1
|
Salrin JS, Carpenter BG, AbuSalim DI, Lash TD. Assessment of Conjugation Pathways in N-Methylporphyrins that Are Fused to Acenaphthylene, Phenanthrene, or Pyrene: Evidence for the Presence of Alternative Aromatic Circuits. J Org Chem 2024; 89:16493-16509. [PMID: 39453867 DOI: 10.1021/acs.joc.4c01760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
Acenaphtho-, phenanthro-, and pyrenopyrrole esters, readily available from Barton-Zard reactions of ethyl isocyanoacetate with nitroarenes, were reacted with methyl iodide and KOH in DMSO to give N-methylpyrroles and subsequent cleavage of the ester moieties was accomplished with KOH in ethylene glycol at 200 °C. Condensation with two equiv of an acetoxymethylpyrrole in refluxing acetic acid-2-propanol afforded a series of annulated tripyrranes. Cleavage of the terminal tert-butyl ester groups with trifluoroacetic acid, followed by condensation with a diformylpyrrole and oxidation with FeCl3, gave N-methyl acenaphtho-, phenanthro-, and pyrenoporphyrins. The N-methyl substituent effectively freezes the tautomeric equilibria to maximize interactions between the porphyrin nucleus and the fused aromatic substructures. Analysis of the proton NMR spectra provides evidence of the presence of extended aromatic circuits within these structures. Anisotropy of induced ring current (AICD) plots clearly shows the presence of 30π electron pathways in phenanthro- and pyrenoporphyrins that run around the exterior of the benzenoid fragments. These results demonstrate that N-alkylation can be used to relocate aromatic pathways in porphyrinoid systems.
Collapse
Affiliation(s)
- Jared S Salrin
- Department of Chemistry and Biochemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Brian G Carpenter
- Department of Chemistry and Biochemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Deyaa I AbuSalim
- Department of Chemistry and Biochemistry, Illinois State University, Normal, Illinois 61790-4160, United States
- Department of Chemistry, Rowan University, Glassboro 08028, New Jersey
- STEM Department, Rowan College of South Jersey, Vineland 08360, New Jersey
| | - Timothy D Lash
- Department of Chemistry and Biochemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| |
Collapse
|
2
|
Desmedt E, Jacobs M, Alonso M, De Vleeschouwer F. Deciphering nonlinear optical properties in functionalized hexaphyrins via explainable machine learning. Phys Chem Chem Phys 2024. [PMID: 39530876 DOI: 10.1039/d4cp03303e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Over the years, several studies have aimed to elucidate why certain molecules show more enhanced nonlinear optical (NLO) properties than others. This knowledge is particularly valuable in the design of new NLO switches, where the ON and OFF states of the switch display markedly different NLO behaviors. In the literature, orbital contributions, aromaticity, planarity, and intramolecular charge transfer have been put forward as key factors in this regard. Based on our previous work on functionalized hexaphyrin-based redox switches, we aim at identifying through explainable machine learning the driving forces of the first hyperpolarizability related to the hyper-Rayleigh scattering (βHRS) of meso-substituted and/or core-modified [26]- and [30]hexaphyrins. The significant correlation between βHRS and the HOMO-LUMO energy gap can be further improved by including other orbitals as well as charge-transfer features in a 6-fold cross-validated kernel-ridge-regression model. Our Shapley additive explanations (SHAP) analysis shows that the charge transfer excitation length is more important for 30R systems, whereas the transition dipole moment between the ground and first excited state is one of the main contributors for 26R systems. We also demonstrate that, besides various hexaphyrin-based redox states, the ML model can describe to a large degree the βHRS response of other hexaphyrins, differing in substitution pattern and topology (26D and 28M).
Collapse
Affiliation(s)
- Eline Desmedt
- Department of General Chemistry: Algemene Chemie (ALGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium.
| | - Michiel Jacobs
- Department of General Chemistry: Algemene Chemie (ALGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium.
| | - Mercedes Alonso
- Department of General Chemistry: Algemene Chemie (ALGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium.
| | - Freija De Vleeschouwer
- Department of General Chemistry: Algemene Chemie (ALGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium.
| |
Collapse
|
3
|
Desmedt E, Casademont-Reig I, Monreal-Corona R, De Vleeschouwer F, Alonso M. Aromaticity in the Spectroscopic Spotlight of Hexaphyrins. Chemistry 2024; 30:e202401933. [PMID: 38889264 DOI: 10.1002/chem.202401933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Spectroscopic properties are commonly used in the experimental evaluation of ground- and excited-state aromaticity in expanded porphyrins. Herein, we investigate if the defining photophysical properties still hold for a diverse set of hexaphyrins with varying redox states, topologies, peripheral substitutions, and core-modifications. By combining TD-DFT calculations with several aromaticity descriptors and chemical compound space maps, the intricate interplay between structural planarity, aromaticity, and absorption spectra is elucidated. Our results emphasize that the general assumption that antiaromatic porphyrinoids exhibit significantly attenuated absorption bands as compared to aromatic counterparts does not hold even for the unsubstituted hexaphyrin macrocycles. To connect the spectroscopic properties to the hexaphyrins' aromaticity behaviour, we analyzed chemical compound space maps defined by the various aromaticity indices. The intensity of the Q-band is not well described by the macrocyclic aromaticity. Instead, the degeneracy of the frontier molecular orbitals, the HOMO-LUMO gap, and the |ΔHOMO-ΔLUMO|2 values appear to be better indicators to identify hexaphyrins with enhanced light-absorbing abilities in the near-infrared region. Regions with highly planar hexaphyrin structures, both aromatic and antiaromatic, are characterized by an intense B-band. Hence, we advise using a combination of global and local aromaticity descriptors rooted in different criteria to assess the aromaticity of expanded porphyrins instead of solely relying on the absorption spectra.
Collapse
Affiliation(s)
- Eline Desmedt
- Department of General Chemistry, Algemene Chemie (ALGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussel, Belgium
| | - Irene Casademont-Reig
- Department of General Chemistry, Algemene Chemie (ALGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussel, Belgium
| | - Roger Monreal-Corona
- Department of General Chemistry, Algemene Chemie (ALGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussel, Belgium
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/Maria Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| | - Freija De Vleeschouwer
- Department of General Chemistry, Algemene Chemie (ALGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussel, Belgium
| | - Mercedes Alonso
- Department of General Chemistry, Algemene Chemie (ALGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussel, Belgium
| |
Collapse
|
4
|
Soroushmanesh M, Dinari M, Farrokhpour H. Comprehensive Computational Investigation of the Porphyrin-Based COF as a Nanocarrier for Delivering Anti-Cancer Drugs: A Combined MD Simulation and DFT Calculation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:19073-19085. [PMID: 39189806 DOI: 10.1021/acs.langmuir.4c02154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
As nanomaterials have gained prominence in drug delivery technology, exploring their feasibility through computational methods is beneficial before practical tests. In this study, we aim to evaluate the capability of the porphyrin-based covalent organic framework COF-366 as a nanocarrier for two anticancer drugs, irinotecan (IRI) and doxorubicin (DOX). The optimal binding conformation of the drug molecules on the COF surface was predicted by using molecular docking. Subsequently, molecular dynamic simulation (MD) was performed to assess the adsorption mechanism of drug molecules on the COF in the aqueous environment. The free energy of adsorption for DOX and IRI was estimated to be -20.07 and -23.89 kcal/mol, respectively. The adsorption of both drugs on the COF surface is mainly influenced by the π-π interaction. Furthermore, density functional theory (DFT) calculation, natural bond orbital (NBO), and quantum theory of atoms in molecules (QTAIM) analyses were employed to investigate the structural stability of Drug@COF complexes and gain a detailed understanding of the interaction between them at the molecular level. Based on DFT results, it was found that in addition to π-π interaction, the bis-piperidine-phenylene interaction affects the adsorption of IRI on the COF surface. Moreover, the diffusion behavior of the drug molecule inside the COF pore was simulated using a ten-layer COF. Based on the mean square displacement analysis, the diffusion coefficients of DOX and IRI within the COF pore were calculated to be 108 and 97 um2/s, respectively. This computational study sheds light on how different types of interactions between the drug molecule and COF affect the adsorption and diffusion process. Our findings validated that the porphyrin-based COF-366 can serve as a nanobased platform for delivering DOX and IRI.
Collapse
Affiliation(s)
- Mohsen Soroushmanesh
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran
| | - Mohammad Dinari
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran
| | - Hossein Farrokhpour
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran
| |
Collapse
|
5
|
Bortolussi SDS, Zhou C, Lynch NB, Peeks MD. Spectroscopic Manifestations of (Anti)Aromaticity in Oxidized and Reduced Porphyrin and Norcorrole. Chemistry 2024; 30:e202401741. [PMID: 38839573 DOI: 10.1002/chem.202401741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
Aromaticity and antiaromaticity are foundational principes in organic chemistry, regularly invoked to explain stability, structure, and magnetic and electronic properties. There are ongoing challenges in assigning molecules as aromatic or antiaromatic using optical spectroscopy. Here we report spectroelectrochemical and computational analyses of porphyrin (18π neutral, aromatic) and norcorrole (16π neutral, antiaromatic), and their oxidized (16π porphyrin dication) and reduced (norcorrole 18π dianion) forms. Our results show that while the visible spectra are characteristic of (anti)aromaticity consistent with Hückel's rules, the IR spectra are much less informative, owing to the relative rigidity of norcorrole. The results have implications for the assignment of (anti)aromaticity in both ground-state and time-resolved spectra.
