1
|
Sugaya K. Characterization of cells expressing lipocalin-2 (LCN2) as a reporter. Biochem Cell Biol 2024; 102:342-345. [PMID: 38696838 DOI: 10.1139/bcb-2024-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024] Open
Abstract
Lipocalin-2 (LCN2), an effector molecule of the innate immune system that is small enough to be tagged as a reporter molecule, can be coupled with the ferric ion through a siderophore such as enterobactin (Ent). Mintbody (modification-specific intracellular antibody) can track a posttranslational protein modification in epigenetics. We constructed plasmids expressing the LCN2 hybrid of mintbody to examine the potential of LCN2 as a novel reporter for magnetic resonance imaging (MRI). Cells expressing the LCN2 hybrid of mintbody showed proper expression and localization of the hybrid and responded reasonably to Ent, suggesting their potential for in vivo study by MRI.
Collapse
Affiliation(s)
- Kimihiko Sugaya
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| |
Collapse
|
2
|
Inomata T, Endo S, Ido H, Miyamoto M, Ichikawa H, Sugita R, Ozawa T, Masuda H. Detection of Microorganisms Using Artificial Siderophore-Fe III Complex-Modified Substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2632-2645. [PMID: 38252152 DOI: 10.1021/acs.langmuir.3c03084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Four FeIII complexes of typical artificial siderophore ligands containing catecholate and/or hydroxamate groups of tricatecholate, biscatecholate-monohydroxamate, monocatecholate-bishydroxamate, and trihydroxamate type artificial siderophores (K3[FeIIILC3], K2[FeIIILC2H1], K[FeIIILC1H2], and [FeIIILH3]) were modified on Au substrate surfaces. Their abilities to adsorb microorganisms were investigated using scanning electron microscopy, quartz crystal microbalance, and AC impedance methods. The artificial siderophore-iron complexes modified on Au substrates (FeLC3/Au, FeLC2H1/Au, FeLC1H2/Au, and FeLH3/Au) showed the selective immobilization behavior for various microorganisms, depending on the structural features of the artificial siderophores (the number of catecholate and hydroxamate arms). Their specificities corresponded well with the structural characteristics of natural siderophores released by microorganisms and used for FeIII ion uptake. These findings suggest that they were generated via specific interactions between the artificial siderophore-FeIII complexes and the receptors on microorganism surfaces. Our observations revealed that the FeL/Au systems may be potentially used as effective microbe-capturing probes that can enable rapid and simple detection and identification of various microorganisms.
Collapse
Affiliation(s)
- Tomohiko Inomata
- Department of Life Science and Applied Chemistry, Graduate School of Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Suguru Endo
- Department of Life Science and Applied Chemistry, Graduate School of Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Hiroki Ido
- Department of Life Science and Applied Chemistry, Graduate School of Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Masakazu Miyamoto
- Department of Life Science and Applied Chemistry, Graduate School of Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Hiroki Ichikawa
- Department of Life Science and Applied Chemistry, Graduate School of Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Ririka Sugita
- Department of Life Science and Applied Chemistry, Graduate School of Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Tomohiro Ozawa
- Department of Life Science and Applied Chemistry, Graduate School of Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Hideki Masuda
- Department of Life Science and Applied Chemistry, Graduate School of Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
- Department of Applied Chemistry, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota 470-0392, Japan
| |
Collapse
|
3
|
Cosby AG, Arino T, Bailey TA, Buerger M, Woods JJ, Aguirre Quintana LM, Alvarenga Vasquez JV, Wacker JN, Gaiser AN, Strong RK, Abergel RJ. Siderocalin fusion proteins enable a new 86Y/ 90Y theranostic approach. RSC Chem Biol 2023; 4:587-591. [PMID: 37547455 PMCID: PMC10398355 DOI: 10.1039/d3cb00050h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/02/2023] [Indexed: 08/08/2023] Open
Abstract
The mammalian protein siderocalin binds bacterial siderophores and their iron complexes through cation-π and electrostatic interactions, but also displays high affinity for hydroxypyridinone complexes of trivalent lanthanides and actinides. In order to circumvent synthetic challenges, the use of siderocalin-antibody fusion proteins is explored herein as an alternative targeting approach for precision delivery of trivalent radiometals. We demonstrate the viability of this approach in vivo, using the theranostic pair 90Y (β-, t1/2 = 64 h)/86Y (β+, t1/2 = 14.7 h) in a SKOV-3 xenograft mouse model. Ligand radiolabeling with octadentate hydroxypyridinonate 3,4,3-LI(1,2-HOPO) and subsequent protein binding were achieved at room temperature. The results reported here suggest that the rapid non-covalent binding interaction between siderocalin fusion proteins and the negatively charged Y(iii)-3,4,3-LI(1,2-HOPO) complexes could enable purification-free, cold-kit labeling strategies for the application of therapeutically relevant radiometals in the clinic.
Collapse
Affiliation(s)
- Alexia G Cosby
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Trevor Arino
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- Department of Nuclear Engineering, University of California Berkeley CA 94720 USA
| | - Tyler A Bailey
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- Department of Nuclear Engineering, University of California Berkeley CA 94720 USA
| | - Matthew Buerger
- Division of Basic Sciences, Fred Hutchinson Cancer Center Seattle WA 98109 USA
| | - Joshua J Woods
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | | | | | - Jennifer N Wacker
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Alyssa N Gaiser
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Roland K Strong
- Division of Basic Sciences, Fred Hutchinson Cancer Center Seattle WA 98109 USA
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- Department of Nuclear Engineering, University of California Berkeley CA 94720 USA
| |
Collapse
|
4
|
Klahn P, Zscherp R, Jimidar CC. Advances in the Synthesis of Enterobactin, Artificial Analogues, and Enterobactin-Derived Antimicrobial Drug Conjugates and Imaging Tools for Infection Diagnosis. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1783-0751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AbstractIron is an essential growth factor for bacteria, but although highly abundant in nature, its bioavailability during infection in the human host or the environment is limited. Therefore, bacteria produce and secrete siderophores to ensure their supply of iron. The triscatecholate siderophore enterobactin and its glycosylated derivatives, the salmochelins, play a crucial role for iron acquisition in several bacteria. As these compounds can serve as carrier molecules for the design of antimicrobial siderophore drug conjugates as well as siderophore-derived tool compounds for the detection of infections with bacteria, their synthesis and the design of artificial analogues is of interest. In this review, we give an overview on the synthesis of enterobactin, biomimetic as well as totally artificial analogues, and related drug-conjugates covering up to 12/2021.1 Introduction2 Antibiotic Crisis and Sideromycins as Natural Templates for New Antimicrobial Drugs3 Biosynthesis of Enterobactin, Salmochelins, and Microcins4 Total Synthesis of Enterobactin and Salmochelins5 Chemoenzymatic Semi-synthesis of Salmochelins and Microcin E492m Derivatives6 Synthesis of Biomimetic Enterobactin Derivatives with Natural Tris-lactone Backbone7 Synthesis of Artificial Enterobactin Derivatives without Tris-lactone Backbone8 Conclusions
Collapse
Affiliation(s)
- Philipp Klahn
- Institute of Organic Chemistry, Technische Universität Braunschweig
- Department for Chemistry and Molecular Biology, University of Gothenburg
| | - Robert Zscherp
- Institute of Organic Chemistry, Technische Universität Braunschweig
| | | |
Collapse
|
5
|
Lin Y, Gross ML. Mass Spectrometry-Based Structural Proteomics for Metal Ion/Protein Binding Studies. Biomolecules 2022; 12:135. [PMID: 35053283 PMCID: PMC8773722 DOI: 10.3390/biom12010135] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 01/01/2023] Open
Abstract
Metal ions are critical for the biological and physiological functions of many proteins. Mass spectrometry (MS)-based structural proteomics is an ever-growing field that has been adopted to study protein and metal ion interactions. Native MS offers information on metal binding and its stoichiometry. Footprinting approaches coupled with MS, including hydrogen/deuterium exchange (HDX), "fast photochemical oxidation of proteins" (FPOP) and targeted amino-acid labeling, identify binding sites and regions undergoing conformational changes. MS-based titration methods, including "protein-ligand interactions by mass spectrometry, titration and HD exchange" (PLIMSTEX) and "ligand titration, fast photochemical oxidation of proteins and mass spectrometry" (LITPOMS), afford binding stoichiometry, binding affinity, and binding order. These MS-based structural proteomics approaches, their applications to answer questions regarding metal ion protein interactions, their limitations, and recent and potential improvements are discussed here. This review serves as a demonstration of the capabilities of these tools and as an introduction to wider applications to solve other questions.
Collapse
Affiliation(s)
- Yanchun Lin
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
6
|
Abstract
Iron is an essential element for Escherichia, Salmonella, and Shigella species. The acquisition of sufficient amounts of iron is difficult in many environments, including the intestinal tract, where these bacteria usually reside. Members of these genera have multiple iron transport systems to transport both ferrous and ferric iron. These include transporters for free ferrous iron, ferric iron associated with chelators, and heme. The numbers and types of transport systems in any species reflect the diversity of niches that it can inhabit. Many of the iron transport genes are found on mobile genetic elements or pathogenicity islands, and there is evidence of the spread of the genes among different species and pathotypes. This is notable among the pathogenic members of the genera in which iron transport systems acquired by horizontal gene transfer allow the bacteria to overcome host innate defenses that act to restrict the availability of iron to the pathogen. The need for iron is balanced by the need to avoid iron overload since excess iron is toxic to the cell. Genes for iron transport and metabolism are tightly regulated and respond to environmental cues, including iron availability, oxygen, and temperature. Master regulators, the iron sensor Fur and the Fur-regulated small RNA (sRNA) RyhB, coordinate the expression of iron transport and cellular metabolism genes in response to the availability of iron.
Collapse
|
7
|
Klebba PE, Newton SMC, Six DA, Kumar A, Yang T, Nairn BL, Munger C, Chakravorty S. Iron Acquisition Systems of Gram-negative Bacterial Pathogens Define TonB-Dependent Pathways to Novel Antibiotics. Chem Rev 2021; 121:5193-5239. [PMID: 33724814 PMCID: PMC8687107 DOI: 10.1021/acs.chemrev.0c01005] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Iron is an indispensable metabolic cofactor in both pro- and eukaryotes, which engenders a natural competition for the metal between bacterial pathogens and their human or animal hosts. Bacteria secrete siderophores that extract Fe3+ from tissues, fluids, cells, and proteins; the ligand gated porins of the Gram-negative bacterial outer membrane actively acquire the resulting ferric siderophores, as well as other iron-containing molecules like heme. Conversely, eukaryotic hosts combat bacterial iron scavenging by sequestering Fe3+ in binding proteins and ferritin. The variety of iron uptake systems in Gram-negative bacterial pathogens illustrates a range of chemical and biochemical mechanisms that facilitate microbial pathogenesis. This document attempts to summarize and understand these processes, to guide discovery of immunological or chemical interventions that may thwart infectious disease.
Collapse
Affiliation(s)
- Phillip E Klebba
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Salete M C Newton
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - David A Six
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Ashish Kumar
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Taihao Yang
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Brittany L Nairn
- Department of Biological Sciences, Bethel University, 3900 Bethel Drive, St. Paul, Minnesota 55112, United States
| | - Colton Munger
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Somnath Chakravorty
- Jacobs School of Medicine and Biomedical Sciences, SUNY Buffalo, Buffalo, New York 14203, United States
| |
Collapse
|
8
|
Pallares RM, Carter KP, Faulkner D, Abergel RJ. Macromolecular crystallography for f-element complex characterization. Methods Enzymol 2021; 651:139-155. [PMID: 33888202 DOI: 10.1016/bs.mie.2021.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Single crystal X-ray diffraction is a technique that measures interatomic distances with atomic resolution. Utilizing this technique for metal complexes featuring lanthanide and actinide elements is complicated by the scarcity and radioactivity of many of the metals of the f-block, as sub-milligram samples are difficult to crystallize for small molecule X-ray diffraction experiments. In this chapter, we present a protocol developed in our group that circumvents these challenges by exploiting macromolecular crystallography, wherein a protein with a large and well-characterized binding calyx is used as a scaffold to crystallize small-molecule metal complexes. Highlighting several examples, we identify the structural and chemical information that can be acquired by this method, and delineate the benefits of directing crystal growth with proteins, such as decreasing the amount of metal used to the sub-microgram scale. Moreover, since protein recognition depends on the nature of the metal-chelator bonds, subtle effects in the lanthanide and actinide coordination chemistry, such as metal-ligand covalency, can be qualitatively assessed.
