1
|
Qu R, Jiang X, Zhen X. Light/X-ray/ultrasound activated delayed photon emission of organic molecular probes for optical imaging: mechanisms, design strategies, and biomedical applications. Chem Soc Rev 2024. [PMID: 39380344 DOI: 10.1039/d4cs00599f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Conventional optical imaging, particularly fluorescence imaging, often encounters significant background noise due to tissue autofluorescence under real-time light excitation. To address this issue, a novel optical imaging strategy that captures optical signals after light excitation has been developed. This approach relies on molecular probes designed to store photoenergy and release it gradually as photons, resulting in delayed photon emission that minimizes background noise during signal acquisition. These molecular probes undergo various photophysical processes to facilitate delayed photon emission, including (1) charge separation and recombination, (2) generation, stabilization, and conversion of the triplet excitons, and (3) generation and decomposition of chemical traps. Another challenge in optical imaging is the limited tissue penetration depth of light, which severely restricts the efficiency of energy delivery, leading to a reduced penetration depth for delayed photon emission. In contrast, X-ray and ultrasound serve as deep-tissue energy sources that facilitate the conversion of high-energy photons or mechanical waves into the potential energy of excitons or the chemical energy of intermediates. This review highlights recent advancements in organic molecular probes designed for delayed photon emission using various energy sources. We discuss distinct mechanisms, and molecular design strategies, and offer insights into the future development of organic molecular probes for enhanced delayed photon emission.
Collapse
Affiliation(s)
- Rui Qu
- MOE Key Laboratory of High Performance Polymer Materials & Technology and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
| | - Xiqun Jiang
- MOE Key Laboratory of High Performance Polymer Materials & Technology and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
| | - Xu Zhen
- MOE Key Laboratory of High Performance Polymer Materials & Technology and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
2
|
Zhang L, Kuang Y, Ye G, Liu J. Tailoring the Density of State of n-Type Conjugated Polymers through Solvent Engineering for Organic Electrochemical Transistors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39693-39700. [PMID: 39038079 DOI: 10.1021/acsami.4c04917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Conjugated polymers with ethylene glycol-type side chains are commonly used as channel materials in organic electrochemical transistors (OECTs). To improve the performance of these materials, new chemical structures are often created through synthetic routines. Herein, we demonstrate that the OECT performance of these polymers can also be improved by changing their density-of-state (DOS) profile through solvent engineering. Depending on the solvent polarity, it solvates the backbone and side chains of the conjugated polymer differently, leading to differences in molecule orientation, π-stacking paracrystallinity, and film defects, such as grain boundaries and pinholes. This then results in a change in the DOS profile of the polymer. A more intense and narrow-width DOS distribution is usually observed in organic films with an "edge on" orientation and fewer film defects, while films with a "face on" orientation and apparent defects show a broadened DOS profile. The OECT devices that use the polymer film with a more intense and narrow-width DOS profile exhibit a better-normalized transconductance and figure-of-merit μC* than those with a broadened DOS profile (0.74 to 4.29 S cm-1 and 3.5 to 14.3 F cm-1 V-1 s-1). This study provides useful insights into how the DOS profile affects the mixed ionic-electronic conduction performance and presents a new avenue for improving n-type OECT materials.
Collapse
Affiliation(s)
- Linlong Zhang
- State Key Laboratory of Polymer Physics and Chemistry & Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yazhuo Kuang
- State Key Laboratory of Polymer Physics and Chemistry & Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Gang Ye
- State Key Laboratory of Polymer Physics and Chemistry & Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| | - Jian Liu
- State Key Laboratory of Polymer Physics and Chemistry & Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
3
|
Ballinas-Indilí R, Sánchez Vergara ME, Rosales-Amezcua SC, Hernández Méndez JA, López-Mayorga B, Miranda-Ruvalcaba R, Álvarez-Toledano C. Synthesis of New Ruthenium Complexes and Their Exploratory Study as Polymer Hybrid Composites in Organic Electronics. Polymers (Basel) 2024; 16:1338. [PMID: 38794531 PMCID: PMC11125087 DOI: 10.3390/polym16101338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/27/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
Polymeric hybrid films, for their application in organic electronics, were produced from new ruthenium indanones in poly(methyl methacrylate) (PMMA) by the drop-casting procedure. Initially, the synthesis and structural characterization of the ruthenium complexes were performed, and subsequently, their properties as a potential semiconductor material were explored. Hence hybrid films in ruthenium complexes were deposited using PMMA as a polymeric matrix. The hybrid films were characterized by infrared spectrophotometry and atomic force microscopy. The obtained results confirmed that the presence of the ruthenium complexes enhanced the mechanical properties in addition to increasing the transmittance, favoring the determination of their optical parameters. Both hybrid films exhibited a maximum stress around 10.5 MPa and a Knoop hardness between 2.1 and 18.4. Regarding the optical parameters, the maximum transparency was obtained at wavelengths greater than 590 nm, the optical band gap was in the range of 1.73-2.24 eV, while the Tauc band gap was in the range of 1.68-2.17 eV, and the Urbach energy was between 0.29 and 0.50 eV. Consequently, the above comments are indicative of an adequate semiconductor behavior; hence, the target polymeric hybrid films must be welcomed as convenient candidates as active layers or transparent electrodes in organic electronics.
Collapse
Affiliation(s)
- Ricardo Ballinas-Indilí
- Departamento de Ciencias Químicas, Facultad de Estudios Superiores Cuautitlán Campo 1, Universidad Nacional Autónoma de México, Avenida 1o de Mayo s/n, Colonia Santa María las Torres, Cuautitlán Izcalli 54740, Mexico (R.M.-R.)
| | - María Elena Sánchez Vergara
- Facultad de Ingeniería, Universidad Anáhuac México, Av. Universidad Anáhuac 46, Col. Lomas Anáhuac, Huixquilucan 52786, Mexico
| | - Saulo C. Rosales-Amezcua
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, México City 04510, Mexico (C.Á.-T.)
| | - Joaquín André Hernández Méndez
- Facultad de Ingeniería, Universidad Anáhuac México, Av. Universidad Anáhuac 46, Col. Lomas Anáhuac, Huixquilucan 52786, Mexico
| | - Byron López-Mayorga
- Escuela de Química, Facultad de Ciencias Químicas y Farmacia, Universidad de San Carlos de Guatemala, 11 avenida, Ciudad de Guatemala 01012, Guatemala;
| | - René Miranda-Ruvalcaba
- Departamento de Ciencias Químicas, Facultad de Estudios Superiores Cuautitlán Campo 1, Universidad Nacional Autónoma de México, Avenida 1o de Mayo s/n, Colonia Santa María las Torres, Cuautitlán Izcalli 54740, Mexico (R.M.-R.)
| | - Cecilio Álvarez-Toledano
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, México City 04510, Mexico (C.Á.-T.)
| |
Collapse
|
4
|
Yang J, Li J, Zhang X, Yang W, Jeong SY, Huang E, Liu B, Woo HY, Chen Z, Guo X. Functionalized Phenanthrene Imide-Based Polymers for n-Type Organic Thin-Film Transistors. Angew Chem Int Ed Engl 2024; 63:e202319627. [PMID: 38443313 DOI: 10.1002/anie.202319627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/19/2024] [Accepted: 03/05/2024] [Indexed: 03/07/2024]
Abstract
High-performing n-type polymers are crucial for the advance of organic electronics field, however strong electron-deficient building blocks with optimized physicochemical properties for constructing them are still limited. The imide-functionalized polycyclic aromatic hydrocarbons (PAHs) with extended π-conjugated framework, high electron deficiency and good solubility serve as promising candidates for developing high-performance n-type polymers. Among the PAHs, phenanthrene (PhA) features a well-delocalized aromatic π-system with multiple modifiable active sites . However, the PhA-based imides are seldom studied, mainly attributed to the synthetic challenge. Herein, we report two functionalized PhAs, CPOI and CPCNI, by simultaneously incorporating imide with carbonyl or dicyanomethylene onto PhA. Notably, the dicyanomethylene-modified CPCNI exhibits a well stabilized LUMO energy level (-3.84 eV), attributed to the synergetic inductive effect from imide and cyano groups. Subsequently, based on CPOI and CPCNI, two polymers PCPOI-Tz and PCPCNI-Tz were developed. Applied to organic thin-film transistors, owing to the strong electron-deficiency of CPCNI, polymer PCPCNI-Tz shows an improved electron mobility and largely decreased threshold voltage compared with PCPOI-Tz. This work affords two structurally novel electron-deficient building blocks and highlights the effectiveness of dual functionalization of PhAs with strong electron-withdrawing groups for devising n-type polymers.
Collapse
Affiliation(s)
- Jie Yang
- Department Materials Science and Engineering, Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| | - Jianfeng Li
- Department Materials Science and Engineering, Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| | - Xiage Zhang
- Department Materials Science and Engineering, Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| | - Wanli Yang
- Department Materials Science and Engineering, Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| | - Sang Young Jeong
- Research Institute for Natural Sciences, Department of Chemistry, Korea University, Anamro 145, Seoul, 02841, South Korea
| | - Enmin Huang
- Department Materials Science and Engineering, Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| | - Bin Liu
- Department Materials Science and Engineering, Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| | - Han Young Woo
- Research Institute for Natural Sciences, Department of Chemistry, Korea University, Anamro 145, Seoul, 02841, South Korea
| | - Zhicai Chen
- Department Materials Science and Engineering, Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
- Department State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials Science and Engineering, Hainan University, Haikou, Hainan, 570228, China
| | - Xugang Guo
- Department Materials Science and Engineering, Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
- Guangdong, Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
5
|
Wang X, Ding F, Jia T, Li F, Ding X, Deng R, Lin K, Yang Y, Wu W, Xia D, Chen G. Molecular near-infrared triplet-triplet annihilation upconversion with eigen oxygen immunity. Nat Commun 2024; 15:2157. [PMID: 38461161 PMCID: PMC10924867 DOI: 10.1038/s41467-024-46541-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/01/2024] [Indexed: 03/11/2024] Open
Abstract
Molecular triplet-triplet annihilation upconversion often experiences drastic luminescence quenching in the presence of oxygen molecules, posing a significant constraint on practical use in aerated conditions. We present an oxygen-immune near-infrared triplet-triplet annihilation upconversion system utilizing non-organometallic cyanine sensitizers (λex = 808 nm) and chemically synthesized benzo[4,5]thieno[2,3-b][1,2,5]thiadiazolo[3,4-g]quinoxaline dyes with a defined dimer structure as annihilators (λem = 650 nm). This system exhibits ultrastable upconversion under continuous laser irradiance (>480 mins) or extended storage (>7 days) in aerated solutions. Mechanistic investigations reveal rapid triplet-triplet energy transfer from sensitizer to annihilators, accompanied by remarkably low triplet oxygen quenching efficiencies (η O 2 < 13% for the sensitizer, <3.7% for the annihilator), endowing the bicomponent triplet-triplet annihilation system with inherent oxygen immunity. Our findings unlock the direct and potent utilization of triplet-triplet annihilation upconversion systems in real-world applications, demonstrated by the extended and sensitive nanosensing of peroxynitrite radicals in the liver under in vivo nitrosative stress.