Collapse
Affiliation(s)
| | - Carmen Zhou
- School of Chemistry, University of New South Wales, NSW, 2052, Australia
| | - Nicholas B Lynch
- School of Chemistry, University of New South Wales, NSW, 2052, Australia
| | - Martin D Peeks
- School of Chemistry, University of New South Wales, NSW, 2052, Australia
| |
Collapse
|
6
|
Mathius MA, Chhoeun JM, Kaufman RH, AbuSalim DI, Lash TD. Linear Extension of Carbaporphyrin Chromophores: Synthesis, Protonation, and Metalation of Anthro[2,3- b]carbaporphyrins: Evidence for 30π-Electron Aromatic Circuits in a Palladium(II) Complex. J Org Chem 2024; 89:124-140. [PMID: 38110335 DOI: 10.1021/acs.joc.3c01839] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Acid-catalyzed condensation of a naphtho[2,3-f]indane dialdehyde with a tripyrrane, followed by an oxidation step, afforded an anthro[2,3-b]-21-carbaporphyrin. The presence of a fused anthracene unit induced minor bathochromic shifts and did not significantly affect the aromatic characteristics of the carbaporphyrin core. Protonation led to the formation of a monocation with similar diatropic properties, but the dication generated in the presence of a large excess of trifluoroacetic acid had a weakened Soret band absorption and a broad absorption at 754 nm. Nucleus-independent chemical shift (NICS) calculations indicate that the dication is only weakly aromatic and possesses a 32-atom 30π electron delocalization pathway. Alkylation with methyl iodide and potassium carbonate gave a 22-methyl derivative that reacted with palladium(II) acetate to afford an aromatic palladium(II) complex. Upon heating, the methyl group migrated from the nitrogen to the internal carbon atom and the resulting complex exhibited diminished aromatic character. A comparison with related carbaporphyrin complexes without ring fusion or with benzo- or naphtho-fused units demonstrated that the diatropic character decreased with increasing conjugation. NICS calculations and anisotropy of induced current density (AICD) plots confirmed this trend and showed that the remaining aromatic properties of the anthrocarbaporphyrin complex were due to a 30π electron circuit that extends around the entire anthracene unit.
Collapse
Affiliation(s)
- Melissa A Mathius
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Justin M Chhoeun
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Riley H Kaufman
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Deyaa I AbuSalim
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Timothy D Lash
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| |
Collapse
|
7
|
Cao N, Björk J, Corral-Rascon E, Chen Z, Ruben M, Senge MO, Barth JV, Riss A. The role of aromaticity in the cyclization and polymerization of alkyne-substituted porphyrins on Au(111). Nat Chem 2023; 15:1765-1772. [PMID: 37723257 DOI: 10.1038/s41557-023-01327-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 08/17/2023] [Indexed: 09/20/2023]
Abstract
Aromaticity is an established and widely used concept for the prediction of the reactivity of organic molecules. However, its role remains largely unexplored in on-surface chemistry, where the interaction with the substrate can alter the electronic and geometric structure of the adsorbates. Here we investigate how aromaticity affects the reactivity of alkyne-substituted porphyrin molecules in cyclization and coupling reactions on a Au(111) surface. We examine and quantify the regioselectivity in the reactions by scanning tunnelling microscopy and bond-resolved atomic force microscopy at the single-molecule level. Our experiments show a substantially lower reactivity of carbon atoms that are stabilized by the aromatic diaza[18]annulene pathway of free-base porphyrins. The results are corroborated by density functional theory calculations, which show a direct correlation between aromaticity and thermodynamic stability of the reaction products. These insights are helpful to understand, and in turn design, reactions with aromatic species in on-surface chemistry and heterogeneous catalysis.
Collapse
Affiliation(s)
- Nan Cao
- Physics Department E20, Technical University of Munich, Garching, Germany
| | - Jonas Björk
- Department of Physics, Chemistry and Biology, IFM, Linköping University, Linköping, Sweden
| | | | - Zhi Chen
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, PR China
| | - Mario Ruben
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- Centre Européen de Science Quantique, Institut de Science et d'Ingénierie Supramoléculaires (UMR 7006), CNRS-Université de Strasbourg, Strasbourg, France
- Institute of Quantum Materials and Technologies, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Mathias O Senge
- Institute for Advanced Study (TUM-IAS), Focus Group-Molecular and Interfacial Engineering of Organic Nanosystems, Technical University of Munich, Garching, Germany
| | - Johannes V Barth
- Physics Department E20, Technical University of Munich, Garching, Germany.
| | - Alexander Riss
- Physics Department E20, Technical University of Munich, Garching, Germany.
| |
Collapse
|
8
|
Mahmood A, Dimitrova M, Sundholm D. Current-Density Calculations on Zn-Porphyrin 40 Nanorings. J Phys Chem A 2023; 127:7452-7459. [PMID: 37665662 PMCID: PMC10510378 DOI: 10.1021/acs.jpca.3c03564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/04/2023] [Indexed: 09/06/2023]
Abstract
Two porphyrinoid nanorings have been studied computationally. They were built by linking 40 Zn-porphyrin units with butadiyne bridges. The molecular structures belonging to the D40h point group were fully optimized with the Turbomole program at the density functional theory (DFT) level using the B3LYP functional and the def2-SVP basis sets. The aromatic character was studied at the DFT level by calculating the magnetically induced current-density (MICD) susceptibility using the GIMIC program. The neutral molecules are globally non-aromatic with aromatic Zn-porphyrin units. Charged nanorings could not be studied because almost degenerate frontier orbitals led to vanishing optical gaps for the cations. Since DFT calculations of the MICD are computationally expensive, we also calculated the MICD using three pseudo-π models. Appropriate pseudo-π models were constructed by removing the outer hydrogen atoms and replacing all carbon and nitrogen atoms with hydrogen atoms. The central Zn atom was either replaced with a beryllium atom or with two inner hydrogen atoms. Calculations with the computationally inexpensive pseudo-π models yielded qualitatively the same magnetic response as obtained in the all-electron calculations.
Collapse
Affiliation(s)
- Atif Mahmood
- Department of Chemistry, University
of Helsinki, P.O. Box 55, A. I. Virtasen Aukio 1, FIN-00014 Helsinki, Finland
| | - Maria Dimitrova
- Department of Chemistry, University
of Helsinki, P.O. Box 55, A. I. Virtasen Aukio 1, FIN-00014 Helsinki, Finland
| | - Dage Sundholm
- Department of Chemistry, University
of Helsinki, P.O. Box 55, A. I. Virtasen Aukio 1, FIN-00014 Helsinki, Finland
| |
Collapse
|
9
|
AbuSalim DI, Lash TD. Aromatic Character and Relative Stability of Pyrazoloporphyrin Tautomers and Related Protonated Species: Insights into How Pyrazole Changes the Properties of Carbaporphyrinoid Systems. Molecules 2023; 28:molecules28062854. [PMID: 36985826 PMCID: PMC10056226 DOI: 10.3390/molecules28062854] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Pyrazoloporphyrins (PzPs), which are porphyrin analogues incorporating a pyrazole subunit, are examples of carbaporphyrin-type structures with a carbon atom within the macrocyclic cavity. DFT calculations were used to assess a series of 17 PzP tautomers, nine monoprotonated species and four related diprotonated PzP dications. The geometries of the structures were optimized using M06-2X/6-311++G(d,p), and the relative stabilities computed with the cc-PVTZ functional. Nucleus independent chemical shifts, both NICS(0) and NICS(1)zz, were calculated, and the anisotropy of the induced current density (AICD) plots were generated for all of the species under investigation. The results for free base PzPs show that fully aromatic PzP tautomers are not significantly more stable than weakly aromatic cross-conjugated species. In addition, strongly aromatic structures with internal CH2's are much less stable, a feature that is also seen for protonated PzPs. The degree of planarity for the individual macrocycles does not significantly correlate with the stability of these structures. The results allow significant aromatic conjugation pathways to be identified in many cases, and provide insights into the aromatic properties of this poorly studied system. These investigations also complement experimental results for PzPs and emphasize the need for further studies in this area.
Collapse
Affiliation(s)
- Deyaa I AbuSalim
- Department of Chemistry, Illinois State University, Normal, IL 61790-4160, USA
| | - Timothy D Lash
- Department of Chemistry, Illinois State University, Normal, IL 61790-4160, USA
| |
Collapse
|
10
|
Vaz B, Pérez-Lorenzo M. Unraveling Structure-Performance Relationships in Porphyrin-Sensitized TiO 2 Photocatalysts. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1097. [PMID: 36985991 PMCID: PMC10059665 DOI: 10.3390/nano13061097] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Over the years, porphyrins have arisen as exceptional photosensitizers given their ability to act as chlorophyll-mimicking dyes, thus, transferring energy from the light-collecting areas to the reaction centers, as it happens in natural photosynthesis. For this reason, porphyrin-sensitized TiO2-based nanocomposites have been widely exploited in the field of photovoltaics and photocatalysis in order to overcome the well-known limitations of these semiconductors. However, even though both areas of application share some common working principles, the development of solar cells has led the way in what is referred to the continuous improvement of these architectures, particularly regarding the molecular design of these photosynthetic pigments. Yet, those innovations have not been efficiently translated to the field of dye-sensitized photocatalysis. This review aims at filling this gap by performing an in-depth exploration of the most recent advances in the understanding of the role played by the different structural motifs of porphyrins as sensitizers in light-driven TiO2-mediated catalysis. With this goal in mind, the chemical transformations, as well as the reaction conditions under which these dyes must operate, are taken in consideration. The conclusions drawn from this comprehensive analysis offer valuable hints for the implementation of novel porphyrin-TiO2 composites, which may pave the way toward the fabrication of more efficient photocatalysts.
