1
|
Pausch T, Clopot S, Jordan DN, Weingart O, Janiak C, Schmidt BM. Fluorinated Squareimines for Molecular Sieving of Aromatic over Aliphatic Compounds. Angew Chem Int Ed Engl 2024; 63:e202418877. [PMID: 39512137 DOI: 10.1002/anie.202418877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
The development of more energy-efficient separation technologies is essential. Especially the separation of cyclic aliphatic hydrocarbons from their aromatic counterparts remains a significant challenge due to azeotrope formation and similar physical properties, often requiring energy-intensive processes. Herein, we introduce a novel class of electron-deficient macrocycles with a unique rectangular structure to optimise interactions within the pore, enabling the highly selective molecular sieving of aromatic compounds from mixtures. Utilising dynamic covalent imine chemistry, the squareimine NDI2F42-based crystalline functional material is directly obtained from the reaction mixture in a single self-assembly step in high yields of 83 %, alongside the larger NDI2F82 congener, which can be obtained in 69 % yield. In vapour sorption and diffusion experiments, NDI2F42 demonstrates rapid adsorption kinetics with selectivities of 97 : 3 for benzene over cyclohexane and 93 : 7 for toluene over methylcyclohexane, while single-crystal and powder X-ray diffraction studies indicate that the selectivity is primarily governed by directed interactions between the electron-deficient panels and aromatic guests.
Collapse
Affiliation(s)
- Tobias Pausch
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Samanta Clopot
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Dustin N Jordan
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Oliver Weingart
- Zentrum für Informations- und Medientechnologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
- Institut für Theoretische Chemie und Computerchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Bernd M Schmidt
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| |
Collapse
|
2
|
Brand M, Trowell HG, Pegg JT, Greenfield JL, Odaybat M, Little MA, Haycock PR, Avci G, Rankin N, Fuchter MJ, Jelfs KE, Cooper AI, Greenaway RL. Photoresponsive Organic Cages─Computationally Inspired Discovery of Azobenzene-Derived Organic Cages. J Am Chem Soc 2024; 146:30332-30339. [PMID: 39436835 PMCID: PMC11544616 DOI: 10.1021/jacs.4c10217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
The incorporation of photoresponsive groups into porous materials is attractive as it offers potential advantages in controlling the pore size and selectivity to guest molecules. A combination of computational modeling and experiment resulted in the synthesis of two azobenzene-derived organic cages based on building blocks identified in a computational screen. Both cages incorporate three azobenzene moieties, and are therefore capable of 3-fold isomerization, using either ditopic or tetratopic aldehydes containing diazene functionality. The ditopic aldehyde forms a Tri2Di3 cage via a 6-fold imine condensation and the tritopic aldehyde forms a Tet3Di6 cage via a 12-fold imine condensation. The relative energies and corresponding intrinsic cavities of each isomeric state were computed, and the photoswitching behavior of both cages was studied by UV-Vis and 1H NMR spectroscopy, including a detailed kinetic analysis of the thermal isomerization for each of the EEZ, EZZ and ZZZ metastable isomers of the Tet3Di6 cage. Both cages underwent photoisomerization, where a photostationary state of up to 77% of the cis-isomer and overall thermal half-life of 110 h was identified for the Tet3Di6 species. Overall, this work demonstrates the potential of computational modeling to inform the design of photoresponsive materials and highlights the contrasting effects on the photoswitching properties of the azobenzene moieties on incorporation into the different cage species.
Collapse
Affiliation(s)
- Michael
C. Brand
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool L7 3NY, U.K.
| | - Hamish G. Trowell
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12
0BZ, U.K.
| | - James T. Pegg
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12
0BZ, U.K.
| | - Jake L. Greenfield
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12
0BZ, U.K.
- Universität
Würzburg, Institut für Organische
Chemie, Würzburg 97074, Germany
| | - Magdalena Odaybat
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12
0BZ, U.K.
| | - Marc A. Little
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool L7 3NY, U.K.
- Institute
of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K.
| | - Peter R. Haycock
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12
0BZ, U.K.
| | - Gokay Avci
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12
0BZ, U.K.
| | - Nicola Rankin
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool L7 3NY, U.K.
| | - Matthew J. Fuchter
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12
0BZ, U.K.
- Department
of Chemistry, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Kim E. Jelfs
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12
0BZ, U.K.
| | - Andrew I. Cooper
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool L7 3NY, U.K.
| | - Rebecca L. Greenaway
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12
0BZ, U.K.
| |
Collapse
|
3
|
Cox CJT, Hale J, Molinska P, Lewis JEM. Supramolecular and molecular capsules, cages and containers. Chem Soc Rev 2024; 53:10380-10408. [PMID: 39351690 DOI: 10.1039/d4cs00761a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Stemming from early seminal notions of molecular recognition and encapsulation, three-dimensional, cavity-containing capsular compounds and assemblies have attracted intense interest due to the ability to modulate chemical and physical properties of species encapsulated within these confined spaces compared to bulk environments. With such a diverse range of covalent motifs and non-covalent (supramolecular) interactions available to assemble building blocks, an incredibly wide-range of capsular-type architectures have been developed. Furthermore, synthetic tunability of the internal environments gives chemists the opportunity to engineer systems for uses in sensing, sequestration, catalysis and transport of molecules, just to name a few. In this tutorial review, an overview is provided into the design principles, synthesis, characterisation, structural facets and properties of coordination cages, porous organic cages, supramolecular capsules, foldamers and mechanically interlocked molecules. Using seminal and recent examples, the advantages and limitations of each system are explored, highlighting their application in various tasks and functions.
Collapse
Affiliation(s)
- Cameron J T Cox
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Jessica Hale
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Paulina Molinska
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - James E M Lewis
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
4
|
Jin T, Zeng K, Zhang X, Dou WT, Hu L, Zhang D, Zhu W, Qian X, Yang HB, Xu L. Efficient Self-Sorting Behaviours of Metallacages with Subtle Structural Differences. Angew Chem Int Ed Engl 2024; 63:e202409878. [PMID: 39051526 DOI: 10.1002/anie.202409878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/06/2024] [Accepted: 07/24/2024] [Indexed: 07/27/2024]
Abstract
Investigating the self-sorting behaviour of assemblies with subtle structural differences is a captivating yet challenging endeavour. Herein, we elucidate the unusual self-sorting behaviour of metallacages with subtle structural differences in batch reactors and microdroplets. Narcissistic self-sorting of metallacages has been observed for two ligands with identical sizes, shapes, and symmetries, with only minor differences in the substituted groups. In particular, the self-sorting process in microdroplets occurs within 1 min at room temperature, in stark contrast to batch reactors, which require equilibration for 30 min. To reveal the mechanism of self-sorting and the role of microdroplets, we conducted a series of experiments and theoretical calculations, including competitive self-assembly, cage-to-cage transformation, control experiments involving model metallacages with larger cavities, noncovalent interaction analysis, and root mean square deviation (RMSD) analysis. This research demonstrates an unusual case of self-sorting of very similar assemblies and provides a new strategy for facilitating the self-sorting efficiency of supramolecular systems.
Collapse
Affiliation(s)
- Tongxia Jin
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, The Wuhu Hospital Affiliated to East China Normal University, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Kai Zeng
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, The Wuhu Hospital Affiliated to East China Normal University, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Xin Zhang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, The Wuhu Hospital Affiliated to East China Normal University, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Wei-Tao Dou
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, The Wuhu Hospital Affiliated to East China Normal University, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Lianrui Hu
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, The Wuhu Hospital Affiliated to East China Normal University, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Dawei Zhang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, The Wuhu Hospital Affiliated to East China Normal University, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Weiping Zhu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Xuhong Qian
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, The Wuhu Hospital Affiliated to East China Normal University, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Hai-Bo Yang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, The Wuhu Hospital Affiliated to East China Normal University, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Lin Xu
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, The Wuhu Hospital Affiliated to East China Normal University, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
5
|
Esteve F, Rieu T, Lehn JM. Key structural features to favour imines over hydrates in water: pyridoxal phosphate as a muse. Chem Sci 2024; 15:10408-10415. [PMID: 38994419 PMCID: PMC11234862 DOI: 10.1039/d4sc02206h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/10/2024] [Indexed: 07/13/2024] Open
Abstract
Imination reactions in water represent a challenge not only because of the high propensity of imines to be hydrolysed but also as a result of the competing hydrate formation through H2O addition to the aldehyde. In the present work we report a successful approach that allows for favouring imitation reactions while silencing hydrate formation. Such remarkable reactivity and selectivity can be attained by fine-tuning the electronic and steric structural features of the ortho-substituents of the carbonyl groups. It resulted from studying the structure-reactivity relationships in a series of condensation reactions between different amines and aldehydes, comparing the results to the ones obtained in the presence of the biologically-relevant pyridoxal phosphate (PLP). The key role of negatively-charged and sterically-crowding units (i.e., sulfonate groups) in disfavouring hydrate formation was corroborated by DFT and steric-hindrance calculations. Furthermore, the best-performing aldehyde leads to higher imine yields, selectivity and stability than those of PLP itself, allowing for the inhibition of a PLP-dependent enzyme (transaminase) through dynamic aldimine exchange. These results will increase the applicability of imine-based dynamic covalent chemistry (DCvC) under physiological conditions and will pave the way for the design of new carbonyl derivatives that might be used in the dynamic modification of biomolecules.
