1
|
Zhang Y, Wang YJ, Tang YY, Chen XG. Crown ether inclusion compound 3,4-difluoroanilinium di(methanesulfonyl)amidate-18-crown-6 (1/1) clathrate. Acta Crystallogr C Struct Chem 2025; 81:38-42. [PMID: 39688184 DOI: 10.1107/s2053229624011872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
In recent years, molecular-based ferroelectric materials have attracted widespread research interest due to their excellent performance. Among them, host-guest-type crown ether inclusion compounds composed of organic ammonium cations, crown ether molecules and corresponding anions have become a star component in the design of molecular-based ferroelectric materials because they are prone to order-disorder phase transitions. Many anions have been studied extensively as counter-ions, such as bis(trifluoromethanesulfonyl)amidate (TFSA-), PF6- and [FeCl4]-. However, crown ether inclusion compounds with di(methanesulfonyl)amidate (DMSA) as the anion have been rarely investigated. Here, we converted TFSA to DMSA to obtain 3,4-difluoroanilinium di(methanesulfonyl)amidate-18-crown-6 (1/1), C6H6F2N+·C2H6NO4S2-·C12H24O6 or [(3,4-DFA)(18-crown-6)][DMSA]. At both 100 and 300 K, the crystal falls into the space group P21/c. The 3,4-DFA cation forms three well-defined N-H...O hydrogen bonds, positioned at the perching position of the crown ether ring. In contrast to the distinct packing configuration observed in the [(3,4-DFA)(18-crown-6)][TFSA] crystals, where TFSA exhibits a disordered structure, the [(3,4-DFA)(18-crown-6)][DMSA] complex features a staggered arrangement, with DMSA existing in an ordered fashion.
Collapse
Affiliation(s)
- Yao Zhang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| | - Yan Juan Wang
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Yuan Yuan Tang
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Xiao Gang Chen
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| |
Collapse
|
2
|
Wang N, Li HK, Shen HY, Ye L, Xu ZJ, Ren ML, Yao NT, Shi C, Ye HY, Miao LP. Supramolecular Rotor Assembly for the Design of a Hybrid Ferroelectric-Antiferromagnetic Multiferroic Semiconductor. Angew Chem Int Ed Engl 2024:e202421298. [PMID: 39623203 DOI: 10.1002/anie.202421298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
Ferroelectric (FE)-antiferromagnetic (AFM) multiferroic materials have sparked growing interest due to their huge possibilities in energy-saving, photoelectric devices, nonvolatile storage, and switches. However, realizing FE-AFM properties in a hybrid molecular material is difficult because ferroelectric and magnetic orders are commonly mutually exclusive. Here, we report an FE-AFM multiferroic semiconductor [NH4(18-crown-6)]2[Mn(SCN)4] (NCMS) by supramolecular assembly approach via molecular rotor synthon [NH4(18-crown-6)] and inorganic magnetic module [Mn(SCN)4]. Interestingly, NCMS shows good ferroelectricity with a spontaneous polarization (Ps) of 5.94 μC cm-2 higher than most crown-ether-based ferroelectrics. Especially, the realization of antiferromagnetism is for the first time in the crown ether hybrid perovskite ferroic systems. Additionally, semiconductor NCMS displays an X-ray radiation detection response with a large photo/dark current on-off ratio (197). Our study not only gives a deep insight into understanding multiferroic properties but also provides a novel and efficient approach to realizing high-performance hybrid multiferroic materials.
Collapse
Affiliation(s)
- Na Wang
- Chaotic Matter Science Research Center, Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, International Institute for Innovation, Jiangxi University of Science and Technology, Ganzhou, 341000, P.R. China
| | - Hua-Kai Li
- Chaotic Matter Science Research Center, Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, International Institute for Innovation, Jiangxi University of Science and Technology, Ganzhou, 341000, P.R. China
| | - Huai-Yi Shen
- Chaotic Matter Science Research Center, Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, International Institute for Innovation, Jiangxi University of Science and Technology, Ganzhou, 341000, P.R. China
| | - Le Ye
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Ze-Jiang Xu
- Chaotic Matter Science Research Center, Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, International Institute for Innovation, Jiangxi University of Science and Technology, Ganzhou, 341000, P.R. China
| | - Mei-Ling Ren
- Chaotic Matter Science Research Center, Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, International Institute for Innovation, Jiangxi University of Science and Technology, Ganzhou, 341000, P.R. China
| | - Nian-Tao Yao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liao Cheng, 252059, Shandong Province, P. R. China
| | - Chao Shi
- Chaotic Matter Science Research Center, Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, International Institute for Innovation, Jiangxi University of Science and Technology, Ganzhou, 341000, P.R. China
| | - Heng-Yun Ye
- Chaotic Matter Science Research Center, Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, International Institute for Innovation, Jiangxi University of Science and Technology, Ganzhou, 341000, P.R. China
| | - Le-Ping Miao
- Chaotic Matter Science Research Center, Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, International Institute for Innovation, Jiangxi University of Science and Technology, Ganzhou, 341000, P.R. China
| |
Collapse
|
3
|
Zhu W, Zhao B, Fang S, Zhu H, Huang F. An anthracene-containing crown ether: synthesis, host-guest properties and modulation of solid state luminescence. Chem Sci 2024:d4sc05077k. [PMID: 39309098 PMCID: PMC11409855 DOI: 10.1039/d4sc05077k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Organic solid state vapochromic materials are of great significance for the development of supramolecular chemistry and materials science. Herein, we synthesize a crown ether derivative (An34C10) containing two anthracene units and construct new crown ether-based vapochromic host-guest co-crystals. Due to the presence of anthracene, An34C10 not only shows good fluorescence properties but also displays mechanochromism. Single crystal structural analysis, powder X-ray diffraction and differential scanning calorimetry experiments demonstrate that the transformation between different stacking modes of An34C10 is responsible for mechanochromism. In addition, An34C10 can complex with 1,2,4,5-tetracyanobenzene (TCNB) to form host-guest complex (An34C10@TCNB) co-crystals. Because organic solvent fuming alters charge-transfer interactions in An34C10@TCNB, the fluorescence of the co-crystals can be turned on and off by 4-methylpyridine and chloroform vapors, respectively, realizing selective detection with opposite emission outputs. Meanwhile, the stimuli-responsive properties of An34C10 and An34C10@TCNB possess good cycling performance. This work provides a new strategy for the construction of organic solid state luminescent materials.
Collapse
Affiliation(s)
- Weijie Zhu
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University Hangzhou 310058 P. R. China (+86) 571-87953189
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 P. R. China
- School of Chemical and Environmental Engineering, Hunan Institute of Technology Hengyang 421002 P. R. China
| | - Bohan Zhao
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University Hangzhou 310058 P. R. China (+86) 571-87953189
| | - Shuai Fang
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University Hangzhou 310058 P. R. China (+86) 571-87953189
| | - Huangtianzhi Zhu
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University Hangzhou 310058 P. R. China (+86) 571-87953189
| | - Feihe Huang
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University Hangzhou 310058 P. R. China (+86) 571-87953189
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 P. R. China
| |
Collapse
|
4
|
Mao WX, Zhou LX, Deng X, Lan JF, Song XJ, Zhang HY. H/F substitution achieves high piezoelectricity in enantiomeric molecular crystals. Chem Commun (Camb) 2024; 60:10172-10175. [PMID: 39190499 DOI: 10.1039/d4cc03343d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Here, we successfully synthesized a pair of enantiomeric molecular piezoelectric materials by H/F substitution strategy. These compounds show a large piezoelectric coefficient d33 value of 25 pC N-1 measured by the quasi-static method. A simple energy harvesting device was fabricated based on this crystal, showing great potential in piezoelectric mechanical energy harvesters.
Collapse
Affiliation(s)
- Wei-Xin Mao
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China.
| | - Long-Xing Zhou
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China.
| | - Xin Deng
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China.
| | - Jin-Fei Lan
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China.
| | - Xian-Jiang Song
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China.
| | - Han-Yue Zhang
- Jiangsu Key Laboratory for Biomaterials and Devices, State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 211189, People's Republic of China.
| |
Collapse
|
5
|
Wu S, Ma Y, Zhang Y, He Y, Wang Q, Zhao R, Fu D. Exploiting the Cationic Size Effect to Improve the Curie Temperature of Hybrid Perovskites Photoferroelectric Semiconductors. Inorg Chem 2024; 63:16095-16102. [PMID: 39136321 DOI: 10.1021/acs.inorgchem.4c02778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Ferroelectric materials with Curie temperature (Tc) below room temperature severely limit their practical applications. Although research on hybrid perovskite photoferroelectrics is ongoing, effective regulation of Tc still poses significant challenges. Herein, we utilized the cationic size effect to successfully regulate the Tc of hybrid perovskite photoferroelectric semiconductors. As the perovskitizer was replaced by a smaller-sized MA+ (methylammonium) with a larger-sized EA+ (ethylammonium), not only was the ferroelectricity of the hybrid perovskite well maintained but the Tc of (PA)2(MA)2Pb3Br10 (315 K) to (PA)2(EA)2Pb3Br10 (385 K) (PA is n-propylaminium) increased by 70 K, which was mainly due to the significant increase in the energy barriers that the system needed to overcome during the phase transition. Subsequently, we achieved efficient self-powered X-ray detection through the ferroelectric-induced bulk photovoltaic effect (BPVE) in (PA)2(EA)2Pb3Br10. The devices based on (PA)2(EA)2Pb3Br10 single crystals exhibit an outstanding sensitivity of 95 μC Gy-1 cm-2 and a low detection limit of 239 nGy s-1 at 0 V bias under X-ray radiation. This study provides an effective approach for designing and constructing high-temperature multilayer photoferroelectric semiconductors in the future.