Collapse
Affiliation(s)
- Belén Vaz
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute, 36310 Vigo, Spain
| | - Moisés Pérez-Lorenzo
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute, 36310 Vigo, Spain
| |
Collapse
|
11
|
Ding W, Zhang Z, Chen X, Zhan CG. Assessment of the performance of six indices in predicating the aromaticity of planar porphyrinoids. J Mol Model 2023; 29:83. [PMID: 36862263 DOI: 10.1007/s00894-023-05485-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023]
Abstract
CONTEXT AND RESULTS Aromaticity is a fundamental chemical concept that has been widely used in explaining the reactivity, stability, structure, and magnetic properties of many molecules such as conjugated macrocycles, metal heterocyclic compounds, and certain metal clusters. Porphyrinoids (including porphyrin) are of particular interest in terms of diverse aromaticity. Various indices therefore have been used to predict the aromaticity of porphyrin-like macrocycles. However, the reliability of these indices for porphyinoids is always questionable. In order to assess the performance of the indices, we have selected six representative indices to predict the aromaticity of 35 porphyrinoids. The calculated values were then compared with the corresponding results obtained from experiments. Our studies suggest that the theoretical prediction by nucleus independent chemical shifts (NICS), topology of the induced magnetic field (TIMF), anisotropy of the induced current density (AICD), and gauge including magnetically induced current method (GIMIC) are essentially consistent with experimental evidence in all 35 cases and thus are preferred indices. COMPUTATIONAL AND THEORETICAL TECHNIQUES Based on density functional theory, the performance of the NICS, TIMF, AICD, GIMIC, harmonic oscillator model of aromaticity (HOMA), and multicenter bond order (MCBO) indices were evaluated theoretically. Molecular geometries were optimized at the M06-2X/6-311G** level. NMR calculations using GIAO or CGST method were performed at the M06-2X/6-311G** level. The above calculations were carried out using Gaussian16 suite. The TIMF, GIMIC, HOMA, and MCBO indices were obtained using the Multiwfn program. The AICD outputs were visualized using the POV-Ray software.
Collapse
Affiliation(s)
- Wenjing Ding
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Zhan Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, 430074, China.
| | - Xi Chen
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, 430074, China.
| | - Chang-Guo Zhan
- College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA
| |
Collapse
|
12
|
Karadakov PB, Riley T. The Effect of Hydrogenation on the Contest between Aromaticity and Antiaromaticity in Norcorrole. Chemistry 2023; 29:e202203400. [PMID: 36436122 DOI: 10.1002/chem.202203400] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
Magnetic shielding studies demonstrate that successive hydrogenation of NiII norcorrole (NiNc), a stable molecule combining aromatic and antiaromatic features, first weakens and then eliminates the central antiaromatic region, even though the NiNc antiaromatic "core", a 14-membered conjugated cycle with 16 π electrons, is formally preserved throughout the H2 NiNc-H8 NiNc series. The differences between aromatic and non-aromatic isotropic shielding distributions and nucleus-independent chemical shift (NICS) values in these hydrogenated porphyrin analogues are highlighted by comparing the results for the members of the H2 NiNc-H8 NiNc series to those for the aromatic NiII porphyrin complex. The results strongly support the unexpected and counterintuitive conclusion that H8 NiNc will be nonaromatic, without even a trace of antiaromaticity. Based on these findings, H8 NiNc is predicted to be the most stable member of the H2 NiNc-H8 NiNc series.
Collapse
Affiliation(s)
- Peter B Karadakov
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Tom Riley
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| |
Collapse
|
13
|
Casademont‐Reig I, Woller T, García V, Contreras‐García J, Tiznado W, Torrent‐Sucarrat M, Matito E, Alonso M. Quest for the Most Aromatic Pathway in Charged Expanded Porphyrins. Chemistry 2023; 29:e202202264. [PMID: 36194440 PMCID: PMC10099525 DOI: 10.1002/chem.202202264] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 11/05/2022]
Abstract
Despite the central role of aromaticity in the chemistry of expanded porphyrins, the evaluation of aromaticity remains difficult for these extended macrocycles. The presence of multiple conjugation pathways and different planar and nonplanar π-conjugation topologies makes the quantification of global and local aromaticity even more challenging. In neutral expanded porphyrins, the predominance of the aromatic conjugation pathway passing through the imine-type nitrogens and circumventing the amino NH groups is established. However, for charged macrocycles, the question about the main conjugation circuit remains open. Accordingly, different conjugation pathways in a set of neutral, anionic, and cationic expanded porphyrins were investigated by means of several aromaticity indices rooted in the structural, magnetic, and electronic criteria. Overall, our results reveal the predominance of the conjugation pathway that passes through all nitrogen atoms to describe the aromaticity of deprotonated expanded porphyrins, while the outer pathway through the perimeter carbon atoms becomes the most aromatic in protonated macrocycles. In nonplanar and charged macrocycles, a discrepancy between electronic and magnetic descriptors is observed. Nevertheless, our work demonstrates AVmin remains the best tool to determine the main conjugation pathway of expanded porphyrins.
Collapse
Affiliation(s)
- Irene Casademont‐Reig
- Department of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB)Pleinlaan 21050BrusselsBelgium
| | - Tatiana Woller
- Department of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB)Pleinlaan 21050BrusselsBelgium
- Laboratoire de Chimie Théorique (LCT)Sorbonne Universitéplace Jussieu 475052ParisFrance
| | - Victor García
- Computational and Theoretical Chemistry GroupDepartamento de Ciencias QuímicasFacultad de Ciencias ExactasUniversidad Andrés BelloRepública 498SantiagoChile
- Departamento Académico de FisicoquímicaFacultad de Química e Ingeniería QuímicaUniversidad Nacional Mayor de San MarcosLimaPeru
| | | | - William Tiznado
- Computational and Theoretical Chemistry GroupDepartamento de Ciencias QuímicasFacultad de Ciencias ExactasUniversidad Andrés BelloRepública 498SantiagoChile
| | - Miquel Torrent‐Sucarrat
- Donostia International Physics Center (DIPC)20018DonostiaEuskadiSpain
- Ikerbasque, Basque Foundation for Science48009BilbaoEuskadiSpain
- Department of Organic Chemistry IUniversidad del País Vasco/Euskal Herriko UnibertsitateaUPV/EHU)20018 Donostia, EuskadiSpain
| | - Eduard Matito
- Donostia International Physics Center (DIPC)20018DonostiaEuskadiSpain
- Ikerbasque, Basque Foundation for Science48009BilbaoEuskadiSpain
| | - Mercedes Alonso
- Department of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB)Pleinlaan 21050BrusselsBelgium
| |
Collapse
|
14
|
Rascon EC, Riss A, Matěj A, Wiengarten A, Mutombo P, Soler D, Jelinek P, Auwärter W. On-Surface Synthesis of Square-Type Porphyrin Tetramers with Central Antiaromatic Cyclooctatetraene Moiety. J Am Chem Soc 2023; 145:967-977. [PMID: 36580274 DOI: 10.1021/jacs.2c10088] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The synthesis of two-dimensionally extended polycyclic heteroatomic molecules keeps attracting considerable attention. In particular, frameworks bearing planar cyclooctatetraenes (COT) moieties can display intriguing properties, including antiaromaticity. Here, we present an on-surface chemistry route to square-type porphyrin tetramers with a central COT ring, coexisting with other oligomers. This approach employing temperature-induced dehydrogenative porphyrin homocoupling in an ultrahigh vacuum environment provides access to surface-supported, unsubstituted porphyrin tetramers that are not easily achievable by conventional synthesis means. Specifically, monomeric free-base (2H-P) and Zn-metalated (Zn-P) porphines (P) were employed to form square-type free-base and Zn-functionalized tetramers on Ag(100). An atomic-level characterization by bond-resolved atomic force microscopy and scanning tunneling microscopy and spectroscopy is provided, identifying the molecular structures. Complemented by density functional theory modeling, the electronic structure is elucidated, indeed revealing antiaromaticity induced by the COT moiety. The present study thus gives access, and insights, to a porphyrin oligomer, representing both a model system for directly fused porphyrins and a potential building block for conjugated, extended two-dimensional porphyrin sheets.
Collapse
Affiliation(s)
- Eduardo Corral Rascon
- Physics Department E20, Technical University of Munich, James-Franck Str. 1, 85748 Garching, Germany
| | - Alexander Riss
- Physics Department E20, Technical University of Munich, James-Franck Str. 1, 85748 Garching, Germany
| | - Adam Matěj
- Institute of Physics, Czech Academy of Sciences, 162 00 Prague, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacky University in Olomouc, 779 00 Olomouc, Czech Republic.,Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 779 00 Olomouc, Czech Republic
| | - Alissa Wiengarten
- Physics Department E20, Technical University of Munich, James-Franck Str. 1, 85748 Garching, Germany
| | - Pingo Mutombo
- Institute of Physics, Czech Academy of Sciences, 162 00 Prague, Czech Republic
| | - Diego Soler
- Institute of Physics, Czech Academy of Sciences, 162 00 Prague, Czech Republic
| | - Pavel Jelinek
- Institute of Physics, Czech Academy of Sciences, 162 00 Prague, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacky University in Olomouc, 779 00 Olomouc, Czech Republic
| | - Willi Auwärter
- Physics Department E20, Technical University of Munich, James-Franck Str. 1, 85748 Garching, Germany
| |
Collapse
|
15
|
An D, Sun Y, Chang D, Zhu J, Chen S, Lu X. Naphthalimide-based conjugated macrocycles possessing tunable self-assembly and supramolecular binding behaviours. Front Chem 2022; 10:1094828. [PMID: 36605120 PMCID: PMC9807915 DOI: 10.3389/fchem.2022.1094828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
The special geometric configurations and optoelectronic properties of p-conjugated macrocycles have always been the focus of materials science. The incorporation of building moieties with different features into macrocycles can not only change their geometric configurations, but also realize the regulation of intramolecular charge transfer, which is expected to bring unusual performance in supramolecular chemistry and optoelectronic devices. Herein, four novel p-conjugated macrocycles based on typical electron acceptor units naphthalimide (NMI) with aryl or alkyl substitutions were reported. The different substitutions on NMI had greatly affected the self-assembly behaviours of these macrocycles. Alkyl substituted NP2b and NP3b showed obvious self-aggregation in solution, while similiar phenomenon was not found in aryl substituted macrocycles NP2a and NP3a, which can be attributed to the steric hindrance caused by rigid aryl groups that could affect the aggregation of macrocycles in solution. In addition, all the macrocycles exhibited supramolecular encapsulation with C70, in which the larger macrocycles NP3a and NP3b with twisted geometries showed stronger binding affinity towards C70 than the corresponding small-size macrocycles NP2a and NP2b with near-planar geometries. Our studies have greatly extended the family of macrocycles based on NMI, pointing out the direction for further supramolecular studies and applications on p-conjugated macrocycles.
