1
|
Das A, Kumaran S, Ravi Sankar HS, Premkumar JR, Sundararaju B. A Dual Cobalt-Photoredox Catalytic Approach for Asymmetric Dearomatization of Indoles with Aryl Amides via C-H Activation. Angew Chem Int Ed Engl 2024; 63:e202406195. [PMID: 38896502 DOI: 10.1002/anie.202406195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/06/2024] [Accepted: 06/19/2024] [Indexed: 06/21/2024]
Abstract
In this study, we unveil a novel method for the asymmetric dearomatization of indoles under cobalt/photoredox catalysis. By strategically activating C-H bonds of amides and subsequent migratory insertion of π-bonds present in indole as reactive partner, we achieve syn-selective tetrahydro-5H-indolo[2,3-c]isoquinolin-5-one derivatives with excellent yields and enantiomeric excesses of up to >99 %. The developed method operates without a metal oxidant, relying solely on oxygen as the oxidant and employing an organic dye as a photocatalyst under irradiation. Control experiments and stoichiometric studies elucidate the reversible nature of the enantiodetermining C-H activation step, albeit not being rate-determining. This study not only expands the horizon of cobalt-catalyzed asymmetric C-H bond functionalization, but also showcases the potential synergy between cobalt and photoredox catalysis in enabling asymmetric synthesis of complex molecules.
Collapse
Affiliation(s)
- Abir Das
- Department of chemistry, Indian Institution of Technology Kanpur, Kanpur, Uttar Pradesh, India-, 208 016
| | - Subramani Kumaran
- Department of chemistry, Indian Institution of Technology Kanpur, Kanpur, Uttar Pradesh, India-, 208 016
| | | | - J Richard Premkumar
- PG & Research Department of Chemistry, Bishop Heber College, Tiruchirappalli, 620017, Tamil Nadu, India
| | - Basker Sundararaju
- Department of chemistry, Indian Institution of Technology Kanpur, Kanpur, Uttar Pradesh, India-, 208 016
| |
Collapse
|
2
|
Utecht-Jarzyńska G, Shi S, Gao P, Jarzyński S, Mahbubur Rahman M, Lalancette R, Szostak R, Szostak M. IPr* F - Highly Hindered, Fluorinated N-Heterocyclic Carbenes. Chemistry 2024:e202402847. [PMID: 39298645 DOI: 10.1002/chem.202402847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
The introduction of fluorine atom has attracted considerable interest in molecular design owing to the high electronegativity and the resulting polarization of carbon-fluorine bonds. Simultaneously, sterically-hindered N-heterocyclic carbenes (NHCs) have received major interest due to high stabilization of the reactive metal centers, which has paved the way for the synthesis of stable and reactive organometallic compounds with broad applications in main group chemistry, inorganic synthesis and transition-metal-catalysis. Herein, we report the first class of sterically-hindered, fluorinated N-heterocyclic carbenes. These ligands feature variable fluorine substitution at the N-aromatic wingtip, permitting to rationally vary steric and electronic characteristics of the carbene center imparted by the fluorine atom. An efficient, one-pot synthesis of fluorinated IPr*F ligands is presented, enabling broad access of academic and industrial researchers to the fluorinated ligands. The evaluation of steric, electron-donating and π-accepting properties as well as coordination chemistry to Au(I), Rh(I) and Se is presented. Considering the unique properties of carbon-fluorine bonds, we anticipate that this novel class of fluorinated carbene ligands will find widespread application in stabilizing reactive metal centers.
Collapse
Affiliation(s)
- Greta Utecht-Jarzyńska
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, United States
- Faculty of Chemistry, University of Lodz, Tamka 12, Łódź, 91-403, Poland
| | - Shicheng Shi
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, United States
| | - Pengcheng Gao
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, United States
| | - Szymon Jarzyński
- Faculty of Chemistry, University of Lodz, Tamka 12, Łódź, 91-403, Poland
| | - Md Mahbubur Rahman
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, United States
| | - Roger Lalancette
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, United States
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw, 50-383, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, United States
| |
Collapse
|
3
|
Li Y, Shi H, Yin G. Synthetic techniques for thermodynamically disfavoured substituted six-membered rings. Nat Rev Chem 2024; 8:535-550. [PMID: 38822206 DOI: 10.1038/s41570-024-00612-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2024] [Indexed: 06/02/2024]
Abstract
Six-membered rings are ubiquitous structural motifs in bioactive compounds and multifunctional materials. Notably, their thermodynamically disfavoured isomers, like disubstituted cyclohexanes featuring one substituent in an equatorial position and the other in an axial position, often exhibit enhanced physical and biological activities in comparison with their opposite isomers. However, the synthesis of thermodynamically disfavoured isomers is, by its nature, challenging, with only a limited number of possible approaches. In this Review, we summarize and compare synthetic methodologies that produce substituted six-membered rings with thermodynamically disfavoured substitution patterns. We place particular emphasis on elucidating the crucial stereoinduction factors within each transformation. Our aim is to stimulate interest in the synthesis of these unique structures, while simultaneously providing synthetic chemists with a guide to approaching this synthetic challenge.
Collapse
Affiliation(s)
- Yangyang Li
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei Province, China
| | - Hongjin Shi
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei Province, China
| | - Guoyin Yin
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei Province, China.
| |
Collapse
|
4
|
Shi Z, Lu L, Lu P. Pd/C-Catalyzed Stereoselective Arene Hydrogenation of Benzocyclobutenes Enabled by π-Bond Localization. Org Lett 2024; 26:5353-5357. [PMID: 38885207 DOI: 10.1021/acs.orglett.4c01737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
We developed here a Pd/C-catalyzed diastereoselective cis-hydrogenation of benzocyclobutene derivatives under mild conditions to deliver an array of bicyclo[4.2.0]octane scaffolds with up to five stereocenters. The π-bond localization enabled hydrogenation of the arene moiety to occur even at room temperature under 1 atm of a H2 atmosphere.
Collapse
Affiliation(s)
- Zhan Shi
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Licheng Lu
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Ping Lu
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| |
Collapse
|
5
|
Zhang X, Yang S, Zeng X. Ring Contraction by Rearrangement of Sterically Congested Cyclic (Amino)(aryl)carbenes. J Org Chem 2024. [PMID: 38808612 DOI: 10.1021/acs.joc.4c00466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The rearrangement of sterically congested cyclic (amino)(aryl)carbenes (CAArCs) by the reaction of related iminium salts with potassium bis(trimethylsilyl)amide is reported, allowing for forming benzocyclobutanimines via a ring contraction process. Mechanistic studies by theoretical calculations indicate that the formation of conjugated ketenimines as intermediates could be considered, in which steric hindrance caused by N-alkyl motifs of CAArCs plays an important role in promoting the ring-opening by the cleavage of C-N bond.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shangru Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Zeng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
6
|
Li HX, Yu ZX. Arene Reduction by Rh/Pd or Rh/Pt under 1 atm Hydrogen Gas and Room Temperature. Org Lett 2024. [PMID: 38630985 DOI: 10.1021/acs.orglett.4c01029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Current methods for arene hydrogenation generally need either harsh reaction conditions or complex catalyst preparation. Here we describe a mild and convenient protocol that only utilizes commercially available catalysts. Using [Rh(nbd)Cl]2 and Pd/C together as catalysts, arenes bearing various functional groups can be hydrogenated under 1 atm of H2 at room temperature. This arene hydrogenation can also be achieved using catalysts of [Rh(cod)Cl]2 and PtO2, thus avoiding glovebox manipulations and simplifying the reaction procedure.
Collapse
Affiliation(s)
- Han-Xiao Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zhi-Xiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Lückemeier L, De Vos T, Schlichter L, Gutheil C, Daniliuc CG, Glorius F. Chemoselective Heterogeneous Hydrogenation of Sulfur Containing Quinolines under Mild Conditions. J Am Chem Soc 2024; 146:5864-5871. [PMID: 38378184 PMCID: PMC10921411 DOI: 10.1021/jacs.3c11163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/22/2024]
Abstract
Sulfur, alongside oxygen and nitrogen, holds a prominent position as one of the key heteroatoms in nature and medicinal chemistry. Its significance stems from its ability to adopt different oxidation states, rendering it valuable as both a polarity handle and a hydrogen bond donor/acceptor. Nevertheless, the poisonous nature of its free electron pairs makes sulfur containing substrates inaccessible for many catalytic protocols. Strong and (at low temperatures) irreversible chemisorption to the catalyst's surface is in particular detrimental for heterogeneous catalysts, possessing only few catalytically active sites. Herein, we present a novel heterogeneous Ru-S catalyst that tolerates multiple sulfur functionalities, including thioethers, thiophenes, sulfoxides, sulfones, sulfonamides, and sulfoximines, in the hydrogenation of quinolines. The utility of the products was further demonstrated by subsequent diversifications of the sulfur functionalities.
