1
|
Torabi N, Chiechi RC. Photosystem I complexes form remarkably stable self-assembled tunneling junctions. NANOSCALE 2024; 16:19400-19412. [PMID: 39344694 DOI: 10.1039/d4nr02554g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
This paper describes large-area molecular tunneling junctions comprising self-assembled monolayers (SAMs) of light-harvesting protein complexes using eutectic Ga-In (EGaIn) as a top contact. The complexes, which are readily isolable in large quantities from spinach leaves, self-assemble on top of SAMs of [6,6]-phenyl-C61-butyric acid (PCBA) on gold (Au) supported by mica substrates (AuMica), which induces them to adopt a preferred orientation with respect to the electron transport chain that runs across the short axis of each complex, leading to temperature-independent rectification. We compared trimeric protein complexes isolated from thermophilic cyanobacteria to monomeric complexes extracted from spinach leaves by measuring charge-transport at variable temperatures and over the course of at least three months. Transport is independent of temperature in the range of 130 to 310 K for both protein complexes, affirming that the likely mechanism is non-resonant tunneling. The junctions rectified current and were stable for at least three months when stored at room temperature in ambient conditions, with the yield of working junctions falling from 100% to 97% over that time. These results demonstrate a straightforward strategy for forming remarkably robust molecular junctions, avoiding the fragility that is common in molecular electronics.
Collapse
Affiliation(s)
- Nahid Torabi
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Ryan C Chiechi
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Department of Chemistry & Organic and Carbon Electronics Cluster, North Carolina State University, Raleigh, North Carolina 27695-8204, USA.
| |
Collapse
|
2
|
Zhang Y, Liang H, Qi P, Xu Z, Fei H, Guo C. Deciphering the Roles of Interfacial Amino Acids in Inter-Protein Charge Transport. NANO LETTERS 2024; 24:4178-4185. [PMID: 38552164 DOI: 10.1021/acs.nanolett.4c00164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Elucidating charge transport (CT) through proteins is critical for gaining insights into ubiquitous CT chain reactions in biological systems and developing high-performance bioelectronic devices. While intra-protein CT has been extensively studied, crucial knowledge about inter-protein CT via interfacial amino acids is still absent due to the structural complexity. Herein, by loading cytochrome c (Cyt c) on well-defined peptide self-assembled monolayers to mimic the protein-protein interface, we provide a precisely controlled platform for identifying the roles of interfacial amino acids in solid-state CT via peptide-Cyt c junctions. The terminal amino acid of peptides serves as a fine-tuning factor for both the interfacial interaction between peptides and Cyt c and the immobilized Cyt c orientation, resulting in a nearly 10-fold difference in current through peptide-Cyt c junctions with varied asymmetry. This work provides a valuable platform for studying CT across proteins and contributes to the understanding of fundamental principles governing inter-protein CT.
Collapse
Affiliation(s)
- Yongkang Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Han Liang
- College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Pan Qi
- College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Zhongchen Xu
- College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Houguo Fei
- College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Cunlan Guo
- College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| |
Collapse
|
3
|
Bâldea I. Can tunneling current in molecular junctions be so strongly temperature dependent to challenge a hopping mechanism? Analytical formulas answer this question and provide important insight into large area junctions. Phys Chem Chem Phys 2024; 26:6540-6556. [PMID: 38328878 DOI: 10.1039/d3cp05046g] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Analytical equations like Richardson-Dushman's or Shockley's provided a general, if simplified conceptual background, which was widely accepted in conventional electronics and made a fundamental contribution to advances in the field. In the attempt to develop a (highly desirable, but so far missing) counterpart for molecular electronics, in this work, we deduce a general analytical formula for the tunneling current through molecular junctions mediated by a single level that is valid for any bias voltage and temperature. Starting from this expression, which is exact and obviates cumbersome numerical integration, in the low and high temperature limits we also provide analytical formulas expressing the current in terms of elementary functions. They are accurate for broad model parameter ranges relevant for real molecular junctions. Within this theoretical framework we show that: (i) by varying the temperature, the tunneling current can vary by several orders of magnitude, thus debunking the myth that a strong temperature dependence of the current is evidence for a hopping mechanism, (ii) real molecular junctions can undergo a gradual (Sommerfeld-Arrhenius) transition from a weakly temperature dependent to a strongly ("exponential") temperature dependent current that can be tuned by the applied bias, and (iii) important insight into large area molecular junctions with eutectic gallium indium alloy (EGaIn) top electrodes can be gained. E.g., merely based on transport data, we estimate that the current carrying molecules represent only a fraction of f ≈ 4 × 10-4 out of the total number of molecules in a large area Au-S-(CH2)13-CH3/EGaIn junction.
Collapse
Affiliation(s)
- Ioan Bâldea
- Theoretical Chemistry, Heidelberg University, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany.
| |
Collapse
|
4
|
Bera S, Fereiro JA, Saxena SK, Chryssikos D, Majhi K, Bendikov T, Sepunaru L, Ehre D, Tornow M, Pecht I, Vilan A, Sheves M, Cahen D. Near-Temperature-Independent Electron Transport Well beyond Expected Quantum Tunneling Range via Bacteriorhodopsin Multilayers. J Am Chem Soc 2023; 145. [PMID: 37933117 PMCID: PMC10655127 DOI: 10.1021/jacs.3c09120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023]
Abstract
A key conundrum of biomolecular electronics is efficient electron transport (ETp) through solid-state junctions up to 10 nm, often without temperature activation. Such behavior challenges known charge transport mechanisms, especially via nonconjugated molecules such as proteins. Single-step, coherent quantum-mechanical tunneling proposed for ETp across small protein, 2-3 nm wide junctions, but it is problematic for larger proteins. Here we exploit the ability of bacteriorhodopsin (bR), a well-studied, 4-5 nm long membrane protein, to assemble into well-defined single and multiple bilayers, from ∼9 to 60 nm thick, to investigate ETp limits as a function of junction width. To ensure sufficient signal/noise, we use large area (∼10-3 cm2) Au-protein-Si junctions. Photoemission spectra indicate a wide energy separation between electrode Fermi and the nearest protein-energy levels, as expected for a polymer of mostly saturated components. Junction currents decreased exponentially with increasing junction width, with uniquely low length-decay constants (0.05-0.5 nm-1). Remarkably, even for the widest junctions, currents are nearly temperature-independent, completely so below 160 K. While, among other things, the lack of temperature-dependence excludes, hopping as a plausible mechanism, coherent quantum-mechanical tunneling over 60 nm is physically implausible. The results may be understood if ETp is limited by injection into one of the contacts, followed by more efficient charge propagation across the protein. Still, the electrostatics of the protein films further limit the number of charge carriers injected into the protein film. How electron transport across dozens of nanometers of protein layers is more efficient than injection defines a riddle, requiring further study.
Collapse
Affiliation(s)
- Sudipta Bera
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jerry A. Fereiro
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
- School
of Chemistry, Indian Institute of Science
Education and Research, Thiruvananthapuram 695551, Kerala, India
| | - Shailendra K. Saxena
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department
of Physics and Nanotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil
Nadu, India
| | - Domenikos Chryssikos
- Molecular
Electronics, Technical University of Munich, 85748 Garching, Germany
- Fraunhofer
Institute for Electronic Microsystems and Solid State Technologies
(EMFT), 80686 München, Germany
| | - Koushik Majhi
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tatyana Bendikov
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Lior Sepunaru
- Department
of Chemistry and Biochemistry, University
of California, Santa
Barbara, California 93106, United States
| | - David Ehre
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Marc Tornow
- Molecular
Electronics, Technical University of Munich, 85748 Garching, Germany
- Fraunhofer
Institute for Electronic Microsystems and Solid State Technologies
(EMFT), 80686 München, Germany
| | - Israel Pecht
- Department
of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ayelet Vilan
- Department
of Chemical and Biological Physics Weizmann
Institute of Science, Rehovot 7610001, Israel
| | - Mordechai Sheves
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - David Cahen
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
5
|
Jiang T, Zeng BF, Zhang B, Tang L. Single-molecular protein-based bioelectronics via electronic transport: fundamentals, devices and applications. Chem Soc Rev 2023; 52:5968-6002. [PMID: 37498342 DOI: 10.1039/d2cs00519k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Biomolecular electronics is a rapidly growing multidisciplinary field that combines biology, nanoscience, and engineering to bridge the two important fields of life sciences and molecular electronics. Proteins are remarkable for their ability to recognize molecules and transport electrons, making the integration of proteins into electronic devices a long sought-after goal and leading to the emergence of the field of protein-based bioelectronics, also known as proteotronics. This field seeks to design and create new biomolecular electronic platforms that allow for the understanding and manipulation of protein-mediated electronic charge transport and related functional applications. In recent decades, there have been numerous reports on protein-based bioelectronics using a variety of nano-gapped electrical devices and techniques at the single molecular level, which are not achievable with conventional ensemble approaches. This review focuses on recent advances in physical electron transport mechanisms, device fabrication methodologies, and various applications in protein-based bioelectronics. We discuss the most recent progress of the single or few protein-bridged electrical junction fabrication strategies, summarise the work on fundamental and functional applications of protein bioelectronics that enable high and dynamic electron transport, and highlight future perspectives and challenges that still need to be addressed. We believe that this specific review will stimulate the interdisciplinary research of topics related to protein-related bioelectronics, and open up new possibilities for single-molecule biophysics and biomedicine.
Collapse
Affiliation(s)
- Tao Jiang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Biao-Feng Zeng
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Bintian Zhang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Longhua Tang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Quantum Sensing, Interdisciplinary Centre for Quantum Information, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
6
|
Jiang T, Yi L, Liu X, Ivanov AP, Edel JB, Tang L. Fabrication of electron tunneling probes for measuring single-protein conductance. Nat Protoc 2023; 18:2579-2599. [PMID: 37420088 DOI: 10.1038/s41596-023-00846-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/21/2023] [Indexed: 07/09/2023]
Abstract
Studying the electrical properties of individual proteins is a prominent research area in the field of bioelectronics. Electron tunnelling or quantum mechanical tunnelling (QMT) probes can act as powerful tools for investigating the electrical properties of proteins. However, current fabrication methods for these probes often have limited reproducibility, unreliable contact or inadequate binding of proteins onto the electrodes, so better solutions are required. Here, we detail a generalizable and straightforward set of instructions for fabricating simple, nanopipette-based, tunnelling probes, suitable for measuring conductance in single proteins. Our QMT probe is based on a high-aspect-ratio dual-channel nanopipette that integrates a pair of gold tunneling electrodes with a gap of less than 5 nm, fabricated via the pyrolytic deposition of carbon followed by the electrochemical deposition of gold. The gold tunneling electrodes can be functionalized using an extensive library of available surface modifications to achieve single-protein-electrode contact. We use a biotinylated thiol modification, in which a biotin-streptavidin-biotin bridge is used to form the single-protein junction. The resulting protein-coupled QMT probes enable the stable electrical measurement of the same single protein in solution for up to several hours. We also describe the analysis method used to interpret time-dependent single-protein conductance measurements, which can provide essential information for understanding electron transport and exploring protein dynamics. The total time required to complete the protocol is ~33 h and it can be carried out by users trained in less than 24 h.
