1
|
Su Z, Zhang Y, Yuan Z, Rao Y. Biosynthesis of Natural and Unnatural Perylenequinones for Drug Development. ChemMedChem 2024; 19:e202400295. [PMID: 38943237 DOI: 10.1002/cmdc.202400295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/01/2024]
Abstract
A wide range of perylenequinones (PQs) with diverse structures and versatile bioactivities have long been isolated, positioning them as highly promising agents for photodynamic therapy (PDT). However, the lack of an efficient and cost-effective method to obtain these compounds and to introduce structural diversity and complexity currently hinders their further research and application. In this concept, we present a comprehensive overview of the advancements in the biosynthetic pathways of natural PQs based on their structural classification, and also summarize recent progress in the biosynthesis of natural PQs and derivatives. These pioneering efforts may pave the way for structure modification and large-scale bioproduction of natural and unnatural PQs through synthetic biology strategies to promote their drug development.
Collapse
Affiliation(s)
- Zengping Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yan Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Zhenbo Yuan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
2
|
Shen A, Xu J, Gao J, Cen S, Zhang Z. An Axially Chiral Quinoline-2-Carboxylic Acid-Cu Catalyst for Enantioselective Synthesis of C2- and C1-Symmetric BINOLs. J Org Chem 2024; 89:12842-12847. [PMID: 39129494 DOI: 10.1021/acs.joc.4c01421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The in situ dimeric coordination of two chiral ligands bearing quinoline-2-carboxylic acid units and substituted BINOL backbones with a copper ion generates a new chiral catalyst for oxidative homo- and cross-coupling of various 2-naphthols, enabling enantioselective synthesis of a broad range of highly useful diversely substituted C2- and C1-symmetric BINOLs in up to 96% yield with good to excellent enantioselectivities (up to 98:2 e.r.).
Collapse
Affiliation(s)
- Ahui Shen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Jun Xu
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Jun Gao
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Shouyi Cen
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Zhipeng Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| |
Collapse
|
3
|
Zuo QM, Wu MY, Han LB, Yang SD. Chiral α-Aminophosphonates as Ligands in Copper-Catalyzed Asymmetric Oxidative Coupling of 2-Naphthols. Org Lett 2024; 26:5274-5279. [PMID: 38885640 DOI: 10.1021/acs.orglett.4c01582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Chiral α-aminophosphonates with adjacent carbon and phosphonate stereogenic centers have been employed as ligands in the copper-catalyzed oxidative coupling of 2-naphthols, resulting in the production of chiral BINOLs in favorable yields and moderate to good enantiomeric excess. This represents the first application of chiral P-based ligands to enable such a transformation. The synthesis of these chiral α-aminophosphonate ligands offers a significant advantage over approaches that typically necessitate elaborate synthetic processes for chiral ligand production.
Collapse
Affiliation(s)
- Qian-Ming Zuo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu 730000, China
| | - Ming-Ying Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu 730000, China
| | - Li-Biao Han
- Research Center of Advanced Catalytic Materials and Functional Molecular Synthesis, College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, China
- ZhejiangYangfan New Materials Company, Ltd., Shangyu, Zhejiang 312369, China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu 730000, China
| |
Collapse
|
4
|
Wang C, Lin J, Huang H, Ye C, Bao H. Regio- and Diastereoselective Radical Dimerization Reactions for the Construction of Benzo[ f]isoindole Dimers. Org Lett 2024; 26:2580-2584. [PMID: 38526484 DOI: 10.1021/acs.orglett.4c00587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
This study presents a novel approach for synthesizing benzo[f]isoindole dimers, which involves cascade cyclization and oxidative radical dimerization. Our method allows for the formation of up to five carbon-carbon bonds in a single reaction, exhibiting remarkable diastereoselectivity and regioselectivity. The mechanism and regioselectivity were investigated through a combination of experiments and calculations.
Collapse
Affiliation(s)
- Chuanchuan Wang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. of China
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
- Fujian College, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
| | - Jingyi Lin
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. of China
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
- Fujian College, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
| | - Haiyang Huang
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
| | - Changqing Ye
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
| | - Hongli Bao
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
- Fujian College, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. of China
| |
Collapse
|
5
|
Su Z, Guo B, Xu H, Yuan Z, Liu H, Guo T, Deng Z, Zhang Y, Yin D, Liu C, Chen JH, Rao Y. Synthetic Biology-based Construction of Unnatural Perylenequinones with Improved Photodynamic Anticancer Activities. Angew Chem Int Ed Engl 2024; 63:e202317726. [PMID: 38258338 DOI: 10.1002/anie.202317726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/03/2024] [Accepted: 01/22/2024] [Indexed: 01/24/2024]
Abstract
The construction of structural complexity and diversity of natural products is crucial for drug discovery and development. To overcome high dark toxicity and poor photostability of natural photosensitizer perylenequinones (PQs) for photodynamic therapy, herein, we aim to introduce the structural complexity and diversity to biosynthesize the desired unnatural PQs in fungus Cercospora through synthetic biology-based strategy. Thus, we first elucidate the intricate biosynthetic pathways of class B PQs and reveal how the branching enzymes create their structural complexity and diversity from a common ancestor. This enables the rational reprogramming of cercosporin biosynthetic pathway in Cercospora to generate diverse unnatural PQs without chemical modification. Among them, unnatural cercosporin A displays remarkably low dark toxicity and high photostability with retention of great photodynamic anticancer and antimicrobial activities. Moreover, it is found that, unlike cercosporin, unnatural cercosporin A could be selectively accumulated in cancer cells, providing potential targets for drug development. Therefore, this work provides a comprehensive foundation for preparing unnatural products with customized functions through synthetic biology-based strategies, thus facilitating drug discovery pipelines from nature.
Collapse
Affiliation(s)
- Zengping Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Baodang Guo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Huibin Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Zhenbo Yuan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Huiling Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Tao Guo
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, P. R. China
| | - Zhiwei Deng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yan Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Dejing Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Changmei Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Jian-Huan Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
6
|
Kiefer A, Arnholdt M, Grimm V, Geske L, Groß J, Vierengel N, Opatz T, Erkel G. Structure elucidation and biological activities of perylenequinones from an Alternaria species. Mycotoxin Res 2023:10.1007/s12550-023-00495-1. [PMID: 37351768 PMCID: PMC10393905 DOI: 10.1007/s12550-023-00495-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/24/2023]
Abstract
The KEAP1-Nrf2/ARE pathway is a pivotal cytoprotective regulator against oxidative stress which plays an important role in the development of many inflammatory diseases and cancer. Activation of the Nrf2 transcription factor by oxidative stress or electrophiles regulates antioxidant response element (ARE)-dependent transcription of antioxidative, detoxifying, and anti-inflammatory proteins. Therefore, modulators of the KEAP1-Nrf2/ARE pathway have received considerable interest as therapeutics to protect against diseases where oxidative stress constitutes the underlying pathophysiology. In a search for fungal secondary metabolites affecting the Nrf2/ARE-dependent expression of a luciferase reporter gene in BEAS-2B cells, three new perylenequinones, compounds 1, 2, and 3, together with altertoxin-I (ATX-I), were isolated from fermentations of an Alternaria species. The structures of the compounds were elucidated by a combination of one- and two-dimensional NMR spectroscopy and mass spectrometry. Compound 1 and ATX-I exhibited strong cytotoxic effects with LC50-values of 3.8 µM and 6.43 µM, respectively, whereas compound 3 showed no cytotoxic effects up to 100 µM on BEAS-2B cells. ATX-I induced ARE-dependent luciferase expression approximately fivefold and compound 1 approximately 2.6-fold at a concentration of 3 µM in transiently transfected BEAS-2B cells. In addition, compound 1 and ATX-I exhibited strong oxidative effects, whereas compound 3 did not show significant oxidative properties. For compound 1 and ATX-I, a strong upregulation of heme oxygenase-1 could be observed on mRNA and protein level in treated BEAS-2B cells. Moreover, compound 3 significantly decreased sod3 mRNA levels after induction of oxidative stress with benzoquinone.