Collapse
Affiliation(s)
| | | | - Lisa Schlichter
- Universität Münster,
Organisch-Chemisches Institut, Corrensstraße 36, Münster 48149, Germany
| | - Christian Gutheil
- Universität Münster,
Organisch-Chemisches Institut, Corrensstraße 36, Münster 48149, Germany
| | - Constantin G. Daniliuc
- Universität Münster,
Organisch-Chemisches Institut, Corrensstraße 36, Münster 48149, Germany
| | - Frank Glorius
- Universität Münster,
Organisch-Chemisches Institut, Corrensstraße 36, Münster 48149, Germany
| |
Collapse
|
8
|
Williams S, Qi L, Cox RJ, Kumar P, Xiao J. Hydrogenation of functionalised pyridines with a rhodium oxide catalyst under mild conditions. Org Biomol Chem 2024; 22:1010-1017. [PMID: 38186335 DOI: 10.1039/d3ob01860a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Piperidines are one of the most widely used building blocks in the synthesis of pharmaceutical and agrochemical compounds. The hydrogenation of pyridines is a convenient method to synthesise such compounds as it only requires reactant, catalyst, and a hydrogen source. However, this reaction still remains difficult for the reduction of functionalised and multi-substituted pyridines. Here we report the use of a stable, commercially available rhodium compound, Rh2O3, for the reduction of various unprotected pyridines. The reaction only requires mild conditions, and the substrate scope is broad, making it practically useful.
Collapse
Affiliation(s)
- Sydney Williams
- Department of Chemistry, University of Liverpool, Crown Street, L69 7ZD, Liverpool, UK.
| | - Leiming Qi
- Department of Chemistry, University of Liverpool, Crown Street, L69 7ZD, Liverpool, UK.
| | - Robert J Cox
- Chemical Development, AstraZeneca, Silk Road Business Park, SK10 2NA, Macclesfield, UK
| | - Prashant Kumar
- Department of Chemistry, University of Liverpool, Crown Street, L69 7ZD, Liverpool, UK.
| | - Jianliang Xiao
- Department of Chemistry, University of Liverpool, Crown Street, L69 7ZD, Liverpool, UK.
| |
Collapse
|
9
|
Liu DH, Nagashima K, Liang H, Yue XL, Chu YP, Chen S, Ma J. Chemoselective Quinoline and Isoquinoline Reduction by Energy Transfer Catalysis Enabled Hydrogen Atom Transfer. Angew Chem Int Ed Engl 2023; 62:e202312203. [PMID: 37803457 DOI: 10.1002/anie.202312203] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/08/2023]
Abstract
(Hetero)arene reduction is one of the key avenues for synthesizing related cyclic alkenes and alkanes. While catalytic hydrogenation and Birch reduction are the two broadly utilized approaches for (hetero)arene reduction across academia and industry over the last century, both methods have encountered significant chemoselectivity challenges. We hereby introduce a highly chemoselective quinoline and isoquinoline reduction protocol operating through selective energy transfer (EnT) catalysis, which enables subsequent hydrogen atom transfer (HAT). The design of this protocol bypasses the conventional metric of reduction reaction, that is, the reductive potential, and instead relies on the triplet energies of the chemical moieties and the kinetic barriers of energy and hydrogen atom transfer events. Many reducing labile functional groups, which were incompatible with previous (hetero)arene reduction reactions, are retained in this reaction. We anticipate that this protocol will trigger the further advancement of chemoselective arene reduction and enable the current arene-rich drug space to escape from flatland.
Collapse
Affiliation(s)
- De-Hai Liu
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Kyogo Nagashima
- Department of Chemistry and Biochemistry, Oberlin College, 119 Woodland St., Oberlin, Ohio 44074, USA
| | - Hui Liang
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xue-Lin Yue
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yun-Peng Chu
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shuming Chen
- Department of Chemistry and Biochemistry, Oberlin College, 119 Woodland St., Oberlin, Ohio 44074, USA
| | - Jiajia Ma
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
10
|
Podchorodecka P, Dziuk B, Szostak R, Szostak M, Bisz E. IPr* Oxa - a new class of sterically-hindered, wingtip-flexible N,C-chelating oxazole-donor N-heterocyclic carbene ligands. Dalton Trans 2023; 52:13608-13617. [PMID: 37698540 DOI: 10.1039/d3dt02255b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
N-heterocyclic carbenes (NHCs) have emerged as a major direction in ancillary ligand development for stabilization of reactive metal centers in inorganic and organometallic chemistry. In particular, wingtip-flexible NHCs have attracted significant attention due to their unique ability to provide a sterically-demanding environment for transition metals in various oxidation states. Herein, we report a new class of sterically-hindered, wingtip-flexible NHC ligands that feature N,C-chelating oxazole donors. These ligands are readily accessible through a modular arylation of oxazole derivatives. We report their synthesis and complete structural and electronic characterization. The evaluation of steric, electron-donating and π-accepting properties and coordination chemistry to Ag(I), Pd(II) and Rh(I) is described. Preliminary studies of catalytic activity in Ag, Pd and Rh-catalyzed coupling and hydrosilylation reactions are presented. This study establishes the fluxional behavior of a freely-rotatable oxazole unit, wherein the oxazolyl ring adjusts to the steric and electronic environment of the metal center. Considering the tremendous impact of sterically-hindered NHCs and their potential to stabilize reactive metals by N-chelation, we expect that this class of NHC ligands will be of broad interest in inorganic and organometallic chemistry.
Collapse
Affiliation(s)
- Pamela Podchorodecka
- Department of Chemistry, Opole University, 48 Oleska Street, Opole 45-052, Poland.
| | - Błażej Dziuk
- Department of Chemistry, University of Science and Technology, Norwida 4/6, Wroclaw 50-373, Poland
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA.
| | - Elwira Bisz
- Department of Chemistry, Opole University, 48 Oleska Street, Opole 45-052, Poland.
| |
Collapse
|
11
|
Hierlmeier G, Tosatti P, Puentener K, Chirik PJ. Arene Insertion with Pincer-Supported Molybdenum-Hydrides: Determination of Site Selectivity, Relative Rates, and Arene Complex Formation. J Am Chem Soc 2023; 145:21027-21039. [PMID: 37704186 DOI: 10.1021/jacs.3c06961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
The synthesis of phosphino(oxazoline)pyridine-supported molybdenum(0) cycloocta-1,5-diene complexes is described. Exposure of these complexes to dihydrogen in the presence of an arene resulted in insertion of the substrate into the molybdenum hydride bond and afforded the corresponding molybdenum cyclohexadienyl hydrides. For mono- and disubstituted arenes, the site selectivity for insertion of the most substituted bond increases with increasing size of the substituent from methyl to ethyl, iso-propyl, and tert-butyl. In contrast, 1,3,5-trisubstituted arenes underwent insertion with exclusive site selectivity. Relative rates of insertion were determined by competition experiments and established faster insertions for electron-rich arenes. Introduction of electron-withdrawing trifluoromethyl groups on the arene resulted in decreased relative rates of insertion and an increased rate for H2 reductive elimination, favoring formation of the corresponding molybdenum η6-arene complex. Studies on the reductive elimination of the cyclohexadienyl ligand with the hydride enabled the synthesis of an enantioenriched cyclohexa-1,3-diene. This study provides new insights into the ligand requirements for catalytic arene hydrogenation and a new strategy for selective arene reduction.
Collapse
Affiliation(s)
- Gabriele Hierlmeier
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paolo Tosatti
- Department of Process Chemistry & Catalysis, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Kurt Puentener
- Department of Process Chemistry & Catalysis, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Paul J Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
12
|
Hedouin G, Sharma S, Kaur K, Choudhary RH, Jasinski JB, Gallou F, Handa S. Ligand-Free Ultrasmall Recyclable Iridium(0) Nanoparticles for Regioselective Aromatic Hydrogenation of Phosphine Oxide Scaffolds: An Easy Access to New Phosphine Ligands. Angew Chem Int Ed Engl 2023; 62:e202307139. [PMID: 37279182 DOI: 10.1002/anie.202307139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/08/2023]
Abstract
Herein, we developed the recyclable ligand-free iridium (Ir)-hydride based Ir0 nanoparticles (NPs) for the first regioselective partial hydrogenation of PV -substituted naphthalenes. Both the isolated and in situ generated NPs are catalytically active. A control nuclear magnetic resonance (NMR) study revealed the presence of metal-surface-bound hydrides, most likely formed from Ir0 species. A control NMR study confirmed that hexafluoroisopropanol as a solvent was accountable for substrate activation via hydrogen bonding. High-resolution transmission electron microscopy of the catalyst supports the formation of ultrasmall NPs, and X-ray photoelectron spectroscopy confirmed the dominance of Ir0 in the NPs. The catalytic activity of NPs is broad as showcased by highly regioselective aromatic ring reduction in various phosphine oxides or phosphonates. The study also showcased a novel pathway toward preparing bis(diphenylphosphino)-5,5',6,6',7,7',8,8'-octahydro-1,1'-binaphthyl (H8 -BINAP) and its derivatives without losing enantioselectivity during catalytic events.