Collapse
Affiliation(s)
- Ferran Esteve
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg 8 allée Gaspard Monge Strasbourg 67000 France
| | - Tanguy Rieu
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg 8 allée Gaspard Monge Strasbourg 67000 France
| | - Jean-Marie Lehn
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg 8 allée Gaspard Monge Strasbourg 67000 France
| |
Collapse
|
6
|
Kimoto M, Sugiyama S, Kumano K, Inagaki S, Ito S. Social Self-Sorting of Quasi-Racemates: A Unique Approach for Dual-Pore Molecular Crystals. J Am Chem Soc 2024; 146:17559-17565. [PMID: 38916517 PMCID: PMC11229008 DOI: 10.1021/jacs.4c01654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/04/2024] [Accepted: 06/03/2024] [Indexed: 06/26/2024]
Abstract
Despite recent advances in porous organic molecular crystals, the engineering of dual-pore systems within the intermolecular voids remains a significant challenge. In this study, we have achieved the crystallization-induced social self-sorting of "quasi-racemic" dialdehydes into a macrocyclic imine. X-ray crystallographic analysis unambiguously characterizes the resulting structure as incorporating two quasi-racemate pairs with four diamine molecules. Notably, different alkyl substituents on the quasi-racemates afford two types of one-dimensional pores within the macrocyclic imine crystal. The different adsorption properties of these pores were substantiated through adsorption experiments. An intriguing helical arrangement of guest molecules was observed within one of the pores. This study provides pioneering evidence that the social self-sorting of quasi-racemates offers a new methodology for creating dual-functional supramolecular materials.
Collapse
Affiliation(s)
- Momoka Kimoto
- Department
of Chemistry and Life Science, Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Shoichi Sugiyama
- Department
of Chemistry and Life Science, Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Keigo Kumano
- Department
of Chemistry and Life Science, Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Satoshi Inagaki
- Department
of Chemistry and Life Science, Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Suguru Ito
- Department
of Chemistry and Life Science, Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
- PRESTO,
Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
7
|
Yang Z, Esteve F, Antheaume C, Lehn JM. Triply Adaptive Libraries of Dynamic Covalent Macrocycles: Switching between Sorted and Unsorted States. J Am Chem Soc 2024; 146:15438-15445. [PMID: 38798165 DOI: 10.1021/jacs.4c03698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Dynamic noncovalent and covalent chemistries have enabled the constitutional modulation of chemical entities within chemical dynamic systems. The switching between order and disorder, i.e., self-sorted and unsorted states of constitutional dynamic libraries, remains challenging. Herein, we study the adaptive behaviors of a dynamic library of imine macrocycles generated from dialdehydes and diamines, seeking ways to exert control over sorting and unsorting processes. The distribution of constituents in the present library of dynamic macrocycles is modulated in response to internal and external effectors (e.g., time, metal cations, and chemical fuels), resulting in the transient amplification of self-sorted constituents in out-of-equilibrium states. The present study showcases higher complexity in systems subject to multiple adaptation through the dynamic interconversion between singularity/order and diversity/disorder.
Collapse
Affiliation(s)
- Zhaozheng Yang
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, Strasbourg 67000, France
- Lehn Institute of Functional Materials (LIFM), Sun Yat-Sen University, Guangzhou 510006, China
| | - Ferran Esteve
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, Strasbourg 67000, France
| | - Cyril Antheaume
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, Strasbourg 67000, France
| | - Jean-Marie Lehn
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, Strasbourg 67000, France
- Lehn Institute of Functional Materials (LIFM), Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
8
|
Li B, Sun B, Fang S, Chen Y, Li H. Guest-induced narcissistic self-sorting in water via imine formation. Chem Commun (Camb) 2024; 60:5743-5746. [PMID: 38743417 DOI: 10.1039/d4cc01239a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Two anionic tetrahedral cages were self-assembled as the only observable products in weakly basic water via imine condensation. The success of the high-yielding formation of the cages in water relies on (i) multivalency enhancing the stability of the imine bond and affording these cages water compatibility and (ii) a guest template with a complementary size and geometry that provides a hydrophobic driving force by occupying the corresponding cage cavity. When all four precursors, namely two trisaldehydes and two trisamines, were combined in water, narcissistic self-sorting occurred when both guest templates were present. In organic media where the hydrophobic effect is absent, narcissistic self-sorting did not occur in the analogous cage systems, confirming the importance of guest templates.
Collapse
Affiliation(s)
- Bingda Li
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | - Bin Sun
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | - Shuai Fang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | - Yixin Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | - Hao Li
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| |
Collapse
|
9
|
Andrews KG, Horton PN, Coles SJ. Programmable synthesis of organic cages with reduced symmetry. Chem Sci 2024; 15:6536-6543. [PMID: 38699263 PMCID: PMC11062111 DOI: 10.1039/d4sc00889h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/31/2024] [Indexed: 05/05/2024] Open
Abstract
Integrating symmetry-reducing methods into self-assembly methodology is desirable to efficiently realise the full potential of molecular cages as hosts and catalysts. Although techniques have been explored for metal organic (coordination) cages, rational strategies to develop low symmetry organic cages remain limited. In this article, we describe rules to program the shape and symmetry of organic cage cavities by designing edge pieces that bias the orientation of the amide linkages. We apply the rules to synthesise cages with well-defined cavities, supported by evidence from crystallography, spectroscopy and modelling. Access to low-symmetry, self-assembled organic cages such as those presented, will widen the current bottleneck preventing study of organic enzyme mimics, and provide synthetic tools for novel functional material design.
Collapse
Affiliation(s)
- Keith G Andrews
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Oxford OX1 3TA UK
- Department of Chemistry, Durham University Lower Mount Joy, South Rd Durham DH1 3LE UK
| | - Peter N Horton
- UK National Crystallography Service, School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton Southampton SO17 1BJ UK
| | - Simon J Coles
- UK National Crystallography Service, School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton Southampton SO17 1BJ UK
| |
Collapse
|
10
|
Ivanova S, Adamski P, Köster E, Schramm L, Fröhlich R, Beuerle F. Size Determination of Organic Cages by Diffusion NMR Spectroscopy. Chemistry 2023:e202303318. [PMID: 37966964 DOI: 10.1002/chem.202303318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 11/17/2023]
Abstract
Reliable structure elucidation of covalent organic cage compounds remains challenging as routine analysis might leave ambiguities. Diffusion-ordered NMR spectroscopy (DOSY) allows insight into the molecular size and mass of the species present in solution, but a systematic evaluation of the diffusion behavior for cage assemblies is rarely considered. Here we report the synthesis of four series of covalent organic cages based on tribenzotriquinacenes and diboronic acids with varying geometry and exohedral substituents. We provide a guideline for the consistent measurement of diffusion coefficients from 1 H-DOSY NMR spectroscopy, which was utilized to study the diffusion behavior for the whole set of cages and selected examples from the literature. For structurally similar cages, a linear correlation between the solvodynamic volume and the molecular mass allows precise size determination. For more complex systems, multiple parameters, such as window size or rigid exohedral functionalization. further modulate cage diffusion in solution.
Collapse
Affiliation(s)
- Svetlana Ivanova
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany
- Julius-Maximilians-Universität Würzburg, Center for Nanosystems Chemistry (CNC), Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - Paul Adamski
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany
- Julius-Maximilians-Universität Würzburg, Center for Nanosystems Chemistry (CNC), Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - Eva Köster
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany
- Julius-Maximilians-Universität Würzburg, Center for Nanosystems Chemistry (CNC), Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - Louis Schramm
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany
- Julius-Maximilians-Universität Würzburg, Center for Nanosystems Chemistry (CNC), Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - Rebecca Fröhlich
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany
- Julius-Maximilians-Universität Würzburg, Center for Nanosystems Chemistry (CNC), Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - Florian Beuerle
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany
- Julius-Maximilians-Universität Würzburg, Center for Nanosystems Chemistry (CNC), Theodor-Boveri-Weg, 97074, Würzburg, Germany
- Eberhard Karls Universität Tübingen, Institut für Organische Chemie, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| |
Collapse
|
11
|
Liyana Gunawardana VW, Ward C, Wang H, Holbrook JH, Sekera ER, Cui H, Hummon AB, Badjić JD. Crystalline Nanoparticles of Water-Soluble Covalent Basket Cages (CBCs) for Encapsulation of Anticancer Drugs. Angew Chem Int Ed Engl 2023; 62:e202306722. [PMID: 37332078 PMCID: PMC10528532 DOI: 10.1002/anie.202306722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/20/2023]
Abstract
We herein describe the preparation, assembly, recognition characteristics, and biocompatibility of novel covalent basket cage CBC-11, composed of four molecular baskets linked to four trivalent aromatic amines through amide groups. The cage is tetrahedral in shape and similar in size to small proteins (Mw =8637 g/mol) with a spacious nonpolar interior for accommodating multiple guests. While 24 carboxylates at the outer surface of CBC-11 render it soluble in aqueous phosphate buffer (PBS) at pH=7.0, the amphiphilic nature prompts its assembly into nanoparticles (d=250 nm, DLS). Cryo-TEM examination of nanoparticles revealed their crystalline nature with wafer-like shapes and hexagonally arranged cages. Nanoparticulate CBC-11 traps anticancer drugs irinotecan and doxorubicin, with each cage binding up to four drug molecules in a non-cooperative manner. The inclusion complexation resulted in nanoparticles growing in size and precipitating. In media containing mammalian cells (HCT 116, human colon carcinoma), the IC50 value of CBC-11 was above 100 μM. While this work presents the first example of a large covalent organic cage operating in water at the physiological pH and forming crystalline nanoparticles, it also demonstrates its biocompatibility and potential to act as a polyvalent binder of drugs for their sequestration or delivery.
