1
|
Bai D, Kim H, Wang P. Development of semisynthetic saponin immunostimulants. Med Chem Res 2024; 33:1292-1306. [PMID: 39132259 PMCID: PMC11315725 DOI: 10.1007/s00044-024-03227-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 04/20/2024] [Indexed: 08/13/2024]
Abstract
Many natural saponins demonstrate immunostimulatory adjuvant activities, but they also have some inherent drawbacks that limit their clinical use. To overcome these limitations, extensive structure-activity-relationship (SAR) studies have been conducted. The SAR studies of QS-21 and related saponins reveal that their respective fatty side chains are crucial for potentiating a strong cellular immune response. Replacing the hydrolytically unstable ester side chain in the C28 oligosaccharide domain with an amide side chain in the same domain or in the C3 branched trisaccharide domain is a viable approach for generating robust semisynthetic saponin immunostimulants. Given the striking resemblance of natural momordica saponins (MS) I and II to the deacylated Quillaja Saponaria (QS) saponins (e.g., QS-17, QS-18, and QS-21), incorporating an amide side chain into the more sustainable MS, instead of deacylated QS saponins, led to the discovery of MS-derived semisynthetic immunostimulatory adjuvants VSA-1 and VSA-2. This review focuses on the authors' previous work on SAR studies of QS and MS saponins.
Collapse
Affiliation(s)
- Di Bai
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL AL35294 USA
| | - Hyunjung Kim
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL AL35294 USA
| | - Pengfei Wang
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL AL35294 USA
| |
Collapse
|
2
|
Lv X, Martin J, Hoover H, Joshi B, Wilkens M, Ullisch DA, Leibold T, Juchum JS, Revadkar S, Kalinovska B, Keith J, Truby A, Liu G, Sun E, Haserick J, DeGnore J, Conolly J, Hill AV, Baldoni J, Kensil C, Levey D, Spencer AJ, Gorr G, Findeis M, Tanne A. Chemical and biological characterization of vaccine adjuvant QS-21 produced via plant cell culture. iScience 2024; 27:109006. [PMID: 38361610 PMCID: PMC10867646 DOI: 10.1016/j.isci.2024.109006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/07/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024] Open
Abstract
Many vaccines, including those using recombinant antigen subunits, rely on adjuvant(s) to enhance the efficacy of the host immune responses. Among the few adjuvants clinically approved, QS-21, a saponin-based immunomodulatory molecule isolated from the tree bark of Quillaja saponaria (QS) is used in complex formulations in approved effective vaccines. High demand of the QS raw material as well as manufacturing scalability limitation has been barriers here. We report for the first-time successful plant cell culture production of QS-21 having structural, chemical, and biologic, properties similar to the bark extracted product. These data ensure QS-21 and related saponins are broadly available and accessible to drug developers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - John S. Juchum
- Phyton Biotech LLC, 1503 Cliveden Avenue, Delta, BC V3M 6P7, Canada
| | | | | | | | - Adam Truby
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | | | | | | | - Adrian V.S. Hill
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | | | - Alexandra J. Spencer
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Hunter Medical Research Institute, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing; Immune Health Program, New Lambton Heights, NSW, Australia
| | | | | | | |
Collapse
|
3
|
Gamboa Marin OJ, Heis F, Gauthier C. Synthesis of immunostimulatory saponins: A sweet challenge for carbohydrate chemists. Carbohydr Res 2023; 530:108851. [PMID: 37257206 DOI: 10.1016/j.carres.2023.108851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 06/02/2023]
Abstract
Saponins are a large family of natural glycosides showing a wide range of biological activities. Current research efforts on saponins as vaccine adjuvants have been mainly focused on the development of synthetic analogs. By mimicking the immunomodulatory saponins from Quillaja saponaria (QS), less complex and readily accessible analogs have been synthesized to improve the industrial applicability and efficacy of saponins as vaccine adjuvants. Through the exploration of several structural modifications on the skeleton of QS saponins, including changes in the sugar and aglycone compositions as well as in the nature and configuration of the glycosidic bonds, structure-activity relationship (SAR) studies developed by Pr. Gin in the early 2010s were taken as a starting point for the development of a new generation of immunomodulatory candidates. In this review, the recent synthetic strategies and SAR studies of mono- and bidesmosidic QS saponins are discussed. Original concepts of vaccination including self-adjuvanticity and the development of saponin-based glycoconjugates are described. The synthesis and semi-synthesis of saponin alternatives to QS, such as Momordica saponin and onjisaponin derivatives, are also discussed in this review.
Collapse
Affiliation(s)
- Oscar Javier Gamboa Marin
- Unité mixte de recherche (UMR) INRS-UQAC, Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval and Chicoutimi, Canada
| | - Floriane Heis
- Unité mixte de recherche (UMR) INRS-UQAC, Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval and Chicoutimi, Canada
| | - Charles Gauthier
- Unité mixte de recherche (UMR) INRS-UQAC, Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval and Chicoutimi, Canada.
| |
Collapse
|
4
|
Astragalus Saponins, Astragaloside VII and Newly Synthesized Derivatives, Induce Dendritic Cell Maturation and T Cell Activation. Vaccines (Basel) 2023; 11:vaccines11030495. [PMID: 36992079 DOI: 10.3390/vaccines11030495] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
Astragaloside VII (AST VII), a triterpenic saponin isolated from Astragalus species, shows promise as a vaccine adjuvant, as it supported a balanced Th1/Th2 immune response in previous in vivo studies. However, the underlying mechanisms of its adjuvant activity have not been defined. Here, we investigated the impact of AST VII and its newly synthesized semi-synthetic analogs on human whole blood cells, as well as on mouse bone marrow-derived dendritic cells (BMDCs). Cells were stimulated with AST VII and its derivatives in the presence or absence of LPS or PMA/ionomycin and the secretion of cytokines and the expression of activation markers were analyzed using ELISA and flow cytometry, respectively. AST VII and its analogs increased the production of IL-1β in PMA/ionomycin-stimulated human whole blood cells. In LPS-treated mouse BMDCs, AST VII increased the production of IL-1β and IL-12, and the expression of MHC II, CD86, and CD80. In mixed leukocyte reaction, AST VII and derivatives increased the expression of the activation marker CD44 on mouse CD4+ and CD8+ T cells. In conclusion, AST VII and its derivatives strengthen pro-inflammatory responses and support dendritic cell maturation and T cell activation in vitro. Our results provide insights into the mechanisms of the adjuvant activities of AST VII and its analogs, which will be instrumental to improve their utility as a vaccine adjuvant.
Collapse
|
5
|
Shivatare SS, Shivatare VS, Wong CH. Glycoconjugates: Synthesis, Functional Studies, and Therapeutic Developments. Chem Rev 2022; 122:15603-15671. [PMID: 36174107 PMCID: PMC9674437 DOI: 10.1021/acs.chemrev.1c01032] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycoconjugates are major constituents of mammalian cells that are formed via covalent conjugation of carbohydrates to other biomolecules like proteins and lipids and often expressed on the cell surfaces. Among the three major classes of glycoconjugates, proteoglycans and glycoproteins contain glycans linked to the protein backbone via amino acid residues such as Asn for N-linked glycans and Ser/Thr for O-linked glycans. In glycolipids, glycans are linked to a lipid component such as glycerol, polyisoprenyl pyrophosphate, fatty acid ester, or sphingolipid. Recently, glycoconjugates have become better structurally defined and biosynthetically understood, especially those associated with human diseases, and are accessible to new drug, diagnostic, and therapeutic developments. This review describes the status and new advances in the biological study and therapeutic applications of natural and synthetic glycoconjugates, including proteoglycans, glycoproteins, and glycolipids. The scope, limitations, and novel methodologies in the synthesis and clinical development of glycoconjugates including vaccines, glyco-remodeled antibodies, glycan-based adjuvants, glycan-specific receptor-mediated drug delivery platforms, etc., and their future prospectus are discussed.
Collapse
Affiliation(s)
- Sachin S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Vidya S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Chi-Huey Wong
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
6
|
Fuentes R, Aguinagalde L, Pifferi C, Plata A, Sacristán N, Castellana D, Anguita J, Fernández-Tejada A. Novel Oxime-Derivatized Synthetic Triterpene Glycosides as Potent Saponin Vaccine Adjuvants. Front Immunol 2022; 13:865507. [PMID: 35603193 PMCID: PMC9121768 DOI: 10.3389/fimmu.2022.865507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/07/2022] [Indexed: 11/30/2022] Open
Abstract
Vaccine adjuvants are key for optimal vaccine efficacy, increasing the immunogenicity of the antigen and potentiating the immune response. Saponin adjuvants such as the carbohydrate-based QS-21 natural product are among the most promising candidates in vaccine formulations, but suffer from inherent drawbacks that have hampered their use and approval as stand-alone adjuvants. Despite the recent development of synthetic derivatives with improved properties, their full potential has not yet been reached, allowing the prospect of discovering further optimized saponin variants with higher potency. Herein, we have designed, chemically synthesized, and immunologically evaluated novel oxime-derivatized saponin adjuvants with targeted structural modifications at key triterpene functionalities. The resulting analogues have revealed important findings into saponin structure-activity relationships, including adjuvant mechanistic insights, and have shown superior adjuvant activity in terms of significantly increased antibody response augmentation compared to our previous saponin leads. These newly identified saponin oximes emerge as highly promising synthetic adjuvants for further preclinical development towards potential next generation immunotherapeutics for future vaccine applications.