Collapse
Affiliation(s)
- Gaspard Hedouin
- Department of Chemistry, University of Louisville, 2320 S. Brook Street, Louisville, KY 40292, USA
| | - Sudripet Sharma
- Department of Chemistry, University of Louisville, 2320 S. Brook Street, Louisville, KY 40292, USA
| | - Karanjeet Kaur
- Department of Chemistry, University of Louisville, 2320 S. Brook Street, Louisville, KY 40292, USA
| | - Ramesh Hiralal Choudhary
- Department of Chemistry, University of Louisville, 2320 S. Brook Street, Louisville, KY 40292, USA
| | - Jacek B Jasinski
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, KY 40292, USA
| | - Fabrice Gallou
- Chemical & Analytical Development, Novartis Pharma AG, 4056, Basel, Switzerland
| | - Sachin Handa
- Department of Chemistry, University of Louisville, 2320 S. Brook Street, Louisville, KY 40292, USA
- Department of Chemistry, University of Missouri, 601 S College Ave # 125, Columbia, MO 65211, USA
| |
Collapse
|
13
|
Du YD, Wang S, Du HW, Chang XY, Chen XY, Li YL, Shu W. Organophotocatalysed synthesis of 2-piperidinones in one step via [1 + 2 + 3] strategy. Nat Commun 2023; 14:5339. [PMID: 37660185 PMCID: PMC10475035 DOI: 10.1038/s41467-023-40197-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/13/2023] [Indexed: 09/04/2023] Open
Abstract
Six-membered N-containing heterocycles, such as 2-piperidinone derivatives, with diverse substitution patterns are widespread in natural products, drug molecules and serve as key precursors for piperidines. Thus, the development of stereoselective synthesis of multi-substituted 2-piperidinones are attractive. However, existing methods heavily rely on modification of pre-synthesized backbones which require tedious multi-step procedure and suffer from limited substitution patterns. Herein, an organophotocatalysed [1 + 2 + 3] strategy was developed to enable the one-step access to diverse substituted 2-piperidinones from easily available inorganic ammonium salts, alkenes, and unsaturated carbonyl compounds. This mild protocol exhibits exclusive chemoselectivity over two alkenes, tolerating both terminal and internal alkenes with a wide range of functional groups.
Collapse
Affiliation(s)
- Yi-Dan Du
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| | - Shan Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, P. R. China
| | - Hai-Wu Du
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| | - Xiao-Yong Chang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| | - Xiao-Yi Chen
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| | - Yu-Long Li
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, 643000, Zigong, P. R. China
| | - Wei Shu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China.
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, P. R. China.
| |
Collapse
|
14
|
O'Hagan D. The Emergence and Properties of Selectively Fluorinated 'Janus' Cyclohexanes. CHEM REC 2023; 23:e202300027. [PMID: 37016509 DOI: 10.1002/tcr.202300027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/14/2023] [Indexed: 04/06/2023]
Abstract
This account describes the evolution of a research programme that started by linking fluoromethylene (-CHF-) groups along aliphatic chains and then progressing to alicyclic rings with contiguous fluorine atoms. Different stereoisomers of aliphatic chains tend to adopt low polarity conformations. In order to force polar conformations, the programme began to address ring systems and in particular cyclohexanes, to restrain conformational freedom and co-aligned C-F bonds. The flagship molecule, all-cis-1,2,3,4,5,6-hexafluorocyclohexane 7, emerged to be the most polar aliphatic compound recorded. The polarity arises because there are three co-aligned triaxial C-F bonds and the six fluorines occupy one face of the ring. Conversely the electropositive hydrogens occupy the other face. These have been termed Janus face cyclohexanes after the Roman god with two faces. The review outlines progress by our group and others in preparing derivatives of the parent cyclohexane 7, in order to explore properties and potential applications of these Janus cyclohexanes.
Collapse
Affiliation(s)
- David O'Hagan
- University of St Andrews, St. Andrews, United Kingdom
| |
Collapse
|
15
|
Rahman MM, Meng G, Bisz E, Dziuk B, Lalancette R, Szostak R, Szostak M. I tOct (I tOctyl) - pushing the limits of I tBu: highly hindered electron-rich N-aliphatic N-heterocyclic carbenes. Chem Sci 2023; 14:5141-5147. [PMID: 37206400 PMCID: PMC10189875 DOI: 10.1039/d3sc01006f] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/15/2023] [Indexed: 05/21/2023] Open
Abstract
ItBu (ItBu = 1,3-di-tert-butylimidazol-2-ylidene) represents the most important and most versatile N-alkyl N-heterocyclic carbene available in organic synthesis and catalysis. Herein, we report the synthesis, structural characterization and catalytic activity of ItOct (ItOctyl), C2-symmetric, higher homologues of ItBu. The new ligand class, including saturated imidazolin-2-ylidene analogues has been commercialized in collaboration with MilliporeSigma: ItOct, 929 298; SItOct, 929 492 to enable broad access of the academic and industrial researchers within the field of organic and inorganic synthesis. We demonstrate that replacement of the t-Bu side chain with t-Oct results in the highest steric volume of N-alkyl N-heterocyclic carbenes reported to date, while retaining the electronic properties inherent to N-aliphatic ligands, such as extremely strong σ-donation crucial to the reactivity of N-alkyl N-heterocyclic carbenes. An efficient large-scale synthesis of imidazolium ItOct and imidazolinium SItOct carbene precursors is presented. Coordination chemistry to Au(i), Cu(i), Ag(i) and Pd(ii) as well as beneficial effects on catalysis using Au(i), Cu(i), Ag(i) and Pd(ii) complexes are described. Considering the tremendous importance of ItBu in catalysis, synthesis and metal stabilization, we anticipate that the new class of ItOct ligands will find wide application in pushing the boundaries of new and existing approaches in organic and inorganic synthesis.
Collapse
Affiliation(s)
- Md Mahbubur Rahman
- Department of Chemistry, Rutgers University 73 Warren Street Newark NJ 07102 USA
| | - Guangrong Meng
- Department of Chemistry, Rutgers University 73 Warren Street Newark NJ 07102 USA
| | - Elwira Bisz
- Department of Chemistry, Opole University 48 Oleska Street Opole 45-052 Poland
| | - Błażej Dziuk
- Department of Chemistry, Wroclaw University of Science and Technology Norwida 4/6 14 Wroclaw 50-373 Poland
| | - Roger Lalancette
- Department of Chemistry, Rutgers University 73 Warren Street Newark NJ 07102 USA
| | - Roman Szostak
- Department of Chemistry, Wroclaw University F. Joliot-Curie 14 Wroclaw 50-383 Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University 73 Warren Street Newark NJ 07102 USA
| |
Collapse
|
16
|
Zheng Y, Jiang J, Li Y, Wei Y, Zhang J, Hu J, Ke Z, Xu X, Zhang L. Reactivities of α-Oxo BMIDA Gold Carbenes Generated by Gold-Catalyzed Oxidation of BMIDA-Terminated Alkynes. Angew Chem Int Ed Engl 2023; 62:e202218175. [PMID: 36806835 PMCID: PMC10079581 DOI: 10.1002/anie.202218175] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/22/2023]
Abstract
An oxidative strategy is reported to access α-oxo BMIDA gold carbenes directly from BMIDA-terminated alkynes. Besides offering expedient access to seldom studied boryl metal carbenes, these BMIDA gold carbene species undergo facile insertions into methyl, methylene, methine, and benzylic C-H bonds in the absence of the Thorpe-Ingold effect. They also undergo efficient OH insertion, cyclopropanation, and F-C alkylations. This chemistry provides rapid access to structurally diverse α-BMIDA ketones, which are scarcely documented. In combination with DFT studies, the role of BMIDA is established to be an electron-donating group that attenuates the high electrophilicity of the gold carbene center.