Collapse
Affiliation(s)
- Roger M Pallares
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Korey P Carter
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - David Faulkner
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States; Department of Nuclear Engineering, University of California, Berkeley, CA, United States.
| |
Collapse
|
9
|
Samsonov SA, Zsila F, Maszota-Zieleniak M. Acute phase α 1-acid glycoprotein as a siderophore-capturing component of the human plasma: A molecular modeling study. J Mol Graph Model 2021; 105:107861. [PMID: 33640788 DOI: 10.1016/j.jmgm.2021.107861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 11/26/2022]
Abstract
Siderophores are ferric ion-specific organic compounds that are used by bacteria and fungi to secure their iron supply when infecting target organisms. There are a few proteins in the human body, named siderocalins, which bind these important virulence factors and so starve microorganisms of iron. In this study, we analyzed in silico if serum α1-acid glycoprotein (AAG), the major acute phase lipocalin component of the human plasma, could functionally belong to this group. The real biological function of AAG is elusive and its concentration substantially increases in response to pathological stimuli, including bacterial infections. We computationally evaluated the potential binding of nine microbial siderophores into the β-barrel cavity of AAG and compared the results with the corresponding experimental data reported for siderophore-neutrophil gelatinase-associated lipocalin complexes. According to the results, petrobactin and Fe-BisHaCam are putative candidates to be recognized by this protein. It is proposed that AAG may function as a siderophore capturing component of the innate immune system being able to neutralize bacterial iron chelators not recognized by other siderocalins.
Collapse
Affiliation(s)
- Sergey A Samsonov
- Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Ferenc Zsila
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, H-1117 Budapest, Magyar tudósok körútja 2, Hungary.
| | | |
Collapse
|
10
|
Li D, Li H, Bauer C, Hu Y, Lewis JR, Xu A, Levinger I, Wang Y. Lipocalin-2 Variants and Their Relationship With Cardio-Renal Risk Factors. Front Endocrinol (Lausanne) 2021; 12:781763. [PMID: 34938273 PMCID: PMC8685543 DOI: 10.3389/fendo.2021.781763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/09/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES To investigate the serum, plasma and urine levels of lipocalin-2 (LCN2) variants in healthy humans and their associations with risk factors for cardiometabolic (CMD) and chronic kidney (CKD) diseases. METHODS Fifty-nine males and 41 females participated in the study. Blood and urine were collected following an overnight fasting. LCN2 variants were analyzed using validated in-house ELISA kits. Heart rate, blood pressure, lipids profile, glucose, adiponectin, high-sensitivity C-reactive protein (hsCRP), creatinine, cystatin C, and biomarkers for kidney function were assessed. RESULTS The levels of hLcn2, C87A and R81E in serum and urine, but not plasma, were significantly higher in men than women. Increased levels of LCN2 variants, as well as their relative ratios, in serum and plasma were positively associated with body mass index, blood pressure, triglyceride and hsCRP (P<0.05). No significant correlations were found between these measures and hLcn2, C87A or R81E in urine. However, LCN2 variants in urine, but not plasma or serum, were correlated with biomarkers of kidney function (P<0.05). CONCLUSIONS Both the serum and plasma levels of LCN2 variants, as well as their ratios are associated with increased cardiometabolic risk, whereas those in urine are correlated with renal dysfunction. LCN2 variants represent promising biomarkers for CMD and CKD.
Collapse
Affiliation(s)
- Dahui Li
- The State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Haoyun Li
- The State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Carlie Bauer
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Yue Hu
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Joshua R. Lewis
- Medical School, University of Western Australia, Perth, WA, Australia
- Institute for Nutrition Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Centre for Kidney Research, Children’s Hospital at Westmead, School of Public Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Aimin Xu
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Itamar Levinger
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science, Victoria University, University of Melbourne, Western Health, St. Albans, VIC, Australia
| | - Yu Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- *Correspondence: Yu Wang,
| |
Collapse
|
11
|
Guo C, Steinberg LK, Henderson JP, Gross ML. Organic Solvents for Enhanced Proteolysis of Stable Proteins for Hydrogen-Deuterium Exchange Mass Spectrometry. Anal Chem 2020; 92:11553-11557. [PMID: 32867496 DOI: 10.1021/acs.analchem.0c02194] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein digestion is a key challenge in mass spectrometry (MS)-based structural proteomics. Although using hydrogen-deuterium exchange kinetics with MS (HDX-MS) to interrogate the high-order structure of proteins is now established, it can be challenging for β-barrel proteins, which are important in cellular transport. These proteins contain a continuous chain of H-bonds that impart stability, causing difficulty in digestion for bottom-up measurements. To overcome this impediment, we tested organic solvents as denaturants during on-line pepsin digestion of soluble β-barrel proteins. We selected green fluorescent protein (GFP), siderocalin (Scn), and retinol-binding protein 4 (RBP4) as model proteins and screened six different polar-aprotic and polar-protic solvent combinations to disrupt the H-bonds and hydrophobic interactions holding together the β-sheets. The use of organic solvents improves digestion, generating more peptides from the rigid β-barrel regions, without compromising the ability to predict the retinol binding site on RBP4 when adopting this proteolysis with HDX.
Collapse
Affiliation(s)
- Chunyang Guo
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Lindsey K Steinberg
- Division of Infectious Diseases, Department of Medicine, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Jeffrey P Henderson
- Division of Infectious Diseases, Department of Medicine, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Michael L Gross
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| |
Collapse
|
12
|
Fu M, Su H, Su Z, Yin Z, Jin J, Wang L, Zhang Q, Xu X. Transcriptome analysis of Corynebacterium pseudotuberculosis-infected spleen of dairy goats. Microb Pathog 2020; 147:104370. [PMID: 32653437 DOI: 10.1016/j.micpath.2020.104370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
Caseous lymphadenitis is a chronic disease of goats caused by Corynebacterium pseudotuberculosis (C.pseudotuberculosis) which causes great harm to the dairy goats industry. In order to obtain detailed information about the pathogenesis and host immune response in C.pseudotuberculosis-infected goats, in this study, the gene expression difference of spleen tissue after infection with C.pseudotuberculosis was analyzed by high-throughput sequencing. Transcripts obtained over 412 700 462 clean reads after reassembly were 21 343 genes detected, of which 14 720 were known genes and 7623 new genes were predicted. There were 448 up-regulated and 519 down-regulated differentially expressed genes (DEGs). Gene Ontology (GO) analysis indicated that all of the DEGs were annotated into biological process, cellular component and molecular function. Most of these unigenes are annotated in cellular processes, the cell and binding. KEGG analysis of the DEGs showed that a total of 8733 DEGs unigenes were annotated into 459 pathways classified into 6 main categories. Most of these annotated unigenes were related to immune system response to the infectious diseases pathways. In addition, 14 DEGs were verified by quantitative real-time PCR. As the first, in vivo, RNAseq analysis of dairy goats and C.pseudotuberculosis infection, this study provides knowledge about the transcriptomics of spleen in C.pseudotuberculosis-infected goats, from which a complex molecular pathways and immune response mechanism are involved in C.pseudotuberculosis infection.
Collapse
Affiliation(s)
- Mingzhe Fu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hong Su
- College of Animal Medicine, Xinjiang Agricultural University, Urumqi, 830000, China
| | - Zhanqiang Su
- College of Animal Medicine, Xinjiang Agricultural University, Urumqi, 830000, China
| | - Zheng Yin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jian Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lixiang Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qi Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
13
|
Guo C, Steinberg LK, Cheng M, Song JH, Henderson JP, Gross ML. Site-Specific Siderocalin Binding to Ferric and Ferric-Free Enterobactin As Revealed by Mass Spectrometry. ACS Chem Biol 2020; 15:1154-1160. [PMID: 31869199 PMCID: PMC7236765 DOI: 10.1021/acschembio.9b00741] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/23/2019] [Indexed: 11/29/2022]
Abstract
Both host and pathogen competitively manipulate coordination environments during bacterial infections. Human cells release the innate immune protein siderocalin (Scn, also known as lipocalin-2/Lcn2, neutrophil gelatinase-associated lipocalin/NGAL) that can inhibit bacterial growth by sequestering iron in a ferric complex with enterobactin (Ent), the ubiquitous Escherichia coli siderophore. Pathogenic E. coli use the virulence-associated esterase IroE to linearize the Ent cyclic trilactone to linear enterobactin (lin-Ent). We characterized lin-Ent interactions with Scn by using native mass spectrometry (MS) with hydrogen-deuterium exchange (HDX) and Lys/Arg specific covalent footprinting. These approaches support 1:1 binding of both Fe(III)-lin-Ent to Scn and iron-free lin-Ent to Scn. Both ferric and nonferric lin-Ent localize to all three pockets of the Scn calyx, consistent with Scn capture of lin-Ent both before and after Fe(III) chelation. These findings raise the possibility that Scn neutralizes both siderophores and siderophore-bound iron during infections. This integrated, MS-based approach circumvents the limitations that frustrate traditional structural approaches to examining Scn interactions with enterobactin-based ligands.
Collapse
Affiliation(s)
- Chunyang Guo
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Lindsey K. Steinberg
- Division
of Infectious Diseases, Department of Medicine, the Center for Women’s
Infectious Disease Research, Washington
University School of Medicine, St. Louis, Missouri 63110, United States
| | - Ming Cheng
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Jong Hee Song
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Jeffrey P. Henderson
- Division
of Infectious Diseases, Department of Medicine, the Center for Women’s
Infectious Disease Research, Washington
University School of Medicine, St. Louis, Missouri 63110, United States
| | - Michael L. Gross
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| |
Collapse
|
14
|
Zsila F, Beke-Somfai T. Human host-defense peptide LL-37 targets stealth siderophores. Biochem Biophys Res Commun 2020; 526:780-785. [PMID: 32265033 DOI: 10.1016/j.bbrc.2020.03.162] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 03/28/2020] [Indexed: 02/02/2023]
Abstract
A growing number of evidence shows that human-associated microbiota is an important contributor in health and disease. However, much of the complexity of host-microbiota interaction remains to be elucidated both at cellular and molecular levels. Siderophores are chemically diverse, ferric-specific chelators synthesized and secreted by microbes to secure their iron acquisition. The host defense peptide LL-37 is ubiquitously produced at epithelial surfaces modulating microbial communities and suppressing pathogenic strains. The present work demonstrates that LL-37 binds tightly siderocalin-resistant stealth siderophores which are important contributors to the virulence of several pathogens. As indicated by circular dichroism spectroscopic experiments, addition of aerobactin and rhizoferrin increases the membrane active α-helical conformation of the partially folded peptide. The cationic nature of LL-37 (+6 net charge at pH 7.4) and the multiple carboxylate groups present in siderophores refer to the dominant contribution of electrostatic interactions in the stabilization of peptide-chelator adducts. It is proposed that aside siderocalin proteins, LL-37 may be a complementary, less specific component of the siderophore scavenging repertoire of the innate immune system.