Collapse
Affiliation(s)
- Roberto Fuentes
- Chemical Immunology Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance BRTA, Derio, Spain
| | - Leire Aguinagalde
- Chemical Immunology Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance BRTA, Derio, Spain
| | - Carlo Pifferi
- Chemical Immunology Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance BRTA, Derio, Spain
| | - Adrián Plata
- Chemical Immunology Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance BRTA, Derio, Spain
| | - Nagore Sacristán
- Chemical Immunology Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance BRTA, Derio, Spain
| | - Donatello Castellana
- Research and Development, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance BRTA, Derio, Spain
| | - Juan Anguita
- Inflammation and Macrophage Plasticity Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance BRTA, Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Alberto Fernández-Tejada
- Chemical Immunology Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance BRTA, Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- *Correspondence: Alberto Fernández-Tejada,
| |
Collapse
|
7
|
Dong S, Guo X, Han F, He Z, Wang Y. Emerging role of natural products in cancer immunotherapy. Acta Pharm Sin B 2022; 12:1163-1185. [PMID: 35530162 PMCID: PMC9069318 DOI: 10.1016/j.apsb.2021.08.020] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/05/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer immunotherapy has become a new generation of anti-tumor treatment, but its indications still focus on several types of tumors that are sensitive to the immune system. Therefore, effective strategies that can expand its indications and enhance its efficiency become the key element for the further development of cancer immunotherapy. Natural products are reported to have this effect on cancer immunotherapy, including cancer vaccines, immune-check points inhibitors, and adoptive immune-cells therapy. And the mechanism of that is mainly attributed to the remodeling of the tumor-immunosuppressive microenvironment, which is the key factor that assists tumor to avoid the recognition and attack from immune system and cancer immunotherapy. Therefore, this review summarizes and concludes the natural products that reportedly improve cancer immunotherapy and investigates the mechanism. And we found that saponins, polysaccharides, and flavonoids are mainly three categories of natural products, which reflected significant effects combined with cancer immunotherapy through reversing the tumor-immunosuppressive microenvironment. Besides, this review also collected the studies about nano-technology used to improve the disadvantages of natural products. All of these studies showed the great potential of natural products in cancer immunotherapy.
Collapse
Key Words
- AKT, alpha-serine/threonine-specific protein kinase
- Adoptive immune-cells transfer immunotherapy
- B2M, beta-2-microglobulin
- BMDCs, bone marrow dendritic cells
- BPS, basil polysaccharide
- BTLA, B- and T-lymphocyte attenuator
- CAFs, cancer-associated fibroblasts
- CCL22, C–C motif chemokine 22
- CIKs, cytokine-induced killer cells
- COX-2, cyclooxygenase-2
- CRC, colorectal cancer
- CTL, cytotoxic T cell
- CTLA-4, cytotoxic T lymphocyte antigen-4
- Cancer immunotherapy
- Cancer vaccines
- DAMPs, damage-associated molecular patterns
- DCs, dendritic cells
- FDA, US Food and Drug Administration
- HCC, hepatocellular carcinoma
- HER-2, human epidermal growth factor receptor-2
- HIF-1α, hypoxia-inducible factor-1α
- HMGB1, high-mobility group box 1
- HSPs, heat shock proteins
- ICD, Immunogenic cell death
- ICTs, immunological checkpoints
- IFN-γ, interferon γ
- IL-10, interleukin-10
- Immuno-check points
- Immunosuppressive microenvironment
- LLC, Lewis lung cancer
- MDSCs, myeloid-derived suppressor cells
- MHC, major histocompatibility complex class
- MITF, melanogenesis associated transcription factor
- MMP-9, matrix metalloprotein-9
- Mcl-1, myeloid leukemia cell differentiation protein 1
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NKTs, natural killer T cells
- NSCLC, non-small cell lung cancer
- Natural products
- OVA, ovalbumin
- PD-1, programmed death-1
- PD-L1, programmed death receptor ligand 1
- PGE-2, prostaglandin E2
- PI3K, phosphoinositide 3-kinase
- ROS, reactive oxygen species
- STAT3, signal transducer and activator of transcription 3
- TAMs, tumor-associated macrophages
- TAP, transporters related with antigen processing
- TGF-β, transforming growth factor-β
- TILs, tumor infiltration lymphocytes
- TLR, Toll-like receptor
- TNF-α, tumor necrosis factor α
- TSA, tumor specific antigens
- Teffs, effective T cells
- Th1, T helper type 1
- Tregs, regulatory T cells
- VEGF, vascular endothelial growth factor
- bFGF, basic fibroblast growth factor
- mTOR, mechanistic target of rapamycin
Collapse
Affiliation(s)
- Songtao Dong
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiangnan Guo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fei Han
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yongjun Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
8
|
Hua J, Liu YC, Luo SH, Liu Y, Xiao CJ, Li XN, Li SH. Immunostimulatory 6/6/6/6 Tetracyclic Triterpenoid Saponins with the Methyl-30 Incorporated Cyclization from the Root of Colquhounia elegans. Org Lett 2021; 23:7462-7466. [PMID: 34505790 DOI: 10.1021/acs.orglett.1c02673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Two novel triterpenoid saponins, colqueleganoids A (1) and B (2), with the first methyl-30 incorporated 6/6/6/6-cyclized carbon skeleton (named colquelegane), were isolated from the root of Colquhounia elegans. Their structures including absolute configuration were determined by spectroscopic methods and X-ray crystallographic analyses. Interestingly, both compounds significantly enhanced TNF-α production and 1 also increased the IL-6 production in RAW264.7 macrophages stimulated with lipopolysaccharide (LPS), suggesting their potential application as immunostimulants in immunotherapy and vaccination.
Collapse
Affiliation(s)
- Juan Hua
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China.,College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, P.R. China
| | - Yan-Chun Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P.R. China
| | - Shi-Hong Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China.,College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, P.R. China
| | - Yan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China.,State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P.R. China
| | - Chao-Jiang Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P.R. China
| | - Xiao-Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P.R. China
| | - Sheng-Hong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China.,State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P.R. China
| |
Collapse
|
9
|
Adjuvant effect of saponin in an oil-based monovalent (serotype O) foot-and-mouth disease virus vaccine on the antibody response in guinea pigs and cattle. Arch Virol 2021; 166:1977-1984. [PMID: 33871696 DOI: 10.1007/s00705-021-05043-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/02/2021] [Indexed: 10/21/2022]
Abstract
To enhance the potency of a foot-and-mouth disease (FMD) vaccine, saponin was included in the vaccine formula. In this study, the combined effect of Montanide ISA 50 and saponin was evaluated. Two experiments were performed in guinea pigs and one in cattle to determine the optimal antigen and saponin doses. Only serotype O of foot-and-mouth disease virus (O/PanAsia-2 of ME-SA topotype) was employed in preparation of the monovalent vaccine. All animals were immunized twice with a four-week interval, except for the negative controls. Blood was collected 10 days after the second booster, and the immune response was evaluated using a serum neutralization test. Oil-based FMD vaccines containing saponin induced higher neutralizing antibody levels than formulations lacking saponin. The addition of saponin to formulations with low antigen payload (2.5 µg of inactivated whole virus particles [146S particles] per dose) gave significantly higher neutralizing antibody levels (p < 0.005) than 5 µg of 146S without saponin, suggesting that it can be used to improve FMD vaccine potency in susceptible animals. No adverse effects were observed in vaccinated cattle or guinea pigs.
Collapse
|
10
|
Fuentes R, Ruiz‐de‐Angulo A, Sacristán N, Navo CD, Jiménez‐Osés G, Anguita J, Fernández‐Tejada A. Replacing the Rhamnose-Xylose Moiety of QS-21 with Simpler Terminal Disaccharide Units Attenuates Adjuvant Activity in Truncated Saponin Variants. Chemistry 2021; 27:4731-4737. [PMID: 33236801 PMCID: PMC7986102 DOI: 10.1002/chem.202004705] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Indexed: 01/03/2023]
Abstract
Adjuvants are key immunostimulatory components in vaccine formulations, which improve the immune response to the co-administered antigen. The saponin natural product QS-21 is one of the most promising immunoadjuvants in the development of vaccines against cancer and infectious diseases but suffers from limitations that have hampered its widespread human use. Previous structure-activity relationship studies have identified simplified saponin variants with truncated carbohydrate chains, but have not focused on the influence of the linear oligosaccharide domain of QS-21 in adjuvant activity. Herein, an expeditious 15-step synthesis of new linear trisaccharide variants of simplified QS-21-derived adjuvants is reported, in which the complex terminal xylose-rhamnose moiety has been replaced with commercially available, simpler lactose and cellobiose disaccharides in a β-anomeric configuration. In vivo immunological evaluation of the synthetic saponins showed attenuated antibody responses, highlighting the negative impact of such carbohydrate modifications on adjuvant activity, which could be associated with higher saponin conformational flexibility.