Collapse
Affiliation(s)
- Dongyue An
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
| | - Yutao Sun
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
| | - Dongdong Chang
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
| | - Jiangyu Zhu
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
| | - Shumin Chen
- School of Mathematics and Physics, Jingchu University of Technology, Jingmen, China,*Correspondence: Shumin Chen, ; Xuefeng Lu,
| | - Xuefeng Lu
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China,*Correspondence: Shumin Chen, ; Xuefeng Lu,
| |
Collapse
|
16
|
Gawinkowski S, Prakash O. Searching for correlations between geometric and spectroscopic parameters of intramolecular hydrogen bonds in porphyrin-like macrocycles. Phys Chem Chem Phys 2022; 24:22319-22329. [PMID: 36098255 DOI: 10.1039/d2cp01195f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemical bond lengths and angles are characteristic structural parameters of a molecule. Similarly, the frequencies of the vibrational modes and the NMR chemical shifts are unique "chemical fingerprints" specific to a compound. These are the basic parameters describing newly obtained compounds and enabling their identification. Intramolecular hydrogen bonding significantly influences the physicochemical properties of macrocyclic compounds with a porphyrin-like structure. This work presents the verification for correlations between geometric and spectroscopic parameters related to hydrogen bonds in this type of macrocyclic compounds. In particular, such relationships were investigated for a large group of porphyrin, porphycene, and dibenzotetraaza[14]annulene derivatives and a group of other macrocycles with similar structure. A very strong linear correlation was found only between the vibrational frequencies of the NH groups involved in a hydrogen bond and the length of this bond, which applied to all macrocyclic compounds of this type. Several other relationships were found between spectroscopic (IR, Raman, NMR) and geometric (X-ray) parameters, highlighting differences and similarities between different families of macrocycles. Apart from providing a better understanding of the nature of hydrogen bonds and their characteristics in porphyrin-like macrocyclic compounds, these relationships will facilitate the identification of new macrocycles and the extrapolation of their spectroscopic properties.
Collapse
Affiliation(s)
- Sylwester Gawinkowski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Om Prakash
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
17
|
Lin X, Mo Y. On the Bonding Nature in the Crystalline Tri-Thorium Cluster: Core-Shell Syngenetic σ-Aromaticity. Angew Chem Int Ed Engl 2022; 61:e202209658. [PMID: 35856937 PMCID: PMC9541753 DOI: 10.1002/anie.202209658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Indexed: 11/10/2022]
Abstract
A unique thorium-thorium bond was observed in the crystalline tri-thorium cluster [{Th(η8 -C8 H8 )(μ3 -Cl)2 }3 {K(THF)2 }2 ]∞ , though the claim of σ-aromaticity for Th3 bond has been questioned. Herein, a new type of core-shell syngenetic bonding model is proposed to describe the stability of this tri-thorium cluster. The model involves a 3c-2e bond in the Th3 core and a multicentered (ThCl2 )3 charge-shift bond with 12 electrons scattering along the outer shell. To differentiate the strengths of the 3c-2e bond and the charge-shift bond, the block-localized wavefunction (BLW) method which falls into the ab initio valence bond (VB) theory is employed to construct a strictly core/shell localized state and its contributing covalent resonance structure for the Th3 core bond. By comparing with the σ-aromatic H3 + and nonaromatic Li3 + , the computed resonance energies and extra cyclic resonance energies confirm that this Th3 core bond is truly delocalized and σ-aromatic.
Collapse
Affiliation(s)
- Xuhui Lin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural DrugsSchool of Life Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| | - Yirong Mo
- Department of NanoscienceJoint School of Nanoscience and NanoengineeringUniversity of North Carolina at GreensboroGreensboroNC 27401USA
| |
Collapse
|
18
|
Lin X, Mo Y. On the Bonding Nature in the Crystalline Tri‐Thorium Cluster: Core‐Shell Syngenetic σ‐Aromaticity. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xuhui Lin
- Southwest Jiaotong University School of Life Science and Engineering CHINA
| | - Yirong Mo
- University of North Carolina at Greensboro Department of Nanoscience 2907 E. Gate City Blvd 27401 Greensboro UNITED STATES
| |
Collapse
|
19
|
Novak I. Photoionization of tetrapyrrole macrocycles: Porphyrin isomers and corrole tautomers. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Báez-Grez R, Pino-Rios R. The hidden aromaticity in borazine. RSC Adv 2022; 12:7906-7910. [PMID: 35424723 PMCID: PMC8982269 DOI: 10.1039/d1ra06457f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/25/2022] [Indexed: 02/05/2023] Open
Abstract
The aromaticity of borazine (B3N3H6), also known as the inorganic benzene, is a controversial issue since this compound has several characteristics that could qualify it as an aromatic compound. However, recent studies using magnetic criteria indicate that this compound should be considered as a non-aromatic system. This assignment is mainly due to diatropic currents in the nitrogen atoms without observation of ring currents. The present work shows by means of the magnetic criteria that borazine has a ring current hidden by the local contributions of degenerate orbitals π1 and π2. Additionally, the study of borazine's first triplet state antiaromaticity using the magnetic and energetic criteria by means of isomerization stabilization energies (ISEs) together with Baird's and Hückel's rules suggests that borazine is best described as an (weakly) aromatic system.
Collapse
Affiliation(s)
- Rodrigo Báez-Grez
- Computational and Theoretical Chemistry Group, Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello República 498 Santiago Chile
| | - Ricardo Pino-Rios
- Laboratorio de Química Teórica, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH) Av. Libertador Bernardo O'Higgins 3363 Santiago Estación Central, Región Metropolitana Chile
| |
Collapse
|
21
|
Desmedt E, Woller T, Teunissen JL, De Vleeschouwer F, Alonso M. Fine-Tuning of Nonlinear Optical Contrasts of Hexaphyrin-Based Molecular Switches Using Inverse Design. Front Chem 2021; 9:786036. [PMID: 34926405 PMCID: PMC8677951 DOI: 10.3389/fchem.2021.786036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
In the search for new nonlinear optical (NLO) switching devices, expanded porphyrins have emerged as ideal candidates thanks to their tunable chemical and photophysical properties. Introducing meso-substituents to these macrocycles is a successful strategy to enhance the NLO contrasts. Despite its potential, the influence of meso-substitution on their structural and geometrical properties has been scarcely investigated. In this work, we pursue to grasp the underlying pivotal concepts for the fine-tuning of the NLO contrasts of hexaphyrin-based molecular switches, with a particular focus on the first hyperpolarizability related to the hyper-Rayleigh scattering (βHRS). Building further on these concepts, we also aim to develop a rational design protocol. Starting from the (un)substituted hexaphyrins with various π-conjugation topologies and redox states, structure-property relationships are established linking aromaticity, photophysical properties and βHRS responses. Ultimately, inverse molecular design using the best-first search algorithm is applied on the most favorable switches with the aim to further explore the combinatorial chemical compound space of meso-substituted hexaphyrins in search of high-contrast NLO switches. Two definitions of the figure-of-merit of the switch performance were used as target objectives in the optimization problem. Several meso-substitution patterns and their underlying characteristics are identified, uncovering molecular symmetry and the electronic nature of the substituents as the key players for fine-tuning the βHRS values and NLO contrasts of hexaphyrin-based switches.
Collapse
Affiliation(s)
- Eline Desmedt
- General Chemistry - Eenheid Algemene Chemie (ALGC), Department of Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Tatiana Woller
- General Chemistry - Eenheid Algemene Chemie (ALGC), Department of Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jos L Teunissen
- General Chemistry - Eenheid Algemene Chemie (ALGC), Department of Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Freija De Vleeschouwer
- General Chemistry - Eenheid Algemene Chemie (ALGC), Department of Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mercedes Alonso
- General Chemistry - Eenheid Algemene Chemie (ALGC), Department of Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
22
|
Kim J, Oh J, Osuka A, Kim D. Porphyrinoids, a unique platform for exploring excited-state aromaticity. Chem Soc Rev 2021; 51:268-292. [PMID: 34879124 DOI: 10.1039/d1cs00742d] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Recently, Baird (anti)aromaticity has been referred to as a description of excited-state (anti)aromaticity. With the term of Baird's rule, recent studies have intensively verified that the Hückel aromatic [4n + 2]π (or antiaromatic [4n]π) molecules in the ground state are reversed to give Baird aromatic [4n]π (or Baird antiaromatic [4n + 2]π) molecules in the excited states. Since the Hückel (anti)aromaticity has great influence on the molecular properties and reaction mechanisms, the Baird (anti)aromaticity has been expected to act as a dominant factor in governing excited-state properties and processes, which has attracted intensive scientific investigations for the verification of the concept of reversed aromaticity in the excited states. In this scientific endeavor, porphyrinoids have recently played leading roles in the demonstration of the aromaticity reversal in the excited states and its conceptual development. The distinct structural and electronic nature of porphyhrinoids depending on their (anti)aromaticity allow the direct observation of excited-state aromaticity reversal, Baird's rule. The explicit experimental demonstration with porphyrinoids has contributed greatly to its conceptual development and application in novel functional organic materials. Based on the significant role of porphyrinoids in the field of excited-state aromaticity, this review provides an overview of the experimental verification of the reversal concept of excited-state aromaticity by porphyrinoids and the recent progress on its conceptual application in novel functional molecules.
