1
|
Gong Y, Yang H, Ding C. NIR-photoactivatable DNA nanomachines for spatiotemporally controllable monitoring of microRNA-21 in living cells based on signal amplification strategy. Biosens Bioelectron 2025; 267:116755. [PMID: 39244838 DOI: 10.1016/j.bios.2024.116755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Precise and spatiotemporally controllable analysis of microRNA-21 in living cells is crucial for accurate diagnosis and effective treatment of related diseases. Herein, a near-infrared (NIR)-photoactivatable DNA nanomachine (PUCNPs-NH2/PEG-ZL-DNA) was constructed for the precise analysis and diagnosis of microRNA-21 in tumor cells. Peanut-shaped upconversion nanoparticles (PUCNPs) were employed as the carriers and activators for the intelligent DNA probe, specifically enabling the cleavage of the photocleavable linker (PC-linker) from the hairpin DNA probe (Hp-Dzy) upon exposure to 808 nm irradiation. In the presence of the target microRNA-21, the locker DNA hybridized with microRNA-21 and the DNAzymes was freed to hybridize with the looped portion of the hairpin DNA (Hp-1). Mg2+ was employed as the cofactor, facilitating the precise cleavage of Hp-1, which triggered the restoration of fluorescence signals. Subsequently, DNAzymes exhibited the competency to selectively recognize and engage with additional Hp-1, and the fluorescence signals were effectively amplified by the recycling process. Consequently, the DNA nanomachine exhibited a linear response to microRNA-21 concentrations ranging from 0.5 nM to 1.0 μM, achieving a remarkable detection limit (LOD) of 1.19 nM under the optimal conditions. This strategy is realized through the integration of photocontrollable upconversion nanotechnology with the signal amplification approach, showing feasible prospects for spatiotemporally precise and highly sensitive monitoring of microRNA in tumor cells.
Collapse
Affiliation(s)
- Yan Gong
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China; College of Chemistry and Chemical Engineering, Huangshan University, Huangshan, 245041, PR China
| | - Huiwen Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Caifeng Ding
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
2
|
Liu L, Cai J, Yang K, Sun B, Liu W, Li Y, Hu H. Molecular beacon-peptide probe based double recycling amplification for multiplexed detection of serum exosomal microRNAs. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5202-5211. [PMID: 38994818 DOI: 10.1039/d4ay00629a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Exosomal microRNAs (exomiRs) have been shown to play crucial roles as biomarkers for early detection and prognosis of cancer. However, simultaneous quantification of multiplex exomiRs is hindered by methods that require additional steps, such as labeling with fluorophores or gel visualization, which are susceptible to various factors. Herein, we developed a mass spectrometry-detectable and target-triggered method for multiplexed exomiR detection using three enzyme-based double recycling amplification in combination with well-designed molecular beacon-peptide (MBP) probes, called molecular beacon-peptide probe-based double recycling amplification (MBPDRA). MBP probes mediated the double recycling amplification reaction and were released as mass-detectable reporter peptides. In particular, the hybridization of the target microRNAs (miRNAs) with the stem-loop of the probe triggers two consecutive processes. The first cycle involved polymerase strand displacement amplification, leading to the production of complementary DNA (cycle I), and the second cycle encompassed the recycling exonuclease cleavage of the MBP probe (cycle II). Subsequently, excess probes were removed by interaction with streptavidin beads via biotin-streptavidin binding. The reporter peptides were released using trypsin and subsequently detected by mass spectrometry. Our method enables quantitative detection of multiple exomiRs with a dynamic range from 0.1 fM to 10 pM and a limit of quantification of 0.1 fM. Moreover, the proposed assay was successfully employed for quantification of three exomiRs, exmiR-21, exmiR-191, and exmiR-451a, in the sera of patients with pancreatic cancer. Based on these findings, we believe that the MBPDRA assay holds significant promise as a reliable method for quantifying multiple miRNAs in biomedical research and clinical diagnostics.
Collapse
Affiliation(s)
- Liang Liu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, 169 Donghu Road, Wuchang District, Wuhan 430071, China.
| | - Junlong Cai
- Department of Clinical Trial Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Kun Yang
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, 169 Donghu Road, Wuchang District, Wuhan 430071, China.
| | - Bo Sun
- Department of Pharmacy, The First People's Hospital of Lianyungang, Lianyungang, 222000, China
| | - Wei Liu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Yang Li
- Department of Blood Transfusion, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China.
| | - Hankun Hu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, 169 Donghu Road, Wuchang District, Wuhan 430071, China.
| |
Collapse
|
3
|
Abbasi M, Jouyban A, Ranjbar F, Soleymani J. A versatile ratiometric fluorescence nanoprobe for the determination of clonazepam in patients' plasma samples. J Mol Recognit 2024; 37:e3088. [PMID: 38760976 DOI: 10.1002/jmr.3088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/06/2024] [Accepted: 05/02/2024] [Indexed: 05/20/2024]
Abstract
Despite the necessity of the study of therapeutic drug monitoring of clonazepam (CLZ), there are only a few fast detection methods available for determining CLZ in biological media. This study aims to develop a cost-effective and ratiometric probe for the quantification of CLZ in plasma samples. Fluorescent polydopamine nanoparticles were produced through a self-polymerization process at a pH of 8.5. Rhodamine B molecules were employed as a fluorescent reference material, emitting stable fluorescence in the visible range. The fabricated probe exhibited a specific detection capability for CLZ. The fluorescence emission of the probe was enhanced in two concentration ranges: from 50 ng/mL to 1.0 μg/mL and from 1.0 to 15.0 μg/mL with a lower limit of quantification of 50 ng/mL, indicating the sensitivity of the probe for detecting CLZ plasma levels. The accuracy of the probe is favorable which could be recommended for CLZ monitoring in the biological media. Furthermore, this probe is highly specific towards CLZ in the presence of various interfering agents which is mainly caused by its ratiometric nature. The developed platform showed high reliability in quantifying CLZ concentrations in patients' plasma samples. Hence, the fabricated probe could be recommended as a reliable method for the routine detection of CLZ in clinical settings.
Collapse
Affiliation(s)
- Mohammad Abbasi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ranjbar
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Yang DH, Nah H, Lee D, Min SJ, Park S, An SH, Wang J, He H, Choi KS, Ko WK, Lee JS, Kwon IK, Lee SJ, Heo DN. A review on gold nanoparticles as an innovative therapeutic cue in bone tissue engineering: Prospects and future clinical applications. Mater Today Bio 2024; 26:101016. [PMID: 38516171 PMCID: PMC10952045 DOI: 10.1016/j.mtbio.2024.101016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/19/2024] [Accepted: 03/02/2024] [Indexed: 03/23/2024] Open
Abstract
Bone damage is a complex orthopedic problem primarily caused by trauma, cancer, or bacterial infection of bone tissue. Clinical care management for bone damage remains a significant clinical challenge and there is a growing need for more advanced bone therapy options. Nanotechnology has been widely explored in the field of orthopedic therapy for the treatment of a severe bone disease. Among nanomaterials, gold nanoparticles (GNPs) along with other biomaterials are emerging as a new paradigm for treatment with excellent potential for bone tissue engineering and regenerative medicine applications. In recent years, a great deal of research has focused on demonstrating the potential for GNPs to provide for enhancement of osteogenesis, reduction of osteoclastogenesis/osteomyelitis, and treatment of bone cancer. This review details the latest understandings in regards to GNPs based therapeutic systems, mechanisms, and the applications of GNPs against various bone disorders. The present review aims to summarize i) the mechanisms of GNPs in bone tissue remodeling, ii) preparation methods of GNPs, and iii) functionalization of GNPs and its decoration on biomaterials as a delivery vehicle in a specific bone tissue engineering for future clinical application.
Collapse
Affiliation(s)
- Dae Hyeok Yang
- Institute of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Haram Nah
- Department of Dentistry, Graduate School, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Donghyun Lee
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Cheombok-ro, Dong-gu, Daegu, 41061, Republic of Korea
| | - Sung Jun Min
- Department of Dentistry, Graduate School, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Seulki Park
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Cheombok-ro, Dong-gu, Daegu, 41061, Republic of Korea
| | - Sang-Hyun An
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Cheombok-ro, Dong-gu, Daegu, 41061, Republic of Korea
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, China
| | - Huining He
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Kyu-Sun Choi
- Department of Neurosurgery, College of Medicine, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Wan-Kyu Ko
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Jae Seo Lee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Il Keun Kwon
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea
- Kyung Hee University Medical Science Research Institute, Kyung Hee University, 23 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Sang Jin Lee
- Biofunctional Materials, Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR, China
| | - Dong Nyoung Heo
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea
- Biofriends Inc, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| |
Collapse
|
5
|
Wang S, Cui Y, Dalani T, Sit KY, Zhuo X, Choi CK. Polydopamine-based plasmonic nanocomposites: rational designs and applications. Chem Commun (Camb) 2024; 60:2982-2993. [PMID: 38384206 DOI: 10.1039/d3cc05883b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Taking advantage of its adhesive nature and chemical reactivity, polydopamine (PDA) has recently been integrated with plasmonic nanoparticles to yield unprecedented hybrid nanostructures. With advanced architectures and optical properties, PDA-based plasmonic nanocomposites have showcased their potential in a wide spectrum of plasmon-driven applications, ranging from catalysis and chemical sensing, to drug delivery and photothermal therapy. The rational design of PDA-based plasmonic nanocomposites entails different material features of PDA and necessitates a thorough understanding of the sophisticated PDA chemistry; yet, there is still a lack of a systematic review on their fabrication strategies, plasmonic properties, and applications. In this Highlight review, five representative types of PDA-based plasmonic nanocomposites will be featured. Specifically, their design principles, synthetic strategies, and optical behaviors will be elucidated with an emphasis on the irreplaceable roles of PDA in the synthetic mechanisms. Together, their essential functions in diverse applications will be outlined. Lastly, existing challenges and outlooks on the rational design and assembly of next-generation PDA-based plasmonic nanocomposites will be presented. This Highlight review aims to provide synthetic insights and hints to inspire and aid researchers to innovate PDA-based plasmonic nanocomposites.