Collapse
Affiliation(s)
- Roberto Fuentes
- Chemical Immunology LaboratoryCenter for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Biscay Science and Technology Park, Building 801A48160DerioSpain
| | - Ane Ruiz‐de‐Angulo
- Chemical Immunology LaboratoryCenter for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Biscay Science and Technology Park, Building 801A48160DerioSpain
| | - Nagore Sacristán
- Chemical Immunology LaboratoryCenter for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Biscay Science and Technology Park, Building 801A48160DerioSpain
| | - Claudio Daniel Navo
- Computational Chemistry LaboratoryCenter for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Biscay Science and Technology Park, Building 801A48160DerioSpain
| | - Gonzalo Jiménez‐Osés
- Computational Chemistry LaboratoryCenter for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Biscay Science and Technology Park, Building 801A48160DerioSpain
| | - Juan Anguita
- Inflammation and Macrophage Plasticity LaboratoryCenter for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Biscay Science and Technology Park, Building 801A48160DerioSpain
- IkerbasqueBasque Foundation for SciencePlaza Euskadi 548009BilbaoSpain
| | - Alberto Fernández‐Tejada
- Chemical Immunology LaboratoryCenter for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Biscay Science and Technology Park, Building 801A48160DerioSpain
- IkerbasqueBasque Foundation for SciencePlaza Euskadi 548009BilbaoSpain
| |
Collapse
|
11
|
Natural and Synthetic Saponins as Vaccine Adjuvants. Vaccines (Basel) 2021; 9:vaccines9030222. [PMID: 33807582 PMCID: PMC8001307 DOI: 10.3390/vaccines9030222] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/20/2022] Open
Abstract
Saponin adjuvants have been extensively studied for their use in veterinary and human vaccines. Among them, QS-21 stands out owing to its unique profile of immunostimulating activity, inducing a balanced Th1/Th2 immunity, which is valuable to a broad scope of applications in combating various microbial pathogens, cancers, and other diseases. It has recently been approved for use in human vaccines as a key component of combination adjuvants, e.g., AS01b in Shingrix® for herpes zoster. Despite its usefulness in research and clinic, the cellular and molecular mechanisms of QS-21 and other saponin adjuvants are poorly understood. Extensive efforts have been devoted to studies for understanding the mechanisms of QS-21 in different formulations and in different combinations with other adjuvants, and to medicinal chemistry studies for gaining mechanistic insights and development of practical alternatives to QS-21 that can circumvent its inherent drawbacks. In this review, we briefly summarize the current understandings of the mechanism underlying QS-21’s adjuvanticity and the encouraging results from recent structure-activity-relationship (SAR) studies.
Collapse
|
12
|
Tsvetkov YE, Yudina ON, Nifantiev NE. 3-Amino-3-deoxy- and 4-amino-4-deoxyhexoses in the synthesis of natural carbohydrate compounds and their analogues. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Natural and synthetic carbohydrate-based vaccine adjuvants and their mechanisms of action. Nat Rev Chem 2021; 5:197-216. [PMID: 37117529 PMCID: PMC7829660 DOI: 10.1038/s41570-020-00244-3] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2020] [Indexed: 01/31/2023]
Abstract
Modern subunit vaccines based on homogeneous antigens offer more precise targeting and improved safety compared with traditional whole-pathogen vaccines. However, they are also less immunogenic and require an adjuvant to increase the immunogenicity of the antigen and potentiate the immune response. Unfortunately, few adjuvants have sufficient potency and low enough toxicity for clinical use, highlighting the urgent need for new, potent and safe adjuvants. Notably, a number of natural and synthetic carbohydrate structures have been used as adjuvants in clinical trials, and two have recently been approved in human vaccines. However, naturally derived carbohydrate adjuvants are heterogeneous, difficult to obtain and, in some cases, unstable. In addition, their molecular mechanisms of action are generally not fully understood, partly owing to the lack of tools to elucidate their immune-potentiating effects, thus hampering the rational development of optimized adjuvants. To address these challenges, modification of the natural product structure using synthetic chemistry emerges as an attractive approach to develop well-defined, improved carbohydrate-containing adjuvants and chemical probes for mechanistic investigation. This Review describes selected examples of natural and synthetic carbohydrate-based adjuvants and their application in synthetic self-adjuvanting vaccines, while also discussing current understanding of their molecular mechanisms of action.
Collapse
|
14
|
Ghirardello M, Ruiz-de-Angulo A, Sacristan N, Barriales D, Jiménez-Barbero J, Poveda A, Corzana F, Anguita J, Fernández-Tejada A. Exploiting structure-activity relationships of QS-21 in the design and synthesis of streamlined saponin vaccine adjuvants. Chem Commun (Camb) 2020; 56:719-722. [PMID: 31833496 DOI: 10.1039/c9cc07781b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report the design, synthesis, immunological evaluation, and conformational analysis of new saponin variants as promising vaccine adjuvants. These studies have provided expedient synthetic access to streamlined adjuvant-active saponins and yielded molecular-level insights into saponin conformation that correlated with their in vivo adjuvant activities.
Collapse
Affiliation(s)
- Mattia Ghirardello
- Chemical Immunology Lab, Centre for Cooperative Research in Biosciences, CIC-bioGUNE, 48160 Derio, Biscay, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Xie C, Ha Z, Sun W, Nan F, Zhang P, Han J, Zhao G, Zhang H, Zhuang X, Lu H, Jin N. Construction and immunological evaluation of recombinant adenovirus vaccines co-expressing GP3 and GP5 of EU-type porcine reproductive and respiratory syndrome virus in pigs. J Vet Med Sci 2019; 81:1879-1886. [PMID: 31694992 PMCID: PMC6943305 DOI: 10.1292/jvms.19-0283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) keeps causing economic
damages in the swine sector across the globe. There has been emergence of the European
(EU) genotype of porcine reproductive and respiratory syndrome virus (Genotype-I PRRSV) in
China in recent years. The presently available vaccines cannot unable to provide safeguard
against PRRSV infection completely. This study was aimed to construct recombinant
adenovirus expressing the ORF3 and ORF5 genes of the EU-type PRRSV strain. Then, the
recombinant adenovirus vaccines for EU-type PRRSV (rAd-E3518, rAd-E35, rAd-E3 and rAd-E5)
which we constructed and evaluated were constructed and identified by western blot and
PCR. All recombinant adenovirus vaccines were evaluated for humoral and cellular responses
and EU-type PRRSV challenge in pigs. The results showed that the group of rAd-E3518+Quil A
developed higher GP3 and GP5 specific antibody responses compared to the group of
rAd-E3518. The majority of the neutralizing antibody titers were higher than 1:16
(P<0.05), the fusion of IL-18 has increased significantly
PRRSV-stimulated secretion of IFN-γ and IL-4 in porcine serum, the group of rAd-E3518+Quil
A produced highest T-lymphocytes (CD3+CD4+ and
CD3+CD8+ T cells) proliferative in peripheral blood of pigs. The
animals were challenged with the EU-type PRRSV strain and the viral load was detected in
the several tissues, the viral load of rAd-E3518 and rAd-E3518+Quil A were lower than the
wild-type adenovirus group. Our findings provide evidence to confirm that the recombinant
adenovirus vaccine can protect pigs from EU-PRRSV infection.
Collapse
Affiliation(s)
- Changzhan Xie
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Zhuo Ha
- Institute of Military Veterinary Medicine, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China
| | - Wenchao Sun
- Institute of Military Veterinary Medicine, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China
| | - Fulong Nan
- Institute of Military Veterinary Medicine, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China
| | - Ping Zhang
- Institute of specialty, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Jicheng Han
- Institute of Military Veterinary Medicine, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China
| | - Guanyu Zhao
- Institute of Military Veterinary Medicine, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China
| | - He Zhang
- Institute of Military Veterinary Medicine, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China
| | - Xinyu Zhuang
- Institute of Military Veterinary Medicine, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China
| | - Huijun Lu
- Institute of Military Veterinary Medicine, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Ningyi Jin
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.,Institute of Military Veterinary Medicine, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
16
|
Wang P, Škalamera Đ, Sui X, Zhang P, Michalek SM. Synthesis and Evaluation of QS-7-Based Vaccine Adjuvants. ACS Infect Dis 2019; 5:974-981. [PMID: 30920199 DOI: 10.1021/acsinfecdis.9b00039] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We have designed and synthesized two analogs (5 and 6) of QS-7, a natural saponin compound isolated from Quillaja saponaria (QS) Molina tree bark. The only structural difference between compound 5 and 6 is that 5 is acetylated at the 3- and 4-O positions of the quillaic acid C28 fucosyl unit while 6 is not. However, the two analogs show significantly different immunostimulant profiles. Compound 5 may potentiate a mixed Th1/Th2 (Th, T helper cells) immune response against the specific antigens while compound 6 may only induce a Th2-biased immunity. These results suggest that the 3- and/or 4-O acetyl groups of the fucosyl unit may play an important role in tuning the adjuvanticity of the QS-7 analogs, and compound 5 can serve as a structurally defined synthetic adjuvant when a mixed Th1/Th2 immune responses is desired.
Collapse
|
17
|
Foamy matters: an update on Quillaja saponins and their use as immunoadjuvants. Future Med Chem 2019; 11:1485-1499. [DOI: 10.4155/fmc-2018-0438] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Immunoadjuvant Quillaja spp. tree saponins stimulate both cellular and humoral responses, significantly widening vaccine target pathogen spectra. Host toxicity of specific saponins, fractions and extracts may be rather low and further reduced using lipid-based delivery systems. Saponins contain a hydrophobic central aglycone decorated with several sugar residues, posing a challenge for viable chemical synthesis. These, however, may provide simpler analogs. Saponin chemistry affords characteristic interactions with cell membranes, which are essential for its mechanism of action. Natural sources include Quillaja saponaria barks and, more recently, Quillaja brasiliensis leaves. Sustainable large-scale supply can use young plants grown in clonal gardens and elicitation treatments. Quillaja genomic studies will most likely buttress future synthetic biology-based saponin production efforts.
Collapse
|
18
|
Wang P, Škalamera Đ, Sui X, Zhang P, Michalek SM. Synthesis and Evaluation of a QS-17/18-Based Vaccine Adjuvant. J Med Chem 2019; 62:1669-1676. [PMID: 30656932 DOI: 10.1021/acs.jmedchem.8b01997] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have synthesized a QS-17/18 analogue (7) and evaluated its adjuvant activity in the formulation with rHagB antigen. Compound 7 and QS-21 analogues 5 and 6 are presumably the major components of GPI-0100, a widely used complex mixture of semisynthetic derivatives of Quillaja saponaria (QS) Molina saponins. The QS-17/18 analogue 7 shows an adjuvant activity profile similar to that of GPI-0100, potentiating mixed Th-1/Th-2 immune responses, which is different from those of QS-21 analogues 5 and 6 that probably only induce a Th2-like immunity. The combination of QS-17/18 and QS-21 analogues does not show a synergistic effect. These results suggest that QS-17/18 analogue 7 might be the active component of GPI-0100 responsible for its immunostimulant property. Therefore, compound 7 can not only be a structurally defined alternative to GPI-0100 but also provide a valuable clue for rational design of new QS-based vaccine adjuvants with better adjuvant properties.