Collapse
Affiliation(s)
- Jinseok Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Korea.
| | - Juwon Oh
- Department of Chemistry, Soonchunhyang University, Asan-si 31538, Korea.
| | - Atsuhiro Osuka
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| | - Dongho Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
23
|
Cai Y, Hua Y, Lu Z, Lan Q, Lin Z, Fei J, Chen Z, Zhang H, Xia H. Electrophilic aromatic substitution reactions of compounds with Craig-Möbius aromaticity. Proc Natl Acad Sci U S A 2021; 118:e2102310118. [PMID: 34544859 PMCID: PMC8488665 DOI: 10.1073/pnas.2102310118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2021] [Indexed: 11/18/2022] Open
Abstract
Electrophilic aromatic substitution (EAS) reactions are widely regarded as characteristic reactions of aromatic species, but no comparable reaction has been reported for molecules with Craig-Möbius aromaticity. Here, we demonstrate successful EAS reactions of Craig-Möbius aromatics, osmapentalenes, and fused osmapentalenes. The highly reactive nature of osmapentalene makes it susceptible to electrophilic attack by halogens, thus osmapentalene, osmafuran-fused osmapentalene, and osmabenzene-fused osmapentalene can undergo typical EAS reactions. In addition, the selective formation of a series of halogen substituted metalla-aromatics via EAS reactions has revealed an unprecedented approach to otherwise elusive compounds such as the unsaturated cyclic chlorirenium ions. Density functional theory calculations were conducted to study the electronic effect on the regioselectivity of the EAS reactions.
Collapse
Affiliation(s)
- Yuanting Cai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China 361005
| | - Yuhui Hua
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China 361005
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China 518005
| | - Zhengyu Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China 361005
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China 518005
| | - Qing Lan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China 361005
| | - Zuzhang Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China 361005
| | - Jiawei Fei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China 361005
| | - Zhixin Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China 361005
| | - Hong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China 361005;
| | - Haiping Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China 361005;
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China 518005
| |
Collapse
|
24
|
Escayola S, Poater A, Muñoz-Castro A, Solà M. An unprecedented π-electronic circuit involving an odd number of carbon atoms in a grossly warped non-planar nanographene. Chem Commun (Camb) 2021; 57:3087-3090. [DOI: 10.1039/d1cc00593f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The formation of π-aromatic circuits along a grossly warped nanographene, C80H30, containing five- and seven-membered rings inserted into a six-membered mesh, reveals global π-circuits at the edge of the backbone.
Collapse
Affiliation(s)
- Sílvia Escayola
- Institute of Computational Chemistry and Catalysis and Department of Chemistry
- University of Girona
- 17003 Girona
- Spain
- Donostia International Physics Center (DIPC)
| | - Albert Poater
- Institute of Computational Chemistry and Catalysis and Department of Chemistry
- University of Girona
- 17003 Girona
- Spain
| | - Alvaro Muñoz-Castro
- Grupo de Química Inorgánica y Materiales Moleculares
- Facultad de Ingeniería
- Universidad Autónoma de Chile
- El Llano Subercaseaux 2801
- Chile
| | - Miquel Solà
- Institute of Computational Chemistry and Catalysis and Department of Chemistry
- University of Girona
- 17003 Girona
- Spain
| |
Collapse
|
25
|
Chakraborty S, Das M, Srinivasan A, Ghosh A. Tetrakis-( N-methyl-4-pyridinium)-porphyrin as a diamagnetic chemical exchange saturation transfer (diaCEST) MRI contrast agent. NEW J CHEM 2021. [DOI: 10.1039/d0nj04869k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Easily synthesizable tetrakis-(N-methyl-4-pyridinium)-porphyrin as a diaCEST agent that shows nearly pH independent good contrast in a wide range of pH.
Collapse
Affiliation(s)
- Subhayan Chakraborty
- School of Chemical Sciences
- National Institute of Science Education and Research (NISER)
- HBNI
- Bhubaneswar 752050
- India
| | - Mainak Das
- School of Chemical Sciences
- National Institute of Science Education and Research (NISER)
- HBNI
- Bhubaneswar 752050
- India
| | - A. Srinivasan
- School of Chemical Sciences
- National Institute of Science Education and Research (NISER)
- HBNI
- Bhubaneswar 752050
- India
| | - Arindam Ghosh
- School of Chemical Sciences
- National Institute of Science Education and Research (NISER)
- HBNI
- Bhubaneswar 752050
- India
| |
Collapse
|
26
|
Martin MI, Cai Q, Yap GPA, Rosenthal J. Synthesis, Redox, and Spectroscopic Properties of Pd(II) 10,10-Dimethylisocorrole Complexes Prepared via Bromination of Dimethylbiladiene Oligotetrapyrroles. Inorg Chem 2020; 59:18241-18252. [PMID: 33284618 PMCID: PMC8211382 DOI: 10.1021/acs.inorgchem.0c02721] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Two brominated 10,10-dimethylisocorrole (10-DMIC) derivatives containing Pd(II) centers have been prepared and characterized. These compounds were prepared via bromination of 10,10-dimethylbiladiene-based oligotetrapyrroles. Bromination of free base 10,10-dimethylbiladiene (DMBil1) followed by metalation with Pd(OAc)2, as well as bromination of the corresponding Pd(II) dimethylbiladiene complex (Pd[DMBil1]) provide routes to Pd(II) hexabromo-10,10-dimethyl-5,15-bis(pentafluorophenyl)-isocorrole (Pd[10-DMIC-Br6]) and Pd(II) octabromo-10,10-dimethyl-5,15-bis(pentafluorophenyl)-isocorrole (Pd[10-DMIC-Br8]). The solid-state structures of the two brominated isocorrole complexes are presented, as is that for a new decabrominated dimethylbiladiene derivative (DMBil-Br10). The electronic and spectroscopic properties of the brominated biladiene and isocorrole derivatives were probed using a combination of voltammetric methods and steady-state UV-vis absorption and emission experiments. Data obtained from these experiments allow the properties of the brominated biladiene and isocorrole derivatives to be compared to previously studied biladiene derivatives (i.e., DMBil1 and Pd[DMBil1]). CV and DPV experiments demonstrate that Pd[10-DMIC-Br6] and Pd[10-DMIC-Br8] support well-behaved multielectron redox chemistry, similar to that which has been observed for other nonaromatic tetrapyrroles containing sp3-hybridized meso-carbons. Spectroscopic experiments reveal that bromination of the dimethylbiladiene core shifts this system's UV-vis absorption profile to lower energy and that the dimethylisocorrole complexes support panchromatic absorption profiles that extend across the UV-vis and into the near-IR region. Photosensitization experiments demonstrate that unlike previously studied Pd(II) biladiene constructs, DMBil-Br10, Pd[10-DMIC-Br6], and Pd[10-DMIC-Br8] support limited triplet excited state chemistry with O2, indicating that the novel nonaromatic tetrapyrrole derivatives described in this work may be best suited for applications other than singlet oxygen sensitization.
Collapse
Affiliation(s)
- Maxwell I Martin
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Qiuqi Cai
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Glenn P A Yap
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Joel Rosenthal
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
27
|
|
28
|
Abstract
Magnetic shielding studies demonstrate that nickel norcorrole (NiNc) and norcorrole (H2Nc) provide unusual examples of stable molecules with high antagonistic levels of antiaromaticity and aromaticity: Both incorporate an antiaromatic "core", a 14-membered cyclic conjugated subsystem with 16 π electrons, surrounded by an aromatic "halo" in the form of a ring of either 14 atoms and 14 π electrons with a new type of homoconjugation (NiNc), or 18 atoms with 18 π electrons (H2Nc).
Collapse
Affiliation(s)
- Peter B Karadakov
- Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| |
Collapse
|
29
|
Latham AN, Lash TD. Synthesis and Characterization of N-Methylporphyrins, Heteroporphyrins, Carbaporphyrins, and Related Systems. J Org Chem 2020; 85:13050-13068. [PMID: 32940469 DOI: 10.1021/acs.joc.0c01737] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
MacDonald-type "3 + 1" condensations of an N-methyltripyrrane with a series of dialdehydes afforded a matched set of N-methylporphyrins, N-methylheteroporphyrins, N-methyloxybenziporphyrin, N-methyloxypyriporphyrin, N-methyltropiporphyrin, and a N-methylcarbaporphyrin aldehyde. meso-Unsubstituted heteroporphyrins have been little explored previously, and this strategy was also used to prepare N-unsubstituted 21-oxa-, 21-thia-, and 21-selenaporphyrins. In every case, the N-methylporphyrinoids exhibited weaker, bathochromically shifted UV-Vis absorptions compared to their core unsubstituted congeners. However, proton NMR spectroscopy demonstrated that these derivatives retained strong diamagnetic ring currents and the presence of the internal alkyl substituents had little effect on the global aromatic characteristics. Nevertheless, the UV-Vis spectra of N-methyl-oxybenzi- and N-methyl-oxypyriporphyrins were dramatically altered and gave greatly weakened absorptions. N-Methyl-oxybenzi- and N-methyltropiporphyrins reacted with palladium(II) acetate to give stable palladium(II) complexes, demonstrating that N-alkylation alters the metalation properties for these carbaporphyrinoids. The organometallic derivatives also retained strongly aromatic properties, and the proton NMR spectra showed the N-methyl resonances near -3 ppm. N-Methylcarbaporphyrin-2-carbaldehyde also gave a palladium(II) complex, but this gradually rearranged at higher temperatures to afford a C-methyl complex. The results demonstrate that core alkylation of porphyrinoids greatly alters the reactivity and spectroscopic properties for these systems.
Collapse
Affiliation(s)
- Alissa N Latham
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Timothy D Lash
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| |
Collapse
|
30
|
Pino-Rios R, Cárdenas-Jirón G, Tiznado W. Local and macrocyclic (anti)aromaticity of porphyrinoids revealed by the topology of the induced magnetic field. Phys Chem Chem Phys 2020; 22:21267-21274. [PMID: 32935691 DOI: 10.1039/d0cp03272g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The aromaticity in porphyrinoids results from the π conjugation through two different annular perimeters: the macrocyclic ring and the local heterocyclic rings appended to it. Analyses, based on aromatic stabilization energies (ASE), indicate that the local circuits (6π) are responsible for the significant aromatic stabilization of these systems. This local aromaticity can be coupled with the one from 4n + 2π macrocyclic circuit. It can either compensate for the destabilization due to a 4n π macrocyclic circuit, or be the only source of aromatic stabilization in porphyrinoids with macrocycles without π-conjugated bonds. This "multifaceted" aromatic character of porphyrinoids makes it challenging to analyze their aromaticity using magnetic descriptors because of the intricate interaction of local versus macro-cyclic circulation. In this contribution, we show that the analysis of the bifurcation of the induced magnetic field, Bind, allows clear identification and quantification of both local, and macrocyclic aromaticity, in a representative group of porphyrinioids. In porphyrin, bifurcation values accurately predict the local and macrocyclic contribution rate to overall aromatic stabilization determined by ASE.