Collapse
Affiliation(s)
- Yang Zheng
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Jingxing Jiang
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yue Li
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Yongliang Wei
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Junqi Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Jundie Hu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Zhuofeng Ke
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Xinfang Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Liming Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
17
|
Lutz MDR, Zhong H, Trapp N, Morandi B. Synthesis and Reversible H
2
Activation by Coordinatively Unsaturated Rhodium NHC Complexes. Helv Chim Acta 2023. [DOI: 10.1002/hlca.202200199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Marius D. R. Lutz
- Laboratorium für Organische Chemie ETH Zürich CH-8093 Zürich Switzerland
| | - Hongyu Zhong
- Laboratorium für Organische Chemie ETH Zürich CH-8093 Zürich Switzerland
| | - Nils Trapp
- Laboratorium für Organische Chemie ETH Zürich CH-8093 Zürich Switzerland
| | - Bill Morandi
- Laboratorium für Organische Chemie ETH Zürich CH-8093 Zürich Switzerland
| |
Collapse
|
18
|
Chromium-catalyzed stereodivergent E- and Z-selective alkyne hydrogenation controlled by cyclic (alkyl)(amino)carbene ligands. Nat Commun 2023; 14:990. [PMID: 36813784 PMCID: PMC9947122 DOI: 10.1038/s41467-023-36677-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
The hydrogenation of alkynes allows the synthesis of olefins, which are important feedstock for the materials, pharmaceutical, and petrochemical industry. Thus, methods that enable this transformation via low-cost metal catalysis are desirable. However, achieving stereochemical control in this reaction is a long-standing challenge. Here, we report on the chromium-catalyzed E- and Z-selective olefin synthesis via hydrogenation of alkynes, controlled by two carbene ligands. A cyclic (alkyl)(amino)carbene ligand that contains a phosphino anchor enables the hydrogenation of alkynes in a trans-addition manner, selectively forming E-olefins. With an imino anchor-incorporated carbene ligand, the stereoselectivity can be switched, giving mainly Z-isomers. This ligand-enabled geometrical stereoinversion strategy by one metal catalysis overrides common methods in control of the E- and Z-selectivity with two different metal catalysis, allowing for highly efficient and on-demand access to both E- and Z-olefins in a stereo-complementary fashion. Mechanistic studies indicate that the different steric effect between these two carbene ligands may mainly dominate the selective forming E- or Z-olefins in control of the stereochemistry.
Collapse
|
19
|
Kaithal A, Sasmal HS, Dutta S, Schäfer F, Schlichter L, Glorius F. cis-Selective Hydrogenation of Aryl Germanes: A Direct Approach to Access Saturated Carbo- and Heterocyclic Germanes. J Am Chem Soc 2023; 145:4109-4118. [PMID: 36781169 PMCID: PMC9951224 DOI: 10.1021/jacs.2c12062] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Indexed: 02/15/2023]
Abstract
A catalytic approach of synthesizing the cis-selective saturated carbo- and heterocyclic germanium compounds (3D framework) is reported via the hydrogenation of readily accessible aromatic germanes (2D framework). Among the numerous catalysts tested, Nishimura's catalyst (Rh2O3/PtO2·H2O) exhibited the best hydrogenation reactivity with an isolated yield of up to 96%. A broad range of substrates including the synthesis of unprecedented saturated heterocyclic germanes was explored. This selective hydrogenation strategy could tolerate several functional groups such as -CF3, -OR, -F, -Bpin, and -SiR3 groups. The synthesized products demonstrated the applications in coupling reactions including the newly developed strategy of aza-Giese-type addition reaction (C-N bond formation) from the saturated cyclic germane product. These versatile motifs can have a substantial value in organic synthesis and medicinal chemistry as they show orthogonal reactivity in coupling reactions while competing with other coupling partners such as boranes or silanes, acquiring a three-dimensional structure with high stability and robustness.
Collapse
Affiliation(s)
- Akash Kaithal
- Westfälische
Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany
| | - Himadri Sekhar Sasmal
- Westfälische
Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany
| | - Subhabrata Dutta
- Westfälische
Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany
| | - Felix Schäfer
- Westfälische
Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany
| | - Lisa Schlichter
- Westfälische
Wilhelms-Universität Münster, Center for Soft Nanoscience
(SoN) and Organisch-Chemisches Institut, Busso-Peus-Str. 10, 48149 Münster, Germany
| | - Frank Glorius
- Westfälische
Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany
| |
Collapse
|
20
|
Zhang S, Zhou R, Duan YN, Zhou Y, Zhang X, Wen J. Homogeneous Dearomative Hydrogenation with a Co/P 4 N 2 Catalyst: A Nucleophilic Approach. Chemistry 2023; 29:e202203189. [PMID: 36401594 DOI: 10.1002/chem.202203189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/21/2022]
Abstract
Arene hydrogenation is the most straightforward method to prepare carbo- and heterocycles. However, the high resonance energy prevents aromatic substrates from hydrogenation. Herein the homogeneous, nucleophilic hydrogenation of less electron-rich arenes and heteroarenes is reported. The Co(P4 N2 )H species that has been demonstrated to be a strong hydride donor could deliver a hydride ion to the cyano (hetero)arene substrates. Deuterium labeling experiments supported a Michael-type reaction pathway. Theoretical analyses have been conducted to investigate the hydricity of the catalytically active CoH species and the electrophilicity of the arene substrates. An outlook for the synthesis of more challenging substituted benzenes was proposed based on the in silico modification of the CoH species.
Collapse
Affiliation(s)
- Shaoke Zhang
- Department of Chemistry, the Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, P. R. China
| | - Rong Zhou
- Department of Chemistry, the Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, P. R. China
| | - Ya-Nan Duan
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, P. R. China
| | - Yang Zhou
- Department of Chemistry, the Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, P. R. China
| | - Xumu Zhang
- Department of Chemistry, the Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, P. R. China
| | - Jialin Wen
- Department of Chemistry, the Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, P. R. China
| |
Collapse
|
21
|
Hierlmeier G, Tosatti P, Puentener K, Chirik PJ. Identification of Cyclohexadienyl Hydrides as Intermediates in Molybdenum-Catalyzed Arene Hydrogenation. Angew Chem Int Ed Engl 2023; 62:e202216026. [PMID: 36351208 DOI: 10.1002/anie.202216026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/11/2022]
Abstract
Treatment of phosphino(imino)pyridine (PIP) molybdenum cyclooctadiene (COD) complexes [(PIP)Mo(COD)] with dihydrogen in the presence of benzene selectively furnished the molybdenum cyclohexadienyl hydrides [(PIP)MoH(η5 -C6 H7 )], which are precatalysts for the hydrogenation of benzene to cyclohexane. [(PIP)MoH(η5 -C6 H7 )] arises from a rarely observed insertion of benzene into a molybdenum-hydride bond, a key step in the molybdenum-catalyzed homogeneous hydrogenation of arenes. The reaction with toluene afforded a single isomer of the corresponding molybdenum cyclohexadienyl hydride while para-xylene predominantly formed the molybdenum η6 -arene complex with the insertion product being a minor component. Addition of carbon monoxide to a cyclohexane-d12 solution of [(PIP)MoH(η5 -C6 H7 )] liberated cyclohexadiene, providing experimental support for a higher kinetic barrier for the subsequent steps en route to cycloalkanes.
Collapse
Affiliation(s)
| | - Paolo Tosatti
- Department of Process Chemistry & Catalysis, F. Hoffmann-La Roche Ltd., 4070, Basel, Switzerland
| | - Kurt Puentener
- Department of Process Chemistry & Catalysis, F. Hoffmann-La Roche Ltd., 4070, Basel, Switzerland
| | - Paul J Chirik
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
22
|
Wagener T, Pierau M, Heusler A, Glorius F. Synthesis of Saturated N-Heterocycles via a Catalytic Hydrogenation Cascade. Adv Synth Catal 2022; 364:3366-3371. [PMID: 36589139 PMCID: PMC9796080 DOI: 10.1002/adsc.202200601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Indexed: 01/04/2023]
Abstract
Saturated N-heterocycles are prominent motifs found in various natural products and pharmaceuticals. Despite the increasing interest in this class of compounds, the synthesis of saturated bicyclic azacycles requires tedious multi-step syntheses. Herein, we present a one-pot protocol for the synthesis of octahydroindoles, decahydroquinolines, and octahydroindolizines through a cascade reaction.
