1
|
Robert EGL, Waser J. Ficini Reaction with Acrylates for the Stereoselective Synthesis of Aminocyclobutanes. Chemistry 2024; 30:e202401810. [PMID: 38869382 DOI: 10.1002/chem.202401810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024]
Abstract
The first Ficini reaction between ynamides and acrylates is reported herein. The reaction is catalyzed by B(C6F5)3 acting as a Lewis acid and is giving access to stable tri-substituted aminocyclobutenes in high yield. The resulting products can be hydrogenated and epimerized under basic conditions or in presence of a Lewis acid, providing two distinct trans- aminocyclobutane monoester stereoisomers in high yield and diastereoisomeric ratio (up to quantitative yield and >99 : 1 dr).
Collapse
Affiliation(s)
- Emma G L Robert
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, BCH 4306, 1015, Lausanne, Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, BCH 4306, 1015, Lausanne, Switzerland
| |
Collapse
|
2
|
Bao G, Song X, Li Y, He Z, Zuo Q, E R, Yu T, Li K, Xie J, Sun W, Wang R. Orthogonal bioconjugation targeting cysteine-containing peptides and proteins using alkyl thianthrenium salts. Nat Commun 2024; 15:6909. [PMID: 39134527 PMCID: PMC11319714 DOI: 10.1038/s41467-024-51217-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
Late-stage specific and selective diversifications of peptides and proteins performed at target residues under ambient conditions are recognized to be the most facile route to various and abundant conjugates. Herein, we report an orthogonal modification of cysteine residues using alkyl thianthreium salts, which proceeds with excellent chemoselectivity and compatibility under mild conditions, introducing a diverse array of functional structures. Crucially, multifaceted bioconjugation is achieved through clickable handles to incorporate structurally diverse functional molecules. This "two steps, one pot" bioconjugation method is successfully applied to label bovine serum albumin. Therefore, our technique is a versatile and powerful tool for late-stage orthogonal bioconjugation.
Collapse
Affiliation(s)
- Guangjun Bao
- Research Unit of Peptide Science (2019RU066), Chinese Academy of Medical Sciences & Peking Union Medical College, Lanzhou, P. R. China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, P. R. China
| | - Xinyi Song
- Research Unit of Peptide Science (2019RU066), Chinese Academy of Medical Sciences & Peking Union Medical College, Lanzhou, P. R. China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, P. R. China
| | - Yiping Li
- Research Unit of Peptide Science (2019RU066), Chinese Academy of Medical Sciences & Peking Union Medical College, Lanzhou, P. R. China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, P. R. China
| | - Zeyuan He
- Research Unit of Peptide Science (2019RU066), Chinese Academy of Medical Sciences & Peking Union Medical College, Lanzhou, P. R. China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, P. R. China
| | - Quan Zuo
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Ruiyao E
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, P. R. China
| | - Tingli Yu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, P. R. China
| | - Kai Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, P. R. China
| | - Junqiu Xie
- Research Unit of Peptide Science (2019RU066), Chinese Academy of Medical Sciences & Peking Union Medical College, Lanzhou, P. R. China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, P. R. China.
| | - Wangsheng Sun
- Research Unit of Peptide Science (2019RU066), Chinese Academy of Medical Sciences & Peking Union Medical College, Lanzhou, P. R. China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, P. R. China.
| | - Rui Wang
- Research Unit of Peptide Science (2019RU066), Chinese Academy of Medical Sciences & Peking Union Medical College, Lanzhou, P. R. China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, P. R. China.
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China.
| |
Collapse
|
3
|
Bodnar AK, Newhouse TR. Accessing Z-Enynes via Cobalt-Catalyzed Propargylic Dehydrogenation. Angew Chem Int Ed Engl 2024; 63:e202402638. [PMID: 38591826 DOI: 10.1002/anie.202402638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/10/2024]
Abstract
Alkenes constitute an enabling motif in organic synthesis, as they can be functionalized to form highly substituted molecules. Z-alkenes are generally challenging to access due to the thermodynamic preference for the formation of E-alkenes compared to Z-alkenes. Dehydrogenation methodologies to selectively form Z-alkenes have not yet been reported. Herein, we report a Z-selective, propargylic dehydrogenation that provides 1,3-enynes through the invention of a Co-catalyzed oxidation system. Observation of a kinetic isotope effect (KIE) revealed that deprotonation of the propargylic position is the rate limiting step. Additionally, isomerization experiments were conducted and confirmed that the observed Z-selectivity is a kinetic effect. A proposed stereomechanistic model for the Z-selectivity is included.
Collapse
Affiliation(s)
- Alexandra K Bodnar
- Department of Chemistry, Yale University, 225 Prospect St, New Haven, Connecticut, 06520-8107, United States
| | - Timothy R Newhouse
- Department of Chemistry, Yale University, 225 Prospect St, New Haven, Connecticut, 06520-8107, United States
| |
Collapse
|
4
|
Wei L, Guo Y, Li Z, Jiang H, Qi C. Silver-Catalyzed Coupling of Ethynylbenziodoxolones with CO 2 and Amines to Afford O-β-Oxoalkyl Carbamates. Org Lett 2024. [PMID: 38780900 DOI: 10.1021/acs.orglett.4c01147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
A novel three-component coupling reaction of ethynylbenziodoxolones (EBXs) with CO2 and amines has been achieved via silver catalysis, thereby providing an efficient method for the construction of a range of structurally diverse and valuable O-β-oxoalkyl carbamates. The transformation proceeds under mild reaction conditions and exhibits a wide substrate scope and good functional group compatibility. In addition, this strategy could be extended to the synthesis of α-acyloxyketones using carboxylic acids as the nucleophiles to react with EBXs.
Collapse
Affiliation(s)
- Li Wei
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yanhui Guo
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Ziyang Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Chaorong Qi
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
5
|
Kumar R, Dohi T, Zhdankin VV. Organohypervalent heterocycles. Chem Soc Rev 2024; 53:4786-4827. [PMID: 38545658 DOI: 10.1039/d2cs01055k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
This review summarizes the structural and synthetic aspects of heterocyclic molecules incorporating an atom of a hypervalent main-group element. The term "hypervalent" has been suggested for derivatives of main-group elements with more than eight valence electrons, and the concept of hypervalency is commonly used despite some criticism from theoretical chemists. The significantly higher thermal stability of hypervalent heterocycles compared to their acyclic analogs adds special features to their chemistry, particularly for bromine and iodine. Heterocyclic compounds of elements with double bonds are not categorized as hypervalent molecules owing to the zwitterionic nature of these bonds, resulting in the conventional 8-electron species. This review is focused on hypervalent heterocyclic derivatives of nonmetal main-group elements, such as boron, silicon, nitrogen, carbon, phosphorus, sulfur, selenium, bromine, chlorine, iodine(III) and iodine(V).
Collapse
Affiliation(s)
- Ravi Kumar
- Department of Chemistry, J C Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, 121006, Haryana, India.
| | - Toshifumi Dohi
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Viktor V Zhdankin
- Department of Chemistry and Biochemistry, 1038 University Drive, 126 HCAMS University of Minnesota Duluth, Duluth, Minnesota 55812, USA.
| |
Collapse
|
6
|
Chen FJ, Lin W, Chen FE. Non-symmetric stapling of native peptides. Nat Rev Chem 2024; 8:304-318. [PMID: 38575678 DOI: 10.1038/s41570-024-00591-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 04/06/2024]
Abstract
Stapling has emerged as a powerful technique in peptide chemistry. It enables precise control over peptide conformation leading to enhanced properties such as improved stability and enhanced binding affinity. Although symmetric stapling methods have been extensively explored, the field of non-symmetric stapling of native peptides has received less attention, largely as a result of the formidable challenges it poses - in particular the complexities involved in achieving the high chemo-selectivity and site-selectivity required to simultaneously modify distinct proteinogenic residues. Over the past 5 years, there have been significant breakthroughs in addressing these challenges. In this Review, we describe the latest strategies for non-symmetric stapling of native peptides, elucidating the protocols, reaction mechanisms and underlying design principles. We also discuss current challenges and opportunities this field offers for future applications, such as ligand discovery and peptide-based therapeutics.