Collapse
Affiliation(s)
| | - Carson Ward
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | - Han Wang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Maryland Hall 221, 3400 North Charles Street, Baltimore, MD, USA
| | - Joseph H Holbrook
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | - Emily R Sekera
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Maryland Hall 221, 3400 North Charles Street, Baltimore, MD, USA
| | - Amanda B Hummon
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | - Jovica D Badjić
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
12
|
Yang Z, Esteve F, Antheaume C, Lehn JM. Dynamic covalent self-assembly and self-sorting processes in the formation of imine-based macrocycles and macrobicyclic cages. Chem Sci 2023; 14:6631-6642. [PMID: 37350816 PMCID: PMC10284075 DOI: 10.1039/d3sc01174g] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/25/2023] [Indexed: 06/24/2023] Open
Abstract
Investigating the self-assembly and self-sorting behaviour of dynamic covalent organic architectures makes possible the parallel generation of multiple discrete products in a single one pot procedure. We here report the self-assembly of covalent organic macrocycles and macrobicyclic cages from dialdehyde and polyamine components via multiple [2 + 2] and [3 + 2] polyimine condensations. Furthermore, component self-sorting processes have been monitored within the dynamic covalent libraries formed by these macrocycles and macrobicyclic cages. The progressive assembly of the final structures involves intermediates which undergo component selection and self-correction to generate the final thermodynamic constituents. The homo-self-sorting observed seems to involve entropic factors, as the homoleptic species present a higher symmetry than the competing heteroleptic ones. This study not only emphasizes the importance of an adequate design of the components of complex self-sorting systems, but also verifies the conjecture that systems of higher complexity may generate simpler outputs through the operation of competitive self-sorting.
Collapse
Affiliation(s)
- Zhaozheng Yang
- Lehn Institute of Functional Materials (LIFM), Sun Yat-Sen University 510006 Guangzhou China
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| | - Ferran Esteve
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| | - Cyril Antheaume
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| | - Jean-Marie Lehn
- Lehn Institute of Functional Materials (LIFM), Sun Yat-Sen University 510006 Guangzhou China
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| |
Collapse
|
13
|
Abstract
Porous organic cages (POCs) are a relatively new class of low-density crystalline materials that have emerged as a versatile platform for investigating molecular recognition, gas storage and separation, and proton conduction, with potential applications in the fields of porous liquids, highly permeable membranes, heterogeneous catalysis, and microreactors. In common with highly extended porous structures, such as metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and porous organic polymers (POPs), POCs possess all of the advantages of highly specific surface areas, porosities, open pore channels, and tunable structures. In addition, they have discrete molecular structures and exhibit good to excellent solubilities in common solvents, enabling their solution dispersibility and processability─properties that are not readily available in the case of the well-established, insoluble, extended porous frameworks. Here, we present a critical review summarizing in detail recent progress and breakthroughs─especially during the past five years─of all the POCs while taking a close look at their strategic design, precise synthesis, including both irreversible bond-forming chemistry and dynamic covalent chemistry, advanced characterization, and diverse applications. We highlight representative POC examples in an attempt to gain some understanding of their structure-function relationships. We also discuss future challenges and opportunities in the design, synthesis, characterization, and application of POCs. We anticipate that this review will be useful to researchers working in this field when it comes to designing and developing new POCs with desired functions.
Collapse
Affiliation(s)
- Xinchun Yang
- Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
- Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Zakir Ullah
- Convergence Research Center for Insect Vectors, Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, South Korea
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Cafer T Yavuz
- Oxide & Organic Nanomaterials for Energy & Environment Laboratory, Physical Science & Engineering (PSE), King Abdullah University of Science and Technology (KAUST), 4700 KAUST, Thuwal 23955, Saudi Arabia
- Advanced Membranes & Porous Materials Center, PSE, KAUST, 4700 KAUST, Thuwal 23955, Saudi Arabia
- KAUST Catalysis Center, PSE, KAUST, 4700 KAUST, Thuwal 23955, Saudi Arabia
| |
Collapse
|
14
|
Zhu QH, Zhang GH, Zhang L, Wang SL, Fu J, Wang YH, Ma L, He L, Tao GH. Solvent-Responsive Reversible and Controllable Conversion between a Polyimine Membrane and an Organic Molecule Cage. J Am Chem Soc 2023; 145:6177-6183. [PMID: 36857470 DOI: 10.1021/jacs.2c12088] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Adaptive bionic self-correcting behavior offers an attractive property for chemical systems. Here, based on the dynamic feature of imine formation, we propose a solvent-responsive strategy for smart switching between an amorphous ionic polyimine membrane and a crystalline organic molecule cage without the addition of other building blocks. To adapt to solvent environmental constraints, the aldehyde and amine components undergo self-correction to form a polymer network or a molecular cage. Studies have shown that the amorphous film can be switched in acetonitrile to generate a discrete cage with bright birefringence under polarized light. Conversely, the membrane from the cage crystal conversion can be regained in ethanol. Such a membrane-cage interconversion can be cycled continuously at least 5 times by switching the two solvents. This work builds a bridge between the polymer network and crystalline molecules and offers prospects for smart dynamic materials.
Collapse
Affiliation(s)
- Qiu-Hong Zhu
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Guo-Hao Zhang
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Lei Zhang
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | | | - Jie Fu
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yuan-Hao Wang
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Lijian Ma
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Ling He
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Guo-Hong Tao
- College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
15
|
Montà-González G, Sancenón F, Martínez-Máñez R, Martí-Centelles V. Purely Covalent Molecular Cages and Containers for Guest Encapsulation. Chem Rev 2022; 122:13636-13708. [PMID: 35867555 PMCID: PMC9413269 DOI: 10.1021/acs.chemrev.2c00198] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cage compounds offer unique binding pockets similar to enzyme-binding sites, which can be customized in terms of size, shape, and functional groups to point toward the cavity and many other parameters. Different synthetic strategies have been developed to create a toolkit of methods that allow preparing tailor-made organic cages for a number of distinct applications, such as gas separation, molecular recognition, molecular encapsulation, hosts for catalysis, etc. These examples show the versatility and high selectivity that can be achieved using cages, which is impossible by employing other molecular systems. This review explores the progress made in the field of fully organic molecular cages and containers by focusing on the properties of the cavity and their application to encapsulate guests.
Collapse
Affiliation(s)
- Giovanni Montà-González
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM) Universitat
Politècnica de València, Universitat de València. Camino de Vera, s/n 46022, Valencia, Spain
| | - Félix Sancenón
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM) Universitat
Politècnica de València, Universitat de València. Camino de Vera, s/n 46022, Valencia, Spain,CIBER
de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain,Centro
de Investigación Príncipe Felipe, Unidad Mixta UPV-CIPF
de Investigación de Mecanismos de Enfermedades y Nanomedicina,
Valencia, Universitat Politècnica
de València, 46012 Valencia, Spain,Instituto
de Investigación Sanitaria la Fe, Unidad Mixta de Investigación
en Nanomedicina y Sensores, Universitat
Politènica de València, 46026 València, Spain,Departamento
de Química, Universitat Politècnica
de València, 46022 Valencia, Spain
| | - Ramón Martínez-Máñez
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM) Universitat
Politècnica de València, Universitat de València. Camino de Vera, s/n 46022, Valencia, Spain,CIBER
de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain,Centro
de Investigación Príncipe Felipe, Unidad Mixta UPV-CIPF
de Investigación de Mecanismos de Enfermedades y Nanomedicina,
Valencia, Universitat Politècnica
de València, 46012 Valencia, Spain,Instituto
de Investigación Sanitaria la Fe, Unidad Mixta de Investigación
en Nanomedicina y Sensores, Universitat
Politènica de València, 46026 València, Spain,Departamento
de Química, Universitat Politècnica
de València, 46022 Valencia, Spain,R.M.-M.: email,
| | - Vicente Martí-Centelles
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM) Universitat
Politècnica de València, Universitat de València. Camino de Vera, s/n 46022, Valencia, Spain,V.M.-C.:
email,
| |
Collapse
|
16
|
Nishad RC, Kumar S, Rit A. Self‐Assembly of a Bis‐NHC Ligand and Coinage Metal Ions: Unprecedented Metal‐Driven Chemistry between the Tri‐ and Tetranuclear Species. Angew Chem Int Ed Engl 2022; 61:e202206788. [DOI: 10.1002/anie.202206788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Rajeev C. Nishad
- Department of Chemistry Indian Institute of Technology Madras Chennai 600036 India
| | - Shashi Kumar
- Department of Chemistry Indian Institute of Technology Madras Chennai 600036 India
| | - Arnab Rit
- Department of Chemistry Indian Institute of Technology Madras Chennai 600036 India
| |
Collapse
|
17
|
Doubly chiral pseudopeptidic macrobicyclic molecular cages: Water-assisted dynamic covalent self-assembly and chiral self-sorting. Chem 2022. [DOI: 10.1016/j.chempr.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Nishad RC, Kumar S, Rit A. Self‐Assembly of a Bis‐NHC Ligand and Coinage Metal Ions: Unprecedented Metal Driven Chemistry between the Tri‐ and Tetranuclear Species. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rajeev C. Nishad
- Indian Institute of Technology Madras Department of Chemistry INDIA
| | - Shashi Kumar
- Indian Institute of Technology Madras Department of Chemistry INDIA
| | - Arnab Rit
- Indian Institute of Technology, Madras Department of Chemistry Sardar patel Road 600036 Chennai INDIA
| |
Collapse
|
19
|
Saha R, Mondal B, Mukherjee PS. Molecular Cavity for Catalysis and Formation of Metal Nanoparticles for Use in Catalysis. Chem Rev 2022; 122:12244-12307. [PMID: 35438968 DOI: 10.1021/acs.chemrev.1c00811] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The employment of weak intermolecular interactions in supramolecular chemistry offers an alternative approach to project artificial chemical environments like the active sites of enzymes. Discrete molecular architectures with defined shapes and geometries have become a revolutionary field of research in recent years because of their intrinsic porosity and ease of synthesis using dynamic non-covalent/covalent interactions. Several porous molecular cages have been constructed from simple building blocks by self-assembly, which undergoes many self-correction processes to form the final architecture. These supramolecular systems have been developed to demonstrate numerous applications, such as guest stabilization, drug delivery, catalysis, smart materials, and many other related fields. In this respect, catalysis in confined nanospaces using such supramolecular cages has seen significant growth over the years. These porous discrete cages contain suitable apertures for easy intake of substrates and smooth release of products to exhibit exceptional catalytic efficacy. This review highlights recent advancements in catalytic activity influenced by the nanocavities of hydrogen-bonded cages, metal-ligand coordination cages, and dynamic or reversible covalently bonded organic cages in different solvent media. Synthetic strategies for these three types of supramolecular systems are discussed briefly and follow similar and simplistic approaches manifested by simple starting materials and benign conditions. These examples demonstrate the progress of various functionalized molecular cages for specific chemical transformations in aqueous and nonaqueous media. Finally, we discuss the enduring challenges related to porous cage compounds that need to be overcome for further developments in this field of work.