Collapse
Affiliation(s)
- Shufang Wu
- Institute of Crystalline Materials, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Yanli Ma
- Institute of Crystalline Materials, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Yue Zhang
- Institute of Crystalline Materials, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Yueyue He
- Institute of Crystalline Materials, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Qi Wang
- Institute of Crystalline Materials, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Ruifang Zhao
- Institute of Crystalline Materials, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Dongying Fu
- Institute of Crystalline Materials, Shanxi University, Taiyuan, Shanxi 030006, PR China
- Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan, Shanxi 030006, PR China
- Key Laboratory of Energy Storage Materials Innovation and Integration of Shanxi Province, Taiyuan, Shanxi 030006, PR China
| |
Collapse
|
6
|
Pan Q, Gu ZX, Zhou RJ, Feng ZJ, Xiong YA, Sha TT, You YM, Xiong RG. The past 10 years of molecular ferroelectrics: structures, design, and properties. Chem Soc Rev 2024; 53:5781-5861. [PMID: 38690681 DOI: 10.1039/d3cs00262d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Ferroelectricity, which has diverse important applications such as memory elements, capacitors, and sensors, was first discovered in a molecular compound, Rochelle salt, in 1920 by Valasek. Owing to their superiorities of lightweight, biocompatibility, structural tunability, mechanical flexibility, etc., the past decade has witnessed the renaissance of molecular ferroelectrics as promising complementary materials to commercial inorganic ferroelectrics. Thus, on the 100th anniversary of ferroelectricity, it is an opportune time to look into the future, specifically into how to push the boundaries of material design in molecular ferroelectric systems and finally overcome the hurdles to their commercialization. Herein, we present a comprehensive and accessible review of the appealing development of molecular ferroelectrics over the past 10 years, with an emphasis on their structural diversity, chemical design, exceptional properties, and potential applications. We believe that it will inspire intense, combined research efforts to enrich the family of high-performance molecular ferroelectrics and attract widespread interest from physicists and chemists to better understand the structure-function relationships governing improved applied functional device engineering.
Collapse
Affiliation(s)
- Qiang Pan
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| | - Zhu-Xiao Gu
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, P. R. China.
| | - Ru-Jie Zhou
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| | - Zi-Jie Feng
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| | - Yu-An Xiong
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| | - Tai-Ting Sha
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| | - Yu-Meng You
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| | - Ren-Gen Xiong
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| |
Collapse
|
7
|
Xiong YA, Duan SS, Hu HH, Yao J, Pan Q, Sha TT, Wei X, Ji HR, Wu J, You YM. Enhancement of phase transition temperature through hydrogen bond modification in molecular ferroelectrics. Nat Commun 2024; 15:4470. [PMID: 38796520 PMCID: PMC11127950 DOI: 10.1038/s41467-024-48948-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/20/2024] [Indexed: 05/28/2024] Open
Abstract
Molecular ferroelectrics are attracting great interest due to their light weight, mechanical flexibility, low cost, ease of processing and environmental friendliness. These advantages make molecular ferroelectrics viable alternatives or supplements to inorganic ceramics and polymer ferroelectrics. It is expected that molecular ferroelectrics with good performance can be fabricated, which in turns calls for effective chemical design strategies in crystal engineering. To achieve so, we propose a hydrogen bond modification method by introducing the hydroxyl group, and successfully boost the phase transition temperature (Tc) by at least 336 K. As a result, the molecular ferroelectric 1-hydroxy-3-adamantanammonium tetrafluoroborate [(HaaOH)BF4] can maintain ferroelectricity until 528 K, a Tc value much larger than that of BTO (390 K). Meanwhile, micro-domain patterns, in stable state for 2 years, can be directly written on the film of (HaaOH)BF4. In this respect, hydrogen bond modification is a feasible and effective strategy for designing molecular ferroelectrics with high Tc and stable ferroelectric domains. Such an organic molecule with varied modification sites and the precise crystal engineering can provide an efficient route to enrich high-Tc ferroelectrics with various physical properties.
Collapse
Affiliation(s)
- Yu-An Xiong
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, People's Republic of China
| | - Sheng-Shun Duan
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Hui-Hui Hu
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, People's Republic of China
| | - Jie Yao
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, People's Republic of China
| | - Qiang Pan
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, People's Republic of China
| | - Tai-Ting Sha
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, People's Republic of China
| | - Xiao Wei
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Hao-Ran Ji
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, People's Republic of China
| | - Jun Wu
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, People's Republic of China.
| | - Yu-Meng You
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, People's Republic of China.
| |
Collapse
|
8
|
Sambe K, Takeda T, Hoshino N, Matsuda W, Shimada K, Tsujita K, Maruyama S, Yamamoto S, Seki S, Matsumoto Y, Akutagawa T. Carrier Transport Switching of Ferroelectric BTBT Derivative. J Am Chem Soc 2024; 146:8557-8566. [PMID: 38484118 DOI: 10.1021/jacs.4c00514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Alkylamide-substituted [1]benzothieno[3,2-b][1]benzothiophene (BTBT) derivative of BTBT-NHCOC14H29 (1), which has ferroelectric N-H···O= hydrogen-bonding network of alkylamide group and two-dimensional (2D) electric structure of BTBT π-cores, was prepared to design the external electric field-responsive organic semiconductors. The short-chain derivative of BTBT-NHCOC3H7 (1') revealed the coexistence of a 2D electronic band structure based on the herringbone BTBT arrangement and the one-dimensional (1D) hydrogen-bonding chain. 1 formed a smectic E (SmE) liquid crystal phase above 412 K and showed ferroelectric hysteresis in the electric field-polarization (P-E) curves at 403-433 K. The remanent polarization (Pr) and coercive electric field (Ec) of 1 at 408 K, 0.1 Hz were 24.0 μC cm-2 and 5.54 V μm-1, respectively. By thermal annealing of thin-film 1 at 443 K, the molecular assembly structure of 1 changed from a monolayer to a bilayer structure with high crystallinity, resulting in conducting layers of BTBT parallel to the substrate surface. The organic field-effect transistor (OFET) device with thermally annealed thin-film 1 showed p-type semiconducting behavior with the hole mobility of 1.0 × 10-3 cm2 V-1 s-1. Furthermore, device 1 showed switching behavior of semiconducting properties by electric field poling and thermal annealing cycle. The electric field response of ferroelectrics modulated the molecular orientation and conduction properties of organic semiconductors, resulting in external electric field control of carrier transport properties.
Collapse
Affiliation(s)
- Kohei Sambe
- Graduate School of Engineering, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-Ku, Sendai 980-8579, Japan
| | - Takashi Takeda
- Graduate School of Engineering, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-Ku, Sendai 980-8579, Japan
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai 980-8577, Japan
- Department of Chemistry, Faculty of Science, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Norihisa Hoshino
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata 9050-2181, Japan
| | - Wakana Matsuda
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-Ku, Kyoto 615-8510, Japan
| | - Kazuki Shimada
- Graduate School of Engineering, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-Ku, Sendai 980-8579, Japan
| | - Kanae Tsujita
- Graduate School of Engineering, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-Ku, Sendai 980-8579, Japan
| | - Shingo Maruyama
- Graduate School of Engineering, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-Ku, Sendai 980-8579, Japan
| | - Shunsuke Yamamoto
- Graduate School of Engineering, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-Ku, Sendai 980-8579, Japan
| | - Shu Seki
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-Ku, Kyoto 615-8510, Japan
| | - Yuji Matsumoto
- Graduate School of Engineering, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-Ku, Sendai 980-8579, Japan
| | - Tomoyuki Akutagawa
- Graduate School of Engineering, Tohoku University, 6-6-07 Aramaki Aza Aoba, Aoba-Ku, Sendai 980-8579, Japan
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai 980-8577, Japan
| |
Collapse
|
9
|
Li W, Xie M, Zhang SY, Zeng CH, Du ZY, He CT. A confinement-regulated (H 3C-NH 3) + ion as a smallest dual-wheel rotator showing bisected rotation dynamics. Phys Chem Chem Phys 2024; 26:7269-7275. [PMID: 38193864 DOI: 10.1039/d3cp05406c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
On the basis of variable-temperature single-crystal X-ray diffraction, rotational energy barrier analysis, variable-temperature/frequency dielectric response, and molecular dynamics simulations, here we report a new crystalline supramolecular rotor (CH3NH3)(18-crown-6)[CuCl3], in which the (H3C-NH3)+ ion functions as a smallest dual-wheel rotator showing bisected rotation dynamics, while the host 18-crown-6 macrocycle behaves as a stator that is not strictly stationary. This study also provides a helpful insight into the dynamics of ubiquitous -CH3/-NH3 groups confined in organic or organic-inorganic hybrid solids.
Collapse
Affiliation(s)
- Wang Li
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Miao Xie
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| | - Shi-Yong Zhang
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Cheng-Hui Zeng
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zi-Yi Du
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| | - Chun-Ting He
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
10
|
Liu Y, Hu H, Qi H, Lv M, Liu Z. The Synthesis, Structure, and Dielectric Properties of a One-Dimensional Hydrogen-Bonded DL-α-Phenylglycine Supramolecular Crown-Ether-Based Inclusion Compound. Molecules 2023; 28:7586. [PMID: 38005309 PMCID: PMC10673173 DOI: 10.3390/molecules28227586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
A novel hydrogen-bonded supramolecular crown-ether-based inclusion compound, [(DL-α-Phenylglycine)(18-crown-6)]+[(CoCl4)0.5]-(1), was obtained via evaporation in a methanolic solution at room temperature using DL-α-phenylglycine, 18-crown-6, cobalt chloride (CoCl2), and hydrochloric acid. Its structure, thermal properties, and electrical properties were characterized via elemental analysis, single-crystal X-ray diffraction, variable-temperature infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, and variable temperature-variable frequency dielectric constant testing. The compound was a monoclinic crystal system in the C2 space group at low temperature (100 K) and room temperature (293 K). Analysis of the single crystal structure showed that [(CoCl4)0.5]- presented an edge-sharing ditetrahedral structure in the disordered state, while the protonated DL-α-phenylglycine molecule in the disordered state and intramolecular hydroxyl group (-OH) underwent dynamic rocking, causing a significant stretching motion of the O-H···Cl-type one-dimensional hydrogen bond chain. This resulted in dielectric anomalies in the three axes of the crystal, thus showing significant dielectric anisotropy.
Collapse
Affiliation(s)
- Yang Liu
- Chemistry and Chemical Engineering College, Xinjiang Agricultural University, Urumqi 830052, China; (Y.L.); (H.H.); (H.Q.); (M.L.)