Collapse
Affiliation(s)
- Fa-Jie Chen
- College of Chemistry, Fuzhou University, Fuzhou, P. R. China.
| | - Wanzhen Lin
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, P. R. China
| | - Fen-Er Chen
- College of Chemistry, Fuzhou University, Fuzhou, P. R. China.
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, P. R. China.
- Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, Fudan University, Shanghai, P. R. China.
| |
Collapse
|
7
|
Doobary S, Di Tommaso EM, Postole A, Inge AK, Olofsson B. Structure-reactivity analysis of novel hypervalent iodine reagents in S-vinylation of thiols. Front Chem 2024; 12:1376948. [PMID: 38487782 PMCID: PMC10937425 DOI: 10.3389/fchem.2024.1376948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024] Open
Abstract
The transition-metal free S-vinylation of thiophenols by vinylbenziodoxolones (VBX) constituted an important step forward in hypervalent iodine-mediated vinylations, highlighting the difference to vinyliodonium salts and that the reaction outcome was influenced by the substitution pattern of the benziodoxolone core. In this study, we report several new classes of hypervalent iodine vinylation reagents; vinylbenziodazolones, vinylbenziodoxolonimine and vinyliodoxathiole dioxides. Their synthesis, structural and electronic properties are described and correlated to the S-vinylation outcome, shedding light on some interesting facets of these reagents.
Collapse
Affiliation(s)
- Sayad Doobary
- Department of Organic Chemistry, Stockholm University, Stockholm, Sweden
| | | | - Alexandru Postole
- Department of Organic Chemistry, Stockholm University, Stockholm, Sweden
| | - A. Ken Inge
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Berit Olofsson
- Department of Organic Chemistry, Stockholm University, Stockholm, Sweden
| |
Collapse
|
8
|
Tromans J, Zhang B, Golding BT. Harnessing the Peterson Reaction for the Stereospecific Synthesis of Z-Vinyl Ethers. Chemistry 2024; 30:e202302708. [PMID: 37732540 DOI: 10.1002/chem.202302708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 09/22/2023]
Abstract
Vinyl ethers are valuable synthetic intermediates which are also found as natural products, including aflatoxins, rifamycins and plasmalogens. The latter are ubiquitous phospholipids in human cells and contain a vinyl ether moiety with specifically Z configuration. Although numerous methods are available for synthesis of vinyl ethers, there is a lack of methods for obtaining Z isomers of molecules of the type RCH=CHOR' that are applicable to plasmalogens. A variant of the Peterson reaction is described that generates such molecules with very high stereoselectivity (Z/E ratio: 99 : 1). (R,R)/(S,S)-1-alkoxy-2-hydroxyalkylsilanes were synthesized from 1-trimethylsilylalkynes by a sequence of reduction with di-isobutylaluminium hydride to a (Z)-1-trimethylsilylalkene, epoxidation of the alkene to a 2-trimethylsilyl-3-substituted epoxide and regioselective, boron-trifluoride catalyzed ring-opening of the epoxide by reaction with an alcohol. Conversion of the (R,R)/(S,S)-1-alkoxy-2-hydroxyalkylsilanes to vinyl ethers (RCH=CHOR') was achieved under basic conditions as in a standard Peterson reaction. However, near exclusive formation of a Z vinyl ether was only achieved when the reaction was performed using potassium hydride in the non-polar solvent α,α,α-trifluorotoluene, more polar solvents giving increasing amounts of the E isomer. The sequence described embraces a variety of substituents and precursors, proceeds in overall high yield and is readily scalable.
Collapse
Affiliation(s)
- Jay Tromans
- School of Natural and Environmental Sciences - Chemistry, Newcastle University, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Bian Zhang
- BiBerChem Research Ltd., The Biosphere, Draymans Way, Newcastle Helix, Newcastle upon Tyne, NE4 5BX, UK
| | - Bernard T Golding
- School of Natural and Environmental Sciences - Chemistry, Newcastle University, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
9
|
Koutsopetras I, Mishra AK, Benazza R, Hernandez-Alba O, Cianférani S, Chaubet G, Nicolai S, Waser J. Cysteine-Cysteine Cross-Conjugation of both Peptides and Proteins with a Bifunctional Hypervalent Iodine-Electrophilic Reagent. Chemistry 2023; 29:e202302689. [PMID: 37712523 DOI: 10.1002/chem.202302689] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
Peptide and protein bioconjugation sees ever-growing applications in the pharmaceutical sector. Novel strategies and reagents that can address the chemo- and regioselectivity issues inherent to these biomolecules, while delivering stable and functionalizable conjugates, are therefore needed. Herein, we introduce the crosslinking ethynylbenziodazolone (EBZ) reagent JW-AM-005 for the conjugation of peptides and proteins through the selective linkage of cysteine residues. This easily accessed compound gives access to peptide dimers or stapled peptides under mild and tuneable conditions. Applied to the antibody fragment of antigen binding (Fab) species, JW-AM-005 delivered rebridged proteins in a one-pot three-reaction process with high regioselectivity, outperforming the standard reagents commonly used for this transformation.
Collapse
Affiliation(s)
- Ilias Koutsopetras
- UMR 7199 CNRS-UdS, Chime Bio-Fonctionnelle, Faculté de Pharmacie, 74 route du Rhin, 67401, Illkirch cedex, France
| | - Abhaya Kumar Mishra
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédéralede de Lausanne, 1015, Lausanne, Switzerland
| | - Rania Benazza
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg CNRS, 67087, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI-FR2048, 67087, Strasbourg, France
| | - Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg CNRS, 67087, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI-FR2048, 67087, Strasbourg, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg CNRS, 67087, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI-FR2048, 67087, Strasbourg, France
| | - Guilhem Chaubet
- UMR 7199 CNRS-UdS, Chime Bio-Fonctionnelle, Faculté de Pharmacie, 74 route du Rhin, 67401, Illkirch cedex, France
| | - Stefano Nicolai
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédéralede de Lausanne, 1015, Lausanne, Switzerland
| | - Jérôme Waser
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédéralede de Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
10
|
Tang M, Wang Y, Huang S, Xie LG. Synthesis of Aryl Thioalkynes Enabled by Electrophilic Sulfenylation of Alkynes and the Following Elimination. J Org Chem 2023; 88:15466-15472. [PMID: 37861448 DOI: 10.1021/acs.joc.3c01592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
An unexpected deprotonative process of thiirenium ions is presented, which provides a new synthesis of aryl thioalkynes directly from terminal alkynes via the electrophilic activation of the carbon-carbon triple bonds. The conditions are well compatible with various functional-group-substituted aryl alkynes. The direct elimination from the thiirenium ion intermediate, or its tautomer, benzyl vinyl carbocation, is supported by control experiments and labeling reaction.
Collapse
Affiliation(s)
- Meizhong Tang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ye Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lan-Gui Xie
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
11
|
Palamini P, Borrel J, Djaïd M, Delattre M, Waser J. Acyl-Ethynylbenziodoxolone (acyl-EBX): Access to Ketene Dithioarylacetals. Org Lett 2023; 25:7535-7539. [PMID: 37801735 DOI: 10.1021/acs.orglett.3c02869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
We report the synthesis of ketene dithioarylacetals in 40-97% yield using thiophenols and acyl-EBXs (ethynylbenziodoxolones) generated in situ from a common hypervalent iodine precursor and alkynyl trifluoroborate salts. The products could be further modified to afford functionalized ketene dithioacetals and various S-substituted heterocycles.