Collapse
Affiliation(s)
- Anna Kiefer
- Molecular Biotechnology & Systems Biology, RPTU, Paul-Ehrlich-Straße 23, D-67663, Kaiserslautern, Germany
| | - Marcel Arnholdt
- Molecular Biotechnology & Systems Biology, RPTU, Paul-Ehrlich-Straße 23, D-67663, Kaiserslautern, Germany
| | - Viktoria Grimm
- Molecular Biotechnology & Systems Biology, RPTU, Paul-Ehrlich-Straße 23, D-67663, Kaiserslautern, Germany
| | - Leander Geske
- Department of Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, D-55128, Mainz, Germany
| | - Jonathan Groß
- Department of Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, D-55128, Mainz, Germany
| | - Nina Vierengel
- Department of Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, D-55128, Mainz, Germany
| | - Till Opatz
- Department of Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, D-55128, Mainz, Germany.
| | - Gerhard Erkel
- Molecular Biotechnology & Systems Biology, RPTU, Paul-Ehrlich-Straße 23, D-67663, Kaiserslautern, Germany.
| |
Collapse
|
7
|
Li C, Shi Y, Chen Q, Zhang K, Yang G. Copper Powder and Pd(II) Salts Triggered One-Pot Aromatic Halide Homocoupling via a Radical Pathway. J Org Chem 2023; 88:2306-2313. [PMID: 36719812 DOI: 10.1021/acs.joc.2c02717] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
(sp2)C-(sp2)C bond formation is one of the most utilitarian techniques in target synthesis and material and pharmaceutical production. Biaryls usually emerge with the coupling of aryl halides or pseudohalides and require the prepreparation of an organometallic reagent, which results in low efficiency and atomic economy. The classic Ullmann reactions could be adopted to directly synthesize biaryls from aromatic halides. However, the requirement of extremely high temperatures limits the usage of the methodology in manufacturing. At the same time, the mechanism triggers a wide debate between classic redox and redox reactions involving radicals. In this work, a bimetallic system was demonstrated, referring to stoichiometric copper powder in the presence of a catalytic amount of Pd(OAc)2, which contributed to delivering various symmetric/asymmetric (sp2)C-(sp2)C species. It has been proposed that the coupling process might be promoted via radicals produced by redox between Cu(0) and Pd(IV) species in the heating system. Increasing examples demonstrated the good tolerance of this method for aryl bromide among functional groups.
Collapse
Affiliation(s)
- Chen Li
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Yumeng Shi
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Quan Chen
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Kun Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Guang Yang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
8
|
Wang P, Cen S, Gao J, Shen A, Zhang Z. Novel Axially Chiral Ligand-Enabled Copper-Catalyzed Asymmetric Oxidative Coupling of 2-Naphthols for the Synthesis of 6,6′-Disubstituted BINOLs. Org Lett 2022; 24:2321-2326. [DOI: 10.1021/acs.orglett.2c00479] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Pengyang Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Shouyi Cen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jun Gao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ahui Shen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhipeng Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
9
|
Zhang ZJ, Zhou X, Li D, Chen Y, Xiao WW, Li RT, Shao LD. Aerobic Copper-Catalyzed Intramolecular Cascade Oxidative Isomerization/[4+4] Cyclization of 2,2'-Disubstituted Stilbenes. J Org Chem 2021; 86:7609-7624. [PMID: 33904741 DOI: 10.1021/acs.joc.1c00656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An aerobic copper-catalyzed cascade oxidative isomerization/[4+4] cyclization of 2,2'-disubstituted stilbenes is described. Under the mild CuCl/DBED/air catalytic system, various 5,10-heteroatom-containing tetrahydroindeno[2,1-a]indenes were efficiently prepared through the difunctionalizations of alkenes in a highly atom economic manner. Mechanistic investigations suggested the bicyclic product was likely formed through a sequence of rapid single-electron oxidation/[4+4] cyclization from 2,2'-disubstituted stilbene. The antarafacial manner of the thermally allowed [4+4] cyclization was further proven by series of control experiments and density functional theory calculations. Our findings provide an important addition to the aerobic copper-catalyzed oxidative cyclization.
Collapse
Affiliation(s)
- Zhi-Jun Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xu Zhou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Dashan Li
- Yunnan Key Laboratory of Southern Medicinal Utilization, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Yang Chen
- Yunnan Key Laboratory of Southern Medicinal Utilization, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Wen-Wen Xiao
- Yunnan Key Laboratory of Southern Medicinal Utilization, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Rong-Tao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Li-Dong Shao
- Yunnan Key Laboratory of Southern Medicinal Utilization, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, China
| |
Collapse
|
10
|
Zhou T, Yu S, Hu Y, Zhang Y, Song Y, Chu J, Liu C, Rao Y. Enhanced cercosporin production by co-culturing Cercospora sp. JNU001 with leaf-spot-disease-related endophytic bacteria. Microb Cell Fact 2021; 20:100. [PMID: 33992112 PMCID: PMC8126151 DOI: 10.1186/s12934-021-01587-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Owing to the excellent properties of photosensitization, cercosporin, one of naturally occurring perylenequinonoid pigments, has been widely used in photodynamic therapy, or as an antimicrobial agent and an organophotocatalyst. However, because of low efficiency of total chemical synthesis and low yield of current microbial fermentation, the limited production restricts its broad applications. Thus, the strategies to improve the production of cercosporin were highly desired. Besides traditional optimization methods, here we screened leaf-spot-disease-related endophytic bacteria to co-culture with our previous identified Cercospora sp. JNU001 to increase cercosporin production. RESULTS Bacillus velezensis B04 and Lysinibacillus sp. B15 isolated from leaves with leaf spot diseases were found to facilitate cercosporin secretion into the broth and then enhance the production of cercosporin. After 4 days of co-culture, Bacillus velezensis B04 allowed to increase the production of cercosporin from 128.2 mg/L to 984.4 mg/L, which was 7.68-fold of the previously reported one. Lysinibacillus sp. B15 could also enhance the production of cercosporin with a yield of 626.3 mg/L, which was 4.89-fold higher than the starting condition. More importantly, we found that bacteria B04 and B15 employed two different mechanisms to improve the production of cercosporin, in which B04 facilitated cercosporin secretion into the broth by loosening and damaging the hyphae surface of Cercospora sp. JNU001 while B15 could adsorb cercosporin to improve its secretion. CONCLUSIONS We here established a novel and effective co-culture method to improve the production of cercosporin by increasing its secretion ability from Cercospora sp. JNU001, allowing to develop more potential applications of cercosporin.