Collapse
Affiliation(s)
- Ferenc Zsila
- Biomolecular Self-Assembly Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, P.O. Box 286, H-1519, Budapest, Hungary.
| | - Tamás Beke-Somfai
- Biomolecular Self-Assembly Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, P.O. Box 286, H-1519, Budapest, Hungary
| |
Collapse
|
15
|
Page MGP. The Role of Iron and Siderophores in Infection, and the Development of Siderophore Antibiotics. Clin Infect Dis 2019; 69:S529-S537. [PMID: 31724044 PMCID: PMC6853763 DOI: 10.1093/cid/ciz825] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Iron is an essential nutrient for bacterial growth, replication, and metabolism. Humans store iron bound to various proteins such as hemoglobin, haptoglobin, transferrin, ferritin, and lactoferrin, limiting the availability of free iron for pathogenic bacteria. However, bacteria have developed various mechanisms to sequester or scavenge iron from the host environment. Iron can be taken up by means of active transport systems that consist of bacterial small molecule siderophores, outer membrane siderophore receptors, the TonB-ExbBD energy-transducing proteins coupling the outer and the inner membranes, and inner membrane transporters. Some bacteria also express outer membrane receptors for iron-binding proteins of the host and extract iron directly from these for uptake. Ultimately, iron is acquired and transported into the bacterial cytoplasm. The siderophores are small molecules produced and released by nearly all bacterial species and are classified according to the chemical nature of their iron-chelating group (ie, catechol, hydroxamate, α-hydroxyl-carboxylate, or mixed types). Siderophore-conjugated antibiotics that exploit such iron-transport systems are under development for the treatment of infections caused by gram-negative bacteria. Despite demonstrating high in vitro potency against pathogenic multidrug-resistant bacteria, further development of several candidates had stopped due to apparent adaptive resistance during exposure, lack of consistent in vivo efficacy, or emergence of side effects in the host. However, cefiderocol, with an optimized structure, has advanced and has been investigated in phase 1 to 3 clinical trials. This article discusses the mechanisms implicated in iron uptake and the challenges associated with the design and utilization of siderophore-mimicking antibiotics.
Collapse
Affiliation(s)
- Malcom G P Page
- Life Sciences and Chemistry, Jacobs University, Bremen gGmbh, Bremen, Germany
| |
Collapse
|
16
|
Probst S, Scharner B, McErlean R, Lee WK, Thévenod F. Inverse Regulation of Lipocalin-2/24p3 Receptor/SLC22A17 and Lipocalin-2 Expression by Tonicity, NFAT5/TonEBP and Arginine Vasopressin in Mouse Cortical Collecting Duct Cells mCCD(cl.1): Implications for Osmotolerance. Int J Mol Sci 2019; 20:ijms20215398. [PMID: 31671521 PMCID: PMC6862280 DOI: 10.3390/ijms20215398] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/12/2019] [Accepted: 10/22/2019] [Indexed: 12/23/2022] Open
Abstract
The rodent collecting duct (CD) expresses a 24p3/NGAL/lipocalin-2 (LCN2) receptor (SLC22A17) apically, possibly to mediate high-affinity reabsorption of filtered proteins by endocytosis, although its functions remain uncertain. Recently, we showed that hyperosmolarity/-tonicity upregulates SLC22A17 in cultured mouse inner-medullary CD cells, whereas activation of toll-like receptor 4 (TLR4), via bacterial lipopolysaccharides (LPS), downregulates SLC22A17. This is similar to the upregulation of Aqp2 by hyperosmolarity/-tonicity and arginine vasopressin (AVP), and downregulation by TLR4 signaling, which occur via the transcription factors NFAT5 (TonEBP or OREBP), cAMP-responsive element binding protein (CREB), and nuclear factor-kappa B, respectively. The aim of the study was to determine the effects of osmolarity/tonicity and AVP, and their associated signaling pathways, on the expression of SLC22A17 and its ligand, LCN2, in the mouse (m) cortical collecting duct cell line mCCD(cl.1). Normosmolarity/-tonicity corresponded to 300 mosmol/L, whereas the addition of 50–100 mmol/L NaCl for up to 72 h induced hyperosmolarity/-tonicity (400–500 mosmol/L). RT-PCR, qPCR, immunoblotting and immunofluorescence microscopy detected Slc22a17/SLC22A17 and Lcn2/LCN2 expression. RNAi silenced Nfat5, and the pharmacological agent 666-15 blocked CREB. Activation of TLR4 was induced with LPS. Similar to Aqp2, hyperosmotic/-tonic media and AVP upregulated Slc22a17/SLC22A17, via activation of NFAT5 and CREB, respectively, and LPS/TLR4 signaling downregulated Slc22a17/SLC22A17. Conversely, though NFAT5 mediated the hyperosmolarity/-tonicity induced downregulation of Lcn2/LCN2 expression, AVP reduced Lcn2/LCN2 expression and predominantly apical LCN2 secretion, evoked by LPS, through a posttranslational mode of action that was independent of CREB signaling. In conclusion, the hyperosmotic/-tonic upregulation of SLC22A17 in mCCD(cl.1) cells, via NFAT5, and by AVP, via CREB, suggests that SLC22A17 contributes to adaptive osmotolerance, whereas LCN2 downregulation could counteract increased proliferation and permanent damage of osmotically stressed cells.
Collapse
Affiliation(s)
- Stephanie Probst
- Department of Physiology, Pathophysiology & Toxicology and ZBAF (Centre for Biomedical Education and Research), Faculty of Health, School of Medicine, Witten/Herdecke University, Stockumer Str 12 (Thyssenhaus), D-58453 Witten, Germany.
| | - Bettina Scharner
- Department of Physiology, Pathophysiology & Toxicology and ZBAF (Centre for Biomedical Education and Research), Faculty of Health, School of Medicine, Witten/Herdecke University, Stockumer Str 12 (Thyssenhaus), D-58453 Witten, Germany.
| | - Ruairi McErlean
- Department of Physiology, Pathophysiology & Toxicology and ZBAF (Centre for Biomedical Education and Research), Faculty of Health, School of Medicine, Witten/Herdecke University, Stockumer Str 12 (Thyssenhaus), D-58453 Witten, Germany.
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Oxford Rd, Manchester M13 9PL, UK.
| | - Wing-Kee Lee
- Department of Physiology, Pathophysiology & Toxicology and ZBAF (Centre for Biomedical Education and Research), Faculty of Health, School of Medicine, Witten/Herdecke University, Stockumer Str 12 (Thyssenhaus), D-58453 Witten, Germany.
| | - Frank Thévenod
- Department of Physiology, Pathophysiology & Toxicology and ZBAF (Centre for Biomedical Education and Research), Faculty of Health, School of Medicine, Witten/Herdecke University, Stockumer Str 12 (Thyssenhaus), D-58453 Witten, Germany.
| |
Collapse
|
17
|
Cotruvo JA. The Chemistry of Lanthanides in Biology: Recent Discoveries, Emerging Principles, and Technological Applications. ACS CENTRAL SCIENCE 2019; 5:1496-1506. [PMID: 31572776 PMCID: PMC6764073 DOI: 10.1021/acscentsci.9b00642] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Indexed: 05/18/2023]
Abstract
The essential biological role of rare earth elements lay hidden until the discovery in 2011 that lanthanides are specifically incorporated into a bacterial methanol dehydrogenase. Only recently has this observation gone from a curiosity to a major research area, with the appreciation for the widespread nature of lanthanide-utilizing organisms in the environment and the discovery of other lanthanide-binding proteins and systems for selective uptake. While seemingly exotic at first glance, biological utilization of lanthanides is very logical from a chemical perspective. The early lanthanides (La, Ce, Pr, Nd) primarily used by biology are abundant in the environment, perform similar chemistry to other biologically useful metals and do so more efficiently due to higher Lewis acidity, and possess sufficiently distinct coordination chemistry to allow for selective uptake, trafficking, and incorporation into enzymes. Indeed, recent advances in the field illustrate clear analogies with the biological coordination chemistry of other metals, particularly CaII and FeIII, but with unique twists-including cooperative metal binding to magnify the effects of small ionic radius differences-enabling selectivity. This Outlook summarizes the recent developments in this young but rapidly expanding field and looks forward to potential future discoveries, emphasizing continuity with principles of bioinorganic chemistry established by studies of other metals. We also highlight how a more thorough understanding of the central chemical question-selective lanthanide recognition in biology-may impact the challenging problems of sensing, capture, recycling, and separations of rare earths.
Collapse
Affiliation(s)
- Joseph A. Cotruvo
- Department of Chemistry, The Pennsylvania State
University, University Park, Pennsylvania 16802, United
States
| |
Collapse
|
18
|
Parsing the functional specificity of Siderocalin/Lipocalin 2/NGAL for siderophores and related small-molecule ligands. JOURNAL OF STRUCTURAL BIOLOGY-X 2019; 2:100008. [PMID: 32647813 PMCID: PMC7337064 DOI: 10.1016/j.yjsbx.2019.100008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/12/2022]
Abstract
Ligand recognition by antibacterial Siderocalin controls the competition for iron during infection. We determined nine crystal structures of Siderocalin mutants with ligands. We determined three candidate ligands did not bind. We determined the crystal structure of SBP YfiY. Multiplexed specificity of Siderocalin was determined.
Siderocalin/Lipocalin 2/Neutrophil Gelatinase Associated Lipocalin/24p3 is an innate immune system protein with bacteriostatic activity, acting by tightly binding and sequestering diverse catecholate and mixed-type ferric siderophores from enteric bacteria and mycobacteria. Bacterial virulence achieved through siderophore modifications, or utilization of alternate siderophores, can be explained by evasion of Siderocalin binding. Siderocalin has also been implicated in a wide variety of disease processes, though often in seemingly contradictory ways, and has been proposed to bind to a broader array of ligands beyond siderophores. Using structural, directed mutational, and binding studies, we have sought to rigorously test, and fully elucidate, the Siderocalin recognition mechanism. Several proposed ligands fail to meet rigorous binding criteria, including the bacterial siderophore pyochelin, the iron-chelating catecholamine hormone norepinephrine, and the bacterial second messenger cyclic diguanylate monophosphate. While possessing a remarkably rigid structure, in principle simplifying analyses of ligand recognition, understanding Scn recognition is complicated by the observed conformational and stoichiometric plasticity, and instability, of its bona fide siderophore ligands. Since the role of Siderocalin at the early host/pathogen interface is to compete for bacterial ferric siderophores, we also analyzed how bacterial siderophore binding proteins and enzymes alternately recognize siderophores that efficiently bind to, or evade, Siderocalin sequestration – including determining the crystal structure of Bacillus cereus YfiY bound to schizokinen. These studies combine to refine the potential physiological functions of Siderocalin by defining its multiplexed recognition mechanism.
