1
|
Liang Y, Meng J, Yu Z, Guo Y, Zhang X, Yan Y, Du S, Jin S, Li J, Yang H, Zhang X, Liu Z, Li L, Xie J. Ru single-atom nanozymes targeting ROS-ferroptosis pathways for enhanced endometrial regeneration in intrauterine adhesion therapy. Biomaterials 2025; 315:122923. [PMID: 39489016 DOI: 10.1016/j.biomaterials.2024.122923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/15/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
Intrauterine adhesion (IUA) presents a significant challenge in gynecology, characterized by excessive fibrosis and compromised reproductive function, leading to severe infertility. Although biocompatible hydrogels integrated with stem cells offer a promising approach for IUA therapy, clinical applications remain limited. Recent studies have highlighted the role of ferroptosis and reactive oxygen species (ROS) in IUA pathogenesis, yet strategies targeting ferroptosis through antioxidant stress are underexplored. This study investigates the therapeutic effects and mechanisms of a Ru-Single-Atom Nanozyme (Ru-SAN) incorporated into chitosan hydrogel for treating IUA. Ru-SAN, which mimics the enzyme activities of catalase, superoxide dismutase, and glutathione peroxidase, effectively clears excess ROS and shows promise in treating oxidative stress-induced diseases. The results demonstrate the superior antioxidative capabilities of Ru-SAN, significantly suppressing the ROS-ferroptosis cycle at the injury site. This creates a favorable microenvironment for post-injury repair by inhibiting inflammation, enhancing mesenchymal-to-epithelial transformation, promoting angiogenesis, and polarizing M2 macrophages. Importantly, it mitigates adverse repair outcomes from inflammation and excessive collagen fiber deposition, ultimately restoring uterine glandular structures and thickness, thereby achieving the ultimate goal of restoring fertility and live birth rates. In conclusion, our study delineates a pioneering therapeutic approach leveraging the antioxidant properties of Ru-SAN to target ferroptosis, thereby offering an efficacious treatment for IUA.
Collapse
Affiliation(s)
- Yuxiang Liang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Obstetrics and Gynecology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China; Shanxi Key Laboratory of Human Disease and Animal Models, Experimental Animal Center of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jian Meng
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Obstetrics and Gynecology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China; Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Zhaowei Yu
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Obstetrics and Gynecology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Yuqian Guo
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Obstetrics and Gynecology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Xiao Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Obstetrics and Gynecology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Yujia Yan
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Obstetrics and Gynecology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Shaobo Du
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Obstetrics and Gynecology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Shanshan Jin
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Obstetrics and Gynecology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Jing Li
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Obstetrics and Gynecology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Hailan Yang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Obstetrics and Gynecology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Xiaozheng Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Obstetrics and Gynecology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Zhizhen Liu
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Obstetrics and Gynecology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Liping Li
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Obstetrics and Gynecology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Obstetrics and Gynecology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
2
|
Cao C, Zha DB, Sun C, Yang N, Tao S, Jiang P, Li YL, Zhang Z, Li DS, Song X, Chen P, Dong X. Photothermally-enhanced ferroptotic-chemo therapy enabled by ZIF-derived multizyme. J Colloid Interface Sci 2025; 683:398-407. [PMID: 39693878 DOI: 10.1016/j.jcis.2024.12.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
A multi-functional single-Fe-atom nanozyme (Fe-SAzyme) is designed, integrating the near-infrared photothermal property, the ability to carry chemoagent (doxorubicin - DOX), and nanocatalytic activities mimicking peroxidase, oxidase, and glutathione oxidase. The nanocatalytic activities act cooperatively to effectively produce cytotoxic radicals in the tumor microenvironment (TME), thereby leading to ferroptosis of cancer cells. The photothermal effect not only enhances the nanocatalytic therapy but also enables photothermal therapy. And release of DOX upon triggering by TME and the Fe-SAzyme activities enables chemotherapy to induce apoptosis of cancer cells. Such targeted and synergistic multi-modality treatment achieves complete tumor elimination without obvious side effects. Further, the underlying working mechanism is carefully revealed both theoretically and experimentally.
Collapse
Affiliation(s)
- Changyu Cao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China; School of Chemistry, Chemical Engineering and Biotechnology, Lee Kong Chian School of Medicine, Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459 Singapore
| | - Da Bao Zha
- School of Chemistry & Materials Science, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
| | - Chencheng Sun
- School of Electronic and Information Engineering, Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu 215500, China.
| | - Nan Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Shi Tao
- School of Electronic and Information Engineering, Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu 215500, China
| | - Peng Jiang
- School of Chemistry & Materials Science, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
| | - Yan Ling Li
- School of Chemistry & Materials Science, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
| | - Zheye Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Lee Kong Chian School of Medicine, Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459 Singapore
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, China
| | - Xuejiao Song
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Peng Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Lee Kong Chian School of Medicine, Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459 Singapore.
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China; School of Chemistry & Materials Science, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China.
| |
Collapse
|
3
|
Zhang J, Zhang S, Cheng C, Zhu C, Wang T, Tang L, Lou J, Li X, Wang H, Hu F, Sun M, Zhang K, Yu F. Targeting senescence with radioactive 223Ra/Ba SAzymes enables senolytics-unlocked One-Two punch strategy to boost anti-tumor immunotherapy. Biomaterials 2025; 315:122915. [PMID: 39461062 DOI: 10.1016/j.biomaterials.2024.122915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/13/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
Senescent cells are characterized by a persistent cessation of their cell cycle, rendering them valuable targets for anti-tumor strategies in cancer treatment. Numerous studies have explored induced senescence as a promising approach in tumor therapy. Nevertheless, these treatments often come with drawbacks, including adverse side effects and weaker senescence-inducing effects. To address these challenges, we synthesized 223Ra/Ba single-atom nanozyme (SAzyme), wherein Ba SAzyme acts concurrently as a carrier for 223RaCl2, facilitating targeted delivery and minimizing side effects. The 223Ra/Ba SAzyme complex enhances various enzyme-mimicking functions, including catalase (CAT) and peroxidase (POD) activities. Importantly, 223Ra/Ba SAzyme induces cellular senescence and boost anti-tumor immunity. The persistent presence of a senescence-associated secretory phenotype (SASP) in the tumor microenvironment presents risks of immune suppression and tumor recurrence, which can be effectively mitigated by senolytics. As a result, 223Ra/Ba SAzyme were combined with anti-PD-L1 checkpoint blockade to achieve a one-two punch therapy, wherein 223Ra/Ba SAzyme exploits senescence followed by anti-PD-L1 therapy to eradicate senescent cells. This one-two punch strategy approach presents a straightforward and potent intervention for both primary tumors and distant tumor.
Collapse
Affiliation(s)
- Jiajia Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, China; Institute of Nuclear Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, China; Central Laboratory and Department of Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, China
| | - Shenghong Zhang
- Department of Nuclear Medicine the First Affiliated Hospital of Navy Medical University (Changhai Hospital), No. 168 Changhai Road, Shanghai, 200433, China
| | - Chao Cheng
- Department of Nuclear Medicine the First Affiliated Hospital of Navy Medical University (Changhai Hospital), No. 168 Changhai Road, Shanghai, 200433, China
| | - Chunyan Zhu
- Institute of Nuclear Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, China; Central Laboratory and Department of Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, China
| | - Taixia Wang
- Institute of Nuclear Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, China; Central Laboratory and Department of Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, China
| | - Linglin Tang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, China
| | - Jingjing Lou
- Department of Nuclear Medicine, Pudong Medical Center, Fudan University, No. 2800 Gongwei Road, Shanghai, 201399, China
| | - Xian Li
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, China; Institute of Nuclear Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, China
| | - Hai Wang
- Central Laboratory and Department of Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, China
| | - Fan Hu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, China; Institute of Nuclear Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, China
| | - Ming Sun
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, China; Institute of Nuclear Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, China
| | - Kun Zhang
- Central Laboratory and Department of Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, China.
| | - Fei Yu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, China; Institute of Nuclear Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, China.
| |
Collapse
|
4
|
Zhang Y, Yang Y, Yin Z, Huang L, Wang J. Nanozyme-based wearable biosensors for application in healthcare. iScience 2025; 28:111763. [PMID: 39906563 PMCID: PMC11791255 DOI: 10.1016/j.isci.2025.111763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025] Open
Abstract
Recent years have witnessed tremendous advances in wearable sensors, which play an essential role in personalized healthcare for their ability for real-time sensing and detection of human health information. Nanozymes, capable of mimicking the functions of natural enzymes and addressing their limitations, possess unique advantages such as structural stability, low cost, and ease of mass production, making them particularly beneficial for constructing recognition units in wearable biosensors. In this review, we aim to delineate the latest advancements in nanozymes for the development of wearable biosensors, focusing on key developments in nanozyme immobilization strategies, detection technologies, and biomedical applications. The review also highlights the current challenges and future perspectives. Ultimately, it aims to provide insights for future research endeavors in this rapidly evolving area.
Collapse
Affiliation(s)
- Yingcong Zhang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yiran Yang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Zhixin Yin
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Lin Huang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Jiayi Wang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| |
Collapse
|
5
|
Kuang J, Zhang S, Yu J, Zhang Y, Peng CK, Zou C, Li J, Peng L, Lin L, Lin YG, Lyu P, Yang S, Li JF. Atomically dispersed iron sites from eco-friendly microbial mycelium as highly efficient hydrogenation catalyst. J Colloid Interface Sci 2025; 679:824-833. [PMID: 39395221 DOI: 10.1016/j.jcis.2024.09.250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/14/2024]
Abstract
Iron, one of the most abundant elements on earth and an essential element for living organisms, plays a crucial role in our daily metabolism. In the field of catalysis, the development of high-performance catalysts based on less toxic iron element is also of significant importance for green chemistry and a sustainable future. To construct Fe-based heterogeneous catalysts with excellent hydrogenation performance, precise modulation of the atomic coordination structure is a key strategy for enhancing catalytic activity. In this study, we present an in-situ coating method for applying a zeolitic imidazolate framework (ZIF) onto the surface of fungal hyphae. The asymmetric coordination structure of Fe1-N3P1 was precisely tailored by utilizing the phosphorus source from the fungus and the nitrogen source in the ZIFs. Detailed characterizations and density functional theory calculations revealed that the incorporation of ZIFs not only increased the specific surface area of catalysts, but also facilitated the dispersion of Fe2P nanoparticles into the Fe1-N3P1 center, making the lowest reaction energy barrier and resulting in the best performance for nitrobenzene hydrogenation when compared to the Fe2P nanoparticles and clusters. This research introduces a novel design concept for constructing asymmetric monoatomic configuration based on the inherent characteristics of natural microorganisms and the exogenous porous coordination polymers.
Collapse
Affiliation(s)
- Junhua Kuang
- College of Energy, College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen 361102, Fujian, China
| | - Shuaishuai Zhang
- College of Energy, College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen 361102, Fujian, China
| | - Jia Yu
- College of Energy, College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen 361102, Fujian, China.
| | - Yuting Zhang
- College of Energy, College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen 361102, Fujian, China
| | - Chun-Kuo Peng
- National Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Chen Zou
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiaran Li
- College of Energy, College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen 361102, Fujian, China
| | - Li Peng
- College of Energy, College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen 361102, Fujian, China
| | - Lu Lin
- College of Energy, College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen 361102, Fujian, China
| | - Yan-Gu Lin
- National Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Pengbo Lyu
- Hunan Provincial Key Laboratory of Thin Film Materials and Devices, School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China.
| | - Shuliang Yang
- College of Energy, College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen 361102, Fujian, China.
| | - Jian-Feng Li
- College of Energy, College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen 361102, Fujian, China.
| |
Collapse
|
6
|
Dai W, Wu B, Zhang F, Huang Y, Zhao C, Zhang Y, Cui C, Guo J, Huang S. Construction of bimetallic oxy-hydroxides based on Ni(OH) 2 nanosheets for sensitive non-enzymatic glucose detection via electrochemical oxidation and incorporation. NANOSCALE 2025; 17:2589-2598. [PMID: 39831509 DOI: 10.1039/d4nr04342a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Due to their ease of synthesis and large specific surface area, Ni(OH)2 nanosheets have emerged as promising electrochemical sensing materials, attracting significant attention in recent years. Herein, a series of oxy-hydroxides based on Ni(OH)2 nanosheets, including NiOx/Ni(OH)2@NF and (MNi)Ox/Ni(OH)2@NF (M = Co, Fe, or Cr), are successfully synthesized via the electrochemical oxidation and incorporation strategies. Electrochemical tests demonstrate that these Ni(OH)2-based oxy-hydroxides exhibit excellent electrochemical oxidation activity for glucose in alkaline electrolyte. Among these, (CoNi)Ox/Ni(OH)2@NF displays higher sensitivity of 3590.3 μA mM-1 cm-2 across a broad linear range of 10 μM to 1.14 mM, with a rapid current response time of less than 4 s. The superior sensing performances of (CoNi)Ox/Ni(OH)2@NF are attributed to the formation of abundant Ni3+ species and reactive-O atoms due to the electrochemical oxidation, and the synergistic effects of Co/Ni active sites resulting from the electrochemical incorporation process. In addition, the (CoNi)Ox/Ni(OH)2@NF demonstrates good stability and reproducibility for glucose sensing. This work fully leverages the significance of surface reconstruction of Ni(OH)2, providing new insights for the application of transition metal-based oxy-hydroxide materials in bio-sensing.