Collapse
Affiliation(s)
- Tao Jiang
- State Key Laboratory of Modern Optical Instrumentation, Institute of Quantum Sensing, Interdisciplinary Centre for Quantum Information, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China
| | - Long Yi
- Department of Chemistry, Molecular Science Research Hub, Imperial College London, London, UK
| | - Xu Liu
- State Key Laboratory of Modern Optical Instrumentation, Institute of Quantum Sensing, Interdisciplinary Centre for Quantum Information, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China
| | - Aleksandar P Ivanov
- Department of Chemistry, Molecular Science Research Hub, Imperial College London, London, UK
| | - Joshua B Edel
- Department of Chemistry, Molecular Science Research Hub, Imperial College London, London, UK
| | - Longhua Tang
- State Key Laboratory of Modern Optical Instrumentation, Institute of Quantum Sensing, Interdisciplinary Centre for Quantum Information, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China.
| |
Collapse
|
7
|
Li T, Bandari VK, Schmidt OG. Molecular Electronics: Creating and Bridging Molecular Junctions and Promoting Its Commercialization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209088. [PMID: 36512432 DOI: 10.1002/adma.202209088] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/28/2022] [Indexed: 06/02/2023]
Abstract
Molecular electronics is driven by the dream of expanding Moore's law to the molecular level for next-generation electronics through incorporating individual or ensemble molecules into electronic circuits. For nearly 50 years, numerous efforts have been made to explore the intrinsic properties of molecules and develop diverse fascinating molecular electronic devices with the desired functionalities. The flourishing of molecular electronics is inseparable from the development of various elegant methodologies for creating nanogap electrodes and bridging the nanogap with molecules. This review first focuses on the techniques for making lateral and vertical nanogap electrodes by breaking, narrowing, and fixed modes, and highlights their capabilities, applications, merits, and shortcomings. After summarizing the approaches of growing single molecules or molecular layers on the electrodes, the methods of constructing a complete molecular circuit are comprehensively grouped into three categories: 1) directly bridging one-molecule-electrode component with another electrode, 2) physically bridging two-molecule-electrode components, and 3) chemically bridging two-molecule-electrode components. Finally, the current state of molecular circuit integration and commercialization is discussed and perspectives are provided, hoping to encourage the community to accelerate the realization of fully scalable molecular electronics for a new era of integrated microsystems and applications.
Collapse
Affiliation(s)
- Tianming Li
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09111, Chemnitz, Germany
| | - Vineeth Kumar Bandari
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09111, Chemnitz, Germany
| | - Oliver G Schmidt
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09111, Chemnitz, Germany
- Nanophysics, Dresden University of Technology, 01069, Dresden, Germany
| |
Collapse
|
8
|
Fereiro JA, Bendikov T, Herrmann A, Pecht I, Sheves M, Cahen D. Protein Orientation Defines Rectification of Electronic Current via Solid-State Junction of Entire Photosystem-1 Complex. J Phys Chem Lett 2023; 14:2973-2982. [PMID: 36940422 DOI: 10.1021/acs.jpclett.2c03700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We demonstrate that the direction of current rectification via one of nature's most efficient light-harvesting systems, the photosystem 1 complex (PS1), can be controlled by its orientation on Au substrates. Molecular self-assembly of the PS1 complex using four different linkers with distinct functional head groups that interact by electrostatic and hydrogen bonds with different surface parts of the entire protein PS1 complex was used to tailor the PS1 orientation. We observe an orientation-dependent rectification in the current-voltage characteristics for linker/PS1 molecule junctions. Results of an earlier study using a surface two-site PS1 mutant complex having its orientation set by covalent binding to the Au substrate supports our conclusion. Current-voltage-temperature measurements on the linker/PS1 complex indicate off-resonant tunneling as the main electron transport mechanism. Our ultraviolet photoemission spectroscopy results highlight the importance of the protein orientation for the energy level alignment and provide insight into the charge transport mechanism via the PS1 transport chain.
Collapse
Affiliation(s)
- Jerry A Fereiro
- Department of Molecular Chemistry & Materials Science, Weizmann Inst. of Science, Rehovot 7610001, Israel
- School of Chemistry, Indian Inst. of Science Education & Research, Thiruvananthapuram 695551, Kerala, India
| | - Tatyana Bendikov
- Department of Chemical Research Support, Weizmann Inst. of Science, Rehovot 7610001, Israel
| | - Andreas Herrmann
- DWI - Leibniz-Institute for Interactive Materials, 52074 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Israel Pecht
- Department of Immunology & Regenerative Biology, Weizmann Inst. of Science, Rehovot 7610001, Israel
| | - Mordechai Sheves
- Department of Molecular Chemistry & Materials Science, Weizmann Inst. of Science, Rehovot 7610001, Israel
| | - David Cahen
- Department of Molecular Chemistry & Materials Science, Weizmann Inst. of Science, Rehovot 7610001, Israel
| |
Collapse
|
9
|
Bera S, Govinda S, Fereiro JA, Pecht I, Sheves M, Cahen D. Biotin Binding Hardly Affects Electron Transport Efficiency across Streptavidin Solid-State Junctions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1394-1403. [PMID: 36648410 PMCID: PMC9893813 DOI: 10.1021/acs.langmuir.2c02378] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/29/2022] [Indexed: 05/27/2023]
Abstract
The electron transport (ETp) efficiency of solid-state protein-mediated junctions is highly influenced by the presence of electron-rich organic cofactors or transition metal ions. Hence, we chose to investigate an interesting cofactor-free non-redox protein, streptavidin (STV), which has unmatched strong binding affinity for an organic small-molecule ligand, biotin, which lacks any electron-rich features. We describe for the first time meso-scale ETp via electrical junctions of STV monolayers and focus on the question of whether the rate of ETp across both native and thiolated STV monolayers is influenced by ligand binding, a process that we show to cause some structural conformation changes in the STV monolayers. Au nanowire-electrode-protein monolayer-microelectrode junctions, fabricated by modifying an earlier procedure to improve the yields of usable junctions, were employed for ETp measurements. Our results on compactly integrated, dense, uniform, ∼3 nm thick STV monolayers indicate that, notwithstanding the slight structural changes in the STV monolayers upon biotin binding, there is no statistically significant conductance change between the free STV and that bound to biotin. The ETp temperature (T) dependence over the 80-300 K range is very small but with an unusual, slightly negative (metallic-like) dependence toward room temperature. Such dependence can be accounted for by the reversible structural shrinkage of the STV at temperatures below 160 K.
Collapse
Affiliation(s)
- Sudipta Bera
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sharada Govinda
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jerry A. Fereiro
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
- The
School of Chemistry, Indian Institute of
Science Education and Research, Thiruvananthapuram, Maruthamala, Kerala 695551, India
| | - Israel Pecht
- Department
of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Mordechai Sheves
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - David Cahen
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
10
|
Zinelli R, Soni S, Cornelissen JJLM, Michel-Souzy S, Nijhuis CA. Charge Transport across Proteins inside Proteins: Tunneling across Encapsulin Protein Cages and the Effect of Cargo Proteins. Biomolecules 2023; 13:174. [PMID: 36671559 PMCID: PMC9855946 DOI: 10.3390/biom13010174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Charge transport across proteins can be surprisingly efficient over long distances-so-called long-range tunneling-but it is still unclear as to why and under which conditions (e.g., presence of co-factors, type of cargo) the long-range tunneling regime can be accessed. This paper describes molecular tunneling junctions based on an encapsulin (Enc), which is a large protein cage with a diameter of 24 nm that can be loaded with various types of (small) proteins, also referred to as "cargo". We demonstrate with dynamic light scattering, transmission electron microscopy, and atomic force microscopy that Enc, with and without cargo, can be made stable in solution and immobilized on metal electrodes without aggregation. We investigated the electronic properties of Enc in EGaIn-based tunnel junctions (EGaIn = eutectic alloy of Ga and In that is widely used to contact (bio)molecular monolayers) by measuring the current density for a large range of applied bias of ±2.5 V. The encapsulated cargo has an important effect on the electrical properties of the junctions. The measured current densities are higher for junctions with Enc loaded with redox-active cargo (ferritin-like protein) than those junctions without cargo or redox-inactive cargo (green fluorescent protein). These findings open the door to charge transport studies across complex biomolecular hierarchical structures.
Collapse
Affiliation(s)
- Riccardo Zinelli
- Hybrid Materials for Opto-Electronics Group, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Center and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, P.O. Box 2017, 7500 AE Enschede, The Netherlands
- Biomolecular NanoTechnology, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Center and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, P.O. Box 2017, 7500 AE Enschede, The Netherlands
| | - Saurabh Soni
- Hybrid Materials for Opto-Electronics Group, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Center and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, P.O. Box 2017, 7500 AE Enschede, The Netherlands
| | - Jeroen J. L. M. Cornelissen
- Biomolecular NanoTechnology, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Center and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, P.O. Box 2017, 7500 AE Enschede, The Netherlands
| | - Sandra Michel-Souzy
- Biomolecular NanoTechnology, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Center and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, P.O. Box 2017, 7500 AE Enschede, The Netherlands
| | - Christian A. Nijhuis
- Hybrid Materials for Opto-Electronics Group, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Center and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, P.O. Box 2017, 7500 AE Enschede, The Netherlands
| |
Collapse
|
11
|
Gupta N, Karuppannan SK, Pasula RR, Vilan A, Martin J, Xu W, May EM, Pike AR, Astier HPA, Salim T, Lim S, Nijhuis CA. Temperature-Dependent Coherent Tunneling across Graphene-Ferritin Biomolecular Junctions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44665-44675. [PMID: 36148983 PMCID: PMC9542697 DOI: 10.1021/acsami.2c11263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Understanding the mechanisms of charge transport (CT) across biomolecules in solid-state devices is imperative to realize biomolecular electronic devices in a predictive manner. Although it is well-accepted that biomolecule-electrode interactions play an essential role, it is often overlooked. This paper reveals the prominent role of graphene interfaces with Fe-storing proteins in the net CT across their tunnel junctions. Here, ferritin (AfFtn-AA) is adsorbed on the graphene by noncovalent amine-graphene interactions confirmed with Raman spectroscopy. In contrast to junctions with metal electrodes, graphene has a vanishing density of states toward its intrinsic Fermi level ("Dirac point"), which increases away from the Fermi level. Therefore, the amount of charge carriers is highly sensitive to temperature and electrostatic charging (induced doping), as deduced from a detailed analysis of CT as a function of temperature and iron loading. Remarkably, the temperature dependence can be fully explained within the coherent tunneling regime due to excitation of hot carriers. Graphene is not only demonstrated as an alternative platform to study CT across biomolecular tunnel junctions, but it also opens rich possibilities in employing interface electrostatics in tuning CT behavior.
Collapse
Affiliation(s)
- Nipun
Kumar Gupta
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Centre
for Advanced 2D Materials, National University
of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| | - Senthil Kumar Karuppannan
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Rupali Reddy Pasula
- School
of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Ayelet Vilan
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Jens Martin
- Centre
for Advanced 2D Materials, National University
of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| | - Wentao Xu
- Centre
for Advanced 2D Materials, National University
of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| | - Esther Maria May
- Chemistry-School
of Natural and Environmental Sciences, Newcastle
University, Newcastle
upon Tyne NE1 7RU, U.K.
| | - Andrew R. Pike
- School
of
Materials Science and Engineering, Nanyang
Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Hippolyte P. A.