Collapse
Affiliation(s)
- Rupak Saha
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560 012, India
| | - Bijnaneswar Mondal
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur-495 009, Chhattisgarh, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560 012, India
| |
Collapse
|
20
|
Dong J, Pan Y, Yang K, Yuan YD, Wee V, Xu S, Wang Y, Jiang J, Liu B, Zhao D. Enhanced Biological Imaging via Aggregation-Induced Emission Active Porous Organic Cages. ACS NANO 2022; 16:2355-2368. [PMID: 35084185 DOI: 10.1021/acsnano.1c08605] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Porous organic cages (POCs) have many advantages, including superior microenvironments, good monodispersity, and shape homogeneity, excellent molecular solubility, high chemical stability, and intriguing host-guest chemistry. These properties enable POCs to overcome the limitations of extended porous networks such as metal-organic frameworks (MOFs) and covalent organic frameworks (COFs). However, the applications of POCs in bioimaging remain limited due to the problems associated with their rigid and hydrophobic structures, thus leading to strong aggregation-caused quenching (ACQ) in aqueous biological media. To address this challenge, we report the preparation of aggregation-induced emission (AIE)-active POCs capable of stimuli responsiveness for enhanced bioimaging. We rationally design a hydrophilic, structurally flexible tetraphenylethylene (TPE)-based POC that is almost entirely soluble in aqueous solutions. This POC's conformationally flexible superstructure allows the dynamic rotation of the TPE-based phenyl rings, thus endowing impressive AIE characteristics for responses to environmental changes such as temperature and viscosity. We employ these notable features in the bioimaging of living cells and obtain good performance, demonstrating that the present AIE-active POCs are suitable candidates for further biological applications.
Collapse
Affiliation(s)
- Jinqiao Dong
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 117585, Singapore
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yutong Pan
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Kuiwei Yang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Yi Di Yuan
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Vanessa Wee
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Shidang Xu
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Yuxiang Wang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Jianwen Jiang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Bin Liu
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Dan Zhao
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 117585, Singapore
| |
Collapse
|
21
|
ABE T, Horiuchi S, Hiraoka S. Kinetically controlled narcissistic self-sorting of Pd(II)-linked self-assemblies from structurally similar tritopic ligands. Chem Commun (Camb) 2022; 58:10829-10832. [DOI: 10.1039/d2cc04496j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although many examples of self-sorting have been reported, self-sorting of structurally similar building blocks is potentially difficult. Herein, we present the narcissistic self-sorted state from two kinds of structurally similar...
Collapse
|
22
|
Designing narcissistic self-sorting terpyridine moieties with high coordination selectivity for complex metallo-supramolecules. Commun Chem 2021; 4:136. [PMID: 36697787 PMCID: PMC9814872 DOI: 10.1038/s42004-021-00577-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/07/2021] [Indexed: 01/28/2023] Open
Abstract
Coordination-driven self-assembly is a powerful approach for the construction of metallosupramolecules, but designing coordination moieties that can drive the self-assembly with high selectivity and specificity remains a challenge. Here we report two ortho-modified terpyridine ligands that form head-to-tail coordination complexes with Zn(II). Both complexes show narcissistic self-sorting behaviour. In addition, starting from these ligands, we obtain two sterically congested multitopic ligands and use them to construct more complex metallo-supramolecules hexagons. Because of the non-coaxial structural restrictions in the rotation of terpyridine moieties, these hexagonal macrocycles can hierarchically self-assemble into giant cyclic nanostructures via edge-to-edge stacking, rather than face-to-face stacking. Our design of dissymmetrical coordination moieties from congested coordination pairs show remarkable self-assembly selectivity and specificity.
Collapse
|
23
|
Ramakrishna E, Tang JD, Tao JJ, Fang Q, Zhang Z, Huang J, Li S. Self-assembly of chiral BINOL cages via imine condensation. Chem Commun (Camb) 2021; 57:9088-9091. [PMID: 34498622 DOI: 10.1039/d1cc01507a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Condensation of an (S)- or (R)-BINOL-derived dialdehyde and tris(2-aminoethyl)amine produced chiral [2+3] imine cages, which were further reduced to furnish more stable chiral amine cages and applied in the enantioselective recognition of (1R,2R)- and (1S,2S)-1,2-diaminocyclohexane.
Collapse
Affiliation(s)
- E Ramakrishna
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Jia-Dong Tang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Jia-Ju Tao
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Qiang Fang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China. .,College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Zibin Zhang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Jianying Huang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Shijun Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
24
|
Ivanova S, Köster E, Holstein JJ, Keller N, Clever GH, Bein T, Beuerle F. Isoreticular Crystallization of Highly Porous Cubic Covalent Organic Cage Compounds*. Angew Chem Int Ed Engl 2021; 60:17455-17463. [PMID: 33905140 PMCID: PMC8362030 DOI: 10.1002/anie.202102982] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/23/2021] [Indexed: 12/13/2022]
Abstract
Modular frameworks featuring well-defined pore structures in microscale domains establish tailor-made porous materials. For open molecular solids however, maintaining long-range order after desolvation is inherently challenging, since packing is usually governed by only a few supramolecular interactions. Here we report on two series of nanocubes obtained by co-condensation of two different hexahydroxy tribenzotriquinacenes (TBTQs) and benzene-1,4-diboronic acids (BDBAs) with varying linear alkyl chains in 2,5-position. n-Butyl groups at the apical position of the TBTQ vertices yielded soluble model compounds, which were analyzed by mass spectrometry and NMR spectroscopy. In contrast, methyl-substituted cages spontaneously crystallized as isostructural and highly porous solids with BET surface areas and pore volumes of up to 3426 m2 g-1 and 1.84 cm3 g-1 . Single crystal X-ray diffraction and sorption measurements revealed an intricate cubic arrangement of alternating micro- and mesopores in the range of 0.97-2.2 nm that are fine-tuned by the alkyl substituents at the BDBA linker.