Collapse
Affiliation(s)
- Tobias Wagener
- Westfälische Wilhelms-Universität MünsterOrganisch-Chemisches InstitutCorrensstraße 4048149MünsterGermany
| | - Marco Pierau
- Westfälische Wilhelms-Universität MünsterOrganisch-Chemisches InstitutCorrensstraße 4048149MünsterGermany
| | - Arne Heusler
- Westfälische Wilhelms-Universität MünsterOrganisch-Chemisches InstitutCorrensstraße 4048149MünsterGermany
| | - Frank Glorius
- Westfälische Wilhelms-Universität MünsterOrganisch-Chemisches InstitutCorrensstraße 4048149MünsterGermany
| |
Collapse
|
23
|
Ruthenium‐Catalyzed Enantioselective Hydrogenation of 9‐Phenanthrols. Angew Chem Int Ed Engl 2022; 61:e202205739. [DOI: 10.1002/anie.202205739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Indexed: 11/07/2022]
|
24
|
Ding Y, Zhu Z, Chen M, Yu C, Zhou Y. Rhodium‐Catalyzed Asymmetric Hydrogenation of All‐Carbon Aromatic Rings. Angew Chem Int Ed Engl 2022; 61:e202205623. [DOI: 10.1002/anie.202205623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Indexed: 12/23/2022]
Affiliation(s)
- Yi‐Xuan Ding
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zhou‐Hao Zhu
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Mu‐Wang Chen
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Chang‐Bin Yu
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Yong‐Gui Zhou
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116023 P. R. China
| |
Collapse
|
25
|
Kaithal A, Wagener T, Bellotti P, Daniliuc CG, Schlichter L, Glorius F. Access to Unexplored 3D Chemical Space:
cis
‐Selective Arene Hydrogenation for the Synthesis of Saturated Cyclic Boronic Acids. Angew Chem Int Ed Engl 2022; 61:e202206687. [PMID: 35612895 PMCID: PMC9400866 DOI: 10.1002/anie.202206687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Indexed: 11/08/2022]
Abstract
A new class of saturated boron‐incorporated cyclic molecules has been synthesized employing an arene‐hydrogenation methodology. cis‐Selective hydrogenation of easily accessible, and biologically important molecules comprising benzoxaborole, benzoxaborinin, and benzoxaboripin derivatives is reported. Among the various catalysts tested, rhodium cyclic(alkyl)(amino)carbene [Rh‐CAAC] (1) pre‐catalyst revealed the best hydrogenation activity confirming turnover number up to 1400 with good to high diastereoselectivity. A broad range of functional groups was tolerated including sensitive substituents such as −F, −CF3, and −silyl groups. The utility of the synthesized products was demonstrated by the recognition of diols and sugars under physiological conditions. These motifs can have a substantial importance in medicinal chemistry as they possess a three‐dimensional structure, are highly stable, soluble in water, form hydrogen bonds, and interact with diols and sugars.
Collapse
Affiliation(s)
- Akash Kaithal
- Westfälische Wilhelms-Universität Münster Organisch-Chemisches Institut Corrensstraße 40 48149 Münster Germany
| | - Tobias Wagener
- Westfälische Wilhelms-Universität Münster Organisch-Chemisches Institut Corrensstraße 40 48149 Münster Germany
| | - Peter Bellotti
- Westfälische Wilhelms-Universität Münster Organisch-Chemisches Institut Corrensstraße 40 48149 Münster Germany
| | - Constantin G. Daniliuc
- Westfälische Wilhelms-Universität Münster Organisch-Chemisches Institut Corrensstraße 40 48149 Münster Germany
| | - Lisa Schlichter
- Westfälische Wilhelms-Universität Münster Westfälische Center for Soft Nanoscience (SoN) and Organisch-Chemisches Institut Busso-Peus-Str.10 48149 Münster Germany
| | - Frank Glorius
- Westfälische Wilhelms-Universität Münster Organisch-Chemisches Institut Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
26
|
Schiwek C, Stegbauer S, Pickl T, Bach T. Rhodium(CAAC)‐Catalyzed Arene Hydrogenation of Benzo‐fused N‐Heterocycles to Saturated Building Blocks with an all‐cis Configuration. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Fan QH, Zhang SX, Xu C, Yi N, Li S, He YM, Feng Y. Ruthenium‐Catalyzed Enantioselective Hydrogenation of 9‐Phenanthrols. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qing-Hua Fan
- Institute of Chemistry, Chinese Academy of Sciences No.2 First North Street, Zhongguan Cun 100190 Beijing CHINA
| | - Shu-Xin Zhang
- Institute of Chemistry Chinese Academy of Sciences CAS key laboratory of molecular recognition and function 100190 Beijing CHINA
| | - Cong Xu
- Institute of Chemistry Chinese Academy of Sciences CAS key laboratory of molecular recognition and function 100190 Beijing CHINA
| | - Niannian Yi
- Institute of Chemistry CAS: Institute of Chemistry Chinese Academy of Sciences CAS key laboratory of molecular recognition and function 100190 Beijing CHINA
| | - Shan Li
- Institute of Chemistry CAS: Institute of Chemistry Chinese Academy of Sciences CAS key laboratory of molecular recognition and function 100190 Beijing CHINA
| | - Yan-Mei He
- Institute of Chemistry Chinese Academy of Sciences CAS key laboratory of molecular recognition and function 100190 Beijing CHINA
| | - Yu Feng
- Institute of Chemistry Chinese Academy of Sciences CAS key laboratory of molecular recognition and function 100190 Beijing CHINA
| |
Collapse
|
28
|
Viereck P, Hierlmeier G, Tosatti P, Pabst TP, Puentener K, Chirik PJ. Molybdenum-Catalyzed Asymmetric Hydrogenation of Fused Arenes and Heteroarenes. J Am Chem Soc 2022; 144:11203-11214. [PMID: 35714999 DOI: 10.1021/jacs.2c02007] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The synthesis of enantioenriched molybdenum precatalysts for the asymmetric hydrogenation of substituted quinolines and naphthalenes is described. Three classes of pincer ligands with chiral substituents were evaluated as supporting ligands in the molybdenum-catalyzed hydrogenation reactions, where oxazoline imino(pyridine) chelates were identified as optimal. A series of 2,6-disubstituted quinolines was hydrogenated to enantioenriched decahydroquinolines with high diastereo- and enantioselectivities. For quinoline derivatives, selective hydrogenation of both the carbocycle and heterocycle was observed depending on the ring substitution. Spectroscopic and mechanistic studies established molybdenum η6-arene complexes as the catalyst resting state and that partial hydrogenation arises from dissociation of the substrate from the coordination sphere of molybdenum prior to complete reduction. A stereochemical model is proposed based on the relative energies of the respective coordination of the prochiral faces of the arene determined by steric interactions between the substrate and the chiral ligand, rather than through precoordination by a heteroatom.
Collapse
Affiliation(s)
- Peter Viereck
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Gabriele Hierlmeier
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paolo Tosatti
- Department of Process Chemistry & Catalysis, F. Hoffmann-La Roche Ltd, Basel 4070, Switzerland
| | - Tyler P Pabst
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Kurt Puentener
- Department of Process Chemistry & Catalysis, F. Hoffmann-La Roche Ltd, Basel 4070, Switzerland
| | - Paul J Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
29
|
Zhou YG, Ding YX, Zhu ZH, Chen MW, Yu CB. Rhodium‐Catalyzed Asymmetric Hydrogenation of All‐Carbon Aromatic Rings. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yong-Gui Zhou
- Dalian Institute of Chemical Physics Department of Fine Chemicals 457 Zhongshan Road 116023 Dalian CHINA
| | - Yi-Xuan Ding
- Dalian Institute of Chemical Physics State Key Laboratory of Catalysis State Key Laboratory of Catalysis CHINA
| | - Zhou-Hao Zhu
- Dalian Institute of Chemical Physics State Key Laboratory of Catalysis State Key Laboratory of Catalysis Dalian CHINA
| | - Mu-Wang Chen
- Dalian Institute of Chemical Physics State Key Laboratory of Catalysis State Key Laboratory of Catalysis Dalian CHINA
| | - Chang-Bin Yu
- Dalian Institute of Chemical Physics State Key Laboratory of Catalysis State Key Laboratory of Catalysis Dalian CHINA
| |
Collapse
|
30
|
Poskin TJ, Piscelli BA, Yoshida K, Cordes DB, Slawin AMZ, Cormanich RA, Yamada S, O'Hagan D. Janus faced fluorocyclohexanes for supramolecular assembly: synthesis and solid state structures of equatorial mono-, di- and tri alkylated cyclohexanes and with tri-axial C-F bonds to impart polarity. Chem Commun (Camb) 2022; 58:7968-7971. [PMID: 35758098 DOI: 10.1039/d2cc03010a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Concise and general synthesis protocols are reported to generate all-syn mono-, di- and tri-alkylated cyclohexanes where a single fluorine is located on the remaining carbons of the ring. The alkyl groups are positioned to lie equatorially and to have triaxial C-F bonds imparting polarity to these ring systems. Intermolecular electrostatic interactions in the solid-state structure of the trialkylated systems are explored and the resultant supramolecular order opens up prospects for design in soft materials.