G. Astier
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Teddy Salim
- School
of
Materials Science and Engineering, Nanyang
Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Sierin Lim
- School
of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Christian A. Nijhuis
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Centre
for Advanced 2D Materials, National University
of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
- Hybrid
Materials for Opto-Electronics Group, Department of Molecules and
Materials, MESA+ Institute for Nanotechnology and Centre for Brain-Inspired
Nano Systems, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
12
|
Tang L, Yi L, Jiang T, Ren R, Paulose Nadappuram B, Zhang B, Wu J, Liu X, Lindsay S, Edel JB, Ivanov AP. Measuring conductance switching in single proteins using quantum tunneling. SCIENCE ADVANCES 2022; 8:eabm8149. [PMID: 35584212 PMCID: PMC9116604 DOI: 10.1126/sciadv.abm8149] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Interpreting the electrical signatures of single proteins in electronic junctions has facilitated a better understanding of the intrinsic properties of proteins that are fundamental to chemical and biological processes. Often, this information is not accessible using ensemble and even single-molecule approaches. In addition, the fabrication of nanoscale single-protein junctions remains challenging as they often require sophisticated methods. We report on the fabrication of tunneling probes, direct measurement, and active control (switching) of single-protein conductance with an external field in solution. The probes allowed us to bridge a single streptavidin molecule to two independently addressable, biotin-terminated electrodes and measure single-protein tunneling response over long periods. We show that charge transport through the protein has multiple conductive pathways that depend on the magnitude of the applied bias. These findings open the door for the reliable fabrication of protein-based junctions and can enable their use in future protein-embedded bioelectronics applications.
Collapse
Affiliation(s)
- Longhua Tang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310027, China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang-California International NanoSystems Institute, Zhejiang University, Hangzhou 310000, China
- Corresponding author. (L.T.); (A.P.I.); (J.B.E.)
| | - Long Yi
- Department of Chemistry, Molecular Science Research Hub, Imperial College London, White City Campus, 82 Wood Lane, London W12 0BZ, UK
| | - Tao Jiang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310027, China
| | - Ren Ren
- Department of Chemistry, Molecular Science Research Hub, Imperial College London, White City Campus, 82 Wood Lane, London W12 0BZ, UK
| | - Binoy Paulose Nadappuram
- Department of Chemistry, Molecular Science Research Hub, Imperial College London, White City Campus, 82 Wood Lane, London W12 0BZ, UK
- Department of Pure and Applied Chemistry, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, UK
| | - Bintian Zhang
- Biodesign Institute; School of Life Sciences; Department of Physics; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Jian Wu
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang-California International NanoSystems Institute, Zhejiang University, Hangzhou 310000, China
| | - Xu Liu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310027, China
| | - Stuart Lindsay
- Biodesign Institute; School of Life Sciences; Department of Physics; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Joshua B. Edel
- Department of Chemistry, Molecular Science Research Hub, Imperial College London, White City Campus, 82 Wood Lane, London W12 0BZ, UK
- Corresponding author. (L.T.); (A.P.I.); (J.B.E.)
| | - Aleksandar P. Ivanov
- Department of Chemistry, Molecular Science Research Hub, Imperial College London, White City Campus, 82 Wood Lane, London W12 0BZ, UK
- Corresponding author. (L.T.); (A.P.I.); (J.B.E.)
| |
Collapse
|
13
|
Qiu X, Chiechi RC. Printable logic circuits comprising self-assembled protein complexes. Nat Commun 2022; 13:2312. [PMID: 35484124 PMCID: PMC9050843 DOI: 10.1038/s41467-022-30038-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 04/08/2022] [Indexed: 11/09/2022] Open
Abstract
This paper describes the fabrication of digital logic circuits comprising resistors and diodes made from protein complexes and wired together using printed liquid metal electrodes. These resistors and diodes exhibit temperature-independent charge-transport over a distance of approximately 10 nm and require no encapsulation or special handling. The function of the protein complexes is determined entirely by self-assembly. When induced to self-assembly into anisotropic monolayers, the collective action of the aligned dipole moments increases the electrical conductivity of the ensemble in one direction and decreases it in the other. When induced to self-assemble into isotropic monolayers, the dipole moments are randomized and the electrical conductivity is approximately equal in both directions. We demonstrate the robustness and utility of these all-protein logic circuits by constructing pulse modulators based on AND and OR logic gates that function nearly identically to simulated circuits. These results show that digital circuits with useful functionality can be derived from readily obtainable biomolecules using simple, straightforward fabrication techniques that exploit molecular self-assembly, realizing one of the primary goals of molecular electronics. Proteins are promising molecular materials for next-generation electronic devices. Here, the authors fabricated printable digital logic circuits comprising resistors and diodes from self-assembled photosystem I complexes that enable pulse modulation.
Collapse
Affiliation(s)
- Xinkai Qiu
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands. .,Optoelectronics Group, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK.
| | - Ryan C Chiechi
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands. .,Department of Chemistry, North Carolina State University, Raleigh, NC, 27695-8204, United States.
| |
Collapse
|
14
|
López-Ortiz M, Zamora RA, Giannotti MI, Hu C, Croce R, Gorostiza P. Distance and Potential Dependence of Charge Transport Through the Reaction Center of Individual Photosynthetic Complexes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104366. [PMID: 34874621 DOI: 10.1002/smll.202104366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Charge separation and transport through the reaction center of photosystem I (PSI) is an essential part of the photosynthetic electron transport chain. A strategy is developed to immobilize and orient PSI complexes on gold electrodes allowing to probe the complex's electron acceptor side, the chlorophyll special pair P700. Electrochemical scanning tunneling microscopy (ECSTM) imaging and current-distance spectroscopy of single protein complex shows lateral size in agreement with its known dimensions, and a PSI apparent height that depends on the probe potential revealing a gating effect in protein conductance. In current-distance spectroscopy, it is observed that the distance-decay constant of the current between PSI and the ECSTM probe depends on the sample and probe electrode potentials. The longest charge exchange distance (lowest distance-decay constant β) is observed at sample potential 0 mV/SSC (SSC: reference electrode silver/silver chloride) and probe potential 400 mV/SSC. These potentials correspond to hole injection into an electronic state that is available in the absence of illumination. It is proposed that a pair of tryptophan residues located at the interface between P700 and the solution and known to support the hydrophobic recognition of the PSI redox partner plastocyanin, may have an additional role as hole exchange mediator in charge transport through PSI.
Collapse
Affiliation(s)
- Manuel López-Ortiz
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona, 08028, Spain
- Network Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, 28029, Spain
| | - Ricardo A Zamora
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona, 08028, Spain
- Network Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, 28029, Spain
| | - Marina Inés Giannotti
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona, 08028, Spain
- Network Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, 28029, Spain
- Department of Materials Science and Physical Chemistry, University of Barcelona, Martí i Franquès 1-11, Barcelona, 08028, Spain
| | - Chen Hu
- Biophysics of PhotosynthesisDepartment of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081, Amsterdam, 1081 HV, The Netherlands
| | - Roberta Croce
- Biophysics of PhotosynthesisDepartment of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081, Amsterdam, 1081 HV, The Netherlands
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona, 08028, Spain
- Network Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, 28029, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, 08010, Spain
| |
Collapse
|
15
|
Zhang B, Ryan E, Wang X, Song W, Lindsay S. Electronic Transport in Molecular Wires of Precisely Controlled Length Built from Modular Proteins. ACS NANO 2022; 16:1671-1680. [PMID: 35029115 PMCID: PMC9279515 DOI: 10.1021/acsnano.1c10830] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
DNA molecular wires have been studied extensively because of the ease with which molecules of controlled length and composition can be synthesized. The same has not been true for proteins. Here, we have synthesized and studied a series of consensus tetratricopeptide repeat (CTPR) proteins, spanning 4 to 20 nm in length, in increments of 4 nm. For lengths in excess of 6 nm, their conductance exceeds that of the canonical molecular wire, oligo(phenylene-ethylenene), because of the more gradual decay of conductance with length in the protein. We show that, while the conductance decay fits an exponential (characteristic of quantum tunneling) and not a linear increase of resistance with length (characteristic of hopping transport), it is also accounted for by a square-law dependence on length (characteristic of weakly driven hopping). Measurements of the energy dependence of the decay length rule out the quantum tunneling case. A resonance in the carrier injection energy shows that allowed states in the protein align with the Fermi energy of the electrodes. Both the energy of these states and the long-range of hopping suggest that the reorganization induced by hole formation is greatly reduced inside the protein. We outline a model for calculating the molecular-electronic properties of proteins.
Collapse
Affiliation(s)
- Bintian Zhang
- Biodesign Institute, Arizona State University, Tempe, AZ 85281
| | - Eathen Ryan
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281
| | - Xu Wang
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281
| | - Weisi Song
- Biodesign Institute, Arizona State University, Tempe, AZ 85281
| | - Stuart Lindsay
- Biodesign Institute, Arizona State University, Tempe, AZ 85281
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281
- Department of Physics, Arizona State University, Tempe, AZ 85281
- Corresponding Author: Stuart Lindsay: Phone 480 205 6432
| |
Collapse
|
16
|
Shi J, Jiang F, Long S, Lu Z, Liu T, Zheng H, Shi J, Yang Y, Hong W, Tian ZQ. The influence of water on the charge transport through self-assembled monolayers junctions fabricated by EGaIn technique. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Sequence modulation of tunneling barrier and charge transport across histidine doped oligo-alanine molecular junctions. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Kim YJ, Hong H, Yun J, Kim SI, Jung HY, Ryu W. Photosynthetic Nanomaterial Hybrids for Bioelectricity and Renewable Energy Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005919. [PMID: 33236450 DOI: 10.1002/adma.202005919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Harvesting solar energy in the form of electricity from the photosynthesis of plants, algal cells, and bacteria has been researched as the most environment-friendly renewable energy technology in the last decade. The primary challenge has been the engineering of electrochemical interfacing with photosynthetic apparatuses, organelles, or whole cells. However, with the aid of low-dimensional nanomaterials, there have been many advances, including enhanced photon absorption, increased generation of photosynthetic electrons (PEs), and more efficient transfer of PEs to electrodes. These advances have demonstrated the possibility for the technology to advance to a new level. In this article, the fundamentals of photosynthesis are introduced. How PE harvesting systems have improved concerning solar energy absorption, PE production, and PE collection by electrodes is discussed. The review focuses on how different kinds of nanomaterials are applied and function in interfacing with photosynthetic materials for enhanced PE harvesting. Finally, the review analyzes how the performance of PE harvesting and stand-alone systems have evolved so far and its future prospects.