Collapse
Affiliation(s)
- Xinyu Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Fangwei Ding
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Tao Jia
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Feng Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Xiping Ding
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Ruibin Deng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Kaifeng Lin
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Yulin Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Wenzhi Wu
- School of Electronic Engineering, Heilongjiang University, Harbin, China
| | - Debin Xia
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China.
| | - Guanying Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China.
- Key Laboratory of Micro-systems and Micro-structures, Ministry of Education, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
6
|
Li W, Yu Y, Yang J, Fu K, Zhang X, Shi S, Li T. Synthesis of Fluoren-9-ones via Pd-Catalyzed Annulation of 2-Iodobiphenyls with Vinylene Carbonate. Chem Asian J 2024; 19:e202301040. [PMID: 38019114 DOI: 10.1002/asia.202301040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023]
Abstract
A palladium-catalyzed reaction for intermolecular selective C-H cyclocarbonylation of 2-iodobiphenyls is described. Intriguingly, the vinylene carbonate acts as a carbon monoxide transfer agent to enable the annulation reaction. Moreover, as a versatile synthon, fluoren-9-one can be transformed into a variety of functionalized organic molecules, such as [1,1'-biphenyl]-2-carboxylic acid, 1'H,3'H-spiro[fluorene-9,2'-perimidine] and N-tosylhydrazones.
Collapse
Affiliation(s)
- Wenguang Li
- Drug Synthesis Engineering Technology Research Center of Henan Province for Photoelectric Green Catalysis, Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Henan, 473061, China
- State Key Laboratory of Motor Vehicle Biofuel Technology, Henan Tianguan Enterprise Group Company Limited, Henan, 473000, China
| | - Yongqi Yu
- Drug Synthesis Engineering Technology Research Center of Henan Province for Photoelectric Green Catalysis, Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Henan, 473061, China
| | - Jie Yang
- Drug Synthesis Engineering Technology Research Center of Henan Province for Photoelectric Green Catalysis, Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Henan, 473061, China
| | - Kaifang Fu
- Drug Synthesis Engineering Technology Research Center of Henan Province for Photoelectric Green Catalysis, Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Henan, 473061, China
| | - Xu Zhang
- Drug Synthesis Engineering Technology Research Center of Henan Province for Photoelectric Green Catalysis, Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Henan, 473061, China
| | - Shukui Shi
- Drug Synthesis Engineering Technology Research Center of Henan Province for Photoelectric Green Catalysis, Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Henan, 473061, China
| | - Ting Li
- Drug Synthesis Engineering Technology Research Center of Henan Province for Photoelectric Green Catalysis, Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Henan, 473061, China
| |
Collapse
|
7
|
Li Y, Wu W, Wang Y, Huang E, Jeong SY, Woo HY, Guo X, Feng K. Multi-Selenophene Incorporated Thiazole Imide-Based n-Type Polymers for High-Performance Organic Thermoelectrics. Angew Chem Int Ed Engl 2024; 63:e202316214. [PMID: 37996990 DOI: 10.1002/anie.202316214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 11/25/2023]
Abstract
Developing polymers with high electrical conductivity (σ) after n-doping is a great challenge for the advance of the field of organic thermoelectrics (OTEs). Herein, we report a series of thiazole imide-based n-type polymers by gradually increasing selenophene content in polymeric backbone. Thanks to the strong intramolecular noncovalent N⋅⋅⋅S interaction and enhanced intermolecular Se⋅⋅⋅Se interaction, with the increase of selenophene content, the polymers show gradually lowered LUMOs, more planar backbone, and improved film crystallinity versus the selenophene-free analogue. Consequently, polymer PDTzSI-Se with the highest selenophene content achieves a champion σ of 164.0 S cm-1 and a power factor of 49.0 μW m-1 K-2 in the series when applied in OTEs after n-doping. The σ value is the highest one for n-type donor-acceptor OTE materials reported to date. Our work indicates that selenophene substitution is a powerful strategy for developing high-performance n-type OTE materials and selenophene incorporated thiazole imides offer an excellent platform in enabling n-type polymers with high backbone coplanarity, deep-lying LUMO and enhanced mobility/conductivity.
Collapse
Affiliation(s)
- Yongchun Li
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Wenchang Wu
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Yimei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Enmin Huang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Sang Young Jeong
- Department of Chemistry, Korea University, Seoul, 136-713, South Korea
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul, 136-713, South Korea
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Kui Feng
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| |
Collapse
|
8
|
Zinchenko SV, Kobelevskaya VA, Popov AV. 6aH-Benzo[α]fluorene: NMR evidence of the unexpected product of the reaction of butyryl chloride with 1,2-diphenylacetylene. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:61-68. [PMID: 37937481 DOI: 10.1002/mrc.5406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 11/09/2023]
Abstract
The reaction of butyryl chloride with ethynylbenzene in the presence of AlCl3 afforded a mixture of the Z/E-isomers of 1-chloro-2-phenylhex-1-en-3-one. 1,2-Diphenylethyne under these conditions gave a novel polycarbocycle core, 6aH-benzo[a]fluorene. The chemical structure of 11-chloro-5,6-diphenyl-6a-propyl-6aH-benzo[a]fluorene was established by means of IE-MS, 1 H, 13 C NMR, COSY, HSQC, HMBC, and 2D INADEQUATE technique.
Collapse
Affiliation(s)
- Sergey V Zinchenko
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Science, Irkutsk, Russian Federation
| | - Valentina A Kobelevskaya
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Science, Irkutsk, Russian Federation
| | - Alexander V Popov
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Science, Irkutsk, Russian Federation
| |
Collapse
|
9
|
Xu M, Wei C, Zhang Y, Chen J, Li H, Zhang J, Sun L, Liu B, Lin J, Yu M, Xie L, Huang W. Coplanar Conformational Structure of π-Conjugated Polymers for Optoelectronic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2301671. [PMID: 37364981 DOI: 10.1002/adma.202301671] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/05/2023] [Indexed: 06/28/2023]
Abstract
Hierarchical structure of conjugated polymers is critical to dominating their optoelectronic properties and applications. Compared to nonplanar conformational segments, coplanar conformational segments of conjugated polymers (CPs) demonstrate favorable properties for applications as a semiconductor. Herein, recent developments in the coplanar conformational structure of CPs for optoelectronic devices are summarized. First, this review comprehensively summarizes the unique properties of planar conformational structures. Second, the characteristics of the coplanar conformation in terms of optoelectrical properties and other polymer physics characteristics are emphasized. Five primary characterization methods for investigating the complanate backbone structures are illustrated, providing a systematical toolbox for studying this specific conformation. Third, internal and external conditions for inducing the coplanar conformational structure are presented, offering guidelines for designing this conformation. Fourth, the optoelectronic applications of this segment, such as light-emitting diodes, solar cells, and field-effect transistors, are briefly summarized. Finally, a conclusion and outlook for the coplanar conformational segment regarding molecular design and applications are provided.
Collapse
Affiliation(s)
- Man Xu
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Chuanxin Wei
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Yunlong Zhang
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jiefeng Chen
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Hao Li
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jingrui Zhang
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Lili Sun
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Bin Liu
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jinyi Lin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Mengna Yu
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Linghai Xie
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| |
Collapse
|
10
|
Na W, An L, Wu Q, Cai K, Ou C, Zhuang W. Sulfone/Carbonyl-Based Donor-Acceptor Fluorescent Dyes: Synthesis, Structures, Photophysical Properties and Cell Imaging. Chemistry 2023; 29:e202301997. [PMID: 37658616 DOI: 10.1002/chem.202301997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/03/2023]
Abstract
Electron-accepting units play vital roles in constructing donor-acceptor (D-A) conjugated organic optoelectronic materials; the electronic structures and functions of the acceptors need to be carefully unveiled to controllably tailor the optoelectronic properties. We have synthesized two D-A conjugated organic fluorophores, TPA-SO and TPA-CO, with similar molecular skeletons based on sulfone- or carbonyl-containing polycyclic aromatic acceptors. Both TPA-SO and TPA-CO display obvious solvent polarity-dependent photophysical properties and large Stokes shift of over 100 nm for strong intramolecular charge transfer processes. Experimental evidence indicates that the sulfone group in TPA-SO merely serves as a strong electron-withdrawing unit. TPA-SO shows yellowish-green emission with a peak at 542 nm and an absolute photoluminescence quantum yield (PLQY) of 98 % in solution, whereas the carbonyl group in TPA-CO can act as both an electron-withdrawing unit and spin transition convertor, so TPA-CO displays red emission with a low absolute PLQY of 0.32 % in solution. Impressively, upon going from solution to aggregate state, TPA-SO nanoparticles keep a high PLQY of 9.5 % and moderate biocompatibility, thus they are good nano-agents for cellular fluorescence imaging. The results reveal that the inherent acceptor characteristic acts as a crucial effect in the photophysical properties and applications of the organic fluorophores.