Collapse
Affiliation(s)
- Pierre Palamini
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, BCH 4306, 1015 Lausanne, Switzerland
| | - Julien Borrel
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, BCH 4306, 1015 Lausanne, Switzerland
| | - Maël Djaïd
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, BCH 4306, 1015 Lausanne, Switzerland
| | - Morgane Delattre
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, BCH 4306, 1015 Lausanne, Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, BCH 4306, 1015 Lausanne, Switzerland
| |
Collapse
|
12
|
Cao M, Ren Y, Zhang R, Xu H, Cheng P, Xu H, Xu Y, Li P. Photochemical "Cut and Sew" Transformations of Ethynylbenziodoxolone Reagents and Diazo Compounds. Org Lett 2023; 25:6300-6304. [PMID: 37610822 DOI: 10.1021/acs.orglett.3c02141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Herein, we disclose a visible-light-induced oxy-alkynylation of diazo compounds with ethynylbenziodoxolones. The efficient protocol provides a mild and metal-free methodology to synthesize propargylic esters in moderate to good yields. Notably, this metal-free carbene transfer reaction appears to involve an oxonium ylide intermediate, followed by intramolecular ligand exchange and reductive elimination.
Collapse
Affiliation(s)
- Mengting Cao
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Yikun Ren
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Ruoyu Zhang
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Huayan Xu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Pengfei Cheng
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Hao Xu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Yuanqing Xu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Pan Li
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| |
Collapse
|
13
|
Liu XY, Ji X, Heinis C, Waser J. Peptide-Hypervalent Iodine Reagent Chimeras: Enabling Peptide Functionalization and Macrocyclization. Angew Chem Int Ed Engl 2023; 62:e202306036. [PMID: 37311172 DOI: 10.1002/anie.202306036] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/15/2023]
Abstract
Herein, we report a novel strategy for the modification of peptides based on the introduction of highly reactive hypervalent iodine reagents-ethynylbenziodoxolones (EBXs)-onto peptides. These peptide-EBXs can be readily accessed, by both solution- and solid-phase peptide synthesis (SPPS). They can be used to couple the peptide to other peptides or a protein through reaction with Cys, leading to thioalkynes in organic solvents and hypervalent iodine adducts in water buffer. Furthermore, a photocatalytic decarboxylative coupling to the C-terminus of peptides was developed using an organic dye and was also successful in an intramolecular fashion, leading to macrocyclic peptides with unprecedented crosslinking. A rigid linear aryl alkyne linker was essential to achieve high affinity for Keap1 at the Nrf2 binding site with potential protein-protein interaction inhibition.
Collapse
Affiliation(s)
- Xing-Yu Liu
- Laboratory of Catalysis and Organic Synthesis, Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015, Lausanne, Switzerland
| | - Xinjian Ji
- Laboratory of Therapeutic Proteins and Peptides, Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015, Lausanne, Switzerland
| | - Christian Heinis
- Laboratory of Therapeutic Proteins and Peptides, Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015, Lausanne, Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015, Lausanne, Switzerland
| |
Collapse
|
14
|
Deswal S, Guin A, Biju AT. Benzotriazole-Triggered Three-Component Lewis Acid-Catalyzed Ring-Opening 1,3-Aminofunctionalization of Donor-Acceptor Cyclopropanes. Org Lett 2023; 25:1643-1648. [PMID: 36876870 DOI: 10.1021/acs.orglett.3c00180] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
The use of benzotriazoles as nucleophilic triggers in the three-component Yb(OTf)3-catalyzed ring-opening 1,3-aminofunctionalization of donor-acceptor (D-A) cyclopropanes is presented. Using N-halo succinimide (NXS) as the third component, the reaction afforded the 1,3-aminohalogenation product in up to an 84% yield. Moreover, using alkyl halides or Michael acceptors as the third components, the 3,1-carboaminated products are formed in up to a 96% yield in a one-pot operation. Employing Selectfluor as the electrophile, the reaction furnished the 1,3-aminofluorinated product in a 61% yield.
Collapse
Affiliation(s)
- Shiksha Deswal
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Avishek Guin
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
15
|
Mironova IA, Noskov DM, Yoshimura A, Yusubov MS, Zhdankin VV. Aryl-, Akynyl-, and Alkenylbenziodoxoles: Synthesis and Synthetic Applications. Molecules 2023; 28:2136. [PMID: 36903382 PMCID: PMC10004369 DOI: 10.3390/molecules28052136] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
Hypervalent iodine reagents are in high current demand due to their exceptional reactivity in oxidative transformations, as well as in diverse umpolung functionalization reactions. Cyclic hypervalent iodine compounds, known under the general name of benziodoxoles, possess improved thermal stability and synthetic versatility in comparison with their acyclic analogs. Aryl-, alkenyl-, and alkynylbenziodoxoles have recently received wide synthetic applications as efficient reagents for direct arylation, alkenylation, and alkynylation under mild reaction conditions, including transition metal-free conditions as well as photoredox and transition metal catalysis. Using these reagents, a plethora of valuable, hard-to-reach, and structurally diverse complex products can be synthesized by convenient procedures. The review covers the main aspects of the chemistry of benziodoxole-based aryl-, alkynyl-, and alkenyl- transfer reagents, including preparation and synthetic applications.
Collapse
Affiliation(s)
- Irina A. Mironova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Dmitrii M. Noskov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Akira Yoshimura
- Faculty of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Mekhman S. Yusubov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Viktor V. Zhdankin
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN 55812, USA
| |
Collapse
|
16
|
Le Du E, Waser J. Recent progress in alkynylation with hypervalent iodine reagents. Chem Commun (Camb) 2023; 59:1589-1604. [PMID: 36656618 PMCID: PMC9904279 DOI: 10.1039/d2cc06168f] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/23/2022] [Indexed: 01/20/2023]
Abstract
Although alkynes are one of the smallest functional groups, they are among the most versatile building blocks for organic chemistry, with applications ranging from biochemistry to material sciences. Alkynylation reactions have traditionally relied on the use of acetylenes as nucleophiles. The discovery and development of ethynyl hypervalent iodine reagents have allowed to greatly expand the transfer of alkynes as electrophilic synthons. In this feature article the progress in the field since 2018 will be presented. After a short introduction on alkynylation reactions and hypervalent iodine reagents, the developments in the synthesis of alkynyl hypervalent iodine reagents will be discussed. Their recent use in base-mediated and transition-metal catalyzed alkynylations will be described. Progress in radical-based alkynylations and atom-economical transformations will then be presented.
Collapse
Affiliation(s)
- Eliott Le Du
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne EPFL, SB ISIC, LCSO, BCH 4306, 1015, Lausanne, Switzerland.
| | - Jérôme Waser
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne EPFL, SB ISIC, LCSO, BCH 4306, 1015, Lausanne, Switzerland.
| |
Collapse
|
17
|
Nangunuri BG, Shirke RP, Kim MH. Metal-free synthesis of dihydrofuran derivatives as anti-vicinal amino alcohol isosteres. Org Biomol Chem 2023; 21:960-965. [PMID: 36625241 DOI: 10.1039/d2ob02077g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Dihydrofuran cores are commonly incorporated into synthetically and pharmacologically significant scaffolds in natural product and drug discovery chemistry. Herein, we report a concise and practical strategy to construct spiro-dihydrofuran and amino dihydrofuran scaffolds as anti-vicinal amino alcohol isosteres. Hypervalent iodine (PhI(OAc)(NTs2))-mediated C-H activation of alkynes resulted in two-bond formations with one pi bond cleavage: (i) C(sp2)-N(sp3) and O(sp3)-C(sp2); (ii) C(sp2)-N(sp3) and C(sp3)-C(sp2). The metal-free 5-endo-dig oxidative cyclization provided versatile amino 2,3- and 2,5-dihydrofurans bearing the C5 quaternary carbon. The non-toxicity of all synthesised dihydrofurans was verified via in vitro cell viability assay.