Collapse
Affiliation(s)
- Yong Jae Kim
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Hyeonaug Hong
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - JaeHyoung Yun
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Seon Il Kim
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Ho Yun Jung
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - WonHyoung Ryu
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| |
Collapse
|
19
|
Torabi N, Qiu X, López-Ortiz M, Loznik M, Herrmann A, Kermanpur A, Ashrafi A, Chiechi RC. Fullerenes Enhance Self-Assembly and Electron Injection of Photosystem I in Biophotovoltaic Devices. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11465-11473. [PMID: 34544234 PMCID: PMC8495901 DOI: 10.1021/acs.langmuir.1c01542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/06/2021] [Indexed: 06/02/2023]
Abstract
This paper describes the fabrication of microfluidic devices with a focus on controlling the orientation of photosystem I (PSI) complexes, which directly affects the performance of biophotovoltaic devices by maximizing the efficiency of the extraction of electron/hole pairs from the complexes. The surface chemistry of the electrode on which the complexes assemble plays a critical role in their orientation. We compared the degree of orientation on self-assembled monolayers of phenyl-C61-butyric acid and a custom peptide on nanostructured gold electrodes. Biophotovoltaic devices fabricated with the C61 fulleroid exhibit significantly improved performance and reproducibility compared to those utilizing the peptide, yielding a 1.6-fold increase in efficiency. In addition, the C61-based devices were more stable under continuous illumination. Our findings show that fulleroids, which are well-known acceptor materials in organic photovoltaic devices, facilitate the extraction of electrons from PSI complexes without sacrificing control over the orientation of the complexes, highlighting this combination of traditional organic semiconductors with biomolecules as a viable approach to coopting natural photosynthetic systems for use in solar cells.
Collapse
Affiliation(s)
- Nahid Torabi
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747
AG Groningen, The Netherlands
- Department
of Materials Engineering, Isfahan University
of Technology, Isfahan 84156-83111, Iran
| | - Xinkai Qiu
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| | - Manuel López-Ortiz
- IBEC—Institut
de Bioenginyeria de Catalunya, The Barcelona
Institute of Science and Technology, Baldiri Reixac 15-21, Barcelona 08028, Spain
- Network
Biomedical Research Center in Biomaterials, Bioengineering and Nanomedicine
(CIBER-BBN), Madrid 28029, Spain
| | - Mark Loznik
- Institute
of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
- DWI-Leibniz
Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany
| | - Andreas Herrmann
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747
AG Groningen, The Netherlands
- Institute
of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
- DWI-Leibniz
Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany
| | - Ahmad Kermanpur
- Department
of Materials Engineering, Isfahan University
of Technology, Isfahan 84156-83111, Iran
| | - Ali Ashrafi
- Department
of Materials Engineering, Isfahan University
of Technology, Isfahan 84156-83111, Iran
| | - Ryan C. Chiechi
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| |
Collapse
|
20
|
Furuya R, Omagari S, Tan Q, Lokstein H, Vacha M. Enhancement of the Photocurrent of a Single Photosystem I Complex by the Localized Plasmon of a Gold Nanorod. J Am Chem Soc 2021; 143:13167-13174. [PMID: 34374520 DOI: 10.1021/jacs.1c04691] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A combination of conductive atomic force microscopy (AFM) and confocal fluorescence microscopy was used to measure photocurrents passing through single trimeric photosytem I (PSI) complexes located in the vicinity of single gold nanorods (AuNRs). Simultaneous excitation of PSI and of the AuNR longitudinal plasmon mode and detection of photocurrents from individual PSI in relation to the position of single AuNRs enable insight into plasmon-induced phenomena that are otherwise inaccessible in ensemble experiments. We have observed photocurrent enhancement by the localized plasmons by a factor of 2.9 on average, with maximum enhancement values of up to 8. Selective excitation of the longitudinal plasmon modes by the polarization of the excitation laser enables controllable switch-on of the photocurrent enhancement. The dependence of the extent of enhancement on the distance between PSI and AuNRs indicates that, apart from the enhancement of absorption, there is an additional enhancement mechanism affecting directly the electron transport process. The present study provides deeper insight into the molecular mechanisms of plasmon-enhanced photocurrents, not only in PSI but also potentially in other systems as well.
Collapse
Affiliation(s)
- Ryotaro Furuya
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1-S8-44, Meguro-ku, Tokyo 152-8552, Japan
| | - Shun Omagari
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1-S8-44, Meguro-ku, Tokyo 152-8552, Japan
| | - Qiwen Tan
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1-S8-44, Meguro-ku, Tokyo 152-8552, Japan
| | - Heiko Lokstein
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Prague, Czech Republic
| | - Martin Vacha
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1-S8-44, Meguro-ku, Tokyo 152-8552, Japan.,Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Prague, Czech Republic
| |
Collapse
|
21
|
Izzo M, Jacquet M, Fujiwara T, Harputlu E, Mazur R, Wróbel P, Góral T, Unlu CG, Ocakoglu K, Miyagishima S, Kargul J. Development of a Novel Nanoarchitecture of the Robust Photosystem I from a Volcanic Microalga Cyanidioschyzon merolae on Single Layer Graphene for Improved Photocurrent Generation. Int J Mol Sci 2021; 22:8396. [PMID: 34445103 PMCID: PMC8395140 DOI: 10.3390/ijms22168396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/22/2021] [Accepted: 08/02/2021] [Indexed: 11/17/2022] Open
Abstract
Here, we report the development of a novel photoactive biomolecular nanoarchitecture based on the genetically engineered extremophilic photosystem I (PSI) biophotocatalyst interfaced with a single layer graphene via pyrene-nitrilotriacetic acid self-assembled monolayer (SAM). For the oriented and stable immobilization of the PSI biophotocatalyst, an His6-tag was genetically engineered at the N-terminus of the stromal PsaD subunit of PSI, allowing for the preferential binding of this photoactive complex with its reducing side towards the graphene monolayer. This approach yielded a novel robust and ordered nanoarchitecture designed to generate an efficient direct electron transfer pathway between graphene, the metal redox center in the organic SAM and the photo-oxidized PSI biocatalyst. The nanosystem yielded an overall current output of 16.5 µA·cm-2 for the nickel- and 17.3 µA·cm-2 for the cobalt-based nanoassemblies, and was stable for at least 1 h of continuous standard illumination. The novel green nanosystem described in this work carries the high potential for future applications due to its robustness, highly ordered and simple architecture characterized by the high biophotocatalyst loading as well as simplicity of manufacturing.
Collapse
Affiliation(s)
- Miriam Izzo
- Solar Fuels Laboratory, Center of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland; (M.I.); (M.J.)
| | - Margot Jacquet
- Solar Fuels Laboratory, Center of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland; (M.I.); (M.J.)
| | - Takayuki Fujiwara
- Department of Gene Function and Phenomics, National Institute of Genetics, Yata 111, Mishima 411-8540, Japan; (T.F.); (S.M.)
| | - Ersan Harputlu
- Department of Engineering Fundamental Sciences, Faculty of Engineering, Tarsus University, Tarsus 33400, Turkey; (E.H.); (K.O.)
| | - Radosław Mazur
- Department of Metabolic Regulation, Faculty of Biology, Institute of Biochemistry, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland;
| | - Piotr Wróbel
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland;
| | - Tomasz Góral
- Cryomicroscopy and Electron Diffraction Core Facility, Center of New Technologies, University of Warsaw, 02-097 Warsaw, Poland;
| | - C. Gokhan Unlu
- Department of Biomedical Engineering, Pamukkale University, Denizli 20070, Turkey;
| | - Kasim Ocakoglu
- Department of Engineering Fundamental Sciences, Faculty of Engineering, Tarsus University, Tarsus 33400, Turkey; (E.H.); (K.O.)
| | - Shinya Miyagishima
- Department of Gene Function and Phenomics, National Institute of Genetics, Yata 111, Mishima 411-8540, Japan; (T.F.); (S.M.)
| | - Joanna Kargul
- Solar Fuels Laboratory, Center of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland; (M.I.); (M.J.)
| |
Collapse
|
22
|
Hong H, Lee JM, Yun J, Kim YJ, Kim SI, Shin H, Ahn HS, Hwang SJ, Ryu W. Enhanced interfacial electron transfer between thylakoids and RuO 2 nanosheets for photosynthetic energy harvesting. SCIENCE ADVANCES 2021; 7:7/20/eabf2543. [PMID: 33980487 PMCID: PMC8115919 DOI: 10.1126/sciadv.abf2543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
The harvesting of photosynthetic electrons (PEs) directly from photosynthetic complexes has been demonstrated over the past decade. However, their limited efficiency and stability have hampered further practical development. For example, despite its importance, the interfacial electron transfer between the photosynthetic apparatus and the electrode has received little attention. In this study, we modified electrodes with RuO2 nanosheets to enhance the extraction of PEs from thylakoids, and the PE transfer was promoted by proton adsorption and surface polarity characteristics. The adsorbed protons maintained the potential of an electrode more positive, and the surface polarity enhanced thylakoid attachment to the electrode in addition to promoting ensemble docking between the redox species and the electrode. The RuO2 bioanode exhibited a five times larger current density and a four times larger power density than the Au bioanode. Last, the electric calculators were successfully powered by photosynthetic energy using a RuO2 bioanode.
Collapse
Affiliation(s)
- Hyeonaug Hong
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jang Mee Lee
- Global Innovative Center for Advanced Nanomaterials (GICAN), School of Engineering, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - JaeHyoung Yun
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Yong Jae Kim
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Seon Il Kim
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - HyeIn Shin
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyun S Ahn
- Department of Chemistry, College of Science, Yonsei University, Seoul 03722, Republic of Korea
| | - Seong-Ju Hwang
- Department of Materials Science and Engineering, College of Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - WonHyoung Ryu
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
23
|
The Role of Metal Ions in the Electron Transport through Azurin-Based Junctions. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11093732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We studied the coherent electron transport through metal–protein–metal junctions based on a blue copper azurin, in which the copper ion was replaced by three different metal ions (Co, Ni and Zn). Our results show that neither the protein structure nor the transmission at the Fermi level change significantly upon metal replacement. The discrepancy with previous experimental observations suggests that the transport mechanism taking place in these types of junctions is probably not fully coherent.
Collapse
|
24
|
Qiu X, Rousseva S, Ye G, Hummelen JC, Chiechi RC. In Operando Modulation of Rectification in Molecular Tunneling Junctions Comprising Reconfigurable Molecular Self-Assemblies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006109. [PMID: 33326147 PMCID: PMC11468418 DOI: 10.1002/adma.202006109] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/27/2020] [Indexed: 06/12/2023]
Abstract
The reconfiguration of molecular tunneling junctions during operation via the self-assembly of bilayers of glycol ethers is described. Well-established functional groups are used to modulate the magnitude and direction of rectification in assembled tunneling junctions by exposing them to solutions containing different glycol ethers. Variable-temperature measurements confirm that rectification occurs by the expected bias-dependent tunneling-hopping mechanism for these functional groups and that glycol ethers, besides being an unusually efficient tunneling medium, behave similarly to alkanes. Memory bits are fabricated from crossbar junctions prepared by injecting eutectic Ga-In (EGaIn) into microfluidic channels. The states of two 8-bit registers were set by trains of droplets such that they are able to perform logical AND operations on bit strings encoded into chemical packets that alter the composition of the crossbar junctions through self-assembly to effect memristor-like properties. This proof-of-concept work demonstrates the potential for fieldable devices based on molecular tunneling junctions comprising self-assembled monolayers and bilayers.