Collapse
Affiliation(s)
- Weidan Na
- College of Chemistry and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221111, P. R. China
| | - Lei An
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, P. R. China
| | - Qiong Wu
- College of Chemistry and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221111, P. R. China
| | - Keying Cai
- College of Chemistry and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221111, P. R. China
| | - Changjin Ou
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, P. R. China
| | - Wenchang Zhuang
- College of Chemistry and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221111, P. R. China
| |
Collapse
|
11
|
Kim TH, Jang JG, Kim SH, Hong JI. Ambient-Stable n-Type Carbon Nanotube/Organic Small-Molecule Thermoelectrics Enabled by Energy Level Control. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46872-46880. [PMID: 37774009 DOI: 10.1021/acsami.3c09222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
The stability of n-type organic and hybrid thermoelectric materials is limited in terms of their practical application to p-n parallel thermoelectric devices. We demonstrate the ambient stability of an n-type single-walled carbon nanotube/organic small-molecule (SWNT/OSM) hybrid by deepening the lowest occupied molecular orbital energy level. This hybrid exhibited the best figure of merit (0.032) among n-type SWNT/OSM hybrid thermoelectrics and an enhanced power factor of 291.0 μW m-1 K-2. Furthermore, we observed that the n-type thermoelectric stability of a hybrid of SWNT and pip containing two N-ethylpiperidinyl groups on both sides of a naphthalenediimide core was retained at 87% over 7 months (220 days) under ambient conditions without encapsulation.
Collapse
Affiliation(s)
- Tae-Hoon Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jae Gyu Jang
- Department of Carbon Convergence Engineering, Wonkwang University, Iksan 54538, Korea
| | - Sung Hyun Kim
- Department of Carbon Convergence Engineering, Wonkwang University, Iksan 54538, Korea
| | - Jong-In Hong
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
12
|
Poriel C, Rault-Berthelot J. Dihydroindenofluorenes as building units in organic semiconductors for organic electronics. Chem Soc Rev 2023; 52:6754-6805. [PMID: 37702538 DOI: 10.1039/d1cs00993a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
This review aims to discuss organic semiconductors constructed on dihydroindenofluorene positional isomers, which are key molecular scaffolds in organic electronics. Bridged oligophenylenes are key organic semiconductors that have allowed the development of organic electronic technologies. Dihydroindenofluorenes (DHIFs) belong to the family of bridged oligophenylenes constructed on a terphenyl backbone. They have proven to be very promising building blocks for the construction of highly efficient organic semiconductors for all OE devices, namely organic light emitting diodes (OLEDs), phosphorescent OLEDs, organic field-effect transistors (OFETs), solar cells, etc.
Collapse
Affiliation(s)
- Cyril Poriel
- UMR CNRS 6226-Université Rennes 1-ISCR-Campus de Beaulieu, 35042 Rennes, France.
| | | |
Collapse
|
13
|
Can A, Deneme I, Demirel G, Usta H. Solution-Processable Indenofluorenes on Polymer Brush Interlayer: Remarkable N-Channel Field-Effect Transistor Characteristics under Ambient Conditions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41666-41679. [PMID: 37582254 PMCID: PMC10485804 DOI: 10.1021/acsami.3c07365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/04/2023] [Indexed: 08/17/2023]
Abstract
The development of solution-processable n-type molecular semiconductors that exhibit high electron mobility (μe ≥ 0.5 cm2/(V·s)) under ambient conditions, along with high current modulation (Ion/Ioff ≥ 106-107) and near-zero turn on voltage (Von) characteristics, has lagged behind that of other semiconductors in organic field-effect transistors (OFETs). Here, we report the design, synthesis, physicochemical and optoelectronic characterizations, and OFET performances of a library of solution-processable, low-LUMO (-4.20 eV) 2,2'-(2,8-bis(3-alkylthiophen-2-yl)indeno[1,2-b]fluorene-6,12-diylidene)dimalononitrile small molecules, β,β'-Cn-TIFDMTs, having varied alkyl chain lengths (n = 8, 12, 16). An intriguing correlation is identified between the solid-isotropic liquid transition enthalpies and the solubilities, indicating that cohesive energetics, which are tuned by alkyl chains, play a pivotal role in determining solubility. The semiconductors were spin-coated under ambient conditions on densely packed (grafting densities of 0.19-0.45 chains/nm2) ultrathin (∼3.6-6.6 nm) polystyrene-brush surfaces. It is demonstrated that, on this polymer interlayer, thermally induced dispersive interactions occurring over a large number of methylene units between flexible alkyl chains (i.e., zipper effect) are critical to achieve a favorable thin-film crystallization with a proper microstructure and morphology for efficient charge transport. While C8 and C16 chains show a minimal zipper effect upon thermal annealing, C12 chains undergo an extended interdigitation involving ∼6 methylene units. This results in the formation of large crystallites having lamellar stacking ((100) coherence length ∼30 nm) in the out-of-plane direction and highly favorable in-plane π-interactions in a slipped-stacked arrangement. Uninterrupted microstructural integrity (i.e., no face-on (010)-oriented crystallites) was found to be critical to achieving high mobilities. The excellent crystallinity of the C12-substituted semiconductor thin film was also evident in the observed crystal lattice vibrations (phonons) at 58 cm-1 in low-frequency Raman scattering. Two-dimensional micrometer-sized (∼1-3 μm), sharp-edged plate-like grains lying parallel with the substrate plane were observed. OFETs fabricated by the current small molecules showed excellent n-channel behavior in ambient with μe values reaching ∼0.9 cm2/(V·s), Ion/Ioff ∼ 107-108, and Von ≈ 0 V. Our study not only demonstrates one of the highest performing n-channel OFET devices reported under ambient conditions via solution processing but also elucidates significant relationships among chemical structures, molecular properties, self-assembly from solution into a thin film, and semiconducting thin-film properties. The design rationales presented herein may open up new avenues for the development of high-electron-mobility novel electron-deficient indenofluorene and short-axis substituted donor-acceptor π-architectures via alkyl chain engineering and interface engineering.
Collapse
Affiliation(s)
- Ayse Can
- Department
of Nanotechnology Engineering, Abdullah
Gül University, 38080 Kayseri, Turkey
| | - Ibrahim Deneme
- Department
of Nanotechnology Engineering, Abdullah
Gül University, 38080 Kayseri, Turkey
| | - Gokhan Demirel
- Bio-inspired
Materials Research Laboratory (BIMREL), Department of Chemistry, Gazi University, 06500 Ankara, Turkey
| | - Hakan Usta
- Department
of Nanotechnology Engineering, Abdullah
Gül University, 38080 Kayseri, Turkey
| |
Collapse
|
14
|
Wu Z, Liu W, Yang X, Li W, Zhao L, Chi K, Xiao X, Yan Y, Zeng W, Liu Y, Chen H, Zhao Y. An In-Situ Cyanidation Strategy To Access Tetracyanodiacenaphthoanthracene Diimides with High Electron Mobilities Exceeding 10 cm 2 V -1 s -1. Angew Chem Int Ed Engl 2023; 62:e202307695. [PMID: 37394618 DOI: 10.1002/anie.202307695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/25/2023] [Accepted: 06/30/2023] [Indexed: 07/04/2023]
Abstract
A family of novel highly π-extended tetracyano-substituted acene diimides, named as tetracyanodiacenaphthoanthracene diimides (TCDADIs), have been synthesized using a facile four-fold Knoevenagel condensation strategy. Unlike conventional cyano substitution reactions, our approach enables access to a large π-conjugated backbone with the in-situ formation of four cyano substitutents at room temperature while avoiding extra cyano-functionalization reactions. TCDADIs decorated with different N-alkyl substituents present good solubility, near-coplanar backbones, good crystallinity, and low-lying lowest unoccupied molecular orbital energies of -4.33 eV, all of which contribute to desirable electron-transport performance when applied in organic field-effect transistors (OFET). The highest electron mobility of an OFET based on a 2-hexyldecyl-substituted TCDADI single crystal reaches 12.6 cm2 V-1 s-1 , which is not only among the highest values for the reported n-type organic semiconductor materials (OSMs) but also exceeds that of most n-type OSMs decorated with imide units.
Collapse
Affiliation(s)
- Zeng Wu
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Wentao Liu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Xin Yang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Wenhao Li
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Lingli Zhao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Kai Chi
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Xuetao Xiao
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yongkun Yan
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Weixuan Zeng
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Huajie Chen
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Yan Zhao
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
15
|
Burmeister D, Eljarrat A, Guerrini M, Röck E, Plaickner J, Koch CT, Banerji N, Cocchi C, List-Kratochvil EJW, Bojdys MJ. On the non-bonding valence band and the electronic properties of poly(triazine imide), a graphitic carbon nitride. Chem Sci 2023; 14:6269-6277. [PMID: 37325148 PMCID: PMC10266476 DOI: 10.1039/d3sc00667k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/17/2023] [Indexed: 06/17/2023] Open
Abstract
Graphitic carbon nitrides are covalently-bonded, layered, and crystalline semiconductors with high thermal and oxidative stability. These properties make graphitic carbon nitrides potentially useful in overcoming the limitations of 0D molecular and 1D polymer semiconductors. In this contribution, we study structural, vibrational, electronic and transport properties of nano-crystals of poly(triazine-imide) (PTI) derivatives with intercalated Li- and Br-ions and without intercalates. Intercalation-free poly(triazine-imide) (PTI-IF) is corrugated or AB stacked and partially exfoliated. We find that the lowest energy electronic transition in PTI is forbidden due to a non-bonding uppermost valence band and that its electroluminescence from the π-π* transition is quenched which severely limits their use as emission layer in electroluminescent devices. THz conductivity in nano-crystalline PTI is up to eight orders of magnitude higher than the macroscopic conductivity of PTI films. We find that the charge carrier density of PTI nano-crystals is among the highest of all known intrinsic semiconductors, however, macroscopic charge transport in films of PTI is limited by disorder at crystal-crystal interfaces. Future device applications of PTI will benefit most from single crystal devices that make use of electron transport in the lowest, π-like conduction band.