Collapse
Key Words
- ABC, ATP‐binding cassette
- AEB, aerobactin
- AU, crystallographic asymmetric unit
- Antimicrobial responses
- BOCT, brain-type organic cation receptor
- Bacterial substrate binding proteins
- CAM, catechol
- CMB, carboxymycobactin
- DHBA, dihydroxybenzoic acid
- ENT, enterobactin or enterochelin
- FQ, fluorescence quenching
- Ferric enterobactin/enterochelin
- HOPO, hydroxypyridinone
- NE, norepinephrine
- NGAL, Neutrophil Gelatinase Associated Lipocalin
- PBP, bacterial periplasmic binding protein
- PCH, pyochelin
- PDB, Research Collaboratory for Structural Biology Protein Databank
- PVD, pyoverdine
- SBP, bacterial membrane-associated, substrate-binding protein
- SCH, schizokinen
- Scn, Siderocalin
- X-ray crystallography
- c-di-GMP, cyclic diguanylate monophosphate
Collapse
|
19
|
Channels, transporters and receptors for cadmium and cadmium complexes in eukaryotic cells: myths and facts. Biometals 2019; 32:469-489. [DOI: 10.1007/s10534-019-00176-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 12/21/2022]
|
20
|
An engineered lipocalin that tightly complexes the plant poison colchicine for use as antidote and in bioanalytical applications. Biol Chem 2018; 400:351-366. [DOI: 10.1515/hsz-2018-0342] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 11/14/2018] [Indexed: 02/07/2023]
Abstract
Abstract
Colchicine is a toxic alkaloid prevalent in autumn crocus (Colchicum autumnale) that binds to tubulin and inhibits polymerization of microtubules. Using combinatorial and rational protein design, we have developed an artificial binding protein based on the human lipocalin 2 that binds colchicine with a dissociation constant of 120 pm, i.e. 10000-fold stronger than tubulin. Crystallographic analysis of the engineered lipocalin, dubbed Colchicalin, revealed major structural changes in the flexible loop region that forms the ligand pocket at the open end of the eight-stranded β-barrel, resulting in a lid-like structure over the deeply buried colchicine. A cis-peptide bond between residues Phe71 and Pro72 in loop #2 constitutes a peculiar feature and allows intimate contact with the tricyclic ligand. Using directed evolution, we achieved an extraordinary dissociation half-life of more than 9 h for the Colchicalin-colchicine complex. Together with the chemical robustness of colchicine and availability of activated derivatives, this also opens applications as a general-purpose affinity reagent, including facile quantification of colchicine in biological samples. Given that engineered lipocalins, also known as Anticalin® proteins, represent a class of clinically validated biopharmaceuticals, Colchicalin may offer a therapeutic antidote to scavenge colchicine and reverse its poisoning effect in situations of acute intoxication.
Collapse
|
21
|
Betten R, Scharner B, Probst S, Edemir B, Wolff NA, Langelueddecke C, Lee WK, Thévenod F. Tonicity inversely modulates lipocalin-2 (Lcn2/24p3/NGAL) receptor (SLC22A17) and Lcn2 expression via Wnt/β-catenin signaling in renal inner medullary collecting duct cells: implications for cell fate and bacterial infection. Cell Commun Signal 2018; 16:74. [PMID: 30404645 PMCID: PMC6223074 DOI: 10.1186/s12964-018-0285-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 10/18/2018] [Indexed: 02/06/2023] Open
Abstract
Background We have previously evidenced apical expression of the 24p3/NGAL/lipocalin-2 receptor (Lcn2-R; SLC22A17) in inner medullary collecting duct (IMCD) cells, which are present in vivo in a hyperosmotic/-tonic environment that activates canonical Wnt/β-catenin signaling. The localization of Lcn2-R in the inner medulla is intriguing considering local bacterial infections trigger toll-like receptor-4 (TLR-4)-mediated secretion of the bacteriostatic Fe3+-free (apo-)Lcn2. Aim To determine the effects of osmolarity/tonicity changes, Wnt/β-catenin and TLR-4 activation on Lcn2-R and Lcn2 expression and cell viability in rat primary IMCD and mouse (m)IMCD3 cells. Methods Normosmolarity/-tonicity was 300 mosmol/l whereas hyperosmolarity/-tonicity was induced by adding 100 mmol/l NaCl + 100 mmol/l urea (600 mosmol/l, 1-7 days). Lcn2-R and Lcn2 expression were determined by qPCR, immunoblotting, flow cytometry and immunofluorescence microscopy. β-catenin was silenced by RNAi. Cell viability/death was determined with MTT and LDH release assays. TLR-4 was activated by bacterial lipopolysaccharides (LPS). Results Hyperosmotic/-tonic media upregulated Lcn2-R by ~4-fold and decreased Lcn2 expression/secretion, along with Wnt/β-catenin activation, in IMCD cells. These effects of hyperosmotic/-tonic media on Lcn2-R/Lcn2 expression were reverted by normosmolarity/-tonicity, β-catenin silencing and/or LPS. Exposure of cells with endogenous or stably overexpressing Lcn2-R to apo-Lcn2 or LPS decreased cell viability. Conclusions Lcn2-R upregulation and Lcn2 downregulation via Wnt/β-catenin may promote adaptive osmotolerant survival of IMCD cells in response to hyperosmolarity/-tonicity whereas Lcn2 upregulation and Lcn2-R downregulation via TLR-4 and/or normosmolarity/-tonicity may protect IMCD cells against bacterial infections and prevent autocrine death induction by Lcn2. Electronic supplementary material The online version of this article (10.1186/s12964-018-0285-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- R Betten
- Department of Physiology, Pathophysiology & Toxicology and ZBAF (Centre for Biomedical Education and Research), Faculty of Health, School of Medicine, Witten/Herdecke University, Stockumer Str 12 (Thyssenhaus), D-58453, Witten, Germany
| | - B Scharner
- Department of Physiology, Pathophysiology & Toxicology and ZBAF (Centre for Biomedical Education and Research), Faculty of Health, School of Medicine, Witten/Herdecke University, Stockumer Str 12 (Thyssenhaus), D-58453, Witten, Germany
| | - S Probst
- Department of Physiology, Pathophysiology & Toxicology and ZBAF (Centre for Biomedical Education and Research), Faculty of Health, School of Medicine, Witten/Herdecke University, Stockumer Str 12 (Thyssenhaus), D-58453, Witten, Germany
| | - B Edemir
- Department of Medicine, Hematology and Oncology, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - N A Wolff
- Department of Physiology, Pathophysiology & Toxicology and ZBAF (Centre for Biomedical Education and Research), Faculty of Health, School of Medicine, Witten/Herdecke University, Stockumer Str 12 (Thyssenhaus), D-58453, Witten, Germany
| | - C Langelueddecke
- Department of Physiology, Pathophysiology & Toxicology and ZBAF (Centre for Biomedical Education and Research), Faculty of Health, School of Medicine, Witten/Herdecke University, Stockumer Str 12 (Thyssenhaus), D-58453, Witten, Germany
| | - W-K Lee
- Department of Physiology, Pathophysiology & Toxicology and ZBAF (Centre for Biomedical Education and Research), Faculty of Health, School of Medicine, Witten/Herdecke University, Stockumer Str 12 (Thyssenhaus), D-58453, Witten, Germany
| | - F Thévenod
- Department of Physiology, Pathophysiology & Toxicology and ZBAF (Centre for Biomedical Education and Research), Faculty of Health, School of Medicine, Witten/Herdecke University, Stockumer Str 12 (Thyssenhaus), D-58453, Witten, Germany.
| |
Collapse
|
22
|
Dauner M, Eichinger A, Lücking G, Scherer S, Skerra A. Neuprogrammierung von humanem Siderocalin zur Neutralisierung von Petrobactin, dem essenziellen Eisenfänger des Milzbrand-Bazillus. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Martin Dauner
- Lehrstuhl für Biologische Chemie; Technische Universität München; Emil-Erlenmeyer-Forum 5 85354 Freising Deutschland
| | - Andreas Eichinger
- Lehrstuhl für Biologische Chemie; Technische Universität München; Emil-Erlenmeyer-Forum 5 85354 Freising Deutschland
| | - Genia Lücking
- Lehrstuhl für Mikrobielle Ökologie; Technische Universität München; Weihenstephaner Berg 3 85354 Freising Deutschland
| | - Siegfried Scherer
- Lehrstuhl für Mikrobielle Ökologie; Technische Universität München; Weihenstephaner Berg 3 85354 Freising Deutschland
| | - Arne Skerra
- Lehrstuhl für Biologische Chemie; Technische Universität München; Emil-Erlenmeyer-Forum 5 85354 Freising Deutschland
| |
Collapse
|
23
|
Wilde EJ, Blagova EV, Sanderson TJ, Raines DJ, Thomas RP, Routledge A, Duhme-Klair AK, Wilson KS. Mimicking salmochelin S1 and the interactions of its Fe(III) complex with periplasmic iron siderophore binding proteins CeuE and VctP. J Inorg Biochem 2018; 190:75-84. [PMID: 30384009 DOI: 10.1016/j.jinorgbio.2018.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 12/16/2022]
Abstract
A mimic of the tetradentate stealth siderophore salmochelin S1, was synthesised, characterised and shown to form Fe(III) complexes with ligand-to-metal ratios of 1:1 and 3:2. Circular dichroism spectroscopy confirmed that the periplasmic binding proteins CeuE and VctP of Campylobacter jejuni and Vibrio cholerae, respectively, bind the Fe(III) complex of the salmochelin mimic by preferentially selecting Λ-configured Fe(III) complexes. Intrinsic fluorescence quenching studies revealed that VctP binds Fe(III) complexes of the mimic and structurally-related catecholate ligands, such as enterobactin, bis(2, 3-dihydroxybenzoyl-l-serine) and bis(2, 3-dihydroxybenzoyl)-1, 5-pentanediamine with higher affinity than does CeuE. Both CeuE and VctP display a clear preference for the tetradentate bis(catecholates) over the tris(catecholate) siderophore enterobactin. These findings are consistent with reports that V. cholerae and C. jejuni utilise the enterobactin hydrolysis product bis(2, 3-dihydroxybenzoyl)-O-seryl serine for the acquisition of Fe(III) and suggest that the role of salmochelin S1 in the iron uptake of enteric pathogens merits further investigation.
Collapse
Affiliation(s)
- Ellis J Wilde
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, UK; Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Elena V Blagova
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Thomas J Sanderson
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Daniel J Raines
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Ross P Thomas
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Anne Routledge
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | | | - Keith S Wilson
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| |
Collapse
|
24
|
Dauner M, Eichinger A, Lücking G, Scherer S, Skerra A. Reprogramming Human Siderocalin To Neutralize Petrobactin, the Essential Iron Scavenger of Anthrax Bacillus. Angew Chem Int Ed Engl 2018; 57:14619-14623. [DOI: 10.1002/anie.201807442] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Martin Dauner
- Lehrstuhl für Biologische Chemie; Technische Universität München; Emil-Erlenmeyer-Forum 5 85354 Freising Germany
| | - Andreas Eichinger
- Lehrstuhl für Biologische Chemie; Technische Universität München; Emil-Erlenmeyer-Forum 5 85354 Freising Germany
| | - Genia Lücking
- Lehrstuhl für Mikrobielle Ökologie; Technische Universität München; Weihenstephaner Berg 3 85354 Freising Germany
| | - Siegfried Scherer
- Lehrstuhl für Mikrobielle Ökologie; Technische Universität München; Weihenstephaner Berg 3 85354 Freising Germany
| | - Arne Skerra
- Lehrstuhl für Biologische Chemie; Technische Universität München; Emil-Erlenmeyer-Forum 5 85354 Freising Germany
| |
Collapse
|
25
|
Bobrov AG, Kirillina O, Fosso MY, Fetherston JD, Miller MC, VanCleave TT, Burlison JA, Arnold WK, Lawrenz MB, Garneau-Tsodikova S, Perry RD. Zinc transporters YbtX and ZnuABC are required for the virulence of Yersinia pestis in bubonic and pneumonic plague in mice. Metallomics 2018; 9:757-772. [PMID: 28540946 DOI: 10.1039/c7mt00126f] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A number of bacterial pathogens require the ZnuABC Zinc (Zn2+) transporter and/or a second Zn2+ transport system to overcome Zn2+ sequestration by mammalian hosts. Previously we have shown that in addition to ZnuABC, Yersinia pestis possesses a second Zn2+ transporter that involves components of the yersiniabactin (Ybt), siderophore-dependent iron transport system. Synthesis of the Ybt siderophore and YbtX, a member of the major facilitator superfamily, are both critical components of the second Zn2+ transport system. Here we demonstrate that a ybtX znu double mutant is essentially avirulent in mouse models of bubonic and pneumonic plague while a ybtX mutant retains high virulence in both plague models. While sequestration of host Zn is a key nutritional immunity factor, excess Zn appears to have a significant antimicrobial role in controlling intracellular bacterial survival. Here, we demonstrate that ZntA, a Zn2+ exporter, plays a role in resistance to Zn toxicity in vitro, but that a zntA zur double mutant retains high virulence in both pneumonic and bubonic plague models and survival in macrophages. We also confirm that Ybt does not directly bind Zn2+in vitro under the conditions tested. However, we detect a significant increase in Zn2+-binding ability of filtered supernatants from a Ybt+ strain compared to those from a strain unable to produce the siderophore, supporting our previously published data that Ybt biosynthetic genes are involved in the production of a secreted Zn-binding molecule (zincophore). Our data suggest that Ybt or a modified Ybt participate in or promote Zn-binding activity in culture supernatants and is involved in Zn acquisition in Y. pestis.