Collapse
Affiliation(s)
- Xinkai Qiu
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenNetherlands
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenNetherlands
| | - Sylvia Rousseva
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenNetherlands
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenNetherlands
| | - Gang Ye
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenNetherlands
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenNetherlands
| | - Jan C. Hummelen
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenNetherlands
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenNetherlands
| | - Ryan C. Chiechi
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenNetherlands
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenNetherlands
| |
Collapse
|
25
|
Karuppannan SK, Martín-Rodríguez A, Ruiz E, Harding P, Harding DJ, Yu X, Tadich A, Cowie B, Qi D, Nijhuis CA. Room temperature conductance switching in a molecular iron(iii) spin crossover junction. Chem Sci 2020; 12:2381-2388. [PMID: 34164002 PMCID: PMC8179334 DOI: 10.1039/d0sc04555a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Herein, we report the first room temperature switchable Fe(iii) molecular spin crossover (SCO) tunnel junction. The junction is constructed from [FeIII(qsal-I)2]NTf2 (qsal-I = 4-iodo-2-[(8-quinolylimino)methyl]phenolate) molecules self-assembled on graphene surfaces with conductance switching of one order of magnitude associated with the high and low spin states of the SCO complex. Normalized conductance analysis of the current–voltage characteristics as a function of temperature reveals that charge transport across the SCO molecule is dominated by coherent tunnelling. Temperature-dependent X-ray absorption spectroscopy and density functional theory confirm the SCO complex retains its SCO functionality on the surface implying that van der Waals molecule—electrode interfaces provide a good trade-off between junction stability while retaining SCO switching capability. These results provide new insights and may aid in the design of other types of molecular devices based on SCO compounds. Herein, we report the first room temperature switchable Fe(iii) molecular spin crossover (SCO) tunnel junction.![]()
Collapse
Affiliation(s)
- Senthil Kumar Karuppannan
- Department of Chemistry, National University of Singapore 3 Science Drive Singapore 117543 Singapore
| | - Alejandro Martín-Rodríguez
- Departament de Química Inorgànica, Institut de Recerca de Química Teòrica i Computacional, Universitat de Barcelona Diagonal 645 08028 Barcelona Spain
| | - Eliseo Ruiz
- Departament de Química Inorgànica, Institut de Recerca de Química Teòrica i Computacional, Universitat de Barcelona Diagonal 645 08028 Barcelona Spain
| | - Phimphaka Harding
- Functional Materials and Nanotechnology Center of Excellence, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand
| | - David J Harding
- Functional Materials and Nanotechnology Center of Excellence, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand
| | - Xiaojiang Yu
- Singapore Synchrotron Light Source, National University of Singapore 5 Research Link Singapore 117603 Singapore
| | - Anton Tadich
- Australian Synchrotron Clayton Victoria 3168 Australia
| | - Bruce Cowie
- School of Chemistry and Physics, Queensland University of Technology Brisbane Queensland 4001 Australia
| | - Dongchen Qi
- School of Chemistry and Physics, Queensland University of Technology Brisbane Queensland 4001 Australia
| | - Christian A Nijhuis
- Department of Chemistry, National University of Singapore 3 Science Drive Singapore 117543 Singapore .,Centre for Advanced 2D Materials & Graphene Research, National University of Singapore 6 Science Drive 2 Singapore 117546 Singapore
| |
Collapse
|
26
|
Nanofabrication Techniques in Large-Area Molecular Electronic Devices. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10176064] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The societal impact of the electronics industry is enormous—not to mention how this industry impinges on the global economy. The foreseen limits of the current technology—technical, economic, and sustainability issues—open the door to the search for successor technologies. In this context, molecular electronics has emerged as a promising candidate that, at least in the short-term, will not likely replace our silicon-based electronics, but improve its performance through a nascent hybrid technology. Such technology will take advantage of both the small dimensions of the molecules and new functionalities resulting from the quantum effects that govern the properties at the molecular scale. An optimization of interface engineering and integration of molecules to form densely integrated individually addressable arrays of molecules are two crucial aspects in the molecular electronics field. These challenges should be met to establish the bridge between organic functional materials and hard electronics required for the incorporation of such hybrid technology in the market. In this review, the most advanced methods for fabricating large-area molecular electronic devices are presented, highlighting their advantages and limitations. Special emphasis is focused on bottom-up methodologies for the fabrication of well-ordered and tightly-packed monolayers onto the bottom electrode, followed by a description of the top-contact deposition methods so far used.
Collapse
|
27
|
Mukhopadhyay S, Karuppannan SK, Guo C, Fereiro JA, Bergren A, Mukundan V, Qiu X, Castañeda Ocampo OE, Chen X, Chiechi RC, McCreery R, Pecht I, Sheves M, Pasula RR, Lim S, Nijhuis CA, Vilan A, Cahen D. Solid-State Protein Junctions: Cross- Laboratory Study Shows Preservation of Mechanism at Varying Electronic Coupling. iScience 2020; 23:101099. [PMID: 32438319 PMCID: PMC7235645 DOI: 10.1016/j.isci.2020.101099] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/01/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022] Open
Abstract
Successful integration of proteins in solid-state electronics requires contacting them in a non-invasive fashion, with a solid conducting surface for immobilization as one such contact. The contacts can affect and even dominate the measured electronic transport. Often substrates, substrate treatments, protein immobilization, and device geometries differ between laboratories. Thus the question arises how far results from different laboratories and platforms are comparable and how to distinguish genuine protein electronic transport properties from platform-induced ones. We report a systematic comparison of electronic transport measurements between different laboratories, using all commonly used large-area schemes to contact a set of three proteins of largely different types. Altogether we study eight different combinations of molecular junction configurations, designed so that Ageoof junctions varies from 105 to 10-3 μm2. Although for the same protein, measured with similar device geometry, results compare reasonably well, there are significant differences in current densities (an intensive variable) between different device geometries. Likely, these originate in the critical contact-protein coupling (∼contact resistance), in addition to the actual number of proteins involved, because the effective junction contact area depends on the nanometric roughness of the electrodes and at times, even the proteins may increase this roughness. On the positive side, our results show that understanding what controls the coupling can make the coupling a design knob. In terms of extensive variables, such as temperature, our comparison unanimously shows the transport to be independent of temperature for all studied configurations and proteins. Our study places coupling and lack of temperature activation as key aspects to be considered in both modeling and practice of protein electronic transport experiments.
Collapse
Affiliation(s)
- Sabyasachi Mukhopadhyay
- Weizmann Institute of Science, Rehovot 76100, Israel
- Department of Physics, SRM University – AP, Amaravati, Andhra Pradesh 522502, India
| | - Senthil Kumar Karuppannan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Cunlan Guo
- Weizmann Institute of Science, Rehovot 76100, Israel
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | | | - Adam Bergren
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton AB T6G 2G2, Canada
| | - Vineetha Mukundan
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton AB T6G 2G2, Canada
| | - Xinkai Qiu
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Olga E. Castañeda Ocampo
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Xiaoping Chen
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Ryan C. Chiechi
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Richard McCreery
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton AB T6G 2G2, Canada
| | - Israel Pecht
- Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Rupali Reddy Pasula
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Sierin Lim
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Christian A. Nijhuis
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| | - Ayelet Vilan
- Weizmann Institute of Science, Rehovot 76100, Israel
| | - David Cahen
- Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
28
|
Qiu X, Ivasyshyn V, Qiu L, Enache M, Dong J, Rousseva S, Portale G, Stöhr M, Hummelen JC, Chiechi RC. Thiol-free self-assembled oligoethylene glycols enable robust air-stable molecular electronics. NATURE MATERIALS 2020; 19:330-337. [PMID: 31959952 DOI: 10.1038/s41563-019-0587-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
Self-assembled monolayers (SAMs) are widely used to engineer the surface properties of metals. The relatively simple and versatile chemistry of metal-thiolate bonds makes thiolate SAMs the preferred option in a range of applications, yet fragility and a tendency to oxidize in air limit their long-term use. Here, we report the formation of thiol-free self-assembled mono- and bilayers of glycol ethers, which bind to the surface of coinage metals through the spontaneous chemisorption of glycol ether-functionalized fullerenes. As-prepared assemblies are bilayers presenting fullerene cages at both the substrate and ambient interface. Subsequent exposure to functionalized glycol ethers displaces the topmost layer of glycol ether-functionalized fullerenes, and the resulting assemblies expose functional groups to the ambient interface. These layers exhibit the key properties of thiolate SAMs, yet they are stable to ambient conditions for several weeks, as shown by the performance of tunnelling junctions formed from SAMs of alkyl-functionalized glycol ethers. Glycol ether-functionalized spiropyrans incorporated into mixed monolayers lead to reversible, light-driven conductance switching. Self-assemblies of glycol ethers are drop-in replacements for thiolate SAMs that retain all of their useful properties while avoiding the drawbacks of metal-thiolate bonds.
Collapse
Affiliation(s)
- Xinkai Qiu
- Stratingh Institute for Chemistry, University of Groningen, Groningen, the Netherlands
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - Viktor Ivasyshyn
- Stratingh Institute for Chemistry, University of Groningen, Groningen, the Netherlands
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - Li Qiu
- Stratingh Institute for Chemistry, University of Groningen, Groningen, the Netherlands
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
- School of Materials Science and Engineering, Yunnan Key Laboratory for Micro/Nano Materials & Technology, Yunnan University, Kunming, China
| | - Mihaela Enache
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - Jingjin Dong
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - Sylvia Rousseva
- Stratingh Institute for Chemistry, University of Groningen, Groningen, the Netherlands
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - Giuseppe Portale
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - Meike Stöhr
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - Jan C Hummelen
- Stratingh Institute for Chemistry, University of Groningen, Groningen, the Netherlands
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - Ryan C Chiechi
- Stratingh Institute for Chemistry, University of Groningen, Groningen, the Netherlands.
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
29
|
Kayser B, Fereiro JA, Bhattacharyya R, Cohen SR, Vilan A, Pecht I, Sheves M, Cahen D. Solid-State Electron Transport via the Protein Azurin is Temperature-Independent Down to 4 K. J Phys Chem Lett 2020; 11:144-151. [PMID: 31821001 DOI: 10.1021/acs.jpclett.9b03120] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Solid-state electronic transport (ETp) via the electron-transfer copper protein azurin (Az) was measured in Au/Az/Au junction configurations down to 4 K, the lowest temperature for solid-state protein-based junctions. Not only does lowering the temperature help when observing fine features of electronic transport, but it also limits possible electron transport mechanisms. Practically, wire-bonded devices-on-chip, carrying Az-based microscopic junctions, were measured in liquid He, minimizing temperature gradients across the samples. Much smaller junctions, in conducting-probe atomic force microscopy measurements, served, between room temperature and the protein's denaturation temperature (∼323 K), to check that conductance behavior is independent of device configuration or contact nature and thus is a property of the protein itself. Temperature-independent currents were observed from ∼320 to 4 K. The experimental results were fitted to a single-level Landauer model to extract effective energy barrier and electrode-molecule coupling strength values and to compare data sets. Our results strongly support that quantum tunneling, rather than hopping, dominates ETp via Az.