Collapse
Affiliation(s)
- Tingan Zhou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Shiyu Yu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yifan Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yan Zhang
- School of Pharmaceutical Science, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yuechen Song
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Jieyu Chu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Changmei Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China.
| |
Collapse
|
11
|
Li YT, Yang C, Wu Y, Lv JJ, Feng X, Tian X, Zhou Z, Pan X, Liu S, Tian LW. Axial Chiral Binaphthoquinone and Perylenequinones from the Stromata of Hypocrella bambusae Are SARS-CoV-2 Entry Inhibitors. JOURNAL OF NATURAL PRODUCTS 2021; 84:436-443. [PMID: 33560122 DOI: 10.1021/acs.jnatprod.0c01136] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A new axial chiral binaphtoquinone, hypocrellone (1), and a new perylenequinone, hypomycin F (2), were isolated from the stromata of Hypocrella bambusae, together with five known compounds, 3-7. The structures of 1 and 2 were assigned by spectroscopic and HRESIMS data analyses. The axial chirality of 1 was determined by electronic circular dichroism data analysis, and the absolute configurations of 2 and 3 were determined by X-ray crystallography. The axial chirality of 7 was determined by UV-induced photooxidation from 4. Compounds 1, 4, and 5 showed inhibitory activity against pseudotyped SARS-CoV-2 infection in 293T-ACE2 cells with IC50 values of 0.17, 0.038, and 0.12 μM. Compounds 4 and 5 were also active against live SARS-CoV-2 infection with EC50 values of 0.22 and 0.21 μM, respectively. Further cell-cell fusion assays, surface plasmon resonance assays, and molecular docking studies revealed that 4 and 5 could bind with the receptor-binding domain of SARS-CoV-2 S protein to prevent its interaction with human angiotensin-converting enzyme II receptor. Our results revealed that 4 and 5 are potential SARS-CoV-2 entry inhibitors.
Collapse
Affiliation(s)
| | | | - Yan Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Jun-Jiang Lv
- School of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, People's Republic of China
| | | | - Xiaofei Tian
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | | | - Xiaoyan Pan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | | | | |
Collapse
|
12
|
Sun J, Yang H, Tang W. Recent advances in total syntheses of complex dimeric natural products. Chem Soc Rev 2021; 50:2320-2336. [PMID: 33470268 DOI: 10.1039/d0cs00220h] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dimeric natural products are a collection of molecules with diverse molecular architectures and significant bio-activities. In this tutorial review, total synthesis of complex dimeric natural products accomplished in recent years are summarized and various dimerization strategies are discussed. By highlighting the selected representative examples, this review aims to demonstrate the recent tactics of dimerization which is an important process integrated into the whole synthetic sequences of dimeric natural products, provide insights on structural and chemical properties of monomers and dimers of related natural products, and promote further technological advances in organic synthesis and biological studies of complex dimeric natural products.
Collapse
Affiliation(s)
- Jiawei Sun
- State Key Laboratory of Bio-Organic & Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | | | | |
Collapse
|
13
|
Richter SC, Oestreich M. Bioinspired Metal‐Free Formal Decarbonylation of α‐Branched Aliphatic Aldehydes at Ambient Temperature. Chemistry 2019; 25:8508-8512. [DOI: 10.1002/chem.201902082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Indexed: 01/25/2023]
Affiliation(s)
- Sven C. Richter
- Institut für ChemieTechnische Universität Berlin Strasse des 17. Juni 115 10623 Berlin Germany
| | - Martin Oestreich
- Institut für ChemieTechnische Universität Berlin Strasse des 17. Juni 115 10623 Berlin Germany
| |
Collapse
|
14
|
Abstract
Optically pure 1,1′-bi-2-naphthol (BINOL) and its derivatives are among the most widely
used chiral ligands and auxiliaries for asymmetric synthesis. These molecules also occur as scaffolds for
various biologically active compounds. Direct oxidative coupling of 2-naphthols in the presence of chiral
catalysts provides a powerful strategy for the synthesis of optically pure 1,1′-bi-2-naphthols
(BINOLS). In 1978, Wynberg with co-workers discovered that a copper salt with chiral auxiliary mediates
the oxidative coupling of 2-naphthols, which can be taken as the starting point for further progress
in this area. Over the last decades, a number of efficient and stereoselective catalyst systems have been
developed. This mini-review surveys the aerobic asymmetric oxidative coupling of 2-naphthols catalyzed
by transition metal complexes reported since 1995.
Collapse
Affiliation(s)
- Nikolay V. Tkachenko
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russian Federation, and Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Pr. Lavrentieva 5, 630090, Novosibirsk, Russian Federation
| | - Konstantin P. Bryliakov
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russian Federation, and Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Pr. Lavrentieva 5, 630090, Novosibirsk, Russian Federation
| |
Collapse
|
15
|
Hu J, Sarrami F, Li H, Zhang G, Stubbs KA, Lacey E, Stewart SG, Karton A, Piggott AM, Chooi YH. Heterologous biosynthesis of elsinochrome A sheds light on the formation of the photosensitive perylenequinone system. Chem Sci 2019; 10:1457-1465. [PMID: 30809363 PMCID: PMC6354827 DOI: 10.1039/c8sc02870b] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/21/2018] [Indexed: 12/14/2022] Open
Abstract
Perylenequinones are a class of aromatic polyketides characterised by a highly conjugated pentacyclic core, which confers them with potent light-induced bioactivities and unique photophysical properties. Despite the biosynthetic gene clusters for the perylenequinones elsinochrome A (1), cercosporin (4) and hypocrellin A (6) being recently identified, key biosynthetic aspects remain elusive. Here, we first expressed the intact elc gene cluster encoding 1 from the wheat pathogen Parastagonospora nodorum heterologously in Aspergillus nidulans on a yeast-fungal artificial chromosome (YFAC). This led to the identification of a novel flavin-dependent monooxygenase, ElcH, responsible for oxidative enolate coupling of a perylenequinone intermediate to the hexacyclic dihydrobenzo(ghi)perylenequinone in 1. In the absence of ElcH, the perylenequione intermediate formed a hexacyclic cyclohepta(ghi)perylenequinone system via an intramolecular aldol reaction resulting in 6 and a novel hypocrellin 12 with opposite helicity to 1. Theoretical calculations supported that 6 and 12 resulted from atropisomerisation upon formation of the 7-membered ring. Using a bottom-up pathway reconstruction approach on a tripartite YFAC system developed in this study, we uncovered that both a berberine bridge enzyme-like oxidase ElcE and a laccase-like multicopper oxidase ElcG are involved in the double coupling of two naphthol intermediates to form the perylenequinone core. Gene swapping with the homologs from the biosynthetic pathway of 4 showed that cognate pairing of the two classes of oxidases is required for the formation of the perylenequinone core, suggesting the involvement of protein-protein interactions.