Collapse
Affiliation(s)
- Bhargav Gupta Nangunuri
- Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, 191 Hambakmoeiro, Yeonsu-gu, Incheon, Republic of Korea.
| | - Rajendra P Shirke
- Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, 191 Hambakmoeiro, Yeonsu-gu, Incheon, Republic of Korea.
| | - Mi-Hyun Kim
- Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, 191 Hambakmoeiro, Yeonsu-gu, Incheon, Republic of Korea.
| |
Collapse
|
18
|
Yu Y, Schäfer M, Daniliuc CG, Gilmour R. Catalytic, Regioselective 1,4-Fluorodifunctionalization of Dienes. Angew Chem Int Ed Engl 2023; 62:e202214906. [PMID: 36345795 PMCID: PMC10107283 DOI: 10.1002/anie.202214906] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Indexed: 11/09/2022]
Abstract
A catalysis-based regioselective 1,4-fluorofunctionalization of trifluoromethyl substituted 1,3-dienes has been developed to access compact, highly functionalized products. The process allows E,Z-mixed dienes to be processed to a single E-alkene isomer, and leverages an inexpensive and operationally convenient I(I)/I(III) catalysis platform. The first example of catalytic 1,4-difluorination is disclosed and subsequently evolved to enable 1,4-hetero-difunctionalization, which allows δ-fluoro-alcohol and amine derivatives to be forged in a single operation. The protocol is compatible with a variety of nucleophiles including fluoride, nitriles, carboxylic acids, alcohols and even water thereby allowing highly functionalized products, with a stereocenter bearing both C(sp3 )-F and C(sp3 )-CF3 groups, to be generated rapidly. Scalability (up to 3 mmol), and facile post-reaction modifications are demonstrated to underscore the utility of the method in expanding organofluorine chemical space.
Collapse
Affiliation(s)
- You‐Jie Yu
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Michael Schäfer
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Constantin G. Daniliuc
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Ryan Gilmour
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| |
Collapse
|
19
|
Abstract
Cysteine bioconjugation serves as a powerful tool in biological research and has been widely used for chemical modification of proteins, constructing antibody-drug conjugates, and enabling cell imaging studies. Cysteine conjugation reactions with fast kinetics and exquisite selectivity have been under heavy pursuit as they would allow clean protein modification with just stoichiometric amounts of reagents, which minimizes side reactions, simplifies purification and broadens functional group tolerance. In this concept, we summarize the recent advances in fast cysteine bioconjugation, and discuss the mechanism and chemical principles that underlie the high efficiencies of the newly developed cysteine reactive reagents.
Collapse
Affiliation(s)
- Fa-Jie Chen
- Department of Chemistry, Boston College, Merkert Chemistry Center, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Jianmin Gao
- Department of Chemistry, Boston College, Merkert Chemistry Center, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| |
Collapse
|
20
|
Declas N, Maynard JRJ, Menin L, Gasilova N, Götze S, Sprague JL, Stallforth P, Matile S, Waser J. Tyrosine bioconjugation with hypervalent iodine. Chem Sci 2022; 13:12808-12817. [PMID: 36519034 PMCID: PMC9645396 DOI: 10.1039/d2sc04558c] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/03/2022] [Indexed: 01/24/2023] Open
Abstract
Hypervalent iodine reagents have recently emerged as powerful tools for late-stage peptide and protein functionalization. Herein we report a tyrosine bioconjugation methodology for the introduction of hypervalent iodine onto biomolecules under physiological conditions. Tyrosine residues were engaged in a selective addition onto the alkynyl bond of ethynylbenziodoxolones (EBX), resulting in stable vinylbenziodoxolones (VBX) bioconjugates. The methodology was successfully applied to peptides and proteins and tolerated all other nucleophilic residues, with the exception of cysteine. The generated VBX were further functionalized by palladium-catalyzed cross-coupling and azide-alkyne cycloaddition reactions. The method could be successfully used to modify bioactive natural products and native streptavidin to enable thiol-mediated cellular uptake.
Collapse
Affiliation(s)
- Nina Declas
- Laboratory of Catalysis and Organic Synthesis, Institut des Sciences et Ingénierie Chimique, Ecole Polytechnique Fédérale de Lausanne CH-1015 Lausanne Switzerland
| | - John R J Maynard
- Department of Organic Chemistry, University of Geneva 1211 Geneva Switzerland
| | - Laure Menin
- Institut des Sciences et Ingénierie Chimique, Ecole Polytechnique Fédérale de Lausanne, EPFL 1015 Lausanne Switzerland
| | - Natalia Gasilova
- Institut des Sciences et Ingénierie Chimique, Ecole Polytechnique Fédérale de Lausanne, EPFL 1015 Lausanne Switzerland
| | - Sebastian Götze
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI) 07745 Jena Germany
| | - Jakob L Sprague
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI) 07745 Jena Germany
| | - Pierre Stallforth
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI) 07745 Jena Germany
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva 1211 Geneva Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Institut des Sciences et Ingénierie Chimique, Ecole Polytechnique Fédérale de Lausanne CH-1015 Lausanne Switzerland
| |
Collapse
|
21
|
Kikuchi J, Maesaki K, Sasaki S, Wang W, Ito S, Yoshikai N. Stereoselective Synthesis of β-Alkoxy-β-amido Vinylbenziodoxoles via Iodo(III)etherification of Ynamides. Org Lett 2022; 24:6914-6918. [PMID: 36125122 DOI: 10.1021/acs.orglett.2c02570] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A trans-iodo(III)etherification reaction of ynamides with benziodoxole triflate and alcohols is reported. Despite the sensitivity of ynamides and enamides toward Brønsted acid, the reaction could be successfully performed under carefully controlled conditions to afford β-alkoxy-β-amido vinylbenziodoxoles in moderate to good yields. The products could be subjected to a sequence of cross-coupling via C-I(III) bond cleavage and electrophilic halogenation of the resulting α-alkoxyenamides, allowing for the preparation of densely functionalized esters.
Collapse
Affiliation(s)
- Jun Kikuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Kaito Maesaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Shuma Sasaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Weifan Wang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Shingo Ito
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Naohiko Yoshikai
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
22
|
Di Tommaso EM, Norrby P, Olofsson B. Explaining Regiodivergent Vinylations with Vinylbenziodoxolones**. Angew Chem Int Ed Engl 2022; 61:e202206347. [PMID: 35748793 PMCID: PMC9541388 DOI: 10.1002/anie.202206347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Indexed: 12/02/2022]
Abstract
Vinylbenziodoxolones have recently been identified as efficient hypervalent iodine(III) reagents for electrophilic vinylations under transition metal‐free conditions. Their unique reactivity allows synthesis of either internal or terminal alkenes, depending on the nucleophile class. This paper constitutes the first mechanistic investigation of VBX vinylations, and makes use of NMR studies, deuterium labelling and computations to rationalize the observed regio‐ and stereochemical outcome. Internal alkene formation in S‐vinylation was found to proceed through the ligand coupling mechanism typical of diaryliodonium salts, whereas terminal alkene formation in P‐vinylations took place via a phosphinous acid‐coordinated VBX complex, which underwent concerted deprotonation and Michael‐type addition. Subsequent base‐assisted protonation and E2 elimination delivered the terminal alkene. The findings can be used to predict the regioselectivity in vinylations of other nucleophile classes.