Collapse
Affiliation(s)
- Svetlana Ivanova
- Julius-Maximilians-Universität WürzburgInstitut für Organische ChemieAm Hubland97074WürzburgGermany
- Julius-Maximilians-Universität WürzburgCenter for Nanosystems Chemistry (CNC)Theodor-Boveri-Weg97074WürzburgGermany
| | - Eva Köster
- Julius-Maximilians-Universität WürzburgInstitut für Organische ChemieAm Hubland97074WürzburgGermany
- Julius-Maximilians-Universität WürzburgCenter for Nanosystems Chemistry (CNC)Theodor-Boveri-Weg97074WürzburgGermany
| | - Julian J. Holstein
- Technische Universität DortmundFakultät für Chemie und Chemische BiologieOtto-Hahn-Strasse 644227DortmundGermany
| | - Niklas Keller
- Ludwig-Maximilians-Universität MünchenDepartment of Chemistry & Center for NanoScience (CeNS)Butenandtstrasse 5–1381377MünchenGermany
| | - Guido H. Clever
- Technische Universität DortmundFakultät für Chemie und Chemische BiologieOtto-Hahn-Strasse 644227DortmundGermany
| | - Thomas Bein
- Ludwig-Maximilians-Universität MünchenDepartment of Chemistry & Center for NanoScience (CeNS)Butenandtstrasse 5–1381377MünchenGermany
| | - Florian Beuerle
- Julius-Maximilians-Universität WürzburgInstitut für Organische ChemieAm Hubland97074WürzburgGermany
- Julius-Maximilians-Universität WürzburgCenter for Nanosystems Chemistry (CNC)Theodor-Boveri-Weg97074WürzburgGermany
| |
Collapse
|
25
|
Ivanova S, Köster E, Holstein JJ, Keller N, Clever GH, Bein T, Beuerle F. Isoretikuläre Kristallisation von hochporösen kubischen kovalentorganischen Käfigverbindungen**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Svetlana Ivanova
- Julius-Maximilians-Universität Würzburg Institut für Organische Chemie Am Hubland 97074 Würzburg Deutschland
- Julius-Maximilians-Universität Würzburg Center for Nanosystems Chemistry (CNC) Theodor-Boveri-Weg 97074 Würzburg Deutschland
| | - Eva Köster
- Julius-Maximilians-Universität Würzburg Institut für Organische Chemie Am Hubland 97074 Würzburg Deutschland
- Julius-Maximilians-Universität Würzburg Center for Nanosystems Chemistry (CNC) Theodor-Boveri-Weg 97074 Würzburg Deutschland
| | - Julian J. Holstein
- Technische Universität Dortmund Fakultät für Chemie und Chemische Biologie Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| | - Niklas Keller
- Ludwig-Maximilians-Universität München Department of Chemistry & Center for NanoScience (CeNS) Butenandtstraße 5–13 81377 München Deutschland
| | - Guido H. Clever
- Technische Universität Dortmund Fakultät für Chemie und Chemische Biologie Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| | - Thomas Bein
- Ludwig-Maximilians-Universität München Department of Chemistry & Center for NanoScience (CeNS) Butenandtstraße 5–13 81377 München Deutschland
| | - Florian Beuerle
- Julius-Maximilians-Universität Würzburg Institut für Organische Chemie Am Hubland 97074 Würzburg Deutschland
- Julius-Maximilians-Universität Würzburg Center for Nanosystems Chemistry (CNC) Theodor-Boveri-Weg 97074 Würzburg Deutschland
| |
Collapse
|
26
|
Wang H, Jin Y, Sun N, Zhang W, Jiang J. Post-synthetic modification of porous organic cages. Chem Soc Rev 2021; 50:8874-8886. [PMID: 34180920 DOI: 10.1039/d0cs01142h] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Porous organic cages (POCs) represent an emerging class of organic materials with intrinsic porosity. They have found various applications in supramolecular chemistry, materials science, and many other related disciplines, which stem from their molecular host-guest interactions, intrinsic and inter-cage porosity in solid state as well as the diversity of functionalities. Post-synthetic modification (PSM) has emerged as a highly viable strategy for broadening the functions and applications of POCs. Intricate structures, enhanced stability, tunable porosity and guest binding selectivity and sensitivity have been realized through PSM of POCs, which cannot be directly achieved via the predesign and bottom-up assembly from small molecule building blocks. For example, an unstable imine-linked POC can be transformed into a more stable amine-linked cage, whose cavity size can be further tuned by selective binding of some amine groups, offering unusual gas adsorption selectivity for noble gases (e.g., preferred uptake of Xe over Kr). Such improvement of the chemical stability and gas separation properties through the consolidation of linkage and adjustment of porosity is challenging to achieve otherwise. In this tutorial review, we highlight the importance and impact of PSM in engineering the properties of POC molecules, their frameworks, and composites going beyond the direct predesign synthetic strategy. The primary PSM strategies for exploring new compositions, functions and applications as well as their structure-property relationship have been summarized, including cage-to-cage transformation at the molecular level, covalent or noncovalent assembly of POCs into frameworks, and formation of composites with guest species or other additives encapsulated.
Collapse
Affiliation(s)
- Hailong Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | | | | | | | | |
Collapse
|
27
|
Holsten M, Feierabend S, Elbert SM, Rominger F, Oeser T, Mastalerz M. Soluble Congeners of Prior Insoluble Shape-Persistent Imine Cages. Chemistry 2021; 27:9383-9390. [PMID: 33848032 PMCID: PMC8362185 DOI: 10.1002/chem.202100666] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Indexed: 12/12/2022]
Abstract
One of the most applied reaction types to synthesize shape‐persistent organic cage compounds is the imine condensation reaction and it is assumed that the formed cages are thermodynamically controlled products due to the reversibility of the imine condensation. However, most of the synthesized imine cages reported are formed as precipitate from the reaction mixture and therefore rather may be kinetically controlled products. There are even examples in literature, where resulting cages are not soluble at all in common organic solvents to characterize or study their formation by NMR spectroscopy in solution. Here, a triptycene triamine containing three solubilizing n‐hexyloxy chains has been used to synthesize soluble congeners of prior insoluble cages. This allowed us to study the formation as well as the reversibility of cage formation in solution by investigating exchange of building blocks between the cages and deuterated derivatives thereof.
Collapse
Affiliation(s)
- Mattes Holsten
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Sarah Feierabend
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Sven M Elbert
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Thomas Oeser
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
28
|
Zou YQ, Zhang D, Ronson TK, Tarzia A, Lu Z, Jelfs KE, Nitschke JR. Sterics and Hydrogen Bonding Control Stereochemistry and Self-Sorting in BINOL-Based Assemblies. J Am Chem Soc 2021; 143:9009-9015. [PMID: 34124891 PMCID: PMC8227477 DOI: 10.1021/jacs.1c05172] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Here we demonstrate how the hydrogen-bonding ability of a BINOL-based dialdehyde subcomponent dictated the stereochemical outcome of its subsequent self-assembly into one diastereomeric helicate form when bearing free hydroxy groups, and another in the case of its methylated congener. The presence of methyl groups also altered the self-sorting behavior when mixed with another, short linear dialdehyde subcomponent, switching the outcome of the system from narcissistic to integrative self-sorting. In all cases, the axial chirality of the BINOL building block also dictated helicate metal center handedness during stereospecific self-assembly. A new family of stereochemically pure heteroleptic helicates were thus prepared using the new knowledge gained. We also found that switching from FeII to ZnII, or the incorporation of a longer linear ligand, favored heteroleptic structure formation.
Collapse
Affiliation(s)
- You-Quan Zou
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Dawei Zhang
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Tanya K Ronson
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Andrew Tarzia
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London, London W12 0BZ, United Kingdom
| | - Zifei Lu
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Kim E Jelfs
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London, London W12 0BZ, United Kingdom
| | - Jonathan R Nitschke
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
29
|
Ren G, Li B, Ren L, Di W, Tian L, Zhang P, Shao W, He J, Sun D. Dynamic Covalent Nanoparticles for Acid-Responsive Nonaqueous Pickering Emulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6632-6640. [PMID: 34042453 DOI: 10.1021/acs.langmuir.1c00097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Acid-responsive nonaqueous (glycerol in n-decane) Pickering emulsions were prepared using preferentially oil-wetted dynamic covalent silica (SiO2-pDB) nanoparticles as the Pickering emulsifiers. The acid-responsive Pickering emulsifier SiO2-pDB was prepared based on a Schiff base reaction between amino silica (SiO2-NH2) and p-decanoxybenzaldehyde (pDBA). The formation of SiO2-pDB was characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, and elemental analysis. The preferentially oil-wetted character of SiO2-pDB was indicated by contact angle measurement. Stable nonaqueous Pickering emulsions were prepared using preferentially oil-wetted SiO2-pDB as the Pickering emulsifier. However, after adjusting the nonaqueous Pickering emulsions to an acidic environment, complete phase separation occurred. In the acidic environment, preferentially oil-wetted SiO2-pDB decomposed into hydrophilic SiO2-NH2 and hydrophobic pDBA due to the decomposition of the dynamic imine bond in the SiO2-pDB. Then, the hydrophilic SiO2-NH2 and hydrophobic pDBA desorbed from the two-phase interface, resulting in complete phase separation of the initially stable nonaqueous Pickering emulsions. The acid-responsive nonaqueous Pickering emulsions show great potential in application in water sensitive systems, such as oil-based drilling fluids.
Collapse
Affiliation(s)
- Gaihuan Ren
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou, Henan 450007, P. R. China
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Bo Li
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou, Henan 450007, P. R. China
| | - Lulu Ren
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Wenwen Di
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Lulu Tian
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou, Henan 450007, P. R. China
| | - Pan Zhang
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou, Henan 450007, P. R. China
| | - Weili Shao
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou, Henan 450007, P. R. China
| | - Jianxin He
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou, Henan 450007, P. R. China
| | - Dejun Sun
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, P. R. China
| |
Collapse
|
30
|
Ren G, Li B, Ren L, Lu D, Zhang P, Tian L, Di W, Shao W, He J, Sun D. pH-Responsive Nanoemulsions Based on a Dynamic Covalent Surfactant. NANOMATERIALS 2021; 11:nano11061390. [PMID: 34070322 PMCID: PMC8227844 DOI: 10.3390/nano11061390] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/15/2021] [Accepted: 05/19/2021] [Indexed: 11/22/2022]
Abstract
Developing solid-free nanoemulsions with pH responsiveness is desirable in enhanced oil recovery (EOR) applications. Here, we report the synthesis of an interfacial activity controllable surfactant (T−DBA) through dynamic imine bonding between taurine (T) and p-decyloxybenzaldehyde (DBA). Instead of macroemulsions, nanoemulsions can be prepared by using T−DBA as an emulsifier. The dynamic imine bond of T−DBA enables switching between the active and inactive states in response to pH. This switching of interfacial activity was used to gate the stability of nanoemulsions, thus enabling us to turn the nanoemulsions off and on. Using such dynamic imine bonds to govern nanoemulsion stability could enable intelligent control of many processes such as heavy oil recovery and interfacial reactions.
Collapse
Affiliation(s)
- Gaihuan Ren
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, China; (G.R.); (B.L.); (D.L.); (P.Z.); (L.T.)