Collapse
Affiliation(s)
- Ben Kayser
- Department of Materials and Interfaces , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Jerry A Fereiro
- Department of Materials and Interfaces , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Rajarshi Bhattacharyya
- Braun Center for Submicron Research, Department of Condensed Matter Physics , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Sidney R Cohen
- Department of Chemical Research Support , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Ayelet Vilan
- Department of Chemical and Biological Physics , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Israel Pecht
- Department of Immunology , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Mordechai Sheves
- Department of Organic Chemistry , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - David Cahen
- Department of Materials and Interfaces , Weizmann Institute of Science , Rehovot 76100 , Israel
| |
Collapse
|
30
|
Park S, Kang S, Yoon HJ. Power Factor of One Molecule Thick Films and Length Dependence. ACS CENTRAL SCIENCE 2019; 5:1975-1982. [PMID: 31893227 PMCID: PMC6936095 DOI: 10.1021/acscentsci.9b01042] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Indexed: 06/07/2023]
Abstract
There is a rapidly increasing interest in organic thin film thermoelectrics. However, the power factor of one molecule thick organic film, the self-assembled monolayer (SAM), has not yet been determined. This study describes the experimental determination of the power factor in SAMs and its length dependence at an atomic level. As a proof-of-concept, SAMs composed of n-alkanethiolates and oligophenylenethiolates of different lengths are focused. These SAMs were electrically and thermoelectrically characterized on an identical junction platform using a liquid metal top-electrode, allowing the straightforward estimation of the power factor of the monolayers. The results show that the power factor of the alkyl SAMs ranged from 2.0 × 10-8 to 8.0 × 10-12 μW m-1 K-2 and exhibited significant negative length dependence, whereas the conductivity and thermopower of the conjugated SAMs are the two opposing factors that balance the power factor upon an increase in molecular length, exhibiting a maximum power factor of 3.6 × 10-8 μW m-1 K-2. Once correction factors about the ratio of effective contact area to geometrical contact area are considered, the values of power factors can be increased by several orders of magnitude. With a newly derived parametric semiempirical model describing the length dependence of the power factor, it is investigated that one molecule thick films thinner than 10 nm composed of thiophene units can yield power factors rivaling those of famed organic thermoelectric materials based on poly(3,4-ethylenedioxythiophene)/polystyrenesulfonate (PEDOT/PSS) and polyaniline/graphene/double-walled carbon nanotube. Furthermore, how the transition of the transport regime from tunneling to hopping as molecules become long affects power factors is examined.
Collapse
|
31
|
Modulating the electron transport energy levels of protein by doping with foreign molecule. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
López‐Martínez M, López‐Ortiz M, Antinori ME, Wientjes E, Nin‐Hill A, Rovira C, Croce R, Díez‐Pérez I, Gorostiza P. Electrochemically Gated Long‐Distance Charge Transport in Photosystem I. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Montse López‐Martínez
- Department of Material Science and Physical ChemistryUniversity of Barcelona Martí i Franquès, 1 08028 Barcelona Spain
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute of Science and Technology Baldiri Reixac 10–12 08028 Barcelona Spain
- Network Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) 28029 Madrid Spain
- Present address: Institut für Angewandte PhysikTU Wien Vienna Austria
| | - Manuel López‐Ortiz
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute of Science and Technology Baldiri Reixac 10–12 08028 Barcelona Spain
- Network Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) 28029 Madrid Spain
| | - Maria Elena Antinori
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute of Science and Technology Baldiri Reixac 10–12 08028 Barcelona Spain
- Present address: Smart Materials, NanophysicsIstituto Italiano di Tecnologia Genova Italy
| | - Emilie Wientjes
- Laboratory of BiophysicsWageningen University 6700 ET Wageningen The Netherlands
| | - Alba Nin‐Hill
- Inorganic and Organic Chemistry Department & Institute of Theoretical and Computational Chemistry (IQTCUB)University of Barcelona (UB) Martí i Franquès, 1 Barcelona 08028 Spain
| | - Carme Rovira
- Inorganic and Organic Chemistry Department & Institute of Theoretical and Computational Chemistry (IQTCUB)University of Barcelona (UB) Martí i Franquès, 1 Barcelona 08028 Spain
- Catalan Institution for Research and Advanced Studies (ICREA) 08010 Barcelona Spain
| | - Roberta Croce
- Biophysics of Photosynthesis. Dep. Physics and AstronomyFaculty of SciencesVrije Universiteit Amsterdam De Boelelaan 1081 1081 HV Amsterdam The Netherlands
| | - Ismael Díez‐Pérez
- Department of Material Science and Physical ChemistryUniversity of Barcelona Martí i Franquès, 1 08028 Barcelona Spain
- Present address: Department of Chemistry, Faculty of Natural & Mathematical SciencesKing's College London London UK
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute of Science and Technology Baldiri Reixac 10–12 08028 Barcelona Spain
- Network Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) 28029 Madrid Spain
- Catalan Institution for Research and Advanced Studies (ICREA) 08010 Barcelona Spain
| |
Collapse
|
33
|
López-Martínez M, López-Ortiz M, Antinori ME, Wientjes E, Nin-Hill A, Rovira C, Croce R, Díez-Pérez I, Gorostiza P. Electrochemically Gated Long-Distance Charge Transport in Photosystem I. Angew Chem Int Ed Engl 2019; 58:13280-13284. [PMID: 31310425 DOI: 10.1002/anie.201904374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/23/2019] [Indexed: 12/26/2022]
Abstract
The transport of electrons along photosynthetic and respiratory chains involves a series of enzymatic reactions that are coupled through redox mediators, including proteins and small molecules. The use of native and synthetic redox probes is key to understanding charge transport mechanisms and to the design of bioelectronic sensors and solar energy conversion devices. However, redox probes have limited tunability to exchange charge at the desired electrochemical potentials (energy levels) and at different protein sites. Herein, we take advantage of electrochemical scanning tunneling microscopy (ECSTM) to control the Fermi level and nanometric position of the ECSTM probe in order to study electron transport in individual photosystem I (PSI) complexes. Current-distance measurements at different potentiostatic conditions indicate that PSI supports long-distance transport that is electrochemically gated near the redox potential of P700, with current extending farther under hole injection conditions.
Collapse
Affiliation(s)
- Montse López-Martínez
- Department of Material Science and Physical Chemistry, University of Barcelona, Martí i Franquès, 1, 08028, Barcelona, Spain.,Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain.,Network Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029, Madrid, Spain.,Present address: Institut für Angewandte Physik, TU Wien, Vienna, Austria
| | - Manuel López-Ortiz
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain.,Network Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029, Madrid, Spain
| | - Maria Elena Antinori
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain.,Present address: Smart Materials, Nanophysics, Istituto Italiano di Tecnologia, Genova, Italy
| | - Emilie Wientjes
- Laboratory of Biophysics, Wageningen University, 6700 ET, Wageningen, The Netherlands
| | - Alba Nin-Hill
- Inorganic and Organic Chemistry Department & Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona (UB), Martí i Franquès, 1, Barcelona, 08028, Spain
| | - Carme Rovira
- Inorganic and Organic Chemistry Department & Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona (UB), Martí i Franquès, 1, Barcelona, 08028, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain
| | - Roberta Croce
- Biophysics of Photosynthesis. Dep. Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Ismael Díez-Pérez
- Department of Material Science and Physical Chemistry, University of Barcelona, Martí i Franquès, 1, 08028, Barcelona, Spain.,Present address: Department of Chemistry, Faculty of Natural & Mathematical Sciences, King's College London, London, UK
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain.,Network Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029, Madrid, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain
| |
Collapse
|
34
|
Kayser B, Fereiro JA, Guo C, Cohen SR, Sheves M, Pecht I, Cahen D. Transistor configuration yields energy level control in protein-based junctions. NANOSCALE 2018; 10:21712-21720. [PMID: 30431054 DOI: 10.1039/c8nr06627b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The incorporation of proteins as functional components in electronic junctions has received much interest recently due to their diverse bio-chemical and physical properties. However, information regarding the energies of the frontier orbitals involved in their electron transport (ETp) has remained elusive. Here we employ a new method to quantitatively determine the energy position of the molecular orbital, nearest to the Fermi level (EF) of the electrode, in the electron transfer protein Azurin. The importance of the Cu(ii) redox center of Azurin is demonstrated by measuring gate-controlled conductance switching which is absent if Azurin's copper ions are removed. Comparing different electrode materials, a higher conductance and a lower gate-induced current onset is observed for the material with smaller work function, indicating that ETp via Azurin is LUMO-mediated. We use the difference in work function to calibrate the difference in gate-induced current onset for the two electrode materials, to a specific energy level shift and find that ETp via Azurin is near resonance. Our results provide a basis for mapping and studying the role of energy level positions in (bio)molecular junctions.
Collapse
Affiliation(s)
- Ben Kayser
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | | | | | | | | | | | | |
Collapse
|
35
|
Qiu X, Castañeda Ocampo O, de Vries HW, van Putten M, Loznik M, Herrmann A, Chiechi RC. Self-Regenerating Soft Biophotovoltaic Devices. ACS APPLIED MATERIALS & INTERFACES 2018; 10:37625-37633. [PMID: 30295451 PMCID: PMC6328238 DOI: 10.1021/acsami.8b11115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
This paper describes the fabrication of soft, stretchable biophotovoltaic devices that generate photocurrent from photosystem I (PSI) complexes that are self-assembled onto Au electrodes with a preferred orientation. Charge is collected by the direct injection of electrons into the Au electrode and the transport of holes through a redox couple to liquid eutectic gallium-indium (EGaIn) electrodes that are confined to microfluidic pseudochannels by arrays of posts. The pseudochannels are defined in a single fabrication step that leverages the non-Newtonian rheology of EGaIn. This strategy is extended to the fabrication of reticulated electrodes that are inherently stretchable. A simple shadow evaporation technique is used to increase the surface area of the Au electrodes by a factor of approximately 106 compared to planar electrodes. The power conversion efficiency of the biophotovoltaic devices decreases over time, presumably as the PSI complexes denature and/or detach from the Au electrodes. However, by circulating a solution of active PSI complexes the devices self-regenerate by mass action/self-assembly. These devices leverage simple fabrication techniques to produce complex function and prove that photovoltaic devices comprising PSI can retain the ability to regenerate, one of the most important functions of photosynthetic organisms.