Collapse
|
19
|
Karimov RR, Tan DS, Gin DY. Synthesis of the hexacyclic triterpene core of the jujuboside saponins via tandem Wolff rearrangement-intramolecular ketene hetero-Diels-Alder reaction. Tetrahedron 2018; 74:3370-3383. [PMID: 30467444 DOI: 10.1016/j.tet.2018.04.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The jujubosides are saponin natural products reported to have immunoadjuvant, anticancer, antibacterial, antifungal, and antisweet activities. The triterpene component, jujubogenin contains a unique tricyclic ketal motif comprising the DEF ring system. Herein, we describe our efforts toward the total synthesis of jujubogenin, using a sterically-demanding intermolecular Diels-Alder reaction to assemble the C-ring and a tandem Wolff rearrangement-intramolecular ketene hetero-Diels-Alder reaction to form the DF-ring system. Acid-catalyzed cyclization of the resulting bicyclic enol ether then closes the E-ring to provide the hexacyclic core of jujubogenin.
Collapse
Affiliation(s)
- Rashad R Karimov
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 422, New York, New York 10065, USA
| | - Derek S Tan
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 422, New York, New York 10065, USA.,Chemical Biology Program and Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 422, New York, New York 10065, USA
| | - David Y Gin
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 422, New York, New York 10065, USA.,Chemical Biology Program and Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 422, New York, New York 10065, USA
| |
Collapse
|
20
|
Lacaille-Dubois MA, Wagner H. New perspectives for natural triterpene glycosides as potential adjuvants. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 37:S0944-7113(17)30158-7. [PMID: 29239784 DOI: 10.1016/j.phymed.2017.10.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/29/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Triterpene glycosides are a vast group of secondary metabolites widely distributed in plants including a high number of biologically active compounds. The pharmacological potential is evaluated by using many bioassays particularly in the field of cancerology, immunology, and microbiology. The adjuvant concept is well known for these molecules in vaccines, but there is little preclinical evidence to support this concept in the management of cancer, infections and inflammation. PURPOSE We aim to review some examples of triterpene glycosides from natural sources which exhibit adjuvant activity when they are co-adminitered with anticancer drugs, targeted toxins, antimicrobial, anti-inflammatory drugs and with antigens in vaccines. METHODS The scientific literature on the adjuvant potential of triterpene glycosides covering mainly the last two decades has been identified by using relevant key words in the databases, using the online service such as Medline/PubMed, Scopus, Web of Science, Google Scholar. RESULTS We divided these findings in four kind of examples, the combination of triterpene glycosides (1) with chemotherapeutic agents in conventional tumor therapies and with targeted toxins, (2) with antimicrobial drugs, (3) with antiinflammatory drugs, and (4) with an antigen in prophylactic and therapeutic vaccines. Pharmacological studies have revealed that some triterpene glycosides co-administered with anticancer drugs such as cisplatin, paclitaxel, cyclophosphamide, etoposide, 5-fluorouracyl, mitoxantrone exhibited increased cytotoxicity in tumor cells better than when the drugs were administered alone. However in vivo toxicological and pharmacokinetic studies are required before the combination strategy can be applied into clinical practice. Other studies showed that combined application of triterpene glycosides with targeted toxins resulted in the increased efficacy of the toxin, simultaneously reducing the dosage, and side effects. It was also shown that the co-administration of the triterpenoids with corticosteroids synergistically inhibited the inflammatory response induced by carrageenan in rats. The search for new alternative adjuvants in vaccines in comparison with the aluminium salts inducing only a Th2-type immune response resulted in the discovery of the promising purified fraction QS-21 from Quillaja saponaria, which has been used in the development of a variety of prophylactic and therapeutic vaccines. Over 120 clinical trials for around 20 vaccine indications in infectious diseases, cancer, degenerative disorders have been reported involving more than 50,000 patients. CONCLUSION This review summarized the successfull in vitro and in vivo studies showing that this combination approach of triterpene glycosides co-adminitered with anticancer, antimicrobial and anti-inflammatory drug may provide an exciting road for further developments in the treatment of some cancers, parasitic and inflammatory diseases and in the rational design of vaccines against infectious diseases and cancer. From a clinical point of view, the potential benefit of QS-21, a promising triterpene glycoside from Quillaja saponaria has been highlighted in several vaccine clinical trials with a favorable ratio efficacy/toxicity.
Collapse
Affiliation(s)
- Marie-Aleth Lacaille-Dubois
- PEPITE EA 4267, Laboratoire de Pharmacognosie, UFR des Sciences de Santé, Université de Bourgogne Franche-Comté, 7, Bd Jeanne d'Arc, BP 87900, 21079 Dijon cedex, France.
| | - Hildebert Wagner
- Department of Pharmacy, Center for Drug Research, University of Munich, Butenandtstr. 5-13, 81377 Munich, Germany
| |
Collapse
|
21
|
Design, synthesis and evaluation of optimized saponin variants derived from the vaccine adjuvant QS-21. PURE APPL CHEM 2017. [DOI: 10.1515/pac-2016-1213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
AbstractThe saponin natural product QS-21 is one of the most potent investigational adjuvants, which are substances added to vaccines to enhance the immunogenicity of the antigen and potentiate the immune response. While QS-21 has been coadministered with vaccines against cancers and infectious diseases in many clinical trials, its inherent liabilities (scarcity, heterogeneity, instability, and dose-limiting toxicity) have limited its widespread clinical use. Furthermore, its molecular mechanisms of action are poorly understood. Structural modification of the natural product using chemical synthesis has become an important strategy to overcome these limitations. This review focuses mainly on research efforts in the group of the late Professor David Y. Gin on the development of optimized synthetic saponin adjuvants derived from QS-21. A number of QS21 variants incorporating stable acyl chain amide linkages, truncated carbohydrate domains, and targeted modifications at the triterpene and central glycosyl ester linkage were designed, chemically synthesized, and immunologically evaluated. These studies delineated key minimal structural requirements for adjuvant activity, established correlations between saponin conformation and activity, and provided improved, synthetically accessible saponin adjuvants. Moreover, leveraging these structure–activity relationships, novel saponin probes with high potency and reduced toxicity were developed and used in biodistribution and fluorescence imaging studies, yielding early insights into their enigmatic mechanisms of action.
Collapse
|
22
|
Synthetic agonists of NOD-like, RIG-I-like, and C-type lectin receptors for probing the inflammatory immune response. Future Med Chem 2017; 9:1345-1360. [PMID: 28776416 DOI: 10.4155/fmc-2017-0101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Synthetic agonists of innate immune cells are of interest to immunologists due to their synthesis from well-defined materials, optimized activity, and monodisperse chemical purity. These molecules are used in both prophylactic and therapeutic contexts from vaccines to cancer immunotherapies. In this review we highlight synthetic agonists that activate innate immune cells through three classes of pattern recognition receptors: NOD-like receptors, RIG-I-like receptors, and C-type lectin receptors. We classify these agonists by the receptor they activate and present them from a chemical perspective, focusing on structural components that define agonist activity. We anticipate this review will be useful to the medicinal chemist as a guide to chemical motifs that activate each receptor, ultimately illuminating a chemical space ripe for exploration.
Collapse
|
23
|
Karimov RR, Tan DS, Gin DY. Rapid assembly of the doubly-branched pentasaccharide domain of the immunoadjuvant jujuboside A via convergent B(C 6F 5) 3-catalyzed glycosylation of sterically-hindered precursors. Chem Commun (Camb) 2017; 53:5838-5841. [PMID: 28498382 PMCID: PMC5531170 DOI: 10.1039/c7cc01783a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A convergent synthesis of the complex, doubly-branched pentasaccharide domain of the natural-product immunoadjuvant jujuboside A is described. The key step is a sterically-hindered glycosylation reaction between a branched trisaccharide trichloroacetimidate glycosyl donor and a disaccharide glycosyl acceptor. Conventional Lewis acids (TMSOTf, BF3·Et2O) were ineffective in this glycosylation, but B(C6F5)3 catalyzed the reaction successfully. Inherent complete diastereoselectivity for the undesired α-anomer was overcome by rational optimization with a nitrile solvent system (1 : 5 t-BuCN/CF3Ph) to provide flexible, effective access to the β-linked pentasaccharide.
Collapse
Affiliation(s)
- Rashad R Karimov
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 422, New York, New York 10065, USA.
| | | | | |
Collapse
|
24
|
Fernández-Tejada A, Walkowicz WE, Tan DS, Gin DY. Semisynthesis of Analogues of the Saponin Immunoadjuvant QS-21. Methods Mol Biol 2017; 1494:45-71. [PMID: 27718185 DOI: 10.1007/978-1-4939-6445-1_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Saponins are triterpene glycoside natural products that exhibit many different biological properties, including activation and modulation of the immune system, and have therefore attracted significant interest as immunological adjuvants for use in vaccines. QS-21 is the most widely used and promising saponin adjuvant but suffers from several liabilities, such as scarcity, dose-limiting toxicity, and hydrolytic instability. Chemical synthesis has emerged as a powerful approach to obtain homogeneous, pure samples of QS-21 and to improve its properties and therapeutic profile by providing access to optimized, synthetic saponin variants. Herein, we describe a general method for the semisynthesis of these molecules from QS-21, with detailed synthetic protocols for two saponin variants developed in our recent work.