Collapse
Affiliation(s)
- Shengyan Wang
- School of Science Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| | - Yiou Cui
- School of Science Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| | - Tarun Dalani
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| | - King Yin Sit
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| | - Xiaolu Zhuo
- School of Science Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| | - Chun Kit Choi
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| |
Collapse
|
6
|
Weingarten P, Thomas SR, Luiza de Andrade Querino A, Halama K, Kränzlein M, Casini A, Rieger B. A graft-to strategy of poly(vinylphosphonates) on dopazide-coated gold nanoparticles using in situ catalyst activation. RSC Adv 2024; 14:8145-8149. [PMID: 38464693 PMCID: PMC10921843 DOI: 10.1039/d4ra01116c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024] Open
Abstract
A modular synthetic pathway for poly(diethyl vinylphosphonates) grafting-to gold nanoparticles is presented. Utilising an azide-dopamine derivative as nanoparticle coating agent, alkyne-azide click conditions were used to covalently tether the polymer to gold nanoparticles leading to stable and well distributed colloids for different applications.
Collapse
Affiliation(s)
- Philipp Weingarten
- WACKER-Chair of Macromolecular Chemistry, Catalysis Research Center, School of Natural Sciences, Department of Chemistry, Technical University of Munich Lichtenbergstraße 4 D-85748 Garching b. München Germany
| | - Sophie R Thomas
- Chair of Medicinal and Bioinorganic Chemistry, Department of Chemistry, School of Natural Sciences, Technical University of Munich Lichtenbergstraße 4 D-85748 Garching b. München Germany
| | - Ana Luiza de Andrade Querino
- Chair of Medicinal and Bioinorganic Chemistry, Department of Chemistry, School of Natural Sciences, Technical University of Munich Lichtenbergstraße 4 D-85748 Garching b. München Germany
- Department of Chemistry, Universidade Federal de Minas Gerais Belo Horizonte MG 31270-901 Brazil
| | - Kerstin Halama
- WACKER-Chair of Macromolecular Chemistry, Catalysis Research Center, School of Natural Sciences, Department of Chemistry, Technical University of Munich Lichtenbergstraße 4 D-85748 Garching b. München Germany
| | - Moritz Kränzlein
- WACKER-Chair of Macromolecular Chemistry, Catalysis Research Center, School of Natural Sciences, Department of Chemistry, Technical University of Munich Lichtenbergstraße 4 D-85748 Garching b. München Germany
| | - Angela Casini
- Chair of Medicinal and Bioinorganic Chemistry, Department of Chemistry, School of Natural Sciences, Technical University of Munich Lichtenbergstraße 4 D-85748 Garching b. München Germany
| | - Bernhard Rieger
- WACKER-Chair of Macromolecular Chemistry, Catalysis Research Center, School of Natural Sciences, Department of Chemistry, Technical University of Munich Lichtenbergstraße 4 D-85748 Garching b. München Germany
| |
Collapse
|
7
|
Dai Y, Xie Q, Zhang Y, Sun Y, Zhu S, Wang C, Tan Y, Gou X. Neoteric Semiembedded β-Tricalcium Phosphate Promotes Osteogenic Differentiation of Mesenchymal Stem Cells under Cyclic Stretch. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8289-8300. [PMID: 38329794 DOI: 10.1021/acsami.3c15090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
β-Tricalcium phosphate (β-TCP) is a bioactive material for bone regeneration, but its brittleness limits its use as a standalone scaffold. Therefore, continuous efforts are necessary to effectively integrate β-TCP into polymers, facilitating a sturdy ion exchange for cell regulation. Herein, a novel semiembedded technique was utilized to anchor β-TCP nanoparticles onto the surface of the elastic polymer, followed by hydrophilic modification with the polymerization of dopamine. Cell adhesion and osteogenic differentiation of mesenchymal stem cells (MSCs) under static and dynamic uniaxial cyclic stretching conditions were investigated. The results showed that the new strategy was effective in promoting cell adhesion, proliferation, and osteogenic induction by the sustained release of Ca2+ in the vicinity and creating a reasonable roughness. Specifically, released Ca2+ from β-TCP could activate the calcium signaling pathway, which further upregulated calmodulin and calcium/calmodulin-dependent protein kinase II genes in MSCs. Meanwhile, the roughness of the membrane and the uniaxial cyclic stretching activated the PIEZO1 signaling pathway. Chemical and mechanical stimulation promotes osteogenic differentiation and increases the expression of related genes 2-8-fold. These findings demonstrated that the neoteric semiembedded structure was a promising strategy in controlling both chemical and mechanical factors of biomaterials for cell regulation.
Collapse
Affiliation(s)
- Yujie Dai
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P.R. China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Qingyun Xie
- Department of Orthopedics, General Hospital of Western Theater Command, Chengdu 610031, China
| | - Yimeng Zhang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Yiwan Sun
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Shaomei Zhu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Chongyu Wang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Youhua Tan
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Xue Gou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, P.R. China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| |
Collapse
|
8
|
Chen Z, Ge C, Zhu X, Sun P, Sun Z, Derkach T, Zhou M, Wang Y, Luan M. A novel nanoprobe for visually investigating the controversial role of miRNA-34a as an oncogene or tumor suppressor in cancer cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:667-675. [PMID: 38230518 DOI: 10.1039/d3ay02270f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
MiRNA-targeted therapy has become a hot topic in current cancer research. The key to this treatment strategy is to clarify the specific role of miRNA in cancer. However, the roles of some miRNAs acting as oncogenic or tumor suppressors are still controversial, which are influenced by different tumor types, even in the same cancer type. Hence, we designed a novel fluorescent nanoprobe based on polydopamine nanoparticles (PDA NPs) for simultaneously detecting caspase-3 and miRNA-34a within living cells. The specific role of miRNA-34a in different cancer cells could be further identified by studying the expression alterations of caspase-3 and miRNA-34a. Confocal imaging indicated that miRNA-34a indeed acted as a tumor suppressor in anticancer drug-treated MCF-7 and HeLa cells, where the effect of miRNA-34a remains controversial. The designed nanoprobe can offer a promising approach to ascertain the oncogenic or tumor-suppressing role of miRNA in different cancer cells with a simple visualization method, which has valuable implications for exploring the practicability of precision therapy focused on miRNA and evaluating the efficacy of new miRNA-targeted anticancer medications.
Collapse
Affiliation(s)
- Zhe Chen
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Chuandong Ge
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Xiaokai Zhu
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Ping Sun
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Zeyuan Sun
- Kyiv National University of Technologies and Design, 01011, Kyiv, Ukraine
| | - Tetiana Derkach
- Kyiv National University of Technologies and Design, 01011, Kyiv, Ukraine
| | - Mingyang Zhou
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Yaoguang Wang
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Mingming Luan
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
9
|
Hou Z, Gao T, Liu X, Guo W, Bai L, Wang W, Yang L, Yang H, Wei D. Dual detection of human motion and glucose in sweat with polydopamine and glucose oxidase doped self-healing nanocomposite hydrogels. Int J Biol Macromol 2023; 252:126473. [PMID: 37619684 DOI: 10.1016/j.ijbiomac.2023.126473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
The detection of human motion and sweat composition are important for human health or sports training, so it is necessary to develop flexible sensors for monitoring exercise processes and sweat detection. Mussel secretion of adhesion proteins enables self-healing of byssus and adhesion to surfaces. We prepared Au nanoparticles@polydopamine (AuNPs@PDA) nanomaterials based on mussel-inspired chemistry and compounded them with polyvinyl alcohol (PVA) hydrogels to obtain PVA/AuNPs@PDA self-healing nanocomposite hydrogels. Dopamine (DA) was coated on the surface of AuNPs to obtain AuNPs based composite (AuNPs@PDA) and the AuNPs@PDA was implanted into the PVA hydrogels to obtain nanocomposite hydrogel through facile freeze-thaw cycle. Glucose oxidase (GOD) was added to the hydrogel matrix to achieve specific detection of glucose in sweat. The obtained hydrogels exhibit high deformability (573.7 %), excellent mechanical strength (550.3 KPa) and self-healing properties (85.1 %). The PVA/AuNPs@PDA hydrogel sensors exhibit quick response time (185.0 ms), wide strain sensing range (0-500 %), superior stability and anti-fatigue properties in motion detection. The detection of glucose had wide concentration detection range (1.0 μmol/L-200.0 μmol/L), low detection limits (0.9 μmol/L) and high sensitivity (24.4 μA/mM). This work proposes a reference method in dual detection of human exercise and sweat composition analysis.
Collapse
Affiliation(s)
- Zehua Hou
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Teng Gao
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Xinyue Liu
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Wenzhe Guo
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Liangjiu Bai
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.
| | - Wenxiang Wang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Lixia Yang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Huawei Yang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Donglei Wei
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| |
Collapse
|
10
|
Jung HS, Cho KJ, Joo S, Lee M, Kim MY, Kwon IH, Song NW, Shim JH, Neuman KC. Mesoporous Polydopamine-Encapsulated Fluorescent Nanodiamonds: A Versatile Platform for Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:33425-33436. [PMID: 37341540 PMCID: PMC10361080 DOI: 10.1021/acsami.3c05443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/09/2023] [Indexed: 06/22/2023]
Abstract
Fluorescent nanodiamonds (FNDs) are versatile nanomaterials with promising properties. However, efficient functionalization of FNDs for biomedical applications remains challenging. In this study, we demonstrate mesoporous polydopamine (mPDA) encapsulation of FNDs. The mPDA shell is generated by sequential formation of micelles via self-assembly of Pluronic F127 (F127) with 1,3,5-trimethyl benzene (TMB) and composite micelles via oxidation and self-polymerization of dopamine hydrochloride (DA). The surface of the mPDA shell can be readily functionalized with thiol-terminated methoxy polyethylene glycol (mPEG-SH), hyperbranched polyglycerol (HPG), and d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS). The PEGylated FND@mPDA particles are efficiently taken up by, and employed as a fluorescent imaging probe for, HeLa cells. HPG-functionalized FND@mPDA is conjugated with an amino-terminated oligonucleotide to detect microRNA via hybridization. Finally, the increased surface area of the mPDA shell permits efficient loading of doxorubicin hydrochloride. Further modification with TPGS increases drug delivery efficiency, resulting in high toxicity to cancer cells.