Collapse
Affiliation(s)
- Weiji Dai
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Bing Wu
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Fan Zhang
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Yuxi Huang
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Cuijiao Zhao
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Yudong Zhang
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Can Cui
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Jing Guo
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Saifang Huang
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| |
Collapse
|
7
|
Hu Y, Chao T, Dou Y, Xiong Y, Liu X, Wang D. Isolated Metal Centers Activate Small Molecule Electrooxidation: Mechanisms and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2418504. [PMID: 39865965 DOI: 10.1002/adma.202418504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/24/2024] [Indexed: 01/28/2025]
Abstract
Electrochemical oxidation of small molecules shows great promise to substitute oxygen evolution reaction (OER) or hydrogen oxidation reaction (HOR) to enhance reaction kinetics and reduce energy consumption, as well as produce high-valued chemicals or serve as fuels. For these oxidation reactions, high-valence metal sites generated at oxidative potentials are typically considered as active sites to trigger the oxidation process of small molecules. Isolated atom site catalysts (IASCs) have been developed as an ideal system to precisely regulate the oxidation state and coordination environment of single-metal centers, and thus optimize their catalytic property. The isolated metal sites in IASCs inherently possess a positive oxidation state, and can be more readily produce homogeneous high-valence active sites under oxidative potentials than their nanoparticle counterparts. Meanwhile, IASCs merely possess the isolated metal centers but lack ensemble metal sites, which can alter the adsorption configurations of small molecules as compared with nanoparticle counterparts, and thus induce various reaction pathways and mechanisms to change product selectivity. More importantly, the construction of isolated metal centers is discovered to limit metal d-electron back donation to CO 2p* orbital and reduce the overly strong adsorption of CO on ensemble metal sites, which resolve the CO poisoning problems in most small molecules electro-oxidation reactions and thus improve catalytic stability. Based on these advantages of IASCs in the fields of electrochemical oxidation of small molecules, this review summarizes recent developments and advancements in IASCs in small molecules electro-oxidation reactions, focusing on anodic HOR in fuel cells and OER in electrolytic cells as well as their alternative reactions, such as formic acid/methanol/ethanol/glycerol/urea/5-hydroxymethylfurfural (HMF) oxidation reactions as key reactions. The catalytic merits of different oxidation reactions and the decoding of structure-activity relationships are specifically discussed to guide the precise design and structural regulation of IASCs from the perspective of a comprehensive reaction mechanism. Finally, future prospects and challenges are put forward, aiming to motivate more application possibilities for diverse functional IASCs.
Collapse
Affiliation(s)
- Yanmin Hu
- Center of Advanced Nanocatalysis (CAN), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Tingting Chao
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing, 100094, P. R. China
| | - Yuhai Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Yuli Xiong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, P. R. China
| | - Xiangwen Liu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing, 100094, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
8
|
Liu X, Fang J, Guan J, Wang S, Xiong Y, Mao J. Substance migration in the synthesis of single-atom catalysts. Chem Commun (Camb) 2025; 61:1800-1817. [PMID: 39749657 DOI: 10.1039/d4cc05747c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Substance migration is universal and crucial in the synthesis of catalysts, which directly affects their existing form and the micro-structure of their active sites. Realizing migration during the synthesis of single-atom catalysts (SACs) is beneficial for not only increasing their metal loading capacity but also manipulating the electronic structures (coordination structure, long-range interactions, etc.) of their metal sites. This review summarizes the thermodynamics and kinetic processes involved in the synthesis of SACs to unveil the fundamental principles involved in their synthesis. For a better understanding of the effect of migration, the migration of both metal (including ions, atoms, and molecules) and nonmetal species is outlined. Moreover, we propose the research directions to guide the rational design of SACs in the future and deepen the fundamental understanding in the formation of catalysts.
Collapse
Affiliation(s)
- Xu Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Jiaojiao Fang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Jianping Guan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Shibin Wang
- Institute of Industrial Catalysis, College of Chemical Engineering Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Yu Xiong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Junjie Mao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| |
Collapse
|
9
|
Hao Y, Wang N, Wang J, Shao S, Gao B, Tao Y, Huo L, Yan L, Wu J, Chen Z. Vacancy engineering enhanced photothermal-catalytic properties of Co 9S 8-x nanozymes for mild NIR-II hyperthermia-amplified nanocatalytic cancer therapy. J Mater Chem B 2025. [PMID: 39829359 DOI: 10.1039/d4tb02032d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
While nanozymes are commonly employed in nanocatalytic therapy (NCT), the efficacy of NCT is hampered by the limited catalytic activity of nanozymes and the intricate tumor microenvironment (TME). In this work, we design a high-efficiency nanozyme with NIR-II photothermal property for the mild hyperthermia-augmented NCT. In order to endow a single-component nanomaterial the ability to simultaneously catalyze and exhibit NIR-II photothermal properties, a straightforward template method is utilized to fabricate sulfur vacancies (VS)-doped Co9S8-x nanocages. Introducing VS not only lowers the bandgap structure of Co9S8, enhancing its NIR-II photothermal properties, but also facilitates the control of the Co2+ and Co3+ ratio in Co9S8, leading to a boost in its catalytic activity. Furthermore, the catalytic efficiency of Co9S8-x nanocages was boosted by the mild hyperthermia. Moreover, the Co9S8-x nanocages exhibited high-efficiency GSH-px-mimic catalytic activity, facilitating the cascade amplification of ROS production. Through the integrated multifunctionality of Co9S8-x nanocages, we successfully enhanced the effectiveness of antitumor treatment with a single drug injection and a single 1064 nm laser irradiation for mild hyperthermia-augmented NCT. This work provides a distinct paradigm of endowing nanomaterials with catalytic activity and photothermal property for mild NIR-II PTT-amplified NCT through a vacancy engineering strategy.
Collapse
Affiliation(s)
- Yongyu Hao
- Department of Spine Surgery, The Ninth Medical Center of PLA General Hospital, Beijing 100101, China.
| | - Nan Wang
- Department of Obstetrics and Gynecology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
- Medicine School of Chinese PLA, Beijing 100853, China
| | - Jiaxu Wang
- Department of Spine Surgery, The Ninth Medical Center of PLA General Hospital, Beijing 100101, China.
| | - Shuilin Shao
- Department of Spine Surgery, The Ninth Medical Center of PLA General Hospital, Beijing 100101, China.
| | - Bo Gao
- Department of Spine Surgery, The Ninth Medical Center of PLA General Hospital, Beijing 100101, China.
| | - Youping Tao
- Department of Spine Surgery, The Ninth Medical Center of PLA General Hospital, Beijing 100101, China.
| | - Litao Huo
- Department of Spine Surgery, The Ninth Medical Center of PLA General Hospital, Beijing 100101, China.
| | - Lang Yan
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Jigong Wu
- Department of Spine Surgery, The Ninth Medical Center of PLA General Hospital, Beijing 100101, China.
| | - Zhiming Chen
- Department of Spine Surgery, The Ninth Medical Center of PLA General Hospital, Beijing 100101, China.
| |
Collapse
|
10
|
Yu F, Huang M, Wang R, Hao C, Zhu Y. Single-atom ruthenium nanozyme-induced signal amplification strategy in photoelectrochemical aptasensor for ultrasensitive detection of chloramphenicol. Biosens Bioelectron 2025; 268:116917. [PMID: 39522467 DOI: 10.1016/j.bios.2024.116917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
To develop ultrasensitive and rapid antibiotics residue detection method is crucial for ensuring food safety and protecting human health. Herein, a novel photoelectrochemical (PEC) aptasensor integrated with single-atom ruthenium (Ru) nanozyme-mediated catalytic precipitation as a valuable signal amplification strategy, have been established for ultrasensitive chloramphenicol (CAP) detection. Particularly, the exceptional peroxidase-mimicking activity of single-atom Ru nanozyme is responsible for accelerating the oxidation of 4-chloro-1-naphthol (4-CN) to produce insoluble precipitate on the electrode, which in turn causes a notable reduction in the photocurrent. Whereas, when CAP is present, the aptamer is liberated away the electrode because of its potent affinity with CAP, resulting in an elevation of the photocurrent signal, enhancing the detection sensitivity. Importantly, the signal amplification strategy combines the effective photoactive material of Au nanoparticles/CdS quantum dot/TiO2 composites, a PEC aptasensor for determination of CAP with an ultralow detection limit of 4.12 pM is achieved in a self-powered mode with great selectivity and accuracy. This work proposes a novel reasonable approach utilizing high-activity single-atom nanozyme to induce signal amplification strategy for the advancement of single-atom nanozyme in ultrasensitive PEC biosensor, and further creates new avenues for ultrasensitive detection beyond antibiotics residue.
Collapse
Affiliation(s)
- Fan Yu
- School of Pharmaceutical Sciences, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, China
| | - Mao Huang
- School of Pharmaceutical Sciences, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, China
| | - Rui Wang
- School of Pharmaceutical Sciences, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, China
| | - Chun Hao
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China; Institute of Molecular Science, Shanxi University, 030006, Taiyuan, China
| | - Yanyan Zhu
- School of Pharmaceutical Sciences, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
11
|
Yao C, Wu Q, Zhao Y, Li H, He J, Liu L, Huang Y, Cheng F. Engineered Au@MOFs silk fibroin-based hydrogel phototherapy platform for enhanced wound healing performance. Int J Biol Macromol 2025; 297:139872. [PMID: 39818403 DOI: 10.1016/j.ijbiomac.2025.139872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/05/2025] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
Wound bacterial infections not only impede the healing process but can also give rise to a range of serious complications, thereby posing a substantial risk to human health. Developing effective wound dressings incorporating phototherapy functionalities, specifically photothermal therapy (PTT) and photodynamic therapy (PDT), remains a critical area of research in modern wound care. Existing PTT-PDT systems often suffer from challenges such as nanoparticle aggregation and inefficient reactive oxygen species (ROS) generation, which are essential for therapeutic efficacy. This study presents a pioneering approach by combining zeolitic imidazolate framework derivatives (ZIFs) and Au NPs in a silk fibroin (SF) hydrogel for the first time. This combination not only prevents particle aggregation but also significantly enhances photothermal conversion efficiency and ROS generation capacity. The digital light processing (DLP) printability of our hydrogel allows for customized wound dressings tailored to individual patient needs, improving therapeutic efficacy. The hydrogel's effectiveness was evaluated through rigorous in vivo experiments, demonstrating enhanced antibacterial properties and accelerated wound healing. The biocompatibility of our hydrogel ensures its suitability for clinical applications, minimizing adverse reactions while promoting healing. A wound healing rate of 99.06 % represents a substantial improvement over the control groups, indicating markedly enhanced therapeutic efficacy. These findings underscore its multifunctionality in addressing infected wounds, presenting a promising strategy for facilitating the rapid healing of acute complex wounds in clinical applications.
Collapse
Affiliation(s)
- Chaofan Yao
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, PR China
| | - Qian Wu
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, PR China
| | - Yu Zhao
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, PR China
| | - Hongbin Li
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, PR China
| | - Jinmei He
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, PR China.
| | - Li Liu
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, PR China.
| | - Yudong Huang
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, PR China.
| | - Feng Cheng
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, PR China.
| |
Collapse
|
12
|
Du Y, Wang R, Huang T, Yang X, Yan S, Zou Z. Thermal Migration to Recover Spent Pt/C Catalyst. CHEMSUSCHEM 2025; 18:e202400956. [PMID: 39103317 DOI: 10.1002/cssc.202400956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/16/2024] [Accepted: 08/05/2024] [Indexed: 08/07/2024]
Abstract
Recovery of spent Pt/C catalyst is a sustainable low-cost route to promote large-scale application of hydrogen fuel cells. Here, we report a thermal migration strategy to recover the spent Pt/C. In this route, the ZIF-8 is used to produce nitrogen doped porous carbon (NC) with abundant pyrimidine nitrogen sites as the new support. Subsequently, the spent Pt/C, NC, and NH4Cl etching reagent are mixed and heated at 900 °C to thermally migrate Pt from Pt/C onto NC with the help of NH4Cl etching reagent. The thermal-volatilized Pt tends to be captured by the pyrimidine nitrogen sites of NC support, thus producing the Pt clusters or 4-5 nm Pt particles. The recovered Pt/NC catalyst exhibits the highly stable oxygen reduction activities with a mass activity of 0.6 A mgPt -1 after 30000-cycle accelerated durability test.