- Xinjiang Sub-Center, National Engineering Research Center of Novel Equipment for Polymer Processing, Urumqi 830052, China
- Xinjiang Key Laboratory of Agricultural Chemistry and Biomaterials, Urumqi 830052, China
| | - Hongzhi Hu
- Chemistry and Chemical Engineering College, Xinjiang Agricultural University, Urumqi 830052, China; (Y.L.); (H.H.); (H.Q.); (M.L.)
| | - Huanhuan Qi
- Chemistry and Chemical Engineering College, Xinjiang Agricultural University, Urumqi 830052, China; (Y.L.); (H.H.); (H.Q.); (M.L.)
| | - Meixia Lv
- Chemistry and Chemical Engineering College, Xinjiang Agricultural University, Urumqi 830052, China; (Y.L.); (H.H.); (H.Q.); (M.L.)
| | - Zunqi Liu
- Chemistry and Chemical Engineering College, Xinjiang Agricultural University, Urumqi 830052, China; (Y.L.); (H.H.); (H.Q.); (M.L.)
- Xinjiang Sub-Center, National Engineering Research Center of Novel Equipment for Polymer Processing, Urumqi 830052, China
- Xinjiang Key Laboratory of Agricultural Chemistry and Biomaterials, Urumqi 830052, China
| |
Collapse
|
11
|
Zhu H, Chen L, Sun B, Wang M, Li H, Stoddart JF, Huang F. Applications of macrocycle-based solid-state host-guest chemistry. Nat Rev Chem 2023; 7:768-782. [PMID: 37783822 DOI: 10.1038/s41570-023-00531-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2023] [Indexed: 10/04/2023]
Abstract
Macrocyclic molecules have been used in various fields owing to their guest binding properties. Macrocycle-based host-guest chemistry in solution can allow for precise control of complex formation. Although solution-phase host-guest complexes are easily prepared, their limited stability and processability prevent widespread application. Extending host-guest chemistry from solution to the solid state results in complexes that are generally more robust, enabling easier processing and broadened applications. Macrocyclic compounds in the solid state can encapsulate guests with larger affinities than their soluble counterparts. This is crucial for use in applications such as separation science and devices. In this Review, we summarize recent progress in macrocycle-based solid-state host-guest chemistry and discuss the basic physical chemistry of these complexes. Representative macrocycles and their solid-state complexes are explored, as well as potential applications. Finally, perspectives and challenges are discussed.
Collapse
Affiliation(s)
- Huangtianzhi Zhu
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co., LTD Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, P. R. China
| | - Liya Chen
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co., LTD Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, P. R. China
| | - Bin Sun
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co., LTD Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, P. R. China
| | - Mengbin Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co., LTD Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, P. R. China
| | - Hao Li
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co., LTD Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, P. R. China.
| | - J Fraser Stoddart
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co., LTD Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, P. R. China.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- School of Chemistry, University of New South Wales, Sydney, New South Wales, Australia.
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co., LTD Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, P. R. China.
| |
Collapse
|
12
|
Cao C, Xue XR, Li QY, Zhang MJ, Abrahams BF, Lang JP. Phase Transition-Promoted Rapid Photomechanical Motions of Single Crystals of a Triene Coordination Polymer. Angew Chem Int Ed Engl 2023; 62:e202306048. [PMID: 37186135 DOI: 10.1002/anie.202306048] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/17/2023]
Abstract
Molecular crystals with the ability to transform light energy into macroscopic mechanical motions are a promising class of materials with potential applications in actuating and photonic devices. In regard to such materials, coordination polymers that exhibit dynamic photomechanical motion, associated with a phase transition, are unknown. Herein, we report an intriguing photoactive, one-dimensional ZnII coordination polymer, 1, derived from 1,3,5-tri-4-pyridyl-1,2-ethenylbenzene and 3,5-difluorobenzoate. Single crystals of 1 under UV light irradiation exhibit rapid shrinking and bending, violent bursting-jumping, splitting, and cracking behavior. Single-crystal X-ray diffraction analysis and 1 H NMR spectroscopy reveal an unusual photoinduced phase transition involving a single-crystal-to-single-crystal [2+2] cycloaddition reaction that results in photomechanical responses. Interestingly, crystals of 1, which are triclinic with space groupP 1 ‾ ${P\bar{1}}$ , are transformed into a higher symmetry, monoclinic cell with space group C2/c. This process represents a rare example of symmetry enhancement upon photoirradiation. The photomechanical activity is likely due to the sudden release of stress associated with strained molecular geometries and significant solid-state molecular movement arising from cleavage and formation of chemical bonds. A composite membrane fabricated from 1 and polyvinyl alcohol (PVA) also displays interesting photomechanical behavior under UV light illumination, indicating the material's potential as a photoactuator.
Collapse
Affiliation(s)
- Chen Cao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, Jiangsu, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China
| | - Xin-Ran Xue
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, Jiangsu, P. R. China
| | - Qiu-Yi Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, Jiangsu, P. R. China
| | - Min-Jie Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, Jiangsu, P. R. China
| | - Brendan F Abrahams
- School of Chemistry, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Jian-Ping Lang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, Jiangsu, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China
| |
Collapse
|
13
|
Wang ZJ, Ni HF, Zhang T, Li J, Lun MM, Fu DW, Zhang ZX, Zhang Y. Targeted regulation and optimization of multifunctional phase transition materials by novel void occupancy engineering. Chem Sci 2023; 14:9041-9047. [PMID: 37655024 PMCID: PMC10466303 DOI: 10.1039/d3sc02652c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/30/2023] [Indexed: 09/02/2023] Open
Abstract
As an innovative form of stimulus-response materials, organic-inorganic hybrid phase transition materials have become a wonderful contender in the field of functional electronic equipment due to their versatile structure, intensive functions and straightforward preparation. However, the targeted regulation and optimization of the electrical/optical response, along with the establishment of regular structure-performance relationships, pose significant challenges in meeting the diverse demands of practical applications over an extended period. Herein, we conducted a systematic investigation into the role of lattice void occupancy in regulating phase transition temperature (Tp) and related optical/electrical bistability. By taking hybrid material [TMEA][Cd(SCN)3] featuring a flexible ammonium cation [TMEA]+ (TMEA = ethyltrimethylammonium) as the prototype, we successfully synthesized three phase transition materials, namely [DEDMA][Cd(SCN)3], [TEMA][Cd(SCN)3] and [TEA][Cd(SCN)3] (DEDMA = diethyldimethylammonium, TEMA = triethylmethylammonium, and TEA = tetraethylammonium), and the excellent regulation of the physical properties of these compounds was achieved through subtle engineering of void occupancy. More strikingly, [TEA][Cd(SCN)3] exhibits remarkable bistable properties in terms of dielectric and nonlinear optical responses (with second-harmonic generation intensity reaching 2.5 times that of KDP). This work provides a feasible avenue to reasonably customise organic-inorganic hybrid phase transition materials and finely adjust their intriguing functionalities.
Collapse
Affiliation(s)
- Zhi-Jie Wang
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University Nanjing 211189 People's Republic of China
| | - Hao-Fei Ni
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University Jinhua 321004 People's Republic of China
| | - Tie Zhang
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University Nanjing 211189 People's Republic of China
| | - Jie Li
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University Nanjing 211189 People's Republic of China
| | - Meng-Meng Lun
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University Nanjing 211189 People's Republic of China
| | - Da-Wei Fu
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University Nanjing 211189 People's Republic of China
| | - Zhi-Xu Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University Jinhua 321004 People's Republic of China
| | - Yi Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University Jinhua 321004 People's Republic of China
| |
Collapse
|
14
|
Han DC, Tan YH, Tang YZ, Wen JH, Shi HJ, Fan XW, Li QL, Wang MN. Halogen-regulating induced reversible high-temperature dielectric and thermal transitions in novel layered organic-inorganic hybrid semiconducting crystals. Dalton Trans 2023; 52:11518-11525. [PMID: 37539870 DOI: 10.1039/d3dt01499a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Organic-inorganic hybrid metal halides for high-temperature phase transition have become increasingly popular owing to their wide operating temperature range in practical applications, e.g., energy storage, permittivity switches and opto-electronic devices. This paper describes the subtle assembly of two new hybrid perovskite crystals, [Cl-C6H4-(CH2)2NH3]2CdX4 (X = Br 1; Cl 2), undergoing high-T reversible phase transformations around 335 K/356 K. Differential scanning calorimetry (DSC), differential thermal analysis (DTA) and VT PXRD tests uncover their reversible first-order phase transition behaviors. Furthermore, the compounds exhibit switchable dielectricity near T, making them potential dielectric switching materials. Hirshfeld surface analysis well discloses a distinct difference in hydrogen-bonding interaction between 1 and 2. UV spectra and computational analysis demonstrate that the compounds are a type of direct-band-gap semiconductor. This research will contribute an effective approach to the structure and development of multifunctional molecular hybrid crystals.
Collapse
Affiliation(s)
- Ding-Chong Han
- Faculty of Materials Metallurgy and Chemistry, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Yu-Hui Tan
- Faculty of Materials Metallurgy and Chemistry, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Yun-Zhi Tang
- Faculty of Materials Metallurgy and Chemistry, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Jia-Hui Wen
- Faculty of Materials Metallurgy and Chemistry, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Hui-Juan Shi
- Faculty of Materials Metallurgy and Chemistry, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Xiao-Wei Fan
- Faculty of Materials Metallurgy and Chemistry, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Qiao-Lin Li
- Faculty of Materials Metallurgy and Chemistry, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Meng-Na Wang
- Faculty of Materials Metallurgy and Chemistry, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| |
Collapse
|
15
|
Song N, Ying TT, Tan YH, Tang YZ, Liao J, Wang LJ, Wang FX, Wan MY. 2-Chloroethylamine·trifluoromethanesulfonate combined with 18-crown-6: a ferroelectric with excellent dielectric switching properties. Dalton Trans 2023; 52:11196-11202. [PMID: 37522327 DOI: 10.1039/d3dt01426f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Ferroelectric materials are not only important electronic functional materials, but also considered as the most promising intelligent basic materials, because they show good application prospects. Therefore, it is an urgent task to develop and explore new ferroelectric material systems. In addition, the most important feature of crown ethers is their ability to complex with positive ions, which is extremely useful in synthesis. We report that [NH3C2H4Cl(18-crown-6)](CF3SO3) (1) has a phase transition temperature Tc = 255 K, and there is an obvious SHG switch below Tc. At the same time, the saturation polarization value Ps = 1.25 μC cm-2 is obtained from the hysteresis loop, which directly proves the ferroelectric nature of compound 1. It is noteworthy that the second harmonic response test of compound 1 shows a symmetric transition from a non-centrosymmetric to a centrosymmetric point group, that is a symmetry break from the paraelectric phase to the ferroelectric phase. This work is expected to promote the further exploration of organic crown ether ferroelectrics and provide a way to design and synthesize organic crown ether ferroelectrics.