Collapse
Affiliation(s)
- Ester M. Di Tommaso
- Department of Organic Chemistry Arrhenius Laboratory Stockholm University 10691 Stockholm Sweden
| | - Per‐Ola Norrby
- Data Science and Modelling Pharmaceutical Sciences R&D, AstraZeneca Gothenburg Sweden
| | - Berit Olofsson
- Department of Organic Chemistry Arrhenius Laboratory Stockholm University 10691 Stockholm Sweden
| |
Collapse
|
23
|
Chen Y, Gu Y, Meng H, Shao Q, Xu Z, Bao W, Gu Y, Xue X, Zhao Y. Metal‐Free C−H Functionalization via Diaryliodonium Salts with a Chemically Robust Dummy Ligand. Angew Chem Int Ed Engl 2022; 61:e202201240. [DOI: 10.1002/anie.202201240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Yixuan Chen
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Yuefei Gu
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Huan Meng
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Qianzhen Shao
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Zhenchuang Xu
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Wenjing Bao
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Yucheng Gu
- Syngenta Jealott's Hill International Research Centre Bracknell, Berkshire RG42 6EY UK
| | - Xiao‐Song Xue
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Yanchuan Zhao
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
- Key Laboratory of Energy Regulation Materials Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| |
Collapse
|
24
|
Li J, Zhou C, Liang H, Guo XQ, Chen LM, Kang TR. Direct One‐Pot Construction of Diaryl Thioethers and 1,3‐Diynes through a Copper(I)‐Catalyzed Reaction of λ3‐Iodanes with Thiophenols. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jun Li
- Chengdu University School of Pharmacy CHINA
| | - Chuang Zhou
- Chengdu University School of Food and Biological Engineering CHINA
| | - Hong Liang
- Chengdu University School of Pharmacy CHINA
| | | | - Lian-Mei Chen
- Chengdu University School of Food and Biological Engineering CHINA
| | - Tai-Ran Kang
- Chengdu University School of Food and Biological Engineering No 1, SHIDA ROAD 610106 Chengdu CHINA
| |
Collapse
|
25
|
Di Tommaso EM, Norrby PO, Olofsson B. Explaining Regio‐Divergent Vinylations with Vinylbenziodoxolones. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Per-Ola Norrby
- AstraZeneca Sweden: AstraZeneca AB Data Science and Modelling, Pharmaceutical Sciences, R&D Gothenburg SWEDEN
| | - Berit Olofsson
- Stockholm University Departemt of Organic Chemistry Arrhenius Laboratory 106 91 Stockholm SWEDEN
| |
Collapse
|
26
|
He SD, Guo XQ, Li J, Zhang YC, Chen LM, Kang TR. Base‐Promoted Reaction of Phenols with Spirocylic λ3‐iodanes: Access to both 2‐Iodovinyl Aryl Ethers and Diaryl Ethers. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shun-Dong He
- Chengdu University Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu CHINA
| | - Xiao-Qiang Guo
- Chengdu University Sichuan Industrial Institute of Antibiotics, School of Pharmacy CHINA
| | - Jun Li
- Chengdu University Sichuan Industrial Institute of Antibiotics, School of Pharmacy CHINA
| | - Yu-Cheng Zhang
- Chengdu University Sichuan Industrial Institute of Antibiotics, School of Pharmacy CHINA
| | - Lian-Mei Chen
- Chengdu University School of Food and Biological Engineering CHINA
| | - Tai-Ran Kang
- Chengdu University School of Food and Biological Engineering No 1, SHIDA ROAD 610106 Chengdu CHINA
| |
Collapse
|
27
|
Chen Y, Gu Y, Meng H, Shao Q, Xu Z, Bao W, Gu Y, Xue X, Zhao Y. Metal‐Free C−H Functionalization via Diaryliodonium Salts with a Chemically Robust Dummy Ligand. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yixuan Chen
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Yuefei Gu
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Huan Meng
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Qianzhen Shao
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Zhenchuang Xu
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Wenjing Bao
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Yucheng Gu
- Syngenta Jealott's Hill International Research Centre Bracknell, Berkshire RG42 6EY UK
| | - Xiao‐Song Xue
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Yanchuan Zhao
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
- Key Laboratory of Energy Regulation Materials Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| |
Collapse
|
28
|
Allouche EMD, Grinhagena E, Waser J. Hypervalent Iodine-Mediated Late-Stage Peptide and Protein Functionalization. Angew Chem Int Ed Engl 2022; 61:e202112287. [PMID: 34674359 PMCID: PMC9299824 DOI: 10.1002/anie.202112287] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Indexed: 12/20/2022]
Abstract
Hypervalent iodine compounds are powerful reagents for the development of novel transformations. As they exhibit low toxicity, high functional group tolerance, and stability in biocompatible media, they have been used for the functionalization of biomolecules. Herein, we report recent advances up to June 2021 in peptide and protein modification using hypervalent iodine reagents. Their use as group transfer or oxidizing reagents is discussed in this Minireview, including methods targeting polar, aromatic, or aliphatic amino acids and peptide termini.
Collapse
Affiliation(s)
- Emmanuelle M. D. Allouche
- Laboratory of Catalysis and Organic SynthesisInstitute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de Lausanne, EPFL, SB ISIC, LCSO, BCH 14021015LausanneSwitzerland
| | - Elija Grinhagena
- Laboratory of Catalysis and Organic SynthesisInstitute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de Lausanne, EPFL, SB ISIC, LCSO, BCH 14021015LausanneSwitzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic SynthesisInstitute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de Lausanne, EPFL, SB ISIC, LCSO, BCH 14021015LausanneSwitzerland
| |
Collapse
|
29
|
Allouche EMD, Grinhagena E, Waser J. Hypervalent Iodine‐Mediated Late‐Stage Peptide and Protein Functionalization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Emmanuelle M. D. Allouche
- Laboratory of Catalysis and Organic Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne, EPFL, SB ISIC, LCSO, BCH 1402 1015 Lausanne Switzerland
| | - Elija Grinhagena
- Laboratory of Catalysis and Organic Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne, EPFL, SB ISIC, LCSO, BCH 1402 1015 Lausanne Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne, EPFL, SB ISIC, LCSO, BCH 1402 1015 Lausanne Switzerland
| |
Collapse
|
30
|
Kwon K, Simons RT, Nandakumar M, Roizen JL. Strategies to Generate Nitrogen-centered Radicals That May Rely on Photoredox Catalysis: Development in Reaction Methodology and Applications in Organic Synthesis. Chem Rev 2022; 122:2353-2428. [PMID: 34623809 PMCID: PMC8792374 DOI: 10.1021/acs.chemrev.1c00444] [Citation(s) in RCA: 135] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
For more than 70 years, nitrogen-centered radicals have been recognized as potent synthetic intermediates. This review is a survey designed for use by chemists engaged in target-oriented synthesis. This review summarizes the recent paradigm shift in access to and application of N-centered radicals enabled by visible-light photocatalysis. This shift broadens and streamlines approaches to many small molecules because visible-light photocatalysis conditions are mild. Explicit attention is paid to innovative advances in N-X bonds as radical precursors, where X = Cl, N, S, O, and H. For clarity, key mechanistic data is noted, where available. Synthetic applications and limitations are summarized to illuminate the tremendous utility of photocatalytically generated nitrogen-centered radicals.