Collapse
Affiliation(s)
- Thomas J Poskin
- University of St Andrews, School of Chemistry, North Haugh, St Andrews, Fife, KY16 9ST, UK.
| | - Bruno A Piscelli
- University of Campinas, Chemistry Institute, Monteiro Lobato Street, Campinas, Sao Paulo, Brazil, 13083-862.
| | - Keigo Yoshida
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - David B Cordes
- University of St Andrews, School of Chemistry, North Haugh, St Andrews, Fife, KY16 9ST, UK.
| | - Alexandra M Z Slawin
- University of St Andrews, School of Chemistry, North Haugh, St Andrews, Fife, KY16 9ST, UK.
| | - Rodrigo A Cormanich
- University of Campinas, Chemistry Institute, Monteiro Lobato Street, Campinas, Sao Paulo, Brazil, 13083-862.
| | - Shigeyuki Yamada
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - David O'Hagan
- University of St Andrews, School of Chemistry, North Haugh, St Andrews, Fife, KY16 9ST, UK.
| |
Collapse
|
31
|
|
32
|
Kaithal A, Wagener T, Bellotti P, Daniliuc CG, Schlichter L, Glorius F. Access to Unexplored 3D Chemical Space: cis‐Selective Arene Hydrogenation for the Synthesis of Saturated Cyclic Boronic Acids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Akash Kaithal
- Westfälische Wilhelms-Universität Münster: Westfalische Wilhelms-Universitat Munster Chemistry Münster GERMANY
| | - Tobias Wagener
- Westfälische Wilhelms-Universität Münster: Westfalische Wilhelms-Universitat Munster Chemistry GERMANY
| | - Peter Bellotti
- Westfälische Wilhelms-Universität Münster: Westfalische Wilhelms-Universitat Munster Chemistry GERMANY
| | - Constantin G. Daniliuc
- Westfälische Wilhelms-Universität Münster: Westfalische Wilhelms-Universitat Munster Chemistry GERMANY
| | - Lisa Schlichter
- Westfälische Wilhelms-Universität Münster: Westfalische Wilhelms-Universitat Munster Chemistry GERMANY
| | - Frank Glorius
- Westfälische Wilhelms-Universität Münster: Westfalische Wilhelms-Universitat Munster Organisch-Chemisches Institut Corrensstrasse 40 48149 Münster GERMANY
| |
Collapse
|
33
|
Han B, Zhang M, Jiao H, Chen R, Ma H, Li R, Wang J, Zhang Y. Regioselective Hydrogenation of Polycyclic Aromatic Hydrocarbons and Olefins Catalyzed by Magnesium‐Activated Chromium Complexes. ChemistrySelect 2022. [DOI: 10.1002/slct.202200776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bo Han
- Laboratory of New Energy & New Function Materials and Shaanxi Key Laboratory of Chemical Reaction Engineering College of Chemistry and Chemical Engineering Yan'an University Shengdi Road 580# Yan'an Shaanxi 716000 P. R. China
| | - Miaomiao Zhang
- Laboratory of New Energy & New Function Materials and Shaanxi Key Laboratory of Chemical Reaction Engineering College of Chemistry and Chemical Engineering Yan'an University Shengdi Road 580# Yan'an Shaanxi 716000 P. R. China
| | - Hongmei Jiao
- Laboratory of New Energy & New Function Materials and Shaanxi Key Laboratory of Chemical Reaction Engineering College of Chemistry and Chemical Engineering Yan'an University Shengdi Road 580# Yan'an Shaanxi 716000 P. R. China
| | - Rong Chen
- Laboratory of New Energy & New Function Materials and Shaanxi Key Laboratory of Chemical Reaction Engineering College of Chemistry and Chemical Engineering Yan'an University Shengdi Road 580# Yan'an Shaanxi 716000 P. R. China
| | - Haojie Ma
- Laboratory of New Energy & New Function Materials and Shaanxi Key Laboratory of Chemical Reaction Engineering College of Chemistry and Chemical Engineering Yan'an University Shengdi Road 580# Yan'an Shaanxi 716000 P. R. China
| | - Ran Li
- Laboratory of New Energy & New Function Materials and Shaanxi Key Laboratory of Chemical Reaction Engineering College of Chemistry and Chemical Engineering Yan'an University Shengdi Road 580# Yan'an Shaanxi 716000 P. R. China
| | - Jijiang Wang
- Laboratory of New Energy & New Function Materials and Shaanxi Key Laboratory of Chemical Reaction Engineering College of Chemistry and Chemical Engineering Yan'an University Shengdi Road 580# Yan'an Shaanxi 716000 P. R. China
| | - Yuqi Zhang
- Laboratory of New Energy & New Function Materials and Shaanxi Key Laboratory of Chemical Reaction Engineering College of Chemistry and Chemical Engineering Yan'an University Shengdi Road 580# Yan'an Shaanxi 716000 P. R. China
| |
Collapse
|
34
|
Kumar Kushvaha S, Mishra A, Roesky HW, Chandra Mondal K. Recent Advances in the Domain of Cyclic (Alkyl)(Amino) Carbenes. Chem Asian J 2022; 17:e202101301. [PMID: 34989475 PMCID: PMC9307053 DOI: 10.1002/asia.202101301] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/25/2021] [Indexed: 12/03/2022]
Abstract
Isolation of cyclic (alkyl) amino carbenes (cAACs) in 2005 has been a major achievement in the field of stable carbenes due to their better electronic properties. cAACs and bicyclic(alkyl)(amino)carbene (BicAAC) in essence are the most electrophilic as well as nucleophilic carbenes are known till date. Due to their excellent electronic properties in terms of nucleophilic and electrophilic character, cAACs have been utilized in different areas of chemistry, including stabilization of low valent main group and transition metal species, activation of small molecules, and catalysis. The applications of cAACs in catalysis have opened up new avenues of research in the field of cAAC chemistry. This review summarizes the major results of cAAC chemistry published until August 2021.
Collapse
Affiliation(s)
| | - Ankush Mishra
- Department of ChemistryIndian Institute of Technology MadrasChennai600036India
| | - Herbert W. Roesky
- Institute of Inorganic ChemistryTammannstrasse 4D-37077GöttingenGermany
| | | |
Collapse
|
35
|
Schiwek CH, Jandl C, Bach T. All- cis Saturated 2,5-Diketopiperazines by a Diastereoselective Rhodium-Catalyzed Arene Hydrogenation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Christian H. Schiwek
- Technical University Munich, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Christian Jandl
- Technical University Munich, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Thorsten Bach
- Technical University Munich, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Lichtenbergstrasse 4, 85747 Garching, Germany
| |
Collapse
|
36
|
Wu R, Meng Q, Yan J, Liu H, Zhu Q, Zheng L, Zhang J, Han B. Electrochemical Strategy for the Simultaneous Production of Cyclohexanone and Benzoquinone by the Reaction of Phenol and Water. J Am Chem Soc 2022; 144:1556-1571. [DOI: 10.1021/jacs.1c09021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ruizhi Wu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinglei Meng
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiang Yan
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huizhen Liu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinggong Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lirong Zheng
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Zhang
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
37
|
Zhang J, Liu T, Wang L, Wang X. Recent Process in the in situ Generated Metal Nanocluster Catalysis. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202203060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
38
|
Wu H, Yang J, Peters BBC, Massaro L, Zheng J, Andersson PG. Asymmetric Full Saturation of Vinylarenes with Cooperative Homogeneous and Heterogeneous Rhodium Catalysis. J Am Chem Soc 2021; 143:20377-20383. [PMID: 34807592 PMCID: PMC8662739 DOI: 10.1021/jacs.1c09975] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
Homogeneous and heterogeneous
catalyzed reactions can seldom operate
synergistically under the same conditions. Here we communicate the
use of a single rhodium precursor that acts in both the homogeneous
and heterogeneous phases for the asymmetric full saturation of vinylarenes
that, to date, constitute an unmet bottleneck in the field. A simple
asymmetric hydrogenation of a styrenic olefin, enabled by a ligand
accelerated effect, accounted for the facial selectivity in the consecutive
arene hydrogenation. Tuning the ratio between the phosphine ligand
and the rhodium precursor controlled the formation of homogeneous
and heterogeneous catalytic species that operate without interference
from each other. The system is flexible in terms of both the chiral
ligand and the nature of the external olefin. We anticipate that our
findings will promote the development of asymmetric arene hydrogenations.
Collapse
Affiliation(s)
- Haibo Wu
- Department of Organic Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden
| | - Jianping Yang
- Department of Organic Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden
| | - Bram B C Peters
- Department of Organic Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden
| | - Luca Massaro
- Department of Organic Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden
| | - Jia Zheng
- Department of Organic Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden
| | - Pher G Andersson
- Department of Organic Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden.,School of Chemistry and Physics, University of Kwazulu-Natal, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
39
|
|
40
|
Clark JL, Neyyappadath RM, Yu C, Slawin AMZ, Cordes DB, O'Hagan D. Janus All-Cis 2,3,4,5,6-Pentafluorocyclohexyl Building Blocks Applied to Medicinal Chemistry and Bioactives Discovery Chemistry. Chemistry 2021; 27:16000-16005. [PMID: 34486192 PMCID: PMC9292521 DOI: 10.1002/chem.202102819] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Indexed: 12/24/2022]
Abstract
Monoalkylated derivatives of the unusually polar all-cis 2,3,4,5,6- pentafluorocyclohexyl (Janus face) motif are prepared starting from an aryl hydrogenation of 2,3,4,5,6- pentafluorophenylacetate methyl ester 15. The method used Zeng's Rh(CAAC) carbene catalyst 4 in the hydrogenation following the protocol developed by Glorius. The resultant Janus pentafluorocyclohexylacetate methyl ester 16 was converted to the corresponding alcohol 18, aldehyde 13, bromide 29 and azide 14 through functional group manipulations, and some of these building blocks were used in Ugi-multicomponent and Cu-catalysed click reactions. NBoc protected pentafluoroarylphenylalanine methyl ester 35 was also subject to an aryl hydrogenation, and then deprotection to generate the Janus face β-pentafluorocyclohexyl-alanine amino acid 15, which was incorporated into representative members of an emerging class of candidate antiviral compounds. Log P measurements demonstrate that the all-cis 2,3,4,5,6-pentafluorocyclohexyl ring system is more polar than a phenyl ring. In overview the paper introduces new building blocks containing this Janus ring and demonstrates their progression to molecules typically used in bioactives discovery programmes.