Collapse
Affiliation(s)
- Hak-Sung Jung
- Laboratory
of Single Molecule Biophysics, National
Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
- Quantum
Magnetic Imaging Team, Korea Research Institute
of Standards and Science, Daejeon 34113, Republic
of Korea
| | - Kyung-Jin Cho
- Data
Convergence Drug Research Center, Korea
Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Sihwa Joo
- Safety
Measurement Institute, Korea Research Institute
of Standards and Science, Daejeon 34113, Republic
of Korea
| | - Mina Lee
- Safety
Measurement Institute, Korea Research Institute
of Standards and Science, Daejeon 34113, Republic
of Korea
| | - Myeong Yun Kim
- Safety
Measurement Institute, Korea Research Institute
of Standards and Science, Daejeon 34113, Republic
of Korea
| | - Ik Hwan Kwon
- Safety
Measurement Institute, Korea Research Institute
of Standards and Science, Daejeon 34113, Republic
of Korea
| | - Nam Woong Song
- Quantum
Magnetic Imaging Team, Korea Research Institute
of Standards and Science, Daejeon 34113, Republic
of Korea
| | - Jeong Hyun Shim
- Quantum
Magnetic Imaging Team, Korea Research Institute
of Standards and Science, Daejeon 34113, Republic
of Korea
- Department
of Applied Measurement Science, University
of Science and Technology, Daejeon 34113, Republic
of Korea
| | - Keir C. Neuman
- Laboratory
of Single Molecule Biophysics, National
Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
11
|
Polydopamine assembled stable core-shell nanoworms-DNAzyme probe for selective detection of Pb2+ and in living cells imaging. Talanta 2023. [DOI: 10.1016/j.talanta.2022.123984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Ma X, Luan Z, Li J. Inorganic Nanoparticles-Based Systems in Biomedical Applications of Stem Cells: Opportunities and Challenges. Int J Nanomedicine 2023; 18:143-182. [PMID: 36643862 PMCID: PMC9833678 DOI: 10.2147/ijn.s384343] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/09/2022] [Indexed: 01/09/2023] Open
Abstract
Stem cells (SC) are a kind of cells with self renewing ability and multipotent differentiation, which can differentiate into many types of cells such as osteoblast, chondrocyte, neurocyte to treat disease like osteoporosis, osteoarthritis and Alzheimer's disease. Despite the development of novel methods for inducing cell differentiation, the inefficiency and complexity of controlling differentiation of stem cells remain a serious challenge, which necessary to develop a new and alternative approach for effectively controlling the direction of stem cell differentiation in vitro and in vivo in stem cells therapy. Recent advancement in nanotechnology for developing a new class of inorganic nanoparticles that exhibit unique chemical and physical properties holds promise for the treatment of stem cells. Over the last decade, inorganic nanoparticle-based approaches against stem cells have been directed toward developing nanoparticles with drug delivery, or utilizing nanoparticles for controlled cell behaviors, and applying nanoparticles for inducing cell differentiation directly. In addition, a strategy to functionalize inorganic nanoparticles as a nanoprobe towards enhanced penetration through near-infrared light or nuclear magnetic resonance has been receiving considerable interest by means of long-term tracking stem cell in vivo. This review summarizes and highlights the recent development of these inorganic nanoparticle-based approaches as potential therapeutics for controlling differentiation of stem cells and so on for stem cell therapy, along with current opportunities and challenges that need to be overcome for their successful clinical translation.
Collapse
Affiliation(s)
- Xulu Ma
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, People’s Republic of China,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, People’s Republic of China
| | - Zhao Luan
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, People’s Republic of China,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, People’s Republic of China
| | - Jinming Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, People’s Republic of China,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, People’s Republic of China,Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, People’s Republic of China,Correspondence: Jinming Li, Tel +86 20 85211438, Email
| |
Collapse
|
13
|
Preparation of Gold Nanoparticles/Polydopamine Composite for Heavy Metal Ion Detection. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02387-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Lu X, Hou X, Tang H, Yi X, Wang J. A High-Quality CdSe/CdS/ZnS Quantum-Dot-Based FRET Aptasensor for the Simultaneous Detection of Two Different Alzheimer's Disease Core Biomarkers. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12224031. [PMID: 36432316 PMCID: PMC9697525 DOI: 10.3390/nano12224031] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/06/2022] [Accepted: 11/12/2022] [Indexed: 05/31/2023]
Abstract
The simultaneous detection of two different biomarkers for the point-of-care diagnosis of major diseases, such as Alzheimer’s disease (AD), is greatly challenging. Due to the outstanding photoluminescence (PL) properties of quantum dots (QDs), a high-quality CdSe/CdS/ZnS QD-based fluorescence resonance energy transfer (FRET) aptasensor for simultaneously monitoring the amyloid-β oligomers (AβO) and tau protein was proposed. By engineering the interior inorganic structure and inorganic−organic interface, water-soluble dual-color CdSe/CdS/ZnS QDs with a near-unity PL quantum yield (>90%) and mono-exponential PL decay dynamics were generated. The π−π stacking and hydrogen bond interaction between the aptamer-functionalized dual-color QDs and gold nanorods@polydopamine (Au NRs@PDA) nanoparticles resulted in significant fluorescence quenching of the QDs through FRET. Upon the incorporation of the AβO and tau protein, the fluorescence recovery of the QDs-DNA/Au NRs@PDA assembly was attained, providing the possibility of simultaneously assaying the two types of AD core biomarkers. The lower detection limits of 50 pM for AβO and 20 pM for the tau protein could be ascribed to the distinguishable and robust fluorescence of QDs and broad spectral absorption of Au NRs@PDA. The sensing strategy serves as a viable platform for the simultaneously monitoring of the core biomarkers for AD and other major diseases.
Collapse
Affiliation(s)
- Xingchang Lu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xiaoqi Hou
- School of Chemistry and Material Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute, Beihang University, Hangzhou 310052, China
| | - Hailin Tang
- SunYat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Xinyao Yi
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jianxiu Wang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
15
|
Fatima M, Sheikh A, Abourehab MAS, Kesharwani P. Advancements in Polymeric Nanocarriers to Mediate Targeted Therapy against Triple-Negative Breast Cancer. Pharmaceutics 2022; 14:2432. [PMID: 36365249 PMCID: PMC9695386 DOI: 10.3390/pharmaceutics14112432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a destructive disease with a poor prognosis, low survival rate and high rate of metastasis. It comprises 15% of total breast cancers and is marked by deficiency of three important receptor expressions, i.e., progesterone, estrogen, and human epidermal growth factor receptors. This absence of receptors is the foremost cause of current TNBC therapy failure, resulting in poor therapeutic response in patients. Polymeric nanoparticles are gaining much popularity for transporting chemotherapeutics, genes, and small-interfering RNAs. Due to their exclusive properties such as great stability, easy surface modification, stimuli-responsive and controlled drug release, ability to condense more than one therapeutic moiety inside, tumor-specific delivery of payload, enhanced permeation and retention effect, present them as ideal nanocarriers for increasing efficacy, bioavailability and reducing the toxicity of therapeutic agents. They can even be used as theragnostic agents for the diagnosis of TNBC along with its treatment. In this review, we discuss the limitations of already existing TNBC therapies and highlight the novel approach to designing and the functionalization of polymeric nanocarriers for the effective treatment of TNBC.
Collapse
Affiliation(s)
- Mahak Fatima
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammed A. S. Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai 602105, India
| |
Collapse
|
16
|
Wang L, Zhang T, Xing Y, Wang Z, Xie X, Zhang J, Cai K. Interfacially responsive electron transfer and matter conversion by polydopamine-mediated nanoplatforms for advancing disease theranostics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1805. [PMID: 35474610 DOI: 10.1002/wnan.1805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Polydopamine (PDA) is an artificial melanin polymer that has been spotlighted due to its extraordinary optoelectronic characteristics and advance theranosctic applications in biomaterial fields. Moreover, interactions on the nano-bio interface interplay whereby substances exchange in response to endogenous or exogenous stimuli, and electron transfer driven by light, energy-level transitions, or electric field greatly affect the functional performance of PDA-modified nanoparticles. The full utilization of potential in PDA's interfacial activities, optoelectrical properties and related responsiveness is therefore an attractive means to construct advanced nanostructures for regulating biological processes and metabolic pathways. Herein, we strive to summarize recent advances in the construction of functional PDA-based nanomaterials with state-of-the-art architectures prepared for modulation of photoelectric sensing and redox reversibility, as well as manipulation of photo-activated therapeutics. Meanwhile, contributions of interfacial electron transfer and matter conversion are highlighted by discussing the structure-property-function relationships and the biological effects in their featured applications including disease theranostics, antibacterial activities, tissue repair, and combined therapy. Finally, the current challenges and future perspectives in this emerging research field will also be outlined. Recent advances on polydopamine-based nanotherapeutics with an emphasis on their interfacial activities, optoelectrical properties and related responsiveness are reviewed for providing insightful guidance to the rational design of integrated theranostic nanoplatforms with high performance in the biomedical fields. This article is categorized under: Diagnostic Tools > Diagnostic Nanodevices Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Lu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Tingting Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yuxin Xing
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Zhenqiang Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Xiyue Xie
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
17
|
Kim W, Park E, Yoo HS, Park J, Jung YM, Park JH. Recent Advances in Monitoring Stem Cell Status and Differentiation Using Nano-Biosensing Technologies. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2934. [PMID: 36079970 PMCID: PMC9457759 DOI: 10.3390/nano12172934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 05/14/2023]
Abstract
In regenerative medicine, cell therapies using various stem cells have received attention as an alternative to overcome the limitations of existing therapeutic methods. Clinical applications of stem cells require the identification of characteristics at the single-cell level and continuous monitoring during expansion and differentiation. In this review, we recapitulate the application of various stem cells used in regenerative medicine and the latest technological advances in monitoring the differentiation process of stem cells. Single-cell RNA sequencing capable of profiling the expression of many genes at the single-cell level provides a new opportunity to analyze stem cell heterogeneity and to specify molecular markers related to the branching of differentiation lineages. However, this method is destructive and distorted. In addition, the differentiation process of a particular cell cannot be continuously tracked. Therefore, several spectroscopic methods have been developed to overcome these limitations. In particular, the application of Raman spectroscopy to measure the intrinsic vibration spectrum of molecules has been proposed as a powerful method that enables continuous monitoring of biochemical changes in the process of the differentiation of stem cells. This review provides a comprehensive overview of current analytical methods employed for stem cell engineering and future perspectives of nano-biosensing technologies as a platform for the in situ monitoring of stem cell status and differentiation.