Collapse
Affiliation(s)
- Ning Song
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Faculty of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China.
| | - Ting-Ting Ying
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Faculty of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China.
| | - Yu-Hui Tan
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Faculty of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China.
| | - Yun-Zhi Tang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Faculty of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China.
| | - Juan Liao
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Faculty of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China.
| | - Li-Juan Wang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Faculty of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China.
| | - Fang-Xin Wang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Faculty of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China.
| | - Ming-Yang Wan
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Faculty of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China.
| |
Collapse
|
16
|
He X, Ma Y, Zhang C, Fu A, Hu W, Xu Y, Yu B, Liu K, Wang H, Zhang X, Xue F. Proton-mediated reversible switching of metastable ferroelectric phases with low operation voltages. SCIENCE ADVANCES 2023; 9:eadg4561. [PMID: 37224248 DOI: 10.1126/sciadv.adg4561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/19/2023] [Indexed: 05/26/2023]
Abstract
The exploration of ferroelectric phase transitions enables an in-depth understanding of ferroelectric switching and promising applications in information storage. However, controllably tuning the dynamics of ferroelectric phase transitions remains challenging owing to inaccessible hidden phases. Here, using protonic gating technology, we create a series of metastable ferroelectric phases and demonstrate their reversible transitions in layered ferroelectric α-In2Se3 transistors. By varying the gate bias, protons can be incrementally injected or extracted, achieving controllable tuning of the ferroelectric α-In2Se3 protonic dynamics across the channel and obtaining numerous intermediate phases. We unexpectedly discover that the gate tuning of α-In2Se3 protonation is volatile and the created phases remain polar. Their origin, revealed by first-principles calculations, is related to the formation of metastable hydrogen-stabilized α-In2Se3 phases. Furthermore, our approach enables ultralow gate voltage switching of different phases (below 0.4 volts). This work provides a possible avenue for accessing hidden phases in ferroelectric switching.
Collapse
Affiliation(s)
- Xin He
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Micro-Nano Electronics, Zhejiang University, Hangzhou 311215, China
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Yinchang Ma
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Chenhui Zhang
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Aiping Fu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Weijin Hu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Yang Xu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Micro-Nano Electronics, Zhejiang University, Hangzhou 311215, China
| | - Bin Yu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Micro-Nano Electronics, Zhejiang University, Hangzhou 311215, China
| | - Kai Liu
- Physics Department, Georgetown University, Washington, DC 20057, USA
| | - Hua Wang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Micro-Nano Electronics, Zhejiang University, Hangzhou 311215, China
| | - Xixiang Zhang
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Fei Xue
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Micro-Nano Electronics, Zhejiang University, Hangzhou 311215, China
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
17
|
Jia QQ, Lun MM, Teri G, Xie LY, Fu DW, Guo Q. Fluorescence Emission Is Highly Structure-Dependent in Hybrid Lead Halides. Inorg Chem 2023; 62:7186-7194. [PMID: 37128761 DOI: 10.1021/acs.inorgchem.2c04267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Hybrid lead halide perovskites have received extensive scientific attention owing to their great potential in the field of fluorescent displays and light-emitting diodes. Currently, most luminescent materials contain functional molecular and rare-earth metal ion parts. However, the mechanism of photoluminescence property in two-dimensional hybrid lead halide perovskites with different layered inorganic skeletons has been reported rarely. To better understand the effect of an inorganic skeleton on the fluorescence property, here, we report three organic-inorganic hybrid materials with different layered inorganic frameworks: (MACH)2·PbBr4 (Prv-1, MACH = cyclohexylmethylammonium), (2-MPQ)·PbBr4 (Prv-2, 2-MPQ = 2-methylpiperazinium), and (TMBA)4·Pb3Br10 (Prv-3, TMBA = N'N'N'-trimethylbenzylammonium). Among them, Prv-1 is a (100)-oriented perovskite, Prv-2 belongs to the (110)-oriented perovskite, and the inorganic framework of Prv-3 possesses [Pb3Br10] units. Interestingly, Prv-1 has a strong blue-violet fluorescence emission, while the luminescence effect of Prv-2 is very weak; notably, Prv-3 emits a charming bright-orange light. Meanwhile, results of theoretical computational studies also reveal that the electronic structure of all three compounds is highly dependent on structurally distorted [PbBr6] octahedra, and the frontier molecular orbital (FMO) analysis further suggests that HOMO and LUMO of Prv-3 are contributed by inorganic and organic components, respectively. In addition, all three materials belong to direct band gap semiconductors, and the band gaps are 2.79, 2.97, and 2.76 eV, respectively. Significantly, there are obvious differences in conduction bands. Based on the above analysis, the photoluminescence mechanism of three hybrid materials is explained from the electronic levels. Consequentially, this work might provide practical strategies and perspectives for exploring novel structure-related properties.
Collapse
Affiliation(s)
- Qiang-Qiang Jia
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Meng-Meng Lun
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China
| | - Gele Teri
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Li-Yan Xie
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Da-Wei Fu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China
| | - Qiang Guo
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| |
Collapse
|
18
|
Hua L, Wang J, Liu Y, Guo W, Ma Y, Xu H, Han S, Luo J, Sun Z. Improper High-T c Perovskite Ferroelectric with Dielectric Bistability Enables Broadband Ultraviolet-to-Infrared Photopyroelectric Effects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2301064. [PMID: 37088724 DOI: 10.1002/advs.202301064] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/10/2023] [Indexed: 05/03/2023]
Abstract
The photopyroelectric effect in ferroelectrics has shown great potential for application in infrared detection and imaging. One particular subclass is broadband with dielectric bistability, which allows for large pyroelectric figures-of-merit (FOMs). Herein, an improper high-Tc perovskite ferroelectric, (IA)2 (EA)2 Pb3 Cl10 (1, where IA is isoamylammonium and EA is ethylammonium) is presented, in which spontaneous polarization (Ps ) stems from the dynamic ordering of organic cations and the tilting of distorted PbCl6 octahedra. Notably, 1 displays unusual dielectric bistability with small variations in the temperature-dependent dielectric constants near Tc = 392 K; this bistable attribute endows large pyroelectric FOMs with peak voltage efficiency (FV = 1.7×10-2 cm2 µC-1 ) and sensitivity (FD = 3.9×10-4 Pa-1/2 ). These FV and FD parameters, beyond those of their proper counterparts, make 1 a promising candidate for infrared photodetection. As expected, the broadband photopyroelectric effects observed in 1 covered the ultraviolet to infrared-II spectral region (266-1950 nm). Such Ps -directed photoactivities overcome the optical bandgap limitation and allow for wide-wave photodetection. As an innovative study on improper ferroelectricity, light is shaded here on the targeted engineering of new electrically ordered candidate materials for smart optoelectronic devices.
Collapse
Affiliation(s)
- Lina Hua
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Jiaqi Wang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Yi Liu
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Wuqian Guo
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yu Ma
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Haojie Xu
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shiguo Han
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Junhua Luo
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| | - Zhihua Sun
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| |
Collapse
|
19
|
Ni HF, Ye LK, Zhuge PC, Hu BL, Lou JR, Su CY, Zhang ZX, Xie LY, Fu DW, Zhang Y. A nickel(ii)-based one-dimensional organic-inorganic halide perovskite ferroelectric with the highest Curie temperature. Chem Sci 2023; 14:1781-1786. [PMID: 36819861 PMCID: PMC9930933 DOI: 10.1039/d2sc05857j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Organic-inorganic halide perovskites (OIHPs) are very eye-catching due to their chemical tunability and rich physical properties such as ferroelectricity, magnetism, photovoltaic properties and photoluminescence. However, no nickel-based OIHP ferroelectrics have been reported so far. Here, we designed an ABX3 OIHP ferroelectric (3-pyrrolinium)NiCl3, where the 3-pyrrolinium cations are located on the voids surrounded by one-dimensional chains composed of NiCl6-face-sharing octahedra via hydrogen bonding interactions. Such a unique structure enables the (3-pyrrolinium)NiCl3 with a high spontaneous polarization (P s) of 5.8 μC cm-2 and a high Curie temperature (T c) of 428 K, realizing dramatic enhancement of 112 and 52 K compared to its isostructural (3-pyrrolinium)MCl3 (M = Cd, Mn). To our knowledge, remarkably, (3-pyrrolinium)NiCl3 should be the first case of nickel(ii)-based OIHP ferroelectric to date, and its T c of 428 K (35 K above that of BaTiO3) is the highest among all reported one-dimensional OIHP ferroelectrics. This work offers a new structural building block for enriching the family of OIHP structures and will inspire the further exploration of new nickel(ii)-based OIHP ferroelectrics.