Collapse
Affiliation(s)
- Jinyu Hu
- School of Molecular Sciences , University of Western Australia , Perth , WA 6009 , Australia .
| | - Farzaneh Sarrami
- School of Molecular Sciences , University of Western Australia , Perth , WA 6009 , Australia .
| | - Hang Li
- School of Molecular Sciences , University of Western Australia , Perth , WA 6009 , Australia .
| | - Guozhi Zhang
- School of Molecular Sciences , University of Western Australia , Perth , WA 6009 , Australia .
| | - Keith A Stubbs
- School of Molecular Sciences , University of Western Australia , Perth , WA 6009 , Australia .
| | - Ernest Lacey
- Microbial Screening Technologies , Smithfield , NSW 2164 , Australia
- Department of Molecular Sciences , Macquarie University , Sydney , NSW 2109 , Australia
| | - Scott G Stewart
- School of Molecular Sciences , University of Western Australia , Perth , WA 6009 , Australia .
| | - Amir Karton
- School of Molecular Sciences , University of Western Australia , Perth , WA 6009 , Australia .
| | - Andrew M Piggott
- Department of Molecular Sciences , Macquarie University , Sydney , NSW 2109 , Australia
| | - Yit-Heng Chooi
- School of Molecular Sciences , University of Western Australia , Perth , WA 6009 , Australia .
| |
Collapse
|
16
|
Wu X, Iwata T, Scharf A, Qin T, Reichl KD, Porco JA. Asymmetric Synthesis of Gonytolide A: Strategic Use of an Aryl Halide Blocking Group for Oxidative Coupling. J Am Chem Soc 2018; 140:5969-5975. [PMID: 29658717 PMCID: PMC5943148 DOI: 10.1021/jacs.8b02535] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The first synthesis of the chromanone lactone dimer gonytolide A has been achieved employing vanadium(V)-mediated oxidative coupling of the monomer gonytolide C. An o-bromine blocking group strategy was employed to favor para- para coupling and to enable kinetic resolution of (±)-gonytolide C. Asymmetric conjugate reduction enabled practical kinetic resolution of a chiral, racemic precursor and the asymmetric synthesis of (+)-gonytolide A and its atropisomer.
Collapse
Affiliation(s)
| | | | - Adam Scharf
- Department of Chemistry and Center for Molecular Discovery (BU-CMD),
Boston University, Boston, Massachusetts 02215, United States
| | - Tian Qin
- Department of Chemistry and Center for Molecular Discovery (BU-CMD),
Boston University, Boston, Massachusetts 02215, United States
| | - Kyle D. Reichl
- Department of Chemistry and Center for Molecular Discovery (BU-CMD),
Boston University, Boston, Massachusetts 02215, United States
| | - John A. Porco
- Department of Chemistry and Center for Molecular Discovery (BU-CMD),
Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
17
|
Wang LW, Wang JL, Chen J, Chen JJ, Shen JW, Feng XX, Kubicek CP, Lin FC, Zhang CL, Chen FY. A Novel Derivative of (-)mycousnine Produced by the Endophytic Fungus Mycosphaerella nawae, Exhibits High and Selective Immunosuppressive Activity on T Cells. Front Microbiol 2017; 8:1251. [PMID: 28725220 PMCID: PMC5496962 DOI: 10.3389/fmicb.2017.01251] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/21/2017] [Indexed: 11/15/2022] Open
Abstract
An endophytic fungus, Mycosphaerella nawae ZJLQ129, was isolated from the leaves of the traditional Chinese medicine Smilax china. From the fermentation broth and mycelium, a dibenzofurane compound (-)mycousnine (1) was isolated. Chemical modification of it to the amide derivative (-)mycousnine enamine (2), which is new to science, was found to have high and selective immunosuppressive activity: similar to cyclosporin A, (-)mycousnine enamine (2) selectively inhibited T cell proliferation, suppressed the expression of the surface activation antigens CD25 and CD69 and the formation and expression of the cytokines interleukin-2 as well as interferon γ in activated T cells, but did not show any effect on the proliferation of B cells and cancer cells (PANC-1 and A549) and the activation of macrophages. Furthermore, the cytotoxicity of (-)mycousnine enamine was lower than that of cyclosporin A, and its therapeutic index (TC50/EC50) was 4,463.5, which is five-fold higher than that of cyclosporin A. We conclude that (-)mycousnine enamine (2), the semi-synthestic product prepared from the native product (-)mycousnine (1) of the endophyte M. nawae is a novel effective immunosuppressant showing low toxicity and high selectivity.
Collapse
Affiliation(s)
- Li-Wei Wang
- Department of Pharmaceutical Science, College of Medical Science, Hangzhou Normal UniversityHangzhou, China
| | - Jin-Liang Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang UniversityHangzhou, China
| | - Jing Chen
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang UniversityHangzhou, China
| | - Jia-Jie Chen
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang UniversityHangzhou, China
| | - Jia-Wei Shen
- Department of Pharmaceutical Science, College of Medical Science, Hangzhou Normal UniversityHangzhou, China
| | - Xiao-Xiao Feng
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang UniversityHangzhou, China
| | - Christian P Kubicek
- Institute of Chemical Engineering, Vienna University of TechnologyVienna, Austria
| | - Fu-Cheng Lin
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang UniversityHangzhou, China
| | - Chu-Long Zhang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang UniversityHangzhou, China
| | - Feng-Yang Chen
- Institute of Materia Medica, Zhejiang Academy of Medical SciencesHangzhou, China.,Department of Basic Medical Science, Hangzhou Medical CollegeHangzhou, China
| |
Collapse
|
18
|
Chooi Y, Zhang G, Hu J, Muria‐Gonzalez MJ, Tran PN, Pettitt A, Maier AG, Barrow RA, Solomon PS. Functional genomics‐guided discovery of a light‐activated phytotoxin in the wheat pathogen
Parastagonospora nodorum
via pathway activation. Environ Microbiol 2017; 19:1975-1986. [DOI: 10.1111/1462-2920.13711] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 02/23/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Yit‐Heng Chooi
- School of Molecular SciencesUniversity of Western AustraliaPerth WA6009 Australia
- Research School of BiologyAustralian National UniversityCanberra ACT2601 Australia
| | - Guozhi Zhang
- Research School of BiologyAustralian National UniversityCanberra ACT2601 Australia
| | - Jinyu Hu
- School of Molecular SciencesUniversity of Western AustraliaPerth WA6009 Australia
| | | | - Phuong N. Tran
- Research School of BiologyAustralian National UniversityCanberra ACT2601 Australia
| | - Amber Pettitt
- School of Molecular SciencesUniversity of Western AustraliaPerth WA6009 Australia
| | - Alexander G. Maier
- Research School of BiologyAustralian National UniversityCanberra ACT2601 Australia
| | - Russell A. Barrow
- Research School of ChemistryAustralian National UniversityCanberra ACT2601 Australia
| | - Peter S. Solomon
- Research School of BiologyAustralian National UniversityCanberra ACT2601 Australia
| |
Collapse
|
19
|
Abstract
Since many synthetic targets in organic chemistry are larger, more functionalized, and more oxidized than the starting inputs used, methods that unite fragments with an increase in oxidation state possess inherent efficiencies. Thus, the potential for complexity building transforms by union of activated or unactivated C-H, N-H, or O-H centers is considerable, and the challenge lies in how to obtain selective reactions from any two of these centers.