Collapse
Affiliation(s)
- Xinkai Qiu
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Olga Castañeda Ocampo
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Hendrik W. de Vries
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Maikel van Putten
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Mark Loznik
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Andreas Herrmann
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Ryan C. Chiechi
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- E-mail:
| |
Collapse
|
36
|
Fereiro JA, Porat G, Bendikov T, Pecht I, Sheves M, Cahen D. Protein Electronics: Chemical Modulation of Contacts Control Energy Level Alignment in Gold-Azurin-Gold Junctions. J Am Chem Soc 2018; 140:13317-13326. [DOI: 10.1021/jacs.8b07742] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
37
|
Schmitz S, Kovalchuk A, Martín-Rodríguez A, van Leusen J, Izarova NV, Bourone SDM, Ai Y, Ruiz E, Chiechi RC, Kögerler P, Monakhov KY. Element-Selective Molecular Charge Transport Characteristics of Binuclear Copper(II)-Lanthanide(III) Complexes. Inorg Chem 2018; 57:9274-9285. [DOI: 10.1021/acs.inorgchem.8b01279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sebastian Schmitz
- Institut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Andrew Kovalchuk
- Stratingh Institute for Chemistry & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, Netherlands
| | - Alejandro Martín-Rodríguez
- Departament de Química Inorgànica i Orgànica and Institut de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Jan van Leusen
- Institut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Natalya V. Izarova
- Jülich-Aachen Research Alliance (JARA-FIT) and Peter Grünberg Institute (PGI-6), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425 Jülich, Germany
| | - Svenja D. M. Bourone
- Institut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Yong Ai
- Stratingh Institute for Chemistry & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, Netherlands
| | - Eliseo Ruiz
- Departament de Química Inorgànica i Orgànica and Institut de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Ryan C. Chiechi
- Stratingh Institute for Chemistry & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, Netherlands
| | - Paul Kögerler
- Institut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
- Jülich-Aachen Research Alliance (JARA-FIT) and Peter Grünberg Institute (PGI-6), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425 Jülich, Germany
| | - Kirill Yu. Monakhov
- Institut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
38
|
Tunneling explains efficient electron transport via protein junctions. Proc Natl Acad Sci U S A 2018; 115:E4577-E4583. [PMID: 29712853 DOI: 10.1073/pnas.1719867115] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Metalloproteins, proteins containing a transition metal ion cofactor, are electron transfer agents that perform key functions in cells. Inspired by this fact, electron transport across these proteins has been widely studied in solid-state settings, triggering the interest in examining potential use of proteins as building blocks in bioelectronic devices. Here, we report results of low-temperature (10 K) electron transport measurements via monolayer junctions based on the blue copper protein azurin (Az), which strongly suggest quantum tunneling of electrons as the dominant charge transport mechanism. Specifically, we show that, weakening the protein-electrode coupling by introducing a spacer, one can switch the electron transport from off-resonant to resonant tunneling. This is a consequence of reducing the electrode's perturbation of the Cu(II)-localized electronic state, a pattern that has not been observed before in protein-based junctions. Moreover, we identify vibronic features of the Cu(II) coordination sphere in transport characteristics that show directly the active role of the metal ion in resonance tunneling. Our results illustrate how quantum mechanical effects may dominate electron transport via protein-based junctions.
Collapse
|
39
|
Bostick CD, Mukhopadhyay S, Pecht I, Sheves M, Cahen D, Lederman D. Protein bioelectronics: a review of what we do and do not know. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:026601. [PMID: 29303117 DOI: 10.1088/1361-6633/aa85f2] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We review the status of protein-based molecular electronics. First, we define and discuss fundamental concepts of electron transfer and transport in and across proteins and proposed mechanisms for these processes. We then describe the immobilization of proteins to solid-state surfaces in both nanoscale and macroscopic approaches, and highlight how different methodologies can alter protein electronic properties. Because immobilizing proteins while retaining biological activity is crucial to the successful development of bioelectronic devices, we discuss this process at length. We briefly discuss computational predictions and their connection to experimental results. We then summarize how the biological activity of immobilized proteins is beneficial for bioelectronic devices, and how conductance measurements can shed light on protein properties. Finally, we consider how the research to date could influence the development of future bioelectronic devices.
Collapse
Affiliation(s)
- Christopher D Bostick
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506, United States of America. Institute for Genomic Medicine, Columbia University Medical Center, New York, NY 10032, United States of America
| | | | | | | | | | | |
Collapse
|
40
|
Chen J, Wang Z, Oyola-Reynoso S, Thuo MM. Properties of Self-Assembled Monolayers Revealed via Inverse Tensiometry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:13451-13467. [PMID: 28777587 DOI: 10.1021/acs.langmuir.7b01937] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Self-assembled monolayers (SAMs) have emerged as a simple platform technology and hence have been broadly studied. With advances in state-of-the-art fabrication and characterization methods, new insights into SAM structure and related properties have been delineated, albeit with some discrepancies and/or incoherencies. Some discrepancies, especially between experimental and theoretical work, are in part due to the misunderstanding of subtle structural features such as phase evolution and SAM quality. Recent work has, however, shown that simple techniques, such as the measurement of static contact angles, can be used to delineate otherwise complex properties of the SAM, especially when complemented by other more advanced techniques. In this article, we highlight the effect of nanoscale substrate asperities and molecular chain length on the SAM structure and associated properties. First, surfaces with tunable roughness are prepared on both Au and Ag, and their corresponding n-alkanethiolate SAMs are characterized through wetting and spectroscopy. From these data, chain-length- and substrate-morphology-dependent limits to the odd-even effect (structure and properties vary with the number of carbons in the molecules and the nature of the substrate), parametrization of gauche defect densities, and structural phase evolution (liquidlike, waxy, crystalline interfaces) are deduced. An evaluation of the correlation between the effect of roughness and the components of surface tension (polar-γp and dispersive-γd) reveals that wetting, at nanoscale rough surfaces, evolves proportionally with the ratio of the two components of surface tension. The evolution of conformational order is captured over a range of molecular lengths and parametrized through a dimensionless number, χc. By deploying a well-known tensiometry technique (herein the liquid is used to characterize the solid, hence the term inverse tensiometry) to characterize SAMs, we demonstrate that complex molecular-level phenomena in SAMs can be understood through simplicity.
Collapse
Affiliation(s)
- Jiahao Chen
- Department of Materials Science and Engineering, Iowa State University , 2220 Hoover Hall, Ames, Iowa 50011, United States
| | - Zhengjia Wang
- Department of Materials Science and Engineering, Iowa State University , 2220 Hoover Hall, Ames, Iowa 50011, United States
| | - Stephanie Oyola-Reynoso
- Department of Materials Science and Engineering, Iowa State University , 2220 Hoover Hall, Ames, Iowa 50011, United States
| | - Martin M Thuo
- Department of Materials Science and Engineering, Iowa State University , 2220 Hoover Hall, Ames, Iowa 50011, United States
| |
Collapse
|
41
|
Pulka-Ziach K, Sęk S. α-Helicomimetic foldamers as electron transfer mediators. NANOSCALE 2017; 9:14913-14920. [PMID: 28949361 DOI: 10.1039/c7nr05209j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
α-Helical peptides are known as efficient mediators of electron transfer; however, their use is limited to compounds longer that 7-10 residues. To overcome this limitation, α-helicomimetic foldamers, based on the oligourea backbone with the general formula [-CH(R)-CH2-NH-CO-NH]n, were synthesized. Oligoureas are known to adopt a robust 2.5-helical conformation where only four residues are enough to form stable 1.5 helical turns. This feature makes them great models to study the charge transfer process and the dependence of the mechanism of the electron transition on the length of the mediator. Two families of different chain length (2, 4 and 6 residues) oligoureas were synthesized with a thiol group attached to the δ+ or δ- helix dipole pole. This enables the adsorption of the molecules onto the gold surface, leading to the formation of self-assembled monolayers. The helicity of compounds was confirmed in solution and in the solid state. Such systems were used to study the electron transfer process by current sensing atomic force microscopy (CS-AFM). The results showed that oligoureas may act as electron transfer mediators. Additionally, it was shown by the increasing force applied to the AFM tip that the oligourea helix is more stable than the helix formed by peptides.
Collapse
Affiliation(s)
- K Pulka-Ziach
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| | | |
Collapse
|
42
|
Gordiichuk P, Pesce D, Ocampo OEC, Marcozzi A, Wetzelaer GAH, Paul A, Loznik M, Gloukhikh E, Richter S, Chiechi RC, Herrmann A. Orientation and Incorporation of Photosystem I in Bioelectronics Devices Enabled by Phage Display. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1600393. [PMID: 28546908 PMCID: PMC5441502 DOI: 10.1002/advs.201600393] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/04/2016] [Indexed: 05/23/2023]
Abstract
Interfacing proteins with electrode surfaces is important for the field of bioelectronics. Here, a general concept based on phage display is presented to evolve small peptide binders for immobilizing and orienting large protein complexes on semiconducting substrates. Employing this method, photosystem I is incorporated into solid-state biophotovoltaic cells.
Collapse
Affiliation(s)
- Pavlo Gordiichuk
- Department of Polymer Chemistry and BioengineeringZernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Diego Pesce
- Department of Polymer Chemistry and BioengineeringZernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Olga E. Castañeda Ocampo
- Stratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Alessio Marcozzi
- Department of Polymer Chemistry and BioengineeringZernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Gert‐Jan A. H. Wetzelaer
- Department of Polymer Chemistry and BioengineeringZernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Avishek Paul
- Department of Polymer Chemistry and BioengineeringZernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Mark Loznik
- Department of Polymer Chemistry and BioengineeringZernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Ekaterina Gloukhikh
- The Bio and Molecular Electronics GroupDepartment of Materials Science and EngineeringFaculty of Engineering and University Center for Nano Science and NanotechnologyTel Aviv UniversityTel‐Aviv69978Israel
| | - Shachar Richter
- The Bio and Molecular Electronics GroupDepartment of Materials Science and EngineeringFaculty of Engineering and University Center for Nano Science and NanotechnologyTel Aviv UniversityTel‐Aviv69978Israel
| | - Ryan C. Chiechi
- Stratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Andreas Herrmann
- Department of Polymer Chemistry and BioengineeringZernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| |
Collapse
|
43
|
Qiu L, Zhang Y, Krijger TL, Qiu X, Hof PV, Hummelen JC, Chiechi RC. Rectification of current responds to incorporation of fullerenes into mixed-monolayers of alkanethiolates in tunneling junctions. Chem Sci 2017; 8:2365-2372. [PMID: 28451341 PMCID: PMC5365006 DOI: 10.1039/c6sc04799h] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/18/2016] [Indexed: 12/19/2022] Open
Abstract
This paper describes the rectification of current through molecular junctions comprising self-assembled monolayers of decanethiolate through the incorporation of C60 fullerene moieties bearing undecanethiol groups in junctions using eutectic Ga-In (EGaIn) and Au conducting probe AFM (CP-AFM) top-contacts. The degree of rectification increases with increasing exposure of the decanethiolate monolayers to the fullerene moieties, going through a maximum after 24 h. We ascribe this observation to the resulting mixed-monolayer achieving an optimal packing density of fullerene cages sitting above the alkane monolayer. Thus, the degree of rectification is controlled by the amount of fullerene present in the mixed-monolayer. The voltage dependence of R varies with the composition of the top-contact and the force applied to the junction and the energy of the lowest unoccupied π-state determined from photoelectron spectroscopy is consistent with the direction of rectification. The maximum value of rectification R = |J(+)/J(-)| = 940 at ±1 V or 617 at ±0.95 V is in agreement with previous studies on pure monolayers relating the degree of rectification to the volume of the head-group on which the frontier orbitals are localized.