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China; (L.R.); (W.D.)
| | - Bo Li
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, China; (G.R.); (B.L.); (D.L.); (P.Z.); (L.T.)
| | - Lulu Ren
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China; (L.R.); (W.D.)
| | - Dongxu Lu
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, China; (G.R.); (B.L.); (D.L.); (P.Z.); (L.T.)
| | - Pan Zhang
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, China; (G.R.); (B.L.); (D.L.); (P.Z.); (L.T.)
| | - Lulu Tian
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, China; (G.R.); (B.L.); (D.L.); (P.Z.); (L.T.)
| | - Wenwen Di
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China; (L.R.); (W.D.)
| | - Weili Shao
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, China; (G.R.); (B.L.); (D.L.); (P.Z.); (L.T.)
- Correspondence: (W.S.); (J.H.); (D.S.); Tel.: +86-531-88364749 (D.S); Fax: +86-531-88364750 (D.S.)
| | - Jianxin He
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, China; (G.R.); (B.L.); (D.L.); (P.Z.); (L.T.)
- Correspondence: (W.S.); (J.H.); (D.S.); Tel.: +86-531-88364749 (D.S); Fax: +86-531-88364750 (D.S.)
| | - Dejun Sun
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China; (L.R.); (W.D.)
- Correspondence: (W.S.); (J.H.); (D.S.); Tel.: +86-531-88364749 (D.S); Fax: +86-531-88364750 (D.S.)
| |
Collapse
|
31
|
Wagner P, Rominger F, Zhang W, Gross JH, Elbert SM, Schröder RR, Mastalerz M. Chiral Self-sorting of Giant Cubic [8+12] Salicylimine Cage Compounds. Angew Chem Int Ed Engl 2021; 60:8896-8904. [PMID: 33476442 PMCID: PMC8048989 DOI: 10.1002/anie.202016592] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/21/2021] [Indexed: 12/13/2022]
Abstract
Chiral self-sorting is intricately connected to the complicated chiral processes observed in nature and no artificial systems of comparably complexity have been generated by chemists. However, only a few examples of purely organic molecules have been reported so far, where the self-sorting process could be controlled. Herein, we describe the chiral self-sorting of large cubic [8+12] salicylimine cage compounds based on a chiral TBTQ precursor. Out of 23 possible cage isomers only the enantiopure and a meso cage were observed to be formed, which have been unambiguously characterized by single crystal X-ray diffraction. Furthermore, by careful choice of solvent the formation of meso cage could be controlled. With internal diameters of din =3.3-3.5 nm these cages are among the largest organic cage compounds characterized and show very high specific surface areas up to approx. 1500 m2 g-1 after desolvation.
Collapse
Affiliation(s)
- Philippe Wagner
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Frank Rominger
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Wen‐Shan Zhang
- Centre for Advanced MaterialsRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 22569120HeidelbergGermany
| | - Jürgen H. Gross
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Sven M. Elbert
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Rasmus R. Schröder
- Centre for Advanced MaterialsRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 22569120HeidelbergGermany
| | - Michael Mastalerz
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| |
Collapse
|
32
|
Schäfer N, Bühler M, Heyer L, Röhr MIS, Beuerle F. Endohedral Hydrogen Bonding Templates the Formation of a Highly Strained Covalent Organic Cage Compound*. Chemistry 2021; 27:6077-6085. [PMID: 33528845 PMCID: PMC8048910 DOI: 10.1002/chem.202005276] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/31/2021] [Indexed: 02/06/2023]
Abstract
A highly strained covalent organic cage compound was synthesized from hexahydroxy tribenzotriquinacene (TBTQ) and a meta-terphenyl-based diboronic acid with an additional benzoic acid substituent in 2'-position. Usually, a 120° bite angle in the unsubstituted ditopic linker favors the formation of a [4+6] cage assembly. Here, the introduction of the benzoic acid group is shown to lead to a perfectly preorganized circular hydrogen-bonding array in the cavity of a trigonal-bipyramidal [2+3] cage, which energetically overcompensates the additional strain energy caused by the larger mismatch in bite angles for the smaller assembly. The strained cage compound was analyzed by mass spectrometry and 1 H, 13 C and DOSY NMR spectroscopy. DFT calculations revealed the energetic contribution of the hydrogen-bonding template to the cage stability. Furthermore, molecular dynamics simulations on early intermediates indicate an additional kinetic effect, as hydrogen bonding also preorganizes and rigidifies small oligomers to facilitate the exclusive formation of smaller and more strained macrocycles and cages.
Collapse
Affiliation(s)
- Natalie Schäfer
- Institut für Organische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Center for Nanosystems Chemistry (CNC)Julius-Maximilians-Universität WürzburgTheodor-Boveri-Weg97074WürzburgGermany
| | - Michael Bühler
- Center for Nanosystems Chemistry (CNC)Julius-Maximilians-Universität WürzburgTheodor-Boveri-Weg97074WürzburgGermany
| | - Lisa Heyer
- Institut für Organische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Center for Nanosystems Chemistry (CNC)Julius-Maximilians-Universität WürzburgTheodor-Boveri-Weg97074WürzburgGermany
| | - Merle I. S. Röhr
- Center for Nanosystems Chemistry (CNC)Julius-Maximilians-Universität WürzburgTheodor-Boveri-Weg97074WürzburgGermany
| | - Florian Beuerle
- Institut für Organische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Center for Nanosystems Chemistry (CNC)Julius-Maximilians-Universität WürzburgTheodor-Boveri-Weg97074WürzburgGermany
| |
Collapse
|
33
|
Wagner P, Rominger F, Zhang W, Gross JH, Elbert SM, Schröder RR, Mastalerz M. Chiral Self‐sorting of Giant Cubic [8+12] Salicylimine Cage Compounds. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016592] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Philippe Wagner
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Frank Rominger
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Wen‐Shan Zhang
- Centre for Advanced Materials Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 225 69120 Heidelberg Germany
| | - Jürgen H. Gross
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Sven M. Elbert
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Rasmus R. Schröder
- Centre for Advanced Materials Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 225 69120 Heidelberg Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| |
Collapse
|
34
|
Mondal B, Bhandari P, Mukherjee PS. Nucleation of Tiny Silver Nanoparticles by Using a Tetrafacial Organic Molecular Barrel: Potential Use in Visible-Light-Triggered Photocatalysis. Chemistry 2020; 26:15007-15015. [PMID: 32770587 DOI: 10.1002/chem.202003390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Indexed: 12/12/2022]
Abstract
Coordination-driven self-assembly of discrete molecular architectures of diverse shapes and sizes has been well studied in the last three decades. Use of dynamic imine bonds for designing analogous metal-free architectures has become a growing challenge recently. This article reports an organic molecular barrel (OB4R ) as a potential template for nucleation and stabilization of very tiny (<1.5 nm) Ag nanoparticles (AgNPs). Imine bond condensation of a rigid tetra-aldehyde with a flexible diamine followed by imine-bond reduction yielded the discrete tetragonal organic barrel (OB4R ). The presence of a molecular pocket ornamented with eight diamine moieties gives the potential for encapsulation of silver(I). The organic barrel was finally used as a molecular vessel for the controlled nucleation of silver nanoparticles (AgNPs) with fine size tuning through binding of AgI ions in the confined space of the barrel followed by reduction. Transmission electron microscopy (TEM) analysis of the Ag0 @OB4R composite revealed that the mean particle size is 1.44±0.16 nm. The composite material has approximately 52 wt % silver loading. The barrel-supported ultrafine AgNPs [Ag0 @OB4R ] are found to be an efficient photocatalyst for facile Ullmann-type aryl-amination coupling of haloarenes at ambient temperature without using any additives. The catalyst was stable for several cycles of reuse without any agglomeration. The new composite Ag0 @OB4R represents the first example of discrete organic barrel-supported AgNPs employed as a photocatalyst in Ullmann-type coupling reactions at room temperature.
Collapse
Affiliation(s)
- Bijnaneswar Mondal
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Pallab Bhandari
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
35
|
Schick THG, Rominger F, Mastalerz M. Examination of the Dynamic Covalent Chemistry of [2 + 3]-Imine Cages. J Org Chem 2020; 85:13757-13771. [PMID: 32933246 PMCID: PMC7659045 DOI: 10.1021/acs.joc.0c01887] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The synthesis of shape-persistent organic cage compounds by the formation of imine bonds opens the possibility to realize cages of different sizes, geometries, topologies, and functions. It is generally assumed that the imine bond is rather chemically labile allowing a self-correction mechanism until thermodynamic equilibrium is reached, which is often the case if a cage is formed. However, there are some contradictory experimental data to this assumption. To get a deeper insight into the imine bond dynamics of covalent organic cages, we studied the formation and exchange of both dialdehydes and triamines of two different [2 + 3] imine cages with the aid of a deuterated dialdehyde molecular building block.
Collapse
Affiliation(s)
- Tobias H G Schick
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| |
Collapse
|
36
|
Abet V, Szczypiński FT, Little MA, Santolini V, Jones CD, Evans R, Wilson C, Wu X, Thorne MF, Bennison MJ, Cui P, Cooper AI, Jelfs KE, Slater AG. Inducing Social Self-Sorting in Organic Cages To Tune The Shape of The Internal Cavity. Angew Chem Int Ed Engl 2020; 59:16755-16763. [PMID: 32542926 PMCID: PMC7540416 DOI: 10.1002/anie.202007571] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Indexed: 12/22/2022]
Abstract
Many interesting target guest molecules have low symmetry, yet most methods for synthesising hosts result in highly symmetrical capsules. Methods of generating lower symmetry pores are thus required to maximise the binding affinity in host-guest complexes. Herein, we use mixtures of tetraaldehyde building blocks with cyclohexanediamine to access low-symmetry imine cages. Whether a low-energy cage is isolated can be correctly predicted from the thermodynamic preference observed in computational models. The stability of the observed structures depends on the geometrical match of the aldehyde building blocks. One bent aldehyde stands out as unable to assemble into high-symmetry cages-and the same aldehyde generates low-symmetry socially self-sorted cages when combined with a linear aldehyde. We exploit this finding to synthesise a family of low-symmetry cages containing heteroatoms, illustrating that pores of varying geometries and surface chemistries may be reliably accessed through computational prediction and self-sorting.