Collapse
Affiliation(s)
- Marisa C. Kozlowski
- Department of Chemistry,
Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
20
|
Abstract
Transition metal-mediated C-H bond activation and functionalization represent one of the most straightforward and powerful tools in modern organic synthetic chemistry. Bi(hetero)aryls are privileged π-conjugated structural cores in biologically active molecules, organic functional materials, ligands, and organic synthetic intermediates. The oxidative C-H/C-H coupling reactions between two (hetero)arenes through 2-fold C-H activation offer a valuable opportunity for rapid assembly of diverse bi(hetero)aryls and further exploitation of their applications in pharmaceutical and material sciences. This review provides a comprehensive overview of the fundamentals and applications of transition metal-mediated/catalyzed oxidative C-H/C-H coupling reactions between two (hetero)arenes. The substrate scope, limitation, reaction mechanism, regioselectivity, and chemoselectivity, as well as related control strategies of these reactions are discussed. Additionally, the applications of these established methods in the synthesis of natural products and exploitation of new organic functional materials are exemplified. In the last section, a short introduction on oxidant- or Lewis acid-mediated oxidative Ar-H/Ar-H coupling reactions is presented, considering that it is a very powerful method for the construction of biaryl units and polycylic arenes.
Collapse
Affiliation(s)
- Yudong Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University , 29 Wangjiang Road, Chengdu 610064, China
| | - Jingbo Lan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University , 29 Wangjiang Road, Chengdu 610064, China
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University , 29 Wangjiang Road, Chengdu 610064, China
| |
Collapse
|
21
|
Bebbington MWP. Natural product analogues: towards a blueprint for analogue-focused synthesis. Chem Soc Rev 2017; 46:5059-5109. [DOI: 10.1039/c6cs00842a] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A review of approaches to natural product analogues leads to the suggestion of new methods for the generation of biologically active natural product-like scaffolds.
Collapse
|
22
|
Kim H, Song CH, Kim DH, Jung NG, Lee SJ, Kim BT. Total Synthesis of Amino-Functionalized Calphostin Analogs as Potent and Selective Inhibitors of Protein Kinase C (PKC). B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.10908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hyoyeon Kim
- Department of Bioactive Material Sciences; Center of Bioactive Materials; Jeonju 561-756 Korea
| | - Choon-Ho Song
- Department of Bioactive Material Sciences; Center of Bioactive Materials; Jeonju 561-756 Korea
| | - Dae-Hyuk Kim
- Department of Molecular Biology; College of Natural Science; Jeonju 561-756 Korea
| | - Nam-Gin Jung
- Department of Crop Science and Biotechnology; College of Agriculture and Life Science; Jeonju 561-756 Korea
| | - Seung-Jae Lee
- Department of Chemistry; College of Natural Science; Jeonju 561-756 Korea
| | - Beom-Tae Kim
- Department of Bioactive Material Sciences; Center of Bioactive Materials; Jeonju 561-756 Korea
- Department of Molecular Biology; College of Natural Science; Jeonju 561-756 Korea
- Keunsaram Educational Development Institute; Chonbuk National University; Jeonju 561-756 Korea
| |
Collapse
|
23
|
Unzner TA, Grossmann AS, Magauer T. Rapid Access to Orthogonally Functionalized Naphthalenes: Application to the Total Synthesis of the Anticancer Agent Chartarin. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201605071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Teresa A. Unzner
- Department of Chemistry and Pharmacy; Ludwig-Maximilians-University Munich; Butenandtstrasse 5-13 81377 Munich Germany
| | - Adriana S. Grossmann
- Department of Chemistry and Pharmacy; Ludwig-Maximilians-University Munich; Butenandtstrasse 5-13 81377 Munich Germany
| | - Thomas Magauer
- Department of Chemistry and Pharmacy; Ludwig-Maximilians-University Munich; Butenandtstrasse 5-13 81377 Munich Germany
| |
Collapse
|
24
|
Unzner TA, Grossmann AS, Magauer T. Rapid Access to Orthogonally Functionalized Naphthalenes: Application to the Total Synthesis of the Anticancer Agent Chartarin. Angew Chem Int Ed Engl 2016; 55:9763-7. [PMID: 27355517 DOI: 10.1002/anie.201605071] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Indexed: 12/14/2022]
Abstract
We report the synthesis of orthogonally functionalized naphthalenes from simple, commercially available indanones in four steps. The developed method proceeds through a two-step process that features a thermally induced fragmentation of a cyclopropane indanone with simultaneous 1,2-chloride shift. Migration of the chloride substituent occurs in a regioselective manner to preferentially afford the para-chloronaphthol substitution pattern. The obtained naphthols are versatile building blocks that can be selectively modified and used for the efficient construction of biologically active molecules. This has enabled the total synthesis of the potent anticancer natural product chartarin through a highly convergent retrosynthetic bond disconnection.
Collapse
Affiliation(s)
- Teresa A Unzner
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Adriana S Grossmann
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Thomas Magauer
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, 81377, Munich, Germany.
| |
Collapse
|
25
|
Newman AG, Townsend CA. Molecular Characterization of the Cercosporin Biosynthetic Pathway in the Fungal Plant Pathogen Cercospora nicotianae. J Am Chem Soc 2016; 138:4219-28. [PMID: 26938470 PMCID: PMC5129747 DOI: 10.1021/jacs.6b00633] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Perylenequinones are a class of photoactivated polyketide mycotoxins produced by fungal plant pathogens that notably produce reactive oxygen species with visible light. The best-studied perylenequinone is cercosporin-a product of the Cercospora species. While the cercosporin biosynthetic gene cluster has been described in the tobacco pathogen Cercospora nicotianae, little is known of the metabolite's biosynthesis. Furthermore, in vitro investigations of the polyketide synthase central to cercosporin biosynthesis identified the naphthopyrone nor-toralactone as its direct product-an observation in conflict with published biosynthetic proposals. Here, we present an alternative biosynthetic pathway to cercosporin based on metabolites characterized from a series of biosynthetic gene knockouts. We show that nor-toralactone is the key polyketide intermediate and the substrate for the unusual didomain protein CTB3. We demonstrate the unique oxidative cleavage activity of the CTB3 monooxygenase domain in vitro. These data advance our understanding of perylenequinone biosynthesis and expand the biochemical repertoire of flavin-dependent monooxygenases.
Collapse
Affiliation(s)
- Adam G. Newman
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Craig A. Townsend
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
26
|
Loxq P, Manoury E, Poli R, Deydier E, Labande A. Synthesis of axially chiral biaryl compounds by asymmetric catalytic reactions with transition metals. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.07.006] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Prause F, Arensmeyer B, Fröhlich B, Breuning M. In-depth structure–selectivity investigations on asymmetric, copper-catalyzed oxidative biaryl coupling in the presence of 5-cis-substituted prolinamines. Catal Sci Technol 2015. [DOI: 10.1039/c4cy01676a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Copper complexes of 5-cis-substituted prolinamines provided up to 87% ee in the enantioselective oxidative biaryl coupling of 3-hydroxy-2-naphthoates.