Collapse
Affiliation(s)
- Ricardo Pino-Rios
- Laboratorio de Química teórica, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Santiago, Estación Central, Región Metropolitana, Chile.
| | - Gloria Cárdenas-Jirón
- Laboratorio de Química teórica, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Santiago, Estación Central, Región Metropolitana, Chile.
| | - William Tiznado
- Departamento de Química, Facultad de Ciencias Exactas, Universidad Andres Bello (UNAB), Av. República 275, Santiago, Región Metropolitana, Chile.
| |
Collapse
|
31
|
Fang X, Chen X, Wang Q, Yang YF, She YB. Understanding the structures and aromaticity of heteroporphyrins with computations. Org Biomol Chem 2020; 18:4415-4422. [PMID: 32463054 DOI: 10.1039/d0ob00656d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heteroporphyrins are porphyrin derivatives with replacement of the pyrrolic NH moiety by other heteroatom-containing groups, such as PH, AsH, SiH2, O, S, etc. For all studied heteroporphyrins, the macrocycle structure is distorted due to the presence of large heteroatoms. The HOMO-LUMO gap of heteroporphyrins is generally decreased compared to regular porphyrins. Both nucleus independent chemical shifts values and visualized anisotropy of induced current density were computed to describe the aromaticity of heteroporphyrins. The plots of anisotropy of induced current density suggest that the ring current diverged into an outer and an inner pathway at each ring. The current mainly passes through the outer path at the pyrrolic rings with inner hydrogen and through the inner path at the pyrrolic rings without inner hydrogen. In both regular porphyrin and O-substituted heteroporphyrins, the aromatic pathway is mainly contributed by the 22π-electron aromatic route model. Heteroatoms such as PH, AsH, S, Se and Te have little contribution to the aromaticity of heteroporphyrins. In addition, the π conjugation is also interrupted at the CH2 and SiH2 moiety, and the ring current mainly passes through the outer path of the heteroporphyrins with CH2 and SiH2 replacing the pyrrolic NH moiety. Therefore the 18π-[18]annulene model is dominated in PH-, AsH-, S-, Se-, Te-, CH2- and SiH2-substituted heteroporphyrins. These computational studies shed new light on the aromatic characters of heteroporphyrins, and will facilitate the further development of various novel heteroporphyrins.
Collapse
Affiliation(s)
- Xiaoli Fang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Xiahe Chen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Qunmin Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Yun-Fang Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Yuan-Bin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
32
|
Fatayer S, Albrecht F, Zhang Y, Urbonas D, Peña D, Moll N, Gross L. Molecular structure elucidation with charge-state control. SCIENCE (NEW YORK, N.Y.) 2020; 365:142-145. [PMID: 31296763 DOI: 10.1126/science.aax5895] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/12/2019] [Indexed: 11/02/2022]
Abstract
The charge state of a molecule governs its physicochemical properties, such as conformation, reactivity, and aromaticity, with implications for on-surface synthesis, catalysis, photoconversion, and applications in molecular electronics. On insulating, multilayer sodium chloride (NaCl) films, we controlled the charge state of organic molecules and resolved their structures in neutral, cationic, anionic, and dianionic states by atomic force microscopy, obtaining atomic resolution and bond-order discrimination using carbon monoxide (CO)-functionalized tips. We detected changes in conformation, adsorption geometry, and bond-order relations for azobenzene, tetracyanoquinodimethane, and pentacene in multiple charge states. Moreover, for porphine, we investigate the charge state-dependent change of aromaticity and conjugation pathway in the macrocycle. This work opens the way to studying chemical-structural changes of individual molecules for a wide range of charge states.
Collapse
Affiliation(s)
| | | | - Yunlong Zhang
- ExxonMobil Research and Engineering Company, Annandale, NJ 08801, USA
| | | | - Diego Peña
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Nikolaj Moll
- IBM Research-Zurich, Rueschlikon 8803, Switzerland
| | - Leo Gross
- IBM Research-Zurich, Rueschlikon 8803, Switzerland.
| |
Collapse
|
33
|
Halder N, Sangeetha M, Usharani D, Rath H. Redox-Associated Variation of Hückel Aromaticity from Lactam-Embedded Smallest Antiaromatic trans-Doubly N-Confused Porphyrins: Synthesis and Characterization. J Org Chem 2020; 85:2059-2067. [PMID: 31872765 DOI: 10.1021/acs.joc.9b02788] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
High-yield synthesis, spectroscopic and solid-state structural proof of the lactam-embedded smallest ever metal-free stable Hückel antiaromatic trans-doubly N-confused [16] porphyrins are reported. These new facets of trans-doubly N-confused porphyrins have been anticipated to exhibit the redox-associated variation of Hückel aromaticity as a mere consequence of the amido-like structures of the N-confused N-methyl pyrrole rings of the macrocycles. Strong aromaticity upon NaBH4 reduction leading to a resonance dipolar structure of the [18]π-conjugated system as the reduced congener with concomitant Hückel topology are the important highlights. Excellent agreement between experimental spectroscopic measurements and the theoretically determined properties elucidate aromaticity switching upon chemical reduction. Recent years have witnessed an upsurge of demand for the experimental realization of stable antiaromatic systems because of their versatile applications in material science. The conformational rigidity and the enriched stability of these novel 16π antiaromatic doubly N-confused porphyrins might entitle these macrocycles toward such applications.
Collapse
Affiliation(s)
- Nyancy Halder
- School of Chemical Sciences , Indian Association for the Cultivation of Science , 2A/2B Raja S. C. Mullick Road , Jadavpur, Kolkata 700032 , India
| | - Mohandas Sangeetha
- Department of Food Safety and Analytical Quality Control Laboratory , CSIR-Central Food Technological Research Institute , Mysuru 700020 , Karnataka , India
| | - Dandamudi Usharani
- Department of Food Safety and Analytical Quality Control Laboratory , CSIR-Central Food Technological Research Institute , Mysuru 700020 , Karnataka , India.,Academy of Scientific and Innovative Research (AcSIR) , CSIR-HRDC , Ghaziabad 201002 , Uttar Pradesh , India
| | - Harapriya Rath
- School of Chemical Sciences , Indian Association for the Cultivation of Science , 2A/2B Raja S. C. Mullick Road , Jadavpur, Kolkata 700032 , India
| |
Collapse
|
34
|
Yu D, Rong C, Lu T, Geerlings P, De Proft F, Alonso M, Liu S. Switching between Hückel and Möbius aromaticity: a density functional theory and information-theoretic approach study. Phys Chem Chem Phys 2020; 22:4715-4730. [PMID: 32057037 DOI: 10.1039/c9cp06120g] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Benziporphyrins are versatile macrocycles exhibiting aromaticity switching behaviors. The existence of both Hückel and Möbius (anti)aromaticity has been reported in these systems, whose validity is respectively governed by the [4n + 2] and [4n] π-electron rule on the macrocyclic pathway. Despite the experimental evidence on the floppiness of benziporphyrins, the switching mechanism between Hückel and Möbius structures is still not clear, as well as the factors influencing the stability of the different π-conjugation topologies. For these reasons, we performed a systematic study on A,D-di-p-benzihexaphyrins(1.1.1.1.1.1) with two redox states corresponding to [28] and [30] π-electron conjugation pathways. Whereas benzi[28]hexaphyrin obeys Möbius aromaticity, benzi[30]hexaphyrin follows Hückel aromaticity. The dynamic interconversion between Möbius and Hückel aromaticity is investigated through the rotation of a phenylene ring, which acts as the topology selector. Further analyses of the energy profiles using energy decomposition and information-theoretic approaches provide new insights into conformational stability, aromaticity and antiaromaticity for these species. Strong and opposite cross correlations between aromaticity indexes and information-theoretic quantities were found for the two macrocyclic systems with opposite global aromaticity and antiaromaticity behaviors. These results indicate that Hückel and Möbius aromaticity and antiaromaticity, though qualitatively different, are closely related and can be interchanged, and information-theoretic quantities provide a novel understanding about their relevance. Our present results should provide in-depth insights to appreciate the nature and origin about Möbius (anti)aromaticity and its close relationship with Hückel (anti)aromaticity.
Collapse
Affiliation(s)
- Donghai Yu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China.
| | | | | | | | | | | | | |
Collapse
|
35
|
Baryshnikov GV, Valiev RR, Li Q, Li C, Xie Y, Ågren H. Computational study of aromaticity, 1H NMR spectra and intermolecular interactions of twisted thia-norhexaphyrin and its multiply annulated polypyrrolic derivatives. Phys Chem Chem Phys 2019; 21:25334-25343. [PMID: 31701970 DOI: 10.1039/c9cp04819g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The recently synthesized twisted thia-norhexaphyrin and its multiply annulated polypyrrolic derivatives have been studied computationally. Gauge-including magnetically induced current calculations predict a global nonaromatic character of the initial thia-norhexaphyrin due to the highly-twisted conformation of the macrocycle. Upon the oxidation of the thia-norhexaphyrin four multiply annulated polypyrrolic aromatic macrocycles are formed for which the global aromatic character is confirmed in agreement with experimentally measured 1H NMR spectra. The calculation of the proton chemical shifts for the studied compounds by direct comparison with the tetramethylsilane standard leads to a significant mean absolute error. At the same time a linear regression procedure for the two selected groups of protons (CH and NH protons) provides much better values of calculated chemical shifts and tight correlation with experiment. The separate consideration of NH protons is motivated by the numerous intermolecular hydrogen bonds in which the protons are involved, which induce considerable upfield shifts, leading to a significant underestimation of the corresponding chemical shifts. Such a selected correlation can be used for accurate estimation of proton chemical shifts of the related porphyrinoids. Bader's theory of Atoms in Molecules has been applied for the studied twisted thia-norhexaphyrin and its multiply annulated polypyrrolic derivatives to characterize intramolecular H-bonds and other non-covalent interactions.