Collapse
Affiliation(s)
- Wijin Kim
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea
| | - Eungyeong Park
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea
| | - Hyuk Sang Yoo
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea
| | - Jongmin Park
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea
| | - Young Mee Jung
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea
| | - Ju Hyun Park
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea
| |
Collapse
|
18
|
Polymer–Metal Composite Healthcare Materials: From Nano to Device Scale. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6080218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Metals have been investigated as biomaterials for a wide range of medical applications. At nanoscale, some metals, such as gold nanoparticles, exhibit plasmonics, which have motivated researchers’ focus on biosensor development. At the device level, some metals, such as titanium, exhibit good physical properties, which could allow them to act as biomedical implants for physical support. Despite these attractive features, the non-specific delivery of metallic nanoparticles and poor tissue–device compatibility have greatly limited their performance. This review aims to illustrate the interplay between polymers and metals, and to highlight the pivotal role of polymer–metal composite/nanocomposite healthcare materials in different biomedical applications. Here, we revisit the recent plasmonic engineered platforms for biomolecules detection in cell-free samples and highlight updated nanocomposite design for (1) intracellular RNA detection, (2) photothermal therapy, and (3) nanomedicine for neurodegenerative diseases, as selected significant live cell–interactive biomedical applications. At the device scale, the rational design of polymer–metallic medical devices is of importance for dental and cardiovascular implantation to overcome the poor physical load transfer between tissues and devices, as well as implant compatibility under a dynamic fluidic environment, respectively. Finally, we conclude the treatment of these innovative polymer–metal biomedical composite designs and provide a future perspective on the aforementioned research areas.
Collapse
|
19
|
Liang Y, Yang H, Yin W, Zhang Y, Xu Y, Liu SY, Dai Z, Zou X. Long-term continuous monitoring of microRNA in living cells using modified gold nanoprobe. Anal Bioanal Chem 2022; 414:6157-6166. [PMID: 35732745 DOI: 10.1007/s00216-022-04182-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 11/25/2022]
Abstract
Long-term and continuous monitoring of the microRNA (miRNA) expression in living cells is essential in biomedical research, but it is currently limited by fast consumption and easy digestion of probes in the intracellular environment. Herein, we report polydopamine-modified gold nanoparticles (AuNPs@PDA) as protective and efficient nanocarriers for DNA hairpin probes (hpDNA), achieving long-term monitoring (48 h) of the miRNA (let-7a) levels in living cells after drug treatments. This method enabled excellent sensitivity and high selectivity toward let-7a with a limit of detection of 0.51 nM (n = 3) and a linear range from 1 to 100 nM. More importantly, AuNPs@PDA can not only efficiently improve the loading of hpDNA on each nanoparticle, but also effectively protect hpDNA from hydrolysis in the cell microenvironment, finally realizing the continuous monitoring of let-7a in living cells for 48 h. This simple method would be of great significance for drug screening and precision medicine.
Collapse
Affiliation(s)
- Yuling Liang
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Huihui Yang
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Wen Yin
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yanfei Zhang
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yuzhi Xu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Si-Yang Liu
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Zong Dai
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Xiaoyong Zou
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
20
|
Lee S, Godhulayyagari S, Nguyen ST, Lu JK, Ebrahimi SB, Samanta D. Signal Transduction Strategies for Analyte Detection Using DNA-Based Nanostructures. Angew Chem Int Ed Engl 2022; 61:e202202211. [PMID: 35307938 DOI: 10.1002/anie.202202211] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Indexed: 12/14/2022]
Abstract
The use of DNA-based nanostructures as probes has led to significant advances in chemical and biological sensing, allowing the detection of analytes in complex media, the understanding of fundamental biological processes, and the ability to diagnose diseases based on molecular signatures. The utility of these structures arises both from DNA's inherent ability to selectively recognize and bind a variety of chemical species and from the unique properties observed when DNA is restructured at the nanoscale. In this Minireview, we chronicle the most commonly used signal transduction strategies that have been interfaced with various DNA-based nanostructures. We discuss the types of analytes and the detection scenarios that are sought after, delineate the advantages and disadvantages of each signaling strategy, and outline the key considerations that guide the selection of each signaling method.
Collapse
Affiliation(s)
- Seungheon Lee
- Department of Chemistry, The University of Texas at Austin, 105 E 24th Street, Austin, TX 78712, USA
| | - Shivudu Godhulayyagari
- Department of Chemistry, The University of Texas at Austin, 105 E 24th Street, Austin, TX 78712, USA
| | - Shadler T Nguyen
- Department of Molecular Biosciences, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
| | - Jasmine K Lu
- Department of Chemistry, The University of Texas at Austin, 105 E 24th Street, Austin, TX 78712, USA
| | - Sasha B Ebrahimi
- Biopharmaceutical Product Sciences, GlaxoSmithKline, 1250 S Collegeville Road, Collegeville, PA 19426, USA
| | - Devleena Samanta
- Department of Chemistry, The University of Texas at Austin, 105 E 24th Street, Austin, TX 78712, USA
| |
Collapse
|
21
|
Li Q, Guo YM, Li GL. Redox-regulated synthesis of fluorescent polydopamine nanoparticles for detection of butyrylcholinesterase activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 274:121097. [PMID: 35259707 DOI: 10.1016/j.saa.2022.121097] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Butyrylcholinesterase (BChE) is an enzyme which is relevant to a variety of diseases, and often serve as a common biomarker of health. In this work, a novel fluorescence sensor based on redox-regulated synthesis of polydopamine nanoparticles (PDANPs) has been developed for simple and sensitive sensing BChE activity. A facile and rapid one-step approach for the preparation of fluorescent PDANPs uses potassium permanganate to oxidize dopamine. We demonstrated that the fluorescence intensity of PDANPs is dependent on the dose of potassium permanganate. Butyrylcholinesterase catalyzes the hydrolysis of butyrylthiocholine iodide (BTCh) to produce thiolcholine (TCh) which in a redox reaction with potassium permanganate prevents the formation of fluorescent PDANP. As a result, the activity of BChE can be determined in line with changes in the fluorescence of PDANPs. Based on this finding, a convenient and label-free fluorescence sensor for BChE activity was established via redox-control of the fluorescence intensity of PDANPs. A dynamic response range for BChE is acquired within 0.5 ∼ 200 U/L along with a detection limit of 0.047 U/L. Importantly, the proposed method achieves practical application toward BChE in human sera. Moreover, its satisfying performance for screening of inhibitors was also proved. Hence, the proposed sensor holds great potential for cholinesterase-related biomedical investigation.
Collapse
Affiliation(s)
- Qing Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yu-Meng Guo
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Guang-Li Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China.
| |
Collapse
|
22
|
Lee S, Godhulayyagari S, Nguyen ST, Lu JK, Ebrahimi SB, Samanta D. Signal Transduction Strategies for Analyte Detection Using DNA‐Based Nanostructures. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Seungheon Lee
- Department of Chemistry The University of Texas at Austin 105 E 24th Street Austin TX 78712 USA
| | - Shivudu Godhulayyagari
- Department of Chemistry The University of Texas at Austin 105 E 24th Street Austin TX 78712 USA
| | - Shadler T. Nguyen
- Department of Molecular Biosciences The University of Texas at Austin 2500 Speedway Austin TX 78712 USA
| | - Jasmine K. Lu
- Department of Chemistry The University of Texas at Austin 105 E 24th Street Austin TX 78712 USA
| | - Sasha B. Ebrahimi
- Biopharmaceutical Product Sciences GlaxoSmithKline 1250 S Collegeville Road Collegeville PA 19426 USA
| | - Devleena Samanta
- Department of Chemistry The University of Texas at Austin 105 E 24th Street Austin TX 78712 USA
| |
Collapse
|
23
|
Li H, Ho LWC, Lee LKC, Liu S, Chan CKW, Tian XY, Choi CHJ. Intranuclear Delivery of DNA Nanostructures via Cellular Mechanotransduction. NANO LETTERS 2022; 22:3400-3409. [PMID: 35436127 DOI: 10.1021/acs.nanolett.2c00667] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
DNA nanostructures are attractive gene carriers for nanomedicine applications, yet their delivery to the nucleus remains inefficient. We present the application of extracellular mechanical stimuli to activate cellular mechanotransduction for boosting the intranuclear delivery of DNA nanostructures. Treating mammalian cells with polythymidine-rich spherical nucleic acids (poly(T) SNAs) under gentle compression by a single coverslip leads to up to ∼50% nuclear accumulation without severe endosomal entrapment, cytotoxicity, or long-term membrane damage; no chemical modification or transfection reagent is needed. Gentle compression activates Rho-ROCK mechanotransduction and causes nuclear translocation of YAP. Joint compression and treatment with poly(T) oligonucleotides upregulate genes linked to myosin, actin filament, and nuclear import. In turn, Rho-ROCK, myosin, and importin mediate the nuclear entry of poly(T) SNAs. Treatment of endothelioma cells with poly(T) SNAs bearing antisense oligonucleotides under compression inhibits an intranuclear oncogene. Our data should inspire the marriage of DNA nanotechnology and cellular biomechanics for intranuclear applications.
Collapse
|
24
|
Li P, Chen X, Wu G, Wang Z, Huang C. Ascorbic Acid Sensor Based on CdS QDs@PDA Fluorescence Resonance Energy Transfer. Molecules 2022; 27:molecules27072097. [PMID: 35408497 PMCID: PMC9000657 DOI: 10.3390/molecules27072097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 12/10/2022] Open
Abstract
An ascorbic acid (AA) sensor was constructed based on the fluorescence resonance energy transfer (FRET) between CdS quantum dots (CdS QDs) and polydopamine (PDA) to detect trace AA sensitively. FRET occurred due to the broad absorption spectrum of PDA completely overlapped with the narrow emission spectrum of CdS QDs. The fluorescence of CdS QDs was quenched and in the "off" state. When AA was present, the conversion of DA to PDA was hindered and the FRET disappeared, resulting in the fluorescence of CdS QDs in an "on" state. Importantly, the degree of fluorescence recovery of CdS QDs displayed a desirable linear correlation with the concentration of AA in the range of 5.0-100.0 μmol/L, the linear equation is y=0.0119cAA+0.3113, and the detection limit is 1.16 μmol/L (S/N = 3, n = 9). There was almost no interference with common amino acid, glucose and biological sulfhydryl small molecules to AA. Trace amount of AA in vitamin C tablets were determined and satisfactory results were obtained; the recoveries were observed to be 98.01-100.7%.
Collapse
Affiliation(s)
- Pu Li
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; (P.L.); (X.C.)
| | - Xiaoxiao Chen
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; (P.L.); (X.C.)
| | - Gaojun Wu
- Xingzhi College, Zhejiang Normal University, Jinhua 321004, China; (G.W.); (Z.W.)
| | - Zhe Wang
- Xingzhi College, Zhejiang Normal University, Jinhua 321004, China; (G.W.); (Z.W.)
| | - Chaobiao Huang
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; (P.L.); (X.C.)