Collapse
Affiliation(s)
- Alexander G Bobrov
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Zhang W, Li X, Hua F, Chen W, Wang W, Chu GX, Bao GH. Interaction between Ester-Type Tea Catechins and Neutrophil Gelatinase-Associated Lipocalin: Inhibitory Mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1147-1156. [PMID: 29355013 DOI: 10.1021/acs.jafc.7b05399] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Tea is thought to alleviate neurotoxicity due to the antioxidative effect of ester-type tea catechins (ETC). Neutrophil gelatinase-associated lipocalin (NGAL) can sensitize β-amyloid (Aβ) induced neurotoxicity, and inhibitors of NGAL may relieve associated symptoms. As such, the interactions of ETC with NGAL were investigated by fluorescence spectrometry and molecular simulation. NGAL fluorescence is quenched regularly when being added with six processing types of tea infusion (SPTT) and ETC. Thermodynamic analyses suggest that ETC with more catechol moieties has a stronger binding capacity with NGAL especially in the presence of Fe3+. (-)-Epicatechin 3-O-caffeoate (ECC), a natural product isolated from Zijuan green tea, shows the strongest binding ability with NGAL (Kd = 15.21 ± 8.68 nM in the presence of Fe3+). All ETC are effective in protecting nerve cells against H2O2 or Aβ1-42 induced injury. The inhibitory mechanism of ETC against NGAL supports its potential use in attenuation of neurotoxicity.
Collapse
Affiliation(s)
- Wei Zhang
- Natural Products Laboratory, International Joint Lab of Tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University , Hefei, 230036 People's Republic of China
| | - Xiao Li
- Natural Products Laboratory, International Joint Lab of Tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University , Hefei, 230036 People's Republic of China
| | - Fang Hua
- Natural Products Laboratory, International Joint Lab of Tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University , Hefei, 230036 People's Republic of China
| | - Wei Chen
- Department of Nephrology, Affiliated Anhui Provincial Hospital, University of Science and Technology of China , Hefei, 230026 People's Republic of China
| | - Wei Wang
- Natural Products Laboratory, International Joint Lab of Tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University , Hefei, 230036 People's Republic of China
| | - Gang-Xiu Chu
- Natural Products Laboratory, International Joint Lab of Tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University , Hefei, 230036 People's Republic of China
| | - Guan-Hu Bao
- Natural Products Laboratory, International Joint Lab of Tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University , Hefei, 230036 People's Republic of China
| |
Collapse
|
27
|
Hua F, Zhou P, Wu HY, Chu GX, Xie ZW, Bao GH. Inhibition of α-glucosidase and α-amylase by flavonoid glycosides from Lu'an GuaPian tea: molecular docking and interaction mechanism. Food Funct 2018; 9:4173-4183. [DOI: 10.1039/c8fo00562a] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Inhibition of α-glucosidase and α-amylase by flavonoid glycosides from Lu'an GuaPian tea.
Collapse
Affiliation(s)
- Fang Hua
- Natural Products Laboratory
- International Joint Laboratory of Tea Chemistry and Health Effects
- State Key Laboratory of Tea Plant Biology and Utilization
- Anhui Agricultural University
- Hefei
| | - Peng Zhou
- Department of Integrated Traditional Chinese and Western Medicine
- Anhui University of Chinese Medicine
- Research Institute of Integrated Traditional Chinese and Western Medicine
- Anhui Academy of Chinese Medicine
- Hefei 230038
| | - Hao-Yue Wu
- Natural Products Laboratory
- International Joint Laboratory of Tea Chemistry and Health Effects
- State Key Laboratory of Tea Plant Biology and Utilization
- Anhui Agricultural University
- Hefei
| | - Gang-Xiu Chu
- Natural Products Laboratory
- International Joint Laboratory of Tea Chemistry and Health Effects
- State Key Laboratory of Tea Plant Biology and Utilization
- Anhui Agricultural University
- Hefei
| | - Zhong-Wen Xie
- Natural Products Laboratory
- International Joint Laboratory of Tea Chemistry and Health Effects
- State Key Laboratory of Tea Plant Biology and Utilization
- Anhui Agricultural University
- Hefei
| | - Guan-Hu Bao
- Natural Products Laboratory
- International Joint Laboratory of Tea Chemistry and Health Effects
- State Key Laboratory of Tea Plant Biology and Utilization
- Anhui Agricultural University
- Hefei
| |
Collapse
|
28
|
Johnstone TC, Nolan EM. Determination of the Molecular Structures of Ferric Enterobactin and Ferric Enantioenterobactin Using Racemic Crystallography. J Am Chem Soc 2017; 139:15245-15250. [PMID: 28956921 PMCID: PMC5748154 DOI: 10.1021/jacs.7b09375] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Enterobactin is a secondary metabolite produced by Enterobacteriaceae for acquiring iron, an essential metal nutrient. The biosynthesis and utilization of enterobactin permits many Gram-negative bacteria to thrive in environments where low soluble iron concentrations would otherwise preclude survival. Despite extensive work carried out on this celebrated molecule since its discovery over 40 years ago, the ferric enterobactin complex has eluded crystallographic structural characterization. We report the successful growth of single crystals containing ferric enterobactin using racemic crystallization, a method that involves cocrystallization of a chiral molecule with its mirror image. The structures of ferric enterobactin and ferric enantioenterobactin obtained in this work provide a definitive assignment of the stereochemistry at the metal center and reveal secondary coordination sphere interactions. The structures were employed in computational investigations of the interactions of these complexes with two enterobactin-binding proteins, which illuminate the influence of metal-centered chirality on these interactions. This work highlights the utility of small-molecule racemic crystallography for obtaining elusive structures of coordination complexes.
Collapse
Affiliation(s)
- Timothy C. Johnstone
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Elizabeth M. Nolan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
29
|
Shields-Cutler RR, Crowley JR, Miller CD, Stapleton AE, Cui W, Henderson JP. Human Metabolome-derived Cofactors Are Required for the Antibacterial Activity of Siderocalin in Urine. J Biol Chem 2016; 291:25901-25910. [PMID: 27780864 PMCID: PMC5207064 DOI: 10.1074/jbc.m116.759183] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/18/2016] [Indexed: 01/07/2023] Open
Abstract
In human urinary tract infections, host cells release the antimicrobial protein siderocalin (SCN; also known as lipocalin-2, neutrophil gelatinase-associated lipocalin, or 24p3) into the urinary tract. By binding to ferric catechol complexes, SCN can sequester iron, a growth-limiting nutrient for most bacterial pathogens. Recent evidence links the antibacterial activity of SCN in human urine to iron sequestration and metabolomic variation between individuals. To determine whether these metabolomic associations correspond to functional Fe(III)-binding SCN ligands, we devised a biophysical protein binding screen to identify SCN ligands through direct analysis of human urine. This screen revealed a series of physiologic unconjugated urinary catechols that were able to function as SCN ligands of which pyrogallol in particular was positively associated with high urinary SCN activity. In a purified, defined culture system, these physiologic SCN ligands were sufficient to activate SCN antibacterial activity against Escherichia coli. In the presence of multiple SCN ligands, native mass spectrometry demonstrated that SCN may preferentially combine different ligands to coordinate iron, suggesting that availability of specific ligand combinations affects in vivo SCN antibacterial activity. These results support a mechanistic link between the human urinary metabolome and innate immune function.
Collapse
Affiliation(s)
- Robin R Shields-Cutler
- From the Division of Infectious Diseases, Department of Medicine.,the Center for Women's Infectious Diseases Research, and
| | - Jan R Crowley
- the Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Connelly D Miller
- From the Division of Infectious Diseases, Department of Medicine.,the Center for Women's Infectious Diseases Research, and
| | - Ann E Stapleton
- the Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington 98195, and
| | - Weidong Cui
- the Department of Chemistry, Washington University, St. Louis, Missouri 63130
| | - Jeffrey P Henderson
- From the Division of Infectious Diseases, Department of Medicine, .,the Center for Women's Infectious Diseases Research, and
| |
Collapse
|
30
|
Thévenod F, Wolff NA. Iron transport in the kidney: implications for physiology and cadmium nephrotoxicity. Metallomics 2016; 8:17-42. [PMID: 26485516 DOI: 10.1039/c5mt00215j] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The kidney has recently emerged as an organ with a significant role in systemic iron (Fe) homeostasis. Substantial amounts of Fe are filtered by the kidney, which have to be reabsorbed to prevent Fe deficiency. Accordingly Fe transporters and receptors for protein-bound Fe are expressed in the nephron that may also function as entry pathways for toxic metals, such as cadmium (Cd), by way of "ionic and molecular mimicry". Similarities, but also differences in handling of Cd by these transport routes offer rationales for the propensity of the kidney to develop Cd toxicity. This critical review provides a comprehensive update on Fe transport by the kidney and its relevance for physiology and Cd nephrotoxicity. Based on quantitative considerations, we have also estimated the in vivo relevance of the described transport pathways for physiology and toxicology. Under physiological conditions all segments of the kidney tubules are likely to utilize Fe for cellular Fe requiring processes for metabolic purposes and also to contribute to reabsorption of free and bound forms of Fe into the circulation. But Cd entering tubule cells disrupts metabolic pathways and is unable to exit. Furthermore, our quantitative analyses contest established models linking chronic Cd nephrotoxicity to proximal tubular uptake of metallothionein-bound Cd. Hence, Fe transport by the kidney may be beneficial by preventing losses from the body. But increased uptake of Fe or Cd that cannot exit tubule cells may lead to kidney injury, and Fe deficiency may facilitate renal Cd uptake.
Collapse
Affiliation(s)
- Frank Thévenod
- Institute of Physiology, Pathophysiology & Toxicology, Center for Biomedical Training and Research (ZBAF), University of Witten/Herdecke, Stockumer Str. 12, 58453 Witten, Germany.
| | - Natascha A Wolff
- Institute of Physiology, Pathophysiology & Toxicology, Center for Biomedical Training and Research (ZBAF), University of Witten/Herdecke, Stockumer Str. 12, 58453 Witten, Germany.
| |
Collapse
|
31
|
Kell DB, Pretorius E. On the translocation of bacteria and their lipopolysaccharides between blood and peripheral locations in chronic, inflammatory diseases: the central roles of LPS and LPS-induced cell death. Integr Biol (Camb) 2016; 7:1339-77. [PMID: 26345428 DOI: 10.1039/c5ib00158g] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We have recently highlighted (and added to) the considerable evidence that blood can contain dormant bacteria. By definition, such bacteria may be resuscitated (and thus proliferate). This may occur under conditions that lead to or exacerbate chronic, inflammatory diseases that are normally considered to lack a microbial component. Bacterial cell wall components, such as the endotoxin lipopolysaccharide (LPS) of Gram-negative strains, are well known as potent inflammatory agents, but should normally be cleared. Thus, their continuing production and replenishment from dormant bacterial reservoirs provides an easy explanation for the continuing, low-grade inflammation (and inflammatory cytokine production) that is characteristic of many such diseases. Although experimental conditions and determinants have varied considerably between investigators, we summarise the evidence that in a great many circumstances LPS can play a central role in all of these processes, including in particular cell death processes that permit translocation between the gut, blood and other tissues. Such localised cell death processes might also contribute strongly to the specific diseases of interest. The bacterial requirement for free iron explains the strong co-existence in these diseases of iron dysregulation, LPS production, and inflammation. Overall this analysis provides an integrative picture, with significant predictive power, that is able to link these processes via the centrality of a dormant blood microbiome that can resuscitate and shed cell wall components.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, 131, Princess St, Manchester M1 7DN, Lancs, UK.