Collapse
Affiliation(s)
- Gleb V Baryshnikov
- Division of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10691, Stockholm, Sweden. and Department of Chemistry and Nanomaterials Science, Bohdan Khmelnytsky National University, 18031, Cherkasy, Ukraine
| | - Rashid R Valiev
- Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050, Russia and Department of Chemistry, University of Helsinki, FIN-00014, Helsinki, Finland
| | - Qizhao Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Chengjie Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Yongshu Xie
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Hans Ågren
- Division of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10691, Stockholm, Sweden. and College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| |
Collapse
|
36
|
Listkowski A, Jȩdrzejewski P, Kijak M, Nawara K, Kowalska P, Luboradzki R, Waluk J. Antiaromatic or Nonaromatic? 2 1 H,6 1 H-2,6(2,5)-Dipyrrola-1,5(2,6)-dipyridinacyclooctaphane-3,7-diene: a Porphycene Derivative with 4 N π Electrons. J Phys Chem A 2019; 123:2727-2733. [PMID: 30821450 DOI: 10.1021/acs.jpca.8b11962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A porphycene-derived compound with a 20 π-electron skeleton has been obtained by replacing two pyrrolene units of porphycene by pyridine rings. NMR, electronic absorption and MCD spectra, and the lack of fluorescence are typical for 4 N cyclic π electron systems. The electronic structure and the differences with respect to porphycene can be rationalized by treating these compounds as perturbed, doubly positively charged [22]annulene and [20]annulene perimeters, respectively. Even though the spectroscopic and photophysical criteria proposed for antiaromatic systems are fulfilled, the molecule is very stable. We argue that the compound should be characterized as nonaromatic rather than antiaromatic. The perimeter model is recommended as a powerful tool for predicting the electronic structure and spectra and as a useful addition to other methods that probe the aromaticity.
Collapse
Affiliation(s)
- Arkadiusz Listkowski
- Institute of Physical Chemistry , Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland.,Faculty of Mathematics and Science , Cardinal Stefan Wyszyński University , Dewajtis 5 , 01-815 Warsaw , Poland
| | - Paweł Jȩdrzejewski
- Institute of Physical Chemistry , Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland
| | - Michał Kijak
- Institute of Physical Chemistry , Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland
| | - Krzysztof Nawara
- Institute of Physical Chemistry , Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland.,Faculty of Mathematics and Science , Cardinal Stefan Wyszyński University , Dewajtis 5 , 01-815 Warsaw , Poland
| | - Patrycja Kowalska
- Institute of Physical Chemistry , Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland
| | - Roman Luboradzki
- Institute of Physical Chemistry , Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland
| | - Jacek Waluk
- Institute of Physical Chemistry , Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland.,Faculty of Mathematics and Science , Cardinal Stefan Wyszyński University , Dewajtis 5 , 01-815 Warsaw , Poland
| |
Collapse
|
37
|
Hunt C, Peterson M, Anderson C, Chang T, Wu G, Scheiner S, Ménard G. Switchable Aromaticity in an Isostructural Mn Phthalocyanine Series Isolated in Five Separate Redox States. J Am Chem Soc 2019; 141:2604-2613. [DOI: 10.1021/jacs.8b12899] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Camden Hunt
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Madeline Peterson
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Cassidy Anderson
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Tieyan Chang
- ChemMatCARS, University of Chicago, Argonne, Illinois 60493, United States
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Gabriel Ménard
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
38
|
Benkyi I, Sundholm D. Aromatic Pathways in Porphycene Derivatives Based on Current-Density Calculations. J Phys Chem A 2019; 123:284-292. [PMID: 30561203 DOI: 10.1021/acs.jpca.8b10818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Magnetically induced current densities have been calculated for porphycenes at the density functional theory level using gauge-including atomic orbitals to ensure gauge-origin independence and a fast basis-set convergence of the current densities. The current densities have been analyzed by using the gauge-including magnetically induced current (GIMIC) method. The porphycenes are aromatic, sustaining strong diatropic ring currents. The ring-current pathways have been determined by integrating the strength of the current density passing selected bonds. The calculations show that the ring current of the porphycenes splits into an outer and inner branch at the pyrrolic rings implying that the ring current involves all 26 π electrons of the porphycenes, which is similar to the ring current of porphyrins. The pyrrolic rings of the aromatic porphycenes do not sustain any significant local ring currents. Dihydroporphycene with four inner hydrogens is antiaromatic with weakly aromatic pyrrolic rings. The annelated benzoic rings in benzoporphycene sustain local paratropic ring currents, whereas the global ring current of dibenzoporphycene splits into an outer and inner branch at the benzoic rings. Comparison of calculated 1H NMR shieldings with ring-current strengths shows that interactions between the inner hydrogen and the neighbor nitrogen is more significant for differences in the 1H NMR shieldings than variations in global ring-current strengths. Calculated excitation energies show that the antiaromatic dihydroporphycene has a smaller optical gap than the aromatic porphycene, even though its HOMO-LUMO gap is larger.
Collapse
Affiliation(s)
- Isaac Benkyi
- University of Helsinki , Department of Chemistry , P.O. Box 55 ( A.I. Virtanens plats 1 ), FIN-00014 Helsinki , Finland
| | - Dage Sundholm
- University of Helsinki , Department of Chemistry , P.O. Box 55 ( A.I. Virtanens plats 1 ), FIN-00014 Helsinki , Finland
| |
Collapse
|
39
|
Yao Y, Rao Y, Liu Y, Jiang L, Xiong J, Fan YJ, Shen Z, Sessler JL, Zhang JL. Aromaticity versus regioisomeric effect of β-substituents in porphyrinoids. Phys Chem Chem Phys 2019; 21:10152-10162. [DOI: 10.1039/c9cp01177c] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Maximizing the regioisomeric effect of β-substituents on photophysical properties of porphyrinoids through disruption of TT-conjugation and reducing the aromaticity.
Collapse
Affiliation(s)
- Yuhang Yao
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Yu Rao
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Yiwei Liu
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Liang Jiang
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Jin Xiong
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Ying-Jie Fan
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Zhen Shen
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Jonathan L. Sessler
- Institute for Supramolecular Chemistry and Catalysis
- Shanghai University
- Shanghai
- P. R. China
- Department of Chemistry
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| |
Collapse
|
40
|
Xie Q, Sun T, Orozco‐Ic M, Barroso J, Zhao Y, Merino G, Zhu J. Probing Hyperconjugative Aromaticity of Monosubstituted Cyclopentadienes. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Qiong Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| | - Tingting Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| | - Mesías Orozco‐Ic
- Departamento de FísicaAplicada, Centro de Investigación y de EstudiosAvanzadosUnidad Mérida, Km. 6 Antigua Carretera a Progreso, A.P. 73, Cordemex Mérida 97310 Mexico
| | - Jorge Barroso
- Departamento de FísicaAplicada, Centro de Investigación y de EstudiosAvanzadosUnidad Mérida, Km. 6 Antigua Carretera a Progreso, A.P. 73, Cordemex Mérida 97310 Mexico
| | - Yu Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| | - Gabriel Merino
- Departamento de FísicaAplicada, Centro de Investigación y de EstudiosAvanzadosUnidad Mérida, Km. 6 Antigua Carretera a Progreso, A.P. 73, Cordemex Mérida 97310 Mexico
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| |
Collapse
|
41
|
AbuSalim DI, Lash TD. Tropylium and Porphyrinoid Character in Carbaporphyrinoid Systems. Relative Stability and Aromatic Characteristics of Azuliporphyrin and Tropiporphyrin Tautomers, Protonated Species, and Related Structures. J Phys Chem A 2018; 123:230-246. [DOI: 10.1021/acs.jpca.8b10020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Deyaa I. AbuSalim
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Timothy D. Lash
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| |
Collapse
|
42
|
Xie Q, Sun T, Zhu J. Probing the Strongest Aromatic Cyclopentadiene Ring by Hyperconjugation. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00571] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qiong Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Tingting Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| |
Collapse
|
43
|
Affiliation(s)
- Eric Y. Grabowski
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Deyaa I. AbuSalim
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Timothy D. Lash
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| |
Collapse
|
44
|
Woller T, Geerlings P, De Proft F, Champagne B, Alonso M. Aromaticity as a Guiding Concept for Spectroscopic Features and Nonlinear Optical Properties of Porphyrinoids. Molecules 2018; 23:molecules23061333. [PMID: 29865191 PMCID: PMC6100263 DOI: 10.3390/molecules23061333] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/15/2018] [Accepted: 05/24/2018] [Indexed: 12/13/2022] Open
Abstract
With their versatile molecular topology and aromaticity, porphyrinoid systems combine remarkable chemistry with interesting photophysical properties and nonlinear optical properties. Hence, the field of application of porphyrinoids is very broad ranging from near-infrared dyes to opto-electronic materials. From previous experimental studies, aromaticity emerges as an important concept in determining the photophysical properties and two-photon absorption cross sections of porphyrinoids. Despite a considerable number of studies on porphyrinoids, few investigate the relationship between aromaticity, UV/vis absorption spectra and nonlinear properties. To assess such structure-property relationships, we performed a computational study focusing on a series of Hückel porphyrinoids to: (i) assess their (anti)aromatic character; (ii) determine the fingerprints of aromaticity on the UV/vis spectra; (iii) evaluate the role of aromaticity on the NLO properties. Using an extensive set of aromaticity descriptors based on energetic, magnetic, structural, reactivity and electronic criteria, the aromaticity of [4n+2] π-electron porphyrinoids was evidenced as was the antiaromaticity for [4n] π-electron systems. In agreement with previous studies, the absorption spectra of aromatic systems display more intense B and Q bands in comparison to their antiaromatic homologues. The nature of these absorption bands was analyzed in detail in terms of polarization, intensity, splitting and composition. Finally, quantities such as the average polarizability and its anisotropy were found to be larger in aromatic systems, whereas first and second hyperpolarizability are influenced by the interplay between aromaticity, planarity and molecular symmetry. To conclude, aromaticity dictates the photophysical properties in porphyrinoids, whereas it is not the only factor determining the magnitude of NLO properties.