Collapse
Affiliation(s)
- Kitae Kwon
- Duke University, Department of Chemistry, Box 90346, Durham, North Carolina 27708-0354, United States
| | - R Thomas Simons
- Duke University, Department of Chemistry, Box 90346, Durham, North Carolina 27708-0354, United States
| | - Meganathan Nandakumar
- Duke University, Department of Chemistry, Box 90346, Durham, North Carolina 27708-0354, United States
| | - Jennifer L Roizen
- Duke University, Department of Chemistry, Box 90346, Durham, North Carolina 27708-0354, United States
| |
Collapse
|
31
|
Sarkar S, Wojciechowska N, Rajkiewicz AA, Kalek M. Synthesis of Aryl Sulfides by Metal‐Free Arylation of Thiols with Diaryliodonium Salts under Basic Conditions**. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sudeep Sarkar
- Centre of New Technologies University of Warsaw Banacha 2 C 02-097 Warsaw Poland
- Faculty of Chemistry University of Warsaw Pasteura 1 02-093 Warsaw Poland
| | | | - Adam A. Rajkiewicz
- Centre of New Technologies University of Warsaw Banacha 2 C 02-097 Warsaw Poland
| | - Marcin Kalek
- Centre of New Technologies University of Warsaw Banacha 2 C 02-097 Warsaw Poland
| |
Collapse
|
32
|
Matsuoka J, Terashita M, Miyawaki A, Tomioka K, Yamamoto Y. Phosphazene base-catalyzed hydroamination of aminoalkenes for the construction of isoindoline scaffolds: Application to the total synthesis of aristocularine. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2021.153599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Wang C, Zhao Y, Zhao J. Recent Advances in Chemical Protein Modification via Cysteine. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202203008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
34
|
Borrel J, Waser J. Tosyloxybenziodoxolone: A Platform for Performing the Umpolung of Alkynes in One-Pot Transformations. Org Lett 2021; 24:142-146. [PMID: 34898230 DOI: 10.1021/acs.orglett.1c03771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Ethynylbenziodoxolones (EBXs) are commonly encountered reagents for the electrophilic alkynylation of nucleophiles. Herein, we report a one-pot, two-step process for EBX generation and their direct application in substrate functionalization. Our approach enables us to bypass the originally mandatory isolation and purification of the reagents, resulting in a more efficient synthesis. We could apply this process to seven different transformations involving both two- and one-electron nucleophiles to obtain a large variety of alkynylated products.
Collapse
Affiliation(s)
- Julien Borrel
- Laboratory of Catalysis and Organic Synthesis and NCCR Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, BCH 1402, 1015 Lausanne, Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis and NCCR Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, BCH 1402, 1015 Lausanne, Switzerland
| |
Collapse
|
35
|
Chen Y, Wen S, Tian Q, Zhang Y, Cheng G. Transition Metal-Free C-H Thiolation via Sulfonium Salts Using β-Sulfinylesters as the Sulfur Source. Org Lett 2021; 23:7905-7909. [PMID: 34579530 DOI: 10.1021/acs.orglett.1c02912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We disclose a direct C(sp)-, C(sp2)-, and C(sp3)-H thiolation reaction using β-sulfinylesters as the versatile sulfur source. The key step of this protocol is chemoselective C-S bond cleavage of the sulfonium salts that are formed in situ from the corresponding alkenes, alkynes, and 1,3-dicarboxyl compounds with β-sulfinylesters. The successful capture of the acrylate byproduct supports a retro-Michael reaction mechanism.
Collapse
Affiliation(s)
- Yanhui Chen
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Instrumental Analysis Center, Huaqiao University, Xiamen 361021, China
| | - Si Wen
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Instrumental Analysis Center, Huaqiao University, Xiamen 361021, China
| | - Qingyu Tian
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Instrumental Analysis Center, Huaqiao University, Xiamen 361021, China
| | - Yuqing Zhang
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Instrumental Analysis Center, Huaqiao University, Xiamen 361021, China
| | - Guolin Cheng
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Instrumental Analysis Center, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
36
|
Laurent Q, Martinent R, Moreau D, Winssinger N, Sakai N, Matile S. Oligonucleotide Phosphorothioates Enter Cells by Thiol‐Mediated Uptake. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Quentin Laurent
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Rémi Martinent
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Dimitri Moreau
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Nicolas Winssinger
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Naomi Sakai
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Stefan Matile
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| |
Collapse
|
37
|
Laurent Q, Martinent R, Moreau D, Winssinger N, Sakai N, Matile S. Oligonucleotide Phosphorothioates Enter Cells by Thiol-Mediated Uptake. Angew Chem Int Ed Engl 2021; 60:19102-19106. [PMID: 34173696 PMCID: PMC8456962 DOI: 10.1002/anie.202107327] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Indexed: 12/14/2022]
Abstract
Oligonucleotide phosphorothioates (OPS) are DNA or RNA mimics where one phosphate oxygen is replaced by a sulfur atom. They have been shown to enter mammalian cells much more efficiently than non-modified DNA. Thus, solving one of the key challenges with oligonucleotide technology, OPS became very useful in practice, with several FDA-approved drugs on the market or in late clinical trials. However, the mechanism accounting for this facile cellular uptake is unknown. Here, we show that OPS enter cells by thiol-mediated uptake. The transient adaptive network produced by dynamic covalent pseudo-disulfide exchange is characterized in action. Inhibitors with nanomolar efficiency are provided, together with activators that reduce endosomal capture for efficient delivery of OPS into the cytosol, the site of action.
Collapse
Affiliation(s)
- Quentin Laurent
- School of Chemistry and BiochemistryNational Centre of Competence in Research (NCCR) Chemical BiologyUniversity of GenevaGenevaSwitzerland
| | - Rémi Martinent
- School of Chemistry and BiochemistryNational Centre of Competence in Research (NCCR) Chemical BiologyUniversity of GenevaGenevaSwitzerland
| | - Dimitri Moreau
- School of Chemistry and BiochemistryNational Centre of Competence in Research (NCCR) Chemical BiologyUniversity of GenevaGenevaSwitzerland
| | - Nicolas Winssinger
- School of Chemistry and BiochemistryNational Centre of Competence in Research (NCCR) Chemical BiologyUniversity of GenevaGenevaSwitzerland
| | - Naomi Sakai
- School of Chemistry and BiochemistryNational Centre of Competence in Research (NCCR) Chemical BiologyUniversity of GenevaGenevaSwitzerland
| | - Stefan Matile
- School of Chemistry and BiochemistryNational Centre of Competence in Research (NCCR) Chemical BiologyUniversity of GenevaGenevaSwitzerland
| |
Collapse
|
38
|
Mishra AK, Tessier R, Hari DP, Waser J. Amphiphilic Iodine(III) Reagents for the Lipophilization of Peptides in Water. Angew Chem Int Ed Engl 2021; 60:17963-17968. [PMID: 34038604 PMCID: PMC8456932 DOI: 10.1002/anie.202106458] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Indexed: 12/31/2022]
Abstract
We report the functionalization of cysteine residues with lipophilic alkynes bearing a silyl group or an alkyl chain using amphiphilic ethynylbenziodoxolone reagents (EBXs). The reactions were carried out in buffer (pH 6 to 9), without organic co-solvent or removal of oxygen, either at 37 °C or room temperature. The transformation led to a significant increase of peptide lipophilicity and worked for aromatic thiols, homocysteine, cysteine, and peptides containing 4 to 18 amino acids. His6 -Cys-Ubiquitin was also alkynylated under physiological conditions. Under acidic conditions, the thioalkynes were converted into thioesters, which could be cleaved in the presence of hydroxylamine.
