detailed with particular focus on the intermediates formed during the two 2e(-) reduction steps. The first 2e(-) step forms the peroxide intermediate, followed by the second 2e(-) step to form the native intermediate, which has been shown to be the catalytically relevant fully oxidized form of the enzyme.
Collapse
Affiliation(s)
- Stephen M. Jones
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA 94305 USA
| | - Edward I. Solomon
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA 94305 USA
| |
Collapse
|
47
|
Nitsch J, Kleeberg C, Fröhlich R, Steffen A. Luminescent copper(i) halide and pseudohalide phenanthroline complexes revisited: simple structures, complicated excited state behavior. Dalton Trans 2015; 44:6944-60. [DOI: 10.1039/c4dt03706e] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite their chemical simplicity, copper(i) phenanthroline halides appear to involve multiple states in the emission process and exhibit non-trivial photophysical properties.
Collapse
Affiliation(s)
- Jörn Nitsch
- Institut für Anorganische Chemie
- Julius-Maximilians-Universität Würzburg
- 97074 Würzburg
- Germany
| | - Christian Kleeberg
- Institut für Anorganische und Analytische Chemie
- Technische Universität Carolo-Wilhelmina zu Braunschweig
- 38106 Braunschweig
- Germany
| | - Roland Fröhlich
- Organisch-Chemisches Institut
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Andreas Steffen
- Institut für Anorganische Chemie
- Julius-Maximilians-Universität Würzburg
- 97074 Würzburg
- Germany
| |
Collapse
|
48
|
Heppner D, Kjaergaard CH, Solomon EI. Mechanism of the reduction of the native intermediate in the multicopper oxidases: insights into rapid intramolecular electron transfer in turnover. J Am Chem Soc 2014; 136:17788-801. [PMID: 25490729 PMCID: PMC4291763 DOI: 10.1021/ja509150j] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Indexed: 12/20/2022]
Abstract
The multicopper oxidases (MCOs) are the family of enzymes that catalyze the 4-electron reduction of O2 to H2O coupled to the four 1-electron oxidations of substrate. In the catalytic cycle electrons are transferred intramolecularly over ∼13 Å from a Type 1 (T1) Cu site that accepts electrons from substrate to a trinuclear Cu cluster (TNC) where O2 is reduced to H2O at rapid rates consistent with turnover (560 s(-1)). The oxygen reduction mechanism for the MCOs is well-characterized, whereas the rereduction is less understood. Our initial study of Rhus vernicifera Laccase (Heppner et al. J. Am. Chem. Soc. 2013, 135, 12212) experimentally established that the native intermediate (NI), the species formed upon O-O bond cleavage, is reduced with an IET rate >700 s(-1) and is the catalytically relevant fully oxidized form of the enzyme, rather than the resting state. In this report, we present kinetic and spectroscopic results coupled to DFT calculations that evaluate the mechanism of the 3 e(-)/3 H(+) reduction of NI, where all three catalytically relevant intramolecular electron transfer (IET) steps are rapid and involve three different structural changes. These three rapid IET processes reflect the sophisticated mechanistic control of the TNC to enable rapid turnover. All three IET processes are fast due to the associated protonation of the bridging oxo and hydroxo ligands, generated by O-O cleavage, to form water products that are extruded from the TNC upon full reduction, thereby defining a unifying mechanism for oxygen reduction and rapid IET by the TNC in the catalytic cycle of the MCOs.
Collapse
Affiliation(s)
- David
E. Heppner
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California 94305-5080, United States
| | - Christian H. Kjaergaard
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California 94305-5080, United States
| | - Edward I. Solomon
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California 94305-5080, United States
| |
Collapse
|
49
|
Hadt RG, Gorelsky S, Solomon EI. Anisotropic covalency contributions to superexchange pathways in type one copper active sites. J Am Chem Soc 2014; 136:15034-45. [PMID: 25310460 PMCID: PMC4210080 DOI: 10.1021/ja508361h] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Indexed: 01/29/2023]
Abstract
Type one (T1) Cu sites deliver electrons to catalytic Cu active sites: the mononuclear type two (T2) Cu site in nitrite reductases (NiRs) and the trinuclear Cu cluster in the multicopper oxidases (MCOs). The T1 Cu and the remote catalytic sites are connected via a Cys-His intramolecular electron-transfer (ET) bridge, which contains two potential ET pathways: P1 through the protein backbone and P2 through the H-bond between the Cys and the His. The high covalency of the T1 Cu-S(Cys) bond is shown here to activate the T1 Cu site for hole superexchange via occupied valence orbitals of the bridge. This covalency-activated electronic coupling (H(DA)) facilitates long-range ET through both pathways. These pathways can be selectively activated depending on the geometric and electronic structure of the T1 Cu site and thus the anisotropic covalency of the T1 Cu-S(Cys) bond. In NiRs, blue (π-type) T1 sites utilize P1 and green (σ-type) T1 sites utilize P2, with P2 being more efficient. Comparing the MCOs to NiRs, the second-sphere environment changes the conformation of the Cys-His pathway, which selectively activates HDA for superexchange by blue π sites for efficient turnover in catalysis. These studies show that a given protein bridge, here Cys-His, provides different superexchange pathways and electronic couplings depending on the anisotropic covalencies of the donor and acceptor metal sites.
Collapse
Affiliation(s)
- Ryan G. Hadt
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Serge
I. Gorelsky
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- Centre
for Catalysis Research and Innovation, Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N6, Canada
| | - Edward I. Solomon
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
50
|
Morgada MN, Abriata LA, Zitare U, Alvarez-Paggi D, Murgida DH, Vila AJ. Control of the Electronic Ground State on an Electron-Transfer Copper Site by Second-Sphere Perturbations. Angew Chem Int Ed Engl 2014; 53:6188-92. [DOI: 10.1002/anie.201402083] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 02/24/2014] [Indexed: 01/07/2023]
|