- Xingzhi College, Zhejiang Normal University, Jinhua 321004, China; (G.W.); (Z.W.)
- Correspondence:
| |
Collapse
|
25
|
Yin X, Ai F, Han L. Recent Development of MOF-Based Photothermal Agent for Tumor Ablation. Front Chem 2022; 10:841316. [PMID: 35372266 PMCID: PMC8966584 DOI: 10.3389/fchem.2022.841316] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/15/2022] [Indexed: 12/19/2022] Open
Abstract
Metal-organic frameworks (MOFs) are 3D-architecture compounds of metal ions and organic molecules with sufficient and permanent porosity, showing great potential as a versatile platform to load various functional moieties to endow the hybrid materials with specific applications. Currently, a variety of photothermal nanometals have been embedded into organic ligands for integrating the unique photothermal effects with the merits of MOFs to improve their performances for cancer therapy. In this review, we have summarized a series of novel MOF-based photothermal materials for this unique therapeutic modality against tumors from three main aspects according to their chemical compositions and structures, i) metal-doped MOF, ii) organic-doped MOF, and iii) polymer-coated MOF. In addition, we have summarized the latest developments and characteristics of MOF-based photothermal agents, such as good biocompatibility, low toxicity, and responsive photothermal conversion without destroying the structure of hybrid photothermal agent. At last, we addressed the future perspectives of MOF-based photothermal agent in the field of phototherapy.
Collapse
Affiliation(s)
- Xiuzhao Yin
- College of Applied Technology, Shenzhen University, Shenzhen, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
| | - Fujin Ai
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
- *Correspondence: Fujin Ai, ; Linbo Han,
| | - Linbo Han
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
- *Correspondence: Fujin Ai, ; Linbo Han,
| |
Collapse
|
26
|
Xiao F, Fang X, Li H, Xue H, Wei Z, Zhang W, Zhu Y, Lin L, Zhao Y, Wu C, Tian L. Light-Harvesting Fluorescent Spherical Nucleic Acids Self-Assembled from a DNA-Grafted Conjugated Polymer for Amplified Detection of Nucleic Acids. Angew Chem Int Ed Engl 2022; 61:e202115812. [PMID: 35064628 DOI: 10.1002/anie.202115812] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Indexed: 01/07/2023]
Abstract
The ultralow concentration of nucleic acids in complex biological samples requires fluorescence probes with high specificity and sensitivity. Herein, a new kind of spherical nucleic acids (SNAs) is developed by using fluorescent π-conjugated polymers (FCPs) as a light-harvesting antenna to enhance the signal transduction of nucleic acid detection. Specifically, amphiphilic DNA-grafted FCPs are synthesized and self-assemble into FCP-SNA structures. Tuning the hydrophobicity of the graft copolymer can adjust the size and light-harvesting capability of the FCP-SNAs. We observe that more efficient signal amplification occurs in larger FCP-SNAs, as more chromophores are involved, and the energy transfer can go beyond the Förster radius. Accordingly, the optimized FCP-SNA shows an antenna effect of up to 37-fold signal amplification and the limit of detection down to 1.7 pM in microRNA detection. Consequently, the FCP-SNA is applied to amplified in situ nucleic acid detecting and imaging at the single-cell level.
Collapse
Affiliation(s)
- Fan Xiao
- School of Materials Science and Engineering, Harbin Institute of Technology, Nangang District, Harbin, 150001, Heilongjiang, P. R. China.,Department of Materials Science and Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, Guangdong, P. R. China
| | - Xiaofeng Fang
- Department of Biomedical Engineering, Southern University of Science and TechnologyInstitution, Nanshan District, Shenzhen, 518055, Guangdong, P. R. China
| | - Hongyan Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, Guangdong, P. R. China
| | - Hanbing Xue
- School of Life Science, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, Guangdong, P. R. China
| | - Zixiang Wei
- Department of Materials Science and Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, Guangdong, P. R. China
| | - Wenkang Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, Guangdong, P. R. China
| | - Yulin Zhu
- Department of Chemistry, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, Guangdong, P. R. China
| | - Li Lin
- Department of Materials Science and Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, Guangdong, P. R. China
| | - Yan Zhao
- School of Life Science, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, Guangdong, P. R. China
| | - Changfeng Wu
- Department of Biomedical Engineering, Southern University of Science and TechnologyInstitution, Nanshan District, Shenzhen, 518055, Guangdong, P. R. China
| | - Leilei Tian
- Department of Materials Science and Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, Guangdong, P. R. China
| |
Collapse
|
27
|
Yang F, Lu H, Meng X, Dong H, Zhang X. Shedding Light on DNA-Based Nanoprobes for Live-Cell MicroRNA Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106281. [PMID: 34854567 DOI: 10.1002/smll.202106281] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Indexed: 06/13/2023]
Abstract
DNA-based nanoprobes integrated with various imaging signals have been employed for fabricating versatile biosensor platforms for the study of intracellular biological process and biomarker detection. The nanoprobes developments also provide opportunities for endogenous microRNA (miRNA) in situ analysis. In this review, the authors are primarily interested in various DNA-based nanoprobes for miRNA biosensors and declare strategies to reveal how to customize the desired nanoplatforms. Initially, various delivery vehicles for nanoprobe architectures transmembrane transport are delineated, and their biosecurity and ability for resisting the complex cellular environment are evaluated. Then, the novel strategies for designing DNA sequences as target miRNA specific recognition and signal amplification modules for miRNA detection are presented. Afterward, recent advances in imaging technologies to accurately respond and produce significant signal output are summarized. Finally, the challenges and future directions in the field are discussed.
Collapse
Affiliation(s)
- Fan Yang
- Marshall Laboratory of Biomedical Engineering Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong, 518060, P. R. China
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, P. R. China
- School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing, 100083, P. R. China
| | - Huiting Lu
- School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing, 100083, P. R. China
| | - Xiangdan Meng
- School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing, 100083, P. R. China
| | - Haifeng Dong
- Marshall Laboratory of Biomedical Engineering Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong, 518060, P. R. China
- School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing, 100083, P. R. China
| | - Xueji Zhang
- Marshall Laboratory of Biomedical Engineering Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong, 518060, P. R. China
| |
Collapse
|
28
|
Liu X, Wang Y, Effah CY, Wu L, Yu F, Wei J, Mao G, Xiong Y, He L. Endocytosis and intracellular RNAs imaging of nanomaterials-based fluorescence probes. Talanta 2022; 243:123377. [DOI: 10.1016/j.talanta.2022.123377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 12/12/2022]
|
29
|
Detachment-Independent Cationic-Dipeptide Beacons: Reduced False-Negative Signal and Accelerated Fluorescent Lighting in Cell Imaging. JOURNAL OF ANALYSIS AND TESTING 2022. [DOI: 10.1007/s41664-021-00207-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Bai H, Yan Y, Li D, Fan N, Cheng W, Yang W, Ju H, Li X, Ding S. Dispersion-to-localization of catalytic hairpin assembly for sensitive sensing and imaging microRNAs in living cells from whole blood. Biosens Bioelectron 2022; 198:113821. [PMID: 34840013 DOI: 10.1016/j.bios.2021.113821] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/04/2021] [Accepted: 11/17/2021] [Indexed: 12/21/2022]
Abstract
Localized DNA circuits have shown good performance regarding reaction rate and sensitivity for sensing intracellular microRNAs (miRNAs). However, these methods reported recently require large kinds of DNA strands and suffer from low signal-to-background (S/B) ratio, which hinder their clinical application. To circumvent these issues, we herein developed a novel strategy for sensitive sensing and imaging miRNAs in living cells based on dispersion-to-localization of catalytic hairpin assembly (DL-CHA). This strategy consists of only three classes of DNA strands (two hairpins and a linker strand), which largely reduces sequence design complexity. Additionally, owing to the unique engineering of the substrate transformation from dispersion to localization, the DL-CHA exhibits not only minimal background leakage but also intensive signal amplification, thus significantly improving the S/B ratio. In particular, the simple sensing method is capable of imaging miRNAs in cells from clinical blood samples for the diagnosis of breast cancer. Therefore, this work provides a powerful tool for intracellular molecules detection and gives a much broader design space for constructing high-performance DNA circuits.
Collapse
Affiliation(s)
- Huijie Bai
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yurong Yan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Dandan Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Ningke Fan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Wenqian Cheng
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Wei Yang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing, 210023, China
| | - Xinmin Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China; Department of Laboratory Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400016, China.
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
31
|
Xiao F, Fang X, Li H, Xue H, Wei Z, Zhang W, Zhu Y, Lin L, Zhao Y, Wu C, Tian L. Light‐Harvesting Fluorescent Spherical Nucleic Acids Self‐Assembled from a DNA‐Grafted Conjugated Polymer for Amplified Detection of Nucleic Acids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fan Xiao
- School of Materials Science and Engineering Harbin Institute of Technology, Nangang District Harbin 150001 Heilongjiang P. R. China
- Department of Materials Science and Engineering Southern University of Science and Technology, Nanshan District Shenzhen 518055 Guangdong P. R. China
| | - Xiaofeng Fang
- Department of Biomedical Engineering Southern University of Science and TechnologyInstitution, Nanshan District Shenzhen 518055 Guangdong P. R. China
| | - Hongyan Li
- Department of Materials Science and Engineering Southern University of Science and Technology, Nanshan District Shenzhen 518055 Guangdong P. R. China
| | - Hanbing Xue
- School of Life Science Southern University of Science and Technology, Nanshan District Shenzhen 518055 Guangdong P. R. China
| | - Zixiang Wei
- Department of Materials Science and Engineering Southern University of Science and Technology, Nanshan District Shenzhen 518055 Guangdong P. R. China
| | - Wenkang Zhang
- Department of Materials Science and Engineering Southern University of Science and Technology, Nanshan District Shenzhen 518055 Guangdong P. R. China
| | - Yulin Zhu
- Department of Chemistry Southern University of Science and Technology, Nanshan District Shenzhen 518055 Guangdong P. R. China
| | - Li Lin
- Department of Materials Science and Engineering Southern University of Science and Technology, Nanshan District Shenzhen 518055 Guangdong P. R. China
| | - Yan Zhao
- School of Life Science Southern University of Science and Technology, Nanshan District Shenzhen 518055 Guangdong P. R. China
| | - Changfeng Wu
- Department of Biomedical Engineering Southern University of Science and TechnologyInstitution, Nanshan District Shenzhen 518055 Guangdong P. R. China
| | - Leilei Tian
- Department of Materials Science and Engineering Southern University of Science and Technology, Nanshan District Shenzhen 518055 Guangdong P. R. China
| |
Collapse
|
32
|
Zhu LB, Wang HY, Zhang TY, Chen FZ, Han DM, Zhao WW. Rational Utilization of Photoelectrochemistry of Photosystem II for Self-Powered Photocathodic Detection of MicroRNA in Cells. Anal Chem 2021; 93:15761-15767. [PMID: 34779611 DOI: 10.1021/acs.analchem.1c03900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The photoanode, photosystem II (PSII)/hierarchical inverse opal (IO) TiO2, is coupled to the complementary photocathode, PbS quantum dots (QDs)/DNA probes, which is then integrated into a two-compartment photoelectrochemical (PEC) cell to achieve a self-powered system to enable photocathodic detection of microRNA-10b from HeLa cells. In such a system, all of the PSII catalytic products, i.e., electrons, protons, and O2, were rationally utilized and could overcome the general issue of varied O2 levels in photocathodic detection. The correlation between the target-triggered formation of the DNA complexes and the catalytic reduction of the dissolved O2 makes possible the steady microRNA-10b detection with good sensitivity and selectivity. This work has unveiled the ability of PSII to construct self-powered detecting devices and shed light on its application in new arenas.