Collapse
Affiliation(s)
- David Burmeister
- Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin Brook-Taylor-Str. 6 12489 Germany
| | - Alberto Eljarrat
- Humboldt-Universität zu Berlin, Institut für Physik, IRIS Adlershof Zum Großen Windkanal 2 12489 Berlin Germany
| | - Michele Guerrini
- Humboldt-Universität zu Berlin, Institut für Physik, IRIS Adlershof Zum Großen Windkanal 2 12489 Berlin Germany
- Institute of Physics, Carl von Ossietzky Universität Oldenburg 26129 Oldenburg Germany
| | - Eva Röck
- Department for Chemistry and Biochemistry, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Julian Plaickner
- Humboldt-Universität zu Berlin, Institut für Physik, IRIS Adlershof Zum Großen Windkanal 2 12489 Berlin Germany
| | - Christoph T Koch
- Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin Brook-Taylor-Str. 6 12489 Germany
- Humboldt-Universität zu Berlin, Institut für Physik, IRIS Adlershof Zum Großen Windkanal 2 12489 Berlin Germany
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH Hahn-Meitner-Platz 1 14109 Berlin Germany
| | - Natalie Banerji
- Department for Chemistry and Biochemistry, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Caterina Cocchi
- Humboldt-Universität zu Berlin, Institut für Physik, IRIS Adlershof Zum Großen Windkanal 2 12489 Berlin Germany
- Institute of Physics, Carl von Ossietzky Universität Oldenburg 26129 Oldenburg Germany
| | - Emil J W List-Kratochvil
- Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin Brook-Taylor-Str. 6 12489 Germany
- Humboldt-Universität zu Berlin, Institut für Physik, IRIS Adlershof Zum Großen Windkanal 2 12489 Berlin Germany
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH Hahn-Meitner-Platz 1 14109 Berlin Germany
| | - Michael J Bojdys
- Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin Brook-Taylor-Str. 6 12489 Germany
| |
Collapse
|
16
|
Hayakawa M, Sunayama N, Takagi SI, Matsuo Y, Tamaki A, Yamaguchi S, Seki S, Fukazawa A. Flattened 1D fragments of fullerene C 60 that exhibit robustness toward multi-electron reduction. Nat Commun 2023; 14:2741. [PMID: 37188690 DOI: 10.1038/s41467-023-38300-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 04/21/2023] [Indexed: 05/17/2023] Open
Abstract
Fullerenes are compelling molecular materials owing to their exceptional robustness toward multi-electron reduction. Although scientists have attempted to address this feature by synthesizing various fragment molecules, the origin of this electron affinity remains unclear. Several structural factors have been suggested, including high symmetry, pyramidalized carbon atoms, and five-membered ring substructures. To elucidate the role of the five-membered ring substructures without the influence of high symmetry and pyramidalized carbon atoms, we herein report the synthesis and electron-accepting properties of oligo(biindenylidene)s, a flattened one-dimensional fragment of fullerene C60. Electrochemical studies corroborated that oligo(biindenylidene)s can accept electrons up to equal to the number of five-membered rings in their main chains. Moreover, ultraviolet/visible/near-infrared absorption spectroscopy revealed that oligo(biindenylidene)s exhibit enhanced absorption covering the entire visible region relative to C60. These results highlight the significance of the pentagonal substructure for attaining stability toward multi-electron reduction and provide a strategy for the molecular design of electron-accepting π-conjugated hydrocarbons even without electron-withdrawing groups.
Collapse
Affiliation(s)
- Masahiro Hayakawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Institute for Advanced Study, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
- Department of Chemistry, Graduate School of Science, and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Naoyuki Sunayama
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shu I Takagi
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yu Matsuo
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Asuka Tamaki
- Department of Chemistry, Graduate School of Science, and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Shigehiro Yamaguchi
- Department of Chemistry, Graduate School of Science, and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya, 464-8601, Japan
| | - Shu Seki
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Aiko Fukazawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Institute for Advanced Study, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
17
|
Abstract
Chemical doping of organic semiconductors (OSCs) enables feasible tuning of carrier concentration, charge mobility, and energy levels, which is critical for the applications of OSCs in organic electronic devices. However, in comparison with p-type doping, n-type doping has lagged far behind. The achievement of efficient and air-stable n-type doping in OSCs would help to significantly improve electron transport and device performance, and endow new functionalities, which are, therefore, gaining increasing attention currently. In this review, the issue of doping efficiency and doping air stability in n-type doped OSCs was carefully addressed. We first clarified the main factors that influenced chemical doping efficiency in n-type OSCs and then explain the origin of instability in n-type doped films under ambient conditions. Doping microstructure, charge transfer, and dissociation efficiency were found to determine the overall doping efficiency, which could be precisely tuned by molecular design and post treatments. To further enhance the air stability of n-doped OSCs, design strategies such as tuning the lowest unoccupied molecular orbital (LUMO) energy level, charge delocalization, intermolecular stacking, in situ n-doping, and self-encapsulations are discussed. Moreover, the applications of n-type doping in advanced organic electronics, such as solar cells, light-emitting diodes, field-effect transistors, and thermoelectrics are being introduced. Finally, an outlook is provided on novel doping ways and material systems that are aimed at stable and efficient n-type doped OSCs.
Collapse
Affiliation(s)
- Dafei Yuan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Wuyue Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Xiaozhang Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
18
|
Zhang N, Li W, Zhu J, Wang T, Zhang R, Chi K, Liu Y, Zhao Y, Lu X. Periphery Fusion Strategy of a Carbazole-Based Macrocycle toward Coplanar N-Heterocycloarene for High-Mobility Single-Crystal Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300094. [PMID: 36807375 DOI: 10.1002/adma.202300094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/10/2023] [Indexed: 05/19/2023]
Abstract
Designing (hetero)cycloarenes through the modifications of the π-topology and molecular packing of organic semiconductors has recently garnered considerable attention. However, their applications as an organic active layer in field-effect transistors are very limited, and the obtained hole carrier mobilities are less than 1 cm2 V-1 s-1 . In this work, a novel alkyl-substituted coplanar N-heterocycloarene (FM-C4) containing four carbazole units is successfully synthesized in crystalline form. As compared to the corresponding single-bond-linked carbazole-based macrocycle M-C4, it is found that the periphery fusion strategy greatly changes the electronic structures, energy levels, photophysical properties, host-guest interactions with fullerenes, and molecular crystal stacking motifs. In particular, the fully fused N-heterocycloarene FM-C4 exhibits a herringbone packing structure with an unusual long-range π-π overlap distance as low as 3.19 Å, whereas the single crystal of M-C4 demonstrates no π-π interactions. As a consequence, FM-C4 in single-crystal transistors displays the highest hole mobility of 2.06 cm2 V-1 s-1 , significantly outperforming M-C4 and all the reported (hetero)cycloarenes and suggesting the high potential of (hetero)cycloarenes for organic electronic applications.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, P. R. China
| | - Wenhao Li
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, P. R. China
| | - Jiangyu Zhu
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, P. R. China
| | - Teng Wang
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, P. R. China
| | - Rong Zhang
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, P. R. China
| | - Kai Chi
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, P. R. China
| | - Yunqi Liu
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, P. R. China
| | - Yan Zhao
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, P. R. China
| | - Xuefeng Lu
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
19
|
Zhang W, Shi K, Lai J, Zhou Y, Wei X, Che Q, Wei J, Wang L, Yu G. Record-High Electron Mobility Exceeding 16 cm 2 V - 1 s - 1 in Bisisoindigo-Based Polymer Semiconductor with a Fully Locked Conjugated Backbone. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300145. [PMID: 36849648 DOI: 10.1002/adma.202300145] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/22/2023] [Indexed: 05/17/2023]
Abstract
Polymer semiconductors with mobilities exceeding 10 cm2 V- 1 s- 1 , especially ambipolar and n-type polymer semiconductors, are still rare, although they are of great importance for fabricating polymer field-effect transistors (PFETs) toward commercial high-grade electronics. Herein, two novel donor-acceptor copolymers, PNFFN-DTE and PNFFN-FDTE, are designed and synthesized based on the electron-deficient bisisoindigo (NFFN) and electron-rich dithienylethylenes (DTE or FDTE). The copolymer PNFFN-DTE, containing NFFN and DTE, possesses a partially locked polymeric conjugated backbone, whereas PNFFN-FDTE, containing NFFN and FDTE, has a fully locked one. Fluorine atoms in FDTE not only induce the formation of additional CH∙∙∙F hydrogen bonds, but also lower frontier molecular orbitals for PNFFN-FDTE. Both PNFFN-DTE and PNFFN-FDTE form more ordered molecular packing in thin films prepared from a polymer solution in bicomponent solvent containing 1,2-dichlorobenzene (DCB) and 1-chloronaphthalene (with volume ratio of 99.2/0.8) than pure DCB. The two copolymers-based flexible PFETs exhibit ambipolar charge-transport properties. Notably, the bicomponent solvent-processed PNFFN-FDTE-based PFETs afford a high electron mobility of 16.67 cm2 V-1 s-1 , which is the highest electron-transport mobility for PFETs reported so far. The high electron mobility of PNFFN-FDTE is attributed to its fully locked conjugated backbone, dense molecular packing, and much matched LUMO energy level.
Collapse
Affiliation(s)
- Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Keli Shi
- College of Physics and Electronic Information Engineering, Zhejiang Normal University, Zhejiang, 321004, P. R. China
| | - Jing Lai
- College of Physics and Electronic Information Engineering, Zhejiang Normal University, Zhejiang, 321004, P. R. China
| | - Yankai Zhou
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xuyang Wei
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qian Che
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinbei Wei
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Liping Wang
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
20
|
Brandner L, Müller TJJ. Multicomponent synthesis of chromophores – The one-pot approach to functional π-systems. Front Chem 2023; 11:1124209. [PMID: 37007054 PMCID: PMC10065161 DOI: 10.3389/fchem.2023.1124209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/26/2023] [Indexed: 03/19/2023] Open
Abstract
Multicomponent reactions, conducted in a domino, sequential or consecutive fashion, have not only considerably enhanced synthetic efficiency as one-pot methodology, but they have also become an enabling tool for interdisciplinary research. The highly diversity-oriented nature of the synthetic concept allows accessing huge structural and functional space. Already some decades ago this has been recognized for life sciences, in particular, lead finding and exploration in pharma and agricultural chemistry. The quest for novel functional materials has also opened the field for diversity-oriented syntheses of functional π-systems, i.e. dyes for photonic and electronic applications based on their electronic properties. This review summarizes recent developments in MCR syntheses of functional chromophores highlighting syntheses following either the framework forming scaffold approach by establishing connectivity between chromophores or the chromogenic chromophore approach by de novo formation of chromophore of interest. Both approaches warrant rapid access to molecular functional π-systems, i.e. chromophores, fluorophores, and electrophores for various applications.