Collapse
Affiliation(s)
- Li Qiu
- Stratingh Institute for Chemistry , Zernike Institute for Advanced Materials , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands .
| | - Yanxi Zhang
- Stratingh Institute for Chemistry , Zernike Institute for Advanced Materials , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands .
| | - Theodorus L Krijger
- Stratingh Institute for Chemistry , Zernike Institute for Advanced Materials , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands .
| | - Xinkai Qiu
- Stratingh Institute for Chemistry , Zernike Institute for Advanced Materials , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands .
| | - Patrick Van't Hof
- Stratingh Institute for Chemistry , Zernike Institute for Advanced Materials , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands .
| | - Jan C Hummelen
- Stratingh Institute for Chemistry , Zernike Institute for Advanced Materials , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands .
| | - Ryan C Chiechi
- Stratingh Institute for Chemistry , Zernike Institute for Advanced Materials , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands .
| |
Collapse
|
44
|
Vilan A, Aswal D, Cahen D. Large-Area, Ensemble Molecular Electronics: Motivation and Challenges. Chem Rev 2017; 117:4248-4286. [DOI: 10.1021/acs.chemrev.6b00595] [Citation(s) in RCA: 243] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Ayelet Vilan
- Department
of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel
| | | | - David Cahen
- Department
of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
45
|
Kumar S, van Herpt J, Gengler RYN, Feringa BL, Rudolf P, Chiechi RC. Mixed Monolayers of Spiropyrans Maximize Tunneling Conductance Switching by Photoisomerization at the Molecule-Electrode Interface in EGaIn Junctions. J Am Chem Soc 2016; 138:12519-26. [PMID: 27602432 PMCID: PMC5053170 DOI: 10.1021/jacs.6b06806] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Indexed: 01/19/2023]
Abstract
This paper describes the photoinduced switching of conductance in tunneling junctions comprising self-assembled monolayers of a spiropyran moiety using eutectic Ga-In top contacts. Despite separation of the spiropyran unit from the electrode by a long alkyl ester chain, we observe an increase in the current density J of a factor of 35 at 1 V when the closed form is irradiated with UV light to induce the ring-opening reaction, one of the highest switching ratios reported for junctions incorporating self-assembled monolayers. The magnitude of switching of hexanethiol mixed monolayers was higher than that of pure spiropyran monolayers. The first switching event recovers 100% of the initial value of J and in the mixed-monolayers subsequent dampening is not the result of degradation of the monolayer. The observation of increased conductivity is supported by zero-bias DFT calculations showing a change in the localization of the density of states near the Fermi level as well as by simulated transmission spectra revealing positive resonances that broaden and shift toward the Fermi level in the open form.
Collapse
Affiliation(s)
- Sumit Kumar
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Jochem
T. van Herpt
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Régis Y. N. Gengler
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Ben L. Feringa
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Petra Rudolf
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Ryan C. Chiechi
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
46
|
Carlotti M, Degen M, Zhang Y, Chiechi RC. Pronounced Environmental Effects on Injection Currents in EGaIn Tunneling Junctions Comprising Self-Assembled Monolayers. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2016; 120:20437-20445. [PMID: 27738488 PMCID: PMC5053169 DOI: 10.1021/acs.jpcc.6b07089] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/23/2016] [Indexed: 05/09/2023]
Abstract
Large-area tunneling junctions using eutectic Ga-In (EGaIn) as a top contact have proven to be a robust, reproducible, and technologically relevant platform for molecular electronics. Thus far, the majority of studies have focused on saturated molecules with backbones consisting mainly of alkanes in which the frontier orbitals are either highly localized or energetically inaccessible. We show that self-assembled monolayers of wire-like oligophenyleneethynylenes (OPEs), which are fully conjugated, only exhibit length-dependent tunneling behavior in a low-O2 environment. We attribute this unexpected behavior to the sensitivity of injection current on environment. We conclude that, contrary to previous reports, the self-limiting layer of Ga2O3 strongly influences transport properties and that the effect is related to the wetting behavior of the electrode. This result sheds light on the nature of the electrode-molecule interface and suggests that adhesive forces play a significant role in tunneling charge-transport in large-area molecular junctions.
Collapse
Affiliation(s)
- Marco Carlotti
- Stratingh Institute for Chemistry
& Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Maarten Degen
- Stratingh Institute for Chemistry
& Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Yanxi Zhang
- Stratingh Institute for Chemistry
& Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Ryan C. Chiechi
- Stratingh Institute for Chemistry
& Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
47
|
Sangeeth CSS, Demissie AT, Yuan L, Wang T, Frisbie CD, Nijhuis CA. Comparison of DC and AC Transport in 1.5-7.5 nm Oligophenylene Imine Molecular Wires across Two Junction Platforms: Eutectic Ga-In versus Conducting Probe Atomic Force Microscope Junctions. J Am Chem Soc 2016; 138:7305-14. [PMID: 27172452 DOI: 10.1021/jacs.6b02039] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have utilized DC and AC transport measurements to measure the resistance and capacitance of thin films of conjugated oligophenyleneimine (OPI) molecules ranging from 1.5 to 7.5 nm in length. These films were synthesized on Au surfaces utilizing the imine condensation chemistry between terephthalaldehyde and 1,4-benzenediamine. Near edge X-ray absorption fine structure (NEXAFS) spectroscopy yielded molecular tilt angles of 33-43°. To probe DC and AC transport, we employed Au-S-OPI//GaOx/EGaIn junctions having contact areas of 9.6 × 10(2) μm(2) (10(9) nm(2)) and compared to previously reported DC results on the same OPI system obtained using Au-S-OPI//Au conducting probe atomic force microscopy (CP-AFM) junctions with 50 nm(2) areas. We found that intensive observables agreed very well across the two junction platforms. Specifically, the EGaIn-based junctions showed: (i) a crossover from tunneling to hopping transport at molecular lengths near 4 nm; (ii) activated transport for wires >4 nm in length with an activation energy of 0.245 ± 0.008 eV for OPI-7; (iii) exponential dependence of conductance with molecular length with a decay constant β = 2.84 ± 0.18 nm(-1) (DC) and 2.92 ± 0.13 nm(-1) (AC) in the tunneling regime, and an apparent β = 1.01 ± 0.08 nm(-1) (DC) and 0.99 ± 0.11 nm(-1) (AC) in the hopping regime; (iv) previously unreported dielectric constant of 4.3 ± 0.2 along the OPI wires. However, the absolute resistances of Au-S-OPI//GaOx/EGaIn junctions were approximately 100 times higher than the corresponding CP-AFM junctions due to differences in metal-molecule contact resistances between the two platforms.
Collapse
Affiliation(s)
- C S Suchand Sangeeth
- Department of Chemistry, National University of Singapore , 3 Science Drive 3, Singapore 117543
| | - Abel T Demissie
- Department of Chemical Engineering and Materials Science, University of Minnesota , 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Li Yuan
- Department of Chemistry, National University of Singapore , 3 Science Drive 3, Singapore 117543
| | - Tao Wang
- Department of Chemistry, National University of Singapore , 3 Science Drive 3, Singapore 117543
| | - C Daniel Frisbie
- Department of Chemical Engineering and Materials Science, University of Minnesota , 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Christian A Nijhuis
- Department of Chemistry, National University of Singapore , 3 Science Drive 3, Singapore 117543.,Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore , 6 Science Drive 2, Singapore 117546
| |
Collapse
|
48
|
Kovalchuk A, Egger DA, Abu-Husein T, Zojer E, Terfort A, Chiechi RC. Dipole-induced asymmetric conduction in tunneling junctions comprising self-assembled monolayers. RSC Adv 2016. [DOI: 10.1039/c6ra10471a] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The collective action of embedded dipoles causes asymmetric tunneling charge-transport through self-assembled monolayers.
Collapse
Affiliation(s)
- Andrii Kovalchuk
- Stratingh Institute for Chemistry
- Zernike Institute for Advanced Materials
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| | - David A. Egger
- Department of Materials and Interfaces
- Weizmann Institute of Science
- Rehovoth 76100
- Israel
| | - Tarek Abu-Husein
- Institut für Anorganishe und Analytische Chemie
- Universität Frankfurt
- 60438 Frankfurt
- Germany
| | - Egbert Zojer
- Institute of Solid State Physics
- NAWI Graz
- Graz University of Technology
- 8010 Graz
- Austria
| | - Andreas Terfort
- Institut für Anorganishe und Analytische Chemie
- Universität Frankfurt
- 60438 Frankfurt
- Germany
| | - Ryan C. Chiechi
- Stratingh Institute for Chemistry
- Zernike Institute for Advanced Materials
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| |
Collapse
|
49
|
Gordiichuk PI, Rimmerman D, Paul A, Gautier DA, Gruszka A, Saller M, de Vries JW, Wetzelaer GJAH, Manca M, Gomulya W, Matmor M, Gloukhikh E, Loznik M, Ashkenasy N, Blom PWM, Rögner M, Loi MA, Richter S, Herrmann A. Filling the Green Gap of a Megadalton Photosystem I Complex by Conjugation of Organic Dyes. Bioconjug Chem 2015; 27:36-41. [DOI: 10.1021/acs.bioconjchem.5b00583] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Dolev Rimmerman
- The
Bio and Molecular Electronics Group, Department of Materials Science
and Engineering, Faculty of Engineering and University Center for
Nano Science and Nanotechnology, Tel Aviv University, Tel-Aviv, 69978, Israel
| | | | | | | | | | | | | | | | | | - Maayan Matmor
- Department
of Materials Engineering and the Ilze Katz Institute for Nanoscale
Science and Technology, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Ekaterina Gloukhikh
- The
Bio and Molecular Electronics Group, Department of Materials Science
and Engineering, Faculty of Engineering and University Center for
Nano Science and Nanotechnology, Tel Aviv University, Tel-Aviv, 69978, Israel
| | | | - Nurit Ashkenasy
- Department
of Materials Engineering and the Ilze Katz Institute for Nanoscale
Science and Technology, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Paul W. M. Blom
- Molecular
Electronics Group, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Matthias Rögner
- Plant Biochemistry, Ruhr University Bochum, D-44780 Bochum, Germany
| | | | - Shachar Richter
- The
Bio and Molecular Electronics Group, Department of Materials Science
and Engineering, Faculty of Engineering and University Center for
Nano Science and Nanotechnology, Tel Aviv University, Tel-Aviv, 69978, Israel
| | | |
Collapse
|
50
|
Mukhopadhyay S, Dutta S, Pecht I, Sheves M, Cahen D. Conjugated Cofactor Enables Efficient Temperature-Independent Electronic Transport Across ∼6 nm Long Halorhodopsin. J Am Chem Soc 2015; 137:11226-9. [DOI: 10.1021/jacs.5b06501] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sabyasachi Mukhopadhyay
- Departments of Materials
and Interfaces, ‡Organic Chemistry, and §Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sansa Dutta
- Departments of Materials
and Interfaces, ‡Organic Chemistry, and §Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Israel Pecht
- Departments of Materials
and Interfaces, ‡Organic Chemistry, and §Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Mordechai Sheves
- Departments of Materials
and Interfaces, ‡Organic Chemistry, and §Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - David Cahen
- Departments of Materials
and Interfaces, ‡Organic Chemistry, and §Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|