1
|
Ryu CH, Mandal D, Ren H. Gas-Liquid-Solid Three-Phase Boundary in Scanning Electrochemical Cell Microscopy. ACS MEASUREMENT SCIENCE AU 2024; 4:729-736. [PMID: 39713032 PMCID: PMC11659987 DOI: 10.1021/acsmeasuresciau.4c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 12/24/2024]
Abstract
The gas-liquid-solid interface plays a crucial role in various electrochemical energy conversion devices, including fuel cells and electrolyzers. Understanding the effect of gas transfer on the electrochemistry at this three-phase interface is a grand challenge. Scanning electrochemical cell microscopy (SECCM) is an emerging technique for mapping the heterogeneity in electrochemical activity; it also inherently features a three-phase boundary at the nanodroplet cell. Herein, we quantitatively analyze the role of the three-phase boundary in SECCM involving gas via finite element simulation. Oxygen reduction reaction is used as an example for reaction with a gas reactant, which shows that interfacial gas transfer can enhance the overall mass transport of reactant, allowing measuring current density of several A/cm2. The hydrogen evolution reaction is used as an example for reaction with a gas product, and fast interfacial gas transfer kinetics can significantly reduce the concentration of dissolved gas near the electrode. This helps to measure electrode kinetics at a high current density without the complication of gas bubble formation. The contribution of interfacial gas transfer can be understood by directly comparing its kinetics to the mass transfer coefficient from the solution. Our findings aid the quantitative application of SECCM in studying electrochemical reactions involving gases, establishing a basis for investigating electrochemistry at the three-phase boundary.
Collapse
Affiliation(s)
- C. Hyun Ryu
- Department
of Chemistry, The University of Texas at
Austin, Austin, Texas 78712, United States
| | - Debasree Mandal
- Department
of Chemistry, The University of Texas at
Austin, Austin, Texas 78712, United States
| | - Hang Ren
- Department
of Chemistry, The University of Texas at
Austin, Austin, Texas 78712, United States
- Center
for Electrochemistry, The University of
Texas at Austin, Austin, Texas 78712, United States
- Texas
Materials Institute, The University of Texas
at Austin, Austin, Texas 78712, United States
| |
Collapse
|
2
|
Osoro K, Rahman S, Hill CM. Electrochemical nucleation and growth kinetics: insights from single particle scanning electrochemical cell microscopy studies. Faraday Discuss 2024. [PMID: 39541195 DOI: 10.1039/d4fd00131a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The kinetics of particle nucleation and growth are critical to a wide variety of electrochemical systems. While studies carried out at the single particle level are promising for improving our understanding of nucleation and growth processes, conventional analytical frameworks commonly employed in bulk studies may not be appropriate for single particle experiments. Here, we present scanning electrochemical cell microscopy (SECCM) studies of Ag nucleation and growth on carbon and indium tin oxide (ITO) electrodes. Statistical analyses of the data from these experiments reveal significant discrepancies with traditional, quasi-equilibrium kinetic models commonly employed in the analysis of particle nucleation in electrochemical systems. Time-dependent kinetic models are presented capable of appropriately analysing the data generated via SECCM to extract meaningful chemical quantities such as surface energies and kinetic rate constants. These results demonstrate a powerful new approach to the analysis of single particle nucleation and growth data which could be leveraged in differentiating behavior within spatially heterogeneous systems.
Collapse
Affiliation(s)
- Kenneth Osoro
- Department of Chemistry, University of Wyoming, 1000 E University Ave, Laramie, WY 82071, USA.
| | - Sinthia Rahman
- Department of Chemistry, University of Wyoming, 1000 E University Ave, Laramie, WY 82071, USA.
| | - Caleb M Hill
- Department of Chemistry, University of Wyoming, 1000 E University Ave, Laramie, WY 82071, USA.
| |
Collapse
|
3
|
Qiu J, Yuan J, Chu X, Chen S, Zhang J, Peng Z. Correlating Thickness and Phase of Single Co(OH) 2 Micro-Platelets to the Intrinsic Activity of Oxygen Evolution Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402976. [PMID: 38963321 DOI: 10.1002/smll.202402976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Morphology, crystal phase, and its transformation are important structures that frequently determine electrocatalytic activity, but the correlations of intrinsic activity with them are not completely understood. Herein, using Co(OH)2 micro-platelets with well-defined structures (phase, thickness, area, and volume) as model electrocatalysts of oxygen evolution reaction, multiple in situ microscopy is combined to correlate the electrocatalytic activity with morphology, phase, and its transformation. Single-entity morphology and electrochemistry characterized by atomic force microscopy and scanning electrochemical cell microscopy reveal a thickness-dependent turnover frequency (TOF) of α-Co(OH)2. The TOF (≈9.5 s-1) of α-Co(OH)2 with ≈14 nm thickness is ≈95-fold higher than that (≈0.1 s-1) with ≈80 nm. Moreover, this thickness-dependent activity has a critical thickness of ≈30 nm, above which no thickness-dependence is observed. Contrarily, β-Co(OH)2 reveals a lower TOF (≈0.1 s-1) having no significant correlation with thickness. Combining single-entity electrochemistry with in situ Raman microspectroscopy, this thickness-dependent activity is explained by more reversible Co3+/Co2+ kinetics and larger ratio of active Co sites of thinner α-Co(OH)2, accompanied with faster phase transformation and more extensive surface restructuration. The findings highlight the interactions among thickness, ratio of active sites, kinetics of active sites, and phase transformation, and offer new insights into structure-activity relationships at single-entity level.
Collapse
Affiliation(s)
- Ji Qiu
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Jiangmei Yuan
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Xiaoqing Chu
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Shu Chen
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Jie Zhang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
- Laboratory of Advanced Spectroelectrochemistry and Li-ion Batteries, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhangquan Peng
- Laboratory of Advanced Spectroelectrochemistry and Li-ion Batteries, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
4
|
Gaudin LF, Bentley CL. Revealing the diverse electrochemistry of nanoparticles with scanning electrochemical cell microscopy. Faraday Discuss 2024. [PMID: 39445458 DOI: 10.1039/d4fd00115j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The next generation of electroactive materials will depend on advanced nanomaterials, such as nanoparticles (NPs), for improved function and reduced cost. As such, the development of structure-function relationships for these NPs has become a prime focus for researchers from many fields, including materials science, catalysis, energy storage, photovoltaics, environmental/biomedical sensing, etc. The technique of scanning electrochemical cell microscopy (SECCM) has naturally positioned itself as a premier experimental methodology for the investigation of electroactive NPs, due to its unique capability to encapsulate individual, spatially distinct entities, and to apply a potential to (and measure the resulting current of) single-NPs. Over the course of conducting these single-NP investigations, a number of unexpected (i.e. rarely-reported) results have been collected, including fluctuating current responses, and carrying of the NP by the SECCM probe, hypothesised to be due to insufficient NP-surface interaction. Additionally, locations with measurable electrochemical activity have been found to contain no associated NP, and conversely locations with no activity have been found to contain NPs. Through presenting and discussing these findings, this article seeks to highlight complications in single-NP SECCM experiments, particularly those arising from issues with sample preparation.
Collapse
Affiliation(s)
- Lachlan F Gaudin
- School of Chemistry, Monash University, Clayton, 3800 VIC, Australia.
| | - Cameron L Bentley
- School of Chemistry, Monash University, Clayton, 3800 VIC, Australia.
| |
Collapse
|
5
|
Pollet BG, Kalanur SS. Applications of Ferric Oxide in Water Splitting by Electrolysis: A Comprehensive Review. Molecules 2024; 29:4990. [PMID: 39519631 PMCID: PMC11547600 DOI: 10.3390/molecules29214990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
In water electrolysis, the use of an efficient catalyst derived from earth-abundant materials which is cost-effective and stable is essential for the economic sustainability of hydrogen production. A wide range of catalytic materials have been reported upon so far, among which Fe2O3 stands out as one of the most credible candidates in terms of cost and abundance. However, Fe2O3 faces several limitations due to its poor charge transfer properties and catalytic ability; thus, significant modifications are essential for its effective utilization. Considering the future of water electrolysis, this review provides a detailed summary of Fe2O3 materials employed in electrolytic applications with a focus on critically assessing the key electrode modifications that are essential for the materials' utilization as efficient electrocatalysts. With this in mind, Fe2O3 was implemented in a heterojunction/composite, doped, carbon supported, crystal facet tuned system, as well as in metal organic framework (MOF) systems. Furthermore, Fe2O3 was utilized in alkaline, seawater, anion exchange membrane, and solid oxide electrolysis systems. Recently, magnetic field-assisted water electrolysis has also been explored. This comprehensive review highlights the fact that the applicability of Fe2O3 in electrolysis is limited, and hence, intense and strategically focused research is vital for converting Fe2O3 into a commercially viable, cost-effective, and efficient catalyst material.
Collapse
Affiliation(s)
| | - Shankara S. Kalanur
- Green Hydrogen Lab (GH2Lab), Hydrogen Research Institute (HRI), Université du Québec à Trois Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, QC G9A 5H7, Canada;
| |
Collapse
|
6
|
Salek S, Byers JC. Influence of Particle Size on Mass Transport during the Oxygen Reduction Reaction at Single Silver Particles Using Scanning Electrochemical Cell Microscopy. J Phys Chem Lett 2024; 15:8494-8500. [PMID: 39133521 DOI: 10.1021/acs.jpclett.4c01832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Single entity electrochemical measurements enable insight into the electrocatalytic activity of individual particles based on composition, shape, and crystallographic orientation. In addition to structural effects, particle size can further influence electrocatalytic activity and reaction mechanisms through mass transport effects. In this work, electrodeposition was used to grow well-separated silver particles of varying sizes from 100 to 500 nm in radius. Using a multimicroscopy approach of scanning electrochemical cell microscopy combined with scanning electron microscopy, the electrocatalytic current of individual silver particles toward the oxygen reduction reaction was evaluated as a function of their size. It was found that the current density increased with decreasing particle radius, which was correlated to the mass transport of oxygen to the silver particle, demonstrating the importance of size dependent mass transport effects that can occur at the single particle level using scanning electrochemical cell microscopy and opening new opportunities for quantitative electrocatalysis measurements.
Collapse
Affiliation(s)
- Samaneh Salek
- Département de Chimie, Université du Québec à Montréal, Case Postale 8888, succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada
| | - Joshua C Byers
- Département de Chimie, Université du Québec à Montréal, Case Postale 8888, succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada
| |
Collapse
|
7
|
Roehrich B, Sepunaru L. Impedimetric Measurement of Exchange Currents and Ionic Diffusion Coefficients in Individual Pseudocapacitive Nanoparticles. ACS MEASUREMENT SCIENCE AU 2024; 4:467-474. [PMID: 39184362 PMCID: PMC11342456 DOI: 10.1021/acsmeasuresciau.4c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/04/2024] [Accepted: 06/27/2024] [Indexed: 08/27/2024]
Abstract
Among electroanalytical techniques, electrochemical impedance spectroscopy (EIS) offers the unique advantage of a high degree of frequency resolution. This enables EIS to readily deconvolute between the capacitive, resistive, and diffusional processes that underlie electrochemical devices. Here, we report the measurement of impedance spectra of individual, pseudocapacitive nanoparticles. We chose Prussian blue as our model system, as it couples an electron-transfer reaction with sodium ion intercalation-processes which, while intrinsically convoluted, can be readily resolved using EIS. We used a scanning electrochemical cell microscope (SECCM) to isolate single Prussian blue particles in a microdroplet and measured their impedance spectra using the multi-sine, fast Fourier transform technique. In doing so, we were able to extract the exchange current density and sodium ion diffusivity for each particle, which respectively inform on their electronic and ionic conductivities. Surprisingly, these parameters vary by over an order of magnitude between particles and are not correlated to particle size nor to each other. The implication of this apparent heterogeneity is that in a hypothetical battery cathode, one active particle may transfer electrons 10 times faster than its neighbor; another may suffer from sluggish sodium ion transport and have restricted charging rate capabilities compared to a better-performing particle elsewhere in the same electrode. Our results inform on this intrinsic heterogeneity while demonstrating the utility of EIS in future single-particle studies.
Collapse
Affiliation(s)
- Brian Roehrich
- Department of Chemistry and
Biochemistry, University of California Santa
Barbara, Santa
Barbara, California 93106, United States
| | - Lior Sepunaru
- Department of Chemistry and
Biochemistry, University of California Santa
Barbara, Santa
Barbara, California 93106, United States
| |
Collapse
|
8
|
Cabré MB, Schröder C, Pota F, de Oliveira MAC, Nolan H, Henderson L, Brazel L, Spurling D, Nicolosi V, Martinuz P, Longhi M, Amargianou F, Bärmann P, Petit T, McKelvey K, Colavita PE. Carbon Thin-Film Electrodes as High-Performing Substrates for Correlative Single Entity Electrochemistry. SMALL METHODS 2024:e2400639. [PMID: 39155797 DOI: 10.1002/smtd.202400639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/24/2024] [Indexed: 08/20/2024]
Abstract
Correlative methods to characterize single entities by electrochemistry and microscopy/spectroscopy are increasingly needed to elucidate structure-function relationships of nanomaterials. However, the technical constraints often differ depending on the characterization techniques to be applied in combination. One of the cornerstones of correlative single-entity electrochemistry (SEE) is the substrate, which needs to achieve a high conductivity, low roughness, and electrochemical inertness. This work shows that graphitized sputtered carbon thin films constitute excellent electrodes for SEE while enabling characterization with scanning probe, optical, electron, and X-ray microscopies. Three different correlative SEE experiments using nanoparticles, nanocubes, and 2D Ti3C2Tx MXene materials are reported to illustrate the potential of using carbon thin film substrates for SEE characterization. The advantages and unique capabilities of SEE correlative strategies are further demonstrated by showing that electrochemically oxidized Ti3C2Tx MXene display changes in chemical bonding and electrolyte ion distribution.
Collapse
Affiliation(s)
| | | | - Filippo Pota
- School of Chemistry, Trinity College Dublin, Dublin, 2, Ireland
| | | | - Hugo Nolan
- School of Chemistry, Trinity College Dublin, Dublin, 2, Ireland
| | - Lua Henderson
- School of Chemistry, Trinity College Dublin, Dublin, 2, Ireland
| | - Laurence Brazel
- School of Chemistry, Trinity College Dublin, Dublin, 2, Ireland
| | - Dahnan Spurling
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, Dublin, 2, Ireland
| | - Valeria Nicolosi
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, Dublin, 2, Ireland
| | - Pietro Martinuz
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, Milano, 20133, Italy
| | - Mariangela Longhi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, Milano, 20133, Italy
| | - Faidra Amargianou
- Helmholtz-Zentrum Berlin für Materialienund Energie GmbH (HZB), Albert-Einstein-Straße15, 12489, Berlin, Germany
| | - Peer Bärmann
- Helmholtz-Zentrum Berlin für Materialienund Energie GmbH (HZB), Albert-Einstein-Straße15, 12489, Berlin, Germany
| | - Tristan Petit
- Helmholtz-Zentrum Berlin für Materialienund Energie GmbH (HZB), Albert-Einstein-Straße15, 12489, Berlin, Germany
| | - Kim McKelvey
- School of Chemistry, Trinity College Dublin, Dublin, 2, Ireland
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, 6012, New Zealand
| | | |
Collapse
|
9
|
Clarke TB, Krushinski LE, Vannoy KJ, Colón-Quintana G, Roy K, Rana A, Renault C, Hill ML, Dick JE. Single Entity Electrocatalysis. Chem Rev 2024; 124:9015-9080. [PMID: 39018111 DOI: 10.1021/acs.chemrev.3c00723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Making a measurement over millions of nanoparticles or exposed crystal facets seldom reports on reactivity of a single nanoparticle or facet, which may depart drastically from ensemble measurements. Within the past 30 years, science has moved toward studying the reactivity of single atoms, molecules, and nanoparticles, one at a time. This shift has been fueled by the realization that everything changes at the nanoscale, especially important industrially relevant properties like those important to electrocatalysis. Studying single nanoscale entities, however, is not trivial and has required the development of new measurement tools. This review explores a tale of the clever use of old and new measurement tools to study electrocatalysis at the single entity level. We explore in detail the complex interrelationship between measurement method, electrocatalytic material, and reaction of interest (e.g., carbon dioxide reduction, oxygen reduction, hydrazine oxidation, etc.). We end with our perspective on the future of single entity electrocatalysis with a key focus on what types of measurements present the greatest opportunity for fundamental discovery.
Collapse
Affiliation(s)
- Thomas B Clarke
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lynn E Krushinski
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kathryn J Vannoy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Kingshuk Roy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ashutosh Rana
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christophe Renault
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Megan L Hill
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jeffrey E Dick
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
10
|
Jiang B, Li H, Wang W, Wang H. Optical in situ deciphering of the surface reconstruction-assistant multielectron transfer event of single Co 3O 4 nanoparticles. Proc Natl Acad Sci U S A 2024; 121:e2407146121. [PMID: 39018196 PMCID: PMC11287257 DOI: 10.1073/pnas.2407146121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/24/2024] [Indexed: 07/19/2024] Open
Abstract
Surface reconstruction determines the fate of catalytic sites on the near-surface during the oxygen evolution reaction. However, deciphering the conversion mechanism of various intermediate-states during surface reconstruction remains a challenge. Herein, we employed an optical imaging technique to draw the landscape of dynamic surface reconstruction on individual Co3O4 nanoparticles. By regulating the surface states of Co3O4 nanoparticles, we explored dynamic growth of the CoOx(OH)y sublayer on single Co3O4 nanoparticles and directly identified the conversion between two dynamics. Rich oxygen vacancies induced more active sites on the surface and prolonged surface reconstruction, which enhanced electrochemical redox and oxygen evolution. These results were further verified by in situ electrochemical extinction spectroscopy of single Co3O4 nanoparticles. We elucidate the heterogeneous evolution of surface reconstruction on individual Co3O4 nanoparticles and present a unique perspective to understand the fate of catalytic species on the nanosurface, which is of enduring significance for investigating the heterogeneity of multielectron-transfer events.
Collapse
Affiliation(s)
- Bo Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing210023, China
| | - Haoran Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing210023, China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing210023, China
| | - Hui Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing210023, China
| |
Collapse
|
11
|
Han S, Lee HJ, Kim T, Lim SY, Kim J. Flexible and Dynamic Light-Guided Electrochemiluminescence for Spatiotemporal Imaging of Photoelectrochemical Processes on Hematite. Anal Chem 2024; 96:11146-11154. [PMID: 38917341 DOI: 10.1021/acs.analchem.3c05097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Here, we report an electrochemiluminescence (ECL)-based approach for imaging of local photoelectrochemical processes on hematite in a spatially and temporally controlled manner. The local processes were guided by flexible and dynamic light illumination, not requiring any prepatterned conductive features or photomasks, with a digital micromirror device (DMD). The imaging approach was based on light-addressable electrochemical reactions on hematite, resulting in photoinduced ECL emission for spatiotemporally resolved imaging of photoelectrochemical processes selectively guided by light illumination. After clarifying the capability of hematite as a photosensitive electrode, we validated that the illuminated hematite exhibited stable light-guided ECL emission in correspondence with the illuminated area, with a spatial resolution of 0.8 μm and a temporal resolution of 1 μs, even over a long period of 6 h. More importantly, this study exemplified the simple yet effective ECL-based approach for electrochemical visualization of local photoelectrochemical processes guided by flexible and dynamic adjustment of light illumination in a spatiotemporally controlled way.
Collapse
Affiliation(s)
- Sungeun Han
- Department of Chemistry, Research Institute for Basic Science, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyun Joo Lee
- Department of Chemistry, Research Institute for Basic Science, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Taeyoon Kim
- Department of Chemistry, Research Institute for Basic Science, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Yul Lim
- Department of Chemistry, Research Institute for Basic Science, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohoon Kim
- Department of Chemistry, Research Institute for Basic Science, Kyung Hee University, Seoul 02447, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
12
|
Gaudin LF, Wright IR, Harris-Lee TR, Jayamaha G, Kang M, Bentley CL. Five years of scanning electrochemical cell microscopy (SECCM): new insights and innovations. NANOSCALE 2024; 16:12345-12367. [PMID: 38874335 DOI: 10.1039/d4nr00859f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Scanning electrochemical cell microscopy (SECCM) is a nanopipette-based technique which enables measurement of localised electrochemistry. SECCM has found use in a wide range of electrochemical applications, and due to the wider uptake of this technique in recent years, new applications and techniques have been developed. This minireview has collected all SECCM research articles published in the last 5 years, to demonstrate and celebrate the recent advances, and to make it easier for SECCM researchers to remain well-informed. The wide range of SECCM applications is demonstrated, which are categorised here into electrocatalysis, electroanalysis, photoelectrochemistry, biological materials, energy storage materials, corrosion, electrosynthesis, and instrumental development. In the collection of this library of SECCM studies, a few key trends emerge. (1) The range of materials and processes explored with SECCM has grown, with new applications emerging constantly. (2) The instrumental capabilities of SECCM have grown, with creative techniques being developed from research groups worldwide. (3) The SECCM research community has grown significantly, with adoption of the SECCM technique becoming more prominent.
Collapse
Affiliation(s)
- Lachlan F Gaudin
- School of Chemistry, Monash University, Clayton, 3800 VIC, Australia.
| | - India R Wright
- School of Chemistry, Monash University, Clayton, 3800 VIC, Australia.
| | - Thom R Harris-Lee
- School of Chemistry, Monash University, Clayton, 3800 VIC, Australia.
- Department of Chemistry, University of Bath, Claverton Down, Bath, UK
| | - Gunani Jayamaha
- School of Chemistry, University of Sydney, Camperdown, 2050 NSW, Australia
| | - Minkyung Kang
- School of Chemistry, University of Sydney, Camperdown, 2050 NSW, Australia
| | - Cameron L Bentley
- School of Chemistry, Monash University, Clayton, 3800 VIC, Australia.
| |
Collapse
|
13
|
Aruchamy G, Kim BK. Recent Trends and Perspectives in Single-Entity Electrochemistry: A Review with Focus on a Water Splitting Reaction. Crit Rev Anal Chem 2024:1-17. [PMID: 38829955 DOI: 10.1080/10408347.2024.2358492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Electrochemical measurements involving single nanoparticles have attracted considerable research attention. In recent years, various studies have been conducted on single-entity electrochemistry (SEE) for the in-depth analyses of catalytic reactions. Although, several electrocatalysts have been developed for H2 energy production, designing innovative electrocatalysts for this purpose remains a challenging task. Stochastic collision electrochemistry is gaining increased attention because it has led to new findings in the SEE field. Importantly, it facilitates establishing structure activity relationships for electrocatalysts by monitoring transient signals. This article reviews the recent achievements related to hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) using different electrocatalysts at the nanoscale level. In particular, it discusses the electrocatalytic activities of noble metal nanoparticles, including Ag, Au, Pt, and Pd nanoparticles, at the single-particle level. Because heterogeneity is a key factor affecting the catalytic activity of nanostructures, our work focuses on the influence of heterogeneities in catalytic materials on the OER and HER activities. These results may help to achieve a better understanding of the fundamental processes involved in the water splitting reaction.
Collapse
Affiliation(s)
- Gowrisankar Aruchamy
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, Republic of Korea
| | - Byung-Kwon Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
14
|
Ryu CH, Ren H. Simultaneous Mapping of Electrocatalytic Activity and Selectivity via Hybrid Scanning Electrochemical Probe Microscopy. NANO LETTERS 2024; 24:6112-6116. [PMID: 38717098 PMCID: PMC11141319 DOI: 10.1021/acs.nanolett.4c01280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Nanoscale scanning electrochemical probe microscopy started to elucidate the heterogeneity of electrocatalytic activity at electrode surfaces. However, understanding the heterogeneity in product selectivity, another crucial aspect of interfacial reactivity, remains challenging. Herein, we introduce a method combining scanning electrochemical microscopy (SECM) and scanning electrochemical cell microscopy (SECCM) to enable the spatially resolved mapping of both activity and selectivity in electrocatalysis. A dual-channel nanopipette probe was developed: one channel for activity mapping and the other for product detection with a high collection efficiency (>95%) and sensitivity. Simultaneous mapping of activity and selectivity in the oxygen reduction reaction (ORR) is demonstrated. Combined with colocalized crystal orientation mapping, we uncover the local electrocatalytic performance of ORR at different facets on polycrystalline Pt and Au. The high-resolution selectivity mapping enabled by our method with colocalized structural characterization can provide structure-activity-selectivity relationships that are often unavailable in ensemble measurement, holding promise for understanding key structural motifs controlling interfacial reactivity.
Collapse
Affiliation(s)
- C Hyun Ryu
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hang Ren
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- Center for Electrochemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
15
|
Zhang L, Wahab OJ, Jallow AA, O’Dell ZJ, Pungsrisai T, Sridhar S, Vernon KL, Willets KA, Baker LA. Recent Developments in Single-Entity Electrochemistry. Anal Chem 2024; 96:8036-8055. [PMID: 38727715 PMCID: PMC11112546 DOI: 10.1021/acs.analchem.4c01406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Affiliation(s)
- L. Zhang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | - O. J. Wahab
- Department
of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | - A. A. Jallow
- Department
of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | - Z. J. O’Dell
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - T. Pungsrisai
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - S. Sridhar
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - K. L. Vernon
- Department
of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | - K. A. Willets
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - L. A. Baker
- Department
of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| |
Collapse
|
16
|
Huang Q, Sheng H. Magnetic-Field-Induced Spin Regulation in Electrocatalytic Reactions. Chemistry 2024; 30:e202400352. [PMID: 38470164 DOI: 10.1002/chem.202400352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/13/2024]
Abstract
The utilization of a magnetic field to manipulate spin states has emerged as a novel approach to enhance efficiency in electrocatalytic reactions, distinguishing from traditional strategies that focus on tuning activation energy barriers. Currently, this approach is specifically tailored to reactions where spin states change during the catalytic process, such as the oxidation of singlet H2O to triplet O2. In the magnetically enhanced oxygen evolution reaction (OER) procedure, the parallel spin alignment on the ferromagnetic catalyst was induced by the external magnetic field, facilitating the triplet O-O bonding, which is the rate limiting step in OER. This review centers on recent advancements in harnessing external magnetic fields to enhance OER performance, delving into mechanistic approaches for this magnetic promotion. Additionally, we provide a summary of magnetic field application in other electrocatalytic reactions, including oxygen reduction, methanol oxidation, and CO2 reduction.
Collapse
Affiliation(s)
- Qing Huang
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hua Sheng
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
17
|
Gaudin LF, Funston AM, Bentley CL. Drop-cast gold nanoparticles are not always electrocatalytically active for the borohydride oxidation reaction. Chem Sci 2024; 15:7243-7258. [PMID: 38756820 PMCID: PMC11095372 DOI: 10.1039/d4sc00676c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
The next-generation of energy devices rely on advanced catalytic materials, especially electrocatalytic nanoparticles (NPs), to achieve the performance and cost required to reshape the energy landscape towards a more sustainable and cleaner future. It has become imperative to maximize the performance of the catalyst, both through improvement of the intrinsic activity of the NP, and by ensuring all particles are performing at the level of their capability. This requires not just a structure-function understanding of the catalytic material, but also an understanding of how the catalyst performance is impacted by its environment (substrate, ligand, etc.). The intrinsic activity and environment of catalytic particles on a support may differ wildly by particle, thus it is essential to build this understanding from a single-entity perspective. To achieve this herein, scanning electrochemical cell microscopy (SECCM) has been used, which is a droplet-based scanning probe technique which can encapsulate single NPs, and apply a voltage to the nanoparticle whilst measuring its resulting current. Using SECCM, single AuNPs have been encapsulated, and their activity for the borohydride oxidation reaction (BOR) is measured. A total of 268 BOR-active locations were probed (178 single particles) and a series of statistical analyses were performed in order to make the following discoveries: (1) a certain percentage of AuNPs display no BOR activity in the SECCM experiment (67.4% of single NPs), (2) visibly-similar particles display wildly varied BOR activities which cannot be explained by particle size, (3) the impact of cluster size (#NP at a single location) on a selection of diagnostic electrochemical parameters can be easily probed with SECCM, (4) exploratory statistical correlation between these parameters can be meaningfully performed with SECCM, and (5) outlying "abnormal" NP responses can be probed on a particle-by-particle basis. Each one of these findings is its own worthwhile study, yet this has been achieved with a single SECCM scan. It is hoped that this research will spur electrochemists and materials scientists to delve deeper into their substantial datasets in order to enhance the structure-function understanding, to bring about the next generation of high-performance electrocatalysts.
Collapse
Affiliation(s)
- Lachlan F Gaudin
- School of Chemistry, Monash University Clayton 3800 VIC Australia
| | - Alison M Funston
- School of Chemistry, Monash University Clayton 3800 VIC Australia
- ARC Centre of Excellence in Exciton Science, Monash University Clayton 3800 VIC Australia
| | | |
Collapse
|
18
|
Lin L, Xu Y, Han Y, Xu R, Wang T, Sun Z, Yan Z. Spin-Magnetic Effect of d-π Conjugation Polymer Enhanced O-H Cleavage in Water Oxidation. J Am Chem Soc 2024; 146:7363-7372. [PMID: 38452363 DOI: 10.1021/jacs.3c11907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
A deep understanding of the mechanism for the spin-magnetic effect on O-H cleavage is crucial for the development of new catalysts for water oxidation. Herein, we designed and synthesized the crystalline Fe-DABDT and Co-DABDT (DABDT = 2,5-diaminobenzene-1,4-dithiol) and optimized an effective magnetic moment to explore the role of the spin-magnetic effect in the regulation of water oxidation activity. It can be found that the OER activity of the catalyst is positively correlated with its effective magnetic moment. Under the external magnetic field, Fe-DABDT with more spin single electrons has a stronger spin-magnetic response to water oxidation than Fe/Co-DABDT and Co-DABDT. The increase in OER current of Fe-DABDT is nearly 2 times higher than that of Co-DABDT. Experimental and density functional theory studies show that magnetized Fe sites could realize nucleophilic reaction, accelerate the polarization of electron spin states, and promote the polar decomposition of O-H and the formation of the O-O bond. This study provides mechanistic insight into the spin-magnetic effect of oxygen evolution reaction and further understanding of the spin origin of catalytic activity, which is expected to improve the energy efficiency of hydrogen production.
Collapse
Affiliation(s)
- Liu Lin
- College of Arts and Sciences & Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Yunming Xu
- College of Arts and Sciences & Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Yiting Han
- College of Arts and Sciences & Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Ruikun Xu
- College of Arts and Sciences & Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Tongyue Wang
- College of Arts and Sciences & Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Zemin Sun
- College of Arts and Sciences & Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Zhenhua Yan
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
19
|
Lee H, Kim J, Hwang M, Kim J. Galvanic Bipolar Electrode Arrays with Self-Driven Optical Readouts. ACS Sens 2023; 8:4374-4383. [PMID: 37857596 DOI: 10.1021/acssensors.3c01807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
In this work, we report a bipolar electrode (BPE) array system with self-driven optical readouts of the faradic current flowing through the BPEs. The BPE array system is based on the spontaneous redox reactions that are respectively occurring at opposite poles of the BPEs with appropriate electrocatalysts on the poles; this system is analogous to one consisting of galvanic electrochemical cells. The galvanic BPE array system operates in a self-powered mode that requires there to be neither a direct electrical connection nor external electrical polarization to each BPE. Importantly, the appropriate electrocatalysts on the poles play a critical role in the galvanic BPE array system to induce the spontaneous redox reactions occurring at the poles of BPEs. Moreover, the galvanic BPE array system provides self-driven optical readouts, including fluorometric and colorimetric ones, to report the faradaic current resulting from the spontaneous redox reactions on the BPE poles. Based on the unique benefits that the galvanic BPE array system has over conventional BPEs, we demonstrated the promising potential of galvanic BPE arrays for the simple yet rapid and quantitative screening of electrocatalysts for the oxygen reduction reaction as well as sensitive sensing of H2O2 in parallel.
Collapse
Affiliation(s)
- Hyein Lee
- Department of Chemistry, Research Institute for Basic Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jiwoo Kim
- Department of Chemistry, Research Institute for Basic Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Misol Hwang
- Department of Chemistry, Research Institute for Basic Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohoon Kim
- Department of Chemistry, Research Institute for Basic Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
20
|
Lai Z, Liu M, Bi P, Huang F, Jin Y. Perspectives on Corrosion Studies Using Scanning Electrochemical Cell Microscopy: Challenges and Opportunities. Anal Chem 2023; 95:15833-15850. [PMID: 37844123 DOI: 10.1021/acs.analchem.3c02423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Scanning electrochemical cell microscopy (SECCM) allows for electrochemical imaging at the micro- or nanoscale by confining the electrochemical reaction cell in a small meniscus formed at the end of a micro- or nanopipette. This technique has gained popularity in electrochemical imaging due to its high-throughput nature. Although it shows considerable application potential in corrosion science, there are still formidable and exciting challenges to be faced, particularly relating to the high-throughput characterization and analysis of microelectrochemical big data. The objective of this perspective is to arouse attention and provide opinions on the challenges, recent progress, and future prospects of the SECCM technique to the electrochemical society, particularly from the viewpoint of corrosion scientists. Specifically, four main topics are systematically reviewed and discussed: (1) the development of SECCM; (2) the applications of SECCM for corrosion studies; (3) the challenges of SECCM in corrosion studies; and (4) the opportunities of SECCM for corrosion science.
Collapse
Affiliation(s)
- Zhaogui Lai
- National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 102206, P. R. China
| | - Min Liu
- New Materials Institute, University of Nottingham Ningbo China, Ningbo 315100, P. R. China
| | - Peng Bi
- Laboratory for Nuclear Materials, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Feifei Huang
- National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 102206, P. R. China
| | - Ying Jin
- National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 102206, P. R. China
| |
Collapse
|
21
|
Khalil AM, Abdelaal S, Abdelhady AM, Abou-Salem LI, Shash NM, Elmaghraby EK. Radiation-induced lattice relaxation in [Formula: see text]-Fe[Formula: see text]O[Formula: see text] nanorods. Sci Rep 2023; 13:16194. [PMID: 37758762 PMCID: PMC10533876 DOI: 10.1038/s41598-023-43332-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023] Open
Abstract
We report radiation-induced lattice relaxation of the [Formula: see text]-Fe[Formula: see text]O[Formula: see text] and its associated alteration of particle morphology. The [Formula: see text]-Fe[Formula: see text]O[Formula: see text] was grown in solution by microwave hydrothermal synthesis technique in which more than half of the synthesized material was nanorods with axis along the (001) direction. Five sets of the synthesized [Formula: see text]-Fe[Formula: see text]O[Formula: see text] samples were irradiated using gamma-ray from [Formula: see text]Co cell with doses of 600 kGy, 700 kGy, 800 kGy, 900 kGy, and 1 MGy. The investigation of the pristine and gamma-irradiated samples was carried out using X-ray powder diffraction, transmission electron microscope, and electron paramagnetic resonance methods. Results showed that continuous alternation of radiation-induced lattice compression and expansion causes lattice relaxation. The morphology of the [Formula: see text]-Fe[Formula: see text]O[Formula: see text] nanorods was found to change with absorbed dose into buckyball-shaped particles in response to the alternation of the compression and expansion strain. The EPR results showed a correlation between distortion in the [Formula: see text]-[Formula: see text] octahedron structure and the relaxation of the lattice. The synthesis, growth, and relaxation are discussed in detail.
Collapse
Affiliation(s)
- Ahmad M. Khalil
- Physics Department, Faculty of Science, Benha University, Banha, Egypt
- Basic Science Department, Faculty of Engineering, Sinai University, Arish, Egypt
| | - Saad Abdelaal
- Accelerator and Ion Sources Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, 13759 Egypt
- Central Lab for Elemental and Isotopic Analysis, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, 13759 Egypt
| | - A. M. Abdelhady
- Accelerator and Ion Sources Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, 13759 Egypt
- Central Lab for Elemental and Isotopic Analysis, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, 13759 Egypt
| | - L. I. Abou-Salem
- Physics Department, Faculty of Science, Benha University, Banha, Egypt
| | - N. M. Shash
- Physics Department, Faculty of Science, Benha University, Banha, Egypt
| | - Elsayed K. Elmaghraby
- Experimental Nuclear Physics Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, 13759 Egypt
| |
Collapse
|
22
|
Wang Z, Chen J, Ni C, Nie W, Li D, Ta N, Zhang D, Sun Y, Sun F, Li Q, Li Y, Chen R, Bu T, Fan F, Li C. Visualizing the role of applied voltage in non-metal electrocatalysts. Natl Sci Rev 2023; 10:nwad166. [PMID: 37565210 PMCID: PMC10411668 DOI: 10.1093/nsr/nwad166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/09/2023] [Accepted: 06/05/2023] [Indexed: 08/12/2023] Open
Abstract
Understanding how applied voltage drives the electrocatalytic reaction at the nanoscale is a fundamental scientific problem, particularly in non-metallic electrocatalysts, due to their low intrinsic carrier concentration. Herein, using monolayer molybdenum disulfide (MoS2) as a model system of non-metallic catalyst, the potential drops across the basal plane of MoS2 (ΔVsem) and the electric double layer (ΔVedl) are decoupled quantitatively as a function of applied voltage through in-situ surface potential microscopy. We visualize the evolution of the band structure under liquid conditions and clarify the process of EF keeping moving deep into Ec, revealing the formation process of the electrolyte gating effect. Additionally, electron transfer (ET) imaging reveals that the basal plane exhibits high ET activity, consistent with the results of surface potential measurements. The potential-dependent behavior of kf and ns in the ET reaction are further decoupled based on the measurements of ΔVsem and ΔVedl. Comparing the ET and hydrogen evolution reaction imaging results suggests that the low electrocatalytic activity of the basal plane is mainly due to the absence of active sites, rather than its electron transfer ability. This study fills an experimental gap in exploring driving forces for electrocatalysis at the nanoscale and addresses the long-standing issue of the inability to decouple charge transfer from catalytic processes.
Collapse
Affiliation(s)
- Ziyuan Wang
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jun Chen
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Energy College, Universityof Chinese Academy of Sciences, Beijing 100049, China
| | - Chenwei Ni
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Energy College, Universityof Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Nie
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Energy College, Universityof Chinese Academy of Sciences, Beijing 100049, China
| | - Dongfeng Li
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Energy College, Universityof Chinese Academy of Sciences, Beijing 100049, China
| | - Na Ta
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Deyun Zhang
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Energy College, Universityof Chinese Academy of Sciences, Beijing 100049, China
| | - Yimeng Sun
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Energy College, Universityof Chinese Academy of Sciences, Beijing 100049, China
| | - Fusai Sun
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Energy College, Universityof Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Li
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Energy College, Universityof Chinese Academy of Sciences, Beijing 100049, China
| | - Yuran Li
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ruotian Chen
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Tiankai Bu
- Department of Materials, Imperial College London, London SW7 2AZ, UK
| | - Fengtao Fan
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Can Li
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
23
|
Peng Y, Gao C, Deng X, Zhao J, Chen Q. Elucidating the Geometric Active Sites for Oxygen Evolution Reaction on Crystalline Iron-Substituted Cobalt Hydroxide Nanoplates. Anal Chem 2023. [PMID: 37490501 DOI: 10.1021/acs.analchem.3c01420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Transition-metal (oxy)hydroxides are among the most active and studied catalysts for the oxygen evolution reaction in alkaline electrolytes. However, the geometric distribution of active sites is still elusive. Here, using the well-defined crystalline iron-substituted cobalt hydroxide as a model catalyst, we reported the scanning electrochemical cell microscopy (SECCM) study of single-crystalline nanoplates, where the oxygen evolution reaction at individual nanoplates was isolated and evaluated independently. With integrated prior- and post-SECCM scanning electron microscopy of the catalyst morphology, correlated structure-activity information of individual electrocatalysts was obtained. Our result reveals that while the active sites are largely located at the edges of the pristine Co(OH)2 nanoplates, the Fe lattice incorporation significantly promotes the basal plane activities. Our approach of correlative imaging provides new insights into the effect of iron incorporation on active site distribution across nano-electrocatalysts.
Collapse
Affiliation(s)
- Yu Peng
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Cong Gao
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Xiaoli Deng
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Jiao Zhao
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Qianjin Chen
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
24
|
Wu G, Qian C, Lv WL, Zhao X, Liu XW. Dynamic imaging of interfacial electrochemistry on single Ag nanowires by azimuth-modulated plasmonic scattering interferometry. Nat Commun 2023; 14:4194. [PMID: 37443367 DOI: 10.1038/s41467-023-39866-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Direct visualization of surface chemical dynamics in solution is essential for understanding the mechanisms involved in nanocatalysis and electrochemistry; however, it is challenging to achieve high spatial and temporal resolution. Here, we present an azimuth-modulated plasmonic imaging technique capable of imaging dynamic interfacial changes. The method avoids strong interference from reflected light and consequently eliminates the parabolic-like interferometric patterns in the images, allowing for a 67-fold increase in the spatial resolution of plasmonic imaging. We demonstrate that this optical imaging approach enables comprehensive analyses of surface chemical dynamics and identification of previously unknown surface reaction heterogeneity by investigating electrochemical redox reactions over single silver nanowires as an example. This work provides a general strategy for high-resolution plasmonic imaging of surface electrochemical dynamics and other interfacial chemical reactions, complementing existing surface characterization methods.
Collapse
Affiliation(s)
- Gang Wu
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Chen Qian
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| | - Wen-Li Lv
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaona Zhao
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xian-Wei Liu
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
25
|
Gao C, Li Y, Zhao J, Sun W, Guang S, Chen Q. Measuring the Pseudocapacitive Behavior of Individual V 2O 5 Particles by Scanning Electrochemical Cell Microscopy. Anal Chem 2023. [PMID: 37392190 DOI: 10.1021/acs.analchem.3c00255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
V2O5 is a promising pseudocapacitive material for electrochemical energy storage with balanced power and energy density. Understanding the charge-storage mechanism is of significance to further improve the rate performance. Here, we report an electrochemical study of individual V2O5 particles using scanning electrochemical cell microscopy with colocalized electron microscopy. A carbon sputtering procedure is proposed for the pristine V2O5 particles to improve their structure stability and electronic conductivity. The achieved high-quality electrochemical cyclic voltammetry results, structural integrity, and high oxidation to reduction charge ratio (as high as 97.74%) assured further quantitative analysis of the pseudocapacitive behavior of single particles and correlation with local particle structures. A broad range of capacitive contribution is revealed, with an average ratio of 76% at 1.0 V/s. This study provides new opportunities for quantitative analysis of the electrochemical charge-storage process at single particles, especially for electrode materials with electrolyte-induced instability.
Collapse
Affiliation(s)
- Cong Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Yingjian Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Jiao Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Wei Sun
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Shanyi Guang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Qianjin Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
26
|
Dery S, Friedman B, Shema H, Gross E. Mechanistic Insights Gained by High Spatial Resolution Reactivity Mapping of Homogeneous and Heterogeneous (Electro)Catalysts. Chem Rev 2023; 123:6003-6038. [PMID: 37037476 PMCID: PMC10176474 DOI: 10.1021/acs.chemrev.2c00867] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
The recent development of high spatial resolution microscopy and spectroscopy tools enabled reactivity analysis of homogeneous and heterogeneous (electro)catalysts at previously unattainable resolution and sensitivity. These techniques revealed that catalytic entities are more heterogeneous than expected and local variations in reaction mechanism due to divergences in the nature of active sites, such as their atomic properties, distribution, and accessibility, occur both in homogeneous and heterogeneous (electro)catalysts. In this review, we highlight recent insights in catalysis research that were attained by conducting high spatial resolution studies. The discussed case studies range from reactivity detection of single particles or single molecular catalysts, inter- and intraparticle communication analysis, and probing the influence of catalysts distribution and accessibility on the resulting reactivity. It is demonstrated that multiparticle and multisite reactivity analyses provide unique knowledge about reaction mechanism that could not have been attained by conducting ensemble-based, averaging, spectroscopy measurements. It is highlighted that the integration of spectroscopy and microscopy measurements under realistic reaction conditions will be essential to bridge the gap between model-system studies and real-world high spatial resolution reactivity analysis.
Collapse
Affiliation(s)
- Shahar Dery
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| | - Barak Friedman
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| | - Hadar Shema
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| | - Elad Gross
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
27
|
Tao B, McPherson IJ, Daviddi E, Bentley CL, Unwin PR. Multiscale Electrochemistry of Lithium Manganese Oxide (LiMn 2O 4): From Single Particles to Ensembles and Degrees of Electrolyte Wetting. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:1459-1471. [PMID: 36743391 PMCID: PMC9890564 DOI: 10.1021/acssuschemeng.2c06075] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/16/2022] [Indexed: 06/18/2023]
Abstract
Scanning electrochemical cell microscopy (SECCM) facilitates single particle measurements of battery materials using voltammetry at fast scan rates (1 V s-1), providing detailed insight into intrinsic particle kinetics, otherwise obscured by matrix effects. Here, we elucidate the electrochemistry of lithium manganese oxide (LiMn2O4) particles, using a series of SECCM probes of graded size to determine the evolution of electrochemical characteristics from the single particle to ensemble level. Nanometer scale control over the SECCM meniscus cell position and height further allows the study of variable particle/substrate electrolyte wetting, including comparison of fully wetted particles (where contact is also made with the underlying glassy carbon substrate electrode) vs partly wetted particles. We find ensembles of LiMn2O4 particles show voltammograms with much larger peak separations than those of single particles. In addition, if the SECCM meniscus is brought into contact with the substrate electrode, such that the particle-support contact changes from dry to wet, a further dramatic increase in peak separation is observed. Finite element method modeling of the system reveals the importance of finite electronic conductivity of the particles, contact resistance, surface kinetics, particle size, and contact area with the electrode surface in determining the voltammetric waveshape at fast scan rates, while the responses are relatively insensitive to Li+ diffusion coefficients over a range of typical values. The simulation results explain the variability in voltammetric responses seen at the single particle level and reveal some of the key factors responsible for the evolution of the response, from ensemble, contact, and wetting perspectives. The variables and considerations explored herein are applicable to any single entity (nanoscale) electrochemical study involving low conductivity materials and should serve as a useful guide for further investigations of this type. Overall, this study highlights the potential of multiscale measurements, where wetting, electronic contact, and ionic contact can be varied independently, to inform the design of practical composite electrodes.
Collapse
Affiliation(s)
- Binglin Tao
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Ian J. McPherson
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Enrico Daviddi
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | | - Patrick R. Unwin
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
28
|
Lee H, Kim K, Kang CM, Choo A, Han D, Kim J. In Situ Confocal Fluorescence Lifetime Imaging of Nanopore Electrode Arrays with Redox Active Fluorogenic Amplex Red. Anal Chem 2023; 95:1038-1046. [PMID: 36577440 DOI: 10.1021/acs.analchem.2c03742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Direct imaging of electrochemical processes on electrode surfaces is a central part of understanding spatially heterogeneous electrochemical processes on the surfaces. Herein, we report a strategy for the spatially resolved imaging of local faradaic processes on nanoscale electrochemical interfaces. This strategy is based on fluorescence lifetime imaging microscopy (FLIM) with the use of Amplex Red as a fluorogenic redox probe. After verifying the capability of Amplex Red for fluorescence lifetime imaging, we demonstrated the turn-on FLIM-based imaging of faradaic processes on the electrochemical interfaces of different dimensions. In particular, we achieved spatially resolved visualization of the local electrochemical processes occurring on even nanopore electrode arrays as well as conventional microelectrodes, including disk-shaped ultramicroelectrodes and interdigitated array microelectrodes.
Collapse
Affiliation(s)
- Hyein Lee
- Department of Chemistry, Research Institute for Basic Sciences, Kyung Hee University, Seoul02447, Republic of Korea
| | - Kyoungsoo Kim
- Department of Chemistry, The Catholic University of Korea, Bucheon14662, Gyeonggi-do, Republic of Korea
| | - Chung Mu Kang
- Electrochemistry Laboratory, Advanced Institutes of Convergence Technology, Suwon16229, Gyeonggi-do, Republic of Korea
| | - Aeri Choo
- Department of Chemistry, Research Institute for Basic Sciences, Kyung Hee University, Seoul02447, Republic of Korea
| | - Donghoon Han
- Department of Chemistry, The Catholic University of Korea, Bucheon14662, Gyeonggi-do, Republic of Korea
| | - Joohoon Kim
- Department of Chemistry, Research Institute for Basic Sciences, Kyung Hee University, Seoul02447, Republic of Korea.,KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul02447, Republic of Korea
| |
Collapse
|
29
|
Xu X, Valavanis D, Ciocci P, Confederat S, Marcuccio F, Lemineur JF, Actis P, Kanoufi F, Unwin PR. The New Era of High-Throughput Nanoelectrochemistry. Anal Chem 2023; 95:319-356. [PMID: 36625121 PMCID: PMC9835065 DOI: 10.1021/acs.analchem.2c05105] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 01/11/2023]
Affiliation(s)
- Xiangdong Xu
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | | | - Paolo Ciocci
- Université
Paris Cité, ITODYS, CNRS, F-75013 Paris, France
| | - Samuel Confederat
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
| | - Fabio Marcuccio
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
- Faculty
of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | | | - Paolo Actis
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
| | | | - Patrick R. Unwin
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
30
|
Lai Z, Li D, Cai S, Liu M, Huang F, Zhang G, Wu X, Jin Y. Small-Area Techniques for Micro- and Nanoelectrochemical Characterization: A Review. Anal Chem 2023; 95:357-373. [PMID: 36625128 DOI: 10.1021/acs.analchem.2c04551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Zhaogui Lai
- National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 102206, China
| | - Dingshi Li
- Beijing Institute of Space Launch Technology, Beijing 100076, China
| | - Shuangyu Cai
- National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 102206, China
| | - Min Liu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Feifei Huang
- National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 102206, China
| | - Guodong Zhang
- Beijing Institute of Space Launch Technology, Beijing 100076, China
| | - Xinyue Wu
- Beijing Institute of Space Launch Technology, Beijing 100076, China
| | - Ying Jin
- National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 102206, China
| |
Collapse
|
31
|
Rahman MM, Tolbert CL, Saha P, Halpern JM, Hill CM. On-Demand Electrochemical Fabrication of Ordered Nanoparticle Arrays using Scanning Electrochemical Cell Microscopy. ACS NANO 2022; 16:21275-21282. [PMID: 36399100 DOI: 10.1021/acsnano.2c09336] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Well-ordered nanoparticle arrays are attractive platforms for a variety of analytical applications, but the fabrication of such arrays is generally challenging. Here, it is demonstrated that scanning electrochemical cell microscopy (SECCM) can be used as a powerful, instantly reconfigurable tool for the fabrication of ordered nanoparticle arrays. Using SECCM, Ag nanoparticle arrays were straightforwardly fabricated via electrodeposition at the interface between a substrate electrode and an electrolyte-filled pipet. By dynamically monitoring the currents flowing in an SECCM cell, individual nucleation and growth events could be detected and controlled to yield individual nanoparticles of controlled size. Characterization of the resulting arrays demonstrate that this SECCM-based approach enables spatial control of nanoparticle location comparable with the terminal diameter of the pipet employed and straightforward control over the volume of material deposited at each site within an array. These results provide further evidence for the utility of probe-based electrochemical techniques such as SECCM as tools for surface modification in addition to analysis.
Collapse
Affiliation(s)
- Md Maksudur Rahman
- Department of Chemistry, University of Wyoming, 1000 East University Avenue, Laramie, Wyoming82071, United States
| | - Chloe L Tolbert
- Department of Chemistry, University of Wyoming, 1000 East University Avenue, Laramie, Wyoming82071, United States
| | - Partha Saha
- Department of Chemistry, University of Wyoming, 1000 East University Avenue, Laramie, Wyoming82071, United States
| | - Jeffrey M Halpern
- Department of Chemical Engineering and the Materials Science and Engineering Program, University of New Hampshire, 33 Academic Way, Durham, New Hampshire03824, United States
| | - Caleb M Hill
- Department of Chemistry, University of Wyoming, 1000 East University Avenue, Laramie, Wyoming82071, United States
| |
Collapse
|
32
|
Abstract
Understanding the structure-activity relationship at electrochemical interfaces is crucial in improving the performance of practical electrochemical devices, ranging from fuel cells, electrolyzers, and batteries to electrochemical sensors. However, functional electrochemical interfaces are often complex and contain various surface structures, creating heterogeneity in electrochemical activity. In this Perspective, we highlight the role of heterogeneity in electrochemistry, especially in the context of electrocatalysis. Current methods for revealing the heterogeneity at electrochemical interfaces, including nanoelectrochemistry tools and single-entity approaches, are discussed. Lastly, we provide perspectives on what one can learn by studying heterogeneity and how one can use heterogeneity to design more efficient electrochemical devices.
Collapse
Affiliation(s)
- C Hyun Ryu
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hyein Lee
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Heekwon Lee
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hang Ren
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
33
|
Wang Y, Li M, Ren H. Voltammetric Mapping of Hydrogen Evolution Reaction on Pt Locally via Scanning Electrochemical Cell Microscopy. ACS MEASUREMENT SCIENCE AU 2022; 2:304-308. [PMID: 36785572 PMCID: PMC9836041 DOI: 10.1021/acsmeasuresciau.2c00012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The advancement in nanoscale electrochemical tools has offered the opportunity to better understand heterogeneity at electrochemical interfaces. Scanning electrochemical cell microscopy (SECCM) has been increasingly used for revealing local kinetics and the distribution of active sites in electrocatalysis. Constant-contact scanning and hopping scanning are the two commonly used modes. The former is intrinsically faster, whereas the latter enables full voltammetry at individual locations. Herein, we revisit a less used mode that combines the advantages of hopping and constant-contact scan, resulting in a faster voltammetric mapping. In this mode, the nanodroplet cell in SECCM maintains contact with the surface during the scanning and makes intermittent pauses for local voltammetry. The elimination of frequent retraction and approach greatly increases the speed of mapping. In addition, iR correction can be readily applied to the voltammetry, resulting in more accurate measurements of the electrode kinetics. This scanning mode is demonstrated in the oxidation of a ferrocene derivative on HOPG and hydrogen evolution reaction (HER) on polycrystalline Pt, serving as model systems for outer-sphere and inner-sphere electron transfer reactions, respectively. While the kinetics of the inner-sphere reaction is consistent spatially, heterogeneity is observed for the kinetics of HER, which is correlated with the crystal orientation of Pt.
Collapse
|
34
|
Chen Q, Zhao J, Deng X, Shan Y, Peng Y. Single-Entity Electrochemistry of Nano- and Microbubbles in Electrolytic Gas Evolution. J Phys Chem Lett 2022; 13:6153-6163. [PMID: 35762985 DOI: 10.1021/acs.jpclett.2c01388] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Gas bubbles are found in diverse electrochemical processes, ranging from electrolytic water splitting to chlor-alkali electrolysis, as well as photoelectrochemical processes. Understanding the intricate influence of bubble evolution on the electrode processes and mass transport is key to the rational design of efficient devices for electrolytic energy conversion and thus requires precise measurement and analysis of individual gas bubbles. In this Perspective, we review the latest advances in single-entity measurement of gas bubbles on electrodes, covering the approaches of voltammetric and galvanostatic studies based on nanoelectrodes, probing bubble evolution using scanning probe electrochemistry with spatial information, and monitoring the transient nature of nanobubble formation and dynamics with opto-electrochemical imaging. We emphasize the intrinsic and quantitative physicochemical interpretation of single gas bubbles from electrochemical data, highlighting the fundamental understanding of the heterogeneous nucleation, dynamic state of the three-phase boundary, and the correlation between electrolytic bubble dynamics and nanocatalyst activities. In addition, a brief discussion of future perspectives is presented.
Collapse
Affiliation(s)
- Qianjin Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Jiao Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Xiaoli Deng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Yun Shan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Yu Peng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|