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia 0007, South Africa.
| |
Collapse
|
32
|
Prybylski JP, Maxwell E, Coste Sanchez C, Jay M. Gadolinium deposition in the brain: Lessons learned from other metals known to cross the blood-brain barrier. Magn Reson Imaging 2016; 34:1366-1372. [PMID: 27580521 DOI: 10.1016/j.mri.2016.08.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/20/2016] [Indexed: 01/18/2023]
Abstract
The recent discovery of gadolinium (Gd) deposition in the brains of patients receiving Gd-based contrast agents (GBCAs) raises several important questions including by what mechanism Gd or GBCAs pass through the blood-brain barrier. Decades of research focused on the safety and stability of GBCAs have not identified any mechanism of uptake. Here we review findings of Gd deposition from human and animal data, and how distribution mechanisms elucidated for endogenous and toxic metals may explain entrance of Gd into the central nervous system. Three general uptake mechanisms are considered along with examples of metals known to enter the central nervous system by these routes: (1) carrier-mediated, (2) transporter-mediated and (3) passive. The potential for chelation therapy to reduce deposition is also discussed. The work reported for other metals provides guidance for how the mechanism of Gd deposition in the brain can be determined which is essential information for rational prevention or treatment.
Collapse
Affiliation(s)
- John P Prybylski
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, 4012 Marsico Hall, Chapel Hill, NC, 27599-7362.
| | - Erin Maxwell
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, 4012 Marsico Hall, Chapel Hill, NC, 27599-7362.
| | - Carla Coste Sanchez
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, 4012 Marsico Hall, Chapel Hill, NC, 27599-7362.
| | - Michael Jay
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, 4012 Marsico Hall, Chapel Hill, NC, 27599-7362.
| |
Collapse
|
33
|
Li B, Li N, Yue Y, Liu X, Huang Y, Gu L, Xu S. An unusual crystal structure of ferric-enterobactin bound FepB suggests novel functions of FepB in microbial iron uptake. Biochem Biophys Res Commun 2016; 478:1049-53. [PMID: 27539322 DOI: 10.1016/j.bbrc.2016.08.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 08/05/2016] [Indexed: 11/16/2022]
Abstract
Iron acquisition by siderophores is critical for the survival of most bacteria. Enterobactin is a kind of catechol siderophore that exhibits the highest affinity to iron atoms secreted by E. coli and several other species of Enterobacteriaceae. The periplasmic binding protein (PBP) FepB can transport ferric-enterobactin (Fe-Ent) from the outer membrane to the membrane-associated ATP-binding cassette transport system in E. coli. To elucidate this process, we solved the crystal structure of FepB in complex with Fe-Ent at a resolution of 1.8 Å. Consistent with previously reported NMR results, our crystal structure shows that, similar to the other type III PBPs, the FepB structure was folded with separated globular N- and C-termini linked by a long α-helix. Additionally, the structure showed that the Fe-Ent bound to the cleft between the N- and C-terminal domains. Exceptionally, FepB differs from the other known siderophore binding PBPs in that it forms a trimer by capturing four Fe-Ents that can each contribute to FepB trimerization. Dynamic light-scattering experiments are consistent with the structural observations and indicate that FepB forms a trimer in a Fe-Ent-dependent manner.
Collapse
Affiliation(s)
- Bingqing Li
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan 250062, China; State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan 250100, China.
| | - Ning Li
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Yingying Yue
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Xiuhua Liu
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Yan Huang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Lichuan Gu
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Sujuan Xu
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan 250100, China.
| |
Collapse
|
34
|
Hagan AK, Carlson PE, Hanna PC. Flying under the radar: The non-canonical biochemistry and molecular biology of petrobactin from Bacillus anthracis. Mol Microbiol 2016; 102:196-206. [PMID: 27425635 DOI: 10.1111/mmi.13465] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2016] [Indexed: 01/01/2023]
Abstract
The dramatic, rapid growth of Bacillus anthracis that occurs during systemic anthrax implies a crucial requirement for the efficient acquisition of iron. While recent advances in our understanding of B. anthracis iron acquisition systems indicate the use of strategies similar to other pathogens, this review focuses on unique features of the major siderophore system, petrobactin. Ways that petrobactin differs from other siderophores include: A. unique ferric iron binding moieties that allow petrobactin to evade host immune proteins; B. a biosynthetic operon that encodes enzymes from both major siderophore biosynthesis classes; C. redundancy in membrane transport systems for acquisition of Fe-petrobactin holo-complexes; and, D. regulation that appears to be controlled predominately by sensing the host-like environmental signals of temperature, CO2 levels and oxidative stress, as opposed to canonical sensing of intracellular iron levels. We argue that these differences contribute in meaningful ways to B. anthracis pathogenesis. This review will also outline current major gaps in our understanding of the petrobactin iron acquisition system, some projected means for exploiting current knowledge, and potential future research directions.
Collapse
Affiliation(s)
- A K Hagan
- Department of Microbiology and Immunology, University of Michigan Medical School, 1150 W. Medical Center Drive, 6703 Medical Science Building II, Ann Arbor, MI, 48109
| | - P E Carlson
- Laboratory of Mucosal Pathogens and Cellular Immunity, Division of Bacterial, Parasitic, and Allergenic Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Building 52/72; Rm 3306, Silver Spring, MD, 20993
| | - P C Hanna
- Department of Microbiology and Immunology, University of Michigan Medical School, 1150 W. Medical Center Drive, 6703 Medical Science Building II, Ann Arbor, MI, 48109.
| |
Collapse
|
35
|
Payne SM, Mey AR, Wyckoff EE. Vibrio Iron Transport: Evolutionary Adaptation to Life in Multiple Environments. Microbiol Mol Biol Rev 2016; 80:69-90. [PMID: 26658001 PMCID: PMC4711184 DOI: 10.1128/mmbr.00046-15] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Iron is an essential element for Vibrio spp., but the acquisition of iron is complicated by its tendency to form insoluble ferric complexes in nature and its association with high-affinity iron-binding proteins in the host. Vibrios occupy a variety of different niches, and each of these niches presents particular challenges for acquiring sufficient iron. Vibrio species have evolved a wide array of iron transport systems that allow the bacteria to compete for this essential element in each of its habitats. These systems include the secretion and uptake of high-affinity iron-binding compounds (siderophores) as well as transport systems for iron bound to host complexes. Transporters for ferric and ferrous iron not complexed to siderophores are also common to Vibrio species. Some of the genes encoding these systems show evidence of horizontal transmission, and the ability to acquire and incorporate additional iron transport systems may have allowed Vibrio species to more rapidly adapt to new environmental niches. While too little iron prevents growth of the bacteria, too much can be lethal. The appropriate balance is maintained in vibrios through complex regulatory networks involving transcriptional repressors and activators and small RNAs (sRNAs) that act posttranscriptionally. Examination of the number and variety of iron transport systems found in Vibrio spp. offers insights into how this group of bacteria has adapted to such a wide range of habitats.
Collapse
Affiliation(s)
- Shelley M Payne
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Alexandra R Mey
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Elizabeth E Wyckoff
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
36
|
Tang HC, Chang PC, Chen YC. Iron depletion strategy for targeted cancer therapy: utilizing the dual roles of neutrophil gelatinase-associated lipocalin protein. J Mol Model 2016; 22:32. [PMID: 26757915 DOI: 10.1007/s00894-015-2897-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 12/21/2015] [Indexed: 11/24/2022]
Abstract
Decreasing iron uptake and increasing iron efflux may result in cell death by oxidative inactivation of vital enzymes. Applying the dual function of neutrophil gelatinase-associated lipocalin (NGAL) could achieve the goal of iron depletion in the cancer cells. Tyr106, Lys125 or Lys134 was the key binding site for NGAL protein to sequester iron-chelating siderophores. In this study, we employed all bioactive peptides in peptide databank to dock with the siderophore-binding sites of NGAL protein by virtual screening. In addition, we performed molecular dynamics (MD) simulation to observe the molecular character and structural variation of ligand-protein interaction. Glu-Glu-Lys-Glu (EEKE), Glu-Glu-Asp-Cys-Lys (EEDCK), and Gly-Glu-Glu-Cys-Asp (GEECD) were selected preliminarily by rigorous scoring functions for further investigation. GEECD was excluded due to higher binding total energy than the others. Moreover, we also excluded EEKE due to larger influence to the stability of binding residues by the information of root mean square fluctuation (RMSF) and principal component analysis (PCA). Thus, we suggested that EEDCK was the potential bioactive peptide which had been proved to inhibit malignant cells for targeted cancer therapy. Graphical Abstract Perspective drug design of occupying the siderophore-binding sites of NGAL outside the cell temporarily by a potential short peptide until NGAL enters into the cell, and releasing the siderophore-binding sites inside the cell.
Collapse
Affiliation(s)
- Hsin-Chieh Tang
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, 41354, Taiwan
| | - Pei-Chun Chang
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, 41354, Taiwan
| | - Yu-Chian Chen
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, 41354, Taiwan. .,Human Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, 40402, Taiwan. .,Research Center for Chinese Medicine & Acupuncture, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
37
|
Cabedo Martinez AI, Weinhäupl K, Lee WK, Wolff NA, Storch B, Żerko S, Konrat R, Koźmiński W, Breuker K, Thévenod F, Coudevylle N. Biochemical and Structural Characterization of the Interaction between the Siderocalin NGAL/LCN2 (Neutrophil Gelatinase-associated Lipocalin/Lipocalin 2) and the N-terminal Domain of Its Endocytic Receptor SLC22A17. J Biol Chem 2015; 291:2917-30. [PMID: 26635366 PMCID: PMC4742754 DOI: 10.1074/jbc.m115.685644] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Indexed: 11/22/2022] Open
Abstract
The neutrophil gelatinase-associated lipocalin (NGAL, also known as LCN2) and its cellular receptor (LCN2-R, SLC22A17) are involved in many physiological and pathological processes such as cell differentiation, apoptosis, and inflammation. These pleiotropic functions mainly rely on NGAL's siderophore-mediated iron transport properties. However, the molecular determinants underlying the interaction between NGAL and its cellular receptor remain largely unknown. Here, using solution-state biomolecular NMR in conjunction with other biophysical methods, we show that the N-terminal domain of LCN2-R is a soluble extracellular domain that is intrinsically disordered and interacts with NGAL preferentially in its apo state to form a fuzzy complex. The relatively weak affinity (≈10 μm) between human LCN2-R-NTD and apoNGAL suggests that the N terminus on its own cannot account for the internalization of NGAL by LCN2-R. However, human LCN2-R-NTD could be involved in the fine-tuning of the interaction between NGAL and its cellular receptor or in a biochemical mechanism allowing the receptor to discriminate between apo- and holo-NGAL.