Collapse
Affiliation(s)
- Tatiana Woller
- Eenheid Algemene Chemie (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium.
| | - Paul Geerlings
- Eenheid Algemene Chemie (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium.
| | - Frank De Proft
- Eenheid Algemene Chemie (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium.
| | - Benoît Champagne
- Laboratoire de Chimie Théorique, Unité de Chimie Physique Théorique et Structurale, University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium.
| | - Mercedes Alonso
- Eenheid Algemene Chemie (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium.
| |
Collapse
|
45
|
Basumatary B, Ramana Reddy RV, Rahul, Sankar J. The Curious Case of a Parasitic Twin of the Corroles. Angew Chem Int Ed Engl 2018; 57:5052-5056. [PMID: 29504712 DOI: 10.1002/anie.201801555] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Indexed: 11/06/2022]
Abstract
An expanded porphyrinoid has been obtained by a simple ring expansion from a contracted porphyrinoid, namely corrole. Spectroscopic, structural, and computational investigations reveal peculiar π-conjugation and geometry. The effect of extended π-conjugation is evident from perturbed redox behavior and photophysical properties. Owing to the strong diatropic ring current of the corrole and cross-conjugation, the molecule exhibits a non-aromatic nature for the expanded π-circuit, as evident from NMR studies.
Collapse
Affiliation(s)
- Biju Basumatary
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, M.P-, 462066, India
| | - R V Ramana Reddy
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, M.P-, 462066, India
| | - Rahul
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, M.P-, 462066, India
| | - Jeyaraman Sankar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, M.P-, 462066, India
| |
Collapse
|
46
|
Basumatary B, Ramana Reddy RV, Rahul, Sankar J. The Curious Case of a Parasitic Twin of the Corroles. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Biju Basumatary
- Department of Chemistry; Indian Institute of Science Education and Research Bhopal; Bhopal Bypass Road Bhopal M.P- 462066 India
| | - R. V. Ramana Reddy
- Department of Chemistry; Indian Institute of Science Education and Research Bhopal; Bhopal Bypass Road Bhopal M.P- 462066 India
| | - Rahul
- Department of Chemistry; Indian Institute of Science Education and Research Bhopal; Bhopal Bypass Road Bhopal M.P- 462066 India
| | - Jeyaraman Sankar
- Department of Chemistry; Indian Institute of Science Education and Research Bhopal; Bhopal Bypass Road Bhopal M.P- 462066 India
| |
Collapse
|
47
|
Shimizu D, Osuka A. Porphyrinoids as a platform of stable radicals. Chem Sci 2018; 9:1408-1423. [PMID: 29675188 PMCID: PMC5892410 DOI: 10.1039/c7sc05210c] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/05/2018] [Indexed: 12/15/2022] Open
Abstract
The non-innocent ligand nature of porphyrins was observed for compound I in enzymatic cycles of cytochrome P450. Such porphyrin radicals were first regarded as reactive intermediates in catabolism, but recent studies have revealed that porphyrinoids, including porphyrins, ring-contracted porphyrins, and ring-expanded porphyrins, display excellent radical-stabilizing abilities to the extent that radicals can be handled like usual closed-shell organic molecules. This review surveys four types of stable porphyrinoid radical and covers their synthetic methods and properties such as excellent redox properties, NIR absorption, and magnetic properties. The radical-stabilizing abilities of porphyrinoids stem from their unique macrocyclic conjugated systems with high electronic and structural flexibilities.
Collapse
Affiliation(s)
- Daiki Shimizu
- Department of Chemistry , Graduate School of Science , Kyoto University , Kyoto 606-8502 , Japan .
| | - Atsuhiro Osuka
- Department of Chemistry , Graduate School of Science , Kyoto University , Kyoto 606-8502 , Japan .
| |
Collapse
|
48
|
Yoshida T, Takahashi K, Ide Y, Kishi R, Fujiyoshi JY, Lee S, Hiraoka Y, Kim D, Nakano M, Ikeue T, Yamada H, Shinokubo H. Benzonorcorrole NiII
Complexes: Enhancement of Paratropic Ring Current and Singlet Diradical Character by Benzo-Fusion. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712961] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Takuya Yoshida
- Department of Molecular and Macromolecular Chemistry; Graduate School of Engineering; Nagoya University; Furo-cho Chikusa-ku Nagoya 464-8603 Japan
| | - Kohtaro Takahashi
- Graduate School of Material Science; Nara Institute of Science and Technology; 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan
| | - Yuki Ide
- Department of Chemistry; Graduate School of Science and Engineering; Shimane University; 1060 Nishikawatsu Matsue 690-8540 Japan
| | - Ryohei Kishi
- Graduate School of Engineering Science; Osaka University; Toyonaka Osaka 560-8531 Japan
| | - Jun-ya Fujiyoshi
- Graduate School of Engineering Science; Osaka University; Toyonaka Osaka 560-8531 Japan
| | - Sangsu Lee
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry; Yonsei University; Seoul 03722 Korea
| | - Yuya Hiraoka
- Department of Molecular and Macromolecular Chemistry; Graduate School of Engineering; Nagoya University; Furo-cho Chikusa-ku Nagoya 464-8603 Japan
| | - Dongho Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry; Yonsei University; Seoul 03722 Korea
| | - Masayoshi Nakano
- Graduate School of Engineering Science; Osaka University; Toyonaka Osaka 560-8531 Japan
| | - Takahisa Ikeue
- Department of Chemistry; Graduate School of Science and Engineering; Shimane University; 1060 Nishikawatsu Matsue 690-8540 Japan
| | - Hiroko Yamada
- Graduate School of Material Science; Nara Institute of Science and Technology; 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry; Graduate School of Engineering; Nagoya University; Furo-cho Chikusa-ku Nagoya 464-8603 Japan
| |
Collapse
|
49
|
Yoshida T, Takahashi K, Ide Y, Kishi R, Fujiyoshi JY, Lee S, Hiraoka Y, Kim D, Nakano M, Ikeue T, Yamada H, Shinokubo H. Benzonorcorrole NiII
Complexes: Enhancement of Paratropic Ring Current and Singlet Diradical Character by Benzo-Fusion. Angew Chem Int Ed Engl 2018; 57:2209-2213. [DOI: 10.1002/anie.201712961] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Takuya Yoshida
- Department of Molecular and Macromolecular Chemistry; Graduate School of Engineering; Nagoya University; Furo-cho Chikusa-ku Nagoya 464-8603 Japan
| | - Kohtaro Takahashi
- Graduate School of Material Science; Nara Institute of Science and Technology; 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan
| | - Yuki Ide
- Department of Chemistry; Graduate School of Science and Engineering; Shimane University; 1060 Nishikawatsu Matsue 690-8540 Japan
| | - Ryohei Kishi
- Graduate School of Engineering Science; Osaka University; Toyonaka Osaka 560-8531 Japan
| | - Jun-ya Fujiyoshi
- Graduate School of Engineering Science; Osaka University; Toyonaka Osaka 560-8531 Japan
| | - Sangsu Lee
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry; Yonsei University; Seoul 03722 Korea
| | - Yuya Hiraoka
- Department of Molecular and Macromolecular Chemistry; Graduate School of Engineering; Nagoya University; Furo-cho Chikusa-ku Nagoya 464-8603 Japan
| | - Dongho Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry; Yonsei University; Seoul 03722 Korea
| | - Masayoshi Nakano
- Graduate School of Engineering Science; Osaka University; Toyonaka Osaka 560-8531 Japan
| | - Takahisa Ikeue
- Department of Chemistry; Graduate School of Science and Engineering; Shimane University; 1060 Nishikawatsu Matsue 690-8540 Japan
| | - Hiroko Yamada
- Graduate School of Material Science; Nara Institute of Science and Technology; 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry; Graduate School of Engineering; Nagoya University; Furo-cho Chikusa-ku Nagoya 464-8603 Japan
| |
Collapse
|
50
|
Casademont-Reig I, Woller T, Contreras-García J, Alonso M, Torrent-Sucarrat M, Matito E. New electron delocalization tools to describe the aromaticity in porphyrinoids. Phys Chem Chem Phys 2018; 20:2787-2796. [DOI: 10.1039/c7cp07581b] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
There are several possible pathways in the macrocycle of large porphyrinoids and, among aromaticity indices, only AVminis capable of recognizing the most aromatic one.
Collapse
Affiliation(s)
- Irene Casademont-Reig
- Kimika Fakultatea
- Euskal Herriko Unibertsitatea (UPV/EHU)
- and Donostia International Physics Center (DIPC)
- P.K. 1072
- 20080 Donostia
| | - Tatiana Woller
- Eenheid Algemene Chemie (ALGC). Vrije Universiteit Brussel (VUB)
- Pleinlaan 2
- 1050 Brussels
- Belgium
| | - Julia Contreras-García
- Sorbonne Universités, UPMC Univ. Paris
- UMR 7616 Laboratoire de Chimie Théorique
- CNRS
- UMR 7616
- Paris
| | - Mercedes Alonso
- Eenheid Algemene Chemie (ALGC). Vrije Universiteit Brussel (VUB)
- Pleinlaan 2
- 1050 Brussels
- Belgium
| | - Miquel Torrent-Sucarrat
- Kimika Fakultatea
- Euskal Herriko Unibertsitatea (UPV/EHU)
- and Donostia International Physics Center (DIPC)
- P.K. 1072
- 20080 Donostia
| | - Eduard Matito
- Kimika Fakultatea
- Euskal Herriko Unibertsitatea (UPV/EHU)
- and Donostia International Physics Center (DIPC)
- P.K. 1072
- 20080 Donostia
| |
Collapse
|