Collapse
Affiliation(s)
- Li-Bang Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hai-Yan Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Tian-Yang Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Feng-Zao Chen
- Engineering Research Center of Recycling & Comprehensive Utilization of Pharmaceutical and Chemical Waste of Zhejiang Province, Taizhou University, Jiaojiang 318000, China
| | - De-Man Han
- Engineering Research Center of Recycling & Comprehensive Utilization of Pharmaceutical and Chemical Waste of Zhejiang Province, Taizhou University, Jiaojiang 318000, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
33
|
Dai G, Chu JCH, Chan CKW, Choi CHJ, Ng DKP. Reactive oxygen species-responsive polydopamine nanoparticles for targeted and synergistic chemo and photodynamic anticancer therapy. NANOSCALE 2021; 13:15899-15915. [PMID: 34522935 DOI: 10.1039/d1nr04278e] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A thioketal-linked dimer of 3,4-dihydroxy-L-phenylalanine was prepared which underwent self-polymerisation in the presence of doxorubicin (Dox) in an ethanol/water (1 : 4, v/v) mixture with ammonia. The resulting Dox-encapsulated polydopamine (PDA) nanoparticles were further conjugated with molecules of a zinc(II) phthalocyanine (Pc)-based photosensitiser and a peptide containing the heptapeptide QRHKPRE sequence (labelled as QRH) that can target the epidermal growth factor receptor (EGFR) overexpressed in cancer cells. Upon internalisation into these cells through receptor-mediated endocytosis, these nanoparticles labelled as PDA-Dox-Pc-QRH were disassembled gradually via cleavage of the thioketal linkages by the intrinsic intracellular reactive oxygen species (ROS). The stacked Pc molecules were then disaggregated, resulting in activation of their photosensitising property upon irradiation. The ROS generated by the activated Pc promoted further degradation of the nanoparticles and release of Dox, thereby enhancing cell death by synergistic chemo and photodynamic therapy. Systemic injection of PDA-Dox-Pc-QRH into EGFR-overexpressed tumour-bearing nude mice led to targeted delivery to the tumour, and subsequent light irradiation caused complete tumour ablation without inducing notable toxicity.
Collapse
Affiliation(s)
- Gaole Dai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Jacky C H Chu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Cecilia Ka Wing Chan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
- Department of Surgery, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Chung Hang Jonathan Choi
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Dennis K P Ng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| |
Collapse
|
34
|
Liu Y, Choi CKK, Hong H, Xiao Y, Kwok ML, Liu H, Tian XY, Choi CHJ. Dopamine Receptor-Mediated Binding and Cellular Uptake of Polydopamine-Coated Nanoparticles. ACS NANO 2021; 15:13871-13890. [PMID: 34379407 DOI: 10.1021/acsnano.1c06081] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Polydopamine (PDA)-coated nanoparticles (NPs) are emerging carriers of therapeutic agents for nanomedicine applications due to their biocompatibility and abundant entry to various cell types, yet it remains unknown whether their cellular entry engages cell-surface receptors. As monomeric dopamine (DA) is an endogenous ligand of dopamine receptor and raw ingredient of PDA, we elucidate the interaction between polyethylene glycol-stabilized, PDA-coated gold NPs (Au@PDA@PEG NPs) and dopamine receptors, particularly D2 (D2DR). After proving the binding of Au@PDA@PEG NPs to recombinant and cellular D2DR, we employ antibody blocking, gene knockdown, and gene overexpression to establish the role of D2DR in the cellular uptake of Au@PDA@PEG NPs in vitro. By preparing a series of PEG-coated AuNPs that contain different structural analogues of DA (Au@PEG-X NPs), we demonstrate that catechol and amine groups collectively enhance the binding of NPs to D2DR and their cellular uptake. By intravenously injecting Au@PDA@PEG NPs to Balb/c mice, we reveal their in vivo binding to D2DR in the liver by competitive inhibition and immunohistochemistry together with their preferential association to D2DR-rich resident Kupffer cells by flow cytometry, a result consistent with the profuse expression of D2DR by resident Kupffer cells. Catechol and amine groups jointly contribute to the preferential association of NPs to D2DR-rich Kupffer cells. Our data highlight the importance of D2DR expression and DA-related functional groups in mediating the cell-nano interactions of PDA-based nanomedicines.
Collapse
|
35
|
Zhao J, Li Z, Shao Y, Hu W, Li L. Spatially Selective Imaging of Mitochondrial MicroRNAs via Optically Programmable Strand Displacement Reactions. Angew Chem Int Ed Engl 2021; 60:17937-17941. [PMID: 34117823 DOI: 10.1002/anie.202105696] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/25/2021] [Indexed: 12/14/2022]
Abstract
MicroRNA (miRNA) functions are tightly regulated by their sub-compartmental location in living cells, and the ability to imaging of mitochondrial miRNAs (mitomiRs) is essential for understanding of the related pathological processes. However, most existing DNA-based methods could not be used for this purpose. Here, we report the development of a DNA nanoreporter technology for imaging of mitomiRs in living cells through near-infrared (NIR) light-controlled DNA strand displacement reactions. The sensing function of the DNA nanoreporters are silent (OFF) during the delivery process, but can be photoactivated (ON) with NIR light after targeted mitochondrial localization, enabling spatially-restricted imaging of two types of cancer-related mitomiRs with improved detection accuracy. Furthermore, we demonstrate imaging of mitomiRs in vivo through spatiotemporally-controlled delivery and activation. Therefore, this study illustrates a simple methodology that may be broadly applicable for investigating the mitomiRs-associated physiological events.
Collapse
Affiliation(s)
- Jian Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhixiang Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin, 300072, China
| | - Yulei Shao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin, 300072, China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
36
|
Spatially Selective Imaging of Mitochondrial MicroRNAs via Optically Programmable Strand Displacement Reactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105696] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
37
|
Hong M, Sun H, Yang Q, Cheng S, Yu S, Fan S, Li C, Cui C, Tan W. A microRNA-21-responsive doxorubicin-releasing sticky-flare for synergistic anticancer with silencing of microRNA and chemotherapy. Sci China Chem 2021. [DOI: 10.1007/s11426-020-9973-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
Lai Q, Liu Y, Ge L, Yang Y, Ji X, He Z. Investigating the effect of 6-mercaptohexanol on the performance of a biosensor based on nanosurface energy transfer between gold nanoparticles and quantum dots. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2092-2098. [PMID: 33870959 DOI: 10.1039/d1ay00209k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanosurface energy transfer (NSET)-based sensors have been widely developed using various pairs of nanomaterials including gold nanoparticles (AuNPs) and quantum dots (QDs). However, a low signal to background ratio is one of the most important problems that researchers are continually trying to solve. Herein, we present a 6-mercaptohexanol (MCH) modified MCH/DNA-Au-QD sensor for the detection of nucleic acids and MUC1. Interestingly, an unexpected effect of MCH was found in enhancing the fluorescence recovery ratio, therefore yielding a higher signal to background ratio. Through further investigation, we perceive the enhancement as a result of lowering of the NSET efficiency between free DNA-AuNPs and free DNA-QDs, which arises from the stretching of adsorbed DNA on the surface of AuNPs. The employment of MCH endowed the sensor with a wider linear range from 5 nM to 120 nM and a relatively lower LOD of 1.19 nM in nucleic acid detection, outperforming the original DNA-Au-QD sensor. Furthermore, the application of the sensor can be further extended to MUC1 detection. This study offers a better understanding of the NSET process between QDs and AuNPs and also initiates a new approach for the performance optimization of analogous NSET-based sensors.
Collapse
Affiliation(s)
- Qizhen Lai
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Yucheng Liu
- The Centre of Analysis and Measurement of Wuhan University, Wuhan University, Wuhan, 430072, P. R. China
| | - Lan Ge
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Yeling Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Xinghu Ji
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Zhike He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
39
|
He P, Han W, Bi C, Song W, Niu S, Zhou H, Zhang X. Many Birds, One Stone: A Smart Nanodevice for Ratiometric Dual-Spectrum Assay of Intracellular MicroRNA and Multimodal Synergetic Cancer Therapy. ACS NANO 2021; 15:6961-6976. [PMID: 33820415 DOI: 10.1021/acsnano.0c10844] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The development of a theragnostic platform integrating precise diagnosis and effective treatment is significant but still extremely challenging. Herein, an integrated smart nanodevice composed of Au@Cu2-xS@polydopamine nanoparticles (ACSPs) and fuel DNA-conjugated tetrahedral DNA nanostructures (fTDNs) was constructed, in which the ACSP nanoprobe played multiple key roles in antitumor therapy as well as in situ monitoring of microRNAs (miRNAs) in cancer cells. Regarding the analysis, the ACSP probe contained two optical properties: excellent surface-enhanced Raman scattering (SERS) enhancement and high fluorescence (FL) quenching performance. Employing the ACSPs as the high-efficiency detection substrate combined with the fTDN-assisted DNA walking nanomachines as the superior amplification strategy, a SERS-FL dual-spectrum biosensor was constructed, which achieved an ultralow background signal and excellent sensitivity with detection limits of 0.11 pM and 4.95 aM by FL and SERS, respectively. Moreover, the rapid FL imaging and precise SERS quantitative detection for miRNA in cancer cells were also achieved by dual-signal ratio strategy, improving the accuracy of diagnosis. Regarding the therapeutic application, due to the high reactive oxygen species generation ability and excellent photothermal conversion efficiency, the ACSPs can also act as an all-in-one nanoagent for multimodal collaborative tumor therapy. Significantly, both in vivo and in vitro experiments confirmed its high biological safety and strong anticancer effect, indicating its promising theragnostic applications.