Collapse
Affiliation(s)
- Abhaya Kumar Mishra
- Laboratory of Catalysis and Organic SynthesisEcole Polytechnique Fédérale de LausanneEPFL SB ISIC LCSO, BCH 43061015LausanneSwitzerland
| | - Romain Tessier
- Laboratory of Catalysis and Organic SynthesisEcole Polytechnique Fédérale de LausanneEPFL SB ISIC LCSO, BCH 43061015LausanneSwitzerland
- Present address: Department of Chemical BiologyMax Planck Institute of Molecular PhysiologyOtto-Hahn-Strasse 1144227DortmundGermany
| | - Durga Prasad Hari
- Laboratory of Catalysis and Organic SynthesisEcole Polytechnique Fédérale de LausanneEPFL SB ISIC LCSO, BCH 43061015LausanneSwitzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic SynthesisEcole Polytechnique Fédérale de LausanneEPFL SB ISIC LCSO, BCH 43061015LausanneSwitzerland
| |
Collapse
|
39
|
Kafuta K, Rugen CJ, Heilmann T, Liu T, Golz C, Alcarazo M. Reactivity of 5-(Alkynyl)dibenzothiophenium Salts: Synthesis of Diynes, Vinyl Sulfones, and Phenanthrenes. European J Org Chem 2021; 2021:4038-4048. [PMID: 34588919 PMCID: PMC8453815 DOI: 10.1002/ejoc.202100323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/14/2021] [Indexed: 11/13/2022]
Abstract
The reactivity of 5-(alkynyl)dibenzothiophenium salts 1 is explored in the presence of different nucleophiles, dienes, and under photochemical conditions. Reaction with lithium acetylides affords diynes in moderate yields; while depending on the substitution pattern, the reaction with sulfinates delivers either the alkyne transfer products, alkynyl sulfones, or β-(sulfonium) vinyl sulfones through addition to the C-C triple bond. Similar behavior is observed when tosylamines are used as nucleophiles. Salts of general formula 1 also react with dienes to render the corresponding Diels-Alder cycloadducts. The vinyl sulfonium salts obtained by these routes further react with nucleophiles through a Michael addition, dibenzothiophene elimination sequence. Alternatively, they also engage in photoinduced radical cyclizations to produce substituted phenanthrenes. Attempts to use this specific addition/radical cyclization sequence for the construction of the 6a,7-dehydroaporphine skeleton present in several families of alkaloids are also described.
Collapse
Affiliation(s)
- Kevin Kafuta
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstr 237077GöttingenGermany
| | - Christian J. Rugen
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstr 237077GöttingenGermany
| | - Tobias Heilmann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstr 237077GöttingenGermany
| | - Tianshu Liu
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstr 237077GöttingenGermany
| | - Christopher Golz
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstr 237077GöttingenGermany
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstr 237077GöttingenGermany
| |
Collapse
|
40
|
Le Du E, Duhail T, Wodrich MD, Scopelliti R, Fadaei‐Tirani F, Anselmi E, Magnier E, Waser J. Structure and Reactivity of N-Heterocyclic Alkynyl Hypervalent Iodine Reagents. Chemistry 2021; 27:10979-10986. [PMID: 33978974 PMCID: PMC8361724 DOI: 10.1002/chem.202101475] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Indexed: 12/23/2022]
Abstract
Ethynylbenziodoxol(on)e (EBX) cyclic hypervalent iodine reagents have become popular reagents for the alkynylation of radicals and nucleophiles, but only offer limited possibilities for further structure and reactivity fine-tuning. Herein, the synthesis of new N-heterocyclic hypervalent iodine reagents with increased structural flexibility based on amide, amidine and sulfoximine scaffolds is reported. Solid-state structures of the reagents are reported and the analysis of the I-Calkyne bond lengths allowed assessing the trans-effect of the different substituents. Molecular electrostatic potential (MEP) maps of the reagents, derived from DFT computations, revealed less pronounced σ-hole regions for sulfonamide-based compounds. Most reagents reacted well in the alkynylation of β-ketoesters. The alkynylation of thiols afforded more variable yields, with compounds with a stronger σ-hole reacting better. In metal-mediated transformations, the N-heterocyclic hypervalent iodine reagents gave inferior results when compared to the O-based EBX reagents.
Collapse
Affiliation(s)
- Eliott Le Du
- Laboratory of Catalysis and Organic SynthesisEcole Polytechnique Fédérale de LausanneEPFL SB ISIC LCSO, BCH 43061015LausanneSwitzerland
| | - Thibaut Duhail
- Institut Lavoisier de VersaillesUniversité Paris-Saclay, UVSQ, CNRS, UMR 81807800VersaillesFrance
| | - Matthew D. Wodrich
- Laboratory of Catalysis and Organic SynthesisEcole Polytechnique Fédérale de LausanneEPFL SB ISIC LCSO, BCH 43061015LausanneSwitzerland
| | - Rosario Scopelliti
- Institute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de LausanneEPFL SB ISIC GE, BCH 2111, 1015 LausanneEPFL SB ISIC LCSO, BCH 43061015LausanneSwitzerland
| | - Farzaneh Fadaei‐Tirani
- Institute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de LausanneEPFL SB ISIC GE, BCH 2111, 1015 LausanneEPFL SB ISIC LCSO, BCH 43061015LausanneSwitzerland
| | - Elsa Anselmi
- Institut Lavoisier de VersaillesUniversité Paris-Saclay, UVSQ, CNRS, UMR 81807800VersaillesFrance
- Université de ToursFaculté des Sciences et Techniques37200ToursFrance
| | - Emmanuel Magnier
- Institut Lavoisier de VersaillesUniversité Paris-Saclay, UVSQ, CNRS, UMR 81807800VersaillesFrance
| | - Jerome Waser
- Laboratory of Catalysis and Organic SynthesisEcole Polytechnique Fédérale de LausanneEPFL SB ISIC LCSO, BCH 43061015LausanneSwitzerland
| |
Collapse
|
41
|
Mishra AK, Tessier R, Hari DP, Waser J. Amphiphilic Iodine(III) Reagents for the Lipophilization of Peptides in Water. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Abhaya Kumar Mishra
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| | - Romain Tessier
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
- Present address: Department of Chemical Biology Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Durga Prasad Hari
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| |
Collapse
|
42
|
Lim B, Cheng Y, Kato T, Pham A, Le Du E, Mishra AK, Grinhagena E, Moreau D, Sakai N, Waser J, Matile S. Inhibition of Thiol‐Mediated Uptake with Irreversible Covalent Inhibitors. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202100085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Bumhee Lim
- Department of Organic Chemistry University of Geneva Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
- National Centre of Competence in Research (NCCR) Chemical Biology Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
| | - Yangyang Cheng
- Department of Organic Chemistry University of Geneva Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
- National Centre of Competence in Research (NCCR) Chemical Biology Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
| | - Takehiro Kato
- Department of Organic Chemistry University of Geneva Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
- National Centre of Competence in Research (NCCR) Chemical Biology Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
| | - Anh‐Tuan Pham
- Department of Organic Chemistry University of Geneva Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
- National Centre of Competence in Research (NCCR) Chemical Biology Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
| | - Eliott Le Du
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO BCH 4306 1015 Lausanne Switzerland
| | - Abhaya Kumar Mishra
- National Centre of Competence in Research (NCCR) Chemical Biology Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO BCH 4306 1015 Lausanne Switzerland
| | - Elija Grinhagena
- National Centre of Competence in Research (NCCR) Chemical Biology Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO BCH 4306 1015 Lausanne Switzerland
| | - Dimitri Moreau
- National Centre of Competence in Research (NCCR) Chemical Biology Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
| | - Naomi Sakai
- Department of Organic Chemistry University of Geneva Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
- National Centre of Competence in Research (NCCR) Chemical Biology Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
| | - Jerome Waser
- National Centre of Competence in Research (NCCR) Chemical Biology Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO BCH 4306 1015 Lausanne Switzerland
| | - Stefan Matile
- Department of Organic Chemistry University of Geneva Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
- National Centre of Competence in Research (NCCR) Chemical Biology Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
| |
Collapse
|
43
|
Day DP, Alsenani NI, Alsimaree AA. Reactivity and Applications of Iodine Monochloride in Synthetic Approaches. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- David P. Day
- São Carlos Institute of Chemistry University of São Paulo 13560-970 São Carlos SP Brazil
| | - Nawaf I. Alsenani
- Department of Chemistry Al Baha University 1988 Al Baha Saudi Arabia
| | - Abdulrahman A. Alsimaree
- Department of Basic Science (Chemistry) College of Science and Humanities Shaqra University Afif Saudi Arabia (KSA
| |
Collapse
|
44
|
Meng B, Shi Q, Meng Y, Chen J, Cao W, Wu X. Asymmetric catalytic alkynylation of thiazolones and azlactones for synthesis of quaternary α-amino acid precursors. Org Biomol Chem 2021; 19:5087-5092. [PMID: 34037046 DOI: 10.1039/d1ob00582k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Asymmetric alkynylation of thiazolones and azlactones with alkynylbenziodoxolones as the electrophilic alkyne source catalyzed by thiourea phosphonium salt is described. By using thiazolones as nucleophiles, the desired alkyne functionalized thiazolones were obtained in 55-89% yields with 31-86% ee. Azlactones gave the desired products in comparable yields with lower enantioselectivities. Ring-opening of the alkynylation products led to α,α-disubstituted α-amino acid derivatives efficiently without loss of enantioselectivity.