Collapse
Affiliation(s)
- Valentina Abet
- Department of Chemistry and Materials Innovation FactoryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - Filip T. Szczypiński
- Department of ChemistryImperial College LondonMolecular Sciences Research HubWhite City CampusLondonW12 0BZUK
| | - Marc A. Little
- Department of Chemistry and Materials Innovation FactoryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - Valentina Santolini
- Department of ChemistryImperial College LondonMolecular Sciences Research HubWhite City CampusLondonW12 0BZUK
| | - Christopher D. Jones
- Department of Chemistry and Materials Innovation FactoryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - Robert Evans
- Aston Institute of Materials Research, School of Engineering and Applied ScienceAston UniversityBirminghamB4 7ETUK
| | - Craig Wilson
- Department of Chemistry and Materials Innovation FactoryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - Xiaofeng Wu
- Department of Chemistry and Materials Innovation FactoryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - Michael F. Thorne
- Department of Chemistry and Materials Innovation FactoryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - Michael J. Bennison
- Department of Chemistry and Materials Innovation FactoryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - Peng Cui
- Department of Chemistry and Materials Innovation FactoryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - Andrew I. Cooper
- Department of Chemistry and Materials Innovation FactoryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - Kim E. Jelfs
- Department of ChemistryImperial College LondonMolecular Sciences Research HubWhite City CampusLondonW12 0BZUK
| | - Anna G. Slater
- Department of Chemistry and Materials Innovation FactoryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| |
Collapse
|
37
|
Yang Z, Lehn JM. Dynamic Covalent Self-Sorting and Kinetic Switching Processes in Two Cyclic Orders: Macrocycles and Macrobicyclic Cages. J Am Chem Soc 2020; 142:15137-15145. [PMID: 32809804 DOI: 10.1021/jacs.0c07131] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dynamic covalent component self-sorting processes have been investigated for constituents of different cyclic orders, macrocycles and macrobicyclic cages based on multiple reversible imine formation. The progressive assembly of the final structures from dialdehyde and polyamine components involved the generation of kinetic products and mixtures of intermediates which underwent component selection and self-correction to generate the final thermodynamic constituents. Importantly, constitutional dynamic networks (CDNs) of macrocycles and macrobicyclic cages were set up either from separately prepared constituents or by in situ assembly from their components. Over time, these CDNs underwent conversion from a kinetically trapped out-of-equilibrium distribution of constituents to the thermodynamically self-sorted one through component exchange in different dimensional orders.
Collapse
Affiliation(s)
- Zhaozheng Yang
- Lehn Institute of Functional Materials, MOE Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.,Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, Strasbourg 67000, France
| | - Jean-Marie Lehn
- Lehn Institute of Functional Materials, MOE Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.,Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, Strasbourg 67000, France
| |
Collapse
|
38
|
Nakamura M, Tsukamoto Y, Ueta T, Sei Y, Fukushima T, Yoza K, Kobayashi K. Cavitand-Based Pd-Pyridyl Coordination Capsules: Guest-Induced Homo- or Heterocapsule Selection and Applications of Homocapsules to the Protection of a Photosensitive Guest and Chiral Capsule Formation. Chem Asian J 2020; 15:2218-2230. [PMID: 32495490 DOI: 10.1002/asia.202000603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Indexed: 11/08/2022]
Abstract
A 2 : 4 mixture of tetrakis[4-(4-pyridyl)phenyl]cavitand (1) or tetrakis[4-(4-pyridyl)phenylethynyl]cavitand (2) and Pd(dppp)(OTf)2 self-assembles into a homocapsule {12 ⋅ [Pd(dppp)]4 }8+ ⋅ (TfO- )8 (C1) or {22 ⋅ [Pd(dppp)]4 }8+ ⋅ (TfO- )8 (C2), respectively, through Pd-Npy coordination bonds. A 1 : 1 : 4 mixture of 1, 2, and Pd(dppp)(OTf)2 produced a mixture of homocapsules C1, C2, and a heterocapsule {1 ⋅ 2 ⋅ [Pd(dppp)]4 }8+ ⋅ (TfO- )8 (C3) in a 1 : 1 : 0.98 mole ratio. Selective formation (self-sorting) of homocapsules C1 and C2 or heterocapsule C3 was controlled by guest-induced encapsulation under thermodynamic control. Applications of Pd-Npy coordination capsules with the use of 1 were demonstrated. Capsule C1 serves as a guard nanocontainer for trans-4,4'-diacetoxyazobenzene to protect against the trans-to-cis photoisomerization by encapsulation. A chiral capsule {12 ⋅ [Pd((R)-BINAP)]4 }8+ ⋅ (TfO- )8 (C5) was also constructed. Capsule C5 induces supramolecular chirality with respect to prochiral 2,2'-bis(alkoxycarbonyl)-4,4'-bis(1-propynyl)biphenyls by diastereomeric encapsulation through the asymmetric suppression of rotation around the axis of the prochiral biphenyl moiety.
Collapse
Affiliation(s)
- Munechika Nakamura
- Department of Chemistry Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Yoshimi Tsukamoto
- Department of Chemistry Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Takuro Ueta
- Department of Chemistry Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Yoshihisa Sei
- Laboratory for Chemistry and Life Science Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Kenji Yoza
- Bruker axs, 3-9-B Moriya, Kanagawa-ku, Yokohama, 221-0022, Japan
| | - Kenji Kobayashi
- Department of Chemistry Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.,Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| |
Collapse
|
39
|
Abet V, Szczypiński FT, Little MA, Santolini V, Jones CD, Evans R, Wilson C, Wu X, Thorne MF, Bennison MJ, Cui P, Cooper AI, Jelfs KE, Slater AG. Inducing Social Self‐Sorting in Organic Cages To Tune The Shape of The Internal Cavity. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Valentina Abet
- Department of Chemistry and Materials Innovation FactoryUniversity of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Filip T. Szczypiński
- Department of ChemistryImperial College LondonMolecular Sciences Research Hub White City Campus London W12 0BZ UK
| | - Marc A. Little
- Department of Chemistry and Materials Innovation FactoryUniversity of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Valentina Santolini
- Department of ChemistryImperial College LondonMolecular Sciences Research Hub White City Campus London W12 0BZ UK
| | - Christopher D. Jones
- Department of Chemistry and Materials Innovation FactoryUniversity of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Robert Evans
- Aston Institute of Materials Research, School of Engineering and Applied ScienceAston University Birmingham B4 7ET UK
| | - Craig Wilson
- Department of Chemistry and Materials Innovation FactoryUniversity of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Xiaofeng Wu
- Department of Chemistry and Materials Innovation FactoryUniversity of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Michael F. Thorne
- Department of Chemistry and Materials Innovation FactoryUniversity of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Michael J. Bennison
- Department of Chemistry and Materials Innovation FactoryUniversity of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Peng Cui
- Department of Chemistry and Materials Innovation FactoryUniversity of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Andrew I. Cooper
- Department of Chemistry and Materials Innovation FactoryUniversity of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Kim E. Jelfs
- Department of ChemistryImperial College LondonMolecular Sciences Research Hub White City Campus London W12 0BZ UK
| | - Anna G. Slater
- Department of Chemistry and Materials Innovation FactoryUniversity of Liverpool Crown Street Liverpool L69 7ZD UK
| |
Collapse
|
40
|
Rizzuto F, Nitschke JR. Narcissistic, Integrative, and Kinetic Self-Sorting within a System of Coordination Cages. J Am Chem Soc 2020; 142:7749-7753. [PMID: 32275828 PMCID: PMC7304868 DOI: 10.1021/jacs.0c02444] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Indexed: 02/08/2023]
Abstract
Many useful principles of self-assembly have been elucidated through studies of systems where multiple components combine to create a single structure. More complex systems, where multiple product structures self-assemble in parallel from a shared set of precursors, are also of great interest, as biological systems exhibit this behavior. The greater complexity of such systems leads to an increased likelihood that discrete species will not be formed, however. Here we show how the kinetics of self-assembly govern the formation of multiple metal-organic architectures from a mixture of five building blocks, preventing the formation of a discrete structure of intermediate size. By varying ligand symmetry, denticity, and orientation, we explore how five distinct polyhedra-a tetrahedron, an octahedron, a cube, a cuboctahedron, and a triangular prism-assemble in concert around CoII template ions. The underlying rules dictating the organization of assemblies into specific shapes are deciphered, explaining the formation of only three discrete entities when five could form in principle.
Collapse
Affiliation(s)
- Felix.