Collapse
Affiliation(s)
- Hao-Fei Ni
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University Jinhua 321004 China
| | - Lou-Kai Ye
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University Jinhua 321004 China
| | - Peng-Cheng Zhuge
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University Jinhua 321004 China
| | - Bo-Lan Hu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University Jinhua 321004 China
| | - Jia-Rui Lou
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University Jinhua 321004 China
| | - Chang-Yuan Su
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University Nanjing 211189 China
| | - Zhi-Xu Zhang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University Nanjing 211189 China
| | - Li-Yan Xie
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University Jinhua 321004 China
| | - Da-Wei Fu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University Jinhua 321004 China
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University Nanjing 211189 China
| | - Yi Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University Jinhua 321004 China
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University Nanjing 211189 China
| |
Collapse
|
20
|
Peng XL, Han RR, Tang YZ, Tan YH, Fan XW, Wang FX, Zhang H. 1D Chiral Lead Bromide Perovskite with Superior Second-Order Optical Nonlinearity, Photoluminescence, and High-Temperature Reversible Phase Transition. Chem Asian J 2023; 18:e202201206. [PMID: 36579778 DOI: 10.1002/asia.202201206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022]
Abstract
Multifunctional materials are an attractive research area. Organic-inorganic hybrid perovskites are widely used in the design of these materials due to their rich properties and flexible composition. It is easy to obtain more photoelectric properties by introducing chiral groups as ligands. In this work, we synthesized chiral one-dimensional organic-inorganic hybrid perovskites, namely (R/S-3-HP)PbBr3 (1R/1S) (3-HP=3-hydroxy-piperidine). The enantiomer compounds undergo reversible phase transition at 349/336 K. Under the excitation light of 339 nm, 1R and 1S have a wide emission peak at 635 nm, showing orange light. In addition, the indirect bandgap is 3.29 eV and the SHG intensity is comparable to that of KDP. This work provides a way to design multifunctional chiral perovskite materials.
Collapse
Affiliation(s)
- Xin-Lin Peng
- Jiangxi Provincial Key Laboratory of, Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Rui-Rui Han
- Jiangxi Provincial Key Laboratory of, Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Yun-Zhi Tang
- Jiangxi Provincial Key Laboratory of, Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Yu-Hui Tan
- Jiangxi Provincial Key Laboratory of, Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Xiao-Wei Fan
- Jiangxi Provincial Key Laboratory of, Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Fang-Xin Wang
- Jiangxi Provincial Key Laboratory of, Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Hao Zhang
- Jiangxi Provincial Key Laboratory of, Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| |
Collapse
|
21
|
Lv HP, Li YR, Song XJ, Zhang N, Xiong RG, Zhang HY. A Poling-Free Supramolecular Crown Ether Compound with Large Piezoelectricity. J Am Chem Soc 2023; 145:3187-3195. [PMID: 36700656 DOI: 10.1021/jacs.2c12951] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Supramolecular host-guest ferroelectrics based on solution processing are highly desirable because they are generally created with intrinsic piezoelectricity/ferroelectricity and do not need further poling. Poly(vinylidene fluoride) (PVDF) in the electric-active beta phase after stretching/annealing still shows no piezoelectric response unless poled. Although many supramolecular host-guest ferroelectrics have been discovered, their piezoelectricity is relatively small. Based on H/F substitution, we reported a supramolecular host-guest compound [(CF3-C6H4-NH3)(18-crown-6)][TFSA] (CF3-C6H4-NH3 = 4-trifluoromethylanilinium, TFSA = bis(trifluoromethanesulfonyl)ammonium) with a remarkable piezoelectric response of 42 pC/N under no poling condition. The introduction of F atoms increases phase transition temperature, polar axes, second harmonic generation (SHG) intensity, and piezoelectric coefficient d33. To our knowledge, such a large piezoelectric performance of [(CF3-C6H4-NH3)(18-crown-6)][TFSA] makes its d33, piezoelectric voltage coefficient g33, and mechanical quality factor Qm the highest among the reported supramolecular host-guest ferroelectric compounds and even larger than the values of PVDF. This work provides inspiration for optimizing piezoelectricity on molecular materials.
Collapse
Affiliation(s)
- Hui-Peng Lv
- Ordered Matter Science Research Center, Nanchang University, Nanchang330031, People's Republic of China
| | - Yi-Rong Li
- Ordered Matter Science Research Center, Nanchang University, Nanchang330031, People's Republic of China
| | - Xian-Jiang Song
- Ordered Matter Science Research Center, Nanchang University, Nanchang330031, People's Republic of China
| | - Nan Zhang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing210096, People's Republic of China
| | - Ren-Gen Xiong
- Ordered Matter Science Research Center, Nanchang University, Nanchang330031, People's Republic of China
| | - Han-Yue Zhang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing210096, People's Republic of China
| |
Collapse
|
22
|
|
23
|
Xie YX, Yuan GJ, Miao JB, Luan YT, Li L, Chen H, Ren XM. Two-step thermotropic phase transition and dielectric relaxation in 1D supramolecular lead iodide perovskite [NH 4@18-crown ether]PbI 3. Dalton Trans 2022; 51:15158-15165. [PMID: 36149368 DOI: 10.1039/d2dt02621j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The supramolecular lead iodide perovskite crystals, {[NH4(18-crown-6)]PbI3}∞ (1), (18-crown-6 = 1,4,7,10,13,16-hexaoxacyclooctadecane), was successfully achieved by a facile solvent evaporation strategy using a DMF solution containing equal molar quantities of PbI2, NH4I and 18-crown-6. The supramolecular perovskite was characterized by microanalysis for C, H and N elements, thermogravimetric (TG) analysis, differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) and single crystal X-ray diffraction techniques. DSC measurements demonstrated that 1 experiences a two-step thermotropic phase transition around 333 K and 383 K, respectively. The phase transition is relevant to the disorder-order transformation of the 18-crown-6 molecule at ∼333 K, while both breaking-symmetry and ordered-disordered transformation of the 18-crown-6 molecule occurred at ∼383 K. In addition, the sharp change of the PbI6 coordination octahedron distortion degree plays a synergistic role in the two-step phase transition. The dielectric relaxation occurs above 243 K in 1 and is mainly attributed to the displacement of the NH4+ ions relative to the ring of the 18-crown-6 molecule and {PbI3}∞ chain induced by an AC electrical field.
Collapse
Affiliation(s)
- Yu-Xin Xie
- Key Laboratory of Advanced Functional Materials of Nanjing, Department of Chemistry, Nanjing Xiaozhuang University, Nanjing 211171, P. R. China.
| | - Guo-Jun Yuan
- Key Laboratory of Advanced Functional Materials of Nanjing, Department of Chemistry, Nanjing Xiaozhuang University, Nanjing 211171, P. R. China.
| | - Ji-Bin Miao
- Key Laboratory of Advanced Functional Materials of Nanjing, Department of Chemistry, Nanjing Xiaozhuang University, Nanjing 211171, P. R. China.
| | - Ye-Ting Luan
- Key Laboratory of Advanced Functional Materials of Nanjing, Department of Chemistry, Nanjing Xiaozhuang University, Nanjing 211171, P. R. China.
| | - Li Li
- Key Laboratory of Advanced Functional Materials of Nanjing, Department of Chemistry, Nanjing Xiaozhuang University, Nanjing 211171, P. R. China.
| | - Hong Chen
- Key Laboratory of Advanced Functional Materials of Nanjing, Department of Chemistry, Nanjing Xiaozhuang University, Nanjing 211171, P. R. China.
| | - Xiao-Ming Ren
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and molecular of Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| |
Collapse
|
24
|
Ye X, He W, Wei J, Wei Z, You X, Cai H. Two host-guest grown ether supramolecules show switchable phase transition, dielectric and second-harmonic generation effect. Dalton Trans 2022; 51:15074-15079. [PMID: 36112093 DOI: 10.1039/d2dt01826h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The excellent properties of host-guest crown ether inclusions in phase transition, dielectric and second-order nonlinear optical properties have attracted much attention. In this paper, we successfully designed and prepared two novel host-guest crown ether supramolecules [(DFBA)(15-crown-5)]X (X = ClO4-, 1; ReO4-, 2) by reactions of 2,6-difluorobenzylamine (DFBA) with 1,4,10,13-pentaoxacyclopentadecane (15-crown-5) in HClO4, or HReO4 aqueous solution. By the introduction of difluoro-substituted benzylamine as a guest cation, the phase transition temperatures are greatly increased to 377 K for 1 and 391 K for 2. More importantly, the space group of 1 has changed from centrosymmetric (CS) P2/c to the non-centrosymmetric (NCS) Pca21 in 2 when substituting perchlorate (ClO4-) with the larger and heavier perrhenate (ReO4-), which leads to 2 showing a switchable and stable second-harmonic generation (SHG) effect. According to the principle of momentum matching between a cation and anion, the perrhenate group increases the energy barrier of the molecular thermal motion, which not only significantly increases the phase transition temperature of 2 but also causes it to be frozen and crystallized in a NCS space group at room temperature. This research demonstrates that a polar molecule can adjust the suitability of anions and cations inside the crystal by practical chemical means.
Collapse
Affiliation(s)
- Xing Ye
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, People's Republic of China.
| | - Wenhui He
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, People's Republic of China.
| | - Jing Wei
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, People's Republic of China.
| | - Zhenhong Wei
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, People's Republic of China.
| | - Xiuli You
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China
| | - Hu Cai
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, People's Republic of China.
| |
Collapse
|
25
|
Xu H, Guo W, Ma Y, Liu Y, Hu X, Hua L, Han S, Liu X, Luo J, Sun Z. Record high-Tc and large practical utilization level of electric polarization in metal-free molecular antiferroelectric solid solutions. Nat Commun 2022; 13:5329. [PMID: 36088352 PMCID: PMC9464199 DOI: 10.1038/s41467-022-33039-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/28/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractMetal-free antiferroelectric materials are holding a promise for energy storage application, owing to their unique merits of wearability, environmental friendliness, and structure tunability. Despite receiving great interests, metal-free antiferroelectrics are quite limited and it is a challenge to acquire new soft antiferroelectric candidates. Here, we have successfully exploited binary CMBrxI1-x and CMBrxCl1-x solid solution as single crystals (0 ≤ x ≤ 1, where CM is cyclohexylmethylammonium). A molecule-level modification can effectively enhance Curie temperature. Emphatically, the binary CM-chloride salt shows the highest antiferroelectric-to-paraelectric Curie temperature of ~453 K among the known molecular antiferroelectrics. Its characteristic double electrical hysteresis loops provide a large electric polarization up to ~11.4 μC/cm2, which endows notable energy storage behaviors. To our best knowledge, this work provides an effective solid-solution methodology to the targeted design of new metal-free antiferroelectric candidates toward biocompatible energy storage devices.