Collapse
Affiliation(s)
- Felix Prause
- Organic Chemistry Laboratory
- University of Bayreuth
- 95447 Bayreuth
- Germany
| | | | - Benjamin Fröhlich
- Institute of Organic Chemistry
- University of Würzburg
- 97074 Würzburg
- Germany
| | - Matthias Breuning
- Organic Chemistry Laboratory
- University of Bayreuth
- 95447 Bayreuth
- Germany
| |
Collapse
|
28
|
Affiliation(s)
- Joydip Das
- Department of Pharmacological
and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 521 Science and Research Building 2, Houston, Texas 77204, United States
| | - Ghazi M. Rahman
- Department of Pharmacological
and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 521 Science and Research Building 2, Houston, Texas 77204, United States
| |
Collapse
|
29
|
Studies in the Synthesis of Biaryl Natural Products. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/b978-0-12-417185-5.00010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
30
|
Allen SE, Walvoord RR, Padilla-Salinas R, Kozlowski MC. Aerobic copper-catalyzed organic reactions. Chem Rev 2013; 113:6234-458. [PMID: 23786461 PMCID: PMC3818381 DOI: 10.1021/cr300527g] [Citation(s) in RCA: 1238] [Impact Index Per Article: 112.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Scott E. Allen
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ryan R. Walvoord
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Rosaura Padilla-Salinas
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Marisa C. Kozlowski
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
31
|
|
32
|
Dickstein JS, Curto JM, Gutierrez O, Mulrooney CA, Kozlowski MC. Mild aromatic palladium-catalyzed protodecarboxylation: kinetic assessment of the decarboxylative palladation and the protodepalladation steps. J Org Chem 2013; 78:4744-61. [PMID: 23590518 DOI: 10.1021/jo400222c] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mechanism studies of a mild palladium-catalyzed decarboxylation of aromatic carboxylic acids are described. In particular, reaction orders and activation parameters for the two stages of the transformation were determined. These studies guided development of a catalytic system capable of turnover. Further evidence reinforces that the second stage, protonation of the arylpalladium intermediate, is the rate-determining step of the reaction. The first step, decarboxylative palladation, is proposed to occur through an intramolecular electrophilic palladation pathway, which is supported by computational and mechanism studies. In contrast to the reverse reaction (C-H insertion), the data support an electrophilic aromatic substitution mechanism involving a stepwise intramolecular protonation sequence for the protodepalladation portion of the reaction.
Collapse
Affiliation(s)
- Joshua S Dickstein
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
33
|
Trigos Á, Espinoza C, Martínez M, Márquez O, León LG, Padrón JM, Norte M, Fernández JJ. Antiproliferative Activity of epi-Cercosporin in Human Solid Tumor Cell Lines. Nat Prod Commun 2013. [DOI: 10.1177/1934578x1300800214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
From cultures of Cercospora piaropi, a phytopathogenic fungus isolated from symptomatic leaves of water hyacinth was obtained a red compound, which, according to the spectroscopic data, was epi-cercosporin. It showed in vitro antiproliferative activity against the panel of human solid tumor cells HBL-100, HeLa, SW1573 and WiDr. Cell cycle studies revealed that epi-cercosporin induces accumulation of cells in G2/M phase.
Collapse
Affiliation(s)
- Ángel Trigos
- Laboratorio de Alta Tecnología de Xalapa, Universidad Veracruzana. Calle Médicos, 5, Col. Unidad del Bosque. 91010, Xalapa, Veracruz, México
- Instituto de Ciencias Básicas, Universidad Veracruzana. Luis Castelazo Ayala s/n, Col. Industrial Ánimas, 91190, Xalapa, Veracruz, México
| | - César Espinoza
- Laboratorio de Alta Tecnología de Xalapa, Universidad Veracruzana. Calle Médicos, 5, Col. Unidad del Bosque. 91010, Xalapa, Veracruz, México
| | - Maricela Martínez
- Instituto Mexicano de Tecnología del Agua, Paseo Cuauhnáhuac 8532, 62550 Progreso Jiutepec, Morelos, México
| | - Olivia Márquez
- Laboratorio de Alta Tecnología de Xalapa, Universidad Veracruzana. Calle Médicos, 5, Col. Unidad del Bosque. 91010, Xalapa, Veracruz, México
| | - Leticia G. León
- Instituto Universitario de Bio-Orgánica “Antonio González”, Universidad de La Laguna, Astrofísico Francisco Sánchez 2,38206 La Laguna, Tenerife, Spain
| | - José M. Padrón
- Instituto Universitario de Bio-Orgánica “Antonio González”, Universidad de La Laguna, Astrofísico Francisco Sánchez 2,38206 La Laguna, Tenerife, Spain
| | - Manuel Norte
- Instituto Universitario de Bio-Orgánica “Antonio González”, Universidad de La Laguna, Astrofísico Francisco Sánchez 2,38206 La Laguna, Tenerife, Spain
| | - José J. Fernández
- Instituto Universitario de Bio-Orgánica “Antonio González”, Universidad de La Laguna, Astrofísico Francisco Sánchez 2,38206 La Laguna, Tenerife, Spain
| |
Collapse
|
34
|
Mulrooey CA, O'Brien EM, Morgan BJ, Kozlowski MC. Perylenequinones: Isolation, Synthesis, and Biological Activity. European J Org Chem 2012; 2012:3887-3904. [PMID: 24039544 PMCID: PMC3770481 DOI: 10.1002/ejoc.201200184] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Indexed: 12/16/2022]
Abstract
The perylenequinones are a novel class of natural products characterized by pentacyclic conjugated chromophore giving rise to photoactivity. Potentially useful light-activated biological activity, targeting protein kinase C (PKC), has been identified for several of the natural products. Recently discovered new members of this class of compound, as well as several related phenanthroperylenequinones, are reviewed. Natural product modifications that improve biological profiles, and avenues for the total synthesis of analogs, which are not available from the natural product series, are outlined. An overview of structure/function relationships is provided.
Collapse
Affiliation(s)
- Carol A Mulrooey
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | | | | | | |
Collapse
|
35
|
Podlesny EE, Kozlowski MC. Structural reassignment of a marine metabolite from a binaphthalenetetrol to a tetrabrominated diphenyl ether. JOURNAL OF NATURAL PRODUCTS 2012; 75:1125-9. [PMID: 22690692 PMCID: PMC3399761 DOI: 10.1021/np300141t] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The structure of a reported natural product isolate has been revised from (S)-2,2'-dimethoxy-[1,1'-binaphthalene]-5,5',6,6'-tetraol to a known tetrabrominated diphenyl ether. After total synthesis of the reported binaphthalenetetrol was accomplished via a key reduction of a binaphtho-ortho-quinone, comparison of the physical properties and NMR spectroscopic data of the synthetic material indicated that the structure of the natural product isolate was incorrect. Evaluation of the authentic natural product suggested the structure is a tetrabrominated diphenyl ether, likely 3,5-dibromo-2-(3,5-dibromo-2-methoxyphenoxy)phenol.
Collapse
|
36
|
Kumarihamy M, Khan SI, Jacob M, Tekwani BL, Duke SO, Ferreira D, Nanayakkara ND. Antiprotozoal and antimicrobial compounds from the plant pathogen Septoria pistaciarum. JOURNAL OF NATURAL PRODUCTS 2012; 75:883-9. [PMID: 22530813 PMCID: PMC3361971 DOI: 10.1021/np200940b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Four new 1,4-dihydroxy-5-phenyl-2-pyridinone alkaloids, 17-hydroxy-N-(O-methyl)septoriamycin A (1), 17-acetoxy-N-(O-methyl)septoriamycin A (2), 13-(S)-hydroxy-N-(O-methyl)septoriamycin A (3), and 13-(R)-hydroxy-N-(O-methyl)septoriamycin A (4), together with the known compounds (+)-cercosporin (5), (+)-14-O-acetylcercosporin (6), (+)-di-O-acetylcercosporin (7), lumichrome, and brassicasterol, were isolated from an ethyl acetate extract of a culture medium of Septoria pistaciarum. Methylation of septoriamycin A (8) with diazomethane yielded three di-O-methyl analogues, two of which existed as mixtures of rotamers. We previously reported antimalarial activity of septoriamycin A. This compound also exhibited significant activity against Leishmania donovani promastigotes. Compounds 5-7 showed moderate in vitro activity against L. donovani promastigotes and chloroquine-sensitive (D6) and -resistant (W2) strains of Plasmodium falciparum, whereas compound 5 was fairly active against methicillin-sensitive and methicillin-resistant strains of Staphylococcus aureus. Compounds 5-7 also displayed moderate phytotoxic activity against both a dicot (lettuce, Lactuca sativa) and a monocot (bentgrass, Agrostis stolonifera) and cytotoxicity against a panel of cell lines.