Collapse
Affiliation(s)
- Joshua L. Clark
- School of ChemistryUniversity of St AndrewsNorth Haugh, St Andrews, FifeKY16 9STUK
| | | | - Cihang Yu
- School of ChemistryUniversity of St AndrewsNorth Haugh, St Andrews, FifeKY16 9STUK
| | | | - David B. Cordes
- School of ChemistryUniversity of St AndrewsNorth Haugh, St Andrews, FifeKY16 9STUK
| | - David O'Hagan
- School of ChemistryUniversity of St AndrewsNorth Haugh, St Andrews, FifeKY16 9STUK
| |
Collapse
|
41
|
Hu T, Lückemeier L, Daniliuc C, Glorius F. Ru-NHC-Catalyzed Asymmetric Hydrogenation of 2-Quinolones to Chiral 3,4-Dihydro-2-Quinolones. Angew Chem Int Ed Engl 2021; 60:23193-23196. [PMID: 34460127 PMCID: PMC8596914 DOI: 10.1002/anie.202108503] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/20/2021] [Indexed: 11/10/2022]
Abstract
Direct enantioselective hydrogenation of unsaturated compounds to generate chiral three-dimensional motifs is one of the most straightforward and important approaches in synthetic chemistry. We realized the Ru(II)-NHC-catalyzed asymmetric hydrogenation of 2-quinolones under mild reaction conditions. Alkyl-, aryl- and halogen-substituted optically active dihydro-2-quinolones were obtained in high yields with moderate to excellent enantioselectivities. The reaction provides an efficient and atom-economic pathway to construct simple chiral 3,4-dihydro-2-quinolones. The desired products could be further reduced to tetrahydroquinolines and octahydroquinolones.
Collapse
Affiliation(s)
- Tianjiao Hu
- Westfälische Wilhelms-Universität MünsterOrganisch-Chemisches InstitutCorrensstrasse 3648149MünsterGermany
| | - Lukas Lückemeier
- Westfälische Wilhelms-Universität MünsterOrganisch-Chemisches InstitutCorrensstrasse 3648149MünsterGermany
| | - Constantin Daniliuc
- Westfälische Wilhelms-Universität MünsterOrganisch-Chemisches InstitutCorrensstrasse 3648149MünsterGermany
| | - Frank Glorius
- Westfälische Wilhelms-Universität MünsterOrganisch-Chemisches InstitutCorrensstrasse 3648149MünsterGermany
| |
Collapse
|
42
|
Hu T, Lückemeier L, Daniliuc C, Glorius F. Ru‐NHC‐katalysierte asymmetrische Hydrierung von 2‐Chinolonen zu chiralen 3,4‐Dihydro‐2‐chinolonen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tianjiao Hu
- Westfälische Wilhelms-Universität Münster Organisch-Chemisches Institut Corrensstraße 36 48149 Münster Deutschland
| | - Lukas Lückemeier
- Westfälische Wilhelms-Universität Münster Organisch-Chemisches Institut Corrensstraße 36 48149 Münster Deutschland
| | - Constantin Daniliuc
- Westfälische Wilhelms-Universität Münster Organisch-Chemisches Institut Corrensstraße 36 48149 Münster Deutschland
| | - Frank Glorius
- Westfälische Wilhelms-Universität Münster Organisch-Chemisches Institut Corrensstraße 36 48149 Münster Deutschland
| |
Collapse
|
43
|
Zhao Q, Meng G, Li G, Flach C, Mendelsohn R, Lalancette R, Szostak R, Szostak M. IPr# - highly hindered, broadly applicable N-heterocyclic carbenes. Chem Sci 2021; 12:10583-10589. [PMID: 34447551 PMCID: PMC8356752 DOI: 10.1039/d1sc02619d] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022] Open
Abstract
IPr (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) represents the most important NHC (NHC = N-heterocyclic carbene) ligand throughout the field of homogeneous catalysis. Herein, we report the synthesis, catalytic activity, and full structural and electronic characterization of novel, sterically-bulky, easily-accessible NHC ligands based on the hash peralkylation concept, including IPr#, Np# and BIAN-IPr#. The new ligands have been commercialized in collaboration with Millipore Sigma: IPr#HCl, 915653; Np#HCl; 915912; BIAN-IPr#HCl, 916420, enabling broad access of the academic and industrial researchers to new ligands for reaction optimization and screening. In particular, the synthesis of IPr# hinges upon cost-effective, modular alkylation of aniline, an industrial chemical that is available in bulk. The generality of this approach in ligand design is demonstrated through facile synthesis of BIAN-IPr# and Np#, two ligands that differ in steric properties and N-wingtip arrangement. The broad activity in various cross-coupling reactions in an array of N–C, O–C, C–Cl, C–Br, C–S and C–H bond cross-couplings is demonstrated. The evaluation of steric, electron-donating and π-accepting properties as well as coordination chemistry to Au(i), Rh(i) and Pd(ii) is presented. Given the tremendous importance of NHC ligands in homogenous catalysis, we expect that this new class of NHCs will find rapid and widespread application. We report novel, sterically-bulky, easily-accessible NHC ligands based on the hash peralkylation concept. The new ligands have been commercialized in collaboration with Millipore Sigma: IPr#HCl, 915653; Np#HCl; 915912; BIAN-IPr#HCl, 916420.![]()
Collapse
Affiliation(s)
- Qun Zhao
- Department of Chemistry, Rutgers University 73 Warren Street Newark NJ 07102 USA
| | - Guangrong Meng
- Department of Chemistry, Rutgers University 73 Warren Street Newark NJ 07102 USA
| | - Guangchen Li
- Department of Chemistry, Rutgers University 73 Warren Street Newark NJ 07102 USA
| | - Carol Flach
- Department of Chemistry, Rutgers University 73 Warren Street Newark NJ 07102 USA
| | - Richard Mendelsohn
- Department of Chemistry, Rutgers University 73 Warren Street Newark NJ 07102 USA
| | - Roger Lalancette
- Department of Chemistry, Rutgers University 73 Warren Street Newark NJ 07102 USA
| | - Roman Szostak
- Department of Chemistry, Wroclaw University F. Joliot-Curie 14 Wroclaw 50-383 Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University 73 Warren Street Newark NJ 07102 USA
| |
Collapse
|
44
|
Guillet SG, Pisanò G, Chakrabortty S, Müller BH, Vries JG, Kamer PCJ, Cazin CSJ, Nolan SP. A Simple Synthetic Route to [Rh(acac)(CO)(NHC)] Complexes: Ligand Property Diagnostic Tools and Precatalysts. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sébastien G. Guillet
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281, Campus Sterre, Building S-3 9000 Ghent Belgium
| | - Gianmarco Pisanò
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281, Campus Sterre, Building S-3 9000 Ghent Belgium
| | - Soumyadeep Chakrabortty
- Leibniz-Institut für Katalyse e.V. (LIKAT Rostock) Albert-Einstein-Str. 29a 18059 Rostock Germany
| | - Bernd H. Müller
- Leibniz-Institut für Katalyse e.V. (LIKAT Rostock) Albert-Einstein-Str. 29a 18059 Rostock Germany
| | - Johannes G. Vries
- Leibniz-Institut für Katalyse e.V. (LIKAT Rostock) Albert-Einstein-Str. 29a 18059 Rostock Germany
| | - Paul C. J. Kamer
- Leibniz-Institut für Katalyse e.V. (LIKAT Rostock) Albert-Einstein-Str. 29a 18059 Rostock Germany
| | - Catherine S. J. Cazin
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281, Campus Sterre, Building S-3 9000 Ghent Belgium
| | - Steven. P. Nolan
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281, Campus Sterre, Building S-3 9000 Ghent Belgium
| |
Collapse
|
45
|
Martin T, Galeotti M, Salamone M, Liu F, Yu Y, Duan M, Houk KN, Bietti M. Deciphering Reactivity and Selectivity Patterns in Aliphatic C-H Bond Oxygenation of Cyclopentane and Cyclohexane Derivatives. J Org Chem 2021; 86:9925-9937. [PMID: 34115516 DOI: 10.1021/acs.joc.1c00902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A kinetic, product, and computational study on the reactions of the cumyloxyl radical with monosubstituted cyclopentanes and cyclohexanes has been carried out. HAT rates, site-selectivities for C-H bond oxidation, and DFT computations provide quantitative information and theoretical models to explain the observed patterns. Cyclopentanes functionalize predominantly at C-1, and tertiary C-H bond activation barriers decrease on going from methyl- and tert-butylcyclopentane to phenylcyclopentane, in line with the computed C-H BDEs. With cyclohexanes, the relative importance of HAT from C-1 decreases on going from methyl- and phenylcyclohexane to ethyl-, isopropyl-, and tert-butylcyclohexane. Deactivation is also observed at C-2 with site-selectivity that progressively shifts to C-3 and C-4 with increasing substituent steric bulk. The site-selectivities observed in the corresponding oxidations promoted by ethyl(trifluoromethyl)dioxirane support this mechanistic picture. Comparison of these results with those obtained previously for C-H bond azidation and functionalizations promoted by the PINO radical of phenyl and tert-butylcyclohexane, together with new calculations, provides a mechanistic framework for understanding C-H bond functionalization of cycloalkanes. The nature of the HAT reagent, C-H bond strengths, and torsional effects are important determinants of site-selectivity, with the latter effects that play a major role in the reactions of oxygen-centered HAT reagents with monosubstituted cyclohexanes.