Collapse
|
21
|
Zhao X, Yu X, Liu M, Huo Y, Ji S, Li X, Chen Q. Direct Benzylic C-H Functionalization with Fluorenones under Visible-Light Irradiation. J Org Chem 2023; 88:2612-2620. [PMID: 36725672 DOI: 10.1021/acs.joc.2c02766] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
An external photocatalyst-free benzylic C-H functionalization with fluorenones under visible-light irradiation has been achieved. This transformation provides an efficient synthetic approach to 9-benzylated fluorenols in ≤91% yield with 100% atom economy under mild conditions. Spectroscopic studies suggest that a reductive quenching of photoexcited fluorenones with toluene derivatives generates ketyl radicals and benzyl radicals, which undergo a cross-coupling to afford the desired fluorenols.
Collapse
Affiliation(s)
- Xi Zhao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Xiaofeng Yu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Mingjun Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Shaomin Ji
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Xianwei Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Qian Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
22
|
Brassard S, Sangachin MH, Leclerc M. Toward Defect Suppression in Polythiophenes Synthesized by Direct (Hetero)Arylation Polymerization. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Samuel Brassard
- Département de Chimie, Université Laval, Quebec City G1V 0A6, Quebec, Canada
| | | | - Mario Leclerc
- Département de Chimie, Université Laval, Quebec City G1V 0A6, Quebec, Canada
| |
Collapse
|
23
|
Tajima K, Matsuo K, Yamada H, Fukui N, Shinokubo H. Diazazethrene bisimide: a strongly electron-accepting π-system synthesized via the incorporation of both imide substituents and imine-type nitrogen atoms into zethrene. Chem Sci 2023; 14:635-642. [PMID: 36741537 PMCID: PMC9847653 DOI: 10.1039/d2sc05992d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
The development of highly electron-accepting π-systems is a fundamentally challenging issue despite their potential applications as high-performance n-type organic semiconductors, organic rechargeable batteries, and stable redox-active organocatalysts. Herein, we demonstrate that the incorporation of both imide substituents and imine-type nitrogen atoms into zethrene affords the strongly electron-accepting π-system diazazethrene bisimide (DAZBI). DAZBI has a low-lying LUMO (-4.3 eV vs. vacuum) and is readily reduced by the weak reductant l-ascorbic acid to afford the corresponding dihydro species. The injection of two electrons into DAZBI provides the corresponding dianion. These reduced species display remarkable stability, even under ambient conditions, and an intense red fluorescence. A DAZBI dimer, which was also synthesized, effectively accommodated four electrons upon electron injection.
Collapse
Affiliation(s)
- Keita Tajima
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University Furo-cho, Chikusa-ku Nagoya Aichi 464-8603 Japan
| | - Kyohei Matsuo
- Division of Material Science, Graduate of School of Science and Technology, Nara Institute of Science and Technology 8916-5 Takayama-cho, Ikoma Nara 630-0912 Japan
| | - Hiroko Yamada
- Division of Material Science, Graduate of School of Science and Technology, Nara Institute of Science and Technology 8916-5 Takayama-cho, Ikoma Nara 630-0912 Japan
| | - Norihito Fukui
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University Furo-cho, Chikusa-ku Nagoya Aichi 464-8603 Japan
- PRESTO, Japan Science and Technology Agency (JST) Kawaguchi Saitama 332-0012 Japan
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University Furo-cho, Chikusa-ku Nagoya Aichi 464-8603 Japan
| |
Collapse
|
24
|
Wang J, Wu L, Wang Q. Synthesis and Characterization of New Indeno[1,2- b]fluorene-6,12-dione Derivatives. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202206038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
25
|
Li M, Miao C, Zou M, Guo J, Wang H, Gao M, Zhang H, Deng Z. The development of stretchable and self-repairing materials applied to electronic skin. Front Chem 2023; 11:1198067. [PMID: 37188092 PMCID: PMC10175680 DOI: 10.3389/fchem.2023.1198067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
Flexible electronic devices play a key role in the fields of flexible batteries, electronic skins, and flexible displays, which have attracted more and more attention in the past few years. Among them, the application areas of electronic skin in new energy, artificial intelligence, and other high-tech applications are increasing. Semiconductors are an indispensable part of electronic skin components. The design of semiconductor structure not only needs to maintain good carrier mobility, but also considers extensibility and self-healing capability, which is always a challenging work. Though flexible electronic devices are important for our daily life, the research on this topic is quite rare in the past few years. In this work, the recently published work regarding to stretchable semiconductors as well as self-healing conductors are reviewed. In addition, the current shortcomings, future challenges as well as an outlook of this technology are discussed. The final goal is to outline a theoretical framework for the design of high-performance flexible electronic devices that can at the same time address their commercialization challenges.
Collapse
Affiliation(s)
- Mei Li
- National and Local Joint Engineering Laboratory for Slag Comprehensive Utilization and Environmental Technology, School of Materials Science and Engineering, Shaanxi University of Technology (SNUT), Hanzhong, Shaanxi, China
| | - Chuanqi Miao
- Key Laboratory of Rubber–Plastic of Ministry of Education (QUST), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Muhua Zou
- Key Laboratory of Rubber–Plastic of Ministry of Education (QUST), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Jiahu Guo
- Key Laboratory of Rubber–Plastic of Ministry of Education (QUST), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Hongzhen Wang
- Key Laboratory of Rubber–Plastic of Ministry of Education (QUST), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Miao Gao
- CART Tire Co., Ltd, Qilu SEZ, Krong Svay Rieng, Svay Rieng, Cambodia
| | - Haichang Zhang
- Key Laboratory of Rubber–Plastic of Ministry of Education (QUST), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, China
- *Correspondence: Haichang Zhang, ; Zhifeng Deng,
| | - Zhifeng Deng
- National and Local Joint Engineering Laboratory for Slag Comprehensive Utilization and Environmental Technology, School of Materials Science and Engineering, Shaanxi University of Technology (SNUT), Hanzhong, Shaanxi, China
- *Correspondence: Haichang Zhang, ; Zhifeng Deng,
| |
Collapse
|
26
|
Irfan A, Kalam A, Al-Sehemi AG, Dubey M. Investigation of the Effect of Substituents on Electronic and Charge Transport Properties of Benzothiazole Derivatives. Molecules 2022; 27:8672. [PMID: 36557807 PMCID: PMC9781107 DOI: 10.3390/molecules27248672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/27/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
A series of new benzothiazole-derived donor-acceptor-based compounds (Comp1-4) were synthesized and characterized with the objective of tuning their multifunctional properties, i.e., charge transport, electronic, and optical. All the proposed structural formulations (Comp1-4) were commensurate using FTIR, 1H NMR, 13C NMR, ESI-mass, UV-vis, and elemental analysis techniques. The effects of the electron-donating group (-CH3) and electron-withdrawing group (-NO2) on the optoelectronic and charge transfer properties were studied. The substituent effect on absorption was calculated at the TD-B3LYP/6-31+G** level in the gas and solvent phases. The effect of solvent polarity on the absorption spectra using various polar and nonpolar solvents, i.e., ethanol, acetone, DMF, and DMSO was investigated. Light was shed on the charge transport in benzothiazole compounds by calculating electron affinity, ionization potential, and reorganization energies. Furthermore, the synthesized compounds were used to prepare thin films on the FTO substrate to evaluate the charge carrier mobility and other related device parameters with the help of I-V characteristic measurements.
Collapse
Affiliation(s)
- Ahmad Irfan
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Research Center for Advanced Materials Science, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Abul Kalam
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Abdullah G. Al-Sehemi
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Mrigendra Dubey
- Soft Materials Research Laboratory, Discipline of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Indore 453552, India
| |
Collapse
|
27
|
Irfan A, Al-Sehemi AG, Kalam A. Tuning the Electronic and Charge Transport Properties of Schiff Base Compounds by Electron Donor and/or Acceptor Groups. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8590. [PMID: 36500086 PMCID: PMC9736113 DOI: 10.3390/ma15238590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/07/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Organic semiconductors have gained substantial interest as active materials in electronic devices due to their advantages over conventional semiconductors. We first designed four Schiff base compounds, then the effect of electron donor/acceptor groups (methyl/nitro) was studied on the compounds' electronic and transport nature. The absorption spectra (λabs) were computed by time-dependent DFT at TD-B3LYP/6-31+G** level. The effect of different solvents (ethanol, DMF, DMSO, and acetone) was investigated on the λabs. The substitution of the -NO2 group to the furan moiety at the 5th position in Compound 3 leads to a red-shift in the absorption spectrum. A smaller hole reorganization energy value in Compound 3 would be beneficial to get the hole's intrinsic mobility. In contrast, a reduced-electron reorganization energy value of Compound 4 than hole may result in enhanced electron charge transfer capabilities. The reorganization energies of compounds 1 and 2 exposed balanced hole/electron transport probability. The optical, electronic, and charge transport properties at the molecular level indicate that Compound 3 is suitable for organic electronic device applications.