Collapse
|
26
|
Wang CF, Shi C, Zheng A, Wu Y, Ye L, Wang N, Ye HY, Ju MG, Duan P, Wang J, Zhang Y. Achieving circularly polarized luminescence and large piezoelectric response in hybrid rare-earth double perovskite by a chirality induction strategy. MATERIALS HORIZONS 2022; 9:2450-2459. [PMID: 35880616 DOI: 10.1039/d2mh00698g] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chirality, an intrinsic property of nature, has received increased attention in chemistry, biology, and materials science because it can induce optical rotation, ferroelectricity, nonlinear optical response, and other unique properties. Here, by introducing chirality into hybrid rare-earth double perovskites (HREDPs), we successfully designed and synthesized a pair of enantiomeric three-dimensional (3D) HREDPs, [(R)-N-methyl-3-hydroxylquinuclidinium]2RbEu(NO3)6 (R1) and [(S)-N-methyl-3-hydroxylquinuclidinium]2RbEu(NO3)6 (S1), which possess ferroelasticity, multiaxial ferroelectricity, high quantum yields (84.71% and 83.55%, respectively), and long fluorescence lifetimes (5.404 and 5.256 ms, respectively). Notably, the introduction of chirality induces the coupling of multiaxial ferroelectricity and ferroelasticity, which brings about a satisfactory large piezoelectric response (103 and 101 pC N-1 for R1 and S1, respectively). Moreover, in combination with the chirality and outstanding photoluminescence properties, circularly polarized luminescence (CPL) was first realized in HREDPs. This work sheds light on the design strategy of molecule-based materials with a large piezoelectric response and excellent CPL activity, and will inspire researchers to further explore the role of chirality in the construction of novel multifunctional materials.
Collapse
Affiliation(s)
- Chang-Feng Wang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
- Chaotic Matter Science Research Center, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Chao Shi
- Chaotic Matter Science Research Center, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Anyi Zheng
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11, ZhongGuanCun BeiYiTiao, Beijing 100190, People's Republic of China.
| | - Yilei Wu
- School of Physics, Southeast University, Nanjing 211189, People's Republic of China.
| | - Le Ye
- Chaotic Matter Science Research Center, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Na Wang
- Chaotic Matter Science Research Center, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Heng-Yun Ye
- Chaotic Matter Science Research Center, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Ming-Gang Ju
- School of Physics, Southeast University, Nanjing 211189, People's Republic of China.
| | - Pengfei Duan
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11, ZhongGuanCun BeiYiTiao, Beijing 100190, People's Republic of China.
| | - Jinlan Wang
- School of Physics, Southeast University, Nanjing 211189, People's Republic of China.
| | - Yi Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
- Chaotic Matter Science Research Center, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
- Ordered Matter Science Research Center, Southeast University, Nanjing, 211189, People's Republic of China.
| |
Collapse
|
27
|
Du S, Su D, Ruan Z, Zhou Y, Deng W, Zhang W, Sun Y, Liu J, Tong M. Reversible Switchability of Magnetic Anisotropy and Magnetodielectric Effect Induced by Intermolecular Motion. Angew Chem Int Ed Engl 2022; 61:e202204700. [DOI: 10.1002/anie.202204700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Shan‐Nan Du
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Dan Su
- Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Ze‐Yu Ruan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Ying‐Qian Zhou
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Wei Deng
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Wei‐Xiong Zhang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Young Sun
- Center of Quantum Materials and Devices, and Department of Applied Physics Chongqing University Chongqing 401331 P. R. China
| | - Jun‐Liang Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Ming‐Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510006 P. R. China
| |
Collapse
|
28
|
Akiyoshi R, Hayami S. Ferroelectric coordination metal complexes based on structural and electron dynamics. Chem Commun (Camb) 2022; 58:8309-8321. [PMID: 35838153 DOI: 10.1039/d2cc02484e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ferroelectrics that display electrically invertible polarisation are attractive materials because of their potential for wide-ranging applications. To date, considerable effort has thus been devoted towards developing ferroelectric materials, particularly those comprising organic/inorganic compounds. In these systems, structural dynamics such as atomic displacement and reorientation of polar ions/molecules play a key role in the generation of reversible spontaneous polarisation. Although there are many reports concerned with organic/inorganic ferroelectrics, ferroelectrics based on coordination metal complexes have been largely unexplored despite their often unique electronic and spin state properties. In this feature article, we discuss recent progress involving coordination metal complex-based ferroelectrics where the reversible polarisation originates not only from structural dynamics (represented by proton transfer, molecular motion, and liquid crystalline behaviour) but also from electron dynamics (represented by electron transfer and spin crossover phenomena) occurring at the metal centre. Furthermore, unique synergy effects (i.e. magnetoelectric coupling) resulting from the structural and electron dynamics are described. We believe that this review pertaining to ferroelectric coordination metal complexes provides new insights for fabricating further advanced functional materials such as multiferroics and spintronics.
Collapse
Affiliation(s)
- Ryohei Akiyoshi
- Department of Chemistry, School of Science, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| |
Collapse
|
29
|
Li J, Zhu Y, Huang PZ, Fu DW, Jia QQ, Lu HF. Ferroelasticity in Organic-Inorganic Hybrid Perovskites. Chemistry 2022; 28:e202201005. [PMID: 35790034 DOI: 10.1002/chem.202201005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Indexed: 11/10/2022]
Abstract
Molecular ferroelastics have received particular attention for potential applications in mechanical switches, shape memory, energy conversion, information processing, and solar cells, by taking advantages of their low-cost, light-weight, easy preparation, and mechanical flexibility. The unique structures of organic-inorganic hybrid perovskites have been considered to be a design platform for symmetry-breaking-associated order-disorder in lattice, thereby possessing great potential for ferroelastic phase transition. Herein, we review the research progress of organic-inorganic hybrid perovskite ferroelastics in recent years, focusing on the crystal structures, dimensions, phase transitions and ferroelastic properties. In view of the few reports on molecular-based hybrid ferroelastics, we look forward to the structural design strategies of molecular ferroelastic materials, as well as the opportunities and challenges faced by molecular-based hybrid ferroelastic materials in the future. This review will have positive guiding significance for the synthesis and future exploration of organic-inorganic hybrid molecular ferroelastics.
Collapse
Affiliation(s)
- Jie Li
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P.R. China
| | - Yang Zhu
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P.R. China
| | - Pei-Zhi Huang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Da-Wei Fu
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P.R. China
| | - Qiang-Qiang Jia
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Hai-Feng Lu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| |
Collapse
|
30
|
Du SN, Su D, Ruan ZY, Zhou YQ, Deng W, Zhang WX, Sun Y, Liu JL, Tong ML. Reversible Switchability of Magnetic Anisotropy and Magnetodielectric Effect Induced by Intermolecular Motion. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shan-Nan Du
- Sun Yat-Sen University School of Chemistry 510006 Guangzhou CHINA
| | - Dan Su
- Chinese Academy of Sciences Beijing National Laboratory for Condensed Matter Physics 100190 Beijing CHINA
| | - Ze-Yu Ruan
- Sun Yat-Sen University School of Chemistry 510006 Guangzhou CHINA
| | - Ying-Qian Zhou
- Sun Yat-Sen University School of Chemistry 510006 Guangzhou CHINA
| | - Wei Deng
- Sun Yat-Sen University School of Chemistry 510006 Guangzhou CHINA
| | - Wei-Xiong Zhang
- Sun Yat-Sen University School of Chemistry 510006 Guangzhou CHINA
| | - Young Sun
- Chongqing University Department of Applied Physics Chongqing CHINA
| | - Jun-Liang Liu
- Sun Yat-Sen University School of Chemistry A856, School of Chemistry, Guangzhou East Campus of Sun Yat-sen University 510006 Guangzhou CHINA
| | - Ming-Liang Tong
- Sun Yat-Sen University School of Chemistry 510006 Guangzhou CHINA
| |
Collapse
|
31
|
Shao T, Ren RY, Huang PZ, Ni HF, Su CY, Fu DW, Xie LY, Lu HF. Metal ion modulation triggers dielectric double switching and green fluorescence in A 2MX 4-type compounds. Dalton Trans 2022; 51:2005-2011. [PMID: 35029614 DOI: 10.1039/d1dt03948b] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Multifunctional switching materials show great potential for applications in sensors, smart switches, and other fields due to their ability to integrate different physical channels in one single device. However, multifunctional responsive materials with multiple switching and luminescence properties have rarely been reported. Here, we report three organic-inorganic hybrids: [TMAA]2[CoCl4] (compound 1), [TMAA]2[CdBr4] (compound 2) and [TMAA]2[MnCl4] (compound 3). Compound 1 and compound 2 undergo two reversible phase transitions at high temperature (328.95/359.25 K and 350.45/393.15 K, respectively). Since the inorganic skeleton has a strong influence on the luminescence properties of such structured substances, Cd and Co were replaced with Mn, after which compound 3 was obtained as expected. The above strategy triggered bright green luminescence with a quantum yield of 35.19%, and significantly increased the phase transition temperature of compound 3 to above 400 K. The above results show that the regulation of the inorganic skeleton provides a new strategy for researchers to develop dual phase change/luminous materials.
Collapse
Affiliation(s)
- Ting Shao
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China.
| | - Rui-Ying Ren
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China.
| | - Pei-Zhi Huang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China.
| | - Hao-Fei Ni
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China.
| | - Chang-Yuan Su
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P.R. China
| | - Da-Wei Fu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China.
| | - Li-Yan Xie
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China.
| | - Hai-Feng Lu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China.
| |
Collapse
|
32
|
Wang Y, Sun D, Meng F, Dang Y, Shen C, Wang D. The synthesis, structures, high thermal stability and photoluminescence of two new crown ether clathrates. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
33
|
Chen Y, Guerin S, Yuan H, O’Donnell J, Xue B, Cazade PA, Haq EU, Shimon LJW, Rencus-Lazar S, Tofail SAM, Cao Y, Thompson D, Yang R, Gazit E. Guest Molecule-Mediated Energy Harvesting in a Conformationally Sensitive Peptide–Metal Organic Framework. J Am Chem Soc 2022; 144:3468-3476. [PMID: 35073071 PMCID: PMC8895394 DOI: 10.1021/jacs.1c11750] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yu Chen
- Department of Molecular Microbiology and Biotechnology, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sarah Guerin
- Department of Physics, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Hui Yuan
- School of Advanced Materials and Nanotechnology, Xidian University, Xi’an 710126, China
| | - Joseph O’Donnell
- Department of Physics, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Bin Xue
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210000, China
| | - Pierre-Andre Cazade
- Department of Physics, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Ehtsham Ul Haq
- Department of Physics, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Linda J. W. Shimon
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sigal Rencus-Lazar
- Department of Molecular Microbiology and Biotechnology, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Syed A. M. Tofail
- Department of Physics, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Yi Cao
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210000, China
| | - Damien Thompson
- Department of Physics, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Rusen Yang
- School of Advanced Materials and Nanotechnology, Xidian University, Xi’an 710126, China
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
34
|
Han DC, Tan YH, Wen JH, Tang YZ, Wu PF, Li YK, Wan MY, Fan XW. High-Tp-Triggered Phase Transition Exhibiting Switchable Dielectric-Thermal Responses and Long Photoluminescence Lifetime in a Novel Inclusion Luminophor. CrystEngComm 2022. [DOI: 10.1039/d2ce00236a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Materials combining high-temperature phase transformation and fluorescence properties are not abundant, especially stator-rotator-type inclusion compounds which have excellent optical properties are extremely rare. In this paper, a neoteric high-temperature crown...