Collapse
|
37
|
Podlesny EE, Kozlowski MC. Enantioselective total synthesis of (S)-bisoranjidiol, an axially chiral bisanthraquinone. Org Lett 2012; 14:1408-11. [PMID: 22360604 DOI: 10.1021/ol3001365] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The first enantioselective total synthesis of the bisanthraquinone (S)-bisoranjidiol and an unnatural regioisomer has been accomplished. Key features of the synthesis include the asymmetric oxidative biaryl coupling of a hindered 8-substituted 2-naphthol, selective para-quinone formation, and regioselective tandem Diels-Alder/aromatization reactions.
Collapse
Affiliation(s)
- Erin E Podlesny
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | |
Collapse
|
38
|
Abstract
Nanoparticle catalysis has emerged as an active topic in organic synthesis. Of particular interest is the development of enabling methodologies to efficiently assemble complex molecules using nanoparticle catalysis. This Viewpoint highlights recent developments and discusses future perspectives in this emerging field.
Collapse
Affiliation(s)
- Huan Cong
- Department of Chemistry and Center for Chemical Methodology and Library Development (CMLD-BU), Boston University, Boston, Massachusetts 02215, United States
| | - John A. Porco
- Department of Chemistry and Center for Chemical Methodology and Library Development (CMLD-BU), Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
39
|
Moreno E, Varughese T, Spadafora C, Arnold AE, Coley PD, Kursar TA, Gerwick WH, Cubilla-Rios L. Chemical Constituents of the New Endophytic Fungus Mycosphaerella sp. nov. and Their Anti-parasitic Activity. Nat Prod Commun 2011. [DOI: 10.1177/1934578x1100600620] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Chemical investigation of a new endophytic fungus, Mycosphaerella sp. nov. strain F2140, associated with the foliage of the plant Psychotria horizontalis (Rubiaceae) in Panama, resulted in the isolation of cercosporin (1) and a new cercosporin analog (3) as the major components. The structures of minor compounds in the extract were elucidated by detailed spectroscopic analysis as 2-(2-butyl)-6-ethyl-3-hydroxy-6-methylcyclohex-2-ene-1, 5-dione (4), 3-(2-butyl)-6-ethyl-5-hydroxy-2-methoxy-6-methyl-cyclohex-2-enone (5), and an isomer of 5 (6). To study the influence of the hydroxy groups on the antiparasitic activity of cercosporin, compound 1 was acetylated to obtain derivative 2. The isolated compounds 1-6 were tested in vitro to determine their antiparasitic activity against the causal agents of malaria ( Plasmodium falciparum), leishmaniasis ( Leishmania donovani), and Chagas disease ( Trypanosoma cruzi). Cytotoxicity and potential anticancer activity of these compounds were evaluated using mammalian Vero cells and MCF7 cancer cell lines, respectively. Compounds 1 and 2 displayed high potency against L. donovani (IC50 0.46 and 0.64 μM), T. cruzi (IC50 1.08 and 0.78 μM), P. falciparum (IC50 1.03 and 2.99 μM), and MCF7 cancer cell lines (IC50 4.68 and 3.56 μM). Compounds 3-6 were not active in these assays at a concentration of 10 μg/mL.
Collapse
Affiliation(s)
- Eufemio Moreno
- Laboratory of Tropical Bioorganic Chemistry, Faculty of Natural Exact Sciences and Technology, University of Panama, Republic of Panama
| | - Titto Varughese
- Laboratory of Tropical Bioorganic Chemistry, Faculty of Natural Exact Sciences and Technology, University of Panama, Republic of Panama
- Smithsonian Tropical Research Institute, Unit 0948, APO AA 34002-0948
| | - Carmenza Spadafora
- Institute for Advanced Scientific Investigation and High Technology Services, National Secretariat of Science, Technology, and Innovation, City of Knowledge, Republic of Panama
| | | | - Phyllis D. Coley
- Smithsonian Tropical Research Institute, Unit 0948, APO AA 34002-0948
- Department of Biology, University of Utah, Salt Lake City, Utah, USA
| | - Thomas A. Kursar
- Smithsonian Tropical Research Institute, Unit 0948, APO AA 34002-0948
- Department of Biology, University of Utah, Salt Lake City, Utah, USA
| | - William H. Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093 USA
| | - Luis Cubilla-Rios
- Laboratory of Tropical Bioorganic Chemistry, Faculty of Natural Exact Sciences and Technology, University of Panama, Republic of Panama
- Smithsonian Tropical Research Institute, Unit 0948, APO AA 34002-0948
| |
Collapse
|
40
|
Moreno E, Varughese T, Spadafora C, Arnold AE, Coley PD, Kursar TA, Gerwick WH, Cubilla-Rios L. Chemical constituents of the new endophytic fungus Mycosphaerella sp. nov. and their anti-parasitic activity. Nat Prod Commun 2011; 6:835-840. [PMID: 21815421 PMCID: PMC3375898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023] Open
Abstract
Chemical investigation of a new endophytic fungus, Mycosphaerella sp. nov. strain F2140, associated with the foliage of the plant Psychotria horizontalis (Rubiaceae) in Panama, resulted in the isolation of cercosporin (1) and a new cercosporin analog (3) as the major components. The structures of minor compounds in the extract were elucidated by detailed spectroscopic analysis as 2-(2-butyl)-6-ethyl-3-hydroxy-6-methylcyclohex-2-ene-1,5-dione (4), 3-(2-butyl)-6-ethyl-5-hydroxy-2-methoxy-6-methyl-cyclohex-2-enone (5), and an isomer of 5 (6). To study the influence of the hydroxy groups on the anti-parasitic activity of cercosporin, compound 1 was acetylated to obtain derivative 2. The isolated compounds 1- 6 were tested in vitro to determine their anti-parasitic activity against the causal agents of malaria (Plasmodium falciparum), leishmaniasis (Leishmania donovani), and Chagas disease (Trypanosoma cruzi). Cytotoxicity and potential anticancer activity of these compounds were evaluated using mammalian Vero cells and MCF7 cancer cell lines, respectively. Compounds 1 and 2 displayed high potency against L. donovani (IC50 0.46 and 0.64 microM), T. cruzi (IC50 1.08 and 0.78 microM), P. falciparum (IC50 1.03 and 2.99 microM), and MCF7 cancer cell lines (IC50 4.68 and 3.56 microM). Compounds 3-6 were not active in these assays at a concentration of 10 microg/mL.