Collapse
Affiliation(s)
- Alberto Fernández-Tejada
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road 12, OX1 3TA, Oxford, UK.
| | - William E Walkowicz
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Derek S Tan
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - David Y Gin
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| |
Collapse
|
25
|
Wojciechowski K, Orczyk M, Trapp M, Gutberlet T. Effect of triterpene and steroid saponins on lecithin bilayers. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.04.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Wang P, Devalankar DA, Dai Q, Zhang P, Michalek SM. Synthesis and Evaluation of QS-21-Based Immunoadjuvants with a Terminal-Functionalized Side Chain Incorporated in the West Wing Trisaccharide. J Org Chem 2016; 81:9560-9566. [PMID: 27709937 PMCID: PMC6488304 DOI: 10.1021/acs.joc.6b00922] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Three QS-21-based vaccine adjuvant candidates with a terminal-functionalized side chain incorporated in the west wing trisaccharide have been synthesized. The terminal polar functional group serves to increase the solubility of these analogues in water. Two of the synthetic analogues have been shown to have adjuvant activity comparable to that of GPI-0100. The stand-alone adjuvant activity of the new synthetic analogues again confirmed that it is a feasible way to develop new saponin-based vaccine adjuvants through derivatizing at the west wing branched trisaccharide domain. Inclusion of an additional polar functional group such as a carboxyl group (as in 3x) or a monosaccharide (as in 4x and 5x) is sufficient to increase the water solubility of the corresponding synthetic analogues to a level comparable to that of GPI-0100 and suitable for immunological studies and clinical application. The structure of the incorporated side chain has a significant impact on the adjuvant activity in terms of the magnitude and nature of the host's responses.
Collapse
Affiliation(s)
- Pengfei Wang
- Department of Chemistry, University of Alabama at Birmingham, 901 14th Street South, Birmingham, Alabama 35294, United States
| | - Dattatray A. Devalankar
- Department of Chemistry, University of Alabama at Birmingham, 901 14th Street South, Birmingham, Alabama 35294, United States
| | - Qipu Dai
- Department of Chemistry, University of Alabama at Birmingham, 901 14th Street South, Birmingham, Alabama 35294, United States
| | - Ping Zhang
- Department of Pediatric Dentistry, University of Alabama at Birmingham, 901 14th Street South, Birmingham, Alabama 35294, United States
| | - Suzanne M Michalek
- Department of Microbiology, University of Alabama at Birmingham, 901 14th Street South, Birmingham, Alabama 35294, United States
| |
Collapse
|
27
|
Fernández-Tejada A, Tan DS, Gin DY. Development of Improved Vaccine Adjuvants Based on the Saponin Natural Product QS-21 through Chemical Synthesis. Acc Chem Res 2016; 49:1741-56. [PMID: 27568877 PMCID: PMC5032057 DOI: 10.1021/acs.accounts.6b00242] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
Vaccines based on molecular subunit antigens
are increasingly being
investigated due to their improved safety and more precise targeting
compared to classical whole-pathogen vaccines. However, subunit vaccines
are inherently less immunogenic; thus, coadministration of an adjuvant
to increase the immunogenicity of the antigen is often necessary to
elicit a potent immune response. QS-21, an immunostimulatory saponin
natural product, has been used as an adjuvant in conjunction with various
vaccines in numerous clinical trials, but suffers from several inherent
liabilities, including scarcity, chemical instability, and dose-limiting
toxicity. Moreover, little is known about its mechanism of action.
Over a decade-long effort, beginning at the University of Illinois
at Urbana-Champaign and continuing at the Memorial Sloan Kettering
Cancer Center (MSKCC), the group of Prof. David Y. Gin accomplished
the total synthesis of QS-21 and developed a practical semisynthetic
approach to novel variants that overcome the liabilities of the natural
product. First, semisynthetic QS-21 variants were designed with stable
amide linkages in the acyl chain domain that exhibited comparable
in vivo adjuvant activity and lower toxicity than the natural product.
Further modifications in the acyl chain domain and truncation of the
linear tetrasaccharide domain led to identification of a trisaccharide
variant with a simple carboxylic acid side chain that retained potent
adjuvant activity, albeit with reemergence of toxicity. Conversely,
an acyl chain analogue terminating in a free amine was inactive but
enabled chemoselective functionalization with radiolabeled and fluorescent
tags, yielding adjuvant-active saponin probes that, unlike inactive
congeners, accumulated in the lymph nodes in vaccinated mice and internalized
into dendritic cells. Subtle variations in length, stereochemistry,
and conformational flexibility around the central glycosidic linkage
provided QS-21 variants with adjuvant activities that correlated with
specific conformations found in molecular dynamics simulations. Notably,
deletion of the entire branched trisaccharide domain afforded potent,
truncated saponin variants with negligible toxicity and improved synthetic
access, facilitating subsequent investigation of the triterpene core.
The triterpene C4-aldehyde substituent, previously proposed to be
important for QS-21 adjuvant activity, proved to be dispensable
in these truncated saponin variants, while the presence of the C16
hydroxyl group enhanced activity. Novel adjuvant conjugates incorporating
the small-molecule immunopotentiator tucaresol at the acyl chain terminus
afforded adjuvant-active variants but without significant synergistic
enhancement of activity. Finally, a new divergent synthetic approach
was developed to provide versatile and streamlined access to additional
linear oligosaccharide domain variants with modified sugars and regiochemistries,
opening the door to the rapid generation of diverse, synthetically
accessible analogues. In this Account, we summarize these multidisciplinary
studies at the interface of chemistry, immunology, and medicine, which
have provided critical information on the structure–activity
relationships (SAR) of this Quillaja saponin class;
access to novel, potent, nontoxic adjuvants for use in subunit vaccines;
and a powerful platform for investigations into the mechanisms of
saponin immunopotentiation.
Collapse
Affiliation(s)
- Alberto Fernández-Tejada
- Chemical
Biology Program, and ‡Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Derek S. Tan
- Chemical
Biology Program, and ‡Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - David Y. Gin
- Chemical
Biology Program, and ‡Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| |
Collapse
|
28
|
Çokçalışkan C, Türkoğlu T, Sareyyüpoğlu B, Uzunlu E, Babak A, Özbilge BB, Gülyaz V. QS-21 enhances the early antibody response to oil adjuvant foot-and-mouth disease vaccine in cattle. Clin Exp Vaccine Res 2016; 5:138-47. [PMID: 27489804 PMCID: PMC4969278 DOI: 10.7774/cevr.2016.5.2.138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/25/2016] [Accepted: 03/05/2016] [Indexed: 12/27/2022] Open
Abstract
Purpose One of the most important tools against foot-and-mouth disease, a highly contagious and variable viral disease of cloven-hoofed animals, is vaccination. However, the effectiveness of foot-and-mouth disease vaccines on slowing the spread of the disease is questionable. In contrast, high potency vaccines providing early protection may solve issues with the spread of the disease, escaping mutants, and persistency. To increase the potency of the vaccine, additives such as saponin and aluminium hydroxide are used. However, the use of saponin with an oil adjuvant is not common and is sometimes linked to toxicity. QS-21, which is less toxic than Quil A, has been presented as an alternative for use with saponin. In this study, the addition of QS-21 to a commercially available foot-and-mouth disease water-in-oil-in-water emulsion vaccine was evaluated in cattle. Materials and Methods After vaccination, serum samples were collected periodically over 3 months. Sera of the QS-21 and normal oil vaccine groups were compared via serum virus neutralization antibody titre and liquid phase blocking enzyme-linked immunosorbent assay antibody titre. Results The results showed that there was a significant early antibody increase in the QS-21 group. Conclusion Strong early virus neutralizing antibody response will be useful for emergency or ring vaccinations against foot-and-mouth disease in target animals.
Collapse
Affiliation(s)
- Can Çokçalışkan
- Republic of Turkey, Ministry of Food, Agriculture and Livestock, Institute of Foot and Mouth Disease (SAP), Ankara, Turkey
| | - Tunçer Türkoğlu
- Republic of Turkey, Ministry of Food, Agriculture and Livestock, Institute of Foot and Mouth Disease (SAP), Ankara, Turkey
| | - Beyhan Sareyyüpoğlu
- Republic of Turkey, Ministry of Food, Agriculture and Livestock, Institute of Foot and Mouth Disease (SAP), Ankara, Turkey
| | - Ergün Uzunlu
- Republic of Turkey, Ministry of Food, Agriculture and Livestock, Institute of Foot and Mouth Disease (SAP), Ankara, Turkey
| | - Ayca Babak
- Republic of Turkey, Ministry of Food, Agriculture and Livestock, Directorate-General for Agriculture and Rural Development, Ankara, Turkey
| | - Banu B Özbilge
- Republic of Turkey, Ministry of Food, Agriculture and Livestock, Institute of Foot and Mouth Disease (SAP), Ankara, Turkey
| | - Veli Gülyaz
- Republic of Turkey, Ministry of Food, Agriculture and Livestock, Institute of Foot and Mouth Disease (SAP), Ankara, Turkey
| |
Collapse
|
29
|
Bigaeva E, van Doorn E, Liu H, Hak E. Meta-Analysis on Randomized Controlled Trials of Vaccines with QS-21 or ISCOMATRIX Adjuvant: Safety and Tolerability. PLoS One 2016; 11:e0154757. [PMID: 27149269 PMCID: PMC4858302 DOI: 10.1371/journal.pone.0154757] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/19/2016] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND AND OBJECTIVES QS-21 shows in vitro hemolytic effect and causes side effects in vivo. New saponin adjuvant formulations with better toxicity profiles are needed. This study aims to evaluate the safety and tolerability of QS-21 and the improved saponin adjuvants (ISCOM, ISCOMATRIX and Matrix-M™) from vaccine trials. METHODS A systematic literature search was conducted from MEDLINE, EMBASE, Cochrane library and Clinicaltrials.gov. We selected for the meta-analysis randomized controlled trials (RCTs) of vaccines adjuvanted with QS-21, ISCOM, ISCOMATRIX or Matrix-M™, which included a placebo control group and reported safety outcomes. Pooled risk ratios (RRs) and their 95% confidence intervals (CIs) were calculated using a random-effects model. Jadad scale was used to assess the study quality. RESULTS Nine RCTs were eligible for the meta-analysis: six trials on QS-21-adjuvanted vaccines and three trials on ISCOMATRIX-adjuvanted, with 907 patients in total. There were no studies on ISCOM or Matrix-M™ adjuvanted vaccines matching the inclusion criteria. Meta-analysis identified an increased risk for diarrhea in patients receiving QS21-adjuvanted vaccines (RR 2.55, 95% CI 1.04-6.24). No increase in the incidence of the reported systemic AEs was observed for ISCOMATRIX-adjuvanted vaccines. QS-21- and ISCOMATRIX-adjuvanted vaccines caused a significantly higher incidence of injection site pain (RR 4.11, 95% CI 1.10-15.35 and RR 2.55, 95% CI 1.41-4.59, respectively). ISCOMATRIX-adjuvanted vaccines also increased the incidence of injection site swelling (RR 3.43, 95% CI 1.08-10.97). CONCLUSIONS Our findings suggest that vaccines adjuvanted with either QS-21 or ISCOMATRIX posed no specific safety concern. Furthermore, our results indicate that the use of ISCOMATRIX enables a better systemic tolerability profile when compared to the use of QS-21. However, no better local tolerance was observed for ISCOMATRIX-adjuvanted vaccines in immunized non-healthy subjects. This meta-analysis is limited by the relatively small number of individuals recruited in the included trials, especially in the control groups.