Collapse
Affiliation(s)
- Peng He
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Wenhao Han
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Cheng Bi
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Weiling Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Shuyan Niu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Hong Zhou
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Xiaoru Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| |
Collapse
|
40
|
Dai G, Choi CKK, Zhou Y, Bai Q, Xiao Y, Yang C, Choi CHJ, Ng DKP. Immobilising hairpin DNA-conjugated distyryl boron dipyrromethene on gold@polydopamine core-shell nanorods for microRNA detection and microRNA-mediated photodynamic therapy. NANOSCALE 2021; 13:6499-6512. [PMID: 33885529 DOI: 10.1039/d0nr09135a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A novel nanosystem of polydopamine-coated gold nanorods (AuNR@PDA) immobilised with molecules of hairpin DNA-conjugated distyryl boron dipyrromethene (DSBDP) was designed and fabricated for detection of microRNA-21 (miR-21). By using this oncogenic stimulus, the photodynamic effect of the DSBDP-based photosensitiser was also activated. In the presence of miR-21, the fluorescence intensity of the nanosystem was increased due to the dissociation of the conjugate from AuNR@PDA upon hybridisation. The intracellular fluorescence intensity triggered by intracellular miR-21 was in the order: MCF-7 > HeLa > HEK-293, which was in accordance with their miR-21 expression levels. The specificity was demonstrated by comparing the results with those of an analogue with a scrambled DNA sequence. The nanosystem could also result in miR-21-mediated photodynamic eradication of miR-21-overexpressed MCF-7 cells. After intravenous injection of the nanosystem into HeLa tumour-bearing nude mice, the fluorescence intensity of the tumour was increased over 24 h and was about 3-fold stronger than that of the scrambled analogue. Upon irradiation, the nanosystem could also greatly reduce the size of the tumour without causing significant tissue damage in the major organs. The overall results showed that this nanoplatform can serve as a specific and potent theranostic agent for simultaneous miR-21 detection and miR-21-mediated photodynamic therapy.
Collapse
Affiliation(s)
- Gaole Dai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Wu D, Zhou J, Creyer MN, Yim W, Chen Z, Messersmith PB, Jokerst JV. Phenolic-enabled nanotechnology: versatile particle engineering for biomedicine. Chem Soc Rev 2021; 50:4432-4483. [PMID: 33595004 PMCID: PMC8106539 DOI: 10.1039/d0cs00908c] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phenolics are ubiquitous in nature and have gained immense research attention because of their unique physiochemical properties and widespread industrial use. In recent decades, their accessibility, versatile reactivity, and relative biocompatibility have catalysed research in phenolic-enabled nanotechnology (PEN) particularly for biomedical applications which have been a major benefactor of this emergence, as largely demonstrated by polydopamine and polyphenols. Therefore, it is imperative to overveiw the fundamental mechanisms and synthetic strategies of PEN for state-of-the-art biomedical applications and provide a timely and comprehensive summary. In this review, we will focus on the principles and strategies involved in PEN and summarize the use of the PEN synthetic toolkit for particle engineering and the bottom-up synthesis of nanohybrid materials. Specifically, we will discuss the attractive forces between phenolics and complementary structural motifs in confined particle systems to synthesize high-quality products with controllable size, shape, composition, as well as surface chemistry and function. Additionally, phenolic's numerous applications in biosensing, bioimaging, and disease treatment will be highlighted. This review aims to provide guidelines for new scientists in the field and serve as an up-to-date compilation of what has been achieved in this area, while offering expert perspectives on PEN's use in translational research.
Collapse
Affiliation(s)
- Di Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | | | | | | | | | | | | |
Collapse
|
42
|
Li R, Li Y, Mu M, Yang B, Chen X, Lee WYW, Ke Y, Yung WH, Tang BZ, Bian L. Multifunctional Nanoprobe for the Delivery of Therapeutic siRNA and Real-Time Molecular Imaging of Parkinson's Disease Biomarkers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11609-11620. [PMID: 33683858 DOI: 10.1021/acsami.0c22112] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Parkinson's disease (PD) has been recently associated with the excessive expression of matrix metalloproteinase 3 (MMP3). One of the major challenges in treating PD is to effectively detect and inhibit the early MMP3 activities to relieve the neural stress and inflammation responses. Previously, numerous upconversion nanoparticle (UCNP)-based nanoprobes have been designed for the detection of biomarkers in neurodegenerative diseases. To further improve the performance of the conventional nanoprobes, we introduced novel reporting units and integrated the therapeutic reagents to fabricate a theragnostic platform for PD and other neurodegenerative diseases. Here, we designed a multifunctional UCNP/aggregation-induced emission luminogen (AIEgen)-based nanoprobe to effectively detect the time-lapse MMP3 activities in the inflammatory catecholaminergic SH-SY5Y cells and simultaneously deliver the MMP3-siRNA into the stressed catecholaminergic SH-SY5Y cells, inhibiting the MMP3-induced inflammatory neural responses. The unique features of our UCNP/AIEgen-based nanoprobe platform shed light on the development of a novel theragnostic probe for the early diagnosis and cure of neurodegenerative diseases.
Collapse
Affiliation(s)
- Rui Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, 999077 Hong Kong, P. R. China
| | - Yi Li
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, 999077 Hong Kong, P. R. China
| | - Mingdao Mu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, 999077 Hong Kong, P. R. China
| | - Boguang Yang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, 999077 Hong Kong, P. R. China
| | - Xiaoyu Chen
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, 999077 Hong Kong, P. R. China
| | - Wayne Yuk Wai Lee
- Department of Orthopedic and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, 999077 Hong Kong, P. R. China
| | - Ya Ke
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, 999077 Hong Kong, P. R. China
| | - Wing Ho Yung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, 999077 Hong Kong, P. R. China
| | - Ben Zhong Tang
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077 Hong Kong, P. R. China
| | - Liming Bian
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, 999077 Hong Kong, P. R. China
- The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen 518000, China
| |
Collapse
|
43
|
Fan K, Lu C, Shu G, Lv XL, Qiao E, Zhang N, Chen M, Song J, Wu F, Zhao Z, Xu X, Xu M, Chen C, Yang W, Sun J, Du Y, Ji J. Sialic acid-engineered mesoporous polydopamine dual loaded with ferritin gene and SPIO for achieving endogenous and exogenous synergistic T2-weighted magnetic resonance imaging of HCC. J Nanobiotechnology 2021; 19:76. [PMID: 33731140 PMCID: PMC7968241 DOI: 10.1186/s12951-021-00821-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/05/2021] [Indexed: 12/20/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a common malignant tumor with poor prognosis. Magnetic resonance imaging (MRI) is one of the most effective imaging methods for the early diagnosis of HCC. However, the current MR contrast agents are still facing challenges in the early diagnosis of HCC due to their relatively low sensitivity and biosafety. Thus, the development of effective MR agents is highly needed for the early diagnosis of HCC. Results Herein, we fabricated an HCC-targeted nanocomplexes containing SPIO-loaded mesoporous polydopamine (MPDA@SPIO), sialic acid (SA)-modified polyethyleneimine (SA-PEI), and alpha-fetoprotein regulated ferritin gene (AFP-Fth) which was developed for the early diagnosis of HCC. It was found that the prepared nanocomplexes (MPDA@SPIO/SA-PEI/AFP-Fth) has an excellent biocompatibility towards the liver cells. In vivo and in vivo studies revealed that the transfection of AFP-Fth gene in hepatic cells significantly upregulated the expression level of ferritin, thereby resulting in an enhanced contrast on T2-weighted images via the formed endogenous MR contrast. Conclusions The results suggested that MPDA@SPIO/SA-PEI/AFP-Fth had a superior ability to enhance the MR contrast of T2-weighted images of tumor region than the other preparations, which was due to its HCC-targeted ability and the combined T2 contrast effect of endogenous ferritin and exogenous SPIO. Our study proved that MPDA@SPIO/SA-PEI/AFP-Fth nanocomplexes could be used as an effective MR contrast agent to detect HCC in the early stage.![]() Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00821-8.
Collapse
Affiliation(s)
- Kai Fan
- Department of Radiology, Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, School of Medicine, Lishui Hospital of Zhejiang University, Lishui, 323000, Zhejiang, China.,Department of Radiology, Sir Run Shaw Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Chengying Lu
- Department of Radiology, Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, School of Medicine, Lishui Hospital of Zhejiang University, Lishui, 323000, Zhejiang, China
| | - Gaofeng Shu
- Department of Radiology, Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, School of Medicine, Lishui Hospital of Zhejiang University, Lishui, 323000, Zhejiang, China.,Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Xiu-Ling Lv
- Department of Radiology, Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, School of Medicine, Lishui Hospital of Zhejiang University, Lishui, 323000, Zhejiang, China
| | - Enqi Qiao
- Department of Radiology, Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, School of Medicine, Lishui Hospital of Zhejiang University, Lishui, 323000, Zhejiang, China.,Department of Radiology, Sir Run Shaw Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Nannan Zhang
- Department of Radiology, Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, School of Medicine, Lishui Hospital of Zhejiang University, Lishui, 323000, Zhejiang, China
| | - Minjiang Chen
- Department of Radiology, Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, School of Medicine, Lishui Hospital of Zhejiang University, Lishui, 323000, Zhejiang, China.,Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Jingjing Song
- Department of Radiology, Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, School of Medicine, Lishui Hospital of Zhejiang University, Lishui, 323000, Zhejiang, China
| | - Fazong Wu
- Department of Radiology, Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, School of Medicine, Lishui Hospital of Zhejiang University, Lishui, 323000, Zhejiang, China
| | - Zhongwei Zhao
- Department of Radiology, Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, School of Medicine, Lishui Hospital of Zhejiang University, Lishui, 323000, Zhejiang, China
| | - Xiaoling Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Min Xu
- Department of Radiology, Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, School of Medicine, Lishui Hospital of Zhejiang University, Lishui, 323000, Zhejiang, China
| | - Chunmiao Chen
- Department of Radiology, Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, School of Medicine, Lishui Hospital of Zhejiang University, Lishui, 323000, Zhejiang, China
| | - Weibin Yang
- Department of Radiology, Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, School of Medicine, Lishui Hospital of Zhejiang University, Lishui, 323000, Zhejiang, China
| | - Jihong Sun
- Department of Radiology, Sir Run Shaw Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China.