Collapse
Affiliation(s)
- Ana-Isabel Cabedo Martinez
- From the Department of Computational and Structural Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Katharina Weinhäupl
- From the Department of Computational and Structural Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Wing-Kee Lee
- Chair of Physiology, Pathophysiology, and Toxicology and ZBAF, Faculty of Health, School of Medicine, Witten/Herdecke University, Stockumer Strasse 12, 58453 Witten, Germany
| | - Natascha A Wolff
- Chair of Physiology, Pathophysiology, and Toxicology and ZBAF, Faculty of Health, School of Medicine, Witten/Herdecke University, Stockumer Strasse 12, 58453 Witten, Germany
| | - Barbara Storch
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, CCB, Innrain 80/82, 6020 Innsbruck, Austria, and
| | - Szymon Żerko
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Robert Konrat
- From the Department of Computational and Structural Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Wiktor Koźmiński
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Kathrin Breuker
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, CCB, Innrain 80/82, 6020 Innsbruck, Austria, and
| | - Frank Thévenod
- Chair of Physiology, Pathophysiology, and Toxicology and ZBAF, Faculty of Health, School of Medicine, Witten/Herdecke University, Stockumer Strasse 12, 58453 Witten, Germany
| | - Nicolas Coudevylle
- From the Department of Computational and Structural Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria,
| |
Collapse
|
38
|
Abstract
This Account focuses on the coordination chemistry of the microbial iron chelators called siderophores. The initial research (early 1970s) focused on simple analogs of siderophores, which included hydroxamate, catecholate, or hydroxycarboxylate ligands. The subsequent work increasingly focused on the transport of siderophores and their microbial iron transport. Since these are pseudo-octahedral complexes often composed of bidentate ligands, there is chirality at the metal center that in principle is independent of the ligand chirality. It has been shown in many cases that chiral recognition of the complex occurs. Many techniques have been used to elucidate the iron uptake processes in both Gram-positive (single membrane) and Gram-negative (double membrane) bacteria. These have included the use of radioactive labels (of ligand, metal, or both), kinetically inert metal complexes, and Mössbauer spectroscopy. In general, siderophore recognition and transport involves receptors that recognize the metal chelate portion of the iron-siderophore complex. A second, to date less commonly found, mechanism called the siderophore shuttle involves the receptor binding an apo-siderophore. Since one of the primary ways that microbes compete with each other for iron stores is the strength of their competing siderophore complexes, it became important early on to characterize the solution thermodynamics of these species. Since the acidity of siderophores varies significantly, just the stability constant does not give a direct measure of the relative competitive strength of binding. For this reason, the pM value is compared. The pM, like pH, is a measure of the negative log of the free metal ion concentration, typically calculated at pH 7.4, and standard total concentrations of metal and ligand. The characterization of the electronic structure of ferric siderophores has done much to help explain the high stability of these complexes. A new chapter in siderophore science has emerged with the characterization of what are now called siderocalins. Initially found as a protein of the human innate immune system, these proteins bind both ferric and apo-siderophores to inactivate the siderophore transport system and hence deny iron to an invading pathogenic microbe. Siderocalins also can play a role in iron transport of the host, particularly in the early stages of fetal development. Finally, it is speculated that the molecular targets of siderocalins in different species differ based on the siderophore structures of the most important bacterial pathogens of those species.
Collapse
Affiliation(s)
- Kenneth N. Raymond
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Benjamin E. Allred
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Allyson K. Sia
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| |
Collapse
|
39
|
Vaulont S, Schalk I. [Roles of bacterial and mammalian siderophores in host-pathogen interactions]. Med Sci (Paris) 2015; 31:756-63. [PMID: 26340835 DOI: 10.1051/medsci/20153108014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Iron is an essential nutriment for almost all forms of life, from bacteria to humans. Despite its key role in living organisms, iron becomes toxic at high concentrations. In the body, to circumvent this toxicity, almost all the intracellular iron is bound to proteins (especially to ferritin, a protein able to bind up to 4000 atoms of iron) and a small proportion (0.2% to 3%) to low molecular weight ligands (less than 2 kDa) constituting a free iron pool able to ensure the traffic of intracellular iron. A number of small molecules (citrate, phosphate, phospholipid, polypeptide) able to chelate iron, with variable affinities, have been known for a long time. In 2010, two teams have identified new mammal endogen chelators able to bind iron with similar chemical properties as bacterial siderophores. Recently, a few publications emphasized that most of the free iron present in the body cells is indeed linked to these siderophores, which play a key role in infected-host protection mechanisms during bacterial infections, through iron homeostasis and oxidative stress regulation.
Collapse
Affiliation(s)
- Sophie Vaulont
- Inserm U1016, institut Cochin, 24, rue du Faubourg Saint-Jacques, 75014 Paris, France - CNRS, UMR8104, Paris, France - Université Paris Descartes, Sorbonne Paris Cité, Paris, France - Laboratory of excellence GR-Ex
| | - Isabelle Schalk
- UMR 7242, université de Strasbourg-CNRS, ESBS, Strasbourg, France - CNRS, UMR 7242, ESBS, Illkirch, France
| |
Collapse
|
40
|
Siderocalin-mediated recognition, sensitization, and cellular uptake of actinides. Proc Natl Acad Sci U S A 2015; 112:10342-7. [PMID: 26240330 DOI: 10.1073/pnas.1508902112] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Synthetic radionuclides, such as the transuranic actinides plutonium, americium, and curium, present severe health threats as contaminants, and understanding the scope of the biochemical interactions involved in actinide transport is instrumental in managing human contamination. Here we show that siderocalin, a mammalian siderophore-binding protein from the lipocalin family, specifically binds lanthanide and actinide complexes through molecular recognition of the ligands chelating the metal ions. Using crystallography, we structurally characterized the resulting siderocalin-transuranic actinide complexes, providing unprecedented insights into the biological coordination of heavy radioelements. In controlled in vitro assays, we found that intracellular plutonium uptake can occur through siderocalin-mediated endocytosis. We also demonstrated that siderocalin can act as a synergistic antenna to sensitize the luminescence of trivalent lanthanide and actinide ions in ternary protein-ligand complexes, dramatically increasing the brightness and efficiency of intramolecular energy transfer processes that give rise to metal luminescence. Our results identify siderocalin as a potential player in the biological trafficking of f elements, but through a secondary ligand-based metal sequestration mechanism. Beyond elucidating contamination pathways, this work is a starting point for the design of two-stage biomimetic platforms for photoluminescence, separation, and transport applications.
Collapse
|
41
|
Chia WJ, Tan FCK, Ong WY, Dawe GS. Expression and localisation of brain-type organic cation transporter (BOCT/24p3R/LCN2R) in the normal rat hippocampus and after kainate-induced excitotoxicity. Neurochem Int 2015; 87:43-59. [PMID: 26004810 DOI: 10.1016/j.neuint.2015.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/06/2015] [Accepted: 04/14/2015] [Indexed: 01/13/2023]
Abstract
The iron siderophore binding protein lipocalin 2 (LCN2, also known as 24p3, NGAL and siderocalin) may be involved in iron homeostasis, but to date, little is known about expression of its putative receptor, brain-type organic cation transporter (BOCT, also known as BOCT1, 24p3R, NGALR and LCN2R), in the brain during neurodegeneration. The present study was carried out to elucidate the expression of LCN2 and BOCT in hippocampus after excitotoxicity induced by the glutamate analog, kainate (KA) and a possible role of LCN2 in neuronal injury. As reported previously, a rapid and sustained induction in expression of LCN2 was found in the hippocampus after intracerebroventicular injection of KA. BOCT was expressed in neurons of the saline-injected control hippocampus, and immunolabel for BOCT protein was preserved in pyramidal neurons of CA1 at 1 day post-KA injection, likely due to the delayed onset of neurodegeneration after KA injection. At 3 days and 2 weeks after KA injections, loss of immunolabel was observed due to degenerated neurons, although remaining neurons continued to express BOCT, and induction of BOCT was found in OX-42 positive microglia. This resulted in an overall decrease in BOCT mRNA and protein expression after KA treatment. Increased expression of the pro-apoptotic marker, Bim, was found in both neurons and microglia after KA injection, but TUNEL staining indicating apoptosis was found primarily in Bim-expressing neurons, but not microglia. Interaction between LCN2 and BOCT was found by DuoLink assay in cultured hippocampal neurons. Apo-LCN2 without iron caused no significant differences in neuronal Bim expression or cell survival, whereas holo-LCN2 consisting of LCN2:iron:enterochelin complex increased Bim mRNA expression and decreased neuronal survival. Together, results suggest that LCN2 and BOCT may have a role in neuronal injury.
Collapse
Affiliation(s)
- Wan-Jie Chia
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 10 Medical Drive, Singapore 117597; National University of Singapore Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456; Neurobiology and Ageing Programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456
| | - Francis Chee Kuan Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 10 Medical Drive, Singapore 117597; Neurobiology and Ageing Programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456; Singapore Institute for Neurotechnology (SINAPSE), Centre for Life Sciences, 28 Medical Drive, Singapore 117456
| | - Wei-Yi Ong
- Neurobiology and Ageing Programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456; Department of Anatomy, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 4 Medical Drive, Singapore 117597.
| | - Gavin S Dawe
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 10 Medical Drive, Singapore 117597; National University of Singapore Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456; Neurobiology and Ageing Programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456; Singapore Institute for Neurotechnology (SINAPSE), Centre for Life Sciences, 28 Medical Drive, Singapore 117456.
| |
Collapse
|
42
|
Schiefner A, Skerra A. The menagerie of human lipocalins: a natural protein scaffold for molecular recognition of physiological compounds. Acc Chem Res 2015; 48:976-85. [PMID: 25756749 DOI: 10.1021/ar5003973] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
While immunoglobulins are well-known for their characteristic ability to bind macromolecular antigens (i.e., as antibodies during an immune response), the lipocalins constitute a family of proteins whose role is the complexation of small molecules for various physiological processes. In fact, a number of low-molecular-weight substances in multicellular organisms show poor solubility, are prone to chemical decomposition, or play a pathophysiological role and thus require specific binding proteins for transport through body fluids, storage, or sequestration. In many cases, lipocalins are involved in such tasks. Lipocalins are small, usually monomeric proteins with 150-180 residues and diameters of approximately 40 Å, adopting a compact fold that is dominated by a central eight-stranded up-and-down β-barrel. At the amino-terminal end, this core is flanked by a coiled polypeptide segment, while its carboxy-terminal end is followed by an α-helix that leans against the β-barrel as well as an amino acid stretch in a more-or-less extended conformation, which finally is fixed by a disulfide bond. Within the β-barrel, the antiparallel strands (designated A to H) are arranged in a (+1)7 topology and wind around a central axis in a right-handed manner such that part of strand A is hydrogen-bonded to strand H again. Whereas the lower region of the β-barrel is closed by short loops and densely packed hydrophobic side chains, including many aromatic residues, the upper end is usually open to solvent. There, four long loops, each connecting one pair of β-strands, together form the entrance to a cup-shaped cavity. Depending on the individual structure of a lipocalin, and especially on the lengths and amino acid sequences of its four loops, this pocket can accommodate chemical ligands of various sizes and shapes, including lipids, steroids, and other chemical hormones as well as secondary metabolites such as vitamins, cofactors, or odorants. While lipocalins are ubiquitous in all higher organisms, physiologically important members of this family have long been known in the human body, for example with the plasma retinol-binding protein that serves for the transport of vitamin A. This prototypic human lipocalin was the first for which a crystal structure was solved. Notably, several other lipocalins were discovered and assigned to this protein class before the term itself became familiar, which explains their diverse names in the scientific literature. To date, up to 15 distinct members of the lipocalin family have been characterized in humans, and during the last two decades the three-dimensional structures of a dozen major subtypes have been elucidated. This Account presents a comprehensive overview of the human lipocalins, revealing common structural principles but also deviations that explain individual functional features. Taking advantage of modern methods for combinatorial protein design, lipocalins have also been employed as scaffolds for the construction of artifical binding proteins with novel ligand specificities, so-called Anticalins, hence opening perspectives as a new class of biopharmaceuticals for medical therapy.