Collapse
Affiliation(s)
- Emilia Bigaeva
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Eva van Doorn
- Department of Pharmacy, Unit of PharmacoEpidemiology & PharmacoEconomics (PE2), University of Groningen, Groningen, The Netherlands
| | - Heng Liu
- Department of Pharmacy, Unit of PharmacoEpidemiology & PharmacoEconomics (PE2), University of Groningen, Groningen, The Netherlands
| | - Eelko Hak
- Department of Pharmacy, Unit of PharmacoEpidemiology & PharmacoEconomics (PE2), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
30
|
Walkowicz WE, Fernández-Tejada A, George C, Corzana F, Jiménez-Barbero J, Ragupathi G, Tan DS, Gin DY. Quillaja Saponin Variants with Central Glycosidic Linkage Modifications Exhibit Distinct Conformations and Adjuvant Activities. Chem Sci 2016; 7:2371-2380. [PMID: 27014435 PMCID: PMC4800320 DOI: 10.1039/c5sc02978c] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A mouse vaccination model and molecular dynamics studies reveal characteristic conformations of active QS-21 variants.
Immunological adjuvants such as the saponin natural product QS-21 help stimulate the immune response to co-administered antigens and have become increasingly important in the development of prophylactic and therapeutic vaccines. However, clinical use of QS-21 is encumbered by chemical instability, dose-limiting toxicity, and low-yielding purification from the natural source. Previous studies of structure–activity relationships in the four structural domains of QS-21 have led to simplified, chemically stable variants that retain potent adjuvant activity and low toxicity in mouse vaccination models. However, modification of the central glycosyl ester linkage has not yet been explored. Herein, we describe the design, synthesis, immunologic evaluation, and molecular dynamics analysis of a series of novel QS-21 variants with different linker lengths, stereochemistry, and flexibility to investigate the role of this linkage in saponin adjuvant activity and conformation. Despite relatively conservative structural modifications, these variants exhibit striking differences in in vivo adjuvant activity that correlate with specific conformational preferences. These results highlight the junction of the triterpene and linear oligosaccharide domains as playing a critical role in the immunoadjuvant activity of the Quillaja saponins and also suggest a mechanism of action involving interaction with a discrete macromolecular target, in contrast to the non-specific mechanisms of emulsion-based adjuvants.
Collapse
Affiliation(s)
- William E Walkowicz
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, 1275 York Avenue, New York, NY 10065, United States
| | - Alberto Fernández-Tejada
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, United States; Chemical & Physical Biology, Center for Biological Research, CIB-CSIC, 28040 Madrid, Spain
| | - Constantine George
- Melanoma & Immunotherapeutics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, United States
| | - Francisco Corzana
- Department of Chemistry, University of La Rioja, 26006 Logroño, Spain
| | - Jesús Jiménez-Barbero
- Chemical & Physical Biology, Center for Biological Research, CIB-CSIC, 28040 Madrid, Spain; Structural Biology, Center for Cooperative Research, CIC-bioGUNE, 48160 Derio-Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Govind Ragupathi
- Melanoma & Immunotherapeutics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, United States
| | - Derek S Tan
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, 1275 York Avenue, New York, NY 10065, United States; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, United States; Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, United States
| | - David Y Gin
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, 1275 York Avenue, New York, NY 10065, United States; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, United States; Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, United States
| |
Collapse
|
31
|
Ahrazem O, Rubio-Moraga A, Nebauer SG, Molina RV, Gómez-Gómez L. Saffron: Its Phytochemistry, Developmental Processes, and Biotechnological Prospects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:8751-64. [PMID: 26414550 DOI: 10.1021/acs.jafc.5b03194] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The present state of knowledge concerning developmental processes and the secondary metabolism of saffron, Crocus sativus L. (Iridaceae), along with the genes involved in these processes so far known, is reviewed. Flowers and corms constitute the most valuable parts of saffron. Corm and flower development are two key aspects to be studied in saffron to increase the yield and quality of the spice, to raise its reproductive rate, and to implement new production systems. Important knowledge about the physiology of flowering and vegetative growth has been acquired in recent years, but there is still only limited information on molecular mechanisms controlling these processes. Although some genes involved in flower formation and meristem transition in other species have been isolated in saffron, the role of these genes in this species awaits further progress. Also, genes related with the synthesis pathway of abscisic acid and strigolactones, growth regulators related with bud endodormancy and apical dominance (paradormancy), have been isolated. However, the in-depth understanding of these processes as well as of corm development is far from being achieved. By contrast, saffron phytochemicals have been widely studied. The different flower tissues and the corm have been proved to be an important source of phytochemicals with pharmacological properties. The biotechnological prospects for saffron are here reviewed on the basis of the discovery of the enzymes involved in key aspects of saffron secondary metabolism, and we also analyze the possibility of transferring current knowledge about flowering and vegetative propagation in model species to the Crocus genus.
Collapse
Affiliation(s)
- Oussama Ahrazem
- Instituto Botánico, Departamento de Ciencia y Tecnologı́a Agroforestal y Genética, Facultad de Farmacia, Universidad de Castilla-La Mancha , Campus Universitario s/n, 02071 Albacete, Spain
- Fundación Parque Cientı́fico y Tecnológico de Castilla-La Mancha , Campus Universitario s/n, 02071 Albacete, Spain
| | - Angela Rubio-Moraga
- Instituto Botánico, Departamento de Ciencia y Tecnologı́a Agroforestal y Genética, Facultad de Farmacia, Universidad de Castilla-La Mancha , Campus Universitario s/n, 02071 Albacete, Spain
| | - Sergio G Nebauer
- Departamento de Biologı́a Vegetal, Universidad Politécnica de Valencia , 46071 Valencia, Spain
| | - Rosa Victoria Molina
- Departamento de Biologı́a Vegetal, Universidad Politécnica de Valencia , 46071 Valencia, Spain
| | - Lourdes Gómez-Gómez
- Instituto Botánico, Departamento de Ciencia y Tecnologı́a Agroforestal y Genética, Facultad de Farmacia, Universidad de Castilla-La Mancha , Campus Universitario s/n, 02071 Albacete, Spain
| |
Collapse
|
32
|
Fernández-Tejada A, Tan DS, Gin DY. Versatile strategy for the divergent synthesis of linear oligosaccharide domain variants of Quillaja saponin vaccine adjuvants. Chem Commun (Camb) 2015; 51:13949-13952. [PMID: 26243268 PMCID: PMC4643164 DOI: 10.1039/c5cc05244k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe a new, versatile synthetic approach to Quillaja saponin variants based on the natural product immunoadjuvant QS-21. This modular, divergent strategy provides efficient access to linear oligosaccharide domain variants with modified sugars and regiochemistries. This new synthetic approach opens the door to the rapid generation of diverse analogues to identify novel saponin adjuvants with improved synthetic accessibility.
Collapse
Affiliation(s)
- Alberto Fernández-Tejada
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, 1 275 York Avenue, New York, NY 10065, USA.
| | - Derek S Tan
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, 1 275 York Avenue, New York, NY 10065, USA.
- Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1 275 York Avenue, New York, NY 10065, USA.
| | - David Y Gin
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, 1 275 York Avenue, New York, NY 10065, USA.
- Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1 275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
33
|
Hu J, Qiu L, Wang X, Zou X, Lu M, Yin J. Carbohydrate-based vaccine adjuvants - discovery and development. Expert Opin Drug Discov 2015; 10:1133-44. [PMID: 26372693 DOI: 10.1517/17460441.2015.1067198] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION The addition of a suitable adjuvant to a vaccine can generate significant effective adaptive immune responses. There is an urgent need for the development of novel po7tent and safe adjuvants for human vaccines. Carbohydrate molecules are promising adjuvants for human vaccines due to their high biocompatibility and good tolerability in vivo. AREAS COVERED The present review covers a few promising carbohydrate-based adjuvants, lipopolysaccharide, trehalose-6,6'-dibehenate, QS-21 and inulin as examples, which have been extensively studied in human vaccines in a number of preclinical and clinical studies. The authors discuss the current status, applications and strategies of development of each adjuvant and different adjuvant formulation systems. This information gives insight regarding the exciting prospect in the field of carbohydrate-based adjuvant research. EXPERT OPINION Carbohydrate-based adjuvants are promising candidates as an alternative to the Alum salts for human vaccines development. Furthermore, combining two or more adjuvants in one formulation is one of the effective strategies in adjuvant development. However, further research efforts are needed to study and develop novel adjuvants systems, which can be more stable, potent and safe. The development of synthetic carbohydrate chemistry can improve the study of carbohydrate-based adjuvants.