Collapse
|
35
|
Li YK, Tan YH, Tang YZ, Fan XW, Wang SF, Ying TT, Zhang H. Unusual high-temperature host–guest inclusion compound-based ferroelectrics with nonlinear optical switching and large spontaneous polarization behaviours. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01020h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Host–guest inclusion compound-based ferroelectrics [Hcta-(18-crown-6)]+[BF4]− (1) and [Hcta-(18-crown-6)]+[ClO4]− (2) with a high Curie temperature (Tc = 403/394 K) and large spontaneous polarization (Ps = 5.7/4.7 μC cm−2) are reported.
Collapse
Affiliation(s)
- Yu-Kong Li
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Yu-Hui Tan
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Yun-Zhi Tang
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Xiao-Wei Fan
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Su-Fen Wang
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Ting-Ting Ying
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Hao Zhang
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| |
Collapse
|
36
|
Xiang L, Luo W, Yue ZY, Huang YF, Wang N, Miao LP, Ye HY, Shi C. A new crown-ether clathrate [15-crown-5][Y(NO 3) 2(H 2O) 5][NO 3] with switchable dielectric constant behaviour. NEW J CHEM 2022. [DOI: 10.1039/d2nj03493j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A crown-ether clathrate employing a rare-earth ion as the central metal ion was developed, and shown to display switchable dielectric behaviours around a temperature of about 230 K.
Collapse
Affiliation(s)
- Lin Xiang
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou 330000, Jiangxi, China
| | - Wang Luo
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou 330000, Jiangxi, China
| | - Zhi-Yuan Yue
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou 330000, Jiangxi, China
| | - Yi-Fang Huang
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou 330000, Jiangxi, China
| | - Na Wang
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou 330000, Jiangxi, China
| | - Le-Ping Miao
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou 330000, Jiangxi, China
| | - Heng-Yun Ye
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou 330000, Jiangxi, China
| | - Chao Shi
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou 330000, Jiangxi, China
| |
Collapse
|
37
|
Liu JC, Di FF, Zeng YP, Chen WJ, Huang XY, Luo YL, Zhu X, Zhou L, Tang YY. Dual-channel control of ferroelastic domains in a host–guest inclusion compound. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01824a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By replacing [PF6]− with the larger [TFSA]−, the phase transition temperature is increased from 305 K to 342 K in a host–guest inclusion ferroelastic crystal, [(3,4-DFA)(18-crown-6)][TFSA], which can realize dual-channel (thermal and stress) control of ferroelastic domains.
Collapse
Affiliation(s)
- Jun-Chao Liu
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Fang-Fang Di
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Yi-Piao Zeng
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Wu-Jia Chen
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Xiao-Yun Huang
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Yan-Ling Luo
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Xuan Zhu
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Lin Zhou
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Yuan-Yuan Tang
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| |
Collapse
|
38
|
Shao T, Gong JM, Liu J, Han LJ, Chen M, Jia Q, Fu DW, Lu HF. 2D lead-free organic–inorganic hybrid exhibiting dielectric and structural phase transition at higher temperatures. CrystEngComm 2022. [DOI: 10.1039/d2ce00541g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel switchable molecular dielectric material [3-3-difluorocyclobutylammonium]2CdCl4 was synthesized. It shows a reversible phase transition at 353.95 K and rapid switching and reversibility between high and low dielectric states for several cycles.
Collapse
Affiliation(s)
- Ting Shao
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Jun Miao Gong
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Jia Liu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Li Jun Han
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Ming Chen
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P.R. China
| | - Qiangqiang Jia
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Da Wei Fu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Hai-Feng Lu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| |
Collapse
|
39
|
Zhang ZC, Zhang T, Huang PZ, Shao T, Fu DW, Zhang Y. Thermally stimuli-responsive materials with transformable double channels of nonlinear optical and dielectric. Dalton Trans 2022; 51:9857-9863. [DOI: 10.1039/d2dt01413k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organic-inorganic hybrid materials have received extensive attention and in-depth research in the past few decades due to their superior properties and potential applications in storage, sensing, dielectric switches, actuators and...
Collapse
|
40
|
Zou K, Zhang T, Ding K, Cheng SN, Zhang Y, Ge JZ, Fu DW. Solvent-induced reversible high-temperature phase transition in crown ether clathrates. NEW J CHEM 2022. [DOI: 10.1039/d2nj00642a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The phase transitions of crown ether complexes with molecular motor motion triggered by the solvent-induced effect are reported.
Collapse
Affiliation(s)
- Ke Zou
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Tie Zhang
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Kun Ding
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Sai-Nan Cheng
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Yi Zhang
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Jia-Zhen Ge
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Da-Wei Fu
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| |
Collapse
|
41
|
Zhang YF, Di FF, Li PF, Xiong RG. Crown Ether Host-Guest Molecular Ferroelectrics. Chemistry 2021; 28:e202102990. [PMID: 34792222 DOI: 10.1002/chem.202102990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Indexed: 11/06/2022]
Abstract
In recent years, molecular ferroelectrics have received great attention due to their low weight, mechanical flexibility, easy preparation and excellent ferroelectric properties. Among them, crown-ether-based molecular ferroelectrics, which are typically composed of the host crown ethers, the guest cations anchored in the crown ethers, and the counterions, are of great interest because of the host-guest structure. Such a structure allows the components to occur order-disorder transition easily, which is beneficial for inducing ferroelectric phase transition. Herein, we summarized the research progress of crown ether host-guest molecular ferroelectrics, focusing on their crystal structure, phase transition, ferroelectric-related properties. In view of the small spontaneous polarization and uniaxial nature, we outlook the chemical design strategies for obtaining high-performance crown-ether-based molecular ferroelectrics. This minireview will be of guiding significance for the future exploration of crown ether host-guest molecular ferroelectrics.
Collapse
Affiliation(s)
- Yun-Fang Zhang
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Fang-Fang Di
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Peng-Fei Li
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Ren-Gen Xiong
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| |
Collapse
|
42
|
Han DC, Gong ZX, Song N, Tan YH, Li YK, Tang YZ, Du PK, Zhang H. Ferroelectric properties, narrow band gap and ultra-large reversible entropy change in a novel nonlinear ionic chromium(VI) compound. Chem Commun (Camb) 2021; 57:11225-11228. [PMID: 34633013 DOI: 10.1039/d1cc04751e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel chromium(VI)-based compound, [(CH3CH2)3N(CH2Cl)][CrO3Cl] (1), undergoes a high-temperature phase transition at around 340.9 K, accompanied by an ultra-large entropy change of 63.49 J mol-1 K-1. Compound 1 exhibits a moderate ferroelectric polarization of 0.48 μC cm-2 and a remarkable CD signal. Strikingly, 1 occupies a narrow band gap of 2.22 eV, which is chiefly attributed to the inorganic [CrO3Cl]- tetrahedron. It is believed that these findings will contribute to an alternative pathway for the design of multifunctional ferroelectric materials, whose potential applications will be in semiconductors, energy storage, etc.
Collapse
Affiliation(s)
- Ding-Chong Han
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China.
| | - Zhi-Xiang Gong
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China.
| | - Ning Song
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China.
| | - Yu-Hui Tan
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China.
| | - Yu-Kong Li
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China.
| | - Yun-Zhi Tang
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China.
| | - Peng-Kang Du
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China.
| | - Hao Zhang
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China.
| |
Collapse
|
43
|
Li YK, Lai YY, Ying TT, Han DC, Tan YH, Tang YZ, Du PK, Zhang H. A multifunctional molecular ferroelectric with chiral features, a high Curie temperature, large spontaneous polarization and photoluminescence: (C 9H 14N) 2CdBr 4. Chem Sci 2021; 12:13061-13067. [PMID: 34745536 PMCID: PMC8513930 DOI: 10.1039/d1sc03964d] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/05/2021] [Indexed: 11/23/2022] Open
Abstract
Low-dimensional chiral organic-inorganic hybrid metal halides have attracted a lot of attention in recent years due to their unique intrinsic properties, including having potential applications in optoelectronic and spintronic devices. However, low-dimensional chiral molecular ferroelectrics are very rare. In this paper, we report a novel zero-dimensional molecular ferroelectric (C9H14N)2CdBr4 (C9H14N+ = protonated 3-phenylpropylamine), which has obvious dielectric and thermal anomalies and shows a high Curie temperature at 395 K. It crystallizes in the P21 space group at room temperature, showing a strong CD signal, large spontaneous polarization (P s = 13.5 μC cm-2), and a clear ferroelectric domain. In addition, it also exhibits a flexible SHG response. The photoluminescence spectrum shows that 1 has broadband luminescence. At the same time, compound 1 has a wide band gap, which is mainly contributed to by the inorganic CdBr4 tetrahedron. The high tunability of low-dimensional chiral molecular ferroelectrics also opens up a way to explore multifunctional chiral materials.