Collapse
Affiliation(s)
- Teo Martin
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica, 1, I-00133 Rome, Italy
| | - Marco Galeotti
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica, 1, I-00133 Rome, Italy
| | - Michela Salamone
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica, 1, I-00133 Rome, Italy
| | - Fengjiao Liu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.,Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Yanmin Yu
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing 100124, China.,Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Meng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Massimo Bietti
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica, 1, I-00133 Rome, Italy
| |
Collapse
|
46
|
Clark JL, Taylor A, Geddis A, Neyyappadath RM, Piscelli BA, Yu C, Cordes DB, Slawin AMZ, Cormanich RA, Guldin S, O'Hagan D. Supramolecular packing of alkyl substituted Janus face all- cis 2,3,4,5,6-pentafluorocyclohexyl motifs. Chem Sci 2021; 12:9712-9719. [PMID: 34349942 PMCID: PMC8293821 DOI: 10.1039/d1sc02130c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/04/2021] [Indexed: 02/04/2023] Open
Abstract
This study uses X-ray crystallography, theory and Langmuir isotherm analysis to explore the conformations and molecular packing of alkyl all-cis 2,3,4,5,6-pentafluorocyclohexyl motifs, which are prepared by direct aryl hydrogenations from alkyl- or vinyl-pentafluoroaryl benzenes. Favoured conformations retain the more polar triaxial C-F bond arrangement of the all-cis 2,3,4,5,6-pentafluorocyclohexyl ring systems with the alkyl substituent adopting an equatorial orientation, and accommodating strong supramolecular interactions between rings. Langmuir isotherm analysis on a water subphase of a long chain fatty acid and alcohol carrying terminal all-cis 2,3,4,5,6-pentafluorocyclohexyl rings do not show any indication of monolayer assembly relative to their cyclohexane analogues, instead the molecules appear to aggregate and form higher molecular assemblies prior to compression. The study indicates the power and potential of this ring system as a motif for ordering supramolecular assembly.
Collapse
Affiliation(s)
- Joshua L Clark
- School of Chemistry, University of St Andrews North Haugh, St Andrews, Fife KY16 9ST UK
| | - Alaric Taylor
- Department of Chemical Engineering, University College London Torrington Place London WC1E 7JE UK
| | - Ailsa Geddis
- School of Chemistry, University of St Andrews North Haugh, St Andrews, Fife KY16 9ST UK
| | | | - Bruno A Piscelli
- Chemistry Institute, University of Campinas Monteiro Lobato Street, Campinas Sao Paulo 13083-862 Brazil
| | - Cihang Yu
- School of Chemistry, University of St Andrews North Haugh, St Andrews, Fife KY16 9ST UK
| | - David B Cordes
- School of Chemistry, University of St Andrews North Haugh, St Andrews, Fife KY16 9ST UK
| | - Alexandra M Z Slawin
- School of Chemistry, University of St Andrews North Haugh, St Andrews, Fife KY16 9ST UK
| | - Rodrigo A Cormanich
- Chemistry Institute, University of Campinas Monteiro Lobato Street, Campinas Sao Paulo 13083-862 Brazil
| | - Stefan Guldin
- Department of Chemical Engineering, University College London Torrington Place London WC1E 7JE UK
| | - David O'Hagan
- School of Chemistry, University of St Andrews North Haugh, St Andrews, Fife KY16 9ST UK
| |
Collapse
|
47
|
Charvillat T, Bernardelli P, Daumas M, Pannecoucke X, Ferey V, Besset T. Hydrogenation of fluorinated molecules: an overview. Chem Soc Rev 2021; 50:8178-8192. [PMID: 34060550 DOI: 10.1039/d0cs00736f] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The review aims at providing an overview on the developments made in hydrogenation reactions of molecules having various fluorinated groups (F, CF3, CF2H, CF2Rf). Indeed, the hydrogenation of fluorine-containing molecules is a straightforward and atom-economical way to access challenging (chiral) fluorinated scaffolds. This promising field is still in its infancy and milestones are expected in the coming years. To illustrate that, the review will highlight the major contributions made in that field and will be organized by fluorinated groups.
Collapse
Affiliation(s)
- T Charvillat
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France.
| | - P Bernardelli
- Sanofi Sanofi R&D, Integrated Drug Discovery, Small Molecule Medicinal Chemistry, 1 avenue Pierre Brossolette, 91385 Chilly-Mazarin, France
| | - M Daumas
- Sanofi R&D, 371 rue du Professeur Blayac, 34184 Montpellier, France
| | - X Pannecoucke
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France.
| | - V Ferey
- Sanofi R&D, 371 rue du Professeur Blayac, 34184 Montpellier, France
| | - T Besset
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France.
| |
Collapse
|
48
|
Moock D, Wagener T, Hu T, Gallagher T, Glorius F. Enantio- and Diastereoselective, Complete Hydrogenation of Benzofurans by Cascade Catalysis. Angew Chem Int Ed Engl 2021; 60:13677-13681. [PMID: 33844391 PMCID: PMC8251578 DOI: 10.1002/anie.202103910] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Indexed: 12/13/2022]
Abstract
We report an enantio- and diastereoselective, complete hydrogenation of multiply substituted benzofurans in a one-pot cascade catalysis. The developed protocol facilitates the controlled installation of up to six new defined stereocenters and produces architecturally complex octahydrobenzofurans, prevalent in many bioactive molecules. A unique match of a chiral homogeneous ruthenium-N-heterocyclic carbene complex and an in situ activated rhodium catalyst from a complex precursor act in sequence to enable the presented process.
Collapse
Affiliation(s)
- Daniel Moock
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstrasse 4048149MünsterGermany
| | - Tobias Wagener
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstrasse 4048149MünsterGermany
| | - Tianjiao Hu
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstrasse 4048149MünsterGermany
| | - Timothy Gallagher
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstrasse 4048149MünsterGermany
| | - Frank Glorius
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstrasse 4048149MünsterGermany
| |
Collapse
|
49
|
Parker PD, Hou X, Dong VM. Reducing Challenges in Organic Synthesis with Stereoselective Hydrogenation and Tandem Catalysis. J Am Chem Soc 2021; 143:6724-6745. [PMID: 33891819 DOI: 10.1021/jacs.1c00750] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tandem catalysis enables the rapid construction of complex architectures from simple building blocks. This Perspective shares our interest in combining stereoselective hydrogenation with transformations such as isomerization, oxidation, and epimerization to solve diverse challenges. We highlight the use of tandem hydrogenation for preparing complex natural products from simple prochiral building blocks and present tandem catalysis involving transfer hydrogenation and dynamic kinetic resolution. Finally, we underline recent breakthroughs and opportunities for asymmetric hydrogenation.
Collapse
Affiliation(s)
- Patrick D Parker
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Xintong Hou
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Vy M Dong
- Department of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
50
|
Moock D, Wagener T, Hu T, Gallagher T, Glorius F. Enantio‐ und diastereoselektive, vollständige Hydrierung von Benzofuranen mittels Kaskadenkatalyse. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103910] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Daniel Moock
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Tobias Wagener
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Tianjiao Hu
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Timothy Gallagher
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Frank Glorius
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| |
Collapse
|