Collapse
Affiliation(s)
- Jing Hu
- a 1 Jiangnan University, Wuxi Medical School , Lihu Avenue 1800, 214122, Wuxi, China
| | - Liying Qiu
- a 1 Jiangnan University, Wuxi Medical School , Lihu Avenue 1800, 214122, Wuxi, China
| | - Xiaoli Wang
- b 2 Jiangnan University, The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Lihu Avenue 1800, 214122, Wuxi, China +86 51 085 328 229 ; +86 51 085 328 229 ;
| | - Xiaopeng Zou
- b 2 Jiangnan University, The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Lihu Avenue 1800, 214122, Wuxi, China +86 51 085 328 229 ; +86 51 085 328 229 ;
| | - Mengji Lu
- c 3 University Hospital Essen, Institute of Virology , Hufelandstr, 55, 45122 Essen, Germany +49 2 017 233 530 ; +49 2 017 235 929 ;
| | - Jian Yin
- b 2 Jiangnan University, The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Lihu Avenue 1800, 214122, Wuxi, China +86 51 085 328 229 ; +86 51 085 328 229 ;
| |
Collapse
|
34
|
Walczewska A, Grzywacz D, Bednarczyk D, Dawgul M, Nowacki A, Kamysz W, Liberek B, Myszka H. N-Alkyl derivatives of diosgenyl 2-amino-2-deoxy-β-D-glucopyranoside; synthesis and antimicrobial activity. Beilstein J Org Chem 2015; 11:869-74. [PMID: 26124888 PMCID: PMC4464337 DOI: 10.3762/bjoc.11.97] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/17/2015] [Indexed: 11/23/2022] Open
Abstract
Diosgenyl 2-amino-2-deoxy-β-D-glucopyranoside is a synthetic saponin exhibiting attractive pharmacological properties. Different pathways tested by us to obtain this glycoside are summarized here. Moreover, the synthesis of N-alkyl and N,N-dialkyl derivatives of the glucopyranoside is presented. Evaluation of antibacterial and antifungal activities of these derivatives indicates that they have no inhibitory activity against Gram-negative bacteria, whereas many of the tested N-alkyl saponins were found to inhibit the growth of Gram-positive bacteria and human pathogenic fungi.
Collapse
Affiliation(s)
- Agata Walczewska
- Department of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Daria Grzywacz
- Department of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Dorota Bednarczyk
- Department of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Małgorzata Dawgul
- Department of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland
| | - Andrzej Nowacki
- Department of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Wojciech Kamysz
- Department of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland
| | - Beata Liberek
- Department of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Henryk Myszka
- Department of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
35
|
Delaunay T, Poisson T, Jubault P, Pannecoucke X. First synthesis of diethyl N-acetyl-glycosamine-1-difluoromethylphosphonate from 2-nitroglycals as phosphate analog. J Fluor Chem 2015. [DOI: 10.1016/j.jfluchem.2014.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
36
|
Bathula SR, Akondi SM, Mainkar PS, Chandrasekhar S. “Pruning of biomolecules and natural products (PBNP)”: an innovative paradigm in drug discovery. Org Biomol Chem 2015; 13:6432-48. [DOI: 10.1039/c5ob00403a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Smart Schneider: ‘Nature’ is the most intelligent tailor with an ability to utilize the resources. Researchers are still at an infant stage learning this art. The present review highlights some of the man made pruning of bio-molecules and NPs (PBNP) in finding chemicals with a better therapeutic index.
Collapse
Affiliation(s)
- Surendar Reddy Bathula
- Division of Natural Products Chemistry CSIR-Indian Institute of Chemical Technology
- Hyderabad
- 500007 India
| | - Srirama Murthy Akondi
- Division of Natural Products Chemistry CSIR-Indian Institute of Chemical Technology
- Hyderabad
- 500007 India
| | - Prathama S. Mainkar
- Division of Natural Products Chemistry CSIR-Indian Institute of Chemical Technology
- Hyderabad
- 500007 India
| | - Srivari Chandrasekhar
- Division of Natural Products Chemistry CSIR-Indian Institute of Chemical Technology
- Hyderabad
- 500007 India
| |
Collapse
|
37
|
Preparation of selectively protected protoescigenin derivatives for synthesis of escin analogs and neoglycoconjugates. OPEN CHEM 2014. [DOI: 10.2478/s11532-014-0572-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractProtoescigenin, the main aglycone of horse chestnut saponin mixture known as escin, was selected as substrate for exploratory chemistry towards selective protection, followed by propargyl ether formation and subsequent condensation with azido-monosaccharides, to obtain novel triazole linked conjugates of the triterpene.
Collapse
|
38
|
Fernández-Tejada A, Chea EK, George C, Gardner JR, Livingston PO, Ragupathi G, Tan DS, Gin DY. Design, synthesis, and immunologic evaluation of vaccine adjuvant conjugates based on QS-21 and tucaresol. Bioorg Med Chem 2014; 22:5917-23. [PMID: 25284254 PMCID: PMC4410046 DOI: 10.1016/j.bmc.2014.09.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 09/02/2014] [Accepted: 09/08/2014] [Indexed: 12/11/2022]
Abstract
Immunoadjuvants are used to potentiate the activity of modern subunit vaccines that are based on molecular antigens. An emerging approach involves the combination of multiple adjuvants in a single formulation to achieve optimal vaccine efficacy. Herein, to investigate such potential synergies, we synthesized novel adjuvant conjugates based on the saponin natural product QS-21 and the aldehyde tucaresol via chemoselective acylation of an amine at the terminus of the acyl chain domain in QS saponin variants. In a preclinical mouse vaccination model, these QS saponin-tucaresol conjugates induced antibody responses similar to or slightly higher than those generated with related QS saponin variants lacking the tucaresol motif. The conjugates retained potent adjuvant activity, low toxicity, and improved activity-toxicity profiles relative to QS-21 itself and induced IgG subclass profiles similar to those of QS-21, indicative of both Th1 cellular and Th2 humoral immune responses. This study opens the door to installation of other substituents at the terminus of the acyl chain domain to develop additional QS saponin conjugates with desirable immunologic properties.
Collapse
Affiliation(s)
- Alberto Fernández-Tejada
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | - Eric K Chea
- Pharmacology Graduate Program, Weill Cornell Medical College, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Constantine George
- Melanoma and Immunotherapeutics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Jeffrey R Gardner
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Philip O Livingston
- Melanoma and Immunotherapeutics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Govind Ragupathi
- Melanoma and Immunotherapeutics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | - Derek S Tan
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Pharmacology Graduate Program, Weill Cornell Medical College, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | - David Y Gin
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Pharmacology Graduate Program, Weill Cornell Medical College, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
39
|
Wang Q, van Gemmeren M, List B. Asymmetrische Disulfonimid-katalysierte Synthese von δ-Amino-β-ketoestern durch vinyloge Mukaiyama-Mannich-Reaktionen. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201407532] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
40
|
Wang Q, van Gemmeren M, List B. Asymmetric disulfonimide-catalyzed synthesis of δ-amino-β-ketoester derivatives by vinylogous Mukaiyama-Mannich reactions. Angew Chem Int Ed Engl 2014; 53:13592-5. [PMID: 25348924 DOI: 10.1002/anie.201407532] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Indexed: 11/08/2022]
Abstract
An organocatalytic asymmetric synthesis of δ-amino-β-ketoester derivatives has been developed. A chiral disulfonimide (DSI) serves as a highly efficient precatalyst for a vinylogous Mukaiyama-Mannich reaction of readily available dioxinone-derived silyloxydienes with N-Boc-protected imines, delivering products in excellent yields and enantioselectivities. The synthetic utility of this reaction is illustrated in various transformations, including a new CC bond-forming reaction, which provide useful enantioenriched building blocks. The methodology is applied in a formal synthesis of (-)-lasubin.
Collapse
Affiliation(s)
- Qinggang Wang
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr (Germany)
| | | | | |
Collapse
|
41
|
Delaunay T, Poisson T, Jubault P, Pannecoucke X. 2-Nitroglycals: Versatile Building Blocks for the Synthesis of 2-Aminoglycosides. European J Org Chem 2014. [DOI: 10.1002/ejoc.201402805] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Ren JQ, Sun WC, Lu HJ, Wen SB, Jing J, Yan FL, Liu H, Liu CX, Xiao PP, Chen X, Du SW, Du R, Jin NY. Construction and immunogenicity of a DNA vaccine coexpressing GP3 and GP5 of genotype-I porcine reproductive and respiratory syndrome virus. BMC Vet Res 2014; 10:128. [PMID: 24916952 PMCID: PMC4090398 DOI: 10.1186/1746-6148-10-128] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 05/28/2014] [Indexed: 11/21/2022] Open
Abstract
Background The European (EU) genotype of porcine reproductive and respiratory syndrome virus (Genotype-I PRRSV) has recently emerged in China. The coexistence of Genotype-I and -II PRRSV strains could cause seriously affect PRRSV diagnosis and management. Current vaccines are not able to protect against PRRSV infection completely and have inherent drawbacks. Thus, genetically engineered vaccines, including DNA vaccine and live vector engineered vaccines, have been developed. This study aimed to determine the enhanced immune responses of mice inoculated with a DNA vaccine coexpressing GP3 and GP5 of a Genotype-I PRRSV. Results To evaluate the immunogenicity of GP3 and GP5 proteins from European-type PRRSV, three DNA vaccines, pVAX1-EU-ORF3-ORF5, pVAX1-EU-ORF3 and pVAX1-EU-ORF5, were constructed, which were based on a Genotype-I LV strain (GenBank ID: M96262). BALB/c mice were immunized with the DNA vaccines; delivered in the form of chitosan-DNA nanoparticles. To increase the efficiency of the vaccine, Quil A (Quillaja) was used as an adjuvant. GP3 and GP5-specific antibodies, neutralizing antibodies and cytokines (IL-2, IL-4, IL-10 and IFN gamma) from the immunized mice sera, and other immune parameters, were examined, including T-cell proliferation responses and subgroups of spleen T-lymphocytes. The results showed that ORF3 and ORF5 proteins of Genotype-I PRRSV induced GP3 and GP5-specific antibodies that could neutralize the virus. The levels of Cytokines IL-2, IL-4, IL-10, and IFN–γ of the experimental groups were significantly higher than those of control groups after booster vaccination (P < 0.05). The production of CD3+CD4+ and CD3+CD8+ T lymphocyte was also induced. T lymphocyte proliferation assays showed that the PRRSV LV strain virus could stimulate the proliferation of T lymphocytes in mice in the experimental group. Conclusions Using Quil A as adjuvant, Genotype-I PRRSV GP3 and GP5 proteins produced good immunogenicity and reactivity. More importantly, better PRRSV-specific neutralizing antibody titers and cell-mediated immune responses were observed in mice immunized with the DNA vaccine co-expressing GP3 and GP5 proteins than in mice immunized with a DNA vaccine expressing either protein singly. The results of this study demonstrated that co-immunization with GP3 and GP5 produced a better immune response in mice.