Collapse
Affiliation(s)
- Yu-Kong Li
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology Ganzhou 341000 Jiangxi Province P. R. China
| | - Yuan-Yuan Lai
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology Ganzhou 341000 Jiangxi Province P. R. China
| | - Ting-Ting Ying
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology Ganzhou 341000 Jiangxi Province P. R. China
| | - Ding-Chong Han
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology Ganzhou 341000 Jiangxi Province P. R. China
| | - Yu-Hui Tan
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology Ganzhou 341000 Jiangxi Province P. R. China
| | - Yun-Zhi Tang
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology Ganzhou 341000 Jiangxi Province P. R. China
| | - Peng-Kang Du
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology Ganzhou 341000 Jiangxi Province P. R. China
| | - Hao Zhang
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology Ganzhou 341000 Jiangxi Province P. R. China
| |
Collapse
|
44
|
Han DC, Tan YH, Li YK, Wen JH, Tang YZ, Wei WJ, Du PK, Zhang H. High-Temperature and Large-Polarization Ferroelectric with Second Harmonic Generation Response in a Novel Crown Ether Clathrate. Chemistry 2021; 27:13575-13581. [PMID: 34322911 DOI: 10.1002/chem.202101707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Indexed: 11/11/2022]
Abstract
Molecular ferroelectrics of high-temperature reversible phase transitions are very rare and have attracted increasing attention in recent years. In this paper is described the successful synthesis of a novel high-temperature host-guest inclusion ferroelectric: [(C6 H5 NF3 )(18-crown-6)][BF4 ] (1) that shows a pair of reversible peaks at 348 K (heating) and 331 K (cooling) with a heat hysteresis about 17 K by differential scanning calorimetry measurements, thus indicating that 1 undergoes a reversible structural phase transition. Variable-temperature PXRD and temperature-dependent dielectric measurements further prove the phase-transition behavior of 1. The second harmonic response demonstrates that 1 belongs to a non-centrosymmetric space group at room temperature and is a good nonlinear optical material. In its semiconducting properties, 1 shows a wide optical band gap of about 4.43 eV that comes chiefly from the C, H and O atoms of the crystals. In particular, the ferroelectric measurements of 1 exhibit a typical polarization-electric hysteresis loop with a large spontaneous polarization (Ps ) of about 4.06 μC/cm2 . This finding offers an alternative pathway for designing new ferroelectric-dielectric and nonlinear optical materials and related physical properties in organic-inorganic and other hybrid crystals.
Collapse
Affiliation(s)
- Ding Chong Han
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Yu Hui Tan
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Yu Kong Li
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Jia Hui Wen
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Yun Zhi Tang
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Wen Juan Wei
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Peng Kang Du
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Hao Zhang
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| |
Collapse
|
45
|
Huang CR, Li Y, Xie Y, Du Y, Peng H, Zeng YL, Liu JC, Xiong RG. The First High-Temperature Supramolecular Radical Ferroics. Angew Chem Int Ed Engl 2021; 60:16668-16673. [PMID: 33982370 DOI: 10.1002/anie.202105744] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Indexed: 11/09/2022]
Abstract
Organic radical ferroics such as TEMPO have attracted widespread interest. However, the relatively low Curie temperature of 287 K and melting point of 311 K severely hinder its application potential. Despite extensive interest, high-temperature radical ferroics have not yet been found. Here, taking advantage of chemical design and supramolecular radical chemistry, we designed two high-temperature organic supramolecular radical ferroics [(NH3 -TEMPO)([18]crown-6)](ReO4 ) (1) and [(NH3 -TEMPO)([18]crown-6)](ClO4 ) (2), which can retain ferroelectricity up to 413 K and 450 K, respectively. To our knowledge, they are both the first supramolecular radical ferroics and unprecedented high-temperature radical ferroics, where the supramolecular component is vital for the stabilization of the radical and extending the working temperature window. Both also have paramagnetism, non-interacting spin moments, and excellent piezoelectric and electrostrictive behaviors comparable to that of LiNbO3 .
Collapse
Affiliation(s)
- Chao-Ran Huang
- Key Laboratory of Organo-phamaceutical Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P. R. China
| | - Yibao Li
- Key Laboratory of Organo-phamaceutical Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P. R. China
| | - Yongfa Xie
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Ye Du
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Hang Peng
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Yu-Ling Zeng
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Jun-Chao Liu
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Ren-Gen Xiong
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| |
Collapse
|
46
|
Huang C, Li Y, Xie Y, Du Y, Peng H, Zeng Y, Liu J, Xiong R. The First High‐Temperature Supramolecular Radical Ferroics. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105744] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chao‐Ran Huang
- Key Laboratory of Organo-phamaceutical Chemistry of Jiangxi Province College of Chemistry and Chemical Engineering Gannan Normal University Ganzhou 341000 P. R. China
| | - Yibao Li
- Key Laboratory of Organo-phamaceutical Chemistry of Jiangxi Province College of Chemistry and Chemical Engineering Gannan Normal University Ganzhou 341000 P. R. China
| | - Yongfa Xie
- Ordered Matter Science Research Center Nanchang University Nanchang 330031 P. R. China
| | - Ye Du
- Ordered Matter Science Research Center Nanchang University Nanchang 330031 P. R. China
| | - Hang Peng
- Ordered Matter Science Research Center Nanchang University Nanchang 330031 P. R. China
| | - Yu‐Ling Zeng
- Ordered Matter Science Research Center Nanchang University Nanchang 330031 P. R. China
| | - Jun‐Chao Liu
- Ordered Matter Science Research Center Nanchang University Nanchang 330031 P. R. China
| | - Ren‐Gen Xiong
- Ordered Matter Science Research Center Nanchang University Nanchang 330031 P. R. China
| |
Collapse
|
47
|
Lee J, Seol W, Anoop G, Samanta S, Unithrattil S, Ahn D, Kim W, Jung G, Jo J. Stabilization of Ferroelectric Phase in Highly Oriented Quinuclidinium Perrhenate (HQReO 4) Thin Films. MATERIALS 2021; 14:ma14092126. [PMID: 33922179 PMCID: PMC8122725 DOI: 10.3390/ma14092126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 11/16/2022]
Abstract
The low-temperature processability of molecular ferroelectric (FE) crystals makes them a potential alternative for perovskite oxide-based ferroelectric thin films. Quinuclidinium perrhenate (HQReO4) is one such molecular FE crystal that exhibits ferroelectricity when crystallized in an intermediate temperature phase (ITP). However, bulk HQReO4 crystals exhibit ferroelectricity only for a narrow temperature window (22 K), above and below which the polar phase transforms to a non-FE phase. The FE phase or ITP of HQReO4 should be stabilized in a much wider temperature range for practical applications. Here, to stabilize the FE phase (ITP) in a wider temperature range, highly oriented thin films of HQReO4 were prepared using a simple solution process. A slow evaporation method was adapted for drying the HQReO4 thin films to control the morphology and the temperature window. The temperature window of the intermediate temperature FE phase was successfully widened up to 35 K by merely varying the film drying temperature between 333 and 353 K. The strategy of stabilizing the FE phase in a wider temperature range can be adapted to other molecular FE materials to realize flexible electronic devices.
Collapse
Affiliation(s)
- Junyoung Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Woojun Seol
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Gopinathan Anoop
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Shibnath Samanta
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Sanjith Unithrattil
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Dante Ahn
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Woochul Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Gunyoung Jung
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Jiyoung Jo
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| |
Collapse
|
48
|
Ying T, Tan Y, Tang Y, Long X, Song N, Li Y, Sun Z. Multifunctional rare earth molecular ferroelectrics with a piezoelectric response: (( nBu) 4N) 3[Ce(NO 3) 4(SCN) 2]((CH 3CH 2CH 2CH 2) 4N = tetrabutylammonium). CrystEngComm 2021. [DOI: 10.1039/d1ce01153g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A new type of multipolar rare earth molecular ferroelectric: ((nBu)4N)3[Ce(NO3)4(SCN)2] (BuCH3CH2CH2CH2)4N), undergoes a high-temperature ferroelectric phase transition, possesses flexible switchable SHG effect, moderate spontaneous polarization and a narrow band gap.
Collapse
Affiliation(s)
- Tingting Ying
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Yuhui Tan
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Yunzhi Tang
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Xiao Long
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Ning Song
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Yukong Li
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Zhen Sun
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| |
Collapse
|
49
|
Han DC, Li YK, Liu Y, Tan YH, Tang YZ, Wei WJ, Du PK, Zhang H. Para–ferroelectric phase transition induces an excellent second harmonic generation response and a prominent switchable dielectric constant change based on a metal-free ionic crystal. CrystEngComm 2021. [DOI: 10.1039/d1ce00680k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A novel metal-free compound, [H2(bpyp)][ClO4]2, undergoes a ferroelectric to paraelectric reversible phase transition at Tc, with excellent NLO response, prominent dielectric constant change, moderate ferroelectric polarization, and wide bandgap.
Collapse
Affiliation(s)
- Ding-Chong Han
- Faculty of Materials Metallurgy and Chemistry
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P.R. China
| | - Yu-Kong Li
- Faculty of Materials Metallurgy and Chemistry
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P.R. China
| | - Yao Liu
- Faculty of Materials Metallurgy and Chemistry
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P.R. China
| | - Yu-Hui Tan
- Faculty of Materials Metallurgy and Chemistry
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P.R. China
| | - Yun-Zhi Tang
- Faculty of Materials Metallurgy and Chemistry
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P.R. China
| | - Wen-Juan Wei
- Faculty of Materials Metallurgy and Chemistry
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P.R. China
| | - Peng-Kang Du
- Faculty of Materials Metallurgy and Chemistry
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P.R. China
| | - Hao Zhang
- Faculty of Materials Metallurgy and Chemistry
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P.R. China
| |
Collapse
|
50
|
Di FF, Zhou L, Chen WJ, Liu JC, Peng H, Tang SY, Yu H, Liao WQ, Wang ZX. Room-temperature dielectric switching in a host–guest crown ether inclusion complex. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00959a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using the “momentum matching” theory, we have designed a new host–guest crown ether inclusion complex, which exhibits prominent room temperature bistable dielectric switching.
Collapse
Affiliation(s)
- Fang-Fang Di
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Lin Zhou
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Wu-Jia Chen
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Jun-Chao Liu
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Hang Peng
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Shu-Yu Tang
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Hang Yu
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Wei-Qiang Liao
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Zhong-Xia Wang
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| |
Collapse
|