Collapse
Affiliation(s)
- Beibei Meng
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Lu, Shanghai 200444, People's Republic of China.
| | - Qian Shi
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Lu, Shanghai 200444, People's Republic of China.
| | - Yuan Meng
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Lu, Shanghai 200444, People's Republic of China.
| | - Jie Chen
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Lu, Shanghai 200444, People's Republic of China.
| | - Weiguo Cao
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Lu, Shanghai 200444, People's Republic of China.
| | - Xiaoyu Wu
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Lu, Shanghai 200444, People's Republic of China.
| |
Collapse
|
45
|
Yoshimura A, Huss CD, Liebl M, Rohde GT, Larson SM, Frahm GB, Luedtke MW, Schumacher TJ, Gardner ZS, Zhdankin VV, Postnikov PS, Yusubov MS, Kitamura T, Saito A. Preparation, Structure, and Reactivity of Pseudocyclic β‐Trifluorosulfonyloxy Vinylbenziodoxolone Derivatives. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100341] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Akira Yoshimura
- Department of Chemistry and Biochemistry University of Minnesota Duluth Minnesota 55812 USA
- Research School of Chemistry and Applied Biomedical Sciences The Tomsk Polytechnic University 634050 Tomsk Russia
- Department of Chemistry and Biochemistry The College of St. Scholastica Duluth Minnesota 55811 USA
| | - Christopher D. Huss
- Department of Chemistry and Biochemistry University of Minnesota Duluth Minnesota 55812 USA
| | - Mackenzie Liebl
- Department of Chemistry and Biochemistry University of Minnesota Duluth Minnesota 55812 USA
| | | | - Scott M. Larson
- Department of Chemistry and Biochemistry University of Minnesota Duluth Minnesota 55812 USA
| | - Gunnar B. Frahm
- Department of Chemistry and Biochemistry University of Minnesota Duluth Minnesota 55812 USA
| | | | - Tanner J. Schumacher
- Department of Chemistry and Biochemistry University of Minnesota Duluth Minnesota 55812 USA
| | - Zachary S. Gardner
- Department of Chemistry and Biochemistry University of Minnesota Duluth Minnesota 55812 USA
| | - Viktor V. Zhdankin
- Department of Chemistry and Biochemistry University of Minnesota Duluth Minnesota 55812 USA
| | - Pavel S. Postnikov
- Research School of Chemistry and Applied Biomedical Sciences The Tomsk Polytechnic University 634050 Tomsk Russia
- Department of Solid-State Engineering University of Chemistry and Technology Prague 16628 Czech Republic
| | - Mekhman S. Yusubov
- Research School of Chemistry and Applied Biomedical Sciences The Tomsk Polytechnic University 634050 Tomsk Russia
| | - Tsugio Kitamura
- Department of Chemistry and Applied Chemistry Saga University, Honjo-machi Saga 840-8502 Japan
| | - Akio Saito
- Division of Applied Chemistry Institute of Engineering Tokyo University of Agriculture and Technology 2-23-16 Naka-cho Koganei Tokyo 184-8588
| |
Collapse
|
46
|
Yusubov MS, Zhdankin VV. Zefirov's reagent and related hypervalent iodine triflates. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Yusubov MS, Zhdankin VV. Zefirov's reagent and related hypervalent iodine triflates. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
48
|
Ceballos J, Grinhagena E, Sangouard G, Heinis C, Waser J. Cys-Cys and Cys-Lys Stapling of Unprotected Peptides Enabled by Hypervalent Iodine Reagents. Angew Chem Int Ed Engl 2021; 60:9022-9031. [PMID: 33450121 PMCID: PMC8048981 DOI: 10.1002/anie.202014511] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/22/2020] [Indexed: 12/31/2022]
Abstract
Easy access to a wide range of structurally diverse stapled peptides is crucial for the development of inhibitors of protein-protein interactions. Herein, we report bis-functional hypervalent iodine reagents for two-component cysteine-cysteine and cysteine-lysine stapling yielding structurally diverse thioalkyne linkers. This stapling method works with unprotected natural amino acid residues and does not require pre-functionalization or metal catalysis. The products are stable to purification and isolation. Post-stapling modification can be accessed via amidation of an activated ester, or via cycloaddition onto the formed thioalkyne group. Increased helicity and binding affinity to MDM2 was obtained for a i,i+7 stapled peptide.
Collapse
Affiliation(s)
- Javier Ceballos
- Laboratory of Catalysis and Organic SynthesisEcole Polytechnique Fédérale de LausanneEPFL SB ISIC LCSO, BCH 14021015LausanneSwitzerland
| | - Elija Grinhagena
- Laboratory of Catalysis and Organic SynthesisEcole Polytechnique Fédérale de LausanneEPFL SB ISIC LCSO, BCH 14021015LausanneSwitzerland
| | - Gontran Sangouard
- Laboratory of Therapeutic Proteins and PeptidesEcole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LPPT, BCH 53051015LausanneSwitzerland
| | - Christian Heinis
- Laboratory of Therapeutic Proteins and PeptidesEcole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LPPT, BCH 53051015LausanneSwitzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic SynthesisEcole Polytechnique Fédérale de LausanneEPFL SB ISIC LCSO, BCH 14021015LausanneSwitzerland
| |
Collapse
|
49
|
Morency M, Iftimie R, Collins SK. Computational Insight into Cu-Catalyzed C sp-S Coupling to Form a Macrocyclic Alkynyl Sulfide. J Org Chem 2021; 86:5120-5128. [PMID: 33729782 DOI: 10.1021/acs.joc.0c03068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Copper-catalyzed Csp-S cross-coupling is known to form rare macrocyclic alkynyl sulfides. Computational studies now suggest a mechanism for the reaction pathway. Upon formation of Cu-S species, subsequent α-addition/elimination at the ethynylic carbon affords the desired macrocycle.
Collapse
Affiliation(s)
- Mathieu Morency
- Département de Chimie, Université de Montréal, Complexe des Sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3 Canada
| | - Radu Iftimie
- Département de Chimie, Université de Montréal, Complexe des Sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3 Canada
| | - Shawn K Collins
- Département de Chimie, Centre for Green Chemistry and Catalysis, Université de Montréal, Complexe des Sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3 Canada
| |
Collapse
|
50
|
Li X, Golz C, Alcarazo M. α-Diazo Sulfonium Triflates: Synthesis, Structure, and Application to the Synthesis of 1-(Dialkylamino)-1,2,3-triazoles. Angew Chem Int Ed Engl 2021; 60:6943-6948. [PMID: 33351262 PMCID: PMC8048477 DOI: 10.1002/anie.202014775] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/13/2020] [Indexed: 01/03/2023]
Abstract
The one-pot synthesis of a series of sulfonium salts containing transferable diazomethyl groups is described, and the structure of these compounds is elucidated by X-ray crystallography. Under photochemical conditions, reaction of these salts with N,N-dialkyl hydrazones affords 1-(dialkylamino)-1,2,3-triazoles via diazomethyl radical addition to the azomethine carbon followed by intramolecular ring closure. The straightforward transformation of the structures thus obtained into mesoionic carbene-metal complexes is also reported and the donor properties of these new ligands characterized.
Collapse
Affiliation(s)
- Xiangdong Li
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstr. 237077GöttingenGermany
| | - Christopher Golz
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstr. 237077GöttingenGermany
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstr. 237077GöttingenGermany
| |
Collapse
|