Collapse
Affiliation(s)
- Ahmad Irfan
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Research Center for Advanced Materials Science, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Abdullah G. Al-Sehemi
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Abul Kalam
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
28
|
Ermolaev NL, Fukin GK, Shavyrin AS, Lopatin MA, Kuznetsova OV, Kryzhkov DI, Ignatov SK, Chuhmanov EP, Berberova NT, Pashchenko KP. Tris(trifluoromethyl)germyl Biphenyl Conjugated Molecular System with Ferrocenyl Substituent: Confirmation of Photoinduced Intramolecular Charge Transfer to the Germanium Center. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
29
|
Imide‐Functionalized Fluorenone and Its Cyanated Derivative Based n‐Type Polymers: Synthesis, Structure–Property Correlations, and Thin‐Film Transistor Performance. Angew Chem Int Ed Engl 2022; 61:e202205315. [DOI: 10.1002/anie.202205315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Indexed: 11/07/2022]
|
30
|
Chen Z, Li J, Wang J, Yang K, Zhang J, Wang Y, Feng K, Li B, Wei Z, Guo X. Imide‐Functionalized Fluorenone and Its Cyanated Derivative Based n‐Type Polymers: Synthesis, Structure‐Property Correlations, and Thin‐Film Transistor Performance. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zhicai Chen
- Southern University of Science and Technology Materials science and thchnology CHINA
| | - Jianfeng Li
- Southern University of Science and Technology Materials science and thchnology CHINA
| | - Junwei Wang
- Southern University of Science and Technology Materials science and thchnology CHINA
| | - Kun Yang
- Southern University of Science and Technology Materials science and thchnology CHINA
| | - Jianqi Zhang
- National Center for Nanoscience and Technology Cas Key Laborotary of Nanosystem and Hierarcheical Frabration CHINA
| | - Yimei Wang
- Southern University of Science and Technology Materials science and thchnology CHINA
| | - Kui Feng
- Southern University of Science and Technology Materials science and thchnology CHINA
| | - Bolin Li
- Southern University of Science and Technology Materials science and thchnology CHINA
| | - Zhixiang Wei
- National Center for Nanoscience and Technology Cas Key Laborotary of Nanosystem and Hierarcheical Frabration CHINA
| | - Xugang Guo
- Southern University of Science and Technology Materials Science and Engineering No 1088, Xueyuan Rd. Xili, Nanshan 518055 Shenzhen CHINA
| |
Collapse
|
31
|
Feng K, Shan W, Wang J, Lee JW, Yang W, Wu W, Wang Y, Kim BJ, Guo X, Guo H. Cyano-Functionalized n-Type Polymer with High Electron Mobility for High-Performance Organic Electrochemical Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201340. [PMID: 35429014 DOI: 10.1002/adma.202201340] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
n-Type organic mixed ionic-electronic conductors (OMIECs) with high electron mobility are scarce and highly challenging to develop. As a result, the figure-of-merit (µC*) of n-type organic electrochemical transistors (OECTs) lags far behind the p-type analogs, restraining the development of OECT-based low-power complementary circuits and biosensors. Here, two n-type donor-acceptor (D-A) polymers based on fused bithiophene imide dimer f-BTI2 as the acceptor unit and thienylene-vinylene-thienylene (TVT) as the donor co-unit are reported. The cyanation of TVT enables polymer f-BTI2g-TVTCN with simultaneously enhanced ion-uptake ability, film structural order, and charge-transport property. As a result, it is able to obtain a high volumetric capacitance (C*) of 170 ± 22 F cm-3 and a record OECT electron mobility (μe,OECT ) of 0.24 cm2 V-1 s-1 for f-BTI2g-TVTCN, subsequently achieving a state-of-the-art µC* of 41.3 F cm-1 V-1 s-1 and geometry-normalized transconductance (gm,norm ) of 12.8 S cm-1 in n-type accumulation-mode OECTs. In contrast, only a moderate µC* of 1.50 F cm-1 V-1 s-1 is measured for the non-cyanated polymer f-BTI2g-TVT. These remarkable results demonstrate the great power of cyano functionalization of polymer semiconductors in developing n-type OMIECs with substantial electron mobility in aqueous environment for high-performance n-type OECTs.
Collapse
Affiliation(s)
- Kui Feng
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Wentao Shan
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Junwei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Jin-Woo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Wanli Yang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Wenchang Wu
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Yimei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Han Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| |
Collapse
|
32
|
Wang C, Hao H, Tajima K. Essential Role of Triplet Diradical Character for Large Magnetoresistance in Quinoidal Organic Semiconductor with High Electron Mobility. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201045. [PMID: 35347899 PMCID: PMC9165494 DOI: 10.1002/advs.202201045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Indexed: 06/14/2023]
Abstract
A diradicaloid molecule with high semiconducting performance is synthesized based on the quinoidal benzo[1,2-b:4,5-b']dithiophene structure. The diradical character is investigated by quantum chemical calculations and variable temperature electron spin resonance. The diode devices based on this molecule show a large change in electric current in magnetic fields below 100 mT with a strong dependence on the measurement temperatures; as the population of the triplet diradicals increases at high temperatures, the magnetoconductance (MC) values increase. As a result, a MC of -19.4% is achieved at 120 °C, which is the largest negative MC observed for organic molecules to date. In contrast, a smaller diradicaloid molecule based on quinoidal thieno[3,2-b]thiophene without thermally accessible triplet state shows no MC, indicating the essential role of the triplet diradicals. The strong correlation between the MC and the triplet diradical concentrations suggests that the charge conduction in the diradicaloid is suppressed through a spin-blocking mechanism, which can be controlled through the magnetic modulation of the hyperfine fields. The compound forms high-crystallinity thin films and has high monopolar electron transport in organic field-effect transistors, with an average mobility of 1.01 cm2 V-1 s-1 for edge-cast films.
Collapse
Affiliation(s)
- Chao Wang
- RIKEN Center for Emergent Matter Science (CEMS)2‐1 HirosawaWakoSaitama351‐0198Japan
| | - Hua Hao
- RIKEN Center for Emergent Matter Science (CEMS)2‐1 HirosawaWakoSaitama351‐0198Japan
| | - Keisuke Tajima
- RIKEN Center for Emergent Matter Science (CEMS)2‐1 HirosawaWakoSaitama351‐0198Japan
| |
Collapse
|
33
|
Herzog S, Hinz A, Breher F, Podlech J. Cyclopenta-fused polyaromatic hydrocarbons: synthesis and characterisation of a stable, carbon-centred helical radical. Org Biomol Chem 2022; 20:2873-2880. [PMID: 35315476 DOI: 10.1039/d2ob00172a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An air- and moisture-stable helical radical with seven six- and five-membered rings arranged alternately was synthesized by cyclizations in a suitably ortho,ortho'-substituted terphenyl and re-establishment of its conjugation. Mesityl groups at the five-membered rings prevent radical reactions. This cyclopenta-fused polyaromatic hydrocarbon (CP-PAH) was characterized by X-ray crystallographic analysis, EPR and UV/Vis spectroscopy, and by cyclic voltammetry. Further properties and spectra were determined by quantum chemical calculation (spin densities, orbital energies, UV/Vis/NIR and ECD spectra). It turned out that this radical is best described with its radical centre being in the outer five-membered rings, which allows for the largest number of fully intact benzene rings. Its triradical character is rather small and can be neglected. The five-membered rings show significant antiaromatic character, which is highest in the central ring.
Collapse
Affiliation(s)
- Stefan Herzog
- Institut für Organische Chemie, Karlsruher Institut für Technologie (KIT), 76131 Karlsruhe, Fritz-Haber-Weg 6, Germany
| | - Alexander Hinz
- Institut für Anorganische Chemie, Karlsruher Institut für Technologie (KIT), 76131 Karlsruhe, Engesserstraße 15, Germany.
| | - Frank Breher
- Institut für Anorganische Chemie, Karlsruher Institut für Technologie (KIT), 76131 Karlsruhe, Engesserstraße 15, Germany.
| | - Joachim Podlech
- Institut für Organische Chemie, Karlsruher Institut für Technologie (KIT), 76131 Karlsruhe, Fritz-Haber-Weg 6, Germany
| |
Collapse
|
34
|
Jiang H, Zhu S, Cui Z, Li Z, Liang Y, Zhu J, Hu P, Zhang HL, Hu W. High-performance five-ring-fused organic semiconductors for field-effect transistors. Chem Soc Rev 2022; 51:3071-3122. [PMID: 35319036 DOI: 10.1039/d1cs01136g] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Organic molecular semiconductors have been paid great attention due to their advantages of low-temperature processability, low fabrication cost, good flexibility, and excellent electronic properties. As a typical example of five-ring-fused organic semiconductors, a single crystal of pentacene shows a high mobility of up to 40 cm2 V-1 s-1, indicating its potential application in organic electronics. However, the photo- and optical instabilities of pentacene make it unsuitable for commercial applications. But, molecular engineering, for both the five-ring-fused building block and side chains, has been performed to improve the stability of materials as well as maintain high mobility. Here, several groups (thiophenes, pyrroles, furans, etc.) are introduced to design and replace one or more benzene rings of pentacene and construct novel five-ring-fused organic semiconductors. In this review article, ∼500 five-ring-fused organic prototype molecules and their derivatives are summarized to provide a general understanding of this catalogue material for application in organic field-effect transistors. The results indicate that many five-ring-fused organic semiconductors can achieve high mobilities of more than 1 cm2 V-1 s-1, and a hole mobility of up to 18.9 cm2 V-1 s-1 can be obtained, while an electron mobility of 27.8 cm2 V-1 s-1 can be achieved in five-ring-fused organic semiconductors. The HOMO-LUMO levels, the synthesis process, the molecular packing, and the side-chain engineering of five-ring-fused organic semiconductors are analyzed. The current problems, conclusions, and perspectives are also provided.