Collapse
Affiliation(s)
- André Schiefner
- Munich Center for Integrated
Protein Science (CIPS-M) and Lehrstuhl für Biologische Chemie, Technische Universität München, 85350 Freising-Weihenstephan, Germany
| | - Arne Skerra
- Munich Center for Integrated
Protein Science (CIPS-M) and Lehrstuhl für Biologische Chemie, Technische Universität München, 85350 Freising-Weihenstephan, Germany
| |
Collapse
|
43
|
Johnstone TC, Nolan EM. Beyond iron: non-classical biological functions of bacterial siderophores. Dalton Trans 2015; 44:6320-39. [PMID: 25764171 PMCID: PMC4375017 DOI: 10.1039/c4dt03559c] [Citation(s) in RCA: 245] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bacteria secrete small molecules known as siderophores to acquire iron from their surroundings. For over 60 years, investigations into the bioinorganic chemistry of these molecules, including fundamental coordination chemistry studies, have provided insight into the crucial role that siderophores play in bacterial iron homeostasis. The importance of understanding the fundamental chemistry underlying bacterial life has been highlighted evermore in recent years because of the emergence of antibiotic-resistant bacteria and the need to prevent the global rise of these superbugs. Increasing reports of siderophores functioning in capacities other than iron transport have appeared recently, but reports of "non-classical" siderophore functions have long paralleled those of iron transport. One particular non-classical function of these iron chelators, namely antibiotic activity, was documented before the role of siderophores in iron transport was established. In this Perspective, we present an exposition of past and current work into non-classical functions of siderophores and highlight the directions in which we anticipate that this research is headed. Examples include the ability of siderophores to function as zincophores, chalkophores, and metallophores for a variety of other metals, sequester heavy metal toxins, transport boron, act as signalling molecules, regulate oxidative stress, and provide antibacterial activity.
Collapse
Affiliation(s)
- Timothy C Johnstone
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | |
Collapse
|
44
|
Sheldon JR, Heinrichs DE. Recent developments in understanding the iron acquisition strategies of gram positive pathogens. FEMS Microbiol Rev 2015; 39:592-630. [DOI: 10.1093/femsre/fuv009] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2015] [Indexed: 12/26/2022] Open
|
45
|
Collins AJ, Fullmer MS, Gogarten JP, Nyholm SV. Comparative genomics of Roseobacter clade bacteria isolated from the accessory nidamental gland of Euprymna scolopes. Front Microbiol 2015; 6:123. [PMID: 25755651 PMCID: PMC4337385 DOI: 10.3389/fmicb.2015.00123] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 02/01/2015] [Indexed: 12/24/2022] Open
Abstract
The accessory nidamental gland (ANG) of the female Hawaiian bobtail squid, Euprymna scolopes, houses a consortium of bacteria including members of the Flavobacteriales, Rhizobiales, and Verrucomicrobia but is dominated by members of the Roseobacter clade (Rhodobacterales) within the Alphaproteobacteria. These bacteria are deposited into the jelly coat of the squid’s eggs, however, the function of the ANG and its bacterial symbionts has yet to be elucidated. In order to gain insight into this consortium and its potential role in host reproduction, we cultured 12 Rhodobacterales isolates from ANGs of sexually mature female squid and sequenced their genomes with Illumina sequencing technology. For taxonomic analyses, the ribosomal proteins of 79 genomes representing both roseobacters and non-roseobacters along with a separate MLSA analysis of 33 housekeeping genes from Roseobacter organisms placed all 12 isolates from the ANG within two groups of a single Roseobacter clade. Average nucelotide identity analysis suggests the ANG isolates represent three genera (Leisingera, Ruegeria, and Tateyamaria) comprised of seven putative species groups. All but one of the isolates contains a predicted Type VI secretion system, which has been shown to be important in secreting signaling and/or effector molecules in host–microbe associations and in bacteria–bacteria interactions. All sequenced genomes also show potential for secondary metabolite production, and are predicted to be involved with the production of acyl homoserine lactones (AHLs) and/or siderophores. An AHL bioassay confirmed AHL production in three tested isolates and from whole ANG homogenates. The dominant symbiont, Leisingera sp. ANG1, showed greater viability in iron-limiting conditions compared to other roseobacters, possibly due to higher levels of siderophore production. Future comparisons will try to elucidate novel metabolic pathways of the ANG symbionts to understand their putative role in host development.
Collapse
Affiliation(s)
- Andrew J Collins
- Molecular and Cell Biology, University of Connecticut Storrs, CT, USA ; Microbiology, The Forsyth Institute Cambridge, MA USA
| | - Matthew S Fullmer
- Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| | - Johann P Gogarten
- Molecular and Cell Biology, University of Connecticut Storrs, CT, USA ; Institute for Systems Genomics, University of Connecticut Storrs, CT, USA
| | - Spencer V Nyholm
- Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| |
Collapse
|
46
|
Inflammation and ER stress downregulate BDH2 expression and dysregulate intracellular iron in macrophages. J Immunol Res 2014; 2014:140728. [PMID: 25762501 PMCID: PMC4267003 DOI: 10.1155/2014/140728] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/13/2014] [Accepted: 11/13/2014] [Indexed: 12/21/2022] Open
Abstract
Macrophages play a very important role in host defense and in iron homeostasis by engulfing senescent red blood cells and recycling iron. Hepcidin is the master iron regulating hormone that limits dietary iron absorption from the gut and limits iron egress from macrophages. Upon infection macrophages retain iron to limit its bioavailability which limits bacterial growth. Recently, a short chain butyrate dehydrogenase type 2 (BDH2) protein was reported to contain an iron responsive element and to mediate cellular iron trafficking by catalyzing the synthesis of the mammalian siderophore that binds labile iron; therefore, BDH2 plays a crucial role in intracellular iron homeostasis. However, BDH2 expression and regulation in macrophages have not yet been described. Here we show that LPS-induced inflammation combined with ER stress led to massive BDH2 downregulation, increased the expression of ER stress markers, upregulated hepcidin expression, downregulated ferroportin expression, caused iron retention in macrophages, and dysregulated cytokine release from macrophages. We also show that ER stress combined with inflammation synergistically upregulated the expression of the iron carrier protein NGAL and the stress-inducible heme degrading enzyme heme oxygenase-1 (HO-1) leading to iron liberation. This is the first report to show that inflammation and ER stress downregulate the expression of BDH2 in human THP-1 macrophages.
Collapse
|
47
|
Chu BCH, Otten R, Krewulak KD, Mulder FAA, Vogel HJ. The solution structure, binding properties, and dynamics of the bacterial siderophore-binding protein FepB. J Biol Chem 2014; 289:29219-34. [PMID: 25173704 DOI: 10.1074/jbc.m114.564021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The periplasmic binding protein (PBP) FepB plays a key role in transporting the catecholate siderophore ferric enterobactin from the outer to the inner membrane in Gram-negative bacteria. The solution structures of the 34-kDa apo- and holo-FepB from Escherichia coli, solved by NMR, represent the first solution structures determined for the type III class of PBPs. Unlike type I and II PBPs, which undergo large "Venus flytrap" conformational changes upon ligand binding, both forms of FepB maintain similar overall folds; however, binding of the ligand is accompanied by significant loop movements. Reverse methyl cross-saturation experiments corroborated chemical shift perturbation results and uniquely defined the binding pocket for gallium enterobactin (GaEnt). NMR relaxation experiments indicated that a flexible loop (residues 225-250) adopted a more rigid and extended conformation upon ligand binding, which positioned residues for optimal interactions with the ligand and the cytoplasmic membrane ABC transporter (FepCD), respectively. In conclusion, this work highlights the pivotal role that structural dynamics plays in ligand binding and transporter interactions in type III PBPs.
Collapse
Affiliation(s)
- Byron C H Chu
- From the Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Alberta T2N 1N4, Canada
| | - Renee Otten
- the Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands, and
| | - Karla D Krewulak
- From the Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Alberta T2N 1N4, Canada
| | - Frans A A Mulder
- the Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands, and the Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, University of Aarhus, 8000 Aarhus C, Denmark
| | - Hans J Vogel
- From the Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Alberta T2N 1N4, Canada,
| |
Collapse
|
48
|
Paragas N, Kulkarni R, Werth M, Schmidt-Ott KM, Forster C, Deng R, Zhang Q, Singer E, Klose AD, Shen TH, Francis KP, Ray S, Vijayakumar S, Seward S, Bovino ME, Xu K, Takabe Y, Amaral FE, Mohan S, Wax R, Corbin K, Sanna-Cherchi S, Mori K, Johnson L, Nickolas T, D'Agati V, Lin CS, Qiu A, Al-Awqati Q, Ratner AJ, Barasch J. α-Intercalated cells defend the urinary system from bacterial infection. J Clin Invest 2014; 124:2963-76. [PMID: 24937428 DOI: 10.1172/jci71630] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 04/24/2014] [Indexed: 12/22/2022] Open
Abstract
α-Intercalated cells (A-ICs) within the collecting duct of the kidney are critical for acid-base homeostasis. Here, we have shown that A-ICs also serve as both sentinels and effectors in the defense against urinary infections. In a murine urinary tract infection model, A-ICs bound uropathogenic E. coli and responded by acidifying the urine and secreting the bacteriostatic protein lipocalin 2 (LCN2; also known as NGAL). A-IC-dependent LCN2 secretion required TLR4, as mice expressing an LPS-insensitive form of TLR4 expressed reduced levels of LCN2. The presence of LCN2 in urine was both necessary and sufficient to control the urinary tract infection through iron sequestration, even in the harsh condition of urine acidification. In mice lacking A-ICs, both urinary LCN2 and urinary acidification were reduced, and consequently bacterial clearance was limited. Together these results indicate that A-ICs, which are known to regulate acid-base metabolism, are also critical for urinary defense against pathogenic bacteria. They respond to both cystitis and pyelonephritis by delivering bacteriostatic chemical agents to the lower urinary system.
Collapse
|
49
|
Bleackley MR, Hayes BM, Parisi K, Saiyed T, Traven A, Potter ID, van der Weerden NL, Anderson MA. Bovine pancreatic trypsin inhibitor is a new antifungal peptide that inhibits cellular magnesium uptake. Mol Microbiol 2014; 92:1188-97. [DOI: 10.1111/mmi.12621] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2014] [Indexed: 02/05/2023]
Affiliation(s)
- Mark R. Bleackley
- La Trobe Institute for Molecular Science; Melbourne Vic. 3086 Australia
| | - Brigitte M. Hayes
- La Trobe Institute for Molecular Science; Melbourne Vic. 3086 Australia
| | - Kathy Parisi
- La Trobe Institute for Molecular Science; Melbourne Vic. 3086 Australia
| | - Tamana Saiyed
- La Trobe Institute for Molecular Science; Melbourne Vic. 3086 Australia
| | - Ana Traven
- Department of Biochemistry and Molecular Biology; Monash University; Clayton Vic. 3800 Australia
| | - Ian D. Potter
- La Trobe Institute for Molecular Science; Melbourne Vic. 3086 Australia
| | | | | |
Collapse
|
50
|
Grayfer L, Hodgkinson JW, Belosevic M. Antimicrobial responses of teleost phagocytes and innate immune evasion strategies of intracellular bacteria. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 43:223-42. [PMID: 23954721 DOI: 10.1016/j.dci.2013.08.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 08/02/2013] [Accepted: 08/03/2013] [Indexed: 05/22/2023]
Abstract
During infection, macrophage lineage cells eliminate infiltrating pathogens through a battery of antimicrobial responses, where the efficacy of these innate immune responses is pivotal to immunological outcomes. Not surprisingly, many intracellular pathogens have evolved mechanisms to overcome macrophage defenses, using these immune cells as residences and dissemination strategies. With pathogenic infections causing increasing detriments to both aquacultural and wild fish populations, it is imperative to garner greater understanding of fish phagocyte antimicrobial responses and the mechanisms by which aquatic pathogens are able to overcome these teleost macrophage barriers. Insights into the regulation of macrophage immunity of bony fish species will lend to the development of more effective aquacultural prophylaxis as well as broadening our understanding of the evolution of these immune processes. Accordingly, this review focuses on recent advances in the understanding of teleost macrophage antimicrobial responses and the strategies by which intracellular fish pathogens are able to avoid being killed by phagocytes, with a focus on Mycobacterium marinum.
Collapse
Affiliation(s)
- Leon Grayfer
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | | | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, Canada; School of Public Health, University of Alberta, Edmonton, Canada.
| |
Collapse
|