Collapse
Affiliation(s)
| | | | - Hui-Jun Lu
- Institute of Military Veterinary, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Development of a minimal saponin vaccine adjuvant based on QS-21. Nat Chem 2014; 6:635-43. [PMID: 24950335 PMCID: PMC4215704 DOI: 10.1038/nchem.1963] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 04/22/2014] [Indexed: 11/16/2022]
Abstract
Adjuvants are materials added to vaccines to enhance the immunological response to an antigen. QS-21 is a natural product adjuvant under investigation in numerous vaccine clinical trials, but its use is constrained by scarcity, toxicity, instability, and an enigmatic molecular mechanism of action. Herein, we describe the development of a minimal QS-21 analogue that decouples adjuvant activity from toxicity and provides a powerful platform for mechanistic investigations. We found that the entire branched trisaccharide domain of QS-21 is dispensable for adjuvant activity and that the C4-aldehyde substituent, previously proposed to bind covalently to an unknown cellular target, is also not required. Biodistribution studies revealed that active adjuvants were retained at the injection site and nearest draining lymph nodes preferentially compared to attenuated variants. Overall, these studies have yielded critical insights into saponin structure–function relationships, provided practical synthetic access to non-toxic adjuvants, and established a platform for detailed mechanistic studies.
Collapse
|
44
|
Delaunay T, Poisson T, Jubault P, Pannecoucke X. Stereoselective Access to β-C-Glycosamines by Nitro-Michael Addition of Organolithium Reagents. European J Org Chem 2014. [DOI: 10.1002/ejoc.201402001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
45
|
Pedebos C, Pol-Fachin L, Pons R, Teixeira CV, Verli H. Atomic model and micelle dynamics of QS-21 saponin. Molecules 2014; 19:3744-60. [PMID: 24662086 PMCID: PMC6271892 DOI: 10.3390/molecules19033744] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 02/28/2014] [Accepted: 03/05/2014] [Indexed: 11/16/2022] Open
Abstract
QS-21 is a saponin extracted from Quillaja saponaria, widely investigated as a vaccine immunoadjuvant. However, QS-21 use is mainly limited by its chemical instability, significant variety in molecular composition and low tolerance dose in mammals. Also, this compound tends to form micelles in a concentration-dependent manner. Here, we aimed to characterize its conformation and the process of micelle formation, both experimentally and computationally. Therefore, molecular dynamics (MD) simulations were performed in systems containing different numbers of QS-21 molecules in aqueous solution, in order to evaluate the spontaneous micelle formation. The applied methodology allowed the generation of micelles whose sizes were shown to be in high agreement with small-angle X-ray scattering (SAXS). Furthermore, the ester linkage between fucose and acyl chain was less solvated in the micellar form, suggesting a reduction in hydrolysis. This is the first atomistic interpretation of previous experimental data, the first micellar characterization of saponin micelles by SAXS and first tridimensional model of a micelle constituted of saponins, contributing to the understanding of the molecular basis of these compounds.
Collapse
Affiliation(s)
- Conrado Pedebos
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av Bento Gonçalves 9500, CP 15005, Porto Alegre 91500-970, RS, Brazil.
| | - Laércio Pol-Fachin
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av Bento Gonçalves 9500, CP 15005, Porto Alegre 91500-970, RS, Brazil.
| | - Ramon Pons
- Departament de Tecnologia Química i de Tensioactius, Institut de Química Avançada de Catalunya, IQAC_CSIC, Jordi Girona, 18-26, Barcelona 08034, Spain.
| | - Cilâine V Teixeira
- Instituto de Física, Universidade Federal do Rio Grande do Sul, CP15051, Porto Alegre 91501-970, RS, Brazil.
| | - Hugo Verli
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av Bento Gonçalves 9500, CP 15005, Porto Alegre 91500-970, RS, Brazil.
| |
Collapse
|
46
|
Wang P, Dai Q, Thogaripally P, Zhang P, Michalek SM. Synthesis of QS-21-based immunoadjuvants. J Org Chem 2013; 78:11525-34. [PMID: 24147602 DOI: 10.1021/jo402118j] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Three structurally defined QS-21-based immune adjuvant candidates (2a-2c) have been synthesized. Application of the two-stage activation glycosylation approach utilizing allyl glycoside building blocks improved the synthetic accessibility of the new adjuvants. The efficient synthesis and establishment of the stand-alone adjuvanticity of the examined synthetic adjuvant (2b) open the door to the pursuit of a new series of structurally defined QS-saponin-based synthetic adjuvants.
Collapse
Affiliation(s)
- Pengfei Wang
- Department of Chemistry, ‡Department of Pediatric Dentistry, and §Department of Microbiology, University of Alabama at Birmingham , 901 14th Street South, Birmingham, Alabama 35294, United States
| | | | | | | | | |
Collapse
|
47
|
Synthesis of novel lipidated iridoid glycosides as vaccine adjuvants: 6-O-Palmitoyl Agnuside elicit strong Th1 and Th2 response to ovalbumin in mice. Int Immunopharmacol 2013; 17:593-600. [DOI: 10.1016/j.intimp.2013.07.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 07/16/2013] [Accepted: 07/25/2013] [Indexed: 11/23/2022]
|
48
|
García A, De Sanctis JB. An overview of adjuvant formulations and delivery systems. APMIS 2013; 122:257-67. [PMID: 23919674 DOI: 10.1111/apm.12143] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 05/30/2013] [Indexed: 12/19/2022]
Abstract
Adjuvants may promote immune responses: by recruiting professional antigen-presenting cells (APCs) to the vaccination site, increasing the delivery of antigens to APCs, or by activating APCs to produce cytokines and by triggering T cell responses. Aluminium salts have been effective at promoting protective humoral immunity; however, they are not effective in generating cell-mediated immunity. A number of different approaches have been developed to potentiate immune response and they have been partially successful. Research has been conducted into vaccine delivery systems (VDS); enhancing cross-presentation by targeting antigens to (APCs). Antigen discovery has increased over the past decade, and consequently, it has accelerated vaccine development demanding a new generation of VDS that combines different types of adjuvants into specific formulations with greater activity. The new approaches offer a wide spectrum of opportunities in vaccine research with direct applications in the near future.
Collapse
Affiliation(s)
- Alexis García
- Instituto de Inmunologia, Facultad de Medicina, Universidad Central de Venezuela, Apartado, Venezuela
| | | |
Collapse
|
49
|
de Costa F, Yendo ACA, Fleck JD, Gosmann G, Fett-Neto AG. Accumulation of a bioactive triterpene saponin fraction of Quillaja brasiliensis leaves is associated with abiotic and biotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 66:56-62. [PMID: 23474431 DOI: 10.1016/j.plaphy.2013.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 02/07/2013] [Indexed: 05/11/2023]
Abstract
The saponins from leaves of Quillaja brasiliensis, a native species from Southern Brazil, show structural and functional similarities to those of Quillaja saponaria barks, which are currently used as adjuvants in vaccine formulations. The accumulation patterns of an immunoadjuvant fraction of leaf triterpene saponins (QB-90) in response to stress factors were examined, aiming at understanding the regulation of accumulation of these metabolites. The content of QB-90 in leaf disks was significantly increased by application of different osmotic stress agents, such as sorbitol, sodium chloride and polyethylene glycol in isosmotic concentrations. Higher yields of bioactive saponins were also observed upon exposure to salicylic acid, jasmonic acid, ultrasound and UV-C light. Experiments with shoots indicated a significant increase in QB-90 yields with moderate increases in white light irradiance and by mechanical damage applied to leaves. The increased accumulation of these terpenes may be part of a defense response. The results herein described may contribute to further advance knowledge on the regulation of accumulation of bioactive saponins, and at defining strategies to improve yields of these useful metabolites.
Collapse
Affiliation(s)
- Fernanda de Costa
- Department of Botany, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | | | | | | | | |
Collapse
|
50
|
Mukherjee C, Mäkinen K, Savolainen J, Leino R. Chemistry and Biology of Oligovalent β-(1→2)-Linked Oligomannosides: New Insights into Carbohydrate-Based Adjuvants in Immunotherapy. Chemistry 2013; 19:7961-74. [DOI: 10.1002/chem.201203963] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/11/2013] [Indexed: 11/10/2022]
|