Collapse
Affiliation(s)
- Hui Jiang
- School of Materials Science and Engineering, Tianjin University, 300072, China. .,Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Shengli Zhu
- School of Materials Science and Engineering, Tianjin University, 300072, China.
| | - Zhenduo Cui
- School of Materials Science and Engineering, Tianjin University, 300072, China.
| | - Zhaoyang Li
- School of Materials Science and Engineering, Tianjin University, 300072, China.
| | - Yanqin Liang
- School of Materials Science and Engineering, Tianjin University, 300072, China.
| | - Jiamin Zhu
- School of Materials Science and Engineering, Tianjin University, 300072, China.
| | - Peng Hu
- School of Physics, Northwest University, Xi'an 710069, China
| | - Hao-Li Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China. .,State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China. .,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
| |
Collapse
|
35
|
Di Giovannantonio M, Fasel R. On‐surface synthesis and atomic scale characterization of unprotected indenofluorene polymers. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Marco Di Giovannantonio
- Empa, Swiss Federal Laboratories for Materials Science and Technology nanotech@surfaces Laboratory Dübendorf Switzerland
| | - Roman Fasel
- Empa, Swiss Federal Laboratories for Materials Science and Technology nanotech@surfaces Laboratory Dübendorf Switzerland
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Bern Switzerland
| |
Collapse
|
36
|
Jinnai K, Kabe R, Lin Z, Adachi C. Organic long-persistent luminescence stimulated by visible light in p-type systems based on organic photoredox catalyst dopants. NATURE MATERIALS 2022; 21:338-344. [PMID: 34845362 DOI: 10.1038/s41563-021-01150-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Organic long-persistent-luminescent (OLPL) materials demonstrating hour-long photoluminescence have practical advantages in applications owing to their flexible design and easy processability. However, the energy absorbed in these materials is typically stored in an intermediate charge-separated state that is unstable when exposed to oxygen, thus preventing persistent luminescence in air unless oxygen penetration is suppressed through crystallization. Moreover, OLPL materials usually require ultraviolet excitation. Here we overcome such limitations and demonstrate amorphous OLPL systems that can be excited by radiation up to 600 nm and exhibit persistent luminescence in air. By adding cationic photoredox catalysts as electron-accepting dopants in a neutral electron-donor host, stable charge-separated states are generated by hole diffusion in these blends. Furthermore, the addition of hole-trapping molecules extends the photoluminescence lifetime. By using a p-type host less reactive to oxygen and tuning the donor-acceptor energy gap, our amorphous blends exhibit persistent luminescence stimulated by visible light even in air, expanding the applicability of OLPL materials.
Collapse
Affiliation(s)
- Kazuya Jinnai
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Fukuoka, Japan
- JST, ERATO Adachi Molecular Exciton Engineering Project, Fukuoka, Japan
| | - Ryota Kabe
- JST, ERATO Adachi Molecular Exciton Engineering Project, Fukuoka, Japan.
- Organic Optoelectronics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| | - Zesen Lin
- JST, ERATO Adachi Molecular Exciton Engineering Project, Fukuoka, Japan
- Organic Optoelectronics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Fukuoka, Japan.
- JST, ERATO Adachi Molecular Exciton Engineering Project, Fukuoka, Japan.
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan.
| |
Collapse
|
37
|
Xhakaza NM, Chokkareddy R, Redhi GG. An Efficient Sensor for the Detection of Zidovudine Based on 1‐Ethyl‐3‐methylimidazolium 1,1,2,2‐tetrafluoroethanesulfonate/ZnO Nanoparticle/MWCNT Glassy Carbon Electrodes**. ChemistrySelect 2021. [DOI: 10.1002/slct.202102531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Rajasekhar Chokkareddy
- Department of Chemistry Durban University of Technology Durban South Africa- 4001
- Department of Chemistry Aditya College of Engineering & Technology Surampalem 533437 Andhra Pradesh India
| | - Gan G Redhi
- Department of Chemistry Durban University of Technology Durban South Africa- 4001
| |
Collapse
|
38
|
Holland EK, Thorley KJ, Parkin SR, Anthony JE. Revisiting the Octadehydro[12]annulenes. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Emma K. Holland
- Department of Chemistry University of Kentucky Lexington KY 40509 USA
| | - Karl J. Thorley
- Department of Chemistry University of Kentucky Lexington KY 40509 USA
| | - Sean R. Parkin
- Department of Chemistry University of Kentucky Lexington KY 40509 USA
| | - John E. Anthony
- Department of Chemistry University of Kentucky Lexington KY 40509 USA
| |
Collapse
|
39
|
Burmeister D, Trunk MG, Bojdys MJ. Development of metal-free layered semiconductors for 2D organic field-effect transistors. Chem Soc Rev 2021; 50:11559-11576. [PMID: 34661213 PMCID: PMC8521667 DOI: 10.1039/d1cs00497b] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 12/23/2022]
Abstract
To this day, the active components of integrated circuits consist mostly of (semi-)metals. Concerns for raw material supply and pricing aside, the overreliance on (semi-)metals in electronics limits our abilities (i) to tune the properties and composition of the active components, (ii) to freely process their physical dimensions, and (iii) to expand their deployment to applications that require optical transparency, mechanical flexibility, and permeability. 2D organic semiconductors match these criteria more closely. In this review, we discuss a number of 2D organic materials that can facilitate charge transport across and in-between their π-conjugated layers as well as the challenges that arise from modulation and processing of organic polymer semiconductors in electronic devices such as organic field-effect transistors.
Collapse
Affiliation(s)
- David Burmeister
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
- Integrative Research Institute for the Sciences Adlershof, Humboldt-Universität zu Berlin, Zum Großen Windkanal 2, 12489 Berlin, Germany
| | - Matthias G Trunk
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
- Integrative Research Institute for the Sciences Adlershof, Humboldt-Universität zu Berlin, Zum Großen Windkanal 2, 12489 Berlin, Germany
| | - Michael J Bojdys
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
- Integrative Research Institute for the Sciences Adlershof, Humboldt-Universität zu Berlin, Zum Großen Windkanal 2, 12489 Berlin, Germany
- Department of Chemistry, King's College London, Britannia House Guy's Campus, 7 Trinity Street, London, SE1 1DB, UK
| |
Collapse
|
40
|
Zhao YH, Wang JL, Zhou YB, Liu MC, Wu HY. Palladium-catalyzed coupling reaction of 2-iodobiphenyls with alkenyl bromides for the construction of 9-(diorganomethylidene)fluorenes. Org Biomol Chem 2021; 19:8250-8253. [PMID: 34518849 DOI: 10.1039/d1ob01547h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An atom economical protocol for the construction of 9-(diorganomethylidene)fluorenes through palladium-catalyzed coupling reactions of 2-iodobiphenyls with alkenyl bromides has been reported. The reaction proceeds through the C-H activation/oxidative addition/reduction elimination/intramolecular Heck coupling reaction to afford a series of 9-(diorganomethylidene)fluorenes with good yields. Control experiments demonstrate that a five-membered palladacycle acts as a key intermediate and β-H elimination serves as the rate-limiting step.
Collapse
Affiliation(s)
- Ya-Heng Zhao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. of China.
| | - Jian-Long Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. of China.
| | - Yun-Bing Zhou
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. of China.
| | - Miao-Chang Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. of China.
| | - Hua-Yue Wu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. of China.
| |
Collapse
|
41
|
Liu Q, Sun Q, Wei C, Li X, Yu S, Li J, Chen Y. High-performance and wearable hazardous gases sensor based on n-n heterojunction film of NGO and tetrakis(1-pyrenyl)porphyrin. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126460. [PMID: 34216970 DOI: 10.1016/j.jhazmat.2021.126460] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/12/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
The popularity of "Internet of Things" and portable electronic devices creates unprecedented demands for wearable gas sensors with excellent performance. In this study, the flexible n-n heterojunction film is firstly produced from metalloporphyrin complex 5,10,15,20-tetrakis(1-pyrenyl) porphyrin cobalt (II) (CoTPyrP) and nitrogen-doped graphene oxide (NGO) film, using solution-processing quasi-Langmuir-Shäfer (QLS) method and employed as the electrochemical identification layer for the wearable sensor. Thanks to the attractive electron-transfer properties from porphyrin to NGO, and the local regulation of electron transport by N and C atoms with different electronegativity on NGO, the resulting sensor shows good responses to NO2, SO2, NH3, H2S gases with the low detection limit (LOD) of 6, 74, 113 and 178 ppb, respectively. The uniform and compact structure of the heterojunction films provide excellent mechanical flexibility and suppress the penetration of gases into the film to obtain fast recovery speed. In addition, a sensor array consisting of NGO/CoTPyrP heterojunction and CoTPyrP film sensor is established, achieving selective identification of four hazardous gases. The present work provides potential application for hazardous gases identification in actual systems, and proposes an effective method to develop new flexible n-n heterojunctions for wearable gas sensors.
Collapse
Affiliation(s)
- Qi Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Qiqi Sun
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Chuangyu Wei
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiyou Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Sirong Yu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jianfeng Li
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Yanli Chen
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| |
Collapse
|
42
|
Liu D, Mun J, Chen G, Schuster NJ, Wang W, Zheng Y, Nikzad S, Lai JC, Wu Y, Zhong D, Lin Y, Lei Y, Chen Y, Gam S, Chung JW, Yun Y, Tok JBH, Bao Z. A Design Strategy for Intrinsically Stretchable High-Performance Polymer Semiconductors: Incorporating Conjugated Rigid Fused-Rings with Bulky Side Groups. J Am Chem Soc 2021; 143:11679-11689. [PMID: 34284578 DOI: 10.1021/jacs.1c04984] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Strategies to improve stretchability of polymer semiconductors, such as introducing flexible conjugation-breakers or adding flexible blocks, usually result in degraded electrical properties. In this work, we propose a concept to address this limitation, by introducing conjugated rigid fused-rings with optimized bulky side groups and maintaining a conjugated polymer backbone. Specifically, we investigated two classes of rigid fused-ring systems, namely, benzene-substituted dibenzothiopheno[6,5-b:6',5'-f]thieno[3,2-b]thiophene (Ph-DBTTT) and indacenodithiophene (IDT) systems, and identified molecules displaying optimized electrical and mechanical properties. In the IDT system, the polymer PIDT-3T-OC12-10% showed promising electrical and mechanical properties. In fully stretchable transistors, the polymer PIDT-3T-OC12-10% showed a mobility of 0.27 cm2 V-1 s-1 at 75% strain and maintained its mobility after being subjected to hundreds of stretching-releasing cycles at 25% strain. Our results underscore the intimate correlation between chemical structures, mechanical properties, and charge carrier mobility for polymer semiconductors. Our described molecular design approach will help to expedite the next generation of intrinsically stretchable high-performance polymer semiconductors.