Collapse
Affiliation(s)
- Eufemio Moreno
- Laboratory of Tropical Bioorganic Chemistry, Faculty of Natural Exact Sciences and Technology, University of Panama, Republic of Panama
| | - Titto Varughese
- Laboratory of Tropical Bioorganic Chemistry, Faculty of Natural Exact Sciences and Technology, University of Panama, Republic of Panama
- Smithsonian Tropical Research Institute, Unit 0948, APO AA 34002-0948
| | - Carmenza Spadafora
- Institute for Advanced Scientific Investigation and High Technology Services, National Secretariat of Science, Technology, and Innovation, City of Knowledge, Republic of Panama
| | | | | | | | - William H. Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093
| | - Luis Cubilla-Rios
- Laboratory of Tropical Bioorganic Chemistry, Faculty of Natural Exact Sciences and Technology, University of Panama, Republic of Panama
| |
Collapse
|
41
|
Djung JF, Mears RJ, Montalbetti CA, Coulter TS, Golebiowski A, Carr AN, Barker O, Greis KD, Zhou S, Dolan E, Davis GF. The synthesis and evaluation of indolylureas as PKCα inhibitors. Bioorg Med Chem 2011; 19:2742-50. [DOI: 10.1016/j.bmc.2011.02.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 02/17/2011] [Accepted: 02/21/2011] [Indexed: 10/18/2022]
|
42
|
Silva, Jr. LF, Olofsson B. Hypervalent iodine reagents in the total synthesis of natural products. Nat Prod Rep 2011; 28:1722-54. [DOI: 10.1039/c1np00028d] [Citation(s) in RCA: 247] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
43
|
Bringmann G, Gulder T, Gulder TAM, Breuning M. Atroposelective Total Synthesis of Axially Chiral Biaryl Natural Products. Chem Rev 2010; 111:563-639. [DOI: 10.1021/cr100155e] [Citation(s) in RCA: 909] [Impact Index Per Article: 64.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Tanja Gulder
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Tobias A. M. Gulder
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Matthias Breuning
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
44
|
Wang H. Recent advances in asymmetric oxidative coupling of 2-naphthol and its derivatives. Chirality 2010; 22:827-37. [DOI: 10.1002/chir.20843] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
45
|
Mulrooney CA, Morgan BJ, Li X, Kozlowski MC. Perylenequinone natural products: enantioselective synthesis of the oxidized pentacyclic core. J Org Chem 2010; 75:16-29. [PMID: 19894746 DOI: 10.1021/jo9013832] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An enantioselective approach to the perylenequinone core found in the mold perylenequinone natural products is outlined. Specifically, the first asymmetric syntheses of helical chiral perylenequinones absent any additional stereogenic centers are described. Key elements of the synthetic venture include a catalytic enantioselective biaryl coupling, a PIFA-induced naphthalene hydroxylation, and a palladium-mediated aromatic decarboxylation. Transfer of the binaphthalene axial stereochemistry to the perylenequinone helical stereochemistry proceeded with good fidelity. Furthermore, the resultant perylenequinones were shown to possess sufficient atropisomeric stability to be viable intermediates in the biogenesis of the perylenequinone natural products. This stability supports the use of the helical axis as a stereochemical relay in synthesis of the natural products containing additional stereochemical centers.
Collapse
Affiliation(s)
- Carol A Mulrooney
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | | | | | | |
Collapse
|
46
|
O'Brien EM, Morgan BJ, Mulrooney CA, Carroll PJ, Kozlowski MC. Perylenequinone natural products: total synthesis of hypocrellin A. J Org Chem 2010; 75:57-68. [PMID: 19894741 DOI: 10.1021/jo901386d] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An efficient and stereoselective total synthesis of the perylenequinone natural product hypocrellin A (1) is described. The key features include a potentially biomimetic 1,8-diketone aldol cyclization to set the centrochiral C7,C7'-stereochemistry, bis(trifluoroacetoxy)iodobenzene mediated oxygenation, a palladium-catalyzed decarboxylation, and an enantioselective catalytic oxidative 2-naphthol coupling to establish the biaryl axial chirality. The helical stereochemistry is formed from an axial chiral intermediate and is then utilized in a dynamic stereochemical transfer to dictate the stereochemistry of the C7,C7'-seven membered ring formed during the aldol cyclization.
Collapse
Affiliation(s)
- Erin M O'Brien
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | | | | | | | | |
Collapse
|
47
|
Morgan BJ, Mulrooney CA, Kozlowski MC. Perylenequinone natural products: evolution of the total synthesis of cercosporin. J Org Chem 2010; 75:44-56. [PMID: 19894744 DOI: 10.1021/jo9013854] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The evolution of the first total synthesis of perylenequinone cercosporin is described. The key features developed during these efforts include a biscuprate epoxide alkylation, installation of the methylidene acetal, palladium-catalyzed O-arylation, and C3,C3'-decarbonylation. Due to the rapid atropisomerization of the helical axis of cercosporin (at 37 degrees C), the sequencing of these transformations was critical. To this end, the developed protocol enabled the formation of a key advanced intermediate on preparative scale absent any atropisomerization. Furthermore, the O-arylation proved to be general, and the strategy was used in an improved synthesis of a helical chiral perylenequinone structure.
Collapse
Affiliation(s)
- Barbara J Morgan
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | | | | |
Collapse
|
48
|
Morgan BJ, Mulrooney CA, O’Brien EM, Kozlowski MC. Perylenequinone natural products: total syntheses of the diastereomers (+)-phleichrome and (+)-calphostin D by assembly of centrochiral and axial chiral fragments. J Org Chem 2010; 75:30-43. [PMID: 19894745 PMCID: PMC2798900 DOI: 10.1021/jo901384h] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The first total synthesis of (+)-calphostin D and the total synthesis of (+)-phleichrome are outlined. The convergent syntheses utilize an enantiopure biaryl common intermediate, which is formed via an enantioselective catalytic biaryl coupling. The established axial chirality is transferred to the perylenequinone helical stereochemistry with good fidelity. Additionally, efforts focused on the installation of the stereogenic C7,C7'-2-hydroxypropyl groups. Three routes were evaluated to establish the C7,C7'-stereochemistry, in which the successful route involved a double epoxide alkylation with a complex axial chiral biscuprate. This strategy not only allowed the synthesis of the unnatural isomers of calphostin D and phleichrome for assessment in biological systems but also provided valuable information for the syntheses of the more complex cercosporin and hypocrellin A.
Collapse
Affiliation(s)
- Barbara J. Morgan
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323
| | - Carol A. Mulrooney
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323
| | - Erin M. O’Brien
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323
| | - Marisa C. Kozlowski
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323
| |
Collapse
|
49
|
|
50
|
Kozlowski MC, Morgan BJ, Linton EC. Total synthesis of chiral biaryl natural products by asymmetric biaryl coupling. Chem Soc Rev 2009; 38:3193-207. [PMID: 19847351 DOI: 10.1039/b821092f] [Citation(s) in RCA: 665] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This tutorial review highlights the use of catalytic asymmetric 2-naphthol couplings in total synthesis. The types of chirality, chiral biaryl natural products, prior approaches to chiral biaryl natural products, and other catalytic asymmetric biaryl couplings are outlined. The three main categories of chiral catalysts for 2-naphthol coupling (Cu, V, Fe) are described with discussion of their limitations and advantages. Applications of the copper catalyzed couplings in biomimetic syntheses are discussed including nigerone, hypocrellin, calphostin D, phleichrome, and cercosporin.
Collapse
Affiliation(s)
- Marisa C Kozlowski
- Department of Chemistry, Roy and Diana Vagelos Laboratoies, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA.
| | | | | |
Collapse
|