| | - Jiansong Ji
- Department of Radiology, Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, School of Medicine, Lishui Hospital of Zhejiang University, Lishui, 323000, Zhejiang, China.
| |
Collapse
|
44
|
Xue T, Bongu SR, Huang H, Liang W, Wang Y, Zhang F, Liu Z, Zhang Y, Zhang H, Cui X. Ultrasensitive detection of microRNA using a bismuthene-enabled fluorescence quenching biosensor. Chem Commun (Camb) 2021; 56:7041-7044. [PMID: 32453808 DOI: 10.1039/d0cc01004a] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bismuthene, a monoelemental two-dimensional material, has shown promise in the biomedical, electronic, and energy fields due to its high carrier mobility and stability at room temperature. However, its use in biosensing applications is restricted due to its undefined quenching mechanism for dye molecules. Herein, we developed a novel ultrathin bismuthene-based sensing platform for microRNA (miRNA)-specific detection that even discriminates single-base mismatches. The detection limit can reach 60 pM. Excitingly, with the fluorescence quenching mechanism of bismuthene, ground state weakly fluorescent charge transfer is determined via femtosecond pump-probe spectroscopy. This finding provides a proof-of-concept platform to (i) fundamentally explore the quenching mechanism of bismuthene and (ii) sensitively detect miRNA molecules for early cancer.
Collapse
Affiliation(s)
- Tianyu Xue
- Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Yang Y, Li Y, Zhai W, Li X, Li D, Lin H, Han S. Electrokinetic Preseparation and Molecularly Imprinted Trapping for Highly Selective SERS Detection of Charged Phthalate Plasticizers. Anal Chem 2021; 93:946-955. [PMID: 33206502 DOI: 10.1021/acs.analchem.0c03652] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nonspecific binding and weak spectral discernment are the main challenges for surface-enhanced Raman scattering (SERS) detection, especially in real sample analysis. Herein, molecularly imprinted polymer (MIP)-based core-shell AuNP@polydopamine (AuNP@PDA-MIP) nanoparticles (NPs) are designed and immobilized on an electrochemically reduced MoS2-modified screen-printed electrode (SPE). This portable electrochemical-Raman interface offers the dual functions of electrokinetic preseparation (EP) and MIP trapping of charged molecules so that a reliable SERS recognition with molecular selectivity and high sensitivity can be achieved. Core-shell AuNP@PDA-MIP NPs can be controllably synthesized, possess predesigned specific recognition, and provide "hot spots" at the junction of NPs. The introduction of an electric field enables the autonomous exclusion and separation of similarly charged molecules as well as attraction and concentration of the oppositely charged molecules by electrostatic attraction. Subsequently, the specific MIP recognition cavities allow selective adsorption of targets on the interface without the interference of analogues. Owing to the distinctive design of the multiple coupling separation, trapping, and enrichment strategies, the MIP-based SERS-active interface can be used for label-free detection of charged molecules in real samples without pretreatment. As a proof-of-concept study, label-free SERS detection of charged phthalate plasticizers (PAEs) was demonstrated with a detection limit as low as 2.7 × 10-12 M for dimethyl phthalate (DMP) and 2.3 × 10-11 M for di(2-ethylhexyl) phthalate (DEHP). This sensing strategy for in situ SERS analysis of charged pollutants or toxins holds vast promises for a wide range of in-field applications.
Collapse
Affiliation(s)
- Yuanyuan Yang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, People's Republic of China
| | - Yuanting Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, People's Republic of China
| | - Wenlei Zhai
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agricultural and Forestry Science, No. 9 Middle Road of Shuguanghuayuan, Haidian District, Beijing 100097, People's Republic of China
| | - Xuejian Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, People's Republic of China
| | - Dan Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, People's Republic of China
| | - Hualin Lin
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, People's Republic of China
| | - Sheng Han
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, People's Republic of China
| |
Collapse
|
46
|
Zhao Y, Meng L, Zhang K, Sun Y, Zhao Y, Yang Z, Lin Y, Liu X, Sun H, Yang B, Lin Q. Ultra-small nanodots coated with oligopeptides providing highly negative charges to enhance osteogenic differentiation of hBMSCs better than osteogenic induction medium. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.10.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
47
|
Feng J, Gao JL, Zhang RY, Ren WX, Dong YB. Polydopamine-Based Multifunctional Antitumor Nanoagent for Phototherapy and Photodiagnosis by Regulating Redox Balance. ACS APPLIED BIO MATERIALS 2020; 3:8667-8675. [PMID: 35019637 DOI: 10.1021/acsabm.0c01057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The development of multifunctional nanoagents for the simultaneous achievement of high diagnostic and therapeutic performances is significant for precise cancer treatment. Herein, we report on a polydopamine (PDA)-based multifunctional nanoagent, PML, in which the methylene blue (MB) photosensitizer (PS) and l-arginine (l-Arg) tumor-targeting species are equipped. After selectively accumulating in tumor sites, glutathione (GSH)-responsive PML degradation can controllably release loaded MB to produce singlet oxygen (1O2) under near-infrared (NIR) photoirradiation. This GSH-depleted PS release process can not only weaken the body's antioxidant defence ability but also synergistically increase the 1O2 concentration. Therefore, GSH depletion-enhanced photodynamic therapy (PDT) efficiency is logically achieved by regulating the intracellular redox balance. In addition, our nanoagent can guide photoacoustic/NIR thermal dual-modal imaging and convert light into heat for cooperative cancer phototherapy because of the inherent photothermal conversion nature of PDA. As a result, excellent in vivo antitumor phototherapy (PDT + PTT) is achieved under the precise guidance of dual-modal imaging. This work not only realizes the integration of cancer diagnosis and treatment through PDA-based nanocarriers but also delivers dimensions in designing the next generation of multifunctional antitumor nanoagents for enhanced phototherapy and photodiagnosis by regulating the redox balance.
Collapse
Affiliation(s)
- Jie Feng
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Jia-Lin Gao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Ruo-Yu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Wen-Xiu Ren
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
48
|
Xiong X, Dang W, Luo R, Long Y, Tong C, Yuan L, Liu B. A graphene-based fluorescent nanoprobe for simultaneous imaging of dual miRNAs in living cells. Talanta 2020; 225:121947. [PMID: 33592702 DOI: 10.1016/j.talanta.2020.121947] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/19/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are regarded as important biomarkers for disease diagnostics and therapeutics due to their significant regulatory roles in physiologic and pathologic processes. Herein, a versatile nanoprobe based on reduced graphene oxide (rGO) and nucleic acid (DNA) probe was prepared for simultaneously visualize miR-451a and miR-214-3p in living cells. In vitro experiments demonstrated that the nanoprobe exhibits excellent selectivity and outstanding sensitivity as low as 1 nM towards miR-451a and miR-214-3p. Moreover, the detection signals of miRNAs have good linearity in their respective concentration ranges (miR-451a: 1-100 nM, Y1 = 9.3062X1+114.85 (R2 = 0.9965). miR-214-3p: 1-200 nM, Y2 = 1.4424X2+91.312 (R2 = 0.9961)). Finally, simultaneous dual-color imaging of miR-451a and miR-214-3p in human breast cancer cells (MDA-MB-231) was realized by exploiting the P1&P2@rGO nanoprobe. In summary, this simple and effective strategy provides a general sensing platform for highly sensitive detection and simultaneous imaging of dual miRNAs in living cells.
Collapse
Affiliation(s)
- Xiang Xiong
- Department of General Surgery, Department of Burn and Plastic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Wenya Dang
- College of Biology, Hunan University, Changsha, 410082, China
| | - Ruxin Luo
- College of Biology, Hunan University, Changsha, 410082, China
| | - Ying Long
- College of Biology, Hunan University, Changsha, 410082, China
| | - Chunyi Tong
- College of Biology, Hunan University, Changsha, 410082, China
| | - Liqin Yuan
- Department of General Surgery, Department of Burn and Plastic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| | - Bin Liu
- College of Biology, Hunan University, Changsha, 410082, China.
| |
Collapse
|
49
|
Zandieh M, Liu J. Cooperative Metal Ion-Mediated Adsorption of Spherical Nucleic Acids with a Large Hysteresis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14324-14332. [PMID: 33201706 DOI: 10.1021/acs.langmuir.0c02677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Spherical nucleic acids (SNA) refer to nanoparticles attached with a high density of oligonuleotides. Linear and spherical nucleic acids have many differences such as hybridization affinity, melting transition, and cellular uptake. In this work, these two types of DNA of the same sequence were compared for adsorption on polydopamine (PDA) nanoparticles and graphene oxide (GO). We focused on the effect of metal ions including Na+, Ca2+, and Zn2+ since metal ions are indispensible for DNA adsorption on PDA and GO. Gold nanoparticles (AuNPs) of various sizes were used to prepare the SNAs. For both PDA and GO, a normal binding curve of one metal ion was obtained for adsorbing the linear DNA, while the spherical DNAs larger than 5 nm showed a sigmoidal binding curve requiring multiple metal ions. Urea and EDTA were used to probe DNA adsorption affinity, where the spherical DNA showed stronger adsorption in general. In the presence of 300 mM Na+, 4 M urea or 4 mM EDTA failed to desorb the 13 nm spherical DNA. The spherical DNA showed a very large hysteresis of metal-dependent adsorption. This study demonstrates another unique property of SNA compared to linear DNA, revealing interesting orientation and packing of DNA on AuNPs, which has deepened our understanding of DNA interface chemistry.
Collapse
Affiliation(s)
- Mohamad Zandieh
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Centre for Eye and Vision Research, 17W Hong Kong Science Park, Hong Kong, SAR China
| |
Collapse
|
50
|
Fan J, Cheng Y, Sun M. Functionalized Gold Nanoparticles: Synthesis, Properties and Biomedical Applications. CHEM REC 2020; 20:1474-1504. [DOI: 10.1002/tcr.202000087] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Jianuo Fan
- School of Mathematics and Physics Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Yuqing Cheng
- School of Mathematics and Physics Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Mengtao Sun
- School of Mathematics and Physics Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science University of Science and Technology Beijing Beijing 100083 P. R. China
| |
Collapse
|