J. Rizzuto
- University of Cambridge, Department of Chemistry, Cambridge, CB2 1EW, U.K.
| | | |
Collapse
|
41
|
Kumar A, Mukherjee PS. Multicomponent Self‐Assembly of Pd
II
/Pt
II
Interlocked Molecular Cages: Cage‐to‐Cage Conversion and Self‐Sorting in Aqueous Medium. Chemistry 2020; 26:4842-4849. [DOI: 10.1002/chem.202000122] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/05/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Atul Kumar
- Inorganic and Physical Chemistry DepartmentIndian Institute of Science Bangalore 560012 India
| | | |
Collapse
|
42
|
Greenaway RL, Santolini V, Szczypiński FT, Bennison MJ, Little MA, Marsh A, Jelfs KE, Cooper AI. Organic Cage Dumbbells. Chemistry 2020; 26:3718-3722. [PMID: 32011048 DOI: 10.1002/chem.201905623] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Indexed: 01/22/2023]
Abstract
Molecular dumbbells with organic cage capping units were synthesised via a multi-component imine condensation between a tri-topic amine and di- and tetra-topic aldehydes. This is an example of self-sorting, which can be rationalised by computational modelling.
Collapse
Affiliation(s)
- Rebecca L Greenaway
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK
| | - Valentina Santolini
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| | - Filip T Szczypiński
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| | - Michael J Bennison
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK
| | - Marc A Little
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK
| | - Andrew Marsh
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK
| | - Kim E Jelfs
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| | - Andrew I Cooper
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK
| |
Collapse
|
43
|
From Concept to Crystals via Prediction: Multi‐Component Organic Cage Pots by Social Self‐Sorting. Angew Chem Int Ed Engl 2019; 58:16275-16281. [DOI: 10.1002/anie.201909237] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/29/2019] [Indexed: 12/11/2022]
|
44
|
Greenaway RL, Santolini V, Pulido A, Little MA, Alston BM, Briggs ME, Day GM, Cooper AI, Jelfs KE. From Concept to Crystals via Prediction: Multi‐Component Organic Cage Pots by Social Self‐Sorting. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909237] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Rebecca L. Greenaway
- Department of Chemistry and Materials Innovation FactoryUniversity of Liverpool 51 Oxford Street Liverpool L7 3NY UK
| | - Valentina Santolini
- Department of ChemistryImperial College LondonMolecular Sciences Research Hub White City Campus, Wood Lane London W12 0BZ UK
| | - Angeles Pulido
- School of ChemistryUniversity of Southampton Highfield Southampton SO17 1BJ UK
- Current address: The Cambridge Crystallographic Data Centre 12 Union Road Cambridge CB2 1EZ UK
| | - Marc A. Little
- Department of Chemistry and Materials Innovation FactoryUniversity of Liverpool 51 Oxford Street Liverpool L7 3NY UK
| | - Ben M. Alston
- Department of Chemistry and Materials Innovation FactoryUniversity of Liverpool 51 Oxford Street Liverpool L7 3NY UK
| | - Michael E. Briggs
- Department of Chemistry and Materials Innovation FactoryUniversity of Liverpool 51 Oxford Street Liverpool L7 3NY UK
| | - Graeme M. Day
- School of ChemistryUniversity of Southampton Highfield Southampton SO17 1BJ UK
| | - Andrew I. Cooper
- Department of Chemistry and Materials Innovation FactoryUniversity of Liverpool 51 Oxford Street Liverpool L7 3NY UK
| | - Kim E. Jelfs
- Department of ChemistryImperial College LondonMolecular Sciences Research Hub White City Campus, Wood Lane London W12 0BZ UK
| |
Collapse
|
45
|
Kearsey RJ, Alston BM, Briggs ME, Greenaway RL, Cooper AI. Accelerated robotic discovery of type II porous liquids. Chem Sci 2019; 10:9454-9465. [PMID: 32110304 PMCID: PMC7017875 DOI: 10.1039/c9sc03316e] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/19/2019] [Indexed: 01/24/2023] Open
Abstract
High-throughput automation was used to streamline the synthesis, characterisation, and solubility testing, of new Type II porous liquids, accelerating their discovery.
Porous liquids are an emerging class of materials and to date little is known about how to best design their properties. For example, bulky solvents are required that are size-excluded from the pores in the liquid, along with high concentrations of the porous component, but both of these factors may also contribute to higher viscosities, which are undesirable. Hence, the inherent multivariate nature of porous liquids makes them amenable to high-throughput optimisation strategies. Here we develop a high-throughput robotic workflow, encompassing the synthesis, characterisation and property testing of highly-soluble, vertex-disordered porous organic cages dissolved in a range of cavity-excluded solvents. As a result, we identified 29 cage–solvent combinations that combine both higher cage-cavity concentrations and more acceptable carrier solvents than the best previous examples. The most soluble materials gave three times the pore concentration of the best previously reported scrambled cage porous liquid, as demonstrated by increased gas uptake. We were also able to explore alternative methods for gas capture and release, including liberation of the gas by increasing the temperature. We also found that porous liquids can form gels at higher concentrations, trapping the gas in the pores, which could have potential applications in gas storage and transportation.
Collapse
Affiliation(s)
- Rachel J Kearsey
- Department of Chemistry and Materials Innovation Factory , University of Liverpool , Crown Street , Liverpool , L69 7ZD , UK . ;
| | - Ben M Alston
- Department of Chemistry and Materials Innovation Factory , University of Liverpool , Crown Street , Liverpool , L69 7ZD , UK . ;
| | - Michael E Briggs
- Department of Chemistry and Materials Innovation Factory , University of Liverpool , Crown Street , Liverpool , L69 7ZD , UK . ;
| | - Rebecca L Greenaway
- Department of Chemistry and Materials Innovation Factory , University of Liverpool , Crown Street , Liverpool , L69 7ZD , UK . ;
| | - Andrew I Cooper
- Department of Chemistry and Materials Innovation Factory , University of Liverpool , Crown Street , Liverpool , L69 7ZD , UK . ;
| |
Collapse
|
46
|
Osypenko A, Dhers S, Lehn JM. Pattern Generation and Information Transfer through a Liquid/Liquid Interface in 3D Constitutional Dynamic Networks of Imine Ligands in Response to Metal Cation Effectors. J Am Chem Soc 2019; 141:12724-12737. [DOI: 10.1021/jacs.9b05438] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Artem Osypenko
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d’Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Sébastien Dhers
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d’Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Jean-Marie Lehn
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d’Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
47
|
Acharyya K, Mukherjee PS. Organic Imine Cages: Molecular Marriage and Applications. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900163] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Koushik Acharyya
- Department of Inorganic & Physical ChemistryIndian Institute of Science Bangalore 560 012 India
| | | |
Collapse
|
48
|
Ibáñez S, Peris E. A Matter of Fidelity: Self‐Sorting Behavior of Di‐Gold Metallotweezers. Chemistry 2019; 25:8254-8258. [DOI: 10.1002/chem.201901880] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Susana Ibáñez
- Institute of Advanced Materials (INAM)Centro de Innovación en Química Avanzada (ORFEO-CINQA)Universitat Jaume I Av. Vicente Sos Baynat s/n Castellón 12071 Spain
| | - Eduardo Peris
- Institute of Advanced Materials (INAM)Centro de Innovación en Química Avanzada (ORFEO-CINQA)Universitat Jaume I Av. Vicente Sos Baynat s/n Castellón 12071 Spain
| |
Collapse
|
49
|
Acharyya K, Mukherjee PS. Organic Imine Cages: Molecular Marriage and Applications. Angew Chem Int Ed Engl 2019; 58:8640-8653. [PMID: 30725512 DOI: 10.1002/anie.201900163] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Indexed: 12/25/2022]
Abstract
Imine condensation has been known to chemists for more than a century and is used extensively to synthesize large organic cages of defined shapes and sizes. Surprisingly, in the context of the synthetic methods for organic imine cages (OICs), a self-sorting/self-selection (molecular marriage) process has been overlooked over the years. Such processes are omnipresent in nature, from the creation of galaxies to the formation of the smallest building blocks of life (the cell). Such processes have the incredible ability to guide a system toward the formation of a specific product or products out of a collection of equally probable multiple possibilities. This Minireview sheds light on new opportunities in cage design offered by the self-sorting/self-selection protocol in OICs. Recent efforts to explore organic cages for various exciting new applications are discussed; for example, for detection of harmful small organic molecules, as templates for nucleation of metal nanoparticles (MNPs), and as proton-conducting materials.
Collapse
Affiliation(s)
- Koushik Acharyya
- Department of Inorganic & Physical Chemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic & Physical Chemistry, Indian Institute of Science, Bangalore, 560 012, India
| |
Collapse
|
50
|
Bera S, Dey K, Pal TK, Halder A, Tothadi S, Karak S, Addicoat M, Banerjee R. Porosity Switching in Polymorphic Porous Organic Cages with Exceptional Chemical Stability. Angew Chem Int Ed Engl 2019; 58:4243-4247. [DOI: 10.1002/anie.201813773] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/22/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Saibal Bera
- Academy of Scientific and Innovative Research (AcSIR)CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune- 411008 India
| | - Kaushik Dey
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata Mohanpur Campus Mohanpur 741246 India
| | - Tapan K. Pal
- Physical/Materials Chemistry DivisionCSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune- 411008 India
| | - Arjun Halder
- Academy of Scientific and Innovative Research (AcSIR)CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune- 411008 India
| | - Srinu Tothadi
- Physical/Materials Chemistry DivisionCSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune- 411008 India
| | - Suvendu Karak
- Academy of Scientific and Innovative Research (AcSIR)CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune- 411008 India
| | - Matthew Addicoat
- School of Science and TechnologyNottingham Trent University Clifton Lane Nottingham NG11 8NS UK
| | - Rahul Banerjee
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata Mohanpur Campus Mohanpur 741246 India
| |
Collapse
|