Collapse
Affiliation(s)
- Deyu Liu
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Jaewan Mun
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Gan Chen
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Nathaniel J Schuster
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Weichen Wang
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Yu Zheng
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Shayla Nikzad
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Jian-Cheng Lai
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Yilei Wu
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Donglai Zhong
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Yangju Lin
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Yusheng Lei
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Yuelang Chen
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Sangah Gam
- Samsung Advanced Institute of Technology, Samsung Electronics, Suwon 16678, South Korea
| | - Jong Won Chung
- Samsung Advanced Institute of Technology, Samsung Electronics, Suwon 16678, South Korea
| | - Youngjun Yun
- Samsung Advanced Institute of Technology, Samsung Electronics, Suwon 16678, South Korea
| | - Jeffrey B-H Tok
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
43
|
Martín-Fuentes C, Urgel JI, Edalatmanesh S, Rodríguez-Sánchez E, Santos J, Mutombo P, Biswas K, Lauwaet K, Gallego JM, Miranda R, Jelínek P, Martín N, Écija D. Cumulene-like bridged indeno[1,2-b]fluorene π-conjugated polymers synthesized on metal surfaces. Chem Commun (Camb) 2021; 57:7545-7548. [PMID: 34240088 DOI: 10.1039/d1cc02058g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Among the plethora of polycyclic structures that have emerged in recent years, indenofluorenes comprise a unique class of compounds due to their potential in organic electronic systems such as OLEDs, OFETs, and OPVCs. However, the synthesis of fully conjugated indenofluorenes without bulky groups on the apical carbons under standard chemistry conditions is not easily accessible. In this regard, on-surface synthesis has appeared as a newly developing field of research, which exploits the use of well-defined solid surfaces as confinement templates to initiate and develop chemical reactions. Here, we demonstrate the successful fabrication of indeno[1,2-b]fluorene π-conjugated polymers linked via cumulene-like connections on well-defined metallic surfaces under ultra-high vacuum conditions. The structure and electronic properties of the formed polymers have been precisely characterized by scanning tunneling microscopy, noncontact atomic force microscopy and scanning tunneling spectroscopy, complemented by computational investigations.
Collapse
|
44
|
Griggs S, Marks A, Bristow H, McCulloch I. n-Type organic semiconducting polymers: stability limitations, design considerations and applications. JOURNAL OF MATERIALS CHEMISTRY. C 2021; 9:8099-8128. [PMID: 34277009 PMCID: PMC8264852 DOI: 10.1039/d1tc02048j] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/10/2021] [Indexed: 04/14/2023]
Abstract
This review outlines the design strategies which aim to develop high performing n-type materials in the fields of organic thin film transistors (OTFT), organic electrochemical transistors (OECT) and organic thermoelectrics (OTE). Figures of merit for each application and the limitations in obtaining these are set out, and the challenges with achieving consistent and comparable measurements are addressed. We present a thorough discussion of the limitations of n-type materials, particularly their ambient operational instability, and suggest synthetic methods to overcome these. This instability originates from the oxidation of the negative polaron of the organic semiconductor (OSC) by water and oxygen, the potentials of which commonly fall within the electrochemical window of n-type OSCs, and consequently require a LUMO level deeper than ∼-4 eV for a material with ambient stability. Recent high performing n-type materials are detailed for each application and their design principles are discussed to explain how synthetic modifications can enhance performance. This can be achieved through a number of strategies, including utilising an electron deficient acceptor-acceptor backbone repeat unit motif, introducing electron-withdrawing groups or heteroatoms, rigidification and planarisation of the polymer backbone and through increasing the conjugation length. By studying the fundamental synthetic design principles which have been employed to date, this review highlights a path to the development of promising polymers for n-type OSC applications in the future.
Collapse
Affiliation(s)
- Sophie Griggs
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Oxford OX1 3TA UK
| | - Adam Marks
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Oxford OX1 3TA UK
| | - Helen Bristow
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Oxford OX1 3TA UK
| | - Iain McCulloch
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Oxford OX1 3TA UK
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
45
|
Ricci G, Canola S, Dai Y, Fazzi D, Negri F. Impact of Fluoroalkylation on the n-Type Charge Transport of Two Naphthodithiophene Diimide Derivatives. Molecules 2021; 26:4119. [PMID: 34299394 PMCID: PMC8307299 DOI: 10.3390/molecules26144119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/03/2021] [Accepted: 07/04/2021] [Indexed: 11/16/2022] Open
Abstract
In this work, we investigate two recently synthesized naphthodithiophene diimide (NDTI) derivatives featuring promising n-type charge transport properties. We analyze the charge transport pathways and model charge mobility with the non-adiabatic hopping mechanism using the Marcus-Levich-Jortner rate constant formulation, highlighting the role of fluoroalkylated substitution in α (α-NDTI) and at the imide nitrogen (N-NDTI) position. In contrast with the experimental results, similar charge mobilities are computed for the two derivatives. However, while α-NDTI displays remarkably anisotropic mobilities with an almost one-dimensional directionality, N-NDTI sustains a more isotropic charge percolation pattern. We propose that the strong anisotropic charge transport character of α-NDTI is responsible for the modest measured charge mobility. In addition, when the role of thermally induced transfer integral fluctuations is investigated, the computed electron-phonon couplings for intermolecular sliding modes indicate that dynamic disorder effects are also more detrimental for the charge transport of α-NDTI than N-NDTI. The lower observed mobility of α-NDTI is therefore rationalized in terms of a prominent anisotropic character of the charge percolation pathways, with the additional contribution of dynamic disorder effects.
Collapse
Affiliation(s)
- Gaetano Ricci
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Via F. Selmi, 2, 40126 Bologna, Italy; (G.R.); (S.C.); (Y.D.)
| | - Sofia Canola
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Via F. Selmi, 2, 40126 Bologna, Italy; (G.R.); (S.C.); (Y.D.)
| | - Yasi Dai
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Via F. Selmi, 2, 40126 Bologna, Italy; (G.R.); (S.C.); (Y.D.)
| | - Daniele Fazzi
- Institut für Physikalische Chemie, Department für Chemie, Universität zu Köln, Greinstr. 4-6, D-50939 Köln, Germany
| | - Fabrizia Negri
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Via F. Selmi, 2, 40126 Bologna, Italy; (G.R.); (S.C.); (Y.D.)
- INSTM, UdR Bologna, Via F. Selmi, 2, 40126 Bologna, Italy
| |
Collapse
|
46
|
Synthesis, photophysical properties, and computational studies of benzothiadiazole and/or phenothiazine based donor/acceptor π-conjugated copolymers. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02621-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Bliksted Roug Pedersen V, Granhøj J, Erbs Hillers-Bendtsen A, Kadziola A, Mikkelsen KV, Brøndsted Nielsen M. Fulvalene-Based Polycyclic Aromatic Hydrocarbon Ladder-Type Structures: Synthesis and Properties. Chemistry 2021; 27:8315-8324. [PMID: 33856724 DOI: 10.1002/chem.202100984] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Indexed: 12/11/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have found strong interest for their electronic properties and as model systems for graphene. While PAHs have been studied intensively as single units, here PAHs were constructed in ladder-type arrangements using cross-conjugated fulvalene and dithiafulvalene motifs as connecting units and moving forward a convenient synthetic approach for dimerizing (thio)ketones into olefins by the action of Lawesson's reagent. Some of the PAHs can also be regarded as "super-extended" tetrathiafulvalenes (TTFs) with some of the largest cores ever explored, being multi-redox systems that exhibit both reversible oxidations and reductions. Concomitant absorption redshifts were observed when expanding the ladder-type structures from one to two to three indenofluorene units, and optical and electrochemical HOMO-LUMO gaps were found to correlate linearly. Various conformations (and solid-state packing arrangements) were studied by X-ray crystallography and computations.
Collapse
Affiliation(s)
| | - Jeppe Granhøj
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen Ø, Denmark
| | | | - Anders Kadziola
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen Ø, Denmark
| | - Kurt V Mikkelsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen Ø, Denmark
| | - Mogens Brøndsted Nielsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen Ø, Denmark
| |
Collapse
|
48
|
Tajima K, Matsuo K, Yamada H, Seki S, Fukui N, Shinokubo H. Acridino[2,1,9,8‐
klmna
]acridine Bisimides: An Electron‐Deficient π‐System for Robust Radical Anions and n‐Type Organic Semiconductors. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102708] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Keita Tajima
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Kyohei Matsuo
- Division of Materials Science Graduate School of Science and Technology Nara Institute of Science and Technology 8916-5 Takayama-cho, Ikoma Nara 630-0192 Japan
| | - Hiroko Yamada
- Division of Materials Science Graduate School of Science and Technology Nara Institute of Science and Technology 8916-5 Takayama-cho, Ikoma Nara 630-0192 Japan
| | - Shu Seki
- Department of Molecular Engineering Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Norihito Fukui
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| |
Collapse
|
49
|
Tajima K, Matsuo K, Yamada H, Seki S, Fukui N, Shinokubo H. Acridino[2,1,9,8‐
klmna
]acridine Bisimides: An Electron‐Deficient π‐System for Robust Radical Anions and n‐Type Organic Semiconductors. Angew Chem Int Ed Engl 2021; 60:14060-14067. [DOI: 10.1002/anie.202102708] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Keita Tajima
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Kyohei Matsuo
- Division of Materials Science Graduate School of Science and Technology Nara Institute of Science and Technology 8916-5 Takayama-cho, Ikoma Nara 630-0192 Japan
| | - Hiroko Yamada
- Division of Materials Science Graduate School of Science and Technology Nara Institute of Science and Technology 8916-5 Takayama-cho, Ikoma Nara 630-0192 Japan
| | - Shu Seki
- Department of Molecular Engineering Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Norihito Fukui
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| |
Collapse
|
50
|
Min Y, Dou C, Tian H, Liu J, Wang L. Isomers of B←N‐Fused Dibenzo‐azaacenes: How B←N Affects Opto‐electronic Properties and Device Behaviors? Chemistry 2021; 27:4364-4372. [DOI: 10.1002/chem.202004615] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/20/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Yang Min
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Science 5625 Renmin Rd. Changchun 130022 China
- University of Chinese Academy of Science 19(A) Yuquan Road Beijing 100049 China
| | - Chuandong Dou
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Science 5625 Renmin Rd. Changchun 130022 China
| | - Hongkun Tian
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Science 5625 Renmin Rd. Changchun 130022 China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Science 5625 Renmin Rd. Changchun 130022 China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Science 5625 Renmin Rd. Changchun 130022 China
| |
Collapse
|