Collapse
Affiliation(s)
- Yu Du
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, 210093, Jiangsu, P. R. China
| | - Ran Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, 210093, Jiangsu, P. R. China
| | - Tao Huang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, 210093, Jiangsu, P. R. China
| | - Xupin Yang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, 210093, Jiangsu, P. R. China
| | - Shicheng Yan
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, 210093, Jiangsu, P. R. China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, No. 22 Hankou Road, Nanjing, 210093, Jiangsu, P. R. China
| | - Zhigang Zou
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, 210093, Jiangsu, P. R. China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, No. 22 Hankou Road, Nanjing, 210093, Jiangsu, P. R. China
| |
Collapse
|
13
|
Wang Z, Wen H, Zheng C, Wang X, Yin S, Song N, Liang M. Synergistic Co-Cu Dual-Atom Nanozyme with Promoted Catalase-like Activity for Parkinson's Disease Treatment. ACS APPLIED MATERIALS & INTERFACES 2025; 17:583-593. [PMID: 39690140 DOI: 10.1021/acsami.4c17416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Neurodegenerative diseases like Parkinson's disease (PD) are intimately associated with oxidative stress due to the excessive highly reactive oxygen species (ROS), leading to the damage of dopaminergic neurons. Herein, we develop a Co-Cu dual-atom nanozyme (CoCu-DAzyme) by uniformly anchoring Co and Cu active sites onto an AlO(OH) substrate that exhibits remarkable catalase-like catalytic activity, far exceeding that of the Co or Cu single-atom counterparts. The following density functional theory calculations reveal that the Co sites efficiently enable H2O2 adsorption, while Cu sites promote charge transfer, synergistically promoting the catalytic decomposition of H2O2 into H2O and O2. Encouragingly, the developed CoCu-DAzyme notably ameliorates α-synuclein aggregation and alleviates the motor dysfunction inCaenorhabditis elegansPD models by substantively scavenging in vivo ROS. This research shows a novel therapeutic strategy for oxidative-stress-related neurodegenerative disorders by developing well-engineered nanozymes.
Collapse
Affiliation(s)
- Zhengdi Wang
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Hailong Wen
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ceping Zheng
- Institute of Biophysics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangming Wang
- Department of Cell Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing 100069, China
| | - Sijie Yin
- School of Automation, Beijing Institute of Technology, Beijing 100081, China
| | - Ningning Song
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Minmin Liang
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
14
|
Yu M, Gao Y, Liu Y, Wang Z, Zhang Y, Li Y, Fan L, Li X. Substrate Specificity of Adenine-Cu-PO 4 Nanozyme: Ascorbic Acid Oxidation and Selective Cytotoxicity. Chemistry 2025:e202403568. [PMID: 39777753 DOI: 10.1002/chem.202403568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 01/11/2025]
Abstract
Though nanozymes are becoming promising alternatives to natural enzymes due to their superior properties, constructing nanozyme with high specificity is still a great challenge. Herein, with Cu2+ as an active site and adenine as a ligand, Adenine-Cu-PO4 is synthesized in phosphate-buffered saline. As an oxidase mimic, Adenine-Cu-PO4 could selectively catalyze oxidation of ascorbic acid (AA) to dehydroascorbic acid, but not universal substrates (3,3',5,5'-tetramethylbenzidine (TMB), 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and 2,4-dichlorophenol (2,4-DP)), small biomolecules (dopamine, glutathione, glucose, galactose), other vitamins (vitamin A acid, vitamin B1, vitamin K1) and even dithiothreitol (a common interference of AA). Such the specific AA catalytic oxidation is revealed that Adenine-Cu-PO4 selectively binds with AA through hydrogen bonds, accompanied with catalyzing AA oxidation, and concurrently O2 transferring to H2O2 via O2⋅-, further to H2O via ⋅OH. Based on the produced reactive oxygen species, with AA as a pro-oxidant, Adenine-Cu-PO4 nanozyme efficiently triggers severe intratumor oxidative stress to induce tumor cell death. This work opens a new avenue to design intrinsic nanozymes with high specificity, and also presents a promising application in the field of AA oxidation induced cancer therapy.
Collapse
Affiliation(s)
- Mincong Yu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yuanbo Gao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yichen Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Zhuo Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key, Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yang Zhang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yunchao Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Louzhen Fan
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Xiaohong Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
15
|
Shen J, Zhang G, Zhang Z, Zhang L, Zhuang Z, Qian Y, Dou Y, Wang S, Wang D, Wang Y. High-Throughput Screening and General Synthesis Strategy of Single-Atom Nanozymes for Oral Squamous Cell Carcinoma Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2416463. [PMID: 39757460 DOI: 10.1002/adma.202416463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/17/2024] [Indexed: 01/07/2025]
Abstract
Single-atom nanozymes (SAzymes), with their superior enzyme-like catalytic activity, have emerged as promising candidates for oncology therapeutics. The well-defined structures of SAzymes make them well predictable by experiences and theoretical calculation. However, the effects of metal center species and coordination environments on enzyme-like activity are variable, and screening catalytic activity by artificial experiments is challenging. High-throughput screening can rapidly select the activity center structures of SAzymes with optimal enzyme-like activity, thus their better application in tumor therapy is highly desirable. Herein, a "high-throughput screening-SAzymes structures" system is established for efficient oncology drug preparation by density functional theory for oxidase-like processes and screened the differences brought about by different metals and coordination environments. Through this screening process, SAzymes with transition metals (Mn, Fe, Co, Ni) as active centers are synthesized and then tested the multi-enzyme activities. It is found that the SAzyme with Co as the active metal center exhibited the best oxidase-like activity, and the system further showed good anti-oral squamous cell carcinoma properties both in vitro and in vivo. This study opens up a new avenue for the rational design of SAzymes in oral cancer therapy by combining computational screening and experimental validation.
Collapse
Affiliation(s)
- Ji Shen
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Guanmeng Zhang
- Department of General Dentistry II/Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials & Central Laboratory Peking University School and Hospital, Beijing, 100081, China
| | - Zedong Zhang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Ludan Zhang
- Department of General Dentistry II/Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials & Central Laboratory Peking University School and Hospital, Beijing, 100081, China
| | - Zechao Zhuang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yuping Qian
- Department of General Dentistry II/Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials & Central Laboratory Peking University School and Hospital, Beijing, 100081, China
| | - Yuhai Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Shibin Wang
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Dingsheng Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yuguang Wang
- Department of General Dentistry II/Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials & Central Laboratory Peking University School and Hospital, Beijing, 100081, China
| |
Collapse
|
16
|
Yang H, Duan P, Zhuang Z, Luo Y, Shen J, Xiong Y, Liu X, Wang D. Understanding the Dynamic Evolution of Active Sites among Single Atoms, Clusters, and Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2415265. [PMID: 39748626 DOI: 10.1002/adma.202415265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/23/2024] [Indexed: 01/04/2025]
Abstract
Catalysis remains a cornerstone of chemical research, with the active sites of catalysts being crucial for their functionality. Identifying active sites, particularly during the reaction process, is crucial for elucidating the relationship between a catalyst's structure and its catalytic property. However, the dynamic evolution of active sites within heterogeneous metal catalysts presents a substantial challenge for accurately pinpointing the real active sites. The advent of in situ and operando characterization techniques has illuminated the path toward understanding the dynamic changes of active sites, offering robust scientific evidence to support the rational design of catalysts. There is a pressing need for a comprehensive review that systematically explores the dynamic evolution among single atoms, clusters, and nanoparticles as active sites during the reaction process, utilizing in situ and operando characterization techniques. This review aims to delineate the effects of various reaction factors on dynamic evolution of active sites among single atoms, clusters, and nanoparticles. Moreover, several in situ and operando techniques are elaborated with emphases on tracking the dynamic evolution of active sites, linking them to catalytic properties. Finally, it discusses challenges and future perspectives in identifying active sites during the reaction process and advancing in situ and operando characterization techniques.
Collapse
Affiliation(s)
- Hongchen Yang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Pengfei Duan
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing, 100094, P. R. China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yaowu Luo
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Ji Shen
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yuli Xiong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, P. R. China
| | - Xiangwen Liu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing, 100094, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
17
|
Huang Y, Jia L, Zhang S, Yan L, Li L. Bimetallic doped carbon dot nanozymes for enhanced sonodynamic and nanocatalytic therapy. J Mater Chem B 2025; 13:588-598. [PMID: 39575676 DOI: 10.1039/d4tb01916d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
Conventional inorganic semiconductors are not suitable for acting as nanozymes or sonosensitizers for in vivo therapeutic nanomedicine owing to the lack of excellent biocompatibility. Biocompatible carbon dots (CDs) exhibit a variety of biological activities due to their adjustable size and surface chemical modification; however, the simultaneous sonodynamic activity and multiple enzyme-mimicking catalytic activity of a single CD have not been reported. Herein, we report the development of bimetallic doped CDs as a high-efficiency nanozyme and sonosensitizer for enhanced sonodynamic therapy (SDT) and nanocatalytic therapy (NCT). By selecting metal-organic complexes like EDTA-FeNa as the carbon source, we ensure that the coordination environments of metal atoms are preserved throughout the low-temperature calcination process. Compared with the single metal doped CDs including Fe-CDs or Ni-CDs, the obtained Fe and Ni co-doped CDs (Fe-Ni-CDs) not only exhibit enhanced sonodynamic activity owing to the decreased bandgap, but also possess augmented dual enzyme-mimicking catalytic activities due to the synergistic effect of bimetallic ions. The Fe-Ni-CD-mediated cascade amplification of ROS generation could lead to the production of 1O2 and O2˙- through SDT, the generation of ˙OH through POD-mimicking catalytic activity, and the provision of more O2 for SDT through CAT-mimicking catalytic activity. Through the integrated multifunctionality of Fe-Ni-CDs, we successfully enhanced the effectiveness of antitumor treatment with a single drug injection and a single US irradiation for enhanced SDT and NCT. This work provides a distinct paradigm of endowing CDs with sonodynamic and multiple enzyme-mimicking catalytic activities for enhanced SDT and NCT through bimetallic ion doping.
Collapse
Affiliation(s)
- Yandong Huang
- Department of Ultrasound, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Lanting Jia
- Department of Ultrasound, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Shiqi Zhang
- Department of Ultrasound, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Lang Yan
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China.
| | - Lei Li
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
18
|
Lai CM, Xiao XS, Chen JY, He WY, Wang SS, Qin Y, He SH. Revolutionizing nanozymes: The synthesis, enzyme-mimicking capabilities of carbon dots, and advancements in catalytic mechanisms. Int J Biol Macromol 2024; 293:139284. [PMID: 39736288 DOI: 10.1016/j.ijbiomac.2024.139284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/20/2024] [Accepted: 12/27/2024] [Indexed: 01/01/2025]
Abstract
Nanozymes, a revolutionary category of engineered artificial enzymes based on nanomaterials, have been developed to overcome the inherent limitations of natural enzymes, such as the high cost associated with storage and their fragility. Carbon dots (CDs) have emerged as compelling candidates for various applications due to their versatile properties. Particularly noteworthy are CDs with a range of surface functional groups that exhibit enzyme-like behavior, combining exceptional performance with catalytic capabilities. This review explores the methodologies used for synthesizing CDs with enzyme mimicking capabilities, highlighting potential avenues such as doping and hybrid nanozymes to enhance their catalytic efficacy. Moreover, a comprehensive overview of CDs that mimick the activities of various oxidoreductases-like peroxidase, catalase, oxidase/laccase, and superoxide dismutase-like is provided. The focus is on the in-depth exploration of the mechanisms, advancements and practical applications of each oxidoreductase-like function exhibited by CD nanozymes. Drawing upon these exhaustive summaries and analyses, the review identifies the prevailing challenges that hinder the seamless integration of CDs into real-world applications and offers forward-looking perspectives for future directions.
Collapse
Affiliation(s)
- Chun-Mei Lai
- College of Life Sciences, Fujian Provincial Key laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University Fuzhou, Fujian 350002, P. R. China
| | - Xiao-Shan Xiao
- College of Life Sciences, Fujian Provincial Key laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University Fuzhou, Fujian 350002, P. R. China
| | - Jing-Yi Chen
- Shengli Clinical Medical College of Fujian Medical University Department of Pediatrics Surgery, Fujian Provincial Hospital University Affiliated Provincial Hospital, Fuzhou University Affiliated Provincial Hospital 134 Dongjie Road, Fuzhou, Fujian 350001, P. R. China
| | - Wen-Yun He
- Shengli Clinical Medical College of Fujian Medical University Department of Pediatrics Surgery, Fujian Provincial Hospital University Affiliated Provincial Hospital, Fuzhou University Affiliated Provincial Hospital 134 Dongjie Road, Fuzhou, Fujian 350001, P. R. China
| | - Si-Si Wang
- Shengli Clinical Medical College of Fujian Medical University Department of Pediatrics Surgery, Fujian Provincial Hospital University Affiliated Provincial Hospital, Fuzhou University Affiliated Provincial Hospital 134 Dongjie Road, Fuzhou, Fujian 350001, P. R. China
| | - Yuan Qin
- College of Life Sciences, Fujian Provincial Key laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University Fuzhou, Fujian 350002, P. R. China.
| | - Shao-Hua He
- Shengli Clinical Medical College of Fujian Medical University Department of Pediatrics Surgery, Fujian Provincial Hospital University Affiliated Provincial Hospital, Fuzhou University Affiliated Provincial Hospital 134 Dongjie Road, Fuzhou, Fujian 350001, P. R. China.
| |
Collapse
|
19
|
Le G, Li J, Li H, Wei W, Yang Q, Chen J. Rationalizing hydrogel-integrated peroxidase-mimicking nanozymes for combating drug-resistant bacteria and colorimetric sensing. Int J Biol Macromol 2024; 291:138576. [PMID: 39674468 DOI: 10.1016/j.ijbiomac.2024.138576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/21/2024] [Accepted: 12/07/2024] [Indexed: 12/16/2024]
Abstract
Due to the easy preparation, high stability and environmental friendliness, nanozymes are frequently used as promising substitutes to natural enzymes. However, the efficacy of nanozymes in biomedicine aspects is often hampered by their potential biotoxicity and limited bioavailability, which prompted structure adaption or carrier design to maximize nanozymes performance. Despite considerable efforts on carriers to deliver nanozymes efficiently, the systematic studies on enzyme-like activities of nanozymes related to platforms of nanozyme@carrier are sparse. Here, five types of hydrogel carriers composed by sodium alginate (SA), chitosan, gelatin, gelatin methacryloyl (GelMA), and polyacrylamide (PAM) were formed by distinct mode of polymerization to optimize the suitable carrier for peroxidase (POD)-mimic nanozyme consisted of hemin and bovine serum albumin (BSA). Among these proposed carriers, SA hydrogel emerged as the most effective carrier due to its compatible crosslinking mechanism and desirable stability for nanozyme functioning. By incorporating the POD-mimic nanozyme into the SA hydrogel, the catalytic performance of the nanozyme was effectively preserved, leading to improved antibacterial effects and superior sensing ability towards the colorimetric measurement of H2O2. Based on the rationalization of hydrogel carriers, the proposed study not only helped to understand the structure-function relationship between nanozyme and carriers, but provided an integrated nanoplatform of POD-mimic nanozyme with environmental disinfection as well as biomedical applications.
Collapse
Affiliation(s)
- Guannan Le
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jinhuan Li
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Henghui Li
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wei Wei
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Qinggui Yang
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Jiangsu International Travel Healthcare Center (Nanjing Customs Port Clinic), Nanjing 210019, China.
| | - Jin Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Jiangsu Province Engineering Research Center of Antibody Drug, Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, China; Medicine & Engineering & Informatics Fusion and Transformation Key Laboratory of Luzhou City, Luzhou, 646000, China.
| |
Collapse
|
20
|
Zhu CN, Chen X, Xu YQ, Wang F, Zheng DY, Liu C, Zhang XH, Yi Y, Cheng DB. Advanced Preparation Methods and Biomedical Applications of Single-Atom Nanozymes. ACS Biomater Sci Eng 2024; 10:7352-7371. [PMID: 39535074 DOI: 10.1021/acsbiomaterials.4c01530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Metal nanoparticles with inherent defects can harness biomolecules to catalyze reactions within living organisms, thereby accelerating the advancement of multifunctional diagnostic and therapeutic technologies. In the quest for superior catalytic efficiency and selectivity, atomically dispersed single-atom nanozymes (SANzymes) have garnered significant interest recently. This review concentrates on the development of SANzymes, addressing potential challenges such as fabrication strategies, surface engineering, and structural characteristics. Notably, we elucidate the catalytic mechanisms behind some key reactions to facilitate the biomedical application of SANzymes. The diverse biomedical uses of SANzymes including in cancer therapy, wound disinfection, biosensing, and oxidative stress cytoprotection are comprehensively summarized, revealing the link between material structure and catalytic performance. Lastly, we explore the future prospects of SANzymes in biomedical fields.
Collapse
Affiliation(s)
- Chun-Nan Zhu
- College of Biomedical Engineering, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, and Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, South-Central Minzu University, Wuhan 430074, China
| | - Xin Chen
- College of Biomedical Engineering, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, and Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, South-Central Minzu University, Wuhan 430074, China
| | - Yong-Qiang Xu
- College of Biomedical Engineering, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, and Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, South-Central Minzu University, Wuhan 430074, China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Fei Wang
- Department of Biology and the School of Natural Sciences, Wentworth College, University of York, Wentworth Way, Heslington, York YO10 5DD, England
| | - Dong-Yun Zheng
- College of Biomedical Engineering, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, and Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, South-Central Minzu University, Wuhan 430074, China
| | - Chao Liu
- College of Biomedical Engineering, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, and Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, South-Central Minzu University, Wuhan 430074, China
| | - Xue-Hao Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Yu Yi
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Dong-Bing Cheng
- School of Chemistry, Chemical Engineering & Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan 430070, China
| |
Collapse
|
21
|
Tagaras N, Song H, Sahar S, Tong W, Mao Z, Buerki‐Thurnherr T. Safety Landscape of Therapeutic Nanozymes and Future Research Directions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407816. [PMID: 39445544 PMCID: PMC11633477 DOI: 10.1002/advs.202407816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/20/2024] [Indexed: 10/25/2024]
Abstract
Oxidative stress and inflammation are at the root of a multitude of diseases. Treatment of these conditions is often necessary but current standard therapies to fight excessive reactive oxygen species (ROS) and inflammation are often ineffective or complicated by substantial safety concerns. Nanozymes are emerging nanomaterials with intrinsic enzyme-like properties that hold great promise for effective cancer treatment, bacterial elimination, and anti-inflammatory/anti-oxidant therapy. While there is rapid progress in tailoring their catalytic activities as evidenced by the recent integration of single-atom catalysts (SACs) to create next-generation nanozymes with superior activity, selectivity, and stability, a better understanding and tuning of their safety profile is imperative for successful clinical translation. This review outlines the current applied safety assessment approaches and provides a comprehensive summary of the safety knowledge of therapeutic nanozymes. Overall, nanozymes so far show good in vitro and in vivo biocompatibility despite considerable differences in their composition and enzymatic activities. However, current safety investigations mostly cover a limited set of basic toxicological endpoints, which do not allow for a thorough and deep assessment. Ultimately, remaining research gaps that should be carefully addressed in future studies are highlighted, to optimize the safety profile of therapeutic nanozymes early in their pre-clinical development.
Collapse
Affiliation(s)
- Nikolaos Tagaras
- Laboratory for Particles‐Biology InteractionsSwiss Federal Laboratories for Materials Science and Technology (Empa)St. Gallen9014Switzerland
- Department of Health Sciences and TechnologyETH ZurichZurich8093Switzerland
| | - Haihan Song
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University866 Yuhangtang RdHangzhou310058China
| | - Shafaq Sahar
- College of Chemical and Biological EngineeringMOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University866 Yuhangtang RdHangzhou310058China
| | - Weijun Tong
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University866 Yuhangtang RdHangzhou310058China
| | - Zhengwei Mao
- College of Chemical and Biological EngineeringMOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University866 Yuhangtang RdHangzhou310058China
| | - Tina Buerki‐Thurnherr
- Laboratory for Particles‐Biology InteractionsSwiss Federal Laboratories for Materials Science and Technology (Empa)St. Gallen9014Switzerland
| |
Collapse
|
22
|
Zheng JJ, Zhu F, Song N, Deng F, Chen Q, Chen C, He J, Gao X, Liang M. Optimizing the standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat Protoc 2024; 19:3470-3488. [PMID: 39147983 DOI: 10.1038/s41596-024-01034-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/31/2024] [Indexed: 08/17/2024]
Abstract
Nanozymes are nanomaterials with enzyme-like catalytic properties. They are attractive reagents because they do not have the same limitations of natural enzymes (e.g., high cost, low stability and difficult storage). To test, optimize and compare nanozymes, it is important to establish fundamental principles and systematic standards to fully characterize their catalytic performance. Our 2018 protocol describes how to characterize the catalytic activity and kinetics of peroxidase nanozymes, the most widely used type of nanozyme. This approach was based on Michaelis-Menten enzyme kinetics and is now updated to take into account the unique physicochemical properties of nanomaterials that determine the catalytic kinetics of nanozymes. The updated procedure describes how to determine the number of active sites as well as other physicochemical properties such as surface area, shape and size. It also outlines how to calculate the hydroxyl adsorption energy from the crystal structure using the density functional theory method. The calculations now incorporate these measurements and computations to better characterize the catalytic kinetics of peroxidase nanozymes that have different shapes, sizes and compositions. This updated protocol better describes the catalytic performance of nanozymes and benefits the development of nanozyme research since further nanozyme development requires precise control of activity by engineering the electronic, geometric structure and atomic configuration of the catalytic sites of nanozymes. The characterization of the catalytic activity of peroxidase nanozymes and the evaluation of their kinetics can be performed in 4 h. The procedure is suitable for users with expertise in nano- and materials technology.
Collapse
Affiliation(s)
- Jia-Jia Zheng
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Feiyan Zhu
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China
| | - Ningning Song
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China
| | - Fang Deng
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China
| | - Qi Chen
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China
| | - Chen Chen
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China
| | - Jiuyang He
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China.
| | - Xingfa Gao
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China.
| | - Minmin Liang
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
23
|
Feng Z, Guo Y, Zhang Y, Zhang A, Jia M, Yin J, Shen G. Nanozymes: a bibliometrics review. J Nanobiotechnology 2024; 22:704. [PMID: 39538291 PMCID: PMC11562681 DOI: 10.1186/s12951-024-02907-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
As novel multifunctional materials that merge enzyme-like capabilities with the distinctive traits of nanomaterials, nanozymes have made significant strides in interdisciplinary research areas spanning materials science, bioscience, and beyond. This article, for the first time, employed bibliometric methods to conduct an in-depth statistical analysis of the global nanozymes research and demonstrate research progress, hotspots and trends. Drawing on data from the Web of Science Core Collection database, we comprehensively retrieved the publications from 2004 to 2024. The burgeoning interest in nanozymes research across various nations indicated a growing and widespread trend. This article further systematically elaborated the enzyme-like activities, matrix, multifunctional properties, catalytic mechanisms and various applications of nanozymes, and the field encounters challenges. Despite notable progress, and requires deeper exploration guide the future research directions. This field harbors broad potential for future developments, promising to impact various aspects of technology and society.
Collapse
Affiliation(s)
- Zihan Feng
- School of Pharmacy, College of Life and Environmental Science, Minzu University of China, Beijing, 100081, China
| | - Yuexin Guo
- School of Pharmacy, North China University of Science and Technology, Tangshan, 063210, China
| | - Yicong Zhang
- School of Pharmacy, College of Life and Environmental Science, Minzu University of China, Beijing, 100081, China
| | - Aiqin Zhang
- School of Pharmacy, College of Life and Environmental Science, Minzu University of China, Beijing, 100081, China.
| | - Meng Jia
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Junfa Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Gangyi Shen
- School of Pharmacy, College of Life and Environmental Science, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
24
|
Hu J, Yan L, Cao Z, Geng B, Cao X, Liu B, Guo J, Zhu J. Tumor Microenvironment Activated Cu Crosslinked Near-Infrared Sonosensitizers for Visualized Cuproptosis-Enhanced Sonodynamic Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407196. [PMID: 39331855 DOI: 10.1002/advs.202407196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/19/2024] [Indexed: 09/29/2024]
Abstract
Reactive oxygen species (ROS)-mediated sonodynamic therapy (SDT) holds increasing potential in treating deep-seated tumor owing to the high tissue-penetration depth. However, the inevitable accumulation of sonosensitizers in normal tissues not only make it difficult to realize the in situ SDT, but also induces sonodynamic effects in normal tissues. Herein, this work reports the passivation and selective activation strategies for the sonodynamic and near-infrared (NIR) imaging performances of an intelligent antitumor theranostic platform termed Cu-IR783 nanoparticles (NPs). Owing to the ruptured coordination bond between IR783 with Cu ions by responding to tumor microenvironment (TME), the selective activation of IR783 only occurred in tumor tissues to achieve the visualized in-situ SDT. The tumor-specific released Cu ions not only realized the cascade amplification of ROS generation through Cu+-mediated Fenton-like reaction, but also triggered cuproptosis through Cu+-induced DLAT oligomerization and mitochondrial dysfunction. More importantly, the immunosuppressive TME can be reversed by the greatly enhanced ROS levels and high-efficiency cuproptosis, ultimately inducing immunogenic cell death that promotes robust systemic immune responses for the eradication of primary tumors and suppression of distant tumors. This work provides a distinct paradigm of the integration of SDT, CDT, and cuproptosis in a controlled manner to achieve visualized in-situ antitumor therapy.
Collapse
Affiliation(s)
- Jinyan Hu
- Department of Health Toxicology, College of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Lang Yan
- Department of Health Toxicology, College of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Zhi Cao
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Bijiang Geng
- Department of Health Toxicology, College of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Xiqian Cao
- Department of Health Toxicology, College of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Bing Liu
- Department of Urology, The Third Affiliated Hospital, Naval Medical University, Shanghai, 200433, China
| | - Jiaming Guo
- Department of Radiation Medicine, College of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Jiangbo Zhu
- Department of Health Toxicology, College of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
25
|
Feng F, Zhang Y, Zhang X, Mu B, An Q, Wang P. The mechanism of intrinsic peroxidase (POD)-like activity of attapulgite. Anal Bioanal Chem 2024; 416:6033-6044. [PMID: 38602542 DOI: 10.1007/s00216-024-05280-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/08/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024]
Abstract
Natural attapulgite (ATP) is a promising substitute for existing artificial nanozymes due to its intrinsic enzymatic activity. However, the active center of ATP's inherent enzymatic activity has not yet been revealed, which limits its further design and activity optimization. Studying the active center of mineral materials can be extremely challenging due to their complexity. Here, we demonstrated that Fe is the primary element in ATP responsible for peroxidase (POD)-like activity through theoretical speculation and experimental verification. More importantly, we found that the ratio of Fe2+/Fe3+ is responsible for the district POD-like activity of ATP from different regions with the same Fe content. Additionally, three facile strategies, including grinding, heat treatment, and acid treatment, were demonstrated to increase the relative Fe content and thus optimize the POD-like activity of ATP. Finally, ATP was used to detect the concentration of H2O2, enabling the detection of low concentrations (0.11-1.76 mM) of H2O2. This study serves as a novel reference for the future design and performance optimization of nanozymes that are based on ATP and clay minerals.
Collapse
Affiliation(s)
- Feng Feng
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Yihe Zhang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Xiao Zhang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Bin Mu
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
| | - Qi An
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Peixia Wang
- National Anti-Drug Laboratory Beijing Regional Center, Beijing, 100164, China.
- Beijing Narcotics Control Technology Center, Beijing, 100164, China.
| |
Collapse
|
26
|
Qiao C, Wang C, Luo H, Ma Y, Luo X, Zhang S, Huo D, Hou C. Development of a Zn-Based Single-Atom Nanozyme for Efficient Hydrolysis of Glycosidic Bonds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402674. [PMID: 39096071 DOI: 10.1002/smll.202402674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/17/2024] [Indexed: 08/04/2024]
Abstract
Hydrolytic enzymes are essential components in second-generation biofuel technology and food fermentation processes. Nanozymes show promise for large-scale industrial applications as replacements for natural enzymes due to their distinct advantages. However, there remains a research gap concerning glycosidase nanozymes. In this study, a Zn-based single-atom nanozyme (ZnN4-900) is developed for efficient glycosidic bond hydrolysis in an aqueous solution. The planar structure of the class-porphyrin N4 material approximatively mimicked the catalytic centers of natural enzymes, facilitating oxidase-like (OXD-like) activity and promoting glycosidic bond cleavage. Theoretical calculations show that the Zn site can act as Lewis acids, attacking the C─O bond in glycosidic bonds. Additionally, ZnN4-900 has the ability to degrade starch and produce reducing sugars that increased yeast cell biomass by 32.86% and ethanol production by 14.56%. This catalyst held promising potential for enhancing processes in ethanol brewing and starch degradation industries.
Collapse
Affiliation(s)
- Cailin Qiao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, P. R. China
| | - Chao Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, P. R. China
- National Engineering Research Center of Solid-State Brewing, Luzhou Laojiao Group Co. Ltd., Luzhou, 646000, P. R. China
| | - Huibo Luo
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin, 644000, P. R. China
| | - Yi Ma
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin, 644000, P. R. China
| | - Xiaogang Luo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, P. R. China
| | - Suyi Zhang
- National Engineering Research Center of Solid-State Brewing, Luzhou Laojiao Group Co. Ltd., Luzhou, 646000, P. R. China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, P. R. China
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, P. R. China
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin, 644000, P. R. China
| |
Collapse
|
27
|
Chen T, Jiang Y, Wu Y, Lai M, Huang X, Gu Z, Wu J, Gan Y, Chen H, Zhi W, Sun P, Cai F, Li T, Zhou H, Zheng J. Doughnut-shaped bimetallic Cu-Zn-MOF with peroxidase-like activity for colorimetric detection of glucose and antibacterial applications. Talanta 2024; 279:126544. [PMID: 39032456 DOI: 10.1016/j.talanta.2024.126544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
Metal-organic frameworks (MOFs), especially bimetallic MOFs, have attracted widespread attention for simulating the structure and function of natural enzymes. In this study, different morphologies of bimetallic Cu-Zn-MOF with different peroxidase (POD)-like activities were prepared by simply controlling the molar ratio of Cu2+ and Zn2+. Among them, the doughnut-shaped Cu9-Zn1-MOF exhibited the largest POD-like activity. Cu9-Zn1-MOF was combined with glucose oxidase to construct a sensitive and selective glucose colorimetric biosensor with a linear detection range of 10-300 μM and a detection limit of 7.1 μm. Furthermore, Cu9-Zn1-MOF can efficiently convert hydrogen peroxide (H2O2) into hydroxyl radicals that effectively kill both gram-negative and gram-positive bacteria at low H2O2 level. The results of this study may promote the synthesis of bimetallic MOFs and broaden their applications in the biomedical field.
Collapse
Affiliation(s)
- Tingting Chen
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yunchuan Jiang
- Department of Anatomy, Division of Basic Medicine, YongZhou Vocational Technical College, Yongzhou, 425100, China
| | - Yinbing Wu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Meilin Lai
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Xueqin Huang
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, 523000, China
| | - Zimin Gu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jiamin Wu
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yuhui Gan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Haoming Chen
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Weixia Zhi
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Pinghua Sun
- College of Pharmacy, Jinan University, Guangzhou, 510632, China; Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832003, China
| | - Fei Cai
- Wuwei Occupational College, Wuwei, 733000, China.
| | - Ting Li
- Wuwei Occupational College, Wuwei, 733000, China.
| | - Haibo Zhou
- College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Junxia Zheng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
28
|
Zhang S, Ruan W, Guan J. Single-atom nanozymes for antibacterial applications. Food Chem 2024; 456:140094. [PMID: 38908326 DOI: 10.1016/j.foodchem.2024.140094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 06/24/2024]
Abstract
Bacteria have always been a thorny problem that threatens human health and food safety. Conventional antibiotic treatment often leads to the emergence of drug resistance. Therefore, the development of more effective antibacterial agents is urgently needed. Single-atom nanozymes (SAzymes) can efficiently eliminate bacteria due to their high atomic utilization, abundant active centers, and good natural enzyme mimicry, providing a potential alternative choice for antibiotics in antibacterial applications. Here, the antibacterial applications of SAzymes are reviewed and their catalytic properties are discussed from the aspects of active sites, coordination environment regulation and carrier selection. Then, the antibacterial effect of SAzymes is elaborated in combination with photothermal therapy (PTT) and sonodynamic therapy (SDT). Finally, the problems faced by SAzymes in antibacterial applications and their future development potential are proposed.
Collapse
Affiliation(s)
- Siying Zhang
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China
| | - Weidong Ruan
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China.
| | - Jingqi Guan
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China.
| |
Collapse
|
29
|
Li H, Zhao S, Wang Z, Li F. Engineering a two-dimensional metal-carbon nanozyme-based portable paper-based colorimetric chip for onsite and visual analysis of pyrophosphate. Talanta 2024; 278:126490. [PMID: 38955106 DOI: 10.1016/j.talanta.2024.126490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/11/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Sensitive and accurate analysis of pyrophosphate (PPi) is of great importance for preventing health hazard in environment. Nevertheless, most of sensors focus on sensitivity and selectivity, but practicality is also a significant quota. How to reconciling sensitivity, selectivity and practicability in one single sensor is desirable but remains challenging. Here, we created a novel metal-carbon nanozyme V2O5@C with two-dimensional (2D) morphology and high yet exclusive peroxidase (POD)-like activity via a glucose and NH4NO4-co-directed avenue, and further showed its application in constructing a portable and disposable paper-based analytical chip (PA-chip) for rapid, visual and onsite analysis of PPi. PPi etched V2O5 to prevent the decomposition of H2O2 into ·OH, resulting in weakened POD-like activity. In comparison with PPi deficiency, colorless TMB couldn't be oxidized into oxidized TMB with a dropped absorption at 652 nm. Therefore, obviously shallowed blue color on PA-chip surface was recorded, and demonstrated a negative relationship with PPi dosage, enabling rapid and visual detection of PPi with a limit of detection of 2.6 nM. This study demonstrated the burgeoning applications of nanozymes with POD-like activity in construction of PA-chips for PPi and will quicken the advancement of practical sensors, guaranteeing environmental safety.
Collapse
Affiliation(s)
- Haiyin Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, Hebei, PR China
| | - Suixin Zhao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Zhixin Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China.
| |
Collapse
|
30
|
Khan AS, Sahu SK, Dash SK, Mishra T, Padhan AR, Padhan D, Dash SL, Sarangi MK. The Exploration of Nanozymes for Biosensing of Pathological States Tailored to Clinical Theranostics. Chem Biodivers 2024; 21:e202401326. [PMID: 39041292 DOI: 10.1002/cbdv.202401326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
The nanozymes (NZs) are the artificial catalyst deployed for biosensing with their uniqueness (high robustness, surface tenability, inexpensive, and stability) for obtaining a better response/miniaturization of the varied sensors than their traditional ancestors. Nowadays, nanomaterials with their broadened scale such as metal-organic frameworks (MOFs), and metals/metal oxides are widely engaged in generating NZ-based biosensors (BS). Diverse strategies like fluorescent, colorimetric, surface-enhanced Raman scattering (SERS), and electrochemical sensing principles were implemented for signal transduction of NZs. Despite broad advantages, numerous encounters (like specificity, feasibility, stability, and issues in scale-up) are affecting the potentialities of NZs-based BS, and thus need prior attention for a promising exploration for a revolutionary outcome in advanced theranostics. This review includes different types of NZs, and the progress of numerous NZs tailored bio-sensing techniques in detecting abundant bio analytes for theranostic purposes. Further, the discussion highlighted some recent challenges along with their progressive way of possibly overcoming followed by commercial outbreaks.
Collapse
Affiliation(s)
- Abdul Sayeed Khan
- The Pharmaceutical College, Tingipali, Barpali, Bargarh, Odisha, 768029, India
| | - Sudhir Kumar Sahu
- The Pharmaceutical College, Tingipali, Barpali, Bargarh, Odisha, 768029, India
| | - Santosh Kumar Dash
- The Pharmaceutical College, Tingipali, Barpali, Bargarh, Odisha, 768029, India
| | - Tankadhar Mishra
- The Pharmaceutical College, Tingipali, Barpali, Bargarh, Odisha, 768029, India
| | - Amiya Ranjan Padhan
- The Pharmaceutical College, Tingipali, Barpali, Bargarh, Odisha, 768029, India
| | - Damodar Padhan
- The Pharmaceutical College, Tingipali, Barpali, Bargarh, Odisha, 768029, India
| | | | - Manoj Kumar Sarangi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Malhaur Railway Station Road, Gomti Nagar, Lucknow, Uttar Pradesh, 201313, India
| |
Collapse
|
31
|
Mehta D, Singh S. Nanozymes and their biomolecular conjugates as next-generation antibacterial agents: A comprehensive review. Int J Biol Macromol 2024; 278:134582. [PMID: 39122068 DOI: 10.1016/j.ijbiomac.2024.134582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/27/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Antimicrobial resistance (AMR), the ability of bacterial species to develop resistance against exposed antibiotics, has gained immense global attention in the past few years. Bacterial infections are serious health concerns affecting millions of people annually worldwide. Therefore, developing novel antibacterial agents that are highly effective and avoid resistance development is imperative. Among various strategies, recent developments in nanozyme technology have shown promising results as antibacterials in several antibiotic-sensitive and resistant bacterial species. Nanozymes offer several advantages over corresponding natural enzymes, such as inexpensive, stable, multifunctional, tunable catalytic properties, etc. Although the use of nanozymes as antibacterial agents has provided promising results, the specific biomolecule-conjugated nanozymes have shown further improvement in catalytic performance and associated antibacterial efficacy. The exclusive design of functional nanozymes with theranostic potential is found to simultaneously inhibit the growth and image of AMR bacterial species. This review comprehensively summarizes the history of nanozymes, their classification, biomolecules conjugated nanozyme, and their mechanism of enzyme-mimetic activity and associated antibacterial activity in antibiotic-sensitive and resistant species. The futureneeds to effectively engineer the existing or new nanozymes to curb AMR have also been discussed.
Collapse
Affiliation(s)
- Divya Mehta
- National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad 500032, Telangana, India; Regional Centre for Biotechnology (RCB), Faridabad 121001, Haryana, India
| | - Sanjay Singh
- National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad 500032, Telangana, India; Regional Centre for Biotechnology (RCB), Faridabad 121001, Haryana, India.
| |
Collapse
|
32
|
Jia H, Zheng Z, Qu J, Yu H, Zhu Z, Lu Q, Su F, Yang Y, Feng T, Jie Q. Facile construction of Mo-based nanozyme system via ZIF-8 templating with enhanced catalytic efficiency and antibacterial performance. Heliyon 2024; 10:e38057. [PMID: 39381201 PMCID: PMC11459012 DOI: 10.1016/j.heliyon.2024.e38057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/03/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024] Open
Abstract
Although Zeolitic Imidazolate Framework-8 (ZIF-8) shows significant promise in chemodynamic therapy of bacterial infections due to its large specific surface area and enzyme-like activity, it still faces a considerable gap compared to natural enzymes. The dependency on low pH and high concentrations of hydrogen peroxide ((H2O2) is a major factor limiting the clinical progress of nanozymes. Single-atom nanozymes (SA-zyme), which exhibit superior catalytic performance, are expected to overcome this limitation. In this study, we used ZIF-8 as a template to prepare structurally regular molybdenum-based single-atom nanozymes (Mo-zyme) by coordinating molybdenum atoms with nitrogen atoms within the zeolitic imidazolate framework and evaporating the zinc element at high temperatures. The cascade catalytic performance of the nanodrugs was enhanced by loading glucose oxidase (GOx) and encapsulating it with a hyaluronic acid (HA) layer to form a composite (Mo/GOx@HA). Upon contact with hyaluronidase from bacteria in infected tissues, the cascade reaction is triggered, resulting in the degradation of the HA shell, and releasing the encapsulated GOx. Once exposed, GOx catalyzes the oxidation of glucose into gluconic acid, resulting in a localized decrease in pH and continuous production of H2O2. The combination of lowered pH and increased H2O2 concentration significantly amplifies the catalytic activity of the Mo-zyme. This enhanced activity facilitates the in situ generation of hydroxyl radicals (•OH) on the bacterial surface, leading to effective and efficient bacterial eradication. Wound infection treatment has demonstrated that the as-prepared Mo/GOx@HA exhibits excellent antibacterial and anti-inflammatory activity. This work provided a promising enzymatic cascade reaction nanoplatform for the treatment of bacteria infected wounds.
Collapse
Affiliation(s)
- Haoruo Jia
- Pediatric Orthopaedic Hospital, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
- Clinincal Research Center for Pediactric Skeletal Deformity and Injury of Shaanxi Province, Xi'an, 710054, China
- Xi'an Key Laboratory of Skeletal Developmental Deformity and Injury Repain, Xi'an, 710054, China
| | - Ziyuan Zheng
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Jining Qu
- Pediatric Orthopaedic Hospital, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
- Clinincal Research Center for Pediactric Skeletal Deformity and Injury of Shaanxi Province, Xi'an, 710054, China
- Xi'an Key Laboratory of Skeletal Developmental Deformity and Injury Repain, Xi'an, 710054, China
| | - Hongtao Yu
- First Affiliated Hospital, Shihezi University, Shihezi, 832008, China
| | - Zhoujun Zhu
- Department of Joint Surgery, Sixth Affiliated Hospital, Xinjiang Medical University, Urumqi, 830092, China
| | - Qingda Lu
- Pediatric Orthopaedic Hospital, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
- Clinincal Research Center for Pediactric Skeletal Deformity and Injury of Shaanxi Province, Xi'an, 710054, China
- Xi'an Key Laboratory of Skeletal Developmental Deformity and Injury Repain, Xi'an, 710054, China
| | - Fei Su
- Pediatric Orthopaedic Hospital, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
- Clinincal Research Center for Pediactric Skeletal Deformity and Injury of Shaanxi Province, Xi'an, 710054, China
- Xi'an Key Laboratory of Skeletal Developmental Deformity and Injury Repain, Xi'an, 710054, China
| | - Yating Yang
- Pediatric Orthopaedic Hospital, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
- Clinincal Research Center for Pediactric Skeletal Deformity and Injury of Shaanxi Province, Xi'an, 710054, China
- Xi'an Key Laboratory of Skeletal Developmental Deformity and Injury Repain, Xi'an, 710054, China
| | | | - Qiang Jie
- Pediatric Orthopaedic Hospital, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
- Clinincal Research Center for Pediactric Skeletal Deformity and Injury of Shaanxi Province, Xi'an, 710054, China
- Xi'an Key Laboratory of Skeletal Developmental Deformity and Injury Repain, Xi'an, 710054, China
| |
Collapse
|
33
|
Zheng JJ, Li QZ, Wang Z, Wang X, Zhao Y, Gao X. Computer-aided nanodrug discovery: recent progress and future prospects. Chem Soc Rev 2024; 53:9059-9132. [PMID: 39148378 DOI: 10.1039/d3cs00575e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Nanodrugs, which utilise nanomaterials in disease prevention and therapy, have attracted considerable interest since their initial conceptualisation in the 1990s. Substantial efforts have been made to develop nanodrugs for overcoming the limitations of conventional drugs, such as low targeting efficacy, high dosage and toxicity, and potential drug resistance. Despite the significant progress that has been made in nanodrug discovery, the precise design or screening of nanomaterials with desired biomedical functions prior to experimentation remains a significant challenge. This is particularly the case with regard to personalised precision nanodrugs, which require the simultaneous optimisation of the structures, compositions, and surface functionalities of nanodrugs. The development of powerful computer clusters and algorithms has made it possible to overcome this challenge through in silico methods, which provide a comprehensive understanding of the medical functions of nanodrugs in relation to their physicochemical properties. In addition, machine learning techniques have been widely employed in nanodrug research, significantly accelerating the understanding of bio-nano interactions and the development of nanodrugs. This review will present a summary of the computational advances in nanodrug discovery, focusing on the understanding of how the key interfacial interactions, namely, surface adsorption, supramolecular recognition, surface catalysis, and chemical conversion, affect the therapeutic efficacy of nanodrugs. Furthermore, this review will discuss the challenges and opportunities in computer-aided nanodrug discovery, with particular emphasis on the integrated "computation + machine learning + experimentation" strategy that can potentially accelerate the discovery of precision nanodrugs.
Collapse
Affiliation(s)
- Jia-Jia Zheng
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Qiao-Zhi Li
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Zhenzhen Wang
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Xiaoli Wang
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yuliang Zhao
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Xingfa Gao
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| |
Collapse
|
34
|
Shi YH, Jiang WC, Zeng J, Wang SY, Wu W, Xie SD, Zhao Y, Xu ZH, Zhang GQ. Non-pyrolytic synthesis of laccase-like iron based single-atom nanozymes for highly efficient dual-mode colorimetric and fluorescence detection of epinephrine. Anal Chim Acta 2024; 1322:343031. [PMID: 39182985 DOI: 10.1016/j.aca.2024.343031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/27/2024]
Abstract
Single-atom nanozymes have garnered significant attention due to their exceptional atom utilization and ability to establish well-defined structure-activity relationships. However, conventional pyrolytic synthesis methods pose challenges such as high energy consumption and random local environments at the active sites, while achieving non-pyrolytic synthesis of single-atom nanozymes remains a formidable technical hurdle. The present study focuses on the synthesis of laccase-like iron-based single-atom nanozymes (Fe-SAzymes) using a non-pyrolysis method facilitated by microwave irradiation. Under low iron loading conditions, Fe-SAzymes exhibited significantly enhanced laccase activity (12.1 U/mg), surpassing that of laccase by 24-fold. Moreover, Fe-SAzymes demonstrated efficient catalytic oxidation of epinephrine (EP), enabling its colorimetric detection. Owing to the remarkable laccase activity of Fe-SAzymes, the conventional nanozymes EP detection time was reduced from 60 min to 20 min, with an impressive low detection limit as low as 2.95 μM. In addition, an ultra-sensitive fluorescence method for EP detection was developed using the internal filter effect of EP oxidation products and CDs combined with carbon dots probe. The detection limit of fluorescence method was only 0.39 μM. Therefore, an visual, fast, and highly sensitive dual-mode EP detection strategy has great potential in the clinical diagnostic industry.
Collapse
Affiliation(s)
- Yu-Han Shi
- Department of Chemisty, School of Science, Xihua University, Chengdu, 610039, PR China
| | - Wen-Cai Jiang
- Department of Chemisty, School of Science, Xihua University, Chengdu, 610039, PR China
| | - Jing Zeng
- Department of Chemisty, School of Science, Xihua University, Chengdu, 610039, PR China
| | - Si-Yan Wang
- Department of Chemisty, School of Science, Xihua University, Chengdu, 610039, PR China
| | - Wei Wu
- Department of Chemisty, School of Science, Xihua University, Chengdu, 610039, PR China
| | - Shu-Dan Xie
- Department of Chemisty, School of Science, Xihua University, Chengdu, 610039, PR China
| | - Yan Zhao
- Department of Chemisty, School of Science, Xihua University, Chengdu, 610039, PR China.
| | - Zhi-Hong Xu
- Department of Chemisty, School of Science, Xihua University, Chengdu, 610039, PR China.
| | - Guo-Qi Zhang
- Department of Chemisty, School of Science, Xihua University, Chengdu, 610039, PR China; Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 610039, PR China.
| |
Collapse
|
35
|
Li W, Chen D, Min C, Ma X, Yang X, Wang J. Atomically Engineered Chlorine Coordination of Iron in Active Centers for Selectively Catalytic H 2O 2 Decomposition Toward Efficient Antitumor-Specific Therapy. Adv Healthc Mater 2024:e2401267. [PMID: 39221675 DOI: 10.1002/adhm.202401267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/11/2024] [Indexed: 09/04/2024]
Abstract
The intervention of endogenous H2O2 via nanozymes provides a potential antitumor-specific therapy; however, the role of the nanozyme structure in relation to the selective decomposition of H2O2 to hydroxyl radicals (•OH) is yet to be fully understood, which limits the development of this therapeutic approaches. Herein, an iron single-atom nanozyme (Fe─N2Cl2─C SAzyme) is reported, which is prepared through precise Fe─Cl coordination based on the construction of a characteristic Fe-containing molecule. Fe─N2Cl2─C exhibits efficient catalytic H2O2 decomposition (2.19 × 106 mm-1 s-1), which is the highest among reported SAzymes. More importantly, it is found that H2O2 selectively decomposed into •OH on the Fe─N2Cl2─C surface, which is attributable to the d orbitals of the Fe active center matching the O-2p electrons of the adsorbed hydroxide (*OH) intermediate. Fe─N2Cl2─C is strongly cytotoxic toward a variety of cancer-cell lines in vitro but not to normal cells. Furthermore, Fe─N2Cl2─C shows an outstanding specific therapeutic effect in vivo; it efficiently destroys solid malignant tumors without injuring normal tissue. Altogether, these findings highlight the selective catalytic decomposition of H2O2 to •OH, which is achieved by engineering the active center on the atomic level, thereby providing an avenue for the development of specific nanomedicines with efficient antitumor activities.
Collapse
Affiliation(s)
- Wei Li
- School of Chemical Sciences and Technology, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, Yunnan University, Kunming, 650091, China
| | - Daomei Chen
- School of Materials and Energy, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, Yunnan University, Kunming, 650091, China
| | - Chungang Min
- Research Center for Analysis and Measurement, Kunming University of Science and Technology, Kunming, 650093, China
| | - Xiaoqian Ma
- School of Chemical Sciences and Technology, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, Yunnan University, Kunming, 650091, China
| | - Xikun Yang
- Research Center for Analysis and Measurement, Kunming University of Science and Technology, Kunming, 650093, China
| | - Jiaqiang Wang
- School of Chemical Sciences and Technology, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, Yunnan University, Kunming, 650091, China
- School of Materials and Energy, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, Yunnan University, Kunming, 650091, China
| |
Collapse
|
36
|
Tiwari JN, Kumar K, Safarkhani M, Umer M, Vilian ATE, Beloqui A, Bhaskaran G, Huh YS, Han Y. Materials Containing Single-, Di-, Tri-, and Multi-Metal Atoms Bonded to C, N, S, P, B, and O Species as Advanced Catalysts for Energy, Sensor, and Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403197. [PMID: 38946671 PMCID: PMC11580296 DOI: 10.1002/advs.202403197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/08/2024] [Indexed: 07/02/2024]
Abstract
Modifying the coordination or local environments of single-, di-, tri-, and multi-metal atom (SMA/DMA/TMA/MMA)-based materials is one of the best strategies for increasing the catalytic activities, selectivity, and long-term durability of these materials. Advanced sheet materials supported by metal atom-based materials have become a critical topic in the fields of renewable energy conversion systems, storage devices, sensors, and biomedicine owing to the maximum atom utilization efficiency, precisely located metal centers, specific electron configurations, unique reactivity, and precise chemical tunability. Several sheet materials offer excellent support for metal atom-based materials and are attractive for applications in energy, sensors, and medical research, such as in oxygen reduction, oxygen production, hydrogen generation, fuel production, selective chemical detection, and enzymatic reactions. The strong metal-metal and metal-carbon with metal-heteroatom (i.e., N, S, P, B, and O) bonds stabilize and optimize the electronic structures of the metal atoms due to strong interfacial interactions, yielding excellent catalytic activities. These materials provide excellent models for understanding the fundamental problems with multistep chemical reactions. This review summarizes the substrate structure-activity relationship of metal atom-based materials with different active sites based on experimental and theoretical data. Additionally, the new synthesis procedures, physicochemical characterizations, and energy and biomedical applications are discussed. Finally, the remaining challenges in developing efficient SMA/DMA/TMA/MMA-based materials are presented.
Collapse
Affiliation(s)
- Jitendra N. Tiwari
- Department of Energy and Materials EngineeringDongguk University‐SeoulSeoul100715Republic of Korea
| | - Krishan Kumar
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque Country UPV/EHUPaseo Manuel de Lardizabal 3Danostia‐San Sebastian20018Spain
| | - Moein Safarkhani
- Department of Biological Sciences and BioengineeringNano Bio High‐Tech Materials Research CenterInha UniversityIncheon22212Republic of Korea
- School of ChemistryDamghan UniversityDamghan36716‐45667Iran
| | - Muhammad Umer
- Bernal InstituteDepartment of Chemical SciencesUniversity of LimerickLimerickV94 T9PXRepublic of Ireland
| | - A. T. Ezhil Vilian
- Department of Energy and Materials EngineeringDongguk University‐SeoulSeoul100715Republic of Korea
| | - Ana Beloqui
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque Country UPV/EHUPaseo Manuel de Lardizabal 3Danostia‐San Sebastian20018Spain
- IKERBASQUEBasque Foundation for SciencePlaza Euskadi 5Bilbao48009Spain
| | - Gokul Bhaskaran
- Department of Biological Sciences and BioengineeringNano Bio High‐Tech Materials Research CenterInha UniversityIncheon22212Republic of Korea
| | - Yun Suk Huh
- Department of Biological Sciences and BioengineeringNano Bio High‐Tech Materials Research CenterInha UniversityIncheon22212Republic of Korea
| | - Young‐Kyu Han
- Department of Energy and Materials EngineeringDongguk University‐SeoulSeoul100715Republic of Korea
| |
Collapse
|
37
|
Wang L, Liu Z, Yao L, Liu S, Wang Q, Qu H, Wu Y, Mao Y, Zheng L. A Bioinspired Single-Atom Fe Nanozyme with Excellent Laccase-Like Activity for Efficient Aflatoxin B 1 Removal. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400629. [PMID: 38682737 DOI: 10.1002/smll.202400629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/10/2024] [Indexed: 05/01/2024]
Abstract
The applications of natural laccases are greatly restricted because of their drawbacks like poor biostability, high costs, and low recovery efficiency. M/NC single atom nanozymes (M/NC SAzymes) are presenting as great substitutes due to their superior enzyme-like activity, excellent selectivity and high stability. In this work, inspired by the catalytic active center of natural enzyme, a biomimetic Fe/NC SAzyme (Fe-SAzyme) with O2-Fe-N4 coordination is successfully developed, exhibiting excellent laccase-like activity. Compared with their natural counterpart, Fe-SAzyme has shown superior catalytic efficiency and excellent stability under a wide range of pH (3.0-9.0), temperature (4-80 °C) and NaCl strength (0-300 mm). Interestingly, density functional theory (DFT) calculations reveal that the high catalytic performance is attributed to the activation of O2 by O2-Fe-N4 sites, which weakened the O─O bonds in the oxygen-to-water oxidation pathway. Furthermore, Fe-SAzyme is successfully applied for efficient aflatoxin B1 removal based on its robust laccase-like catalytic activity. This work provides a strategy for the rational design of laccase-like SAzymes, and the proposed catalytic mechanism will help to understand the coordination environment effect of SAzymes on laccase-like catalytic processes.
Collapse
Affiliation(s)
- Lei Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Zixuan Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Lili Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Shuai Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Qiuping Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Hao Qu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Yuen Wu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yu Mao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| |
Collapse
|
38
|
Zhu B, Zhao Z, Cao S, Sun Y, Wang L, Huang S, Cheng C, Ma L, Qiu L. Highly spontaneous spin polarization engineering of single-atom artificial antioxidases towards efficient ROS elimination and tissue regeneration. NANOSCALE 2024; 16:15946-15959. [PMID: 39037714 DOI: 10.1039/d4nr02104e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The creation of atomic catalytic centers has emerged as a conducive path to design efficient nanobiocatalysts to serve as artificial antioxidases (AAOs) that can mimic the function of natural antioxidases to scavenge noxious reactive oxygen species (ROS) for protecting stem cells and promoting tissue regeneration. However, the fundamental mechanisms of diverse single-atom sites for ROS biocatalysis remain ambiguous. Herein, we show that highly spontaneous spin polarization mediates the hitherto unclear origin of H2O2-elimination activities in engineering ferromagnetic element (Fe, Co, Ni)-based AAOs with atomic centers. The experimental and theoretical results reveal that Fe-AAO exhibits the best catalase-like kinetics and turnover number, while Co-AAO shows the highest glutathione peroxidase-like activity and turnover number. Furthermore, our investigations prove that both Fe-AAO and Co-AAO can effectively secure the functions of stem cells in high ROS microenvironments and promote the repair of injured tendon tissue by scavenging H2O2 and other ROS. We believe that the proposed highly spontaneous spin polarization engineering of ferromagnetic element-based AAOs will provide essential guidance and practical opportunities for developing efficient AAOs for eliminating ROS, protecting stem cells, and accelerating tissue regeneration.
Collapse
Affiliation(s)
- Bihui Zhu
- Department of Medical Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Zhenyang Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Sujiao Cao
- Department of Medical Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yimin Sun
- West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Liyun Wang
- Department of Medical Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Songya Huang
- Department of Medical Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Lang Ma
- Department of Medical Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Li Qiu
- Department of Medical Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
39
|
Yang M, Wang Z, Su M, Zhu S, Xie Y, Ying B. Smart Nanozymes for Diagnosis of Bacterial Infection: The Next Frontier from Laboratory to Bedside Testing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44361-44375. [PMID: 39162136 DOI: 10.1021/acsami.4c07043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The global spread of infectious diseases caused by pathogenic bacteria significantly poses public health concerns, and methods for sensitive, selective, and facile diagnosis of bacteria can efficiently prevent deterioration and further spreading of the infections. The advent of nanozymes has broadened the spectrum of alternatives for diagnosing bacterial infections. Compared to natural enzymes, nanozymes exhibit the same enzymatic characteristics but offer greater economic efficiency, enhanced durability, and adjustable dimensions. The importance of early diagnosis of bacterial infection and conventional diagnostic approaches is introduced. Subsequently, the review elucidates the definition, properties, and catalytic mechanism of nanozymes. Eventually, the detailed application of nanozymes in detecting bacteria is explored, highlighting their utilization as biosensors that allow for accelerated and highly sensitive identification of bacterial infections and reflecting on the potential of nanozyme-based bacterial detection as a point-of-care testing (POCT) tool. A brief summary of obstacles and future perspectives in this field is presented at the conclusion of this review.
Collapse
Affiliation(s)
- Mei Yang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhonghao Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Mi Su
- Functional Science Laboratory, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shuairu Zhu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Xie
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
40
|
Fang Q, Liu Q, Song Z, Wang Y, Zhang X, Cao J, Sun J, Ma CB, Du Y. Innovative Colorimetric NQO1 Detection Strategy via Substrate Competitive and Biomimetic Cascade Reactions with a Highly Active NADH Oxidase Mimic. Anal Chem 2024; 96:13308-13316. [PMID: 39078110 DOI: 10.1021/acs.analchem.4c03003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
NAD(P)H: quinone oxidoreductase-1 (NQO1) plays critical roles in antioxidation and abnormally overexpresses in tumors. Developing a fast and sensitive method of monitoring NQO1 will greatly promote cancer diagnosis in clinical practice. This study introduces a transformative colorimetric detection strategy for NQO1, harnessing an innovative competitive substrate mechanism between NQO1 and a new NADH oxidase (NOX) mimic, cobalt-nitrogen-doped carbon nanozyme (CoNC). This method ingeniously exploits the differential consumption of NADH in the presence of NQO1 to modulate the generation of H2O2 from CoNC catalysis, which is then quantified through a secondary, peroxidase-mimetic cascade reaction involving Prussian blue (PB) nanoparticles. This dual-stage reaction framework not only enhances the sensitivity of NQO1 detection, achieving a limit of detection as low as 0.67 μg mL-1, but also enables the differentiation between cancerous and noncancerous cells by their enzymatic activity profiles. Moreover, CoNC exhibits exceptional catalytic efficiency, with a specific activity reaching 5.2 U mg-1, significantly outperforming existing NOX mimics. Beyond mere detection, CoNC serves a dual role, acting as both a robust mimic of cytochrome c reductase (Cyt c) and a cornerstone for enzymatic regeneration, thereby broadening the scope of its biological applications. This study not only marks a significant step forward in the bioanalytical application of nanozymes but also sets the stage for their expanded use in clinical diagnostics and therapeutic monitoring.
Collapse
Affiliation(s)
- Qi Fang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Quanyi Liu
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhimin Song
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yu Wang
- College of Pharmacy, Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Xinjiang Medical University, Urumqi 830017, China
| | - Xiaojun Zhang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jun Cao
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Jian Sun
- College of Pharmacy, Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Xinjiang Medical University, Urumqi 830017, China
| | - Chong-Bo Ma
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yan Du
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
41
|
Wei S, Ma W, Sun M, Xiang P, Tian Z, Mao L, Gao L, Li Y. Atom-pair engineering of single-atom nanozyme for boosting peroxidase-like activity. Nat Commun 2024; 15:6888. [PMID: 39134525 PMCID: PMC11319669 DOI: 10.1038/s41467-024-51022-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 07/23/2024] [Indexed: 08/15/2024] Open
Abstract
Constructing atom-pair engineering and improving the activity of metal single-atom nanozyme (SAzyme) is significant but challenging. Herein, we design the atom-pair engineering of Zn-SA/CNCl SAzyme by simultaneously constructing Zn-N4 sites as catalytic sites and Zn-N4Cl1 sites as catalytic regulator. The Zn-N4Cl1 catalytic regulators effectively boost the peroxidase-like activities of Zn-N4 catalytic sites, resulting in a 346-fold, 1496-fold, and 133-fold increase in the maximal reaction velocity, the catalytic constant and the catalytic efficiency, compared to Zn-SA/CN SAzyme without the Zn-N4Cl1 catalytic regulator. The Zn-SA/CNCl SAzyme with excellent peroxidase-like activity effectively inhibits tumor cell growth in vitro and in vivo. The density functional theory (DFT) calculations reveal that the Zn-N4Cl1 catalytic regulators facilitate the adsorption of *H2O2 and re-exposure of Zn-N4 catalytic sites, and thus improve the reaction rate. This work provides a rational and effective strategy for improving the peroxidase-like activity of metal SAzyme by atom-pair engineering.
Collapse
Affiliation(s)
- Shengjie Wei
- School of Materials Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Wenjie Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
| | - Minmin Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Pan Xiang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Ziqi Tian
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China.
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China.
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.
| |
Collapse
|
42
|
Liang H, Xian Y, Wang X. Preparation and application of single-atom nanozymes in oncology: a review. Front Chem 2024; 12:1442689. [PMID: 39189019 PMCID: PMC11345252 DOI: 10.3389/fchem.2024.1442689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/01/2024] [Indexed: 08/28/2024] Open
Abstract
Single-atom nanozymes (SAzymes) represent a cutting-edge advancement in nanomaterials, merging the high catalytic efficiency of natural enzymes with the benefits of atomic economy. Traditionally, natural enzymes exhibit high specificity and efficiency, but their stability are limited by environmental conditions and production costs. Here we show that SAzymes, with their large specific surface area and high atomic utilization, achieve superior catalytic activity. However, their high dispersibility poses stability challenges. Our review focuses on recent structural and preparative advancements aimed at enhancing the catalytic specificity and stability of SAzymes. Compared to previous nanozymes, SAzymes demonstrate significantly improved performance in biomedical applications, particularly in tumor medicine. This progress positions SAzymes as a promising tool for future cancer treatment strategies, integrating the robustness of inorganic materials with the specificity of biological systems. The development and application of SAzymes could revolutionize the field of biocatalysis, offering a stable, cost-effective alternative to natural enzymes.
Collapse
Affiliation(s)
- Huiyuan Liang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
| | - Yijie Xian
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
| | - Xujing Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
43
|
Ge X, Yin Y, Wang X, Gao Y, Guan X, Sun J, Ouyang J, Na N. Multienzyme-Like Polyoxometalate-Based Single-Atom Enzymes for Cancer-Specific Therapy Through Acid-Triggered Nontoxicity-to-Toxicity Transition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401073. [PMID: 38644232 DOI: 10.1002/smll.202401073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/20/2024] [Indexed: 04/23/2024]
Abstract
Single-atom enzymes (SAzymes) exhibit great potential for chemodynamic therapy (CDT); while, general application is still challenged by their instability and unavoidable side effects during delivery. Herein, a manganese-based polyoxometalate single-atom enzyme (Mn-POM SAE) is first introduced into tumor-specific CDT, which exhibits tumor microenvironment (TME)-activated transition of nontoxicity-to-toxicity. Different from traditional POM materials, the aggregates of low-toxic Mn-POM SAE nanospheres are obtained at neutral conditions, facilitating efficient delivery and avoiding toxicity problems in normal tissues. Under acid TME conditions, these nanospheres are degraded into smaller units of toxic Mn(II)-PW11; thus, initiating cancer cell-specific therapy. The released active units of Mn(II)-PW11 exhibit excellent multienzyme-like activities (including peroxidase (POD)-like, oxidase (OXD)-like, catalase (CAT)-like, and glutathione peroxidase (Gpx)-like activities) for the synergistic cancer therapy due to the stabilized high valence Mn species (MnIII/MnIV). As demonstrated by both intracellular evaluations and in vivo experiments, ROS is generated to cause damage to lysosome membranes, further facilitating acidification and impaired autophagy to enhance cancer therapy. This study provides a detailed investigation on the acid-triggered releasing of active units and the electron transfer in multienzyme-mimic-like therapy, further enlarging the application of POMs from catalytical engineering into cancer therapy.
Collapse
Affiliation(s)
- Xiyang Ge
- Country Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Yiyan Yin
- Country Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xiaoni Wang
- Country Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Yixuan Gao
- Country Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xiaowen Guan
- Country Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Jianghui Sun
- Country Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Jin Ouyang
- Department of Chemistry, College of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, P. R. China
| | - Na Na
- Country Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
44
|
Cheng L, Wu Q, Sun H, Tang Y, Xiang Q. Toward Functionality and Deactivation of Metal-Single-Atom in Heterogeneous Photocatalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406807. [PMID: 38923045 DOI: 10.1002/adma.202406807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/15/2024] [Indexed: 06/28/2024]
Abstract
Single-atom heterogeneous catalysts (SAHCs) provide an enticing platform for understanding catalyst structure-property-performance relationships. The 100% atom utilization and adjustable local coordination configurations make it easy to probe reaction mechanisms at the atomic level. However, the progressive deactivation of metal-single-atom (MSA) with high surface energy leads to frequent limitations on their commercial viability. This review focuses on the atomistic-sensitive reactivity and atomistic-progressive deactivation of MSA to provide a unifying framework for specific functionality and potential deactivation drivers of MSA, thereby bridging function, purpose-modification structure-performance insights with the atomistic-progressive deactivation for sustainable structure-property-performance accessibility. The dominant functionalization of atomically precise MSA acting on properties and reactivity encompassing precise photocatalytic reactions is first systematically explored. Afterward, a detailed analysis of various deactivation modes of MSA and strategies to enhance their durability is presented, providing valuable insights into the design of SAHCs with deactivation-resistant stability. Finally, the remaining challenges and future perspectives of SAHCs toward industrialization, anticipating shedding some light on the next stage of atom-economic chemical/energy transformations are presented.
Collapse
Affiliation(s)
- Lei Cheng
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Qiaolin Wu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Hanjun Sun
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Quanjun Xiang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China Chengdu, Sichuan, 610054, P. R. China
| |
Collapse
|
45
|
Wu J, Zhu X, Li Q, Fu Q, Wang B, Li B, Wang S, Chang Q, Xiang H, Ye C, Li Q, Huang L, Liang Y, Wang D, Zhao Y, Li Y. Enhancing radiation-resistance and peroxidase-like activity of single-atom copper nanozyme via local coordination manipulation. Nat Commun 2024; 15:6174. [PMID: 39039047 PMCID: PMC11263674 DOI: 10.1038/s41467-024-50416-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 07/10/2024] [Indexed: 07/24/2024] Open
Abstract
The inactivation of natural enzymes by radiation poses a great challenge to their applications for radiotherapy. Single-atom nanozymes (SAzymes) with high structural stability under such extreme conditions become a promising candidate for replacing natural enzymes to shrink tumors. Here, we report a CuN3-centered SAzyme (CuN3-SAzyme) that exhibits higher peroxidase-like catalytic activity than a CuN4-centered counterpart, by locally regulating the coordination environment of single copper sites. Density functional theory calculations reveal that the CuN3 active moiety confers optimal H2O2 adsorption and dissociation properties, thus contributing to high enzymatic activity of CuN3-SAzyme. The introduction of X-ray can improve the kinetics of the decomposition of H2O2 by CuN3-SAzyme. Moreover, CuN3-SAzyme is very stable after a total radiation dose of 500 Gy, without significant changes in its geometrical structure or coordination environment, and simultaneously still retains comparable peroxidase-like activity relative to natural enzymes. Finally, this developed CuN3-SAzyme with remarkable radioresistance can be used as an external field-improved therapeutics for enhancing radio-enzymatic therapy in vitro and in vivo. Overall, this study provides a paradigm for developing SAzymes with improved enzymatic activity through local coordination manipulation and high radioresistance over natural enzymes, for example, as sensitizers for cancer therapy.
Collapse
Affiliation(s)
- Jiabin Wu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xianyu Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, China
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Qun Li
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qiang Fu
- School of Future Technology, University of Science and Technology of China, Hefei, 230026, China.
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China.
| | - Bingxue Wang
- School of Future Technology, University of Science and Technology of China, Hefei, 230026, China
| | - Beibei Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Shanshan Wang
- Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qingchao Chang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, China
| | - Huandong Xiang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, China
- GBA Research Innovation Institute for Nanotechnology, Guangdong, 510700, China
| | - Chengliang Ye
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Qiqiang Li
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Liang Huang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yan Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, China.
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, China
- GBA Research Innovation Institute for Nanotechnology, Guangdong, 510700, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, China.
- College of Chemistry, Beijing Normal University, Beijing, 100875, China.
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| |
Collapse
|
46
|
Sun Q, Wu M, Niu N, Chen L, Liu S, Yu J, Wu X, Bai FQ, Yang P. Regulating Second Coordination Shell of Ce Atom Site and Reshaping of Carrier Enable Single-Atom Nanozyme to Efficiently Express Oxidase-like Activity. NANO LETTERS 2024; 24:8071-8079. [PMID: 38901035 DOI: 10.1021/acs.nanolett.4c01846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Single-atom nanozymes (SANs) are considered to be ideal substitutes for natural enzymes due to their high atom utilization. This work reported a strategy to manipulate the second coordination shell of the Ce atom and reshape the carbon carrier to improve the oxidase-like activity of SANs. Internally, S atoms were symmetrically embedded into the second coordination layer to form a Ce-N4S2-C structure, which reduced the energy barrier for O2 reduction, promoted the electron transfer from the Ce atom to O atoms, and enhanced the interaction between the d orbital of the Ce atom and p orbital of O atoms. Externally, in situ polymerization of mussel-inspired polydopamine on the precursor helps capture metal sources and protects the 3D structure of the carrier during pyrolysis. On the other hand, polyethylene glycol (PEG) modulated the interface of the material to enhance water dispersion and mass transfer efficiency. As a proof of concept, the constructed PEG@P@Ce-N/S-C was applied to the multimodal assay of butyrylcholinesterase activity.
Collapse
Affiliation(s)
- Qijun Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Meng Wu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Na Niu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Ligang Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Song Liu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Jie Yu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Xinzhao Wu
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, People's Republic of China
| | - Fu-Quan Bai
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, People's Republic of China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, People's Republic of China
| |
Collapse
|
47
|
Deng L, Ren S, Zhang Y, Wang C, Lu X. Iridium nanoparticles supported on polyaniline nanotubes for peroxidase mimicking towards total antioxidant capacity assay of fruits and vegetables. Food Chem 2024; 445:138732. [PMID: 38367558 DOI: 10.1016/j.foodchem.2024.138732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/23/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
In this study, a straightforward approach is presented for the first time to anchor Ir nanoparticles on the surface of uniform polyaniline (PANi) nanotubes (NTs), which can be used as an efficient peroxidase (POD)-like catalyst. The morphology and chemical structure of the PANi-Ir nanocomposite are characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffractometer (XRD), Raman and X-ray photoelectron spectroscopy (XPS) measurements. Owing to the strong interaction between Ir nanoparticles and PANi, a remarkable catalytic enhancement is achieved compared to the bare Ir black catalyst and individual PANi NTs, dominating withan electron transfer mechanism. Furthermore, an efficient colorimetric sensor for ascorbic acid (AA) is developed with a low detection limit of 1.0 μM (S/N = 3), and a total antioxidant capacity (TAC) sensing platform is also constructed for the rigorous detection and analysis of fruits and vegetables.
Collapse
Affiliation(s)
- Li Deng
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Siyu Ren
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Yue Zhang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Ce Wang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Xiaofeng Lu
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China.
| |
Collapse
|
48
|
Fan L, Shen Y, Lou D, Gu N. Progress in the Computer-Aided Analysis in Multiple Aspects of Nanocatalysis Research. Adv Healthc Mater 2024:e2401576. [PMID: 38936401 DOI: 10.1002/adhm.202401576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/08/2024] [Indexed: 06/29/2024]
Abstract
Making the utmost of the differences and advantages of multiple disciplines, interdisciplinary integration breaks the science boundaries and accelerates the progress in mutual quests. As an organic connection of material science, enzymology, and biomedicine, nanozyme-related research is further supported by computer technology, which injects in new vitality, and contributes to in-depth understanding, unprecedented insights, and broadened application possibilities. Utilizing computer-aided first-principles method, high-speed and high-throughput mathematic, physic, and chemic models are introduced to perform atomic-level kinetic analysis for nanocatalytic reaction process, and theoretically illustrate the underlying nanozymetic mechanism and structure-function relationship. On this basis, nanozymes with desirable properties can be designed and demand-oriented synthesized without repeated trial-and-error experiments. Besides that, computational analysis and device also play an indispensable role in nanozyme-based detecting methods to realize automatic readouts with improved accuracy and reproducibility. Here, this work focuses on the crossing of nanocatalysis research and computational technology, to inspire the research in computer-aided analysis in nanozyme field to a greater extent.
Collapse
Affiliation(s)
- Lin Fan
- Medical School of Nanjing University, Nanjing, 210093, P. R. China
- School of Integrated Circuit Science and Engineering (Industry-Education Integration School), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Yilei Shen
- School of Integrated Circuit Science and Engineering (Industry-Education Integration School), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Doudou Lou
- Nanjing Institute for Food and Drug Control, Nanjing, 211198, P. R. China
| | - Ning Gu
- Medical School of Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
49
|
Ren J, Hu J, Dong F, Xu Y, Peng Y, Qian Y, Zhang G, Wang M, Wang Y. A stepwise-responsive editor integrated with three copper ions for the treatment of oral squamous cell carcinoma. NANO RESEARCH 2024; 17:5424-5434. [DOI: 10.1007/s12274-024-6438-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2025]
|
50
|
Guo Y, Xue Y, Shen B, Dong Y, Zhang H, Yuan J, Liu Z, Li L, Ren K. Modulating Electron Transfer between Pt and MOF Support through Pd Doping Promotes Nanozyme Catalytic Efficiency. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27511-27522. [PMID: 38752668 DOI: 10.1021/acsami.4c06164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Electron transfer is considered to be a typical parameter that affects the catalytic activity of nanozymes. However, there is still controversy regarding whether higher or lower electron transfer numbers are beneficial for improving the catalytic activity of nanozymes. To address this issue, we propose the introduction of Pd doping as an important electron regulation strategy to tune electron transfer between Pt and ZIF-8 carriers (PtxPd1@ZIF-8). We observe a volcano-shaped relationship between the electron transfer number and catalytic activity, reaching its peak at Pt4Pd1@ZIF-8. Mechanism studies indicate that as the electron transfer number from Pt to ZIF-8 carriers increases, the d-band center of the active site Pt increases, reducing the occupancy of antibonding states and enhancing the adsorption capacity of the key intermediate (*O). However, a further increase in the adsorption of *O energy makes it difficult to desorb and participate in the next reaction, thus exhibiting volcanic activity. The optimized Pt4Pd1@ZIF-8 nanozyme is applied to develop an immunoassay for the detection of zearalenone, achieving a detection limit of 0.01 μg/L, which is 6 times higher than that of the traditional enzyme-linked immunosorbent assay. This work not only reveals the potential regulatory mechanism of electron transfer on the catalytic activity of nanozymes but also improves the performance of nanozyme-based biosensors.
Collapse
Affiliation(s)
- Yanguo Guo
- School of Environmental and Safety Engineering, Jiangsu University,Zhenjiang 212013, China
| | - Yuan Xue
- Anshun City Company of Guizhou Tobacco Company, Anshun 561000, China
| | - Bingqing Shen
- School of Environmental and Safety Engineering, Jiangsu University,Zhenjiang 212013, China
| | - Yanxin Dong
- Anshun City Company of Guizhou Tobacco Company, Anshun 561000, China
| | - Hai Zhang
- Anshun City Company of Guizhou Tobacco Company, Anshun 561000, China
| | - Jiawen Yuan
- Anshun City Company of Guizhou Tobacco Company, Anshun 561000, China
| | - Zhenjiang Liu
- School of Environmental and Safety Engineering, Jiangsu University,Zhenjiang 212013, China
| | - Longhua Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kewei Ren
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|