1
|
Dong Y, Hu Y, Hu X, Wang L, Shen X, Tian H, Li M, Luo Z, Cai C. Synthetic nanointerfacial bioengineering of Ti implants: on-demand regulation of implant-bone interactions for enhancing osseointegration. MATERIALS HORIZONS 2025; 12:694-718. [PMID: 39480512 DOI: 10.1039/d4mh01237b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Titanium and its alloys are the most commonly used biometals for developing orthopedic implants to treat various forms of bone fractures and defects, but their clinical performance is still challenged by the unfavorable mechanical and biological interactions at the implant-tissue interface, which substantially impede bone healing at the defects and reduce the quality of regenerated bones. Moreover, the impaired osteogenesis capacity of patients under certain pathological conditions such as diabetes and osteoporosis may further impair the osseointegration of Ti-based implants and increase the risk of treatment failure. To address these issues, various modification strategies have been developed to regulate the implant-bone interactions for improving bone growth and remodeling in situ. In this review, we provide a comprehensive analysis on the state-of-the-art synthetic nanointerfacial bioengineering strategies for designing Ti-based biofunctional orthopedic implants, with special emphasis on the contributions to (1) promotion of new bone formation and binding at the implant-bone interface, (2) bacterial elimination for preventing peri-implant infection and (3) overcoming osseointegration resistance induced by degenerative bone diseases. Furthermore, a perspective is included to discuss the challenges and potential opportunities for the interfacial engineering of Ti implants in a translational perspective. Overall, it is envisioned that the insights in this review may guide future research in the area of biometallic orthopedic implants for improving bone repair with enhanced efficacy and safety.
Collapse
Affiliation(s)
- Yilong Dong
- Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325016, China.
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Xinqiang Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Lingshuang Wang
- School of Life Sciences, Chongqing University, Chongqing, 400044, China.
| | - Xinkun Shen
- Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325016, China.
| | - Hao Tian
- Kairui Stomatological Hospital, Chengdu 610211, China
| | - Menghuan Li
- School of Life Sciences, Chongqing University, Chongqing, 400044, China.
| | - Zhong Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
- School of Life Sciences, Chongqing University, Chongqing, 400044, China.
| | - Chunyuan Cai
- Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325016, China.
| |
Collapse
|
2
|
He C, He P, Ou Y, Tang X, Wei H, Xu Y, Bai S, Guo Z, Hu R, Xiong K, Du G, Sun X. Rectifying the Crosstalk between the Skeletal and Immune Systems Improves Osteoporosis Treatment by Core-Shell Nanocapsules. ACS NANO 2025. [PMID: 39879106 DOI: 10.1021/acsnano.4c14728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Contemporary osteoporosis treatment often neglects the intricate interactions among immune cells, signaling proteins, and cytokines within the osteoporotic microenvironment. Here, we developed core-shell nanocapsules composed of a cationized lactoferrin core and an alendronate polymer shell. By tuning the size of these nanocapsules and leveraging the alendronate shell, we enabled precise delivery of small interfering RNA targeting the Semaphorin 4D gene (siSema4D) to specific bone sites. This strategy integrates the antiresorptive drug alendronate with siSema4D, efficiently inhibiting osteoclast (OC) differentiation and bone resorption, while promoting osteogenesis to restore the balance between osteoblasts (OBs) and OCs. Moreover, encapsulating siSema4D within the nanocapsules helps to mitigate immunological cascades, thereby reversing the inflammatory microenvironment and restoring immune homeostasis and providing insights into the immunomodulatory effects of Sema4D in osteoporosis therapy. In both ovariectomized and senile osteoporotic mouse models, local intramuscular administration of core-shell nanocapsules effectively rectified the imbalance between the skeletal and immune systems, significantly enhancing the overall efficacy of osteoporosis treatment. Our findings underscore the therapeutic promise of addressing the multifaceted osteoporotic microenvironment through targeted interventions.
Collapse
Affiliation(s)
- Chunting He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Penghui He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yangsen Ou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xue Tang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hongjiao Wei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yanhua Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shuting Bai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhaofei Guo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Rui Hu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Kun Xiong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guangsheng Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Zhao L, Liu C, Chen X, He Z, Zhang S, Zhang A, Tang S, Wu Z, Liu C, Yuan Y. Injectable double-crosslinked bone cement with enhanced bone adhesion and improved osteoporotic pathophysiological microenvironment for osteoregeneration in osteoporosis. Bioact Mater 2025; 43:441-459. [PMID: 39399835 PMCID: PMC11471141 DOI: 10.1016/j.bioactmat.2024.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
The osteoporotic bone defect caused by excessive activity of osteoclasts has posed a challenge for public healthcare. However, most existing bioinert bone cement fails to effectively regulate the pathological bone microenvironment and reconstruct bone homeostasis in the presence of osteoclast overactivity and osteoblast suppression. Herein, inspired by natural bone tissue, an in-situ modulation system for osteoporotic bone regeneration is developed by fabricating an injectable double-crosslinked PEGylated poly(glycerol sebacate) (PEGS)/calcium phosphate cement (CPC) loaded with sodium alendronate (ALN) (PEGS/CPC@ALN) adhesive bone cement. By incorporating ALN, the organic-inorganic interconnection within PEGS/CPC@ALN results in a 100 % increase in compression modulus and energy dissipation efficiency. Additionally, PEGS/CPC@ALN effectively adheres to the bone by bonding with amine and calcium ions present on the bone surface. Moreover, this in-situ regulation system comprehensively mitigates excessive bone resorption through the buffering effect of CPC to improve the acidic microenvironment of osteoporotic bone and the release of ALN to inhibit hyperactive osteoclasts, and facilitates stem cell proliferation and differentiation into osteoblasts through calcium ion release. Overall, the PEGS/CPC@ALN effectively regulates the pathological microenvironment of osteoporosis while promoting bone regeneration through synergistic effects of drugs and materials, thereby improving bone homeostasis and enabling minimally invasive treatment for osteoporotic defects.
Collapse
Affiliation(s)
- Lingfei Zhao
- Key Laboratory for Ultrafine Materials of Ministry of Education, and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry Engineering Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology, Shanghai, 200237, PR China
| | - Chenyu Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry Engineering Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology, Shanghai, 200237, PR China
| | - Xing Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry Engineering Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology, Shanghai, 200237, PR China
| | - Zirui He
- Key Laboratory for Ultrafine Materials of Ministry of Education, and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry Engineering Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology, Shanghai, 200237, PR China
| | - Shuiquan Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry Engineering Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology, Shanghai, 200237, PR China
| | - Anan Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry Engineering Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology, Shanghai, 200237, PR China
| | - Shuaimin Tang
- Key Laboratory for Ultrafine Materials of Ministry of Education, and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry Engineering Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology, Shanghai, 200237, PR China
| | - Zihan Wu
- Shanghai Rebone Biomaterials Co., Ltd, Shanghai, 201707, PR China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry Engineering Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yuan Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry Engineering Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| |
Collapse
|
4
|
Liu L, Liu H, Lu X, Yin Z, Zhang W, Ye J, Xu Y, Weng Z, Luo J, Wang X. Palladium-Based Nanocomposites Remodel Osteoporotic Microenvironment by Bone-Targeted Hydrogen Enrichment and Zincum Repletion. RESEARCH (WASHINGTON, D.C.) 2024; 7:0540. [PMID: 39691766 PMCID: PMC11651528 DOI: 10.34133/research.0540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/15/2024] [Accepted: 11/10/2024] [Indexed: 12/19/2024]
Abstract
Osteoporosis presents a marked global public health challenge, characterized by deficient osteogenesis and a deteriorating immune microenvironment. Conventional clinical interventions primarily target osteoclast-mediated bone damage, yet lack a comprehensive therapeutic approach that balances bone formation and resorption. Herein, we introduce a bone-targeted nanocomposite, A-Z@Pd(H), designed to address these challenges by integrating diverse functional components. The nanocomposite incorporates internal hydrogen-carrying nanozymes, which effectively scavenge multiple reactive oxygen species (ROS) and synergistically engage the autophagy-lysosome pathway to accelerate endogenous ROS degradation in macrophages. This mechanism disrupts the vicious cycle of autophagic dysfunction-ROS accumulation-macrophage inflammation. In addition, external metal-organic frameworks release zinc ions (Zn2+) in response to the acidic osteoporotic environment, thereby promoting osteogenesis. In a murine model of osteoporosis, intravenous administration of A-Z@Pd(H) leads to preferential accumulation in the femur, thereby remodeling the osteoporotic microenvironment through immune regulation, osteogenesis promotion, and osteoclast inhibition. These findings suggest that this system composed of hydrogen therapy and ion therapy may be a promising candidate for bone-targeted comprehensive therapy in osteoporosis.
Collapse
Affiliation(s)
- Lubing Liu
- The Department of Rehabilitation Medicine, the 2 Affiliated Hospital, Jiangxi Medical College,
Nanchang University, Nanchang 330006, China
- The Jiangxi Province Key Laboratory of Precision Cell Therapy, the 2 Affiliated Hospital, Jiangxi Medical College,
Nanchang University, Nanchang 330006, China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine,
Nanchang University, Nanchang 330088, China
| | - Huiying Liu
- The Department of Rehabilitation Medicine, the 2 Affiliated Hospital, Jiangxi Medical College,
Nanchang University, Nanchang 330006, China
- The Jiangxi Province Key Laboratory of Precision Cell Therapy, the 2 Affiliated Hospital, Jiangxi Medical College,
Nanchang University, Nanchang 330006, China
| | - Xiaoya Lu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine,
Nanchang University, Nanchang 330088, China
| | - Zhengshuai Yin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine,
Nanchang University, Nanchang 330088, China
| | - Wei Zhang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine,
Nanchang University, Nanchang 330088, China
| | - Jing Ye
- The Department of Rehabilitation Medicine, the 2 Affiliated Hospital, Jiangxi Medical College,
Nanchang University, Nanchang 330006, China
- The Jiangxi Province Key Laboratory of Precision Cell Therapy, the 2 Affiliated Hospital, Jiangxi Medical College,
Nanchang University, Nanchang 330006, China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine,
Nanchang University, Nanchang 330088, China
| | - Yingying Xu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine,
Nanchang University, Nanchang 330088, China
| | - Zhenzhen Weng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine,
Nanchang University, Nanchang 330088, China
| | - Jun Luo
- The Department of Rehabilitation Medicine, the 2 Affiliated Hospital, Jiangxi Medical College,
Nanchang University, Nanchang 330006, China
- The Jiangxi Province Key Laboratory of Precision Cell Therapy, the 2 Affiliated Hospital, Jiangxi Medical College,
Nanchang University, Nanchang 330006, China
| | - Xiaolei Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine,
Nanchang University, Nanchang 330088, China
| |
Collapse
|
5
|
Cui X, Huang C, Huang Y, Zhang Y, Wu J, Wang G, Zhou XZ, Zhang J, Wang L, Cheng L, Zhang KQ. Amplification of Metalloregulatory Proteins in Macrophages by Bioactive ZnMn@SF Hydrogels for Spinal Cord Injury Repair. ACS NANO 2024; 18:33614-33628. [PMID: 39579147 DOI: 10.1021/acsnano.4c12236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Macrophages are rapidly activated and polarized toward the M1 phenotype after spinal cord injury (SCI), and inhibiting M1-like macrophages has emerged as a promising SCI treatment approach. Metalloregulatory proteins, which sense specific metal ions with high affinity and specificity, play a critical role in immune regulation. Here, we screened various bioactive metal ions associated with metalloregulatory proteins and discovered that Zn2+ and Mn2+ effectively suppressed M1 polarization. Based on these findings, mildly alkaline ZnMn-based layered double hydroxides (ZnMn-LDHs) self-assembled from Zn2+ coordinated with Mn2+ were developed to inhibit M1-like macrophages. ZnMn-LDHs effectively neutralized the acidic environment and promoted the expression of metalloregulatory proteins, including metallothionein (MT), superoxide dismutase 1 (SOD1), and superoxide dismutase 2 (SOD2), thereby eliciting robust M1-like macrophage inhibition. More importantly, nerve growth factor (NGF) released by macrophages following the regulation by ZnMn-LDHs promoted the elongation and spreading of Schwann cells. By integrating ZnMn-LDHs with silk fibroin (SF), ZnMn@SF injectable hydrogels were constructed for SCI repair. An in vivo animal model further revealed the excellent anti-inflammatory effects of the ZnMn@SF hydrogels in treating SCI, which promoted functional recovery. Our findings underscore the importance of metalloregulatory proteins regulated by metal ions in inhibiting M1-like macrophages, providing a promising therapeutic strategy for SCI treatment.
Collapse
Affiliation(s)
- Xiaoliang Cui
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Cheng Huang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Yechen Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Yuxuan Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Jie Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Gang Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Xiao-Zhong Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Jun Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Li Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Ke-Qin Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| |
Collapse
|
6
|
Liu C, Xie Y, Zhang Y, Sun Y, Wang Y, Han B, Jiang X, Wang B. MOF-Based Guided Bone Regeneration Membrane for Promoting Osteogenesis by Regulating Bone Microenvironment through Cascade Effects. Adv Healthc Mater 2024:e2403187. [PMID: 39632369 DOI: 10.1002/adhm.202403187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/18/2024] [Indexed: 12/07/2024]
Abstract
Regulation of bone microenvironment (BME) including innate pH values and metal ions affects cellular functions and activities of osteoblasts and osteoclasts, thereby significantly influencing the process of bone regeneration. How to achieve multiple effective regulations of the BME through cascade effects via facile material design and fabrication to significantly facilitate osteogenesis remains a challenge. Herein, a facilely-designed resorbable guided bone regeneration membrane (PCL/DEX@Ca-Zol) based on a drug-loaded metal-organic framework is reported. Thereinto, calcium ions, zoledronic acid, and dexamethasone embedded in the membrane can be responsively released specifically inside bone defect in an acid-triggered manner to synergistically regulate BME by neutralization of pH value, enhancement of osteogenic differentiation and mineralization, and inhibition of osteoclasts in one-go. Along with polycaprolactone as a structural support in the membrane for bone regeneration with fully utilized components of the composite membrane material, enhances bone regeneration with minimized side effects is accordingly achieved with the assistance of effective modulation of BME through multiple cascade effects.
Collapse
Affiliation(s)
- Chunyu Liu
- Frontiers Science Centre for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yajuan Xie
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, P. R. China
| | - Yunfan Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, P. R. China
| | - Yuqi Sun
- Frontiers Science Centre for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yuanbo Wang
- Frontiers Science Centre for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Bing Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, P. R. China
| | - Xin Jiang
- Department of Orthopedics and Spine Surgery, China-Japan Friendship Hospital, Beijing, 100029, P. R. China
| | - Bo Wang
- Frontiers Science Centre for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
7
|
Li D, Dai D, Wang J, Zhang C. Honeycomb Bionic Graphene Oxide Quantum Dot/Layered Double Hydroxide Composite Nanocoating Promotes Osteoporotic Bone Regeneration via Activating Mitophagy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403907. [PMID: 39344577 DOI: 10.1002/smll.202403907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/12/2024] [Indexed: 10/01/2024]
Abstract
Abnormal osteogenic and remodeling microenvironment due to osteoblast apoptosis are the primary causes of delayed fracture healing in osteoporotic patients. Magnesium (Mg) alloys exhibit biodegradability and appropriate elastic moduli for bone defects in osteoporosis, but the effect on the local bone remodeling disorder is still insufficient. Inspired by the "honeycomb," layered double hydroxide (LDH) with regular traps with graphene oxide quantum dots (GOQDs) inlayed is constructed by pulsed electrodeposition to generate GOQD/LDH composite nanocoatings on the surfaces of Mg alloy substrates. The honeycomb bionic multi-layer stereoscopic structure shows good regulation of the degradation of Mg alloy for the support of healing time required for osteoporotic bone defect. Within its lattice, the local microenvironment conducive to osteogenesis is provided by both the rescue effect of GOQD and LDH. The osteoblast apoptosis is rescued due to the activation of mitophagy to clear dysfunctional mitochondria, where the upregulation of BNIP3 phosphorylation played a key role. The osteoporotic rat model of femoral defects confirmed the improvement of bone regeneration and osseointegration of GOQD/LDH coating. In summary, honeycomb bionic composite nanocoatings with controllable degradation and excellent pro-osteogenic performance demonstrated a promising design strategy on Mg alloy implants in the therapy of osteoporotic bone defects.
Collapse
Affiliation(s)
- Dan Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Danni Dai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Jianrong Wang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Chao Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| |
Collapse
|
8
|
Su Z, Boucetta H, Shao J, Huang J, Wang R, Shen A, He W, Xu ZP, Zhang L. Next-generation aluminum adjuvants: Immunomodulatory layered double hydroxide NanoAlum reengineered from first-line drugs. Acta Pharm Sin B 2024; 14:4665-4682. [PMID: 39664431 PMCID: PMC11628803 DOI: 10.1016/j.apsb.2024.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 12/13/2024] Open
Abstract
Aluminum adjuvants (Alum), approved by the US Food and Drug Administration, have been extensively used in vaccines containing recombinant antigens, subunits of pathogens, or toxins for almost a century. While Alums typically elicit strong humoral immune responses, their ability to induce cellular and mucosal immunity is limited. As an alternative, layered double hydroxide (LDH), a widely used antacid, has emerged as a novel class of potent nano-aluminum adjuvants (NanoAlum), demonstrating advantageous physicochemical properties, biocompatibility and adjuvanticity in both humoral and cellular immune responses. In this review, we summarize and compare the advantages and disadvantages of Alum and NanoAlum in these properties and their performance as adjuvants. Moreover, we propose the key features for ideal adjuvants and demonstrate that LDH NanoAlum is a promising candidate by summarizing its current progress in immunotherapeutic cancer treatments. Finally, we conclude the review by offering our integrated perspectives about the remaining challenges and future directions for NanoAlum's application in preclinical/clinical settings.
Collapse
Affiliation(s)
- Zhenwei Su
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
- School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Hamza Boucetta
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jiahui Shao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
- School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Jinling Huang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ran Wang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Aining Shen
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Wei He
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zhi Ping Xu
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
- School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Lingxiao Zhang
- Interdisciplinary Nanoscience Center (INANO), Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
9
|
Han J, Sheng T, Zhang Y, Cheng H, Gao J, Yu J, Gu Z. Bioresponsive Immunotherapeutic Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2209778. [PMID: 36639983 DOI: 10.1002/adma.202209778] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/31/2022] [Indexed: 06/17/2023]
Abstract
The human immune system is an interaction network of biological processes, and its dysfunction is closely associated with a wide array of diseases, such as cancer, infectious diseases, tissue damage, and autoimmune diseases. Manipulation of the immune response network in a desired and controlled fashion has been regarded as a promising strategy for maximizing immunotherapeutic efficacy and minimizing side effects. Integration of "smart" bioresponsive materials with immunoactive agents including small molecules, biomacromolecules, and cells can achieve on-demand release of agents at targeted sites to reduce overdose-related toxicity and alleviate off-target effects. This review highlights the design principles of bioresponsive immunotherapeutic materials and discusses the critical roles of controlled release of immunoactive agents from bioresponsive materials in recruiting, housing, and manipulating immune cells for evoking desired immune responses. Challenges and future directions from the perspective of clinical translation are also discussed.
Collapse
Affiliation(s)
- Jinpeng Han
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tao Sheng
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuqi Zhang
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of Burns and Wound Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Hao Cheng
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Jianqing Gao
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
| | - Jicheng Yu
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
- Department of General Surgery, Sir Run Run Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Zhen Gu
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
- Department of General Surgery, Sir Run Run Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
10
|
Wu Y, Sun B, Tang Y, Shen A, Lin Y, Zhao X, Li J, Monteiro MJ, Gu W. Bone targeted nano-drug and nano-delivery. Bone Res 2024; 12:51. [PMID: 39231955 PMCID: PMC11375042 DOI: 10.1038/s41413-024-00356-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/04/2024] [Accepted: 07/16/2024] [Indexed: 09/06/2024] Open
Abstract
There are currently no targeted delivery systems to satisfactorily treat bone-related disorders. Many clinical drugs consisting of small organic molecules have a short circulation half-life and do not effectively reach the diseased tissue site. This coupled with repeatedly high dose usage that leads to severe side effects. With the advance in nanotechnology, drugs contained within a nano-delivery device or drugs aggregated into nanoparticles (nano-drugs) have shown promises in targeted drug delivery. The ability to design nanoparticles to target bone has attracted many researchers to develop new systems for treating bone related diseases and even repurposing current drug therapies. In this review, we shall summarise the latest progress in this area and present a perspective for future development in the field. We will focus on calcium-based nanoparticle systems that modulate calcium metabolism and consequently, the bone microenvironment to inhibit disease progression (including cancer). We shall also review the bone affinity drug family, bisphosphonates, as both a nano-drug and nano-delivery system for bone targeted therapy. The ability to target and release the drug in a controlled manner at the disease site represents a promising safe therapy to treat bone diseases in the future.
Collapse
Affiliation(s)
- Yilun Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Bing Sun
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
| | - Ying Tang
- Science and Technology Innovation Centre, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Aining Shen
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Yanlin Lin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
| | - Xiaohui Zhao
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jingui Li
- School of Veterinary Medicine, Jiangsu Co-innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Michael J Monteiro
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
| | - Wenyi Gu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia.
| |
Collapse
|
11
|
Wang H, Hsu JC, Song W, Lan X, Cai W, Ni D. Nanorepair medicine for treatment of organ injury. Natl Sci Rev 2024; 11:nwae280. [PMID: 39257435 PMCID: PMC11384914 DOI: 10.1093/nsr/nwae280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/24/2024] [Accepted: 08/08/2024] [Indexed: 09/12/2024] Open
Abstract
Organ injuries, such as acute kidney injury, ischemic stroke, and spinal cord injury, often result in complications that can be life-threatening or even fatal. Recently, many nanomaterials have emerged as promising agents for repairing various organ injuries. In this review, we present the important developments in the field of nanomaterial-based repair medicine, herein referred to as 'nanorepair medicine'. We first introduce the disease characteristics associated with different types of organ injuries and highlight key examples of relevant nanorepair medicine. We then provide a summary of existing strategies in nanorepair medicine, including organ-targeting methodologies and potential countermeasures against exogenous and endogenous pathologic risk factors. Finally, we offer our perspectives on current challenges and future expectations for the advancement of nanomedicine designed for organ injury repair.
Collapse
Affiliation(s)
- Han Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jessica C Hsu
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Wenyu Song
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430073, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan 430073, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430073, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan 430073, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Dalong Ni
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
12
|
Han Z, Gao X, Wang Y, Huang C, Song H, Cheng S, Yang X, Cui X, Wu J, Wei K, Cheng L. Autocatalytic bifunctional supramolecular hydrogels for osteoporotic bone repair. Natl Sci Rev 2024; 11:nwae209. [PMID: 39071098 PMCID: PMC11275467 DOI: 10.1093/nsr/nwae209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/01/2024] [Accepted: 06/13/2024] [Indexed: 07/30/2024] Open
Abstract
Conventional bone scaffolds, which are mainly ascribed to highly active osteoclasts and an inflammatory microenvironment with high levels of reactive oxygen species and pro-inflammatory factors, barely satisfy osteoporotic defect repair. Herein, multifunctional self-assembled supramolecular fiber hydrogels (Ce-Aln gel) consisting of alendronate (Aln) and cerium (Ce) ions were constructed for osteoporotic bone defect repair. Based on the reversible interaction and polyvalent cerium ions, the Ce-Aln gel, which was mainly composed of ionic coordination and hydrogen bonds, displayed good injectability and autocatalytic amplification of the antioxidant effect. In vitro studies showed that the Ce-Aln gel effectively maintained the biological function of osteoblasts by regulating redox homeostasis and improved the inflammatory microenvironment to enhance the inhibitory effect on osteoclasts. Ribonucleic acid (RNA) sequencing further revealed significant downregulation of various metabolic pathways, including apoptosis signaling, hypoxia metabolism and tumor necrosis factor-alpha (TNF-α) signaling via the nuclear factor kappa-B pathway after treatment with the Ce-Aln gel. In vivo experiments showed that the clinical drug-based Ce-Aln gel effectively promoted the tissue repair of osteoporotic bone defects by improving inflammation and inhibiting osteoclast formation at the defect. Notably, in vivo systemic osteoporosis was significantly ameliorated, highlighting the strong potential of clinical translation for precise therapy of bone defects.
Collapse
Affiliation(s)
- Zhihui Han
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Xiang Gao
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Yuanjie Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Cheng Huang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Hao Song
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Shuning Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Xiaoyuan Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Xiaoliang Cui
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Jie Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Kailu Wei
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, China
| |
Collapse
|
13
|
Luo D, Liu X, Dai S, Yi J, Tang N, Cai Y, Bao X, Hu M, Liu Z. Highly Crystalline Copper Aluminum-Layered Double Hydroxides with Intrinsic Fenton-Like Catalytic Activity for Robust Oral Health Management. Inorg Chem 2024; 63:10691-10704. [PMID: 38805682 DOI: 10.1021/acs.inorgchem.4c01189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
As the main challenge of dental healthcare, oral infectious diseases are highly associated with the colonization of pathogenic microbes. However, current antibacterial treatments in the field of stomatology still lack a facile, safe, and universal approach. Herein, we report the controllable synthesis of copper aluminum-layered double hydroxides (CuAl-LDHs) with high Fenton-like catalytic activity, which can be utilized in the treatment of oral infectious diseases with negligible side effects. Our strategy can efficiently avoid the unwanted doping of other divalent metal ions in the synthesis of Cu-contained LDHs and result in the formation of binary CuAl-LDHs with high crystallinity and purity. Evidenced by experimental and theoretical results, CuAl-LDHs exhibit excellent catalytic ability toward the ·OH generation in the presence of H2O2 and hold strong affinity toward bacteria, endowing them with great catalytic sterilization against both Gram-positive and Gram-negative bacteria. As expected, these CuAl-LDHs provide outstanding treatments for mucosal infection and periodontitis by promoting wound healing and remodeling of the periodontal microenvironment. Moreover, toxicity investigation demonstrates the overall safety. Accordingly, the current study not only provides a convenient and economic strategy for treating oral infectious diseases but also extends the development of novel LDH-based Fenton or Fenton-like antibacterial reagents for further biomedical applications.
Collapse
Affiliation(s)
- Danfeng Luo
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Xiaocan Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Shuang Dai
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jingzheng Yi
- Western Dental, Fresno, California 93726, United States
| | - Nan Tang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yanting Cai
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Xingfu Bao
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Min Hu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Zhen Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
14
|
Weng Z, Ye J, Cai C, Liu Z, Liu Y, Xu Y, Yuan J, Zhang W, Liu L, Jiang J, Cheng X, Wang X. Inflammatory microenvironment regulation and osteogenesis promotion by bone-targeting calcium and magnesium repletion nanoplatform for osteoporosis therapy. J Nanobiotechnology 2024; 22:314. [PMID: 38840113 PMCID: PMC11151641 DOI: 10.1186/s12951-024-02581-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024] Open
Abstract
Osteoporosis is the most common bone metabolic disease that affects the health of middle-aged and elderly people, which is hallmarked by imbalanced bone remodeling and a deteriorating immune microenvironment. Magnesium and calcium are pivotal matrix components that participate in the bone formation process, especially in the immune microenvironment regulation and bone remodeling stages. Nevertheless, how to potently deliver magnesium and calcium to bone tissue remains a challenge. Here, we have constructed a multifunctional nanoplatform composed of calcium-based upconversion nanoparticles and magnesium organic frameworks (CM-NH2-PAA-Ald, denoted as CMPA), which features bone-targeting and pH-responsive properties, effectively regulating the inflammatory microenvironment and promoting the coordination of osteogenic functions for treating osteoporosis. The nanoplatform can efficaciously target bone tissue and gradually degrade in response to the acidic microenvironment of osteoporosis to release magnesium and calcium ions. This study validates that CMPA possessing favorable biocompatibility can suppress inflammation and facilitate osteogenesis to treat osteoporosis. Importantly, high-throughput sequencing results demonstrate that the nanoplatform exerts a good inflammatory regulation effect through inhibition of the nuclear factor kappa-B signaling pathway, thereby normalizing the osteoporotic microenvironment. This collaborative therapeutic strategy that focuses on improving bone microenvironment and promoting osteogenesis provides new insight for the treatment of metabolic diseases such as osteoporosis.
Collapse
Affiliation(s)
- Zhenzhen Weng
- Department of Orthopaedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330088, Jiangxi, P. R. China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330088, Jiangxi, P. R. China
| | - Jing Ye
- Department of Orthopaedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330088, Jiangxi, P. R. China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330088, Jiangxi, P. R. China
| | - Changxiong Cai
- Department of Orthopaedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330088, Jiangxi, P. R. China
| | - Zikang Liu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330088, Jiangxi, P. R. China
| | - Yuanyuan Liu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330088, Jiangxi, P. R. China
| | - Yingying Xu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330088, Jiangxi, P. R. China
| | - Jinghong Yuan
- Department of Orthopaedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330088, Jiangxi, P. R. China
| | - Wei Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330088, Jiangxi, P. R. China
| | - Lubing Liu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330088, Jiangxi, P. R. China
| | - Junkai Jiang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330088, Jiangxi, P. R. China
| | - Xigao Cheng
- Department of Orthopaedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330088, Jiangxi, P. R. China.
| | - Xiaolei Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330088, Jiangxi, P. R. China.
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330088, Jiangxi, P. R. China.
| |
Collapse
|
15
|
Wang J, Ye J, Yang G, Xie J, Miao X, Deng J, Wu T, Cheng X, Wang X. Fenton-like Reaction Inspired "·OH Catalyzed" Osteogenic Process for the Treatment of Osteoporosis. Adv Healthc Mater 2024; 13:e2304091. [PMID: 38381065 DOI: 10.1002/adhm.202304091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/05/2024] [Indexed: 02/22/2024]
Abstract
Inspired by the Fenton-like reaction, this work combines copper peroxide (CP) nanoparticles with black phosphorus (BP) nanosheets to form a hydroxyl radical (·OH)-centered "catalytic" osteogenic system. CP-produced ·OH interacts with BP to rapidly produce a large amount of phosphate ions, thus accelerating self-mineralization and promoting bone formation. In turn, BP not only exerts anti-inflammatory effects, thereby providing a favorable microenvironment for bone formation, but also offsets the potential toxicity of CP induced by reactive oxygen species (ROS). Together with copper ions (Cu2+), phosphate ions are also released as a byproduct of this process, which can contribute to the comprehensive promotion of osteogenesis.
Collapse
Affiliation(s)
- Jingcheng Wang
- Department of Orthopedics, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330088, China
| | - Jing Ye
- Department of Orthopedics, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330088, China
| | - Guoyu Yang
- Department of Orthopedics, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330088, China
| | - Jialiang Xie
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330088, China
| | - Xinxin Miao
- Department of Orthopedics, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330088, China
| | - Jianjian Deng
- Department of Orthopedics, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330088, China
| | - Tianlong Wu
- Department of Orthopedics, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330088, China
| | - Xigao Cheng
- Department of Orthopedics, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330088, China
| | - Xiaolei Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330088, China
| |
Collapse
|
16
|
Liu C, Sun Y, Li D, Wang F, Wang H, An S, Sun S. A multifunctional nanogel encapsulating layered double hydroxide for enhanced osteoarthritis treatment via protection of chondrocytes and ECM. Mater Today Bio 2024; 26:101034. [PMID: 38596826 PMCID: PMC11002310 DOI: 10.1016/j.mtbio.2024.101034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/20/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024] Open
Abstract
Osteoarthritis (OA) is characterized by progressive and irreversible damage to the articular cartilage and a consecutive inflammatory response. However, the majority of clinical drugs for OA treatment only alleviate symptoms without addressing the fundamental pathology. To mitigate this issue, we developed an inflammation-responsive carrier and encapsulated bioactive material, namely, LDH@TAGel. The LDH@TAGel was designed with anti-inflammatory and antioxidative abilities, aiming to directly address the pathology of cartilage damage. In particular, LDH was confirmed to restore the ECM secretion function of damaged chondrocytes and attenuate the expression of catabolic matrix metalloproteinases (Mmps). While TAGel showed antioxidant properties by scavenging ROS directly. In vitro evaluation revealed that the LDH@TAGel could protect chondrocytes from inflammation-induced oxidative stress and apoptosis via the Nrf2/Keap1 system and Pi3k-Akt pathway. In vivo experiments demonstrated that the LDH@TAGel could alleviated the degeneration and degradation of cartilage induced by anterior cruciate ligament transection (ACLT). The OARSI scores indicating OA severity decreased significantly after three weeks of intervention. Moreover, the IVIS image revealed that LDH@TAGel enhances the controlled release of LDH in a manner that can be customized according to the severity of OA, allowing adaptive, precise treatment. In summary, this novel design effectively alleviates the underlying pathological causes of OA-related cartilage damage and has emerged as a promising biomaterial for adaptive, cause-targeted OA therapies.
Collapse
Affiliation(s)
- Changxing Liu
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Yawei Sun
- Shandong Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Dengju Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Fan Wang
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Haojue Wang
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Senbo An
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Shui Sun
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250012, China
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| |
Collapse
|
17
|
Feng Z, Wu Z, Zhang Y. Integration of bioinformatics and machine learning approaches for the validation of pyrimidine metabolism-related genes and their implications in immunotherapy for osteoporosis. BMC Musculoskelet Disord 2024; 25:402. [PMID: 38778304 PMCID: PMC11110368 DOI: 10.1186/s12891-024-07512-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Osteoporosis (OP), the "silent epidemic" of our century, poses a significant challenge to public health, predominantly affecting postmenopausal women and the elderly. It evolves from mild symptoms to pronounced severity, stabilizing eventually. Unique among OP's characteristics is the altered metabolic profile of affected cells, particularly in pyrimidine metabolism (PyM), a crucial pathway for nucleotide turnover and pyrimidine decomposition. While metabolic adaptation is acknowledged as a therapeutic target in various diseases, the specific role of PyM genes (PyMGs) in OP's molecular response remains to be clarified. METHODS In pursuit of elucidating and authenticating PyMGs relevant to OP, we embarked on a comprehensive bioinformatics exploration. This entailed the integration of Weighted Gene Co-expression Network Analysis (WGCNA) with a curated list of 37 candidate PyMGs, followed by the examination of their biological functions and pathways via Gene Set Variation Analysis (GSVA). The Least Absolute Shrinkage and Selection Operator (LASSO) technique was harnessed to identify crucial hub genes. We evaluated the diagnostic prowess of five PyMGs in OP detection and explored their correlation with OP's clinical traits, further validating their expression profiles through independent datasets (GSE2208, GSE7158, GSE56815, and GSE35956). RESULTS Our analytical rigor unveiled five PyMGs-IGKC, TMEM187, RPS11, IGLL3P, and GOLGA8N-with significant ties to OP. A deeper dive into their biological functions highlighted their roles in estrogen response modulation, cytosolic calcium ion concentration regulation, and GABAergic synaptic transmission. Remarkably, these PyMGs emerged as potent diagnostic biomarkers for OP, distinguishing affected individuals with substantial accuracy. CONCLUSIONS This investigation brings to light five PyMGs intricately associated with OP, heralding new avenues for biomarker discovery and providing insights into its pathophysiological underpinnings. These findings not only deepen our comprehension of OP's complexity but also herald the advent of more refined diagnostic and therapeutic modalities.
Collapse
Affiliation(s)
- Zichen Feng
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zixuan Wu
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Yongchen Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
18
|
Liao J, Lu L, Chu X, Xiong Y, Zhou W, Cao F, Cheng P, Shahbazi MA, Liu G, Mi B. Cell membrane coated nanoparticles: cutting-edge drug delivery systems for osteoporosis therapy. NANOSCALE 2024; 16:8236-8255. [PMID: 38584466 DOI: 10.1039/d3nr06264c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Osteoporosis, characterized by a reduction in bone mineral density, represents a prevalent skeletal disorder with substantial global health implications. Conventional therapeutic strategies, exemplified by bisphosphonates and hormone replacement regimens, though effective, encounter inherent limitations and challenges. Recent years have witnessed the surge of cell-membrane-coated nanoparticles (CMNPs) as a promising intervention for osteoporosis, leveraging their distinct attributes including refined biocompatibility, heightened pharmaceutical payload capacity, as well as targeted drug release kinetics. However, a comprehensive review consolidating the application of CMNPs-based therapy for osteoporosis remains absent within the existing literature. In this review, we provide a concise overview of the distinctive pathogenesis associated with osteoporosis, alongside an in-depth exploration of the physicochemical attributes intrinsic to CMNPs derived from varied cellular sources. Subsequently, we explore the potential utility of CMNPs, elucidating emerging trends in their deployment for osteoporosis treatment through multifaceted therapeutic approaches. By linking the notable attributes of CMNPs with their roles in mitigating osteoporosis, this review serves as a catalyst for further advances in the design of advanced CMNPs tailored for osteoporosis management. Ultimately, such progress is promising for enhancing outcomes in anti-bone loss interventions, paving the way for clinical translation in the near future.
Collapse
Affiliation(s)
- Jiewen Liao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Li Lu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Xiangyu Chu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Wu Zhou
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Faqi Cao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Peng Cheng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Mohammad-Ali Shahbazi
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
19
|
Li L, Soyhan I, Warszawik E, van Rijn P. Layered Double Hydroxides: Recent Progress and Promising Perspectives Toward Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306035. [PMID: 38501901 PMCID: PMC11132086 DOI: 10.1002/advs.202306035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Indexed: 03/20/2024]
Abstract
Layered double hydroxides (LDHs) have been widely studied for biomedical applications due to their excellent properties, such as good biocompatibility, degradability, interlayer ion exchangeability, high loading capacity, pH-responsive release, and large specific surface area. Furthermore, the flexibility in the structural composition and ease of surface modification of LDHs makes it possible to develop specifically functionalized LDHs to meet the needs of different applications. In this review, the recent advances of LDHs for biomedical applications, which include LDH-based drug delivery systems, LDHs for cancer diagnosis and therapy, tissue engineering, coatings, functional membranes, and biosensors, are comprehensively discussed. From these various biomedical research fields, it can be seen that there is great potential and possibility for the use of LDHs in biomedical applications. However, at the same time, it must be recognized that the actual clinical translation of LDHs is still very limited. Therefore, the current limitations of related research on LDHs are discussed by combining limited examples of actual clinical translation with requirements for clinical translation of biomaterials. Finally, an outlook on future research related to LDHs is provided.
Collapse
Affiliation(s)
- Lei Li
- Department of Biomedical EngineeringUniversity of GroningenUniversity Medical Center GroningenA. Deusinglaan 1Groningen, AV9713The Netherlands
- W. J. Kolff Institute for Biomedical Engineering and Materials ScienceUniversity of GroningenUniversity Medical Center GroningenA. Deusinglaan 1Groningen, AV9713The Netherlands
| | - Irem Soyhan
- Department of Biomedical EngineeringUniversity of GroningenUniversity Medical Center GroningenA. Deusinglaan 1Groningen, AV9713The Netherlands
- W. J. Kolff Institute for Biomedical Engineering and Materials ScienceUniversity of GroningenUniversity Medical Center GroningenA. Deusinglaan 1Groningen, AV9713The Netherlands
| | - Eliza Warszawik
- Department of Biomedical EngineeringUniversity of GroningenUniversity Medical Center GroningenA. Deusinglaan 1Groningen, AV9713The Netherlands
- W. J. Kolff Institute for Biomedical Engineering and Materials ScienceUniversity of GroningenUniversity Medical Center GroningenA. Deusinglaan 1Groningen, AV9713The Netherlands
| | - Patrick van Rijn
- Department of Biomedical EngineeringUniversity of GroningenUniversity Medical Center GroningenA. Deusinglaan 1Groningen, AV9713The Netherlands
- W. J. Kolff Institute for Biomedical Engineering and Materials ScienceUniversity of GroningenUniversity Medical Center GroningenA. Deusinglaan 1Groningen, AV9713The Netherlands
| |
Collapse
|
20
|
Dai K, Geng Z, Zhang W, Wei X, Wang J, Nie G, Liu C. Biomaterial design for regenerating aged bone: materiobiological advances and paradigmatic shifts. Natl Sci Rev 2024; 11:nwae076. [PMID: 38577669 PMCID: PMC10989671 DOI: 10.1093/nsr/nwae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/04/2024] [Accepted: 02/26/2024] [Indexed: 04/06/2024] Open
Abstract
China's aging demographic poses a challenge for treating prevalent bone diseases impacting life quality. As bone regeneration capacity diminishes with age due to cellular dysfunction and inflammation, advanced biomaterials-based approaches offer hope for aged bone regeneration. This review synthesizes materiobiology principles, focusing on biomaterials that target specific biological functions to restore tissue integrity. It covers strategies for stem cell manipulation, regulation of the inflammatory microenvironment, blood vessel regeneration, intervention in bone anabolism and catabolism, and nerve regulation. The review also explores molecular and cellular mechanisms underlying aged bone regeneration and proposes a database-driven design process for future biomaterial development. These insights may also guide therapies for other age-related conditions, contributing to the pursuit of 'healthy aging'.
Collapse
Affiliation(s)
- Kai Dai
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology; Shanghai 200237, China
- Key Laboratory for Ultrafine Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Wenchao Zhang
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology; Shanghai 200237, China
| | - Xue Wei
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology; Shanghai 200237, China
| | - Jing Wang
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology; Shanghai 200237, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Centre for Excellence in Nanoscience, National Centre for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changsheng Liu
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology; Shanghai 200237, China
- Key Laboratory for Ultrafine Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
21
|
Luo Y, Liu H, Chen M, Zhang Y, Zheng W, Wu L, Liu Y, Liu S, Luo E, Liu X. Immunomodulatory nanomedicine for osteoporosis: Current practices and emerging prospects. Acta Biomater 2024; 179:13-35. [PMID: 38494082 DOI: 10.1016/j.actbio.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/22/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
Osteoporosis results from the disruption of the balance between bone resorption and bone formation. However, classical anti-osteoporosis drugs exhibit several limitations in clinical applications, such as multiple adverse reactions and poor therapeutic effects. Therefore, there is an urgent need for alternative treatment strategies. With the evolution of immunomodulatory nanomedicine, a variety of nanomaterials have been designed for anti-osteoporosis treatment, offering prospects of minimal adverse reactions, enhanced bone induction, and high osteogenic activity. This review initially provides a brief overview of the fundamental principles of bone reconstruction, current osteogenic clinical methods in osteoporosis treatment, and the significance of osteogenic-angiogenic coupling, laying the groundwork for understanding the pathophysiology and therapeutics of osteoporosis. Subsequently, the article emphasizes the relationship between bone immunity and osteogenesis-angiogenesis coupling and provides a detailed analysis of the application of immunomodulatory nanomedicines in the treatment of osteoporosis, including various types of nanomaterials and their integration with carrier biomaterials. Importantly, we discuss the potential of some emerging strategies in immunomodulatory nanomedicine for osteoporosis treatment. This review introduces the innovative applications of immunomodulatory nanomedicine in the treatment of osteoporosis, aiming to serve as a reference for the application of immunomodulatory nanomedicine strategies in osteoporosis treatment. STATEMENT OF SIGNIFICANCE: Osteoporosis, as one of the most prevalent skeletal disorders, poses a significant threat to public health. To date, conventional anti-osteoporosis strategies have been limited in efficacy and plagued with numerous side effects. Fortunately, with the advancement of research in osteoimmunology and nanomedicine, strategies integrating these two fields show great promise in combating osteoporosis. Nanomedicine with immunomodulatory properties exhibits enhanced efficiency, prolonged effectiveness, and increased safety. However, as of now, there exists no comprehensive review amalgamating immunomodulation with nanomedicine to delineate the progress of immunomodulatory nanomedicine in osteoporosis treatment, as well as the future direction of this strategy.
Collapse
Affiliation(s)
- Yankun Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology& National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology& National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ming Chen
- West China School of Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yaowen Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology& National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wenzhuo Zheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology& National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Li Wu
- College of Electronics Information and Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Yao Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology& National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Shibo Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology& National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology& National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xian Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology& National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
22
|
Liu H, Song P, Zhang H, Zhou F, Ji N, Wang M, Zhou G, Han R, Liu X, Weng W, Tan H, Wang S, Zheng L, Jing Y, Su J. Synthetic biology-based bacterial extracellular vesicles displaying BMP-2 and CXCR4 to ameliorate osteoporosis. J Extracell Vesicles 2024; 13:e12429. [PMID: 38576241 PMCID: PMC10995478 DOI: 10.1002/jev2.12429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/18/2024] [Indexed: 04/06/2024] Open
Abstract
Osteoporosis (OP) is a systematic bone disease characterized by low bone mass and fragile bone microarchitecture. Conventional treatment for OP has limited efficacy and long-term toxicity. Synthetic biology makes bacterial extracellular vesicle (BEVs)-based therapeutic strategies a promising alternative for the treatment of OP. Here, we constructed a recombinant probiotics Escherichia coli Nissle 1917-pET28a-ClyA-BMP-2-CXCR4 (ECN-pClyA-BMP-2-CXCR4), in which BMP-2 and CXCR4 were overexpressed in fusion with BEVs surface protein ClyA. Subsequently, we isolated engineered BEVs-BMP-2-CXCR4 (BEVs-BC) for OP therapy. The engineered BEVs-BC exhibited great bone targeting in vivo. In addition, BEVs-BC had good biocompatibility and remarkable ability to promote osteogenic differentiation of BMSCs. Finally, the synthetic biology-based BEVs-BC significantly prevented the OP in an ovariectomized (OVX) mouse model. In conclusion, we constructed BEVs-BC with both bone-targeting and bone-forming in one-step using synthetic biology, which provides an effective strategy for OP and has great potential for industrialization.
Collapse
|
23
|
Chang M, Wang M, Liu B, Zhong W, Jana D, Wang Y, Dong S, Antony A, Li C, Liu Y, Zhao Z, Lin J, Jiang W, Zhao Y. A Cancer Nanovaccine Based on an FeAl-Layered Double Hydroxide Framework for Reactive Oxygen Species-Augmented Metalloimmunotherapy. ACS NANO 2024; 18:8143-8156. [PMID: 38436248 DOI: 10.1021/acsnano.3c11960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
The complexity and heterogeneity of individual tumors have hindered the efficacy of existing therapeutic cancer vaccines, sparking intensive interest in the development of more effective in situ vaccines. Herein, we introduce a cancer nanovaccine for reactive oxygen species-augmented metalloimmunotherapy in which FeAl-layered double hydroxide (LDH) is used as a delivery vehicle with dihydroartemisinin (DHA) as cargo. The LDH framework is acid-labile and can be degraded in the tumor microenvironment, releasing iron ions, aluminum ions, and DHA. The iron ions contribute to aggravated intratumoral oxidative stress injury by the synergistic Fenton reaction and DHA activation, causing apoptosis, ferroptosis, and immunogenic cell death in cancer cells. The subsequently released tumor-associated antigens with the aluminum adjuvant form a cancer nanovaccine to generate robust and long-term immune responses against cancer recurrence and metastasis. Moreover, Fe ion-enabled T1-weighted magnetic resonance imaging can facilitate real-time tumor therapy monitoring. This cancer-nanovaccine-mediated metalloimmunotherapy strategy has the potential for revolutionizing the precision immunotherapy landscape.
Collapse
Affiliation(s)
- Mengyu Chang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Man Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Bin Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Wenbin Zhong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Deblin Jana
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Yifan Wang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Shiyan Dong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Abin Antony
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Chunxia Li
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Yuhui Liu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, P. R. China
| | - Zhongqi Zhao
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas 77004, United States
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| |
Collapse
|
24
|
Liao C, He D, Yin K, Lin Y, Chen Y, Zhang Z, Zhang J, Luo H, Chen X, Li Y. Effect of the Sr-Fe layered double hydroxide coating based on the microenvironment response on implant osseointegration in osteoporotic rats. J Mater Chem B 2024; 12:1592-1603. [PMID: 38265091 DOI: 10.1039/d3tb02410e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Osteoporosis is a disease that manifests itself as an abnormality of bone metabolism and is characterized by low bone mass and destruction of the bone microstructure. Since bone resorption occurs more rapidly than new bone formation, osteoporosis leads to reduced orthopedic implant stability. From a microenvironmental point of view, the rationale for this outcome is that osteoclasts are overactive in the bone tissue of patients with osteoporosis, and the large amount of H+ they produce leads to local chronic acidosis, which promotes bone mineral loss. Therefore, we designed a weakly alkaline layered double hydroxide (LDH) coating to modulate the pathologically acidic microenvironment and the osteogenic-osteoclastic coupling by releasing Sr2+. We prepared Sr-Fe LDH coatings on pure titanium implants using a hydrothermal method in this study and characterized the material using SEM, AFM, XRD, XPS, EDS, ICP, pH acidimeter, etc. We found that the coatings had good nanomorphology and were able to efficiently neutralize H+ as well as steadily release Sr2+ for up to 21 days. In vitro, the coating not only significantly promoted the adhesion, proliferation, and differentiation of osteoblasts, but also inhibited the differentiation of osteoclasts at the same time. In addition, in animal experiments, the coating significantly improved the mechanical stability of the implant in osteoporotic rats, increasing Sr-Fe LDH@Ti maximal push-out force by 72.2% compared to Ti. At the same time, the coating was effective in reversing the osteoporotic state, resulting in a 58.5% increase in BV/TV (%), and a 12.4% increase in Tb. N (1 mm-1), a 31.6% increase in Tb. Th (μm), and a 30.9% increase in BA (%). Our results suggest that this Sr-Fe LDH nanocoating material with acid-neutralizing, as well as long-term Sr2+-releasing capabilities, is a novel and effective orthopedic implant coating material under osteoporotic conditions.
Collapse
Affiliation(s)
- Chenyu Liao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral & Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Dongcai He
- College of Materials Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Kaiwen Yin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral & Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yuhung Lin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral & Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yihan Chen
- Shanghai Institute of Ceramics, Chinese Academy of Science, Research Unit of Nanocatalytic Medicine iSpecific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai 200050, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Ziqiang Zhang
- College of Materials Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Jing Zhang
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan 610065, China
| | - Hongrong Luo
- College of Biomedical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Xianchun Chen
- College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China.
| | - Yunfeng Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral & Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
25
|
Fu H, Guo Y, Fang W, Wang J, Hu P, Shi J. Anti-Acidification and Immune Regulation by Nano-Ceria-Loaded Mg-Al Layered Double Hydroxide for Rheumatoid Arthritis Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307094. [PMID: 38064119 PMCID: PMC10853726 DOI: 10.1002/advs.202307094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/14/2023] [Indexed: 02/10/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease featuring an abnormal immune microenvironment and resultant accumulation of hydrogen ions (H+ ) produced by activated osteoclasts (OCs). Currently, clinic RA therapy can hardly achieve sustained or efficient therapeutic outcomes due to the failures in generating sufficient immune modulation and manipulating the accumulation of H+ that deteriorates bone damage. Herein, a highly effective immune modulatory nanocatalytic platform, nanoceria-loaded magnesium aluminum layered double hydroxide (LDH-CeO2 ), is proposed for enhanced immune modulation based on acid neutralization and metal ion inherent bioactivity. Specifically, the mild alkaline LDH initiates significant M2 repolarization of macrophages triggered by the elevated antioxidation effect of CeO2 via neutralizing excessive H+ in RA microenvironment, thus resulting in the efficient recruitment of regulatory T cell (Treg) and suppressions on T helper 17 cell (Th 17) and plasma cells. Moreover, the osteogenic activity is stimulated by the Mg ion released from LDH, thereby promoting the damaged bone healing. The encouraging therapeutic outcomes in adjuvant-induced RA model mice demonstrate the high feasibility of such a therapeutic concept, which provides a novel and efficient RA therapeutic modality by the immune modulatory and bone-repairing effects of inorganic nanocatalytic material.
Collapse
Affiliation(s)
- Hao Fu
- Shanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
| | - Yuedong Guo
- Platform of Nanomedicine TranslationShanghai Tenth People's HospitalMedical School of Tongji University38 Yun‐xin RoadShanghai200435P. R. China
| | - Wenming Fang
- Shanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
| | - Jiaxing Wang
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Jiao Tong UniversityShanghai200233P. R. China
| | - Ping Hu
- Shanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Platform of Nanomedicine TranslationShanghai Tenth People's HospitalMedical School of Tongji University38 Yun‐xin RoadShanghai200435P. R. China
| | - Jianlin Shi
- Shanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Platform of Nanomedicine TranslationShanghai Tenth People's HospitalMedical School of Tongji University38 Yun‐xin RoadShanghai200435P. R. China
| |
Collapse
|
26
|
Feng Y, Wang J, Cao J, Cao F, Chen X. Manipulating calcium homeostasis with nanoplatforms for enhanced cancer therapy. EXPLORATION (BEIJING, CHINA) 2024; 4:20230019. [PMID: 38854493 PMCID: PMC10867402 DOI: 10.1002/exp.20230019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/28/2023] [Indexed: 06/11/2024]
Abstract
Calcium ions (Ca2+) are indispensable and versatile metal ions that play a pivotal role in regulating cell metabolism, encompassing cell survival, proliferation, migration, and gene expression. Aberrant Ca2+ levels are frequently linked to cell dysfunction and a variety of pathological conditions. Therefore, it is essential to maintain Ca2+ homeostasis to coordinate body function. Disrupting the balance of Ca2+ levels has emerged as a potential therapeutic strategy for various diseases, and there has been extensive research on integrating this approach into nanoplatforms. In this review, the current nanoplatforms that regulate Ca2+ homeostasis for cancer therapy are first discussed, including both direct and indirect approaches to manage Ca2+ overload or inhibit Ca2+ signalling. Then, the applications of these nanoplatforms in targeting different cells to regulate their Ca2+ homeostasis for achieving therapeutic effects in cancer treatment are systematically introduced, including tumour cells and immune cells. Finally, perspectives on the further development of nanoplatforms for regulating Ca2+ homeostasis, identifying scientific limitations and future directions for exploitation are offered.
Collapse
Affiliation(s)
- Yanlin Feng
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of PhysiologyShanxi Medical UniversityTaiyuanChina
| | - Jianlin Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of PhysiologyShanxi Medical UniversityTaiyuanChina
| | - Jimin Cao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of PhysiologyShanxi Medical UniversityTaiyuanChina
| | - Fangfang Cao
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and EngineeringNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and EngineeringNational University of SingaporeSingaporeSingapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Agency for Science, Technology, and Research (A*STAR)Institute of Molecular and Cell BiologySingaporeSingapore
| |
Collapse
|
27
|
Cao Z, Bian Y, Hu T, Yang Y, Cui Z, Wang T, Yang S, Weng X, Liang R, Tan C. Recent advances in two-dimensional nanomaterials for bone tissue engineering. JOURNAL OF MATERIOMICS 2023; 9:930-958. [DOI: 10.1016/j.jmat.2023.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
28
|
Bian Y, Cai X, Lv Z, Xu Y, Wang H, Tan C, Liang R, Weng X. Layered Double Hydroxides: A Novel Promising 2D Nanomaterial for Bone Diseases Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301806. [PMID: 37329200 PMCID: PMC10460877 DOI: 10.1002/advs.202301806] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/07/2023] [Indexed: 06/18/2023]
Abstract
Bone diseases including bone defects, bone infections, osteoarthritis, and bone tumors seriously affect life quality of the patient and bring serious economic burdens to social health management, for which the current clinical treatments bear dissatisfactory therapeutic effects. Biomaterial-based strategies have been widely applied in the treatment of orthopedic diseases but are still plagued by deficient bioreactivity. With the development of nanotechnology, layered double hydroxides (LDHs) with adjustable metal ion composition and alterable interlayer structure possessing charming physicochemical characteristics, versatile bioactive properties, and excellent drug loading and delivery capabilities arise widespread attention and have achieved considerable achievements for bone disease treatment in the last decade. However, to the authors' best knowledge, no review has comprehensively summarized the advances of LDHs in treating bone disease so far. Herein, the advantages of LDHs for orthopedic disorders treatment are outlined and the corresponding state-of-the-art achievements are summarized for the first time. The potential of LDHs-based nanocomposites for extended therapeutics for bone diseases is highlighted and perspectives for LDHs-based scaffold design are proposed for facilitated clinical translation.
Collapse
Affiliation(s)
- Yixin Bian
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730P. R. China
| | - Xuejie Cai
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730P. R. China
| | - Zehui Lv
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730P. R. China
| | - Yiming Xu
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730P. R. China
| | - Han Wang
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730P. R. China
| | - Chaoliang Tan
- Department of Chemistry and Center of Super‐Diamond and Advanced Films (COSDAF)City University of Hong KongKowloonHong KongP. R. China
- Shenzhen Research InstituteCity University of Hong KongShenzhen518057P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Xisheng Weng
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730P. R. China
| |
Collapse
|
29
|
Li D, Dai D, Xiong G, Lan S, Zhang C. Composite Nanocoatings of Biomedical Magnesium Alloy Implants: Advantages, Mechanisms, and Design Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300658. [PMID: 37097626 PMCID: PMC10288271 DOI: 10.1002/advs.202300658] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/25/2023] [Indexed: 06/19/2023]
Abstract
The rapid degradation of magnesium (Mg) alloy implants erodes mechanical performance and interfacial bioactivity, thereby limiting their clinical utility. Surface modification is among the solutions to improve corrosion resistance and bioefficacy of Mg alloys. Novel composite coatings that incorporate nanostructures create new opportunities for their expanded use. Particle size dominance and impermeability may increase corrosion resistance and thereby prolong implant service time. Nanoparticles with specific biological effects may be released into the peri-implant microenvironment during the degradation of coatings to promote healing. Composite nanocoatings provide nanoscale surfaces to promote cell adhesion and proliferation. Nanoparticles may activate cellular signaling pathways, while those with porous or core-shell structures may carry antibacterial or immunomodulatory drugs. Composite nanocoatings may promote vascular reendothelialization and osteogenesis, attenuate inflammation, and inhibit bacterial growth, thus increasing their applicability in complex clinical microenvironments such as those of atherosclerosis and open fractures. This review combines the physicochemical properties and biological efficiency of Mg-based alloy biomedical implants to summarize the advantages of composite nanocoatings, analyzes their mechanisms of action, and proposes design and construction strategies, with the purpose of providing a reference for promoting the clinical application of Mg alloy implants and to further the design of nanocoatings.
Collapse
Affiliation(s)
- Dan Li
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Danni Dai
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Gege Xiong
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Shuquan Lan
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Chao Zhang
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
| |
Collapse
|
30
|
Ma X, Zhang B, Ma N, Liu C, Miao Y, Liang X, Guan S, Li D, Liu A, Zhou S. Unveiling the Mechanism of Alleviating Ischemia Reperfusion Injury via a Layered Double Hydroxide-Based Nanozyme. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36914282 DOI: 10.1021/acsami.2c19570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Oxidative stress after ischemia reperfusion can cause irreversible brain damage. Thus, it is vital to timely consume excessive reactive oxygen species (ROS) and conduct molecular imaging monitoring on the brain injury site. However, previous studies have focused on how to scavenge ROS while ignoring the mechanism of relieving the reperfusion injury. Herein, we reported a layered double hydroxide (LDH)-based nanozyme (denoted as ALDzyme), which was fabricated by the confinement of astaxanthin (AST) with LDH. This ALDzyme can mimic natural enzymes, which include superoxide dismutase (SOD) and catalase (CAT). Furthermore, the SOD-like activity of ALDzyme is 16.3 times higher than that of CeO2 (a typical ROS scavenger). Based on these enzyme-mimicking properties, this one-of-a-kind ALDzyme offers strong anti-oxidative properties as well as high biocompatibility. Importantly, this unique ALDzyme can establish an efficient magnetic resonance imaging platform, thus guiding the in vivo details. As a result, the infarct area can be reduced by 77% after reperfusion therapy, and the neurological impairment score can be lowered from 3-4 to 0-1. Density functional theory computations can reveal more about the mechanism of this ALDzyme's significant ROS consumption. These findings provide a method for unraveling the neuroprotection application process in ischemia reperfusion injury using an LDH-based nanozyme as a remedial nanoplatform.
Collapse
Affiliation(s)
- Xiaotong Ma
- Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, PR China
| | - Baorui Zhang
- Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Na Ma
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, PR China
| | - Chuxuan Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, PR China
| | - Yan Miao
- Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Xin Liang
- Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Shanyue Guan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Dawei Li
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing 100091, P. R. China
| | - Aihua Liu
- Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Shuyun Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
31
|
Lv Z, Hu T, Bian Y, Wang G, Wu Z, Li H, Liu X, Yang S, Tan C, Liang R, Weng X. A MgFe-LDH Nanosheet-Incorporated Smart Thermo-Responsive Hydrogel with Controllable Growth Factor Releasing Capability for Bone Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206545. [PMID: 36426823 DOI: 10.1002/adma.202206545] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Although growth factor (GF)-loaded hydrogels have been explored as promising materials in repairing bone defects, it still remains challenging to construct smart hydrogels with excellent gelation/mechanical properties as well as controllable GF releasing capability. Herein, the incorporation of bone morphogenetic protein 2 (BMP-2)-functionalized MgFe-layered double hydroxide (LDH) nanosheets into chitosan/silk fibroin (CS) hydrogels loaded with platelet-derived growth factor-BB (PDGF-BB) to construct a smart injectable thermo-responsive hydrogel (denoted as CSP-LB), which can achieve a burst release of PDGF-BB and a sustained release of BMP-2, for highly efficient bone regeneration is reported. The incorporation of MgFe-LDH in CS hydrogel not only shortens the gelation time and decreases sol-gel transition temperature, but also enhances the mechanical property of the hydrogel. Because of the sequential release of dual-GFs and sustained release of bioactive Mg2+ /Fe3+ ions, the in vitro experiments prove that the CSP-LB hydrogel exhibits excellent angiogenic and osteogenic properties compared with the CS hydrogel. In vivo experiments further prove that the CSP-LB hydrogel can significantly enhance bone regeneration with higher bone volume and mineral density than that of the CS hydrogel. This smart thermo-sensitive CSP-LB hydrogel possesses excellent gelation capability and angiogenic and osteogenic properties, thus providing a promising minimally invasive solution for bone defect treatment.
Collapse
Affiliation(s)
- Zehui Lv
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, P. R. China
| | - Tingting Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yixin Bian
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, P. R. China
| | - Guanyun Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhikang Wu
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Hai Li
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Xueyan Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shuqing Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chaoliang Tan
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xisheng Weng
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, P. R. China
| |
Collapse
|
32
|
Liu J, Li L, Zhang R, Xu ZP. The adjacent effect between Gd(III) and Cu(II) in layered double hydroxide nanoparticles synergistically enhances T1-weighted magnetic resonance imaging contrast. NANOSCALE HORIZONS 2023; 8:279-290. [PMID: 36606452 DOI: 10.1039/d2nh00478j] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Magnetic resonance imaging (MRI) is one key technology in modern diagnostic medicine. However, the development of high-relaxivity contrast agents with favorable properties for imaging applications remains a challenging task. In this work, dual Gd(III) and Cu(II) doped-layered double hydroxide (GdCu-LDH) nanoparticles show significantly higher longitudinal relaxivity compared with sole-metal-based LDH (Gd-LDH and Cu-LDH) nanoparticles. This relaxation enhancement in GdCu-LDH is also much greater than the simple addition of the relaxivity rate of the two paramagnetic ions in Gd-LDH and Cu-LDH, presumably attributed to synergistic T1 shortening between adjacent Gd(III) and Cu(II) in the LDH host layers (adjacent effect). Moreover, our GdCu-LDH nanoparticles exhibit a pH-ultrasensitive property in MRI performance and show much clearer MR imaging for tumor tissues in mice than Gd-LDH and Cu-LDH at the equivalent doses. Thus, these novel Gd/Cu-co-doped LDH nanoparticles provide higher potential for accurate cancer diagnosis in clinic application. To the best of our knowledge, this is the first report that two paramagnetic metal ions in one nanoparticle synergistically improve the T1-MRI contrast.
Collapse
Affiliation(s)
- Jianping Liu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD 4072, Australia.
- Institute of Biomedical Health Technology and Engineering and Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, P. R. China, 518107
| |
Collapse
|
33
|
Cheung KCP, Jiao M, Xingxuan C, Wei J. Extracellular vesicles derived from host and gut microbiota as promising nanocarriers for targeted therapy in osteoporosis and osteoarthritis. Front Pharmacol 2023; 13:1051134. [PMID: 36686680 PMCID: PMC9859449 DOI: 10.3389/fphar.2022.1051134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/21/2022] [Indexed: 01/08/2023] Open
Abstract
Osteoporosis (OP), a systemic bone disease that causes structural bone loss and bone mass loss, is often associated with fragility fractures. Extracellular vesicles (EVs) generated by mammalian and gut bacteria have recently been identified as important mediators in the intercellular signaling pathway that may play a crucial role in microbiota-host communication. EVs are tiny membrane-bound vesicles, which range in size from 20 to 400 nm. They carry a variety of biologically active substances across intra- and intercellular space. These EVs have developed as a promising research area for the treatment of OP because of their nanosized architecture, enhanced biocompatibility, reduced toxicity, drug loading capacity, ease of customization, and industrialization. This review describes the latest development of EVs derived from mammals and bacteria, including their internalization, isolation, biogenesis, classifications, topologies, and compositions. Additionally, breakthroughs in chemical sciences and the distinctive biological features of bacterial extracellular vesicles (BEVs) allow for the customization of modified BEVs for the therapy of OP. In conclusion, we give a thorough and in-depth summary of the main difficulties and potential future of EVs in the treatment of OP, as well as highlight innovative uses and choices for the treatment of osteoarthritis (OA).
Collapse
Affiliation(s)
- Kenneth Chat Pan Cheung
- Hong Kong Traditional Chinese Medicine Phenome Research Center, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Ma Jiao
- Hong Kong Traditional Chinese Medicine Phenome Research Center, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Chen Xingxuan
- Hong Kong Traditional Chinese Medicine Phenome Research Center, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Jia Wei
- Hong Kong Traditional Chinese Medicine Phenome Research Center, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
34
|
Wang H, Jing G, Niu J, Yang L, Li Y, Gao Y, Wang H, Xu X, Qian Y, Wang S. A mitochondria-anchored supramolecular photosensitizer as a pyroptosis inducer for potent photodynamic therapy and enhanced antitumor immunity. J Nanobiotechnology 2022; 20:513. [PMID: 36463229 PMCID: PMC9719646 DOI: 10.1186/s12951-022-01719-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The discovery of a potent photosensitizer with desirable immunogenic cell death (ICD) ability can prominently enhance antitumor immunity in photodynamic therapy (PDT). However, majority of commercially-available photosensitizers suffer from serious aggregation and fail to elicit sufficient ICD. Pyroptosis as a newly identified pattern for potent ICD generation is rarely disclosed in reported photosensitizers. In addition, the photosensitizer with excellent mitochondria-anchored ability evokes prominent mitochondria oxidative stress, and consequently induces ICD. RESULTS Herein, a novel supramolecular photosensitizer LDH@ZnPc is reported, without complicated preparation, but reveals desirable pyroptosis-triggered ability with mitochondria anchoring feature. LDH@ZnPc is obtained through isolation of ZnPc using positive charged layered double hydroxides (LDH), and excellent mitochondria-anchored ability is achieved. More importantly, LDH@ZnPc-mediated PDT can effectively initiate gasdermin D (GSDMD)-dependent pyroptosis of tumor cells. In vitro and in vivo results verify robust ICD ability and potent tumor inhibition efficacy, and antitumor immunity towards distant tumor inhibition. CONCLUSIONS This study reveals that LDH@ZnPc can act as an excellent pyroptosis inducer with simultaneous mitochondria anchoring ability for enhancing photodynamic therapy and boosting antitumor immunity.
Collapse
Affiliation(s)
- Hong Wang
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, People's Republic of China
| | - Guoxin Jing
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, People's Republic of China
| | - Jintong Niu
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, People's Republic of China
| | - Li Yang
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, People's Republic of China
| | - Youyuan Li
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, People's Republic of China
| | - Yi Gao
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, People's Republic of China
| | - Huichao Wang
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, People's Republic of China
| | - Xiaorong Xu
- Department of Gastroenterology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, People's Republic of China
| | - Yechang Qian
- Department of Respiratory Disease, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, 201900, People's Republic of China.
| | - Shilong Wang
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
35
|
Wang G, Lv Z, Wang T, Hu T, Bian Y, Yang Y, Liang R, Tan C, Weng X. Surface Functionalization of Hydroxyapatite Scaffolds with MgAlEu-LDH Nanosheets for High-Performance Bone Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2204234. [PMID: 36394157 PMCID: PMC9811441 DOI: 10.1002/advs.202204234] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/14/2022] [Indexed: 05/10/2023]
Abstract
Although artificial bone repair scaffolds, such as titanium alloy, bioactive glass, and hydroxyapatite (HAp), have been widely used for treatment of large-size bone defects or serious bone destruction, they normally exhibit unsatisfied bone repair efficiency because of their weak osteogenic and angiogenesis performance as well as poor cell crawling and adhesion properties. Herein, the surface functionalization of MgAlEu-layered double hydroxide (MAE-LDH) nanosheets on porous HAp scaffolds is reported as a simple and effective strategy to prepare HAp/MAE-LDH scaffolds for enhanced bone regeneration. The surface functionalization of MAE-LDHs on the porous HAp scaffold can significantly improve its surface roughness, specific surface, and hydrophilicity, thus effectively boosting the cells adhesion and osteogenic differentiation. Importantly, the MAE-LDHs grown on HAp scaffolds enable the sustained release of Mg2+ and Eu3+ ions for efficient bone repair and vascular regeneration. In vitro experiments suggest that the HAp/MAE-LDH scaffold presents much enhanced osteogenesis and angiogenesis properties in comparison with the pristine HAp scaffold. In vivo assays further reveal that the new bone mass and mineral density of HAp/MAE-LDH scaffold increased by 3.18- and 2.21-fold, respectively, than that of pristine HAp scaffold. The transcriptome sequencing analysis reveals that the HAp/MAE-LDH scaffold can activate the Wnt/β-catenin signaling pathway to promote the osteogenic and angiogenic abilities.
Collapse
Affiliation(s)
- Guanyun Wang
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730China
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Zehui Lv
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730China
| | - Tao Wang
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Tingting Hu
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Yixin Bian
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730China
| | - Yu Yang
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Chaoliang Tan
- Department of Chemistry and Center of Super‐Diamond and Advanced Films (COSDAF)City University of Hong KongKowloonHong Kong SARChina
- Shenzhen Research InstituteCity University of Hong KongShenzhen518057P. R. China
| | - Xisheng Weng
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730China
| |
Collapse
|
36
|
Zhang W, Ding M, Zhang X, Shang H. Biosynthesis-mediated Ni-Fe-Cu LDH-to-sulfides transformation enabling sensitive detection of endogenous hydrogen sulfide with dual-readout signals. Anal Chim Acta 2022; 1229:340390. [PMID: 36156228 DOI: 10.1016/j.aca.2022.340390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/19/2022]
Abstract
Hydrogen sulfide (H2S) is a vital endogenous gas signal molecule undertaking numerous physiological functions such as biological regulation and cytoprotection. Herein, we developed an electrochemical (EC) and photothermal (PT) dual-readout signals method for H2S detection based on a novel biosynthesis-mediated Ni-Fe-Cu LDH-to-sulfides transformation strategy. Interestingly, the Cu2+-based Ni-Fe LDH (Ni-Fe-Cu LDH) can act as the Cu2+ source to react with H2S, resulting in the in-situ generation of CuxS on Ni-Fe-Cu LDH surfaces. Because of the EC signal and intrinsic near-infrared (NIR) PT conversion ability of CuxS under 808 nm laser irradiation, the obtained CuxS@Ni-Fe-Cu LDH is applied to stimulate EC signal and temperature readout. By this means, a dual-readout signal mode is established for H2S detection. Under the optimum conditions, this combination of EC and PT methods displays a wide linear range for H2S to 0.1 μM-90 μM and 50 μM-400 μM, respectively, with a low detection limit of 0.09 μM. In addition, the practicality of Ni-Fe-Cu LDH is verified by determination of endogenous H2S in living cells. This work not only provides a promising application for H2S diagnosis but also exhibits the new characteristic of Ni-Fe-Cu LDH nanomaterials as signal transduction tags.
Collapse
Affiliation(s)
- Wen Zhang
- College of Pharmacy, Shanxi Medical University, Taiyuan, 030001, PR China
| | - Meili Ding
- College of Pharmacy, Shanxi Medical University, Taiyuan, 030001, PR China
| | - Xiaofei Zhang
- College of Pharmacy, Shanxi Medical University, Taiyuan, 030001, PR China
| | - Hongyuan Shang
- College of Pharmacy, Shanxi Medical University, Taiyuan, 030001, PR China.
| |
Collapse
|
37
|
Hu T, Gu Z, Williams GR, Strimaite M, Zha J, Zhou Z, Zhang X, Tan C, Liang R. Layered double hydroxide-based nanomaterials for biomedical applications. Chem Soc Rev 2022; 51:6126-6176. [PMID: 35792076 DOI: 10.1039/d2cs00236a] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Against the backdrop of increased public health awareness, inorganic nanomaterials have been widely explored as promising nanoagents for various kinds of biomedical applications. Layered double hydroxides (LDHs), with versatile physicochemical advantages including excellent biocompatibility, pH-sensitive biodegradability, highly tunable chemical composition and structure, and ease of composite formation with other materials, have shown great promise in biomedical applications. In this review, we comprehensively summarize the recent advances in LDH-based nanomaterials for biomedical applications. Firstly, the material categories and advantages of LDH-based nanomaterials are discussed. The preparation and surface modification of LDH-based nanomaterials, including pristine LDHs, LDH-based nanocomposites and LDH-derived nanomaterials, are then described. Thereafter, we systematically describe the great potential of LDHs in biomedical applications including drug/gene delivery, bioimaging diagnosis, cancer therapy, biosensing, tissue engineering, and anti-bacteria. Finally, on the basis of the current state of the art, we conclude with insights on the remaining challenges and future prospects in this rapidly emerging field.
Collapse
Affiliation(s)
- Tingting Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Zi Gu
- School of Chemical Engineering and Australian Centre for NanoMedicine (ACN), University of New South Wales, Sydney, NSW 2052, Australia
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Margarita Strimaite
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Jiajia Zha
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.
| | - Zhan Zhou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Xingcai Zhang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.,School of Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | - Chaoliang Tan
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong. .,Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| |
Collapse
|
38
|
Jing G, Yang L, Wang H, Niu J, Li Y, Wang S. Interference of layered double hydroxide nanoparticles with pathways for biomedical applications. Adv Drug Deliv Rev 2022; 188:114451. [PMID: 35843506 DOI: 10.1016/j.addr.2022.114451] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/18/2022] [Accepted: 07/09/2022] [Indexed: 11/01/2022]
Abstract
Recent decades have witnessed a surge of explorations into the application of multifarious materials, especially biomedical applications. Among them, layered double hydroxides (LDHs) have been widely developed as typical inorganic layer materials to achieve remarkable advancements. Multiple physicochemical properties endow LDHs with excellent merits in biomedical applications. Moreover, LDH nanoplatforms could serve as "molecular switches", which are capable of the controlled release of payloads under specific physiological pH conditions but are stable during circulation in the bloodstream. In addition, LDHs themselves are composed of several specific cations and possess favorable biological effects or regulatory roles in various cellular functions. These advantages have caused LDHs to become increasingly of interest in the area of nanomedicine. Recent efforts have been devoted to revealing the potential factors that interfere with the biological pathways of LDH-based nanoparticles, such as their applications in shaping the functions of immune cells and in determining the fate of stem cells and tumor treatments, which are comprehensively described herein. In addition, several intracellular signaling pathways interfering with by LDHs in the above applications were also systematically expatiated. Finally, the future development and challenges of LDH-based nanomedicine are discussed in the context of the ultimate goal of practical clinical application.
Collapse
Affiliation(s)
- Guoxin Jing
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, PR China
| | - Linnan Yang
- Central Laboratory, First Affiliated Hospital, Anhui Medical University, Hefei, PR China
| | - Hong Wang
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, PR China
| | - Jintong Niu
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, PR China
| | - Youyuan Li
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, PR China
| | - Shilong Wang
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, PR